A Geometric Dissection Problem
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 7. A Geometric Dissection Problem. M N Deshpande. Think It Over Volume 7 Issue 7 July 2002 pp 91-91. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/007/07/0091-0091. Author Affiliations.
Geometric Total Variation for Texture Deformation
DEFF Research Database (Denmark)
Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali
2010-01-01
In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry...... of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...
Two solvable problems of planar geometrical optics.
Borghero, Francesco; Bozis, George
2006-12-01
In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.
Geometrical themes inspired by the n-body problem
Herrera, Haydeé; Herrera, Rafael
2018-01-01
Presenting a selection of recent developments in geometrical problems inspired by the N-body problem, these lecture notes offer a variety of approaches to study them, ranging from variational to dynamical, while developing new insights, making geometrical and topological detours, and providing historical references. A. Guillot’s notes aim to describe differential equations in the complex domain, motivated by the evolution of N particles moving on the plane subject to the influence of a magnetic field. Guillot studies such differential equations using different geometric structures on complex curves (in the sense of W. Thurston) in order to find isochronicity conditions. R. Montgomery’s notes deal with a version of the planar Newtonian three-body equation. Namely, he investigates the problem of whether every free homotopy class is realized by a periodic geodesic. The solution involves geometry, dynamical systems, and the McGehee blow-up. A novelty of the approach is the use of energy-balance in order t...
Remarks on the geometric quantization of the Kepler problem
International Nuclear Information System (INIS)
Gaeta, G.; Spera, M.
1988-01-01
The geometric quantization of the (three-dimensional) Kepler problem is readily obtained from the one of the harmonic oscillator using a Segre map. The physical meaning of the latter is discussed. (orig.)
Geometric Programming Approach to an Interactive Fuzzy Inventory Problem
Directory of Open Access Journals (Sweden)
Nirmal Kumar Mandal
2011-01-01
Full Text Available An interactive multiobjective fuzzy inventory problem with two resource constraints is presented in this paper. The cost parameters and index parameters, the storage space, the budgetary cost, and the objective and constraint goals are imprecise in nature. These parameters and objective goals are quantified by linear/nonlinear membership functions. A compromise solution is obtained by geometric programming method. If the decision maker is not satisfied with this result, he/she may try to update the current solution to his/her satisfactory solution. In this way we implement man-machine interactive procedure to solve the problem through geometric programming method.
Geometric modeling in the problem of ball bearing accuracy
Glukhov, V. I.; Pushkarev, V. V.; Khomchenko, V. G.
2017-06-01
The manufacturing quality of ball bearings is an urgent problem for machine-building industry. The aim of the research is to improve the geometric specifications accuracy of bearings based on evidence-based systematic approach and the method of adequate size, location and form deviations modeling of the rings and assembled ball bearings. The present work addressed the problem of bearing geometric specifications identification and the study of these specifications. The deviation from symmetric planar of rings and bearings assembly and mounting width are among these specifications. A systematic approach to geometric specifications values and ball bearings tolerances normalization in coordinate systems will improve the quality of bearings by optimizing and minimizing the number of specifications. The introduction of systematic approach to the international standards on rolling bearings is a guarantee of a significant increase in accuracy of bearings and the quality of products where they are applied.
Renormgroup symmetries in problems of nonlinear geometrical optics
International Nuclear Information System (INIS)
Kovalev, V.F.
1996-01-01
Utilization and further development of the previously announced approach [1,2] enables one to construct renormgroup symmetries for a boundary value problem for the system of equations which describes propagation of a powerful radiation in a nonlinear medium in geometrical optics approximation. With the help of renormgroup symmetries new rigorous and approximate analytical solutions of nonlinear geometrical optics equations are obtained. Explicit analytical expressions are presented that characterize spatial evolution of laser beam which has an arbitrary intensity dependence at the boundary of the nonlinear medium. (author)
Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.
Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu
2012-01-01
Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.
Implementation of the geometrical problem in CNC metal cutting machine
Directory of Open Access Journals (Sweden)
Erokhin V.V.
2017-06-01
Full Text Available The article deals with the tasks of managing the production process (technological process and technological equip-ment, the most detailed analysis of the implementation of the geometric problem in CNC machines. The influence of the solution of the geometric CNC problem on the accuracy of workpiece machining is analyzed by implementing a certain interpolation algorithm and the values of the discreteness of the movements of the working bodies of the CNC machine. The technique of forming a given trajectory of motion of the machine's executive organ is given, by means of which it is required to ensure the coordinated movement of the shaping coordinates according to a certain law, depend-ing on the specified trajectory of the cutting edge of the tool. The advantages and disadvantages of the implementation of interpolation in CNC systems by various methods are considered, and particular attention is paid to combined meth-ods of realizing interpolation.
Geometric treatment of electromagnetic phenomena in conducting materials: variational principles
Energy Technology Data Exchange (ETDEWEB)
BadIa-Majos, A [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza (Spain); Carinena, J F [Departamento de Fisica Teorica, Universidad de Zaragoza (Spain); Lopez, C [Departamento de Matematicas, Universidad de Alcala de Henares (Spain)
2006-11-24
The dynamical equations of an electromagnetic field coupled with a conducting material are studied. The properties of the interaction are described by a classical field theory with tensorial material laws in spacetime geometry. We show that the main features of superconducting response emerge in a natural way within the covariance, gauge invariance and variational formulation requirements. In particular, the Ginzburg-Landau theory follows straightforwardly from the London equations when fundamental symmetry properties are considered. Unconventional properties, such as the interaction of superconductors with electrostatic fields are naturally introduced in the geometric theory, at a phenomenological level. The BCS background is also suggested by macroscopic fingerprints of the internal symmetries. It is also shown that dissipative conducting behaviour may be approximately treated in a variational framework after breaking covariance for adiabatic processes. Thus, nonconservative laws of interaction are formulated by a purely spatial variational principle, in a quasi-stationary time discretized evolution. This theory justifies a class of nonfunctional phenomenological principles, introduced for dealing with exotic conduction properties of matter (BadIa and Lopez 2001 Phys. Rev. Lett. 87 127004)
Bernoulli Variational Problem and Beyond
Lorz, Alexander
2013-12-17
The question of \\'cutting the tail\\' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric case where a variational problem can be stated. It is known that, in both cases, the same critical scale arises for the size of the singular perturbation. More interesting is that in both cases another critical parameter (of order one) arises that decides when the limiting behaviour is non-degenerate. We study both theoretically and numerically the values of this critical parameter and, in the symmetric case, ask if the variational solution leads to the same value as for the maximal solution of the PDE. Finally we propose a weak formulation of the limiting Bernoulli problem which incorporates both Dirichlet and Neumann boundary condition. © 2013 Springer-Verlag Berlin Heidelberg.
Lyapunov vs. geometrical stability analysis of the Kepler and the restricted three body problems
International Nuclear Information System (INIS)
Yahalom, A.; Levitan, J.; Lewkowicz, M.; Horwitz, L.
2011-01-01
In this Letter we show that although the application of standard Lyapunov analysis predicts that completely integrable Kepler motion is unstable, the geometrical analysis of Horwitz et al. predicts the observed stability. This seems to us to provide evidence for both the incompleteness of the standard Lyapunov analysis and the strength of the geometrical analysis. Moreover, we apply this approach to the three body problem in which the third body is restricted to move on a circle of large radius which induces an adiabatic time dependent potential on the second body. This causes the second body to move in a very interesting and intricate but periodic trajectory; however, the standard Lyapunov analysis, as well as methods based on the parametric variation of curvature associated with the Jacobi metric, incorrectly predict chaotic behavior. The geometric approach predicts the correct stable motion in this case as well. - Highlights: → Lyapunov analysis predicts Kepler motion to be unstable. → Geometrical analysis predicts the observed stability. → Lyapunov analysis predicts chaotic behavior in restricted three body problem. → The geometric approach predicts the correct stable motion in restricted three body problem.
Geometric Series: A New Solution to the Dog Problem
Dion, Peter; Ho, Anthony
2013-01-01
This article describes what is often referred to as the dog, beetle, mice, ant, or turtle problem. Solutions to this problem exist, some being variations of each other, which involve mathematics of a wide range of complexity. Herein, the authors describe the intuitive solution and the calculus solution and then offer a completely new solution…
The problem 7 forming triangular geometric line field
Directory of Open Access Journals (Sweden)
Travush Vladimir Iljich
2016-01-01
Full Text Available Investigated a method of formation of triangular networks in the field. Delivered conditions the problem of locating a triangular network in the area. The criterion for assessing the effectiveness of the solution of the problem is the minimum number of sizes of the dome elements, the possibility of pre-assembly and pre-stressing. The solution of the problem of one embodiment of a triangular network of accommodation in a compatible spherical triangle and, accordingly, on the sphere. Optimization of triangular geometric network on a sphere on the criterion of minimum sizes of elements can be solved by placing the system in an irregular hexagon inscribed in a circle of minimal size, maximum regular hexagons.
The problem 4 of placement triangular geometric line field
Directory of Open Access Journals (Sweden)
Travush Vladimir Iljich
2016-01-01
Full Text Available One of the a method of formation of triangular networks in the field is investigated. Conditions the problem of locating a triangular network in the area are delivered. The criterion for assessing the effectiveness of the solution of the problem is the minimum number of sizes of the dome elements, the possibility of pre-assembly and pre-stressing. The solution of the problem of one embodiment of a triangular network of accommodation in a compatible spherical triangle and, accordingly, on the sphere. Optimization of triangular geometric network on a sphere on the criterion of minimum sizes of elements can be solved by placing the system in an irregular hexagon inscribed in a circle of minimal size, maximum regular hexagons.
Variational problems for plane curves in centro-affine geometry
International Nuclear Information System (INIS)
Musso, Emilio
2010-01-01
In this paper closed extremals of variational problems defined by quadratic polynomials in the centro-affine curvature are considered. The closure of the trajectories is discussed and the existence of countably many closed critical curves is proven. The geometrical properties of closed trajectories are analyzed by numerical methods.
Cruzeiro, Ana; Holm, Darryl
2017-01-01
Collecting together contributed lectures and mini-courses, this book details the research presented in a special semester titled “Geometric mechanics – variational and stochastic methods” run in the first half of 2015 at the Centre Interfacultaire Bernoulli (CIB) of the Ecole Polytechnique Fédérale de Lausanne. The aim of the semester was to develop a common language needed to handle the wide variety of problems and phenomena occurring in stochastic geometric mechanics. It gathered mathematicians and scientists from several different areas of mathematics (from analysis, probability, numerical analysis and statistics, to algebra, geometry, topology, representation theory, and dynamical systems theory) and also areas of mathematical physics, control theory, robotics, and the life sciences, with the aim of developing the new research area in a concentrated joint effort, both from the theoretical and applied points of view. The lectures were given by leading specialists in different areas of mathematics a...
Failure of geometric electromagnetism in the adiabatic vector Kepler problem
International Nuclear Information System (INIS)
Anglin, J.R.; Schmiedmayer, J.
2004-01-01
The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation
The inverse problem of the calculus of variations for discrete systems
Barbero-Liñán, María; Farré Puiggalí, Marta; Ferraro, Sebastián; Martín de Diego, David
2018-05-01
We develop a geometric version of the inverse problem of the calculus of variations for discrete mechanics and constrained discrete mechanics. The geometric approach consists of using suitable Lagrangian and isotropic submanifolds. We also provide a transition between the discrete and the continuous problems and propose variationality as an interesting geometric property to take into account in the design and computer simulation of numerical integrators for constrained systems. For instance, nonholonomic mechanics is generally non variational but some special cases admit an alternative variational description. We apply some standard nonholonomic integrators to such an example to study which ones conserve this property.
Constant-work-space algorithms for geometric problems
Directory of Open Access Journals (Sweden)
Tetsuo Asano
2011-07-01
Full Text Available Constant-work-space algorithms may use only constantly many cells of storage in addition to their input, which is provided as a read-only array. We show how to construct several geometric structures efficiently in the constant-work-space model. Traditional algorithms process the input into a suitable data structure (like a doubly-connected edge list that allows efficient traversal of the structure at hand. In the constant-work-space setting, however, we cannot afford to do this. Instead, we provide operations that compute the desired features on the fly by accessing the input with no extra space. The whole geometric structure can be obtained by using these operations to enumerate all the features. Of course, we must pay for the space savings by slower running times. While the standard data structure allows us to implement traversal operations in constant time, our schemes typically take linear time to read the input data in each step.We begin with two simple problems: triangulating a planar point set and finding the trapezoidal decomposition of a simple polygon. In both cases adjacent features can be enumerated in linear time per step, resulting in total quadratic running time to output the whole structure. Actually, we show that the former result carries over to the Delaunay triangulation, and hence the Voronoi diagram. This also means that we can compute the largest empty circle of a planar point set in quadratic time and constant work-space. As another application, we demonstrate how to enumerate the features of an Euclidean minimum spanning tree (EMST in quadratic time per step, so that the whole EMST can be found in cubic time using constant work-space.Finally, we describe how to compute a shortest geodesic path between two points in a simple polygon. Although the shortest path problem in general graphs is NL-complete (Jakoby and Tantau 2003, this constrained problem can be solved in quadratic time using only constant work-space.
A Geometric Problem and the Hopf Lemma. Ⅱ
Institute of Scientific and Technical Information of China (English)
YanYan LI; Louis NIRENBERG
2006-01-01
A classical result of A. D. Alexandrov states that a connected compact smooth n-dimensional manifold without boundary, embedded in Rn+1, and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of M in a hyperplane Xn+1 =constant in case M satisfies: for any two points (X′, Xn+1), (X′, ^Xn+1)on M, with Xn+1 ＞ ^Hn+1, the mean curvature at the first is not greater than that at the second. Symmetry need not always hold, but in this paper, we establish it under some additional conditions. Some variations of the Hopf Lemma are also presented. Several open problems are described. Part Ⅰ dealt with corresponding one dimensional problems.
von Cramon-Taubadel, Noreen; Frazier, Brenda C; Lahr, Marta Mirazón
2007-09-01
Geometric morphometric methods rely on the accurate identification and quantification of landmarks on biological specimens. As in any empirical analysis, the assessment of inter- and intra-observer error is desirable. A review of methods currently being employed to assess measurement error in geometric morphometrics was conducted and three general approaches to the problem were identified. One such approach employs Generalized Procrustes Analysis to superimpose repeatedly digitized landmark configurations, thereby establishing whether repeat measures fall within an acceptable range of variation. The potential problem of this error assessment method (the "Pinocchio effect") is demonstrated and its effect on error studies discussed. An alternative approach involves employing Euclidean distances between the configuration centroid and repeat measures of a landmark to assess the relative repeatability of individual landmarks. This method is also potentially problematic as the inherent geometric properties of the specimen can result in misleading estimates of measurement error. A third approach involved the repeated digitization of landmarks with the specimen held in a constant orientation to assess individual landmark precision. This latter approach is an ideal method for assessing individual landmark precision, but is restrictive in that it does not allow for the incorporation of instrumentally defined or Type III landmarks. Hence, a revised method for assessing landmark error is proposed and described with the aid of worked empirical examples. (c) 2007 Wiley-Liss, Inc.
General inverse problems for regular variation
DEFF Research Database (Denmark)
Damek, Ewa; Mikosch, Thomas Valentin; Rosinski, Jan
2014-01-01
Regular variation of distributional tails is known to be preserved by various linear transformations of some random structures. An inverse problem for regular variation aims at understanding whether the regular variation of a transformed random object is caused by regular variation of components ...
Homogenization of variational inequalities for obstacle problems
International Nuclear Information System (INIS)
Sandrakov, G V
2005-01-01
Results on the convergence of solutions of variational inequalities for obstacle problems are proved. The variational inequalities are defined by a non-linear monotone operator of the second order with periodic rapidly oscillating coefficients and a sequence of functions characterizing the obstacles. Two-scale and macroscale (homogenized) limiting variational inequalities are obtained. Derivation methods for such inequalities are presented. Connections between the limiting variational inequalities and two-scale and macroscale minimization problems are established in the case of potential operators.
Bernoulli Variational Problem and Beyond
Lorz, Alexander; Markowich, Peter A.; Perthame, Benoî t
2013-01-01
The question of 'cutting the tail' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric
Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa
2012-12-20
A study on the variation of the spectral bidirectional reflectance distribution function (BRDF) of four diffuse reflectance standards (matte ceramic, BaSO(4), Spectralon, and white Russian opal glass) is accomplished through this work. Spectral BRDF measurements were carried out and, using principal components analysis, its spectral and geometrical variation respect to a reference geometry was assessed from the experimental data. Several descriptors were defined in order to compare the spectral BRDF variation of the four materials.
Functional geometric method for solving free boundary problems for harmonic functions
Energy Technology Data Exchange (ETDEWEB)
Demidov, Aleksander S [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2010-01-01
A survey is given of results and approaches for a broad spectrum of free boundary problems for harmonic functions of two variables. The main results are obtained by the functional geometric method. The core of these methods is an interrelated analysis of the functional and geometric characteristics of the problems under consideration and of the corresponding non-linear Riemann-Hilbert problems. An extensive list of open questions is presented. Bibliography: 124 titles.
Mujiasih; Waluya, S. B.; Kartono; Mariani
2018-03-01
Skills in working on the geometry problems great needs of the competence of Geometric Reasoning. As a teacher candidate, State Islamic University (UIN) students need to have the competence of this Geometric Reasoning. When the geometric reasoning in solving of geometry problems has grown well, it is expected the students are able to write their ideas to be communicative for the reader. The ability of a student's mathematical communication is supposed to be used as a marker of the growth of their Geometric Reasoning. Thus, the search for the growth of geometric reasoning in solving of analytic geometry problems will be characterized by the growth of mathematical communication abilities whose work is complete, correct and sequential, especially in writing. Preceded with qualitative research, this article was the result of a study that explores the problem: Was the search for the growth of geometric reasoning in solving analytic geometry problems could be characterized by the growth of mathematical communication abilities? The main activities in this research were done through a series of activities: (1) Lecturer trains the students to work on analytic geometry problems that were not routine and algorithmic process but many problems that the process requires high reasoning and divergent/open ended. (2) Students were asked to do the problems independently, in detail, complete, order, and correct. (3) Student answers were then corrected each its stage. (4) Then taken 6 students as the subject of this research. (5) Research subjects were interviewed and researchers conducted triangulation. The results of this research, (1) Mathematics Education student of UIN Semarang, had adequate the mathematical communication ability, (2) the ability of this mathematical communication, could be a marker of the geometric reasoning in solving of problems, and (3) the geometric reasoning of UIN students had grown in a category that tends to be good.
Directory of Open Access Journals (Sweden)
Avni YILDIZ
2016-10-01
Full Text Available Geometric constructions have already been of interest to mathematicians. However, studies on geometric construction are not adequate in the relevant literature. Moreover, these studies generally focus on how secondary school gifted students solve non-routine mathematical problems. The present study aims to examine the geometric construction abilities of ninth-grade (15 years old gifted students in solving real-world geometry problems; thus a case study was conducted. Six gifted students participated in the study. The data consisted of voice records, solutions, and models made by the students on the GeoGebra screen. Results indicate that gifted students use their previous knowledge effectively during the process of geometric construction. They modeled the situations available in the problems through using mathematical concepts and the software in coordination. Therefore, it is evident that gifted students think more creatively while solving problems using GeoGebra.
A population based statistical model for daily geometric variations in the thorax
Szeto, Yenny Z.; Witte, Marnix G.; van Herk, Marcel; Sonke, Jan-Jakob
2017-01-01
To develop a population based statistical model of the systematic interfraction geometric variations between the planning CT and first treatment week of lung cancer patients for inclusion as uncertainty term in future probabilistic planning. Deformable image registrations between the planning CT and
Geometric characterization for the least Lagrangian action of n-body problems
Institute of Scientific and Technical Information of China (English)
ZHANG; Shiqing
2001-01-01
［1］Manev, G., La gravitation et l'énergie au zéro, Comptes Rendus, 924, 78: 259.［2］Diacu, F. N., Near-collision dynamics for particle systems with quasihomogeneous potentials, J. of Diff. Equ., 996, 28: 58.［3］Ambrosetti, A., Coti Zelati, V., Periodic Solutions of Singular Lagrangian Systems, Basel: Birkhuser, 993.［4］Arnold, V., Kozlov, V., Neishtadt, A., Dynamical Systems (iii): Mathematical Aspects of Classical and Celestial Mechanics, Berlin: Springer-Verlag, 988.［5］Chenciner, A., Desolneux, N., Minima de l'intégrale d'action et équilibres relatifs de n corps, C R Acad. Sci. Paris, serie I, 998, 326: 209.［6］Coti Zelati, V., The periodic solutions of n-body type problems, Ann IHP Anal nonlinéaire, 990, 7: 477.［7］Euler, L., De motu rectilineo trium corprum se mutuo attrahentium, Novi. Comm. Acad. Sci. Imp. Petropll, 767: 45.［8］Gordon, W., A minimizing property of Keplerian orbits, Amer. J. Math., 977, 99: 96.［9］Lagrange, J., Essai sur le problé me des trois corps, 772, Ouvres, 783, 3: 229.［10］Long, Y., Zhang, S. Q., Geometric characterization for variational minimization solutions of the 3-body problem, Chinese Science Bulletin, 999, 44(8): 653.［11］Long, Y., Zhang, S. Q., Geometric characterization for variational minimization solutions of the 3-body problem with fixed energy, J. of Diff. Equ., 2000, 60: 422.［12］Meyer, K., Hall, G., Introduction to Hamiltonian systems and the n-body problems, Berlin: Springer-Verlag,992.［13］Serra, E., Terracini, S., Collisionless periodic solutions to some three-body problems, Arch. Rational Mech. Anal., 992, 20: 305.［14］Siegle, C., Moser, J., Lectures on Celestial Mechanics, Berlin: Springer-Verlag, 97.［15］Wintner, A., Analytical Foundations of Celestial Mechanics, Princeton: Princeton University Press, 94.［16］Hardy, G., Littlewood, J., Pólya, G., Inequalities, 2nd ed., Cambridge: Combridge University Press, 952.
Geometric projection filter: an efficient solution to the SLAM problem
Newman, Paul M.; Durrant-Whyte, Hugh F.
2001-10-01
This paper is concerned with the simultaneous localization and map building (SLAM) problem. The SLAM problem asks if it is possible for an autonomous vehicle to start in an unknown location in an unknown environment and then to incrementally build a map of this environment while simultaneously using this map to compute absolute vehicle location. Conventional approaches to this problem are plagued with a prohibitively large increase in computation with the size of the environment. This paper offers a new solution to the SLAM problem that is both consistent and computationally feasible. The proposed algorithm builds a map expressing the relationships between landmarks which is then transformed into landmark locations. Experimental results are presented employing the new algorithm on a subsea vehicle using a scanning sonar sensor.
Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa
2015-01-01
This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.
The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems
Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.
2018-01-01
This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.
Schwartz distributions in the Lagrange variational problem
International Nuclear Information System (INIS)
Anton, H.; Bahar, L.Y.
1978-01-01
Schwartz distributions are used to eliminate the necessity of imposing a priori conditions on the class of admissible functions in the Lagrange fixed end-point variational problem. This makes it possible to defer the imposition of conditions on the extremals until such conditions become apparent from physical considerations
Geometric morphometrics in primatology: craniofacial variation in Homo sapiens and Pan troglodytes.
Lynch, J M; Wood, C G; Luboga, S A
1996-01-01
Traditionally, morphometric studies have relied on statistical analysis of distances, angles or ratios to investigate morphometric variation among taxa. Recently, geometric techniques have been developed for the direct analysis of landmark data. In this paper, we offer a summary (with examples) of three of these newer techniques, namely shape coordinate, thin-plate spline and relative warp analyses. Shape coordinate analysis detected significant craniofacial variation between 4 modern human populations, with African and Australian Aboriginal specimens being relatively prognathous compared with their Eurasian counterparts. In addition, the Australian specimens exhibited greater basicranial flexion than all other samples. The observed relationships between size and craniofacial shape were weak. The decomposition of shape variation into affine and non-affine components is illustrated via a thin-plate spline analysis of Homo and Pan cranial landmarks. We note differences between Homo and Pan in the degree of prognathism and basicranial flexion and the position and orientation of the foramen magnum. We compare these results with previous studies of these features in higher primates and discuss the utility of geometric morphometrics as a tool in primatology and physical anthropology. We conclude that many studies of morphological variation, both within and between taxa, would benefit from the graphical nature of these techniques.
International Nuclear Information System (INIS)
Trostel, R.
1982-01-01
A mathematical objective of this paper is to provide geometrical formulation of the integrability conditions for the existence of an action functional, that is, to provide a geometrical counterpart (similar to that by Abraham, Marsden, and Hughes) of the variational and functional approach to self-adjointness. This objective is achieved via the exterior variational calculus, an exterior differential calculus on the vector space of functions depending on time or space time, using from the outset extensively the concept of functional differentiation as its foundation. Variational self-adjointness equals the variational closure of the physical 1-form, the vanishing of a generalized curl-operation applied to the equations of motion. The convenience of this more formal approach is demonstrated, not only when deriving the conditions of variational self-adjointness for materials of differential type of arbitrary order (particles or fields), using roughly no more than Dirac's delta-distributions, but also when treating materials of a broader class (including causal and acausal constitutive functionals, materials of rate type, integral type, etc.). A physical objective of this paper is achieved by pointing out that, as physics is primarily concerned with the solutions of the evolution equations, i.e., with the set of the zero points of the physical 1-form, an equivalence relation among the physical 1-forms on the infinite dimensional vector space of functions is constructed by leaving the set of their zero points unchanged. Using this result, a direct Lagrangian universality is indicated and an almost one presented. Moreover, all physical 1-forms connected by invertible supermatrices (thus mixing the evolution law of different times or space-time) are equivalent. Choosing these supermatrices to be diagonal in time or space-time yields the indirect analytical representation factors
Using Priors to Compensate Geometrical Problems in Head-Mounted Eye Trackers
DEFF Research Database (Denmark)
Batista Narcizo, Fabricio; Ahmed, Zaheer; Hansen, Dan Witzner
The use of additional information (a.k.a. priors) to help the eye tracking process is presented as an alternative to compensate classical geometrical problems in head-mounted eye trackers. Priors can be obtained from several distinct sources, such as: sensors to collect information related...... estimation specially for uncalibrated head-mounted setups....
A Note on the Dual of an Unconstrained (Generalized) Geometric Programming Problem
J.B.G. Frenk (Hans); G.J. Still
2005-01-01
textabstractIn this note we show that the strong duality theorem of an unconstrained (generalized) geometric programming problem as defined by Peterson (cf.[1]) is actually a special case of a Lagrangian duality result. Contrary to [1] we also consider the case that the set C is compact and
A restricted Steiner tree problem is solved by Geometric Method II
Lin, Dazhi; Zhang, Youlin; Lu, Xiaoxu
2013-03-01
The minimum Steiner tree problem has wide application background, such as transportation system, communication network, pipeline design and VISL, etc. It is unfortunately that the computational complexity of the problem is NP-hard. People are common to find some special problems to consider. In this paper, we first put forward a restricted Steiner tree problem, which the fixed vertices are in the same side of one line L and we find a vertex on L such the length of the tree is minimal. By the definition and the complexity of the Steiner tree problem, we know that the complexity of this problem is also Np-complete. In the part one, we have considered there are two fixed vertices to find the restricted Steiner tree problem. Naturally, we consider there are three fixed vertices to find the restricted Steiner tree problem. And we also use the geometric method to solve such the problem.
Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem
DEFF Research Database (Denmark)
Delbary, Fabrice; Knudsen, Kim
2014-01-01
to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...
Resultant geometric variation of a fixtured workpiece Part I: a simulation
Directory of Open Access Journals (Sweden)
Supapan Sangnui Chaiprapat
2006-01-01
Full Text Available When a workpiece is fixtured for a machining or inspection operation, the accuracy of an operation is mainly determined by the efficiency of the fixturing method. Variability in manufactured workpiece is hardly inevitable. When such variability is found at contact areas between the workpiece and the fixture, errors in location are expected. The errors will affect quality of features to be produced. This paper developed an algorithm to determine variant final locations of a displaced workpiece given normally distributed errorsat contact points. Resultant geometric variation of workpiece location reveals interesting information which is beneficial in tolerance planning.
Error identities for variational problems with obstacles
Czech Academy of Sciences Publication Activity Database
Repin, S.; Valdman, Jan
2018-01-01
Roč. 98, č. 4 (2018), s. 635-658 ISSN 0044-2267 R&D Projects: GA ČR(CZ) GF16-34894L; GA ČR GA17-04301S; GA MŠk(CZ) 7AMB16AT015 Institutional support: RVO:67985556 Keywords : variational problems with obstacles * coincidence set * convex functionals * error identities Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.332, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/valdman-0483574.pdf
DEFF Research Database (Denmark)
Christiansen, Rasmus E.; Lazarov, Boyan S.; Jensen, Jakob S.
2015-01-01
Resonance and wave-propagation problems are known to be highly sensitive towards parameter variations. This paper discusses topology optimization formulations for creating designs that perform robustly under spatial variations for acoustic cavity problems. For several structural problems, robust...... and limitations are discussed. In addition, a known explicit penalization approach is considered for comparison. For near-uniform spatial variations it is shown that highly robust designs can be obtained using the double filter approach. It is finally demonstrated that taking non-uniform variations into account...... further improves the robustness of the designs....
International Nuclear Information System (INIS)
Choi, C. Y.; Park, C. T.; Kim, T. H.; Han, K. N.; Choe, S. H.
1995-01-01
A geometrical inverse heat conduction problem is solved for the development of Infrared Computerized-Axial-Tomography (IR CAT) Scan by using a boundary element method in conjunction with regularization procedure. In this problem, an overspecified temperature condition by infrared scanning is provided on the surface, and is used together with other conditions to solve the position of an unknown boundary (cavity). An auxiliary problem is introduced in the solution of this problem. By defining a hypothetical inner boundary for the auxiliary problem domain, the cavity is located interior to the domain and its position is determined by solving a potential problem. Boundary element method with regularization procedure is used to solve this problem, and the effects of regularization on the inverse solution method are investigated by means of numerical analysis
International Nuclear Information System (INIS)
Kim, R. Y.
1996-01-01
PURPOSE: The basic principal of intracavitary brachytherapy for cancer of the cervix is based on specific loading rules to achieve a pear-shaped isodose distribution centered around the cervix. Recently, ICRU Report 38 recommends a dose reference volume for reporting. Our previous studies have confirmed that there is considerable variations of geometry between applications. This study is to evaluate the effect of major geometric variations on pear-shaped isodose dimension in manual afterloading low-dose-rate system. MATERIAL AND METHODS: One hundred orthogonal films of 50 patients with cancer of the cervix (2 applications/patient) were reviewed for comparative measurements of geometric variations between applications. Major geometric variations were found for 13 patients in lengths of tandem, 7 patients in colpostats separation and 16 patients in vaginal packing. The direct measurement of these geometric variations were compared with the three-dimensional measurement of the pear-shaped isodose enclosed by the point A between the two applications. RESULTS: The geometric variations in the width of colpostats separation and length of tandem were directly related to the width and height of the pear-shaped isodose dimension. The geometric relationship between the colpostats and distal tandem had an important effect on the thickness of the pear-shape. In optimization of poor geometry for rectum or bladder wall, high dose volume centered around the cervix is reduced without changing the overall pear-shaped volume due to changing configuration of the pear-shaped isodose. In our selected patients with two applications, variations in vaginal packing had no direct effect on the width and thickness of the pear-shape due to other variables. CONCLUSION: Major geometric variations between applications greatly affect the dimension of the pear-shaped isodose distribution. Optimization of poor geometry is quite limited without compromising the high-dose volume centered around the
Uniqueness theorems for variational problems by the method of transformation groups
Reichel, Wolfgang
2004-01-01
A classical problem in the calculus of variations is the investigation of critical points of functionals {\\cal L} on normed spaces V. The present work addresses the question: Under what conditions on the functional {\\cal L} and the underlying space V does {\\cal L} have at most one critical point? A sufficient condition for uniqueness is given: the presence of a "variational sub-symmetry", i.e., a one-parameter group G of transformations of V, which strictly reduces the values of {\\cal L}. The "method of transformation groups" is applied to second-order elliptic boundary value problems on Riemannian manifolds. Further applications include problems of geometric analysis and elasticity.
Length-scale effect due to periodic variation of geometrically necessary dislocation densities
DEFF Research Database (Denmark)
Oztop, M. S.; Niordson, Christian Frithiof; Kysar, J. W.
2013-01-01
Strain gradient plasticity theories have been successful in predicting qualitative aspects of the length scale effect, most notably the increase in yield strength and hardness as the size of the deforming volume decreases. However new experimental methodologies enabled by recent developments...... of high spatial resolution diffraction methods in a scanning electron microscope give a much more quantitative understanding of plastic deformation at small length scales. Specifically, geometrically necessary dislocation densities (GND) can now be measured and provide detailed information about...... the microstructure of deformed metals in addition to the size effect. Recent GND measurements have revealed a distribution of length scales that evolves within a metal undergoing plastic deformation. Furthermore, these experiments have shown an accumulation of GND densities in cell walls as well as a variation...
International Nuclear Information System (INIS)
Sarkar, P.K.; Prasad, M.A.
1989-01-01
A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs
Geometrical optics approach in liquid crystal films with three-dimensional director variations.
Panasyuk, G; Kelly, J; Gartland, E C; Allender, D W
2003-04-01
A formal geometrical optics approach (GOA) to the optics of nematic liquid crystals whose optic axis (director) varies in more than one dimension is described. The GOA is applied to the propagation of light through liquid crystal films whose director varies in three spatial dimensions. As an example, the GOA is applied to the calculation of light transmittance for the case of a liquid crystal cell which exhibits the homeotropic to multidomainlike transition (HMD cell). Properties of the GOA solution are explored, and comparison with the Jones calculus solution is also made. For variations on a smaller scale, where the Jones calculus breaks down, the GOA provides a fast, accurate method for calculating light transmittance. The results of light transmittance calculations for the HMD cell based on the director patterns provided by two methods, direct computer calculation and a previously developed simplified model, are in good agreement.
Boundary Equations and Regularity Theory for Geometric Variational Systems with Neumann Data
Schikorra, Armin
2018-02-01
We study boundary regularity of maps from two-dimensional domains into manifolds which are critical with respect to a generic conformally invariant variational functional and which, at the boundary, intersect perpendicularly with a support manifold. For example, harmonic maps, or H-surfaces, with a partially free boundary condition. In the interior it is known, by the celebrated work of Rivière, that these maps satisfy a system with an antisymmetric potential, from which one can derive the interior regularity of the solution. Avoiding a reflection argument, we show that these maps satisfy along the boundary a system of equations which also exhibits a (nonlocal) antisymmetric potential that combines information from the interior potential and the geometric Neumann boundary condition. We then proceed to show boundary regularity for solutions to such systems.
Gómez-Robles, Aida; Bermúdez de Castro, José María; Martinón-Torres, María; Prado-Simón, Leyre; Arsuaga, Juan Luis
2015-05-01
Lower molars have been extensively studied in the context of hominin evolution using classic and geometric morphometric analyses, 2D and 3D approaches, evaluations of the external (outer enamel surface) and internal anatomy (dentine, pulp chamber, and radicular canals), and studies of the crown and root variation. In this study, we present a 2D geometric morphometric analysis of the crown anatomy of lower first, second, and third molars of a broad sample of hominins, including Pliocene and Lower, Middle, and Upper Pleistocene species coming from Africa, Asia, and Europe. We show that shape variability increases from first to second and third molars. While first molars tend to retain a relatively stable 5-cusped conformation throughout the hominin fossil record, second and third molars show marked distal reductions in later Homo species. This trend to distal reduction is similar to that observed in previous studies of premolars and upper second and third molars, and points to a correlated reduction of distal areas across the whole postcanine dentition. Results on lower molar variation, as well as on other postcanine teeth, show certain trends in European Pleistocene populations from the Atapuerca sites. Middle Pleistocene hominins from Sima de los Huesos show Neanderthal affinities and strong dental reduction, especially in the most distal molars. The degree of dental reduction in this population is stronger than that observed in classic Neanderthals. Homo antecessor hominins from Gran Dolina-TD6 have primitive lower teeth that contrast with their more derived upper teeth. The evolutionary implications of these dental affinities are discussed in light of recent paleogenetic studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Deniz Özen
2013-03-01
Full Text Available The aim of this study is to investigate pre-service elementary mathematics teachers’ open geometric problem solving process in a Dynamic Geometry Environment. With its qualitative inquiry based research design employed, the participants of the study are three pre-service teachers from 4th graders of the Department of Elementary Mathematics Teaching. In this study, clinical interviews, screencaptures of the problem solving process in the Cabri Geomery Environment, and worksheets included 2 open geometry problems have been used to collect the data. It has been investigated that all the participants passed through similar recursive phases as construction, exploration, conjecture, validate, and justification in the problem solving process. It has been thought that this study provide a new point of view to curriculum developers, teachers and researchers
Giannessi, Franco; Maugeri, Antonino; Equilibrium Problems and Variational Models
2000-01-01
The volume, devoted to variational analysis and its applications, collects selected and refereed contributions, which provide an outline of the field. The meeting of the title "Equilibrium Problems and Variational Models", which was held in Erice (Sicily) in the period June 23 - July 2 2000, was the occasion of the presentation of some of these papers; other results are a consequence of a fruitful and constructive atmosphere created during the meeting. New results, which enlarge the field of application of variational analysis, are presented in the book; they deal with the vectorial analysis, time dependent variational analysis, exact penalization, high order deriva tives, geometric aspects, distance functions and log-quadratic proximal methodology. The new theoretical results allow one to improve in a remarkable way the study of significant problems arising from the applied sciences, as continuum model of transportation, unilateral problems, multicriteria spatial price models, network equilibrium...
International Nuclear Information System (INIS)
Asnafi, Alireza; Mahzoon, Mojtaba
2011-01-01
Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.
Energy Technology Data Exchange (ETDEWEB)
Asnafi, Alireza [Hydro-Aeronautical Research Center, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of); Mahzoon, Mojtaba [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz, 71348-13668 (Iran, Islamic Republic of)
2011-09-15
Based on a geometric fiber bundle structure, a generalized method to solve both regulation and trajectory tracking problems for locomotion systems is presented. The method is especially applied to two case studies of robotic locomotion systems; a three link articulated fish-like robot as a prototype of locomotion systems with symmetry, and the snakeboard as a prototype of mixed locomotion systems. Our results show that although these motion planners have an open loop structure, due to their generalities, they can steer case studies with negligible errors for almost any complicated path.
Generalization of the geometric optical series approach for nonadiabatic scattering problems
International Nuclear Information System (INIS)
Herman, M.F.
1982-01-01
The geometric optical series approach of Bremmer is generalized for multisurface nonadiabatic scattering problems. This method yields the formal solution of the Schroedinger equation as an infinite series of multiple integrals. The zeroth order term corresponds to WKB propagation on a single adiabatic surface, while the general Nth order term involves N reflections and/or transitions between surfaces accompanied by ''free,'' single surface semiclassical propagation between the points of reflection and transition. Each term is integrated over all possible transition and reflection points. The adiabatic and diabatic limits of this expression are discussed. Numerical results, in which all reflections are ignored, are presented for curve crossing and noncrossing problems. These results are compared to exact quantum results and are shown to be highly accurate
Directory of Open Access Journals (Sweden)
Shima Bakhshalizadeh
2017-06-01
Full Text Available Study of phenotypic variation is essential for identifying discrete phenotypic stocks. We sampled immature Persian sturgeon from the eastern and western portion of the southern Caspian Sea to test for morphological differences that could predict the ecophenotypic variation of Persian sturgeon. Geometric morphometric methods were used to quantify body shape. Configuration of landmark coordinates of fish body were scaled, translated and rotated using generalized Procrustes analysis, followed by univariate analysis of variance of resulting shape coordinates to evaluate potential morphological differences between regions. A principal component analysis was carried out to reduce the number of dimensions without the loss of information. The discriminate function analysis was performed to determine the efficacy of body landmarks for discrimination by geographic variants. Within-group linkage was inferred for dendrogram clusters using Pearson correlation distance on the basis of the average linkage method as a complement for discriminate analysis. Principle component analysis revealed that the largest differences were in body size. Most notable were differences in distance between head landmarks and the dorsal fin between eastern and western regions. Fish from the western region exhibited a longer distance from head landmarks to the dorsal fin than fish from the eastern region. Furthermore, the ventral portion of fish from the western region was longer than that of the eastern individuals. These findings show that juvenile Persian sturgeon already possess morphological traits that can be used to discriminate fish from different regions. Furthermore, these differences are discernible in spite of the volume of artificially-inseminated sturgeon larva that have been released during the past 40 years.
Gómez-Robles, Aida; Martinón-Torres, María; Bermúdez de Castro, José María; Prado-Simón, Leyre; Arsuaga, Juan Luis
2011-12-01
This paper continues the series of articles initiated in 2006 that analyse hominin dental crown morphology by means of geometric morphometric techniques. The detailed study of both upper premolar occlusal morphologies in a comprehensive sample of hominin fossils, including those coming from the Gran Dolina-TD6 and Sima de los Huesos sites from Atapuerca, Spain, complement previous works on lower first and second premolars and upper first molars. A morphological gradient consisting of the change from asymmetric to symmetric upper premolars and a marked reduction of the lingual cusp in recent Homo species has been observed in both premolars. Although percentages of correct classification based on upper premolar morphologies are not very high, significant morphological differences between Neanderthals (and European middle Pleistocene fossils) and modern humans have been identified, especially in upper second premolars. The study of morphological integration between premolar morphologies reveals significant correlations that are weaker between upper premolars than between lower ones and significant correlations between antagonists. These results have important implications for understanding the genetic and functional factors underlying dental phenotypic variation and covariation. Copyright Â© 2011 Elsevier Ltd. All rights reserved.
Jupri, A.
2018-05-01
The lack of ability of primary school teachers in deductive thinking, such as doing geometrical proof, is an indispensable issue to be dealt with. In this paper, we report on results of a three-step of the field document study. The study was part of a pilot study for improving deductive thinking ability of primary school teachers. First, we designed geometrical proof problems adapted from literature. Second, we administered an individual written test involving nine master students of primary education program, in which they are having experiences as primary school mathematics teachers. Finally, we analyzed the written work from the view of the Van Hiele theory. The results revealed that even if about the half of the teachers show ability in doing formal proof, still the rest provides inappropriate proving. For further investigation, we wonder whether primary school teachers would show better deductive thinking if the teaching of geometry is designed in a systematic and appropriate manner according to the Van Hiele theory.
On inverse problem of calculus of variations
Energy Technology Data Exchange (ETDEWEB)
Tao, Z-L [College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)], E-mail: zaolingt@nuist.edu.cn
2008-02-15
Using the semi-inverse method proposed by Ji-Huan He, variational principles are established for some nonlinear equations arising in physics, including the (p, 2p)-mZK equation, Klein-Gordon equation, sine-Gordon equation, Liouville equation, Dodd- Bullough-Mikhailov equation, and Tzitzeica-Dodd-Bullough equation.
MacLaren, Jamie A; Nauwelaerts, Sandra
2017-11-01
The distal forelimb (autopodium) of quadrupedal mammals is a key morphological unit involved in locomotion, body support, and interaction with the substrate. The manus of the tapir (Perissodactyla: Tapirus) is unique within modern perissodactyls, as it retains the plesiomorphic tetradactyl (four-toed) condition also exhibited by basal equids and rhinoceroses. Tapirs are known to exhibit anatomical mesaxonic symmetry in the manus, although interspecific differences and biomechanical mesaxony have yet to be rigorously tested. Here, we investigate variation in the manus morphology of four modern tapir species (Tapirus indicus, Tapirus bairdii, Tapirus pinchaque, and Tapirus terrestris) using a geometric morphometric approach. Autopodial bones were laser scanned to capture surface shape and morphology was quantified using 3D-landmark analysis. Landmarks were aligned using Generalised Procrustes Analysis, with discriminant function and partial least square analyses performed on aligned coordinate data to identify features that significantly separate tapir species. Overall, our results support the previously held hypothesis that T. indicus is morphologically separate from neotropical tapirs; however, previous conclusions regarding function from morphological differences are shown to require reassessment. We find evidence indicating that T. bairdii exhibits reduced reliance on the lateral fifth digit compared to other tapirs. Morphometric assessment of the metacarpophalangeal joint and the morphology of the distal facets of the lunate lend evidence toward high loading on the lateral digits of both the large T. indicus (large body mass) and the small, long limbed T. pinchaque (ground impact). Our results support other recent studies on T. pinchaque, suggesting subtle but important adaptations to a compliant but inclined habitat. In conclusion, we demonstrate further evidence that the modern tapir forelimb is a variable locomotor unit with a range of interspecific features
Geometrical Modification of Learning Vector Quantization Method for Solving Classification Problems
Directory of Open Access Journals (Sweden)
Korhan GÜNEL
2016-09-01
Full Text Available In this paper, a geometrical scheme is presented to show how to overcome an encountered problem arising from the use of generalized delta learning rule within competitive learning model. It is introduced a theoretical methodology for describing the quantization of data via rotating prototype vectors on hyper-spheres.The proposed learning algorithm is tested and verified on different multidimensional datasets including a binary class dataset and two multiclass datasets from the UCI repository, and a multiclass dataset constructed by us. The proposed method is compared with some baseline learning vector quantization variants in literature for all domains. Large number of experiments verify the performance of our proposed algorithm with acceptable accuracy and macro f1 scores.
A Duality Approach for the Boundary Variation of Neumann Problems
DEFF Research Database (Denmark)
Bucur, Dorin; Varchon, Nicolas
2002-01-01
In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet b...... boundary conditions. As a particular case, we prove the stability of the solution under a topological constraint ( uniform number of holes), which is analogous to Sverak's result for Dirichlet boundary conditions....
A duality approach or the boundary variation of Neumann problems
DEFF Research Database (Denmark)
Bucur, D.; Varchon, Nicolas
2002-01-01
In two dimensions, we study the stability of the solution of an elliptic equation with Neumann boundary conditions for nonsmooth perturbations of the geometric domain. Using harmonic conjugates, we relate this problem to the shape stability of the solution of an elliptic equation with Dirichlet b...... boundary conditions. As a particular case, we prove the stability of the solution under a topological constraint ( uniform number of holes), which is analogous to Sverak's result for Dirichlet boundary conditions....
A Modified Alternating Direction Method for Variational Inequality Problems
International Nuclear Information System (INIS)
Han, D.
2002-01-01
The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method
L∞ Variational Problems with Running Costs and Constraints
International Nuclear Information System (INIS)
Aronsson, G.; Barron, E. N.
2012-01-01
Various approaches are used to derive the Aronsson–Euler equations for L ∞ calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson–Euler equation for the basic L ∞ problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.
Paas, Fred G.W.C.; van Merrienboer, Jeroen J.G.; van Merrienboer, J.J.G.
1994-01-01
Four computer-based training strategies for geometrical problem solving in the domain of computer numerically controlled machinery programming were studied with regard to their effects on training performance, transfer performance, and cognitive load. A low- and a high-variability conventional
Skorobogatiy, Maksim; Jacobs, Steven; Johnson, Steven; Fink, Yoel
2002-10-21
Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally efficient way of describing small imperfections and weak interactions in electro-magnetic systems. It is generally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielectric contrast profiles standard perturbation formulations fail when applied to the problem of shifted material boundaries. In this paper we developed a novel coupled mode and perturbation theory formulations for treating generic non-uniform (varying along the direction of propagation) perturbations of a waveguide cross-section based on Hamiltonian formulation of Maxwell equations in curvilinear coordinates. We show that our formulation is accurate and rapidly converges to an exact result when used in a coupled mode theory framework even for the high index-contrast discontinuous dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of induced PMD due to a generic distortion of a waveguide profile, analysis of mode filters, mode converters and other optical elements such as strong Bragg gratings, tapers, bends etc., and arbitrary combinations of thereof. To our knowledge, this is the first time perturbation and coupled mode theories are developed to deal with arbitrary non-uniform profile variations in high index-contrast waveguides.
A duality recipe for non-convex variational problems
Bouchitté, Guy; Phan, Minh
2018-03-01
The aim of this paper is to present a general convexification recipe that can be useful for studying non-convex variational problems. In particular, this allows us to treat such problems by using a powerful primal-dual scheme. Possible further developments and open issues are given. xml:lang="fr"
Solution of problems in calculus of variations via He's variational iteration method
International Nuclear Information System (INIS)
Tatari, Mehdi; Dehghan, Mehdi
2007-01-01
In the modeling of a large class of problems in science and engineering, the minimization of a functional is appeared. Finding the solution of these problems needs to solve the corresponding ordinary differential equations which are generally nonlinear. In recent years He's variational iteration method has been attracted a lot of attention of the researchers for solving nonlinear problems. This method finds the solution of the problem without any discretization of the equation. Since this method gives a closed form solution of the problem and avoids the round off errors, it can be considered as an efficient method for solving various kinds of problems. In this research He's variational iteration method will be employed for solving some problems in calculus of variations. Some examples are presented to show the efficiency of the proposed technique
Variational structure of inverse problems in wave propagation and vibration
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
1995-03-01
Practical algorithms for solving realistic inverse problems may often be viewed as problems in nonlinear programming with the data serving as constraints. Such problems are most easily analyzed when it is possible to segment the solution space into regions that are feasible (satisfying all the known constraints) and infeasible (violating some of the constraints). Then, if the feasible set is convex or at least compact, the solution to the problem will normally lie on the boundary of the feasible set. A nonlinear program may seek the solution by systematically exploring the boundary while satisfying progressively more constraints. Examples of inverse problems in wave propagation (traveltime tomography) and vibration (modal analysis) will be presented to illustrate how the variational structure of these problems may be used to create nonlinear programs using implicit variational constraints.
Convex variational problems linear, nearly linear and anisotropic growth conditions
Bildhauer, Michael
2003-01-01
The author emphasizes a non-uniform ellipticity condition as the main approach to regularity theory for solutions of convex variational problems with different types of non-standard growth conditions. This volume first focuses on elliptic variational problems with linear growth conditions. Here the notion of a "solution" is not obvious and the point of view has to be changed several times in order to get some deeper insight. Then the smoothness properties of solutions to convex anisotropic variational problems with superlinear growth are studied. In spite of the fundamental differences, a non-uniform ellipticity condition serves as the main tool towards a unified view of the regularity theory for both kinds of problems.
On the use of antithetic variates in particle transport problems
International Nuclear Information System (INIS)
Milgram, M.S.
2001-01-01
The possible use of antithetic variates as a method of variance reduction in particle transport problems is investigated, by performing some numerical experiments. It is found that if variance reduction is not very carefully defined, it is possible, with antithetic variates, to spuriously detect reduction, or not detect true reduction. Once such subtleties are overcome, it is shown that antithetic variates can reduce variance in multidimensional integration up to a point. The phenomenon of spontaneous correlation is defined and identified as the cause of failure. The surprising result that it sometimes pays to track non-contributing particle histories is demonstrated by means of a zero variance integration analogue. The principles developed in the investigation of multi-variable integration are then employed in a simple calculation of energy deposition using the EGS4 computer code. Promising results are obtained for the total energy deposition problem, but the depth/dose problem remains unsolved. Possible means of overcoming the difficulties are suggested
Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto
2017-11-01
The effects of variation of two geometric parameters, such as bifurcation angle and carina rounding radius, during the respiratory inhalation process, are studied numerically using two synthetic models of lower human airways. Laminar flow simulations were performed for six angles and three rounding radius, for 500, 1000, 1500 and 2000 for Reynolds numbers. Numerical results showed the existence of a direct relationship between the deformation of the velocity profiles (effect produced by the bifurcation) and the vortical structures observed through the secondary flow patterns. It is observed that the location of the vortices (and their related saddle point) is associated with the displacement of the velocity peak. On the other hand, increasing the angle and the rounding radius seems to bring about a growth of the pressure drop, which in turn displaces the distribution and peaks of the maximum shear stresses of the carina, that is, of the bifurcation point. Some physiological effects associated with the phenomena produced by these geometric variations are also discussed.
Newton-type methods for optimization and variational problems
Izmailov, Alexey F
2014-01-01
This book presents comprehensive state-of-the-art theoretical analysis of the fundamental Newtonian and Newtonian-related approaches to solving optimization and variational problems. A central focus is the relationship between the basic Newton scheme for a given problem and algorithms that also enjoy fast local convergence. The authors develop general perturbed Newtonian frameworks that preserve fast convergence and consider specific algorithms as particular cases within those frameworks, i.e., as perturbations of the associated basic Newton iterations. This approach yields a set of tools for the unified treatment of various algorithms, including some not of the Newton type per se. Among the new subjects addressed is the class of degenerate problems. In particular, the phenomenon of attraction of Newton iterates to critical Lagrange multipliers and its consequences as well as stabilized Newton methods for variational problems and stabilized sequential quadratic programming for optimization. This volume will b...
Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram
Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.
Variation and diversity in Homo erectus: a 3D geometric morphometric analysis of the temporal bone.
Terhune, Claire E; Kimbel, William H; Lockwood, Charles A
2007-07-01
Although the level of taxonomic diversity within the fossil hominin species Homo erectus (sensu lato) is continually debated, there have been relatively few studies aiming to quantify the morphology of this species. Instead, most researchers have relied on qualitative descriptions or the evaluation of nonmetric characters, which in many cases display continuous variation. Also, only a few studies have used quantitative data to formally test hypotheses regarding the taxonomic composition of the "erectus" hypodigm. Despite these previous analyses, however, and perhaps in part due to these varied approaches for assessing variation within specimens typically referred to H. erectus (sensu lato) and the general lack of rigorous statistical testing of how variation within this taxon is partitioned, there is currently little consensus regarding whether this group is a single species, or whether it should instead be split into separate temporal or geographically delimited taxa. In order to evaluate possible explanations for variation within H. erectus, we tested the general hypothesis that variation within the temporal bone morphology of H. erectus is consistent with that of a single species, using great apes and humans as comparative taxa. Eighteen three-dimensional (3D) landmarks of the temporal bone were digitized on a total of 520 extant and fossil hominid crania. Landmarks were registered by Generalized Procrustes Analysis, and Procrustes distances were calculated for comparisons of individuals within and between the extant taxa. Distances between fossil specimens and between a priori groupings of fossils were then compared to the distances calculated within the extant taxa to assess the variation within the H. erectus sample relative to that of known species, subspecies, and populations. Results of these analyses indicate that shape variation within the entire H. erectus sample is generally higher than extant hominid intraspecific variation, and putative H. ergaster
Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor
2015-01-01
We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.
Solving the uncalibrated photometric stereo problem using total variation
DEFF Research Database (Denmark)
Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis
2013-01-01
In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both...
A Volume Constrained Variational Problem with Lower-Order Terms
International Nuclear Information System (INIS)
Morini, M.; Rieger, M.O.
2003-01-01
We study a one-dimensional variational problem with two or more level set constraints. The existence of global and local minimizers turns out to be dependent on the regularity of the energy density. A complete characterization of local minimizers and the underlying energy landscape is provided. The Γ -limit when the phases exhaust the whole domain is computed
Optimal Control Problems for Nonlinear Variational Evolution Inequalities
Directory of Open Access Journals (Sweden)
Eun-Young Ju
2013-01-01
Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.
Directory of Open Access Journals (Sweden)
C.C. Cabuga
2017-09-01
Full Text Available Pomacea caniculata or Golden Apple Snail (GAS existed to be a rice pest in the Philippines and in Asia. Likewise, geographic location also contributes its increasing populations thus making it invasive among freshwater habitats and rice field areas. This study was conducted in order to describe shell shape variations and sexual dimorphism among the populations of P. caniculata. A total of 180 were randomly collected in the three lakes of Esperanza, Agusan del Sur (Lake Dakong Napo, Lake Oro, and Lake Cebulan, of which each lake comprised of 60 samples (30 males and 30 females. To determine the variations and sexual dimorphism in the shell shape of golden apple snail, coordinates was administered to relative warp analysis and the resulting data were subjected to Multivariate Analysis of Variance (MANOVA, Principal Component Analysis (PCA and Canonical Variate Analysis (CVA. The results show statistically significant (P<0.05 from the appended male and female dorsal and ventral/apertural portion. While male and female spire height, body size, and shell shape opening also shows significant variations. These phenotypic distinctions could be associated with geographic isolation, predation and nutrient component of the gastropods. Thus, the importance of using geometric morphometric advances in describing sexual dimorphism in the shell shape of P. caniculata.
Variational segmentation problems using prior knowledge in imaging and vision
DEFF Research Database (Denmark)
Fundana, Ketut
This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...
Rosas, Antonio; Bastir, Markus
2004-06-01
Allometry is an important factor of morphological integration that contributes to the organization of the phenotype and its variation. Variation in the allometric shape of the mandible is particularly important in hominid evolution because the mandible carries important taxonomic traits. Some of these traits are known to covary with size, particularly the retromolar space, symphyseal curvature, and position of the mental foramen. The mandible is a well studied system in the context of the evolutionary development of complex morphological structures because it is composed of different developmental units that are integrated within a single bone. In the present study, we investigated the allometric variation of two important developmental units that are separated by the inferior nerve (a branch of CN V3). We tested the null hypothesis that there would be no difference in allometric variation between the two components. Procrustes-based geometric morphometrics of 20 two-dimensional (2D) landmarks were analyzed by multivariate regressions of shape on size in samples from 121 humans, 48 chimpanzees, and 50 gorillas (all recent specimens), eight fossil hominids from Atapuerca, Sima de los Huesos (AT-SH), and 17 Neandertals. The findings show that in all of the examined species, there was significantly greater allometric variation in the supra-nerve unit than in the infra-nerve unit. The formation of the retromolar space exhibited an allometric relationship with the supra-nerve unit in all of the species studied. The formation of the chin-like morphology is an "apodynamic" feature of the infra-nerve unit in the AT-SH hominids. The results of this study support the hypothesis that allometry contributes to the organization of variation in complex morphological structures. Copyright 2004 Wiley-Liss, Inc.
Geometric Integration Of The Valsov-Maxwell System With A Variational Particle-in-cell Scheme
International Nuclear Information System (INIS)
Squire, J.; Qin, H.; Tang, W.M.
2012-01-01
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme
Energy Technology Data Exchange (ETDEWEB)
Squire, J.; Tang, W. M. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Qin, H. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-08-15
A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of discrete exterior calculus [Desbrun et al., e-print arXiv:math/0508341 (2005)], the field solver, interpolation scheme, and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.
Methods of geometric function theory in classical and modern problems for polynomials
International Nuclear Information System (INIS)
Dubinin, Vladimir N
2012-01-01
This paper gives a survey of classical and modern theorems on polynomials, proved using methods of geometric function theory. Most of the paper is devoted to results of the author and his students, established by applying majorization principles for holomorphic functions, the theory of univalent functions, the theory of capacities, and symmetrization. Auxiliary results and the proofs of some of the theorems are presented. Bibliography: 124 titles.
Directory of Open Access Journals (Sweden)
Velibor V Vujović
2011-01-01
Full Text Available This paper presents the algorithm and results of a computer program for calculation of complex equilibrium composition for the high temperature fossil fuel combustion products. The method of determining the composition of high temperatures combustion products at the temperatures appearing in the open cycle MHD power generation is given. The determination of combustion product composition is based on minimization of the Gibbs free energy. The number of equations to be solved is reduced by using variational principles and a method of geometric programming and is equal to the sum of the numbers of elements and phases. A short description of the computer program for the calculation of the composition and an example of the results are also given.
Perz, Rafał; Toczyski, Jacek; Subit, Damien
2015-01-01
Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and
Efficient algorithm for bifurcation problems of variational inequalities
International Nuclear Information System (INIS)
Mittelmann, H.D.
1983-01-01
For a class of variational inequalities on a Hilbert space H bifurcating solutions exist and may be characterized as critical points of a functional with respect to the intersection of the level surfaces of another functional and a closed convex subset K of H. In a recent paper [13] we have used a gradient-projection type algorithm to obtain the solutions for discretizations of the variational inequalities. A related but Newton-based method is given here. Global and asymptotically quadratic convergence is proved. Numerical results show that it may be used very efficiently in following the bifurcating branches and that is compares favorably with several other algorithms. The method is also attractive for a class of nonlinear eigenvalue problems (K = H) for which it reduces to a generalized Rayleigh-quotient interaction. So some results are included for the path following in turning-point problems
Geometrical properties of rough metallic surfaces and their implication in electromagnetic problems
International Nuclear Information System (INIS)
Hernandez, A.; Chicon, R.; Ortuno, M.; Abellan, J.
1987-01-01
We analyze the geometrical properties and their implications in the effective surface resistance and wall losses of rough metallic surfaces. The power spectrum and the autocorrelation function are calculated for a simple model that adequately represent the rough surface. The roughness parameters are obtained through average values of the roughness and its derivative. We calculate the density profile, directly related to the depth-dependent effective conductivity. The data from the profilometer are corrected to take into account the finite size of the tip. (author)
Variational problems with fractional derivatives: Euler-Lagrange equations
International Nuclear Information System (INIS)
Atanackovic, T M; Konjik, S; Pilipovic, S
2008-01-01
We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense
A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems
Directory of Open Access Journals (Sweden)
Ricardo Soto
2014-01-01
Full Text Available The Sudoku is a famous logic-placement game, originally popularized in Japan and today widely employed as pastime and as testbed for search algorithms. The classic Sudoku consists in filling a 9×9 grid, divided into nine 3×3 regions, so that each column, row, and region contains different digits from 1 to 9. This game is known to be NP-complete, with existing various complete and incomplete search algorithms able to solve different instances of it. In this paper, we present a new cuckoo search algorithm for solving Sudoku puzzles combining prefiltering phases and geometric operations. The geometric operators allow one to correctly move toward promising regions of the combinatorial space, while the prefiltering phases are able to previously delete from domains the values that do not conduct to any feasible solution. This integration leads to a more efficient domain filtering and as a consequence to a faster solving process. We illustrate encouraging experimental results where our approach noticeably competes with the best approximate methods reported in the literature.
Directory of Open Access Journals (Sweden)
Vujić Vukica
2016-01-01
Full Text Available Plants are exposed to increasing levels of diverse human activities that have profound effects on their overall morphology and, specifically, on leaf morphology. Anthropogenic disturbances in urban and suburban forest recreational sites are attracting growing research interest. To explore the persisting recreational impact on leaf shape and size, we conducted a field study on the dioecious forb Mercurialis perennis L. (Euphorbiaceae, typical for undisturbed understory communities. We selected adjacent sites in a suburban forest, which experience contrasting regimes of disturbance by human trampling under otherwise concordant natural conditions. Patterns of leaf shape and size variation and putative sex-specific response to disturbance were analyzed using a geometric morphometric approach. In addition to leaf-level data, plant height, internode and leaf number were analyzed to explore the same response at the whole-plant level. The results show significant variations associated with disturbance at both levels: plants growing under a heavy disturbance regime had shorter stems with a greater number of wider and shorter leaves. Significant differences between sites were also found for leaf size, with larger leaves observed in an undisturbed site. The effects of sex and sex x site interaction on leaf size and shape were nonsignificant, pointing to the absence of sexual dimorphism and sex-specific response to disturbance. Contrary to leaf shape and size, all three analyzed shoot traits showed highly significant sexual dimorphism, with male plants being higher and having higher leaf and internode count. [Projekat Ministarstva nauke Republike Srbije, br. 173025
An Adaptive Approach to Variational Nodal Diffusion Problems
International Nuclear Information System (INIS)
Zhang Hui; Lewis, E.E.
2001-01-01
An adaptive grid method is presented for the solution of neutron diffusion problems in two dimensions. The primal hybrid finite elements employed in the variational nodal method are used to reduce the diffusion equation to a coupled set of elemental response matrices. An a posteriori error estimator is developed to indicate the magnitude of local errors stemming from the low-order elemental interface approximations. An iterative procedure is implemented in which p refinement is applied locally by increasing the polynomial order of the interface approximations. The automated algorithm utilizes the a posteriori estimator to achieve local error reductions until an acceptable level of accuracy is reached throughout the problem domain. Application to a series of X-Y benchmark problems indicates the reduction of computational effort achievable by replacing uniform with adaptive refinement of the spatial approximations
Directory of Open Access Journals (Sweden)
Radović Sanja
2017-01-01
Full Text Available The Iris flower is a complex morphological structure composed of two trimerous whorls of functionally distinct petaloid organs (the falls and the standards, one whorl of the stamens and one tricarpellary gynoecium. The petal-like style arms of the carpels are banded over the basal part of the falls, forming three pollination tunnels, each of which is perceived by the Iris pollinators as a single bilaterally symmetrical flower. Apart from the stamens, all petaloid floral organs are preferentially involved in advertising rewards to potential pollinators. Here we used the methods of geometric morphometrics to explore the shape variation in falls, standards and style arms of the Iris pumila flowers and to disentangle the symmetric and the asymmetric component of the total shape variance. Our results show that symmetric variation contributes mostly to the total shape variance in each of the three floral organs. Fluctuating asymmetry (FA was the dominant component of the asymmetric shape variation in the falls and the standards, but appeared to be marginally significant in the style arms. The values of FA indexes for the shape of falls (insects’ landing platforms and for the shape of standards (long-distance reward signals were found to be two orders of magnitude greater compared to that of the style arms. Directional asymmetry appeared to be very low, but highly statistically significant for all analyzed floral organs. Because floral symmetry can reliably indicate the presence of floral rewards, an almost perfect symmetry recorded for the style arm shape might be the outcome of pollinator preferences for symmetrical pollination units. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173007
Galland, Manon; Friess, Martin
2016-09-10
Craniofacial variation in past and present Amerindians has been attributed to the effect of multiple founder events, or to one major migration followed by in situ differentiation and possibly recurrent contacts among Circum-Arctic groups. Our study aims to: (i) detect morphological differences that may indicate several migrations; (ii) test for the presence of genetic isolation; and (iii) test the correlation between shape data and competing settlement hypotheses by taking into account geography, chronology, climate effects, the presence of genetic isolation and recurrent gene flow. We analyzed a large sample of three-dimensional (3D) cranial surface scans (803 specimens) including past and modern groups from America and Australasia. Shape variation was investigated using geometric morphometrics. Differential external gene flow was evaluated by applying genetic concepts to morphometric data (Relethford-Blangero approach). Settlement hypotheses were tested using a matrix correlation approach (Mantel tests). Our results highlight the strong dichotomy between Circum-Arctic and continental Amerindians as well as the impact of climate adaptation, and possibly recurrent gene flow in the Circum-Arctic area. There is also evidence for the impact of genetic isolation on phenetic variation in Baja California. Several settlement hypotheses are correlated with our data. The three approaches used in this study highlight the importance of local processes especially in Baja California, and caution against the use of overly simplistic models when searching for the number of migration events. The results stress the complexity of the settlement of the Americas as well as the mosaic nature of the processes involved in this process. Am. J. Hum. Biol. 28:646-661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
THE CONTROL VARIATIONAL METHOD FOR ELASTIC CONTACT PROBLEMS
Directory of Open Access Journals (Sweden)
Mircea Sofonea
2010-07-01
Full Text Available We consider a multivalued equation of the form Ay + F(y = fin a real Hilbert space, where A is a linear operator and F represents the (Clarke subdifferential of some function. We prove existence and uniqueness results of the solution by using the control variational method. The main idea in this method is to minimize the energy functional associated to the nonlinear equation by arguments of optimal control theory. Then we consider a general mathematical model describing the contact between a linearly elastic body and an obstacle which leads to a variational formulation as above, for the displacement field. We apply the abstract existence and uniqueness results to prove the unique weak solvability of the corresponding contact problem. Finally, we present examples of contact and friction laws for which our results work.
Borghero, Francesco; Demontis, Francesco
2016-09-01
In the framework of geometrical optics, we consider the following inverse problem: given a two-parameter family of curves (congruence) (i.e., f(x,y,z)=c1,g(x,y,z)=c2), construct the refractive-index distribution function n=n(x,y,z) of a 3D continuous transparent inhomogeneous isotropic medium, allowing for the creation of the given congruence as a family of monochromatic light rays. We solve this problem by following two different procedures: 1. By applying Fermat's principle, we establish a system of two first-order linear nonhomogeneous PDEs in the unique unknown function n=n(x,y,z) relating the assigned congruence of rays with all possible refractive-index profiles compatible with this family. Moreover, we furnish analytical proof that the family of rays must be a normal congruence. 2. By applying the eikonal equation, we establish a second system of two first-order linear homogeneous PDEs whose solutions give the equation S(x,y,z)=const. of the geometric wavefronts and, consequently, all pertinent refractive-index distribution functions n=n(x,y,z). Finally, we make a comparison between the two procedures described above, discussing appropriate examples having exact solutions.
Nonlinear Eigenvalue Problems in Elliptic Variational Inequalities: a local study
International Nuclear Information System (INIS)
Conrad, F.; Brauner, C.; Issard-Roch, F.; Nicolaenko, B.
1985-01-01
The authors consider a class of Nonlinear Eigenvalue Problems (N.L.E.P.) associated with Elliptic Variational Inequalities (E.V.I.). First the authors introduce the main tools for a local study of branches of solutions; the authors extend the linearization process required in the case of equations. Next the authors prove the existence of arcs of solutions close to regular vs singular points, and determine their local behavior up to the first order. Finally, the authors discuss the connection between their regularity condition and some stability concept. 37 references, 6 figures
Geometric Measure Theory and Minimal Surfaces
Bombieri, Enrico
2011-01-01
W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.
Geometric Algorithms for Part Orienting and Probing
Panahi, F.
2015-01-01
In this thesis, detailed solutions are presented to several problems dealing with geometric shape and orientation of an object in the field of robotics and automation. We first have considered a general model for shape variations that allows variation along the entire boundary of an object, both in
Geometrical foundations and results on a problem suggested in a paper by Anderson et al
International Nuclear Information System (INIS)
Gonzalez Gascon, F.; Moreno Insertis, F.; Rodriguez Camino, E.
1978-01-01
A global treatment is given to the problem proposed by Anderson et al. of finding second order differential equations not admitting pointlike transformations of symmetry but admitting families of local symmetries of non-pointlike character
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve robustness with respect to outliers. A hierarchical model with all hyper-parameters automatically determined from the given data is described. An algorithm of variational type by minimizing the Kullback-Leibler divergence between the true posteriori distribution and a separable approximation is developed. The numerical method is illustrated on several one- and two-dimensional linear and nonlinear inverse problems arising from heat conduction, including estimating boundary temperature, heat flux and heat transfer coefficient. The results show its robustness to outliers and the fast and steady convergence of the algorithm. © 2011 Elsevier Inc.
A new class of problems in the calculus of variations
Ekeland, Ivar; Long, Yiming; Zhou, Qinglong
2013-11-01
This paper investigates an infinite-horizon problem in the one-dimensional calculus of variations, arising from the Ramsey model of endogeneous economic growth. Following Chichilnisky, we introduce an additional term, which models concern for the well-being of future generations. We show that there are no optimal solutions, but that there are equilibrium strateges, i.e. Nash equilibria of the leader-follower game between successive generations. To solve the problem, we approximate the Chichilnisky criterion by a biexponential criterion, we characterize its equilibria by a pair of coupled differential equations of HJB type, and we go to the limit. We find all the equilibrium strategies for the Chichilnisky criterion. The mathematical analysis is difficult because one has to solve an implicit differential equation in the sense of Thom. Our analysis extends earlier work by Ekeland and Lazrak.
Energy Technology Data Exchange (ETDEWEB)
Liang, Qi, E-mail: alfred_02030210@163.com; Wei, Yuan
2014-03-15
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model.
International Nuclear Information System (INIS)
Liang, Qi; Wei, Yuan
2014-01-01
Thermal conductivity and thermal rectification of graphene with geometric variations have been investigated by using classical non-equilibrium molecular dynamics simulation, and analyzed theoretically the cause of the changes of thermal conductivity and thermal rectification. Two different structural models, triangular single-boron-doped graphene (SBDG) and parallel various-boron-doped graphene (VBDG), were considered. The results indicated that the thermal conductivities of two different models are about 54–63% lower than pristine graphene. And it was also found that the structure of parallel various-boron-doped graphene is inhibited more strongly on the heat transfer than that of triangular single-boron-doped graphene. The reduction in the thermal conductivities of two different models gradually decreases as the temperature rises. The thermal conductivities of triangular boron-doped graphene have a large difference in both directions, and the thermal rectification of this structure shows the downward trend with increasing temperature. However, the thermal conductivities of parallel various-boron-doped graphene are similar in both directions, and the thermal rectification effect is not obvious in this structure. The phenomenon of thermal rectification exits in SBDG. It implies that the SBDG might be a potential promising structure for thermal rectifier by controlling the boron-doped model
Primal and Dual Penalty Methods for Contact Problems with Geometrical Non-linearities
Czech Academy of Sciences Publication Activity Database
Vondrák, V.; Dostál, Z.; Dobiáš, Jiří; Pták, Svatopluk
-, č. 5 (2005), s. 449-450 ISSN 1617-7061. [GAMM Annual Meeting 2005. Luxembourg, 28.03.2005-01.04.2005] R&D Projects: GA ČR(CZ) GA101/05/0423 Institutional research plan: CEZ:AV0Z20760514 Keywords : primal penalty * dual penalty * contact problem Subject RIV: BA - General Mathematics
Essays on variational approximation techniques for stochastic optimization problems
Deride Silva, Julio A.
This dissertation presents five essays on approximation and modeling techniques, based on variational analysis, applied to stochastic optimization problems. It is divided into two parts, where the first is devoted to equilibrium problems and maxinf optimization, and the second corresponds to two essays in statistics and uncertainty modeling. Stochastic optimization lies at the core of this research as we were interested in relevant equilibrium applications that contain an uncertain component, and the design of a solution strategy. In addition, every stochastic optimization problem relies heavily on the underlying probability distribution that models the uncertainty. We studied these distributions, in particular, their design process and theoretical properties such as their convergence. Finally, the last aspect of stochastic optimization that we covered is the scenario creation problem, in which we described a procedure based on a probabilistic model to create scenarios for the applied problem of power estimation of renewable energies. In the first part, Equilibrium problems and maxinf optimization, we considered three Walrasian equilibrium problems: from economics, we studied a stochastic general equilibrium problem in a pure exchange economy, described in Chapter 3, and a stochastic general equilibrium with financial contracts, in Chapter 4; finally from engineering, we studied an infrastructure planning problem in Chapter 5. We stated these problems as belonging to the maxinf optimization class and, in each instance, we provided an approximation scheme based on the notion of lopsided convergence and non-concave duality. This strategy is the foundation of the augmented Walrasian algorithm, whose convergence is guaranteed by lopsided convergence, that was implemented computationally, obtaining numerical results for relevant examples. The second part, Essays about statistics and uncertainty modeling, contains two essays covering a convergence problem for a sequence
Variational problems arising in classical mechanics and nonlinear elasticity
International Nuclear Information System (INIS)
Spencer, P.
1999-01-01
In this thesis we consider two different classes of variational problems. First, one-dimensional problems arising from classical mechanics where the problem is to determine whether there is a unique function η 0 (x) which minimises the energy functional of the form I(η) = ∫ a b L(x,η(x), η'(x)) dx. We will investigate uniqueness by making a change of dependent and independent variables and showing that for a class of integrands L with a particular kind of scaling invariance the resulting integrand is completely convex. The change of variables arises by applying results from Lie group theory as applied in the study of differential equations and this work is motivated by [60] and [68]. Second, the problem of minimising energy functionals of the form E(u) = ∫ A W(∇u(x)) dx in the case of a nonlinear elastic body occupying an annular region A contains R 2 with u : A-bar → A-bar. This work is motivated by [57] (in particular the example of paragraph 4). We will consider rotationally symmetric deformations satisfying prescribed boundary conditions. We will show the existence of minimisers for stored energy functions of the form W(F) = g-tilde(vertical bar-F-vertical bar, det(F)) in a class of general rotationally symmetric deformations of a compressible annulus and for stored energy functions of the form W(F) = g-bar(vertical bar-F-vertical bar) in a class of rotationally symmetric deformations of an incompressible annulus. We will also show that in each case the minimisers are solutions of the full equilibrium equations. A model problem will be considered where the energy functional is the Dirichlet integral and it will be shown that the rotationally symmetric solution obtained is a minimiser among admissible non-rotationally symmetric deformations. In the case of an incompressible annulus, we will consider the Dirichlet integral as the energy functional and show that the rotationally symmetric equilibrium solutions in this case are weak local minimisers in
International Nuclear Information System (INIS)
Goncalves, G.A.; Vilhena, M.T. de; Bodmann, B.E.J.
2010-01-01
In the present work we propose a heuristic construction of a transport equation for neutrons with anisotropic scattering considering only the radial cylinder dimension. The eigenvalues of the solutions of the equation correspond to the positive values for the one dimensional case. The central idea of the procedure is the application of the S N method for the discretisation of the angular variable followed by the application of the zero order Hankel transformation. The basis the construction of the scattering terms in form of an integro-differential equation for stationary transport resides in the hypothesis that the eigenvalues that compose the elementary solutions are independent of geometry for a homogeneous medium. We compare the solutions for the cartesian one dimensional problem for an infinite cylinder with azimuthal symmetry and linear anisotropic scattering for two cases. (orig.)
Method of Geometric Connected Disk Cover Problem for UAV realy network deployment
Directory of Open Access Journals (Sweden)
Chuang Liu
2017-01-01
Full Text Available Aiming at the problem of the effective connectivity of a large number of mobile combat units in the future aeronautic swarm operation, this paper proposes an idea of using UAV(Unmanned Aerial Vehicle to build, and studies the deployment of the network. User coverage and network connectivity are important for a relay network planning which are studied separately in traditional ways. In order to effectively combine these two factors while the network’s survivability is taken into account. Firstly, the concept of node aggregation degree is proposed. Secondly, a performance evaluation parameter for UAV relay network is proposed based on node aggregation degree, then analyzes the lack of deterministic deployment and presents one a PSO (VFA-PSO deployment algorithm based on virtual force. Finally, compared with the existing algorithms, the validity and stability of the algorithm are verified. The experimental results show that the VFA-PSO algorithm can effectively improve the network coverage and the survivability of the network under the premise of ensuring the network connectivity, and has better deployment effect.
Strong Convergence Theorems for Variational Inequalities and Split Equality Problem
Directory of Open Access Journals (Sweden)
Yu Jing Wu
2013-01-01
Full Text Available Let H1, H2, and H3 be real Hilbert spaces, let C⊆H1, Q⊆H2 be two nonempty closed convex sets, and let A:H1→H3, B:H2→H3 be two bounded linear operators. The split equality problem (SEP is to find x∈C, y∈Q such that Ax=By. Let H=H1×H2; consider f:H→H a contraction with coefficient 00, and M:H→H is a β-inverse strongly monotone mapping. Let 0<γ<γ̅/α, S=C×Q and G:H→H3 be defined by restricting to H1 is A and restricting to H2 is -B, that is, G has the matrix form G=[A,-B]. It is proved that the sequence {wn}={(xn,yn}⊆H generated by the iterative method wn+1=PS[αnγf(wn+(I-αnTPS(I-γnG*GPS(wn-λnMwn] converges strongly to w̃ which solves the SEP and the following variational inequality: 〈(T-λfw̃,w-w̃〉≥0 and 〈Mw̃,w-w̃〉≥0 for all w∈S. Moreover, if we take M=G*G:H→H, γn=0, then M is a β-inverse strongly monotone mapping, and the sequence {wn} generated by the iterative method wn+1=αnγf(wn+(I-αnTPS(wn-λnG*Gwn converges strongly to w̃ which solves the SEP and the following variational inequality: 〈(T-λfw̃,w-w̃〉≥0 for all w∈S.
Lenarda, P; Paggi, M
A comprehensive computational framework based on the finite element method for the simulation of coupled hygro-thermo-mechanical problems in photovoltaic laminates is herein proposed. While the thermo-mechanical problem takes place in the three-dimensional space of the laminate, moisture diffusion occurs in a two-dimensional domain represented by the polymeric layers and by the vertical channel cracks in the solar cells. Therefore, a geometrical multi-scale solution strategy is pursued by solving the partial differential equations governing heat transfer and thermo-elasticity in the three-dimensional space, and the partial differential equation for moisture diffusion in the two dimensional domains. By exploiting a staggered scheme, the thermo-mechanical problem is solved first via a fully implicit solution scheme in space and time, with a specific treatment of the polymeric layers as zero-thickness interfaces whose constitutive response is governed by a novel thermo-visco-elastic cohesive zone model based on fractional calculus. Temperature and relative displacements along the domains where moisture diffusion takes place are then projected to the finite element model of diffusion, coupled with the thermo-mechanical problem by the temperature and crack opening dependent diffusion coefficient. The application of the proposed method to photovoltaic modules pinpoints two important physical aspects: (i) moisture diffusion in humidity freeze tests with a temperature dependent diffusivity is a much slower process than in the case of a constant diffusion coefficient; (ii) channel cracks through Silicon solar cells significantly enhance moisture diffusion and electric degradation, as confirmed by experimental tests.
Guzzo, Massimiliano; Lega, Elena
2018-06-01
The circular restricted three-body problem has five relative equilibria L1 ,L2, . . . ,L5. The invariant stable-unstable manifolds of the center manifolds originating at the partially hyperbolic equilibria L1 ,L2 have been identified as the separatrices for the motions which transit between the regions of the phase-space which are internal or external with respect to the two massive bodies. While the stable and unstable manifolds of the planar problem have been extensively studied both theoretically and numerically, the spatial case has not been as deeply investigated. This paper is devoted to the global computation of these manifolds in the spatial case with a suitable finite time chaos indicator. The definition of the chaos indicator is not trivial, since the mandatory use of the regularizing Kustaanheimo-Stiefel variables may introduce discontinuities in the finite time chaos indicators. From the study of such discontinuities, we define geometric chaos indicators which are globally defined and smooth, and whose ridges sharply approximate the stable and unstable manifolds of the center manifolds of L1 ,L2. We illustrate the method for the Sun-Jupiter mass ratio, and represent the topology of the asymptotic manifolds using sections and three-dimensional representations.
From a Nonlinear, Nonconvex Variational Problem to a Linear, Convex Formulation
International Nuclear Information System (INIS)
Egozcue, J.; Meziat, R.; Pedregal, P.
2002-01-01
We propose a general approach to deal with nonlinear, nonconvex variational problems based on a reformulation of the problem resulting in an optimization problem with linear cost functional and convex constraints. As a first step we explicitly explore these ideas to some one-dimensional variational problems and obtain specific conclusions of an analytical and numerical nature
Variational methods applied to problems of diffusion and reaction
Strieder, William
1973-01-01
This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthurs of the University of York and from the counsel of Dr. B. D. Coleman the general editor of this series. Table of Contents Chapter 1. Introduction and Preliminaries . 1. 1. General Survey 1 1. 2. Phenomenological Descriptions of Diffusion and Reaction 2 1. 3. Correlation Functions for Random Suspensions 4 1. 4. Mean Free ...
Directory of Open Access Journals (Sweden)
Akimov Pavel Alekseevich
2012-10-01
Full Text Available The proposed paper covers the operator-related formulation of the eigenvalue problem of analysis of a three-dimensional structure that has piecewise-constant physical and geometrical parameters alongside the so-called basic direction within the framework of a discrete-continual approach (a discrete-continual finite element method, a discrete-continual variation method. Generally, discrete-continual formulations represent contemporary mathematical models that become available for computer implementation. They make it possible for a researcher to consider the boundary effects whenever particular components of the solution represent rapidly varying functions. Another feature of discrete-continual methods is the absence of any limitations imposed on lengths of structures. The three-dimensional problem of elasticity is used as the design model of a structure. In accordance with the so-called method of extended domain, the domain in question is embordered by an extended one of an arbitrary shape. At the stage of numerical implementation, relative key features of discrete-continual methods include convenient mathematical formulas, effective computational patterns and algorithms, simple data processing, etc. The authors present their formulation of the problem in question for an isotropic medium with allowance for supports restrained by elastic elements while standard boundary conditions are also taken into consideration.
Directory of Open Access Journals (Sweden)
Phayap Katchang
2010-01-01
Full Text Available The purpose of this paper is to investigate the problem of finding a common element of the set of solutions for mixed equilibrium problems, the set of solutions of the variational inclusions with set-valued maximal monotone mappings and inverse-strongly monotone mappings, and the set of fixed points of a family of finitely nonexpansive mappings in the setting of Hilbert spaces. We propose a new iterative scheme for finding the common element of the above three sets. Our results improve and extend the corresponding results of the works by Zhang et al. (2008, Peng et al. (2008, Peng and Yao (2009, as well as Plubtieng and Sriprad (2009 and some well-known results in the literature.
Problems in Geometrical Optics
Joyce, L. S.
1973-01-01
Ten laboratory exercises on optics are described to clarify concepts involving point objects and converging lenses producing real images. Mathematical treatment is kept to a minimum to stress concepts involved. (PS)
Problems of phenomenological simulation of the Dst variation
International Nuclear Information System (INIS)
Gul'el'mi, A.V.
1988-01-01
Stochastic generalization of RBM model, describing the D st -variation is suggested. The corresponding Fokker-Planck equation contains a new phenomenological parameter enabling to obtain the interval estimation of D st forecast. The structure of sources and sinks forming the D st -variation is considered from the viewpoint of critical phenomenon theory
The Shape of a Sausage: A Challenging Problem in the Calculus of Variations
Deakin, Michael A. B.
2010-01-01
Many familiar household objects (such as sausages) involve the maximization of a volume under geometric constraints. A flexible but inextensible membrane bounds a volume which is to be filled to capacity. In the case of the sausage, a full analytic solution is here provided. Other related but more difficult problems seem to demand approximate…
Terhune, Claire E
2013-08-01
Functional shape analyses have long relied on the use of shape ratios to test biomechanical hypotheses. This method is powerful because of the ease with which results are interpreted, but these techniques fall short in quantifying complex morphologies that may not have a strong biomechanical foundation but may still be functionally informative. In contrast, geometric morphometric methods are continually being adopted for quantifying complex shapes, but they tend to prove inadequate in functional analyses because they have little foundation in an explicit biomechanical framework. The goal of this study was to evaluate the intersection of these two methods using the great ape temporomandibular joint as a case study. Three-dimensional coordinates of glenoid fossa and mandibular condyle shape were collected using a Microscribe digitizer. Linear distances extracted from these landmarks were analyzed using a series of one-way ANOVAs; further, the landmark configurations were analyzed using geometric morphometric techniques. Results suggest that the two methods are broadly similar, although the geometric morphometric data allow for the identification of shape differences among taxa that were not immediately apparent in the univariate analyses. Furthermore, this study suggests several new approaches for translating these shape data into a biomechanical context by adjusting the data using a biomechanically relevant variable. Copyright © 2013 Wiley Periodicals, Inc.
Unilateral contact problems variational methods and existence theorems
Eck, Christof; Krbec, Miroslav
2005-01-01
The mathematical analysis of contact problems, with or without friction, is an area where progress depends heavily on the integration of pure and applied mathematics. This book presents the state of the art in the mathematical analysis of unilateral contact problems with friction, along with a major part of the analysis of dynamic contact problems without friction. Much of this monograph emerged from the authors'' research activities over the past 10 years and deals with an approach proven fruitful in many situations. Starting from thin estimates of possible solutions, this approach is based on an approximation of the problem and the proof of a moderate partial regularity of the solution to the approximate problem. This in turn makes use of the shift (or translation) technique - an important yet often overlooked tool for contact problems and other nonlinear problems with limited regularity. The authors pay careful attention to quantification and precise results to get optimal bounds in sufficient conditions f...
Optimization of the variational basis in the three body problem
International Nuclear Information System (INIS)
Simenog, I.V.; Pushkash, O.M.; Bestuzheva, A.B.
1995-01-01
The procedure of variational oscillator basis optimization is proposed to the calculation the energy spectra of three body systems. The hierarchy of basis functions is derived and energies of ground and excited states for three gravitating particles is obtained with high accuracy. 12 refs
Presymplectic current and the inverse problem of the calculus of variations
Khavkine, I.
2013-01-01
The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a
The uniqueness of the solution for the definite problem of a parabolic variational inequality
Directory of Open Access Journals (Sweden)
Liping Song
2016-12-01
Full Text Available Abstract The uniqueness of the solution for the definite problem of a parabolic variational inequality is proved. The problem comes from the study of the optimal exercise strategies for the perpetual executive stock options with unrestricted exercise in financial market. Because the variational inequality is degenerate and the obstacle condition contains the partial derivative of an unknown function, it makes the theoretical study of the definite problem of the variational inequality problem very difficult. Firstly, the property which the value function satisfies is derived by applying the Jensen inequality. Then the uniqueness of the solution is proved by using this property and maximum principles.
Geometric Computing for Freeform Architecture
Wallner, J.; Pottmann, Helmut
2011-01-01
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area
A variational Bayesian method to inverse problems with impulsive noise
Jin, Bangti
2012-01-01
We propose a novel numerical method for solving inverse problems subject to impulsive noises which possibly contain a large number of outliers. The approach is of Bayesian type, and it exploits a heavy-tailed t distribution for data noise to achieve
On a variational approach to truncated problems of moments
Czech Academy of Sciences Publication Activity Database
Ambrozie, Calin-Grigore
2013-01-01
Roč. 138, č. 1 (2013), s. 105-112 ISSN 0862-7959 R&D Projects: GA AV ČR IAA100190903 Institutional support: RVO:67985840 Keywords : problem of moments * representing measure Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/143233
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We introduce and analyze one iterative algorithm by hybrid shrinking projection method for finding a solution of the minimization problem for a convex and continuously Fréchet differentiable functional, with constraints of several problems: finitely many generalized mixed equilibrium problems, finitely many variational inequalities, the general system of variational inequalities and the fixed point problem of an asymptotically strict pseudocontractive mapping in the intermediate sense in a real Hilbert space. We prove strong convergence theorem for the iterative algorithm under suitable conditions. On the other hand, we also propose another iterative algorithm by hybrid shrinking projection method for finding a fixed point of infinitely many nonexpansive mappings with the same constraints, and derive its strong convergence under mild assumptions.
Taylor, Wendy; Stacey, Kaye
2014-01-01
This article presents "The Two Children Problem," published by Martin Gardner, who wrote a famous and widely-read math puzzle column in the magazine "Scientific American," and a problem presented by puzzler Gary Foshee. This paper explains the paradox of Problems 2 and 3 and many other variations of the theme. Then the authors…
Application of He's variational iteration method to the fifth-order boundary value problems
International Nuclear Information System (INIS)
Shen, S
2008-01-01
Variational iteration method is introduced to solve the fifth-order boundary value problems. This method provides an efficient approach to solve this type of problems without discretization and the computation of the Adomian polynomials. Numerical results demonstrate that this method is a promising and powerful tool for solving the fifth-order boundary value problems
Error Analysis of Variations on Larsen's Benchmark Problem
International Nuclear Information System (INIS)
Azmy, YY
2001-01-01
Error norms for three variants of Larsen's benchmark problem are evaluated using three numerical methods for solving the discrete ordinates approximation of the neutron transport equation in multidimensional Cartesian geometry. The three variants of Larsen's test problem are concerned with the incoming flux boundary conditions: unit incoming flux on the left and bottom edges (Larsen's configuration); unit, incoming flux only on the left edge; unit incoming flux only on the bottom edge. The three methods considered are the Diamond Difference (DD) method, and the constant-approximation versions of the Arbitrarily High Order Transport method of the Nodal type (AHOT-N), and of the Characteristic (AHOT-C) type. The cell-wise error is computed as the difference between the cell-averaged flux computed by each method and the exact value, then the L 1 , L 2 , and L ∞ error norms are calculated. The results of this study demonstrate that while integral error norms, i.e. L 1 , L 2 , converge to zero with mesh refinement, the pointwise L ∞ norm does not due to solution discontinuity across the singular characteristic. Little difference is observed between the error norm behavior of the three methods considered in spite of the fact that AHOT-C is locally exact, suggesting that numerical diffusion across the singular characteristic as the major source of error on the global scale. However, AHOT-C possesses a given accuracy in a larger fraction of computational cells than DD
L{sup {infinity}} Variational Problems with Running Costs and Constraints
Energy Technology Data Exchange (ETDEWEB)
Aronsson, G., E-mail: gunnar.aronsson@liu.se [Linkoeping University, Department of Mathematics (Sweden); Barron, E. N., E-mail: enbarron@math.luc.edu [Loyola University of Chicago, Department of Mathematics and Statistics (United States)
2012-02-15
Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.
2014-01-19
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
Minimizers of a Class of Constrained Vectorial Variational Problems: Part I
Hajaiej, Hichem; Markowich, Peter A.; Trabelsi, Saber
2014-01-01
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges
On the minimizers of calculus of variations problems in Hilbert spaces
Gomes, Diogo A.; Nurbekyan, Levon
2014-01-01
The objective of this paper is to discuss existence, uniqueness and regularity issues of minimizers of one dimensional calculus of variations problem in Hilbert spaces. © 2014 Springer-Verlag Berlin Heidelberg.
Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Lellmann, Jan; Lenzen, Frank; Schnö rr, Christoph
2012-01-01
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods
On a variational principle for shape optimization and elliptic free boundary problems
Directory of Open Access Journals (Sweden)
Raúl B. González De Paz
2009-02-01
Full Text Available A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved. Keywords: Calculus of variations, optimization, free boundary problems.
Tian, X.; Zhang, Y.
2018-03-01
Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.
Directory of Open Access Journals (Sweden)
Lu-Chuan Ceng
2014-01-01
Full Text Available We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs, the solution set of finitely many variational inequality problems (VIPs, the solution set of general system of variational inequalities (GSVI, and the set of minimizers of convex minimization problem (CMP, which is just a unique solution of a triple hierarchical variational inequality (THVI in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others.
Variational methods for problems from plasticity theory and for generalized Newtonian fluids
Fuchs, Martin
2000-01-01
Variational methods are applied to prove the existence of weak solutions for boundary value problems from the deformation theory of plasticity as well as for the slow, steady state flow of generalized Newtonian fluids including the Bingham and Prandtl-Eyring model. For perfect plasticity the role of the stress tensor is emphasized by studying the dual variational problem in appropriate function spaces. The main results describe the analytic properties of weak solutions, e.g. differentiability of velocity fields and continuity of stresses. The monograph addresses researchers and graduate students interested in applications of variational and PDE methods in the mechanics of solids and fluids.
Analysis of Diffusion Problems using Homotopy Perturbation and Variational Iteration Methods
DEFF Research Database (Denmark)
Barari, Amin; Poor, A. Tahmasebi; Jorjani, A.
2010-01-01
In this paper, variational iteration method and homotopy perturbation method are applied to different forms of diffusion equation. The diffusion equations have found wide applications in heat transfer problems, theory of consolidation and many other problems in engineering. The methods proposed...
A variation method in the optimization problem of the minority game model
International Nuclear Information System (INIS)
Blazhyijevs'kij, L.; Yanyishevs'kij, V.
2009-01-01
This article contains the results of applying a variation method in the investigation of the optimization problem in the minority game model. That suggested approach is shown to give relevant results about phase transition in the model. Other methods pertinent to the problem have also been assessed.
Minimizers of a Class of Constrained Vectorial Variational Problems: Part I
Hajaiej, Hichem
2014-04-18
In this paper, we prove the existence of minimizers of a class of multiconstrained variational problems. We consider systems involving a nonlinearity that does not satisfy compactness, monotonicity, neither symmetry properties. Our approach hinges on the concentration-compactness approach. In the second part, we will treat orthogonal constrained problems for another class of integrands using density matrices method. © 2014 Springer Basel.
Variation in diagnosis and management of common foot problems by GPs
Gorter, K; de Melker, R; Kuyvenhoven, M; de Poel, S.
2001-01-01
Background. There are indications that the diagnosis and management of common foot problems vary widely in general practice. Objectives. Our aim was to explore the variation of GPs' diagnosis and management of common foot problems and the possible correlation between GPs' characteristics and their
The use of Adomian decomposition method for solving problems in calculus of variations
Directory of Open Access Journals (Sweden)
Mehdi Dehghan
2006-01-01
Full Text Available In this paper, a numerical method is presented for finding the solution of some variational problems. The main objective is to find the solution of an ordinary differential equation which arises from the variational problem. This work is done using Adomian decomposition method which is a powerful tool for solving large amount of problems. In this approach, the solution is found in the form of a convergent power series with easily computed components. To show the efficiency of the method, numerical results are presented.
Directory of Open Access Journals (Sweden)
N. S. Morozova
2015-01-01
Full Text Available The article considers a problem of the decentralization-based approach to formation control of a group of agents, which simulate mobile autonomous robots. The agents use only local information limited by the covering range of their sensors. The agents have to build and maintain the formation, which fits to the defined target geometric formation structure with desired accuracy during the movement to the target point. At any point in time the number of agents in the group can change unexpectedly (for example, as a result of the agent failure or if a new agent joins the group.The aim of the article is to provide the base control rule, which solves the formation control problem, and to develop its modifications, which provide the correct behavior in case the agent number in the group is not equal to the size of the target geometric formation structure. The proposed base control rule, developed by the author, uses the method of involving virtual leaders. The coordinates of the virtual leaders and also the priority to follow the specific leader are calculated by each agent itself according to specific rules.The following results are presented in the article: the base control rule for solving the formation control problem, its modifications for the cases when the number of agents is greater/less than the size of the target geometric formation structure and also the computer modeling results proving the efficiency of the modified control rules. The specific feature of the control rule, developed by the author, is that each agent itself calculates the virtual leaders and each agent performs dynamic choice of the place within the formation (there is no predefined one-to-one relation between agents and places within the geometric formation structure. The results, provided in this article, can be used in robotics for developing control algorithms for the tasks, which require preserving specific relational positions among the agents while moving. One of the
Energy Technology Data Exchange (ETDEWEB)
Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education
1976-06-01
The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.
Gould, S H
1966-01-01
The first edition of this book gave a systematic exposition of the Weinstein method of calculating lower bounds of eigenvalues by means of intermediate problems. This second edition presents new developments in the framework of the material contained in the first edition, which is retained in somewhat modified form.
Geometric statistical inference
International Nuclear Information System (INIS)
Periwal, Vipul
1999-01-01
A reparametrization-covariant formulation of the inverse problem of probability is explicitly solved for finite sample sizes. The inferred distribution is explicitly continuous for finite sample size. A geometric solution of the statistical inference problem in higher dimensions is outlined
Mielke, Alexander
1991-01-01
The theory of center manifold reduction is studied in this monograph in the context of (infinite-dimensional) Hamil- tonian and Lagrangian systems. The aim is to establish a "natural reduction method" for Lagrangian systems to their center manifolds. Nonautonomous problems are considered as well assystems invariant under the action of a Lie group ( including the case of relative equilibria). The theory is applied to elliptic variational problemson cylindrical domains. As a result, all bounded solutions bifurcating from a trivial state can be described by a reduced finite-dimensional variational problem of Lagrangian type. This provides a rigorous justification of rod theory from fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working in classical mechanics, dynamical systems, elliptic variational problems, and continuum mechanics. It begins with the elements of Hamiltonian theory and center manifold reduction in order to make the methods accessible to non-specialists,...
Hinault, T; Lemaire, P
2016-01-01
In this review, we provide an overview of how age-related changes in executive control influence aging effects in arithmetic processing. More specifically, we consider the role of executive control in strategic variations with age during arithmetic problem solving. Previous studies found that age-related differences in arithmetic performance are associated with strategic variations. That is, when they accomplish arithmetic problem-solving tasks, older adults use fewer strategies than young adults, use strategies in different proportions, and select and execute strategies less efficiently. Here, we review recent evidence, suggesting that age-related changes in inhibition, cognitive flexibility, and working memory processes underlie age-related changes in strategic variations during arithmetic problem solving. We discuss both behavioral and neural mechanisms underlying age-related changes in these executive control processes. © 2016 Elsevier B.V. All rights reserved.
Duality for Multitime Multiobjective Ratio Variational Problems on First Order Jet Bundle
Directory of Open Access Journals (Sweden)
Mihai Postolache
2012-01-01
Full Text Available We consider a new class of multitime multiobjective variational problems of minimizing a vector of quotients of functionals of curvilinear integral type. Based on the efficiency conditions for multitime multiobjective ratio variational problems, we introduce a ratio dual of generalized Mond-Weir-Zalmai type, and under some assumptions of generalized convexity, duality theorems are stated. We prove our weak duality theorem for efficient solutions, showing that the value of the objective function of the primal cannot exceed the value of the dual. Direct and converse duality theorems are stated, underlying the connections between the values of the objective functions of the primal and dual programs. As special cases, duality results of Mond-Weir-Zalmai type for a multitime multiobjective variational problem are obtained. This work further develops our studies in (Pitea and Postolache (2011.
A Duality Theory for Non-convex Problems in the Calculus of Variations
Bouchitté, Guy; Fragalà, Ilaria
2018-02-01
We present a new duality theory for non-convex variational problems, under possibly mixed Dirichlet and Neumann boundary conditions. The dual problem reads nicely as a linear programming problem, and our main result states that there is no duality gap. Further, we provide necessary and sufficient optimality conditions, and we show that our duality principle can be reformulated as a min-max result which is quite useful for numerical implementations. As an example, we illustrate the application of our method to a celebrated free boundary problem. The results were announced in Bouchitté and Fragalà (C R Math Acad Sci Paris 353(4):375-379, 2015).
Presymplectic current and the inverse problem of the calculus of variations
Khavkine, Igor
2013-11-01
The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159-178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45-64 (1982)] from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.
Presymplectic current and the inverse problem of the calculus of variations
Energy Technology Data Exchange (ETDEWEB)
Khavkine, Igor, E-mail: i.khavkine@uu.nl [Institute for Theoretical Physics, Utrecht, Leuvenlaan 4, NL-3584 CE Utrecht (Netherlands)
2013-11-15
The inverse problem of the calculus of variations asks whether a given system of partial differential equations (PDEs) admits a variational formulation. We show that the existence of a presymplectic form in the variational bicomplex, when horizontally closed on solutions, allows us to construct a variational formulation for a subsystem of the given PDE. No constraints on the differential order or number of dependent or independent variables are assumed. The proof follows a recent observation of Bridges, Hydon, and Lawson [Math. Proc. Cambridge Philos. Soc. 148(01), 159–178 (2010)] and generalizes an older result of Henneaux [Ann. Phys. 140(1), 45–64 (1982)] from ordinary differential equations (ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We suggest and analyze a technique by combining the variational iteration method and the homotopy perturbation method. This method is called the variational homotopy perturbation method (VHPM. We use this method for solving higher dimensional initial boundary value problems with variable coefficients. The developed algorithm is quite efficient and is practically well suited for use in these problems. The proposed scheme finds the solution without any discritization, transformation, or restrictive assumptions and avoids the round-off errors. Several examples are given to check the reliability and efficiency of the proposed technique.
On an Optimal -Control Problem in Coefficients for Linear Elliptic Variational Inequality
Directory of Open Access Journals (Sweden)
Olha P. Kupenko
2013-01-01
Full Text Available We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients in the main part of the elliptic operator as controls in . Since the eigenvalues of such matrices may vanish and be unbounded in , it leads to the “noncoercivity trouble.” Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called -admissible solutions.
Laplace transform homotopy perturbation method for the approximation of variational problems.
Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R
2016-01-01
This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.
Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
Directory of Open Access Journals (Sweden)
Cho Yeol
2011-01-01
Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.
Variational approach to direct and inverse problems of atmospheric pollution studies
Penenko, Vladimir; Tsvetova, Elena; Penenko, Alexey
2016-04-01
We present the development of a variational approach for solving interrelated problems of atmospheric hydrodynamics and chemistry concerning air pollution transport and transformations. The proposed approach allows us to carry out complex studies of different-scale physical and chemical processes using the methods of direct and inverse modeling [1-3]. We formulate the problems of risk/vulnerability and uncertainty assessment, sensitivity studies, variational data assimilation procedures [4], etc. A computational technology of constructing consistent mathematical models and methods of their numerical implementation is based on the variational principle in the weak constraint formulation specifically designed to account for uncertainties in models and observations. Algorithms for direct and inverse modeling are designed with the use of global and local adjoint problems. Implementing the idea of adjoint integrating factors provides unconditionally monotone and stable discrete-analytic approximations for convection-diffusion-reaction problems [5,6]. The general framework is applied to the direct and inverse problems for the models of transport and transformation of pollutants in Siberian and Arctic regions. The work has been partially supported by the RFBR grant 14-01-00125 and RAS Presidium Program I.33P. References: 1. V. Penenko, A.Baklanov, E. Tsvetova and A. Mahura . Direct and inverse problems in a variational concept of environmental modeling //Pure and Applied Geoph.(2012) v.169: 447-465. 2. V. V. Penenko, E. A. Tsvetova, and A. V. Penenko Development of variational approach for direct and inverse problems of atmospheric hydrodynamics and chemistry, Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol. 51, No. 3, p. 311-319, DOI: 10.1134/S0001433815030093. 3. V.V. Penenko, E.A. Tsvetova, A.V. Penenko. Methods based on the joint use of models and observational data in the framework of variational approach to forecasting weather and atmospheric composition
Yousef, Hamood. M.; Ismail, A. I. B. MD.
2017-08-01
Many attempts have been presented to solve the system of Delay Differential Equations (DDE) with Initial Value Problem. As a result, it has shown difficulties when getting the solution or cannot be solved. In this paper, a Variational Iteration Method is employed to find out an approximate solution for the system of DDE with initial value problems. The example illustrates convenient and an efficiency comparison with the exact solution.
Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R
2011-01-01
Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.
On the inverse problem of the calculus of variations in field theory
International Nuclear Information System (INIS)
Henneaux, M.
1984-01-01
The inverse problem of the calculus of variations is investigated in the case of field theory. Uniqueness of the action principle is demonstrated for the vector Laplace equation in a non-decomposable Riemannian space, as well as for the harmonic map equation. (author)
Barbagallo, Annamaria; Di Meglio, Guglielmo; Mauro, Paolo
2017-07-01
The aim of the paper is to study, in a Hilbert space setting, a general random oligopolistic market equilibrium problem in presence of both production and demand excesses and to characterize the random Cournot-Nash equilibrium principle by means of a stochastic variational inequality. Some existence results are presented.
Aksoy Nigar Yildirim Variational problem with complex co-efficient of ...
Indian Academy of Sciences (India)
user1
Abbaspour Mohammad Hassan see Ghaffarzadeh Ghodrat. 329. Abhyankar Shreeram S. Rees valuations. 525. Agarwal A K. seeAnand S. 23. Aithal A R. On the extrema of Dirichlet's first eigen- value of a family of punctured regular polygons in two dimensional space forms. 257. Aksoy Nigar Yildirim. Variational problem ...
Schwinger variational principle in scattering problems of charged particles on mesic atoms and atoms
International Nuclear Information System (INIS)
Belyaev, V.B.; Zubarev, A.L.; Podkopaev, A.P.
1978-01-01
The Schwinger variational principle is applied to solve the problems of atomic physics. A separable approximation for a Hamiltonian of a bound subsystem is used. The length of e + H-scattering and the elastic p(dμ)-scattering cross section are calculated in the second Born approximation
Variational Iteration Method for Fifth-Order Boundary Value Problems Using He's Polynomials
Directory of Open Access Journals (Sweden)
Muhammad Aslam Noor
2008-01-01
Full Text Available We apply the variational iteration method using He's polynomials (VIMHP for solving the fifth-order boundary value problems. The proposed method is an elegant combination of variational iteration and the homotopy perturbation methods and is mainly due to Ghorbani (2007. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discritization, linearization, or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed technique solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this algorithm over the decomposition method.
On the uniqueness of minimizers for a class of variational problems with Polyconvex integrand
Awi, Romeo
2017-02-05
We prove existence and uniqueness of minimizers for a family of energy functionals that arises in Elasticity and involves polyconvex integrands over a certain subset of displacement maps. This work extends previous results by Awi and Gangbo to a larger class of integrands. First, we study these variational problems over displacements for which the determinant is positive. Second, we consider a limit case in which the functionals are degenerate. In that case, the set of admissible displacements reduces to that of incompressible displacements which are measure preserving maps. Finally, we establish that the minimizer over the set of incompressible maps may be obtained as a limit of minimizers corresponding to a sequence of minimization problems over general displacements provided we have enough regularity on the dual problems. We point out that these results defy the direct methods of the calculus of variations.
Directory of Open Access Journals (Sweden)
Liu Min
2010-01-01
Full Text Available In this paper, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a system of mixed equilibrium problems, the set of common fixed points for a nonexpansive semigroup and the set of solutions of the quasi-variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in a Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extend some recent results in the literature.
Variational Inequalities in Hilbert Spaces with Measures and Optimal Stopping Problems
International Nuclear Information System (INIS)
Barbu, Viorel; Marinelli, Carlo
2008-01-01
We study the existence theory for parabolic variational inequalities in weighted L 2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L 2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coefficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs
Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem
Lellmann, Jan
2012-11-09
We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.
Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem
International Nuclear Information System (INIS)
Stingl, M.; Sauer, P.U.
1975-01-01
For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order
Variational P1 approximations of general-geometry multigroup transport problems
International Nuclear Information System (INIS)
Rulko, R.P.; Tomasevic, D.; Larsen, E.W.
1995-01-01
A variational approximation is developed for general-geometry multigroup transport problems with arbitrary anisotropic scattering. The variational principle is based on a functional that approximates a reaction rate in a subdomain of the system. In principle, approximations that result from this functional ''optimally'' determine such reaction rates. The functional contains an arbitrary parameter α and requires the approximate solutions of a forward and an adjoint transport problem. If the basis functions for the forward and adjoint solutions are chosen to be linear functions of the angular variable Ω, the functional yields the familiar multigroup P 1 equations for all values of α. However, the boundary conditions that result from the functional depend on α. In particular, for problems with vacuum boundaries, one obtains the conventional mixed boundary condition, but with an extrapolation distance that depends continuously on α. The choice α = 0 yields a generalization of boundary conditions derived earlier by Federighi and Pomraning for a more limited class of problems. The choice α = 1 yields a generalization of boundary conditions derived previously by Davis for monoenergetic problems. Other boundary conditions are obtained by choosing different values of α. The authors discuss this indeterminancy of α in conjunction with numerical experiments
Ezz-Eldien, S. S.; Doha, E. H.; Bhrawy, A. H.; El-Kalaawy, A. A.; Machado, J. A. T.
2018-04-01
In this paper, we propose a new accurate and robust numerical technique to approximate the solutions of fractional variational problems (FVPs) depending on indefinite integrals with a type of fixed Riemann-Liouville fractional integral. The proposed technique is based on the shifted Chebyshev polynomials as basis functions for the fractional integral operational matrix (FIOM). Together with the Lagrange multiplier method, these problems are then reduced to a system of algebraic equations, which greatly simplifies the solution process. Numerical examples are carried out to confirm the accuracy, efficiency and applicability of the proposed algorithm
Bazile , Alban; Hachem , Elie; Larroya-Huguet , Juan-Carlos; Mesri , Youssef
2018-01-01
International audience; In this work, we present a new a posteriori error estimator based on the Variational Multiscale method for anisotropic adaptive fluid mechanics problems. The general idea is to combine the large scale error based on the solved part of the solution with the sub-mesh scale error based on the unresolved part of the solution. We compute the latter with two different methods: one using the stabilizing parameters and the other using bubble functions. We propose two different...
A study of the one dimensional total generalised variation regularisation problem
Papafitsoros, Konstantinos
2015-03-01
© 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.
Coarse-convex-compactification approach to numerical solution of nonconvex variational problems
Czech Academy of Sciences Publication Activity Database
Meziat, R.; Roubíček, Tomáš; Patino, D.
2010-01-01
Roč. 31, č. 4 (2010), s. 460-488 ISSN 0163-0563 Grant - others:GA MŠk(CZ) LC06052 Program:LC Institutional research plan: CEZ:AV0Z20760514 Keywords : convex approximations * method of moments * relaxed variational problems Subject RIV: BA - General Mathematics Impact factor: 0.687, year: 2010 http://www.informaworld.com/smpp/content~db=all~content=a922886514~frm=titlelink
A study of the one dimensional total generalised variation regularisation problem
Papafitsoros, Konstantinos; Bredies, Kristian
2015-01-01
© 2015 American Institute of Mathematical Sciences. In this paper we study the one dimensional second order total generalised variation regularisation (TGV) problem with L2 data fitting term. We examine the properties of this model and we calculate exact solutions using simple piecewise affine functions as data terms. We investigate how these solutions behave with respect to the TGV parameters and we verify our results using numerical experiments.
Variational methods for direct/inverse problems of atmospheric dynamics and chemistry
Penenko, Vladimir; Penenko, Alexey; Tsvetova, Elena
2013-04-01
We present a variational approach for solving direct and inverse problems of atmospheric hydrodynamics and chemistry. It is important that the accurate matching of numerical schemes has to be provided in the chain of objects: direct/adjoint problems - sensitivity relations - inverse problems, including assimilation of all available measurement data. To solve the problems we have developed a new enhanced set of cost-effective algorithms. The matched description of the multi-scale processes is provided by a specific choice of the variational principle functionals for the whole set of integrated models. Then all functionals of variational principle are approximated in space and time by splitting and decomposition methods. Such approach allows us to separately consider, for example, the space-time problems of atmospheric chemistry in the frames of decomposition schemes for the integral identity sum analogs of the variational principle at each time step and in each of 3D finite-volumes. To enhance the realization efficiency, the set of chemical reactions is divided on the subsets related to the operators of production and destruction. Then the idea of the Euler's integrating factors is applied in the frames of the local adjoint problem technique [1]-[3]. The analytical solutions of such adjoint problems play the role of integrating factors for differential equations describing atmospheric chemistry. With their help, the system of differential equations is transformed to the equivalent system of integral equations. As a result we avoid the construction and inversion of preconditioning operators containing the Jacobi matrixes which arise in traditional implicit schemes for ODE solution. This is the main advantage of our schemes. At the same time step but on the different stages of the "global" splitting scheme, the system of atmospheric dynamic equations is solved. For convection - diffusion equations for all state functions in the integrated models we have developed the
Pragmatic geometric model evaluation
Pamer, Robert
2015-04-01
Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to
Geometric leaf placement strategies
International Nuclear Information System (INIS)
Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M
2004-01-01
Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline
Convergence Properties of Projection and Contraction Methods for Variational Inequality Problems
International Nuclear Information System (INIS)
Xiu, N.; Wang, C.; Zhang, J.
2001-01-01
In this paper we develop the convergence theory of a general class of projection and contraction algorithms (PC method), where an extended stepsize rule is used, for solving variational inequality (VI) problems. It is shown that, by defining a scaled projection residue, the PC method forces the sequence of the residues to zero. It is also shown that, by defining a projected function, the PC method forces the sequence of projected functions to zero. A consequence of this result is that if the PC method converges to a nondegenerate solution of the VI problem, then after a finite number of iterations, the optimal face is identified. Finally, we study local convergence behavior of the extragradient algorithm for solving the KKT system of the inequality constrained VI problem
Hintermüller, Michael; Holler, Martin; Papafitsoros, Kostas
2018-06-01
In this work, we introduce a function space setting for a wide class of structural/weighted total variation (TV) regularization methods motivated by their applications in inverse problems. In particular, we consider a regularizer that is the appropriate lower semi-continuous envelope (relaxation) of a suitable TV type functional initially defined for sufficiently smooth functions. We study examples where this relaxation can be expressed explicitly, and we also provide refinements for weighted TV for a wide range of weights. Since an integral characterization of the relaxation in function space is, in general, not always available, we show that, for a rather general linear inverse problems setting, instead of the classical Tikhonov regularization problem, one can equivalently solve a saddle-point problem where no a priori knowledge of an explicit formulation of the structural TV functional is needed. In particular, motivated by concrete applications, we deduce corresponding results for linear inverse problems with norm and Poisson log-likelihood data discrepancy terms. Finally, we provide proof-of-concept numerical examples where we solve the saddle-point problem for weighted TV denoising as well as for MR guided PET image reconstruction.
Directory of Open Access Journals (Sweden)
Arcady A. Putilov
Full Text Available Compared to literature on seasonal variation in mood and well-being, reports on seasonality of trouble sleeping are scarce and contradictive. To extend geography of such reports on example of people naturally exposed to high-amplitude annual variation in daylength and/or temperature. Participants were the residents of Turkmenia, West Siberia, South and North Yakutia, Chukotka, and Alaska. Health and sleep-wake adaptabilities, month-to-month variation in sleeping problems, well-being and behaviors were self-assessed. More than a half of 2398 respondents acknowledged seasonality of sleeping problems. Four of the assessed sleeping problems demonstrated three different patterns of seasonal variation. Rate of the problems significantly increased in winter months with long nights and cold days (daytime sleepiness and difficulties falling and staying asleep as well as in summer months with either long days (premature awakening and difficulties falling and staying asleep or hot nights and days (all 4 sleeping problems. Individual differences between respondents in pattern and level of seasonality of sleeping problems were significantly associated with differences in several other domains of individual variation, such as gender, age, ethnicity, physical health, morning-evening preference, sleep quality, and adaptability of the sleep-wake cycle. These results have practical relevance to understanding of the roles playing by natural environmental factors in seasonality of sleeping problems as well as to research on prevalence of sleep disorders and methods of their prevention and treatment in regions with large seasonal differences in temperature and daylength.
Schwinger variational principle in the nuclear two-body problem and multichannel theory
International Nuclear Information System (INIS)
Zubarev, A.L.; Podkopaev, A.P.
1978-01-01
The aim of the investigation is to study the Schwinger variational principle in the nuclear two-body problem and the multichannel theory. An approach is proposed to problems of the potential scattering based on the substitution of the exact potential operator V by the finite rank operator Vsup((n)) with which the dynamic equations are solved exactly. The functionals obtained for observed values coincide with corresponding expressions derived by the Schwinger variational principle with the set of test functions. The determination of the Schwinger variational principle is given. The method is given for finding amplitude of the double-particle scattering with the potential Vsup((n)). The corresponding amplitudes are constructed within the framework of the multichannel potential model. Interpolation formula for determining amplitude, which describes with high accuracy a process of elastic scattering for any energies, is obtained. On the basis of the above method high-energy amplitude may be obtained within the range of small and large scattering angles
Geometric inequalities methods of proving
Sedrakyan, Hayk
2017-01-01
This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .
Geometric Computing for Freeform Architecture
Wallner, J.
2011-06-03
Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.
DEFF Research Database (Denmark)
Andersen, Jørgen Ellegaard; Borot, Gaëtan; Orantin, Nicolas
We propose a general theory whose main component are functorial assignments ∑→Ω∑ ∈ E (∑), for a large class of functors E from a certain category of bordered surfaces (∑'s) to a suitable a target category of topological vector spaces. The construction is done by summing appropriate compositions...... as Poisson structures on the moduli space of flat connections. The theory has a wider scope than that and one expects that many functorial objects in low-dimensional geometry and topology should have a GR construction. The geometric recursion has various projections to topological recursion (TR) and we...... in particular show it retrieves all previous variants and applications of TR. We also show that, for any initial data for topological recursion, one can construct initial data for GR with values in Frobenius algebra-valued continuous functions on Teichmueller space, such that the ωg,n of TR are obtained...
The Schwinger variational principle in the quantum-mechanical three-body problem
International Nuclear Information System (INIS)
Podkopaev, A.P.; Subarev, A.I.; Wrzecionko, J.
1978-01-01
The Schwinger variational principle (SVP) is applied to problems of atomic (e + H scattering), mesoatomic (p(dμ) scattering) and nuclear (pion-deuteron scattering) physics. The convergence of the Schwinger variational iterative method is investigated. It is shown that in some cases there occurs a pathological convergence. It means that the iterative procedure is convergent, but not to the exact solution. The method of strong coupling of channels is reformulated on the basis of SVP. it permits the summation over all closed channels. The obtained equations are applied to the calculations of the low energy scattering parameters of the following processes: e + H → e + H; πd → πd. The dependence on πN scattering lengths and effective radii is investigated. It is shown that the contribution of closed channels to the π - d scattering length is 30 percent
THE MODEL OF IDENTIFICATION OF THE PROBLEM MAIN CAUSE SET OF VARIATION
Directory of Open Access Journals (Sweden)
Nenad Miric
2008-06-01
Full Text Available The term Lean has been widely used in today's product manufacturing and service delivery environments. In its fundamental nature the Lean Philosophy continuously strives for elimination of any kind of waste that exists in such environments. There are six basic strategies [1] related to the Lean Philosophy: Workplace Safety & Order & Cleanliness, JIT production, Six Sigma Quality, Empowered Teams, Visual Management and Pursuit of Perfection. On the journey of sustaining the lean supporting strategies there are many problems, or opportunities as Lean Practitioners call them. The value of some strategies highly depends on the efficiency of the problem solving techniques used to overcome the emerging issues. JIT production is difficult to imagine without a system that supports a high level of operational readiness with equipment uptime above 98%. Six Sigma level of quality, even when built into a product or system design, still undergoes the challenges of day to day operations and the variability brought with it. This variability is the source of waste and lean systems culture strives for continuous reduction of it. Empowered Teams properly trained to recognize the real cause of the problems and their Pursuit of Perfection culture are one of the corner stones of Lean Philosophy sustainability. Their ability to work with Problem Solvers and understand the difference between the "cure of the symptoms" approach versus "problem root cause identification" is one of the distinctions between Lean and Mass operations. Among the series of Statistical Engineering To ols this paper will show one of the techniques that proved to be powerful in the identification of the Set of Variation that contains the Main Cause of the new problems that arise in daily operations. This technique is called Multi - Vari. Multi - Vari is th e statistical engineering method used to analyze the set of data acquired in an organized manner. The set could be analyzed graphically or
Comparison of finite-difference and variational solutions to advection-diffusion problems
International Nuclear Information System (INIS)
Lee, C.E.; Washington, K.E.
1984-01-01
Two numerical solution methods are developed for 1-D time-dependent advection-diffusion problems on infinite and finite domains. Numerical solutions are compared with analytical results for constant coefficients and various boundary conditions. A finite-difference spectrum method is solved exactly in time for periodic boundary conditions by a matrix operator method and exhibits excellent accuracy compared with other methods, especially at late times, where it is also computationally more efficient. Finite-system solutions are determined from a conservational variational principle with cubic spatial trial functions and solved in time by a matrix operator method. Comparisons of problems with few nodes show excellent agreement with analytical solutions and exhibit the necessity of implementing Lagrangian conservational constraints for physically-correct solutions. (author)
Variational Bayes and a problem of reliable communication: II. Infinite systems
International Nuclear Information System (INIS)
Newton, Nigel J; Mitter, Sanjoy K
2012-01-01
We consider a family of estimation problems not admitting conventional analysis because of singularity and measurability issues. We define posterior distributions for the family by a variational technique analogous to that used to define Gibbs measures in statistical mechanics. The family of estimation problems, which arise in the asymptotic analysis of error-control codes, is parametrized by a code rate, R∈(0,∞); this is shown to be analogous to the absolute temperature of statistical mechanics. The family undergoes an (Ehrenfest) first-order phase transition at a critical code rate C (the channel capacity), where there is a convex set of posterior distributions. At all other code rates, there is only one posterior distribution; if R C it has infinite support. In a result reflecting the Dobrushin construction, we show that these posterior distributions are asymptotically consistent with those of families of finite-sequence error-control codes. (paper)
Variational data assimilation problem for the thermodynamics model with displaced pole
Parmuzin, Eugene; Agosgkov, Valery; Zakharova, Natalia
2017-04-01
The most versatile and promising technology for solving problems of monitoring and analysis of the natural environment is a four-dimensional variational data assimilation of observation data. The development of computational algorithms for the solution of data assimilation problems in geophysical hydrodynamics is important in the contemporary computation and informational science to improve the quality of long-term prediction by using the hydrodynamics sea model. These problems are applied to close and solve in practice the appropriate inverse problems of the geophysical hydrodynamics. In this work the variational data assimilation problems in the Baltic Sea water area with displaced pole were formulated and studied [1]. We assume, that the unique function which is obtained by observation data processing is the function and we permit that the function is known only on a part of considering area (for example, on a part of the Baltic Sea). Numerical experiments on restoring the ocean heat flux and obtaining solution of the system (temperature, salinity, velocity, and sea surface height) in the Baltic Sea primitive equation hydrodynamics model [2] with assimilation procedure were carried out. In the calculations we used daily sea surface temperature observation from Danish meteorological Institute, prepared on the basis of measurements of the radiometer (AVHRR, AATSR and AMSRE) and spectroradiometer (SEVIRI and MODIS). The spatial resolution of the model grid with respect to the horizontal variables is uniform on latitude (0.2 degree) and varies on longitude from 0.04 to 0.0004 degree . The results of the numerical experiments are presented. This study was supported by the Russian Foundation for Basic Research (project №16-01-00548) and project №14-11-00609 by the Russian Science Foundation. References: [1] Agoshkov V.I., Parmuzin E.I., Zakharova N.B., Zalesny V.B., Shutyaev V.P., Gusev A.V. Variational assimilation of observation data in the mathematical model of
International Nuclear Information System (INIS)
Allagi, Mabruk O.; Lewins, Jeffery D.
1999-01-01
In a further study of virtually processed Monte Carlo estimates in neutron transport, a shielding problem has been studied. The use of virtual sampling to estimate the importance function at a certain point in the phase space depends on the presence of neutrons from the real source at that point. But in deep penetration problems, not many neutrons will reach regions far away from the source. In order to overcome this problem, two suggestions are considered: (1) virtual sampling is used as far as the real neutrons can reach, then fictitious sampling is introduced for the remaining regions, distributed in all the regions, or (2) only one fictitious source is placed where the real neutrons almost terminate and then virtual sampling is used in the same way as for the real source. Variational processing is again found to improve the Monte Carlo estimates, being best when using one fictitious source in the far regions with virtual sampling (option 2). When fictitious sources are used to estimate the importances in regions far away from the source, some optimization has to be performed for the proportion of fictitious to real sources, weighted against accuracy and computational costs. It has been found in this study that the optimum number of cells to be treated by fictitious sampling is problem dependent, but as a rule of thumb, fictitious sampling should be employed in regions where the number of neutrons from the real source fall below a specified limit for good statistics
Total variation regularization for a backward time-fractional diffusion problem
International Nuclear Information System (INIS)
Wang, Liyan; Liu, Jijun
2013-01-01
Consider a two-dimensional backward problem for a time-fractional diffusion process, which can be considered as image de-blurring where the blurring process is assumed to be slow diffusion. In order to avoid the over-smoothing effect for object image with edges and to construct a fast reconstruction scheme, the total variation regularizing term and the data residual error in the frequency domain are coupled to construct the cost functional. The well posedness of this optimization problem is studied. The minimizer is sought approximately using the iteration process for a series of optimization problems with Bregman distance as a penalty term. This iteration reconstruction scheme is essentially a new regularizing scheme with coupling parameter in the cost functional and the iteration stopping times as two regularizing parameters. We give the choice strategy for the regularizing parameters in terms of the noise level of measurement data, which yields the optimal error estimate on the iterative solution. The series optimization problems are solved by alternative iteration with explicit exact solution and therefore the amount of computation is much weakened. Numerical implementations are given to support our theoretical analysis on the convergence rate and to show the significant reconstruction improvements. (paper)
International Nuclear Information System (INIS)
Arnold, Alexander; Bruhns, Otto T; Reichling, Stefan; Mosler, Joern
2010-01-01
This paper is concerned with an efficient implementation suitable for the elastography inverse problem. More precisely, the novel algorithm allows us to compute the unknown stiffness distribution in soft tissue by means of the measured displacement field by considerably reducing the numerical cost compared to previous approaches. This is realized by combining and further elaborating variational mesh adaption with a clustering technique similar to those known from digital image compression. Within the variational mesh adaption, the underlying finite element discretization is only locally refined if this leads to a considerable improvement of the numerical solution. Additionally, the numerical complexity is reduced by the aforementioned clustering technique, in which the parameters describing the stiffness of the respective soft tissue are sorted according to a predefined number of intervals. By doing so, the number of unknowns associated with the elastography inverse problem can be chosen explicitly. A positive side effect of this method is the reduction of artificial noise in the data (smoothing of the solution). The performance and the rate of convergence of the resulting numerical formulation are critically analyzed by numerical examples.
Directory of Open Access Journals (Sweden)
Ibrahim Karahan
2016-04-01
Full Text Available Let C be a nonempty closed convex subset of a real Hilbert space H. Let {T_{n}}:C›H be a sequence of nearly nonexpansive mappings such that F:=?_{i=1}^{?}F(T_{i}?Ø. Let V:C›H be a ?-Lipschitzian mapping and F:C›H be a L-Lipschitzian and ?-strongly monotone operator. This paper deals with a modified iterative projection method for approximating a solution of the hierarchical fixed point problem. It is shown that under certain approximate assumptions on the operators and parameters, the modified iterative sequence {x_{n}} converges strongly to x^{*}?F which is also the unique solution of the following variational inequality: ?0, ?x?F. As a special case, this projection method can be used to find the minimum norm solution of above variational inequality; namely, the unique solution x^{*} to the quadratic minimization problem: x^{*}=argmin_{x?F}?x?². The results here improve and extend some recent corresponding results of other authors.
International Nuclear Information System (INIS)
Villeret, O.
1985-04-01
An algorithm is developed for the purpose of compter treatment planning of electron therapy. The method uses experimental absorbed dose distribution data in the irradiated medium for electron beams in the 8-20 MeV range delivered by the Sagittaire linear accelerator (study of central axis depth dose, beam profiles) in various geometrical conditions. Experimental verification of the computer program showed agreement with 2% between dose measurement and computer calculation [fr
Krishnakumar, Ambika; Narine, Lutchmie; Soonthorndhada, Amara; Thianlai, Kanchana
2015-03-01
To examine gender variations in the linkages among family stressors, home demands and responsibilities, coping resources, social connectedness, and older adult health problems. Data were collected from 3,800 elderly participants (1,654 men and 2,146 women) residing in Kanchanaburi province, Thailand. Findings indicated gender variations in the levels of these constructs and in the mediational pathways. Thai women indicated greater health problems than men. Emotional empathy was the central variable that linked financial strain, home demands and responsibilities, and older adult health problems through social connectedness. Financial strain (and negative life events for women) was associated with lowered coping self-efficacy and increased health problems. The model indicated greater strength in predicting female health problems. Findings support gender variations in the relationships between ecological factors and older adult health problems. © The Author(s) 2014.
Applications of exterior difference systems to variations in discrete mechanics
International Nuclear Information System (INIS)
Xie Zheng; Li Hongbo
2008-01-01
In discrete mechanics, difference equations describe the fundamental physical laws and exhibit many geometric properties. Can these equations be obtained in a geometric way? Using some techniques in exterior difference systems, we investigate the discrete variational problem. As an application, we give a positive answer to the above question for the discrete Newton's, Euler-Lagrange, and Hamilton's equations
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
International Nuclear Information System (INIS)
Agnihotri, M.P.
2007-01-01
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy Σ in ring approximation. The use of an ansatz for Σ enables us to perform the frequency sums (integrals as T → 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter r s (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for Σ. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part Π 00 , in the case of the Composite Fermion there appears the longitudinal polarization part Π LL that has an additional factor (2k + q) 2 under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
Energy Technology Data Exchange (ETDEWEB)
Agnihotri, M.P.
2007-04-27
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy {sigma} in ring approximation. The use of an ansatz for {sigma} enables us to perform the frequency sums (integrals as T {yields} 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter r{sub s} (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for {sigma}. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part {pi}{sub 00}, in the case of the Composite Fermion there appears the longitudinal polarization part {pi}{sub LL} that has an additional factor (2k + q){sup 2} under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
International Nuclear Information System (INIS)
Yusufoglu, Elcin; Erbas, Baris
2008-01-01
In this Letter, a mathematical model of the problem of prey and predator is presented and He's variational iteration method is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The results are compared with the results obtained by Adomian decomposition method and homotopy perturbation method. Comparison of the methods show that He's variational iteration method is a powerful method for obtaining approximate solutions to nonlinear equations and their systems
King, Nathan D.; Ruuth, Steven J.
2017-05-01
Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.
Directory of Open Access Journals (Sweden)
Omid Jafari
2015-04-01
Full Text Available This study was conducted to apply the landmark-based geometric morphometrics technique to differentiate three species of the genus Paracobitis (P. iranica, P. malapterura and P. rhadinaeus in Iran based on their body shape, because previous works, using traditional morphometrics, could not distinct them. A total of 150 specimens were sampled from the Zaringol, Madarsoo, Ghomrood, Kordan Rivers and Chahnimeh reservoir. The left side of the specimens was photographed using a digital camera and then fifteen landmark-points were digitized on two-dimensional images using TpsDig2. Landmark data were analyzed after a generalised procrustes analysis using PCA, CVA and cluster analysis. The patterns of body shape differences among the populations were illustrated in the deformation grids in relation to consensus configuration. The results showed a significant differences among the studied species and their populations in terms of morphological traits (P<0.0001. Some differences were found in the length and depth of head, depth of body, caudal peduncle length and position of eye and position of dorsal fin. The result also showed that P. iranica from Kordan River can be considered to be a distinct taxon compared to the Ghomrood taxon based on its morphological characteristics. In addition, our findings revealed that the geometric morphometrics approach can be a proper tool for morphological and taxonomic studies in species with small sizes including Nemachelinae.
Lippoth, F.; Peletier, M.A.; Prokert, G.
2016-01-01
Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for
Bak, Jun Yong; Kim, So-Jung; Byun, Chun-Won; Pi, Jae-Eun; Ryu, Min-Ki; Hwang, Chi Sun; Yoon, Sung-Min
2015-09-01
Device designs of charge-trap oxide memory thin-film transistors (CTM-TFTs) were investigated to enhance their nonvolatile memory performances. The first strategy was to optimize the film thicknesses of the tunneling and charge-trap (CT) layers in order to meet requirements of both higher operation speed and longer retention time. While the program speed and memory window were improved for the device with a thinner tunneling layer, a long retention time was obtained only for the device with a tunneling layer thicker than 5 nm. The carrier concentration and charge-trap densities were optimized in the 30-nm-thick CT layer. It was observed that 10-nm-thick tunneling, 30-nm-thick CT, and 50-nm-thick blocking layers were the best configuration for our proposed CTM-TFTs, where a memory on/off margin higher than 107 was obtained, and a memory margin of 6.6 × 103 was retained even after the lapse of 105 s. The second strategy was to examine the effects of the geometrical relations between the CT and active layers for the applications of memory elements embedded in circuitries. The CTM-TFTs fabricated without an overlap between the CT layer and the drain electrode showed an enhanced program speed by the reduced parasitic capacitance. The drain-bias disturbance for the memory off-state was effectively suppressed even when a higher read-out drain voltage was applied. Appropriate device design parameters, such as the film thicknesses of each component layer and the geometrical relations between them, can improve the memory performances and expand the application fields of the proposed CTM-TFTs.
Geometric approach to soliton equations
International Nuclear Information System (INIS)
Sasaki, R.
1979-09-01
A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)
On bivariate geometric distribution
Directory of Open Access Journals (Sweden)
K. Jayakumar
2013-05-01
Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.
Visualizing the Geometric Series.
Bennett, Albert B., Jr.
1989-01-01
Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)
Institute of Scientific and Technical Information of China (English)
ZHANG Yin; WEI Zhiyuan; ZHANG Yinping; WANG Xin
2017-01-01
Urban heating in northern China accounts for 40％ of total building energy usage.In central heating systems,heat is often transfened from heat source to users by the heat network where several heat exchangers arc installed at heat source,substations and terminals respectively.For given overall heating capacity and heat source temperarure,increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving.In this paper,the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established.Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity,the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method.The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger.It also indicates that in order to improve the thernmal performance of the whole system,more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small.This work is important for guiding the optimization design of practical cascade heating systems.
Zhang, Shuhai; Oskay, Caglar
2015-04-01
This manuscript presents the formulation and implementation of the variational multiscale enrichment (VME) method for the analysis of elasto-viscoplastic problems. VME is a global-local approach that allows accurate fine scale representation at small subdomains, where important physical phenomena are likely to occur. The response within far-fields is idealized using a coarse scale representation. The fine scale representation not only approximates the coarse grid residual, but also accounts for the material heterogeneity. A one-parameter family of mixed boundary conditions that range from Dirichlet to Neumann is employed to study the effect of the choice of the boundary conditions at the fine scale on accuracy. The inelastic material behavior is modeled using Perzyna type viscoplasticity coupled with flow stress evolution idealized by the Johnson-Cook model. Numerical verifications are performed to assess the performance of the proposed approach against the direct finite element simulations. The results of verification studies demonstrate that VME with proper boundary conditions accurately model the inelastic response accounting for material heterogeneity.
International Nuclear Information System (INIS)
Noga, M.T.
1984-01-01
This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry
Czech Academy of Sciences Publication Activity Database
Macholán, Miloš; Mikula, Ondřej; Vohralík, V.
2008-01-01
Roč. 247, - (2008), s. 67-80 ISSN 0044-5231 R&D Projects: GA AV ČR IAA6045307; GA ČR GA206/06/0707 Grant - others:GA ČR(CZ) GA206/05/2334 Institutional research plan: CEZ:AV0Z50450515 Keywords : Mus macedonicus * Mus cypriacus * phenotypic variation Subject RIV: EG - Zoology Impact factor: 1.319, year: 2008
Vatankhah, Saeed; Renaut, Rosemary A.; Ardestani, Vahid E.
2018-04-01
We present a fast algorithm for the total variation regularization of the 3-D gravity inverse problem. Through imposition of the total variation regularization, subsurface structures presenting with sharp discontinuities are preserved better than when using a conventional minimum-structure inversion. The associated problem formulation for the regularization is nonlinear but can be solved using an iteratively reweighted least-squares algorithm. For small-scale problems the regularized least-squares problem at each iteration can be solved using the generalized singular value decomposition. This is not feasible for large-scale, or even moderate-scale, problems. Instead we introduce the use of a randomized generalized singular value decomposition in order to reduce the dimensions of the problem and provide an effective and efficient solution technique. For further efficiency an alternating direction algorithm is used to implement the total variation weighting operator within the iteratively reweighted least-squares algorithm. Presented results for synthetic examples demonstrate that the novel randomized decomposition provides good accuracy for reduced computational and memory demands as compared to use of classical approaches.
International Nuclear Information System (INIS)
Schmid, K.W.; Gruemmer, F.
1979-01-01
A variational principle is used to determine the optimal angular momentum projected one determinant approach to the N-nucleon yrast-wave function for a given total spin value. The solution is given in terms of a set of coupled nonlinear equations. Besides an orthonormality constraint for the occupied orbits and a normalization conditions for the total wave function, this set consists out of a matrix equation taking care of the fact that the spin-projected wave function does not depend on the orientation of the intrinsic determinant it is based on, and a second subset of equations, which can be considered as a Thouless theorem for the spin-projected N-nucleon state, and desribes the diagonalization of the total Hamiltonian in the subspace of linear independent N-nucleon shell model configurations contained in the test-determinant. Furthermore, a numerical method for the solution of these equations is proposed and an extension of the theory for the description of excited bands is given. Finally, the consistency of the equations is checked by solving them for a simple example analytically. (orig.)
Guide to Geometric Algebra in Practice
Dorst, Leo
2011-01-01
This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d
Introduction to global variational geometry
Krupka, Demeter
2015-01-01
The book is devoted to recent research in the global variational theory on smooth manifolds. Its main objective is an extension of the classical variational calculus on Euclidean spaces to (topologically nontrivial) finite-dimensional smooth manifolds; to this purpose the methods of global analysis of differential forms are used. Emphasis is placed on the foundations of the theory of variational functionals on fibered manifolds - relevant geometric structures for variational principles in geometry, physical field theory and higher-order fibered mechanics. The book chapters include: - foundations of jet bundles and analysis of differential forms and vector fields on jet bundles, - the theory of higher-order integral variational functionals for sections of a fibred space, the (global) first variational formula in infinitesimal and integral forms- extremal conditions and the discussion of Noether symmetries and generalizations,- the inverse problems of the calculus of variations of Helmholtz type- variational se...
Directory of Open Access Journals (Sweden)
Pratibha Joshi
2014-12-01
Full Text Available In this paper, we have achieved high order solution of a three dimensional nonlinear diffusive-convective problem using modified variational iteration method. The efficiency of this approach has been shown by solving two examples. All computational work has been performed in MATHEMATICA.
Directory of Open Access Journals (Sweden)
Yu Xiang Zeng
2013-12-01
Full Text Available The q-difference equations are a class of important models both in q-calculus and applied sciences. The variational iteration method is extended to approximately solve the initial value problems of q-difference equations. A q-analogue of the Lagrange multiplier is presented and three examples are illustrated to show the method's efficiency.
Directory of Open Access Journals (Sweden)
J. Gwinner
2013-01-01
Full Text Available The purpose of this paper is twofold. Firstly we consider nonlinear nonsmooth elliptic boundary value problems, and also related parabolic initial boundary value problems that model in a simplified way steady-state unilateral contact with Tresca friction in solid mechanics, respectively, stem from nonlinear transient heat conduction with unilateral boundary conditions. Here a recent duality approach, that augments the classical Babuška-Brezzi saddle point formulation for mixed variational problems to twofold saddle point formulations, is extended to the nonsmooth problems under consideration. This approach leads to variational inequalities of mixed form for three coupled fields as unknowns and to related differential mixed variational inequalities in the time-dependent case. Secondly we are concerned with the stability of the solution set of a general class of differential mixed variational inequalities. Here we present a novel upper set convergence result with respect to perturbations in the data, including perturbations of the associated nonlinear maps, the nonsmooth convex functionals, and the convex constraint set. We employ epiconvergence for the convergence of the functionals and Mosco convergence for set convergence. We impose weak convergence assumptions on the perturbed maps using the monotonicity method of Browder and Minty.
Directory of Open Access Journals (Sweden)
Christine Böhmer
2017-01-01
Full Text Available In contrast to wild lagomorphs, pet rabbits exhibit a noticeably high frequency of dental problems. Although dietary habits are considered as a major factor contributing to acquired malocclusions, the exact causes and interrelationships are still under debate. In this regard, an important aspect that has not been considered thoroughly to date is the effect of diet-induced phenotypic plasticity in skull morphology. Therefore, we conducted a geometric morphometric analysis on skull radiological images of wild and pet rabbits in order to quantify intraspecific variation in craniomandibular morphology. The statistical analyses reveal a significant morphological differentiation of the craniomandibular system between both groups. Furthermore, the analysis of covariance shows that the force-generating modules (cranium and mandible vary independently from the force-receiving module (hypselodont teeth in pet rabbits, which is in contrast to their wild relatives. Our findings suggest that the phenotypic changes in domestic rabbits impact mastication performance and, consequently, oral health. An adequate close-to-nature nutrition throughout the whole life and especially beginning early parallel to weaning (phase of increased phenotypic plasticity is necessary to ensure a normal strain on the teeth by promoting physiological lateral gliding movements and avoiding direct axial loads.
Learning the solution sparsity of an ill-posed linear inverse problem with the Variational Garrote
DEFF Research Database (Denmark)
Andersen, Michael Riis; Hansen, Sofie Therese; Hansen, Lars Kai
2013-01-01
the Variational Garrote, we show, has a wide range of parameter values for which it at the same time provides low test error and high retrieval of the true feature locations. Furthermore, the new form of the prior and associated hyper-prior leads to a simple update rule in a Bayesian variational inference scheme...
Geometric scaling as traveling waves
International Nuclear Information System (INIS)
Munier, S.; Peschanski, R.
2003-01-01
We show the relevance of the nonlinear Fisher and Kolmogorov-Petrovsky-Piscounov (KPP) equation to the problem of high energy evolution of the QCD amplitudes. We explain how the traveling wave solutions of this equation are related to geometric scaling, a phenomenon observed in deep-inelastic scattering experiments. Geometric scaling is for the first time shown to result from an exact solution of nonlinear QCD evolution equations. Using general results on the KPP equation, we compute the velocity of the wave front, which gives the full high energy dependence of the saturation scale
Asymptotic geometric analysis, part I
Artstein-Avidan, Shiri
2015-01-01
The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomen
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
in its plane, and in the circular cylinder unlimited in length.An approximate numerical solution of the differential equation that is included in a nonlinear mathematical model of the thermal explosion enables us to obtain quantitative estimates of combination of determining parameters at which the limit state occurs in areas of not only canonical form. A capability to study of the thermal explosion state can be extended in the context of development of mathematical modeling methods, including methods of model analysis to describe the thermal state of solids.To analyse a mathematical model of the thermal explosion in a homogeneous solid the paper uses a variational approach based on the dual variational formulation of the appropriate nonlinear stationary problem of heat conduction in such a body. This formulation contains two alternative functional reaching the matching values in their stationary points corresponding to the true temperature distribution. This functional feature allows you to not only get an approximate quantitative estimate of the combination of parameters that determine the thermal explosion state, but also to find the greatest possible error in such estimation.
Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...
Robust topology optimization accounting for geometric imperfections
DEFF Research Database (Denmark)
Schevenels, M.; Jansen, M.; Lombaert, Geert
2013-01-01
performance. As a consequence, the actual structure may be far from optimal. In this paper, a robust approach to topology optimization is presented, taking into account two types of geometric imperfections: variations of (1) the crosssections and (2) the locations of structural elements. The first type...... is modeled by means of a scalar non-Gaussian random field, which is represented as a translation process. The underlying Gaussian field is simulated by means of the EOLE method. The second type of imperfections is modeled as a Gaussian vector-valued random field, which is simulated directly by means...... of the EOLE method. In each iteration of the optimization process, the relevant statistics of the structural response are evaluated by means of a Monte Carlo simulation. The proposed methodology is successfully applied to a test problem involving the design of a compliant mechanism (for the first type...
K.O. Dzhaparidze (Kacha)
1998-01-01
textabstractIn this paper a convergence class is characterized for special series associated with Gelfond's interpolation problem (a generalization of the Abel-Goncharov problem) when the interpolation nodes are equidistantly distributed within the interval $[0,1]$. As a result, an expansion is
Geometric Approaches to Quadratic Equations from Other Times and Places.
Allaire, Patricia R.; Bradley, Robert E.
2001-01-01
Focuses on geometric solutions of quadratic problems. Presents a collection of geometric techniques from ancient Babylonia, classical Greece, medieval Arabia, and early modern Europe to enhance the quadratic equation portion of an algebra course. (KHR)
Energy Technology Data Exchange (ETDEWEB)
Jurkovic, I; Stathakis, S; Markovic, M; Papanikolaou, N [University of Texas Health Sciences Center San Antonio, San Antonio (United States); Mavroidis, P [University of Texas Health Sciences Center San Antonio, San Antonio (United States); University North Carolina, Chapel Hill, NC (United States)
2016-06-15
Purpose: To assess the value of cone beam CT (CBCT) combined with deformable image registration in estimating the accuracy of the delivered treatment and the suitability of the applied target margins. Methods: Two patients with lung tumor were selected. Using their CT images intensity modulated radiation therapy (IMRT) treatment plans were developed to deliver 66Gy to the 95% of the PTV in 2Gy fractions. Using the Velocity AI software, the planning CT of each patient was registered with the fractional CBCT images that were obtained through the course of the treatment. After a CT to CBCT deformable image registration (DIR), the same fractional deformation matrix was used for the deformation of the planned dose distributions, as well as of all the contoured volumes, to each CBCT dataset. The dosimetric differences between the planning target volume (PTV) and various organs at risk (OARs) were recorded and compared. Results: CBCT data such as CTV volume change and PTV coverage was analyzed. There was a moderate relationship between volume changes and contouring method (automatic contouring using the DIR transformation vs. manual contouring on each CBCT) for patient #1 (r = 0.49), and a strong relationship for patient #2 (r = 0.83). The average PTV volume coverage from all the CBCT datasets was 91.2% for patient #1 and 95.6% for patient #2. Conclusion: Daily setup variations, tumor volume motion and lung deformation due to breathing yield differences in the actual delivered dose distributions versus the planned ones. The results presented indicate that these differences are apparent even with the use of daily IGRT. In certain fractions, the margins used seem to be insufficient to ensure acceptable lung tumor coverage. The observed differences notably depend on the tumor volume size and location. A larger cohort of patient is under investigation to verify those findings.
International Nuclear Information System (INIS)
Jurkovic, I; Stathakis, S; Markovic, M; Papanikolaou, N; Mavroidis, P
2016-01-01
Purpose: To assess the value of cone beam CT (CBCT) combined with deformable image registration in estimating the accuracy of the delivered treatment and the suitability of the applied target margins. Methods: Two patients with lung tumor were selected. Using their CT images intensity modulated radiation therapy (IMRT) treatment plans were developed to deliver 66Gy to the 95% of the PTV in 2Gy fractions. Using the Velocity AI software, the planning CT of each patient was registered with the fractional CBCT images that were obtained through the course of the treatment. After a CT to CBCT deformable image registration (DIR), the same fractional deformation matrix was used for the deformation of the planned dose distributions, as well as of all the contoured volumes, to each CBCT dataset. The dosimetric differences between the planning target volume (PTV) and various organs at risk (OARs) were recorded and compared. Results: CBCT data such as CTV volume change and PTV coverage was analyzed. There was a moderate relationship between volume changes and contouring method (automatic contouring using the DIR transformation vs. manual contouring on each CBCT) for patient #1 (r = 0.49), and a strong relationship for patient #2 (r = 0.83). The average PTV volume coverage from all the CBCT datasets was 91.2% for patient #1 and 95.6% for patient #2. Conclusion: Daily setup variations, tumor volume motion and lung deformation due to breathing yield differences in the actual delivered dose distributions versus the planned ones. The results presented indicate that these differences are apparent even with the use of daily IGRT. In certain fractions, the margins used seem to be insufficient to ensure acceptable lung tumor coverage. The observed differences notably depend on the tumor volume size and location. A larger cohort of patient is under investigation to verify those findings.
Vectorial Ekeland Variational Principles and Inclusion Problems in Cone Quasi-Uniform Spaces
Directory of Open Access Journals (Sweden)
Jiang Zhu
2012-01-01
principle, vectorial quasiequilibrium principle are obtained. Also, several other important principles in nonlinear analysis are extended to cone quasi-uniform spaces. The results of this paper extend, generalize, and improve the corresponding results for Ekeland's variational principles of the directed vectorial perturbation type and other generalizations of Ekeland's variational principles in the setting of F-type topological space and quasi-metric spaces in the literatures. Even in usual real metric spaces, some of our results are new.
Plateau's problem an invitation to varifold geometry
Frederick J Almgren, Jr
2001-01-01
There have been many wonderful developments in the theory of minimal surfaces and geometric measure theory in the past 25 to 30 years. Many of the researchers who have produced these excellent results were inspired by this little book--or by Fred Almgren himself. The book is indeed a delightful invitation to the world of variational geometry. A central topic is Plateau's Problem, which is concerned with surfaces that model the behavior of soap films. When trying to resolve the problem, however, one soon finds that smooth surfaces are insufficient: Varifolds are needed. With varifolds, one can obtain geometrically meaningful solutions without having to know in advance all their possible singularities. This new tool makes possible much exciting new analysis and many new results. Plateau's problem and varifolds live in the world of geometric measure theory, where differential geometry and measure theory combine to solve problems which have variational aspects. The author's hope in writing this book was to encour...
Directory of Open Access Journals (Sweden)
Kriengsak Wattanawitoon
2011-01-01
Full Text Available We prove strong and weak convergence theorems of modified hybrid proximal-point algorithms for finding a common element of the zero point of a maximal monotone operator, the set of solutions of equilibrium problems, and the set of solution of the variational inequality operators of an inverse strongly monotone in a Banach space under different conditions. Moreover, applications to complementarity problems are given. Our results modify and improve the recently announced ones by Li and Song (2008 and many authors.
ten Have, M; Oldehinkel, A; Vollebergh, W; Ormel, J
Little is known about the role of personality characteristics in service utilisation for mental health problems. We investigate whether neuroticism: 1) predicts the use of primary and specialised care services for mental health problems, independently of whether a person has an emotional disorder;
Neidert, Pamela L.; Iwata, Brian A.; Dozier, Claudia L.
2005-01-01
We describe the assessment and treatment of 2 children with autism spectrum disorder whose problem behaviors (self-injury, aggression, and disruption) were multiply controlled. Results of functional analyses indicated that the children's problem behaviors were maintained by both positive reinforcement (attention) and negative reinforcement (escape…
Directory of Open Access Journals (Sweden)
Jianke Zhang
2018-01-01
Full Text Available We study in this paper the Atangana-Baleanu fractional derivative of fuzzy functions based on the generalized Hukuhara difference. Under the condition of gH-Atangana-Baleanu fractional differentiability, we prove the generalized necessary and sufficient optimality conditions for problems of the fuzzy fractional calculus of variations with a Lagrange function. The new kernel of gH-Atangana-Baleanu fractional derivative has no singularity and no locality, which was not precisely illustrated in the previous definitions.
Hananto, R. B.; Kusmayadi, T. A.; Riyadi
2018-05-01
The research aims to identify the critical thinking process of students in solving geometry problems. The geometry problem selected in this study was the building of flat side room (cube). The critical thinking process was implemented to visual, auditory and kinesthetic learning styles. This research was a descriptive analysis research using qualitative method. The subjects of this research were 3 students selected by purposive sampling consisting of visual, auditory, and kinesthetic learning styles. Data collection was done through test, interview, and observation. The results showed that the students' critical thinking process in identifying and defining steps for each learning style were similar in solving problems. The critical thinking differences were seen in enumerate, analyze, list, and self-correct steps. It was also found that critical thinking process of students with kinesthetic learning style was better than visual and auditory learning styles.
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
Variational principles in physics
Basdevant, Jean-Louis
2007-01-01
Optimization under constraints is an essential part of everyday life. Indeed, we routinely solve problems by striking a balance between contradictory interests, individual desires and material contingencies. This notion of equilibrium was dear to thinkers of the enlightenment, as illustrated by Montesquieu’s famous formulation: "In all magistracies, the greatness of the power must be compensated by the brevity of the duration." Astonishingly, natural laws are guided by a similar principle. Variational principles have proven to be surprisingly fertile. For example, Fermat used variational methods to demonstrate that light follows the fastest route from one point to another, an idea which came to be known as Fermat’s principle, a cornerstone of geometrical optics. Variational Principles in Physics explains variational principles and charts their use throughout modern physics. The heart of the book is devoted to the analytical mechanics of Lagrange and Hamilton, the basic tools of any physicist. Prof. Basdev...
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2014-03-01
We will describe a general formalism for obtaining spatially localized (``sparse'') solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an L1 regularization term to the variational principle, which is shown to yield solutions with compact support (``compressed modes''). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. In addition, we introduce an L1 regularized variational framework for developing a spatially localized basis, compressed plane waves (CPWs), that spans the eigenspace of a differential operator, for instance, the Laplace operator. Our approach generalizes the concept of plane waves to an orthogonal real-space basis with multiresolution capabilities. Supported by NSF Award DMR-1106024 (VO), DOE Contract No. DE-FG02-05ER25710 (RC) and ONR Grant No. N00014-11-1-719 (SO).
International Nuclear Information System (INIS)
Shakhazizyan, S.R.
1987-01-01
The problem of nonrelativistic dependence of unit length and unit time on the position in the space is considered on the basis of centre-containing spiral-geometric structure of the space-time. The experimental results of variation of the unit time are analyzed which well agree with the requirements of the model proposed. 13 refs.; 12 figs
Directory of Open Access Journals (Sweden)
T. S. Kasatkina
2015-01-01
Full Text Available Terminal control problem with fixed finite time for the second order affine systems with state constraints is considered. A solution of such terminal problem is suggested for the systems with scalar control of regular canonical form.In this article it is shown that the initial terminal problem is equivalent to the problem of auxiliary function search. This function should satisfy some conditions. Such function design consists of two stages. The first stage includes search of function which corresponds the solution of the terminal control problem without state constraints. This function is designed as polynom of the fifth power which depends on time variable. Coefficients of the polynom are defined by boundary conditions. The second stage includes modification of designed function if corresponding to that function trajectory is not satisfied constraints. Modification process is realized by adding to the current function supplementary polynom. Influence of that polynom handles by variation of a parameter value. Modification process can include a few iterations. After process termination continuous control is found. This control is the solution of the initial terminal prUsing presented scheme the terminal control problem for system, which describes oscillations of the mathematical pendulum, is solved. This approach can be used for the solution of terminal control problems with state constraints for affine systems with multi-dimensional control.
Energy Technology Data Exchange (ETDEWEB)
Oldenburg, C.M.; Pruess, K. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)
1995-03-01
We have developed TOUGH2 modules for strongly coupled flow and transport that include full hydrodynamic dispersion. T2DM models tow-dimensional flow and transport in systems with variable salinity, while T32DMR includes radionuclide transport with first-order decay of a parent-daughter chain of radionuclide components in variable salinity systems. T2DM has been applied to a variety of coupled flow problems including the pure solutal convection problem of Elder and the mixed free and forced convection salt-dome flow problem. In the Elder and salt-dome flow problems, density changes of up to 20% caused by brine concentration variations lead to strong coupling between the velocity and brine concentration fields. T2DM efficiently calculates flow and transport for these problems. We have applied T2DMR to the dispersive transport and decay of radionuclide tracers in flow fields with permeability heterogeneities and recirculating flows. Coupling in these problems occurs by velocity-dependent hydrodynamic dispersion. Our results show that the maximum daughter species concentration may occur fully within a recirculating or low-velocity region. In all of the problems, we observe very efficient handling of the strongly coupled flow and transport processes.
Variational methods for boundary value problems for systems of elliptic equations
Lavrent'ev, M A
2012-01-01
Famous monograph by a distinguished mathematician presents an innovative approach to classical boundary value problems. The treatment employs the basic scheme first suggested by Hilbert and developed by Tonnelli. 1963 edition.
Energy Technology Data Exchange (ETDEWEB)
Malrait, F.
2001-02-15
In order to improve the efficiency of a speed variator or to make autonomous the control of induction motors without mechanical sensor, the speed variator must integrate with a good precision the parameters of the motor to which it is connected. In this work, an identification phase when the motor is off is proposed. This raises the problem of the modeling of the induction motor and of the power stage (saturation model, voltage drop in the power stage components) in an unusual operation zone for a speed variator. The knowledge of the off-line electrical parameters is thus not sufficient. During normal operation, the thermal drift of resistors leads to a parametric error which can create blocking problems in the low sped domain or which can significantly lower the efficiency. The low-speed zone has been analyzed. This zone contains some intrinsic properties of the induction motor: instability, non-observability (first order). The synthesis of an observer of the induction motor is proposed which is based on the linearization of the system around a trajectory. A construction method has been developed to generate a non-singular observer for a system changing with time and having observability singularities. This result comes from this study on systems having controllability singularities for linear systems with time-variable coefficients. An exogenous loop is explicitly proposed which allows to transform the original system into integrator chains without singularities. (J.S.)
The numerical solution of total variation minimization problems in image processing
Energy Technology Data Exchange (ETDEWEB)
Vogel, C.R.; Oman, M.E. [Montana State Univ., Bozeman, MT (United States)
1994-12-31
Consider the minimization of penalized least squares functionals of the form: f(u) = 1/2 ({parallel}Au {minus} z{parallel}){sup 2} + {alpha}{integral}{sub {Omega}}{vert_bar}{del}u{vert_bar}dx. Here A is a bounded linear operator, z represents data, {parallel} {center_dot} {parallel} is a Hilbert space norm, {alpha} is a positive parameter, {integral}{sub {Omega}}{vert_bar}{del}u{vert_bar} dx represents the total variation (TV) of a function u {element_of} BV ({Omega}), the class of functions of bounded variation on a bounded region {Omega}, and {vert_bar} {center_dot} {vert_bar} denotes Euclidean norm. In image processing, u represents an image which is to be recovered from noisy data z. Certain {open_quotes}blurring processes{close_quotes} may be represented by the action of an operator A on the image u.
Directory of Open Access Journals (Sweden)
Rastović Danilo
2009-01-01
Full Text Available In earlier Rastovic's papers [1] and [2], the effort was given to analyze the stochastic control of tokamaks. In this paper, the deterministic control of tokamak turbulence is investigated via fractional variational calculus, particle in cell simulations, and fuzzy logic methods. Fractional integrals can be considered as approximations of integrals on fractals. The turbulent media could be of the fractal structure and the corresponding equations should be changed to include the fractal features of the media.
Barr, Peter B; Silberg, Judy; Dick, Danielle M; Maes, Hermine H
2018-05-14
Childhood socioeconomic status (SES) is an important aspect of early life environment associated with later life health/health behaviors, including alcohol misuse. However, alcohol misuse is modestly heritable and involves differing etiological pathways. Externalizing disorders show significant genetic overlap with substance use, suggesting an impulsivity pathway to alcohol misuse. Alcohol misuse also overlaps with internalizing disorders, suggesting alcohol is used to cope. These differing pathways could lead to different patterns over time and/or differential susceptibility to environmental conditions, such as childhood SES. We examine whether: 1) genetic risk for externalizing and internalizing disorders influence trajectories of alcohol problems across adolescence to adulthood, 2) childhood SES alters genetic risk these disorders on trajectories of alcohol problems, and 3) these patterns are consistent across sex. We find modest evidence of gene-environment interaction. Higher childhood SES increases the risk of alcohol problems in late adolescence/early adulthood, while lower childhood SES increases the risk of alcohol problems in later adulthood, but only among males at greater genetic risk of externalizing disorders. Females from lower SES families with higher genetic risk of internalizing or externalizing disorders have greater risk of developing alcohol problems. Copyright © 2018 Elsevier Ltd. All rights reserved.
Geometric phases in discrete dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)
2016-10-14
In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.
Energy Technology Data Exchange (ETDEWEB)
Buryakovskiy, L A; Kondrushkin, Yu M
1979-01-01
Over 200 people participated in the work of the conference: members of sections, scientists and specialist of production and scientific research organizations of the Ministry of the Oil Industry, Ministry of Geology, Ministry of the Gas Industry, USSR State Commission on Mineral Reserves, as well as the Kuybyshev Polytechnical Institute, the Perm State University, the Institute of Problems of Deep Oil and Gas Fields of the Azerbaijan SSR Academy of Sciences. A total of 11 production organizations and 24 institutes from 15 oil recovery regions of the USSR were represented.
Geometric quantization and general relativity
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-01-01
The purpose of geometric quantization is to give a rigorous mathematical content to the 'correspondence principle' between classical and quantum mechanics. The main tools are borrowed on one hand from differential geometry and topology (differential manifolds, differential forms, fiber bundles, homology and cohomology, homotopy), on the other hand from analysis (functions of positive type, infinite dimensional group representations, pseudo-differential operators). Some satisfactory results have been obtained in the study of dynamical systems, but some fundamental questions are still waiting for an answer. The 'geometric quantization of fields', where some further well known difficulties arise, is still in a preliminary stage. In particular, the geometric quantization on the gravitational field is still a mere project. The situation is even more uncertain due to the fact that there is no experimental evidence of any quantum gravitational effect which could give us a hint towards what we are supposed to look for. The first level of both Quantum Theory, and General Relativity describes passive matter: influence by the field without being a source of it (first quantization and equivalence principle respectively). In both cases this is only an approximation (matter is always a source). But this approximation turns out to be the least uncertain part of the description, because on one hand the first quantization avoids the problems of renormalization and on the other hand the equivalence principle does not imply any choice of field equations (it is known that one can modify Einstein equations at short distances without changing their geometrical properties). (Auth.)
Newton-type method for the variational discretization of topology optimization problems
DEFF Research Database (Denmark)
Evgrafov, Anton
2013-01-01
We present a locally quadratically convergent optimization algorithm for solving topology optimization problems. The distinguishing feature of the algorithm is to treat the design as a smooth function of the state and not vice versa as in the traditional nested approach to topology optimization, ...
Kropp, Peter; Brecht, Ines-Beatrice; Niederberger, Uwe; Kowalski, Jens; Schröder, Dietmar; Thome, Johannes; Meyer, Wolfgang; Wallasch, Thomas-Martin; Hilgendorf, Inken; Gerber, Wolf-Dieter
2012-10-01
According to the Seligman theory of learned helplessness, depression is caused by a repetitive experience of loss of control resulting in internal, stable and global attributional styles for negative events. In depressed patients and healthy controls experiencing such events, an increased amplitude of the post-imperative negative variation (PINV) has been described. The aim of the study was to investigate a possible correlation between migraine, depression, learned helplessness and PINV. 24 patients suffering from migraine without aura and 24 healthy controls were exposed to a situation of loss of control whilst the contingent negative variation (CNV) from C3, C4 and Cz were recorded. Before conducting the experiment, the subjects were asked to answer the Beck Depression Inventory (BDI) and the German attributional style questionnaire (GASQ). Amplitudes of total CNV, early and late component and PINV were calculated in eight blocks of four recordings each. The results confirm findings of a pronounced PINV in situations of loss of control, though high amplitudes were not correlated with low values in the GASQ and therefore with learned helplessness. High PINV in migraine patients correlated with high scores in the BDI and the list of the complaints questionnaire. However, this was not the case in healthy controls. In this experimental situation, PINV in migraine patients can be interpreted as an expectancy potential in order to avoid failure and helplessness.
Institute of Scientific and Technical Information of China (English)
GUO Han-Ying,; LI Yu-Qi; WU Ke1; WANG Shi-Kun
2002-01-01
In this first paper of a series, we study the difference discrete variational principle in the framework of multi-parameter differential approach by regarding the forward difference as an entire geometric object in view of noncommutative differential geometry. Regarding the difference as an entire geometric object, the difference discrete version of Legendre transformation can be introduced. By virtue of this variational principle, we can discretely deal with the variation problems in both the Lagrangian and Hamiltonian formalisms to get difference discrete Euler-Lagrange equations and canonical ones for the difference discrete versions of the classical mechanics and classical field theory.
International Nuclear Information System (INIS)
Stefanou, G.D.
1982-01-01
The calculation of time-deepndent stresses in concrete structures operating at elevated temperatures is discussed. The method described is of a direct formulation technique and it is based on the principles of the calculus of variation. The paper mainly deals with the application of the method to a large and infinitely redundant continuum problem. The analytical procedure of the variational principle is also described and the mathematical expressions are developed for uniaxial and biaxial stress problems. The solution for the biaxial state of stress is carried out by a two-dimensional finite element stiffness analysis. A step-by-step method developed by the author using two-dimensional finite element stiffness analysis is also described in APPENDIX 3. Both methods are then applied to a real problem for which experimental data exist from Ref. (1) Predicted analytical values obtained by both methods are compared with experimental results. The method is suitable for predicting the distribution of stress in the end slabs of containment vessels. These slabs are perforated to permit fuel loading by the charging machine. (author)
Geometric optimization and sums of algebraic functions
Vigneron, Antoine E.
2014-01-01
We present a new optimization technique that yields the first FPTAS for several geometric problems. These problems reduce to optimizing a sum of nonnegative, constant description complexity algebraic functions. We first give an FPTAS for optimizing such a sum of algebraic functions, and then we apply it to several geometric optimization problems. We obtain the first FPTAS for two fundamental geometric shape-matching problems in fixed dimension: maximizing the volume of overlap of two polyhedra under rigid motions and minimizing their symmetric difference. We obtain the first FPTAS for other problems in fixed dimension, such as computing an optimal ray in a weighted subdivision, finding the largest axially symmetric subset of a polyhedron, and computing minimum-area hulls.
Umbarkar, A. J.; Balande, U. T.; Seth, P. D.
2017-06-01
The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.
International Nuclear Information System (INIS)
Scaramuzzino, F.
2009-01-01
This paper considers a qualitative analysis of the solution of a pure exchange general economic equilibrium problem according to two independent parameters. Some recently results obtained by the author in the static and the dynamic case have been collected. Such results have been applied in a particular parametric case: it has been focused the attention on a numerical application for which the existence of the solution of time-depending parametric variational inequality that describes the equilibrium conditions has been proved by means of the direct method. By using MatLab computation after a linear interpolation, the curves of equilibrium have been visualized.
DEFF Research Database (Denmark)
Brunskog, Jonas; Richard, Antoine Philippe André
2016-01-01
Problems such as sound insulation and absorption of plane structures in laboratory conditions can theoretically be described as an integral or integral-differential equation. This equation contains the Green’s function integrated over the surface, which describes the radiation from the surface....... A variational technique, well described by Morse and Ingard, has successfully been used for both absorption and sound insulation for a plane incident wave. The resulting formulas are surprisingly simple, accurate and robust. Moreover, they capture the physics of sound radiation of a finite surface well. However...
Riemannian geometry and geometric analysis
Jost, Jürgen
2017-01-01
This established reference work continues to provide its readers with a gateway to some of the most interesting developments in contemporary geometry. It offers insight into a wide range of topics, including fundamental concepts of Riemannian geometry, such as geodesics, connections and curvature; the basic models and tools of geometric analysis, such as harmonic functions, forms, mappings, eigenvalues, the Dirac operator and the heat flow method; as well as the most important variational principles of theoretical physics, such as Yang-Mills, Ginzburg-Landau or the nonlinear sigma model of quantum field theory. The present volume connects all these topics in a systematic geometric framework. At the same time, it equips the reader with the working tools of the field and enables her or him to delve into geometric research. The 7th edition has been systematically reorganized and updated. Almost no page has been left unchanged. It also includes new material, for instance on symplectic geometry, as well as the B...
Geometric reconstruction methods for electron tomography
DEFF Research Database (Denmark)
Alpers, Andreas; Gardner, Richard J.; König, Stefan
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts...... and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed...
International Nuclear Information System (INIS)
Sharma, C.S.; Rebelo, I.
1975-01-01
It is proved that a semilinear function on a complex banach space is not differentiable according to the usual definition of differentiability in the calculus on banch spaces. It is shown that this result makes the calculus largely inapplicable to the solution od variational problems of quantum mechanics. A new concept of differentiability called semidifferentiability is defined. This generalizes the standard concept of differentiability in a banach space and the resulting calculus is particularly suitable for optimizing real-value functions on a complex banach space and is directly applicable to the solution of quantum mechanical variational problems. As an example of such application a rigorous proof of a generalized version of a result due to Sharma (J. Phys. A; 2:413 (1969)) is given. In the course of this work a new concept of prelinearity is defined and some standard results in the calculus in banach spaces are extended and generalized into more powerful ones applicable directly to prelinear functions and hence yielding the standard results for linear function as particular cases. (author)
5th Dagstuhl Seminar on Geometric Modelling
Brunnett, Guido; Farin, Gerald; Goldman, Ron
2004-01-01
In 19 articles presented by leading experts in the field of geometric modelling the state-of-the-art on representing, modeling, and analyzing curves, surfaces as well as other 3-dimensional geometry is given. The range of applications include CAD/CAM-systems, computer graphics, scientific visualization, virtual reality, simulation and medical imaging. The content of this book is based on selected lectures given at a workshop held at IBFI Schloss Dagstuhl, Germany. Topics treated are: – curve and surface modelling – non-manifold modelling in CAD – multiresolution analysis of complex geometric models – surface reconstruction – variational design – computational geometry of curves and surfaces – 3D meshing – geometric modelling for scientific visualization – geometric models for biomedical applications
Impossible Geometric Constructions: A Calculus Writing Project
Awtrey, Chad
2013-01-01
This article discusses a writing project that offers students the opportunity to solve one of the most famous geometric problems of Greek antiquity; namely, the impossibility of trisecting the angle [pi]/3. Along the way, students study the history of Greek geometry problems as well as the life and achievements of Carl Friedrich Gauss. Included is…
Druţu, Cornelia
2018-01-01
The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...
Geometric and engineering drawing
Morling, K
2010-01-01
The new edition of this successful text describes all the geometric instructions and engineering drawing information that are likely to be needed by anyone preparing or interpreting drawings or designs with plenty of exercises to practice these principles.
Differential geometric structures
Poor, Walter A
2007-01-01
This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.
Geometric ghosts and unitarity
International Nuclear Information System (INIS)
Ne'eman, Y.
1980-09-01
A review is given of the geometrical identification of the renormalization ghosts and the resulting derivation of Unitarity equations (BRST) for various gauges: Yang-Mills, Kalb-Ramond, and Soft-Group-Manifold
Asymptotic and geometrical quantization
International Nuclear Information System (INIS)
Karasev, M.V.; Maslov, V.P.
1984-01-01
The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered
On geometrized gravitation theories
International Nuclear Information System (INIS)
Logunov, A.A.; Folomeshkin, V.N.
1977-01-01
General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe
Geometric mean for subspace selection.
Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J
2009-02-01
Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.
Weinstock, Robert
1975-01-01
Basic introduction covering isoperimetric problems, theory of elasticity, quantum mechanics, electrostatics, geometrical optics, particle dynamics, more. Exercises throughout. "A very useful book." - J. L. Synge, American Mathematical Monthly.
Geometrical optics and optimal transport.
Rubinstein, Jacob; Wolansky, Gershon
2017-10-01
The Fermat principle is generalized to a system of rays. It is shown that all the ray mappings that are compatible with two given intensities of a monochromatic wave, measured at two planes, are stationary points of a canonical functional, which is the weighted average of the actions of all the rays. It is further shown that there exist at least two stationary points for this functional, implying that in the geometrical optics regime the phase from intensity problem has inherently more than one solution. The caustic structures of all the possible ray mappings are analyzed. A number of simulations illustrate the theoretical considerations.
Fumagalli, Ivan; Parolini, Nicola; Verani, Marco
2018-02-01
We analyze a free-surface problem described by time-dependent Navier-Stokes equations. Surface tension, capillary effects and wall friction are taken into account in the evolution of the system, influencing the motion of the contact line - where the free surface hits the wall - and of the dynamics of the contact angle. The differential equations governing the phenomenon are first derived from the variational principle of minimum reduced dissipation, and then discretized by means of the ALE approach. The numerical properties of the resulting scheme are investigated, drawing a parallel with the physical properties holding at the continuous level. Some instability issues are addressed in detail, in the case of an explicit treatment of the geometry, and novel additional terms are introduced in the discrete formulation in order to damp the instabilities. Numerical tests assess the suitability of the approach, the influence of the parameters, and the effectiveness of the new stabilizing terms.
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Geometrical optical illusionists.
Wade, Nicholas J
2014-01-01
Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-06-20
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First, aesthetic constraints are important because the buildings have to be visually impressive. Sec- ond, functional constraints are important for the performance of a building and its e cient construction. This thesis contributes to the area of architectural geometry. Specifically, we are interested in the geometric rationalization of freeform architec- ture with the goal of combining aesthetic and functional constraints and construction requirements. Aesthetic requirements typically come from designers and architects. To obtain visually pleasing structures, they favor smoothness of the building shape, but also smoothness of the visible patterns on the surface. Functional requirements typically come from the engineers involved in the construction process. For exam- ple, covering freeform structures using planar panels is much cheaper than using non-planar ones. Further, constructed buildings have to be stable and should not collapse. In this thesis, we explore the geometric rationalization of freeform archi- tecture using four specific example problems inspired by real life applications. We achieve our results by developing optimization algorithms and a theoretical study of the underlying geometrical structure of the problems. The four example problems are the following: (1) The design of shading and lighting systems which are torsion-free structures with planar beams based on quad meshes. They satisfy the functionality requirements of preventing light from going inside a building as shad- ing systems or reflecting light into a building as lighting systems. (2) The Design of freeform honeycomb structures that are constructed based on hex-dominant meshes with a planar beam mounted along each edge. The beams intersect without
International Nuclear Information System (INIS)
Bertagna, Luca; Veneziani, Alessandro
2014-01-01
Scientific computing has progressively become an important tool for research in cardiovascular diseases. The role of quantitative analyses based on numerical simulations has moved from ‘proofs of concept’ to patient-specific investigations, thanks to a strong integration between imaging and computational tools. However, beyond individual geometries, numerical models require the knowledge of parameters that are barely retrieved from measurements, especially in vivo. For this reason, recently cardiovascular mathematics considered data assimilation procedures for extracting the knowledge of patient-specific parameters from measures and images. In this paper, we consider specifically the quantification of vascular compliance, i.e. the parameter quantifying the tendency of arterial walls to deform under blood stress. Following up a previous paper, where a variational data assimilation procedure was proposed, based on solving an inverse fluid–structure interaction problem, here we consider model reduction techniques based on a proper orthogonal decomposition approach to accomplish the solution of the inverse problem in a computationally efficient way. (paper)
Geometrical method of decoupling
Directory of Open Access Journals (Sweden)
C. Baumgarten
2012-12-01
Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When
International Nuclear Information System (INIS)
La, H.
1992-01-01
A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint
Geometric Series via Probability
Tesman, Barry
2012-01-01
Infinite series is a challenging topic in the undergraduate mathematics curriculum for many students. In fact, there is a vast literature in mathematics education research on convergence issues. One of the most important types of infinite series is the geometric series. Their beauty lies in the fact that they can be evaluated explicitly and that…
Geometric function theory in higher dimension
2017-01-01
The book collects the most relevant outcomes from the INdAM Workshop “Geometric Function Theory in Higher Dimension” held in Cortona on September 5-9, 2016. The Workshop was mainly devoted to discussions of basic open problems in the area, and this volume follows the same line. In particular, it offers a selection of original contributions on Loewner theory in one and higher dimensions, semigroups theory, iteration theory and related topics. Written by experts in geometric function theory in one and several complex variables, it focuses on new research frontiers in this area and on challenging open problems. The book is intended for graduate students and researchers working in complex analysis, several complex variables and geometric function theory.
Geometric Models for Collaborative Search and Filtering
Bitton, Ephrat
2011-01-01
This dissertation explores the use of geometric and graphical models for a variety of information search and filtering applications. These models serve to provide an intuitive understanding of the problem domains and as well as computational efficiencies to our solution approaches. We begin by considering a search and rescue scenario where both…
Non-crossing geometric steiner arborescences
Kostitsyna, I.; Speckmann, B.; Verbeek, K.A.B.; Okamoto, Yoshio; Tokuyama, Takeshi
2017-01-01
Motivated by the question of simultaneous embedding of several flow maps, we consider the problem of drawing multiple geometric Steiner arborescences with no crossings in the rectilinear and in the angle-restricted setting. When terminal-to-root paths are allowed to turn freely, we show that two
Geometrical intuition and the learning and teaching of geometry
Fujita, Taro; Jones, Keith; Yamamoto, Shinya
2004-01-01
Intuition is often regarded as essential in the learning of geometry, but how such skills might be effectively developed in students remains an open question. This paper reviews the role and importance of geometrical intuition and suggests it involves the skills to create and manipulate geometrical figures in the mind, to see geometrical properties, to relate images to concepts and theorems in geometry, and decide where and how to start when solving problems in geometry. Based on these theore...
Geometric method for stability of non-linear elastic thin shells
Ivanova, Jordanka
2002-01-01
PREFACE This book deals with the new developments and applications of the geometric method to the nonlinear stability problem for thin non-elastic shells. There are no other published books on this subject except the basic ones of A. V. Pogorelov (1966,1967,1986), where variational principles defined over isometric surfaces, are postulated, and applied mainly to static and dynamic problems of elastic isotropic thin shells. A. V. Pogorelov (Harkov, Ukraine) was the first to provide in his monographs the geometric construction of the deformed shell surface in a post-critical stage and deriving explicitely the asymptotic formulas for the upper and lower critical loads. In most cases, these formulas were presented in a closed analytical form, and confirmed by experimental data. The geometric method by Pogorelov is one of the most important analytical methods developed during the last century. Its power consists in its ability to provide a clear geometric picture of the postcritical form of a deformed shell surfac...
Dynamics in geometrical confinement
Kremer, Friedrich
2014-01-01
This book describes the dynamics of low molecular weight and polymeric molecules when they are constrained under conditions of geometrical confinement. It covers geometrical confinement in different dimensionalities: (i) in nanometer thin layers or self supporting films (1-dimensional confinement) (ii) in pores or tubes with nanometric diameters (2-dimensional confinement) (iii) as micelles embedded in matrices (3-dimensional) or as nanodroplets.The dynamics under such conditions have been a much discussed and central topic in the focus of intense worldwide research activities within the last two decades. The present book discusses how the resulting molecular mobility is influenced by the subtle counterbalance between surface effects (typically slowing down molecular dynamics through attractive guest/host interactions) and confinement effects (typically increasing the mobility). It also explains how these influences can be modified and tuned, e.g. through appropriate surface coatings, film thicknesses or pore...
Bestvina, Mladen; Vogtmann, Karen
2014-01-01
Geometric group theory refers to the study of discrete groups using tools from topology, geometry, dynamics and analysis. The field is evolving very rapidly and the present volume provides an introduction to and overview of various topics which have played critical roles in this evolution. The book contains lecture notes from courses given at the Park City Math Institute on Geometric Group Theory. The institute consists of a set of intensive short courses offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The courses begin at an introductory level suitable for graduate students and lead up to currently active topics of research. The articles in this volume include introductions to CAT(0) cube complexes and groups, to modern small cancellation theory, to isometry groups of general CAT(0) spaces, and a discussion of nilpotent genus in the context of mapping class groups and CAT(0) gro...
Lectures in geometric combinatorics
Thomas, Rekha R
2006-01-01
This book presents a course in the geometry of convex polytopes in arbitrary dimension, suitable for an advanced undergraduate or beginning graduate student. The book starts with the basics of polytope theory. Schlegel and Gale diagrams are introduced as geometric tools to visualize polytopes in high dimension and to unearth bizarre phenomena in polytopes. The heart of the book is a treatment of the secondary polytope of a point configuration and its connections to the state polytope of the toric ideal defined by the configuration. These polytopes are relatively recent constructs with numerous connections to discrete geometry, classical algebraic geometry, symplectic geometry, and combinatorics. The connections rely on Gr�bner bases of toric ideals and other methods from commutative algebra. The book is self-contained and does not require any background beyond basic linear algebra. With numerous figures and exercises, it can be used as a textbook for courses on geometric, combinatorial, and computational as...
Geometric information provider platform
Directory of Open Access Journals (Sweden)
Meisam Yousefzadeh
2015-07-01
Full Text Available Renovation of existing buildings is known as an essential stage in reduction of the energy loss. Considerable part of renovation process depends on geometric reconstruction of building based on semantic parameters. Following many research projects which were focused on parameterizing the energy usage, various energy modelling methods were developed during the last decade. On the other hand, by developing accurate measuring tools such as laser scanners, the interests of having accurate 3D building models are rapidly growing. But the automation of 3D building generation from laser point cloud or detection of specific objects in that is still a challenge. The goal is designing a platform through which required geometric information can be efficiently produced to support energy simulation software. Developing a reliable procedure which extracts required information from measured data and delivers them to a standard energy modelling system is the main purpose of the project.
Frè, Pietro Giuseppe
2013-01-01
‘Gravity, a Geometrical Course’ presents general relativity (GR) in a systematic and exhaustive way, covering three aspects that are homogenized into a single texture: i) the mathematical, geometrical foundations, exposed in a self consistent contemporary formalism, ii) the main physical, astrophysical and cosmological applications, updated to the issues of contemporary research and observations, with glimpses on supergravity and superstring theory, iii) the historical development of scientific ideas underlying both the birth of general relativity and its subsequent evolution. The book is divided in two volumes. Volume One is dedicated to the development of the theory and basic physical applications. It guides the reader from the foundation of special relativity to Einstein field equations, illustrating some basic applications in astrophysics. A detailed account of the historical and conceptual development of the theory is combined with the presentation of its mathematical foundations. Differe...
Ruffino, Fabio Ferrari
2013-01-01
Given a cohomology theory, there is a well-known abstract way to define the dual homology theory using the theory of spectra. In [4] the author provides a more geometric construction of the homology theory, using a generalization of the bordism groups. Such a generalization involves in its definition the vector bundle modification, which is a particular case of the Gysin map. In this paper we provide a more natural variant of that construction, which replaces the vector bundle modification wi...
Waerden, B
1996-01-01
From the reviews: "... Federer's timely and beautiful book indeed fills the need for a comprehensive treatise on geometric measure theory, and his detailed exposition leads from the foundations of the theory to the most recent discoveries. ... The author writes with a distinctive style which is both natural and powerfully economical in treating a complicated subject. This book is a major treatise in mathematics and is essential in the working library of the modern analyst." Bulletin of the London Mathematical Society.
Developing geometrical reasoning
Brown, Margaret; Jones, Keith; Taylor, Ron; Hirst, Ann
2004-01-01
This paper summarises a report (Brown, Jones & Taylor, 2003) to the UK Qualifications and Curriculum Authority of the work of one geometry group. The group was charged with developing and reporting on teaching ideas that focus on the development of geometrical reasoning at the secondary school level. The group was encouraged to explore what is possible both within and beyond the current requirements of the UK National Curriculum and the Key Stage 3 strategy, and to consider the whole atta...
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Geometric theory of information
2014-01-01
This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.
Studies in geometric quantization
International Nuclear Information System (INIS)
Tuynman, G.M.
1988-01-01
This thesis contains five chapters, of which the first, entitled 'What is prequantization, and what is geometric quantization?', is meant as an introduction to geometric quantization for the non-specialist. The second chapter, entitled 'Central extensions and physics' deals with the notion of central extensions of manifolds and elaborates and proves the statements made in the first chapter. Central extensions of manifolds occur in physics as the freedom of a phase factor in the quantum mechanical state vector, as the phase factor in the prequantization process of classical mechanics and it appears in mathematics when studying central extension of Lie groups. In this chapter the connection between these central extensions is investigated and a remarkable similarity between classical and quantum mechanics is shown. In chapter three a classical model is given for the hydrogen atom including spin-orbit and spin-spin interaction. The method of geometric quantization is applied to this model and the results are discussed. In the final chapters (4 and 5) an explicit method to calculate the operators corresponding to classical observables is given when the phase space is a Kaehler manifold. The obtained formula are then used to quantise symplectic manifolds which are irreducible hermitian symmetric spaces and the results are compared with other quantization procedures applied to these manifolds (in particular to Berezin's quantization). 91 refs.; 3 tabs
Geometrical framework for robust portfolio optimization
Bazovkin, Pavel
2014-01-01
We consider a vector-valued multivariate risk measure that depends on the user's profile given by the user's utility. It is constructed on the basis of weighted-mean trimmed regions and represents the solution of an optimization problem. The key feature of this measure is convexity. We apply the measure to the portfolio selection problem, employing different measures of performance as objective functions in a common geometrical framework.
Geometrical model of multiple production
International Nuclear Information System (INIS)
Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.
1988-01-01
The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given
A geometric theory on the elasticity of bio-membranes
International Nuclear Information System (INIS)
Tu, Z C; Ou-Yang, Z C
2004-01-01
The purpose of this paper is to study the shapes and stabilities of bio-membranes within the framework of exterior differential forms. After a brief review of the current status of theoretical and experimental studies on the shapes of bio-membranes, a geometric scheme is proposed to discuss the shape equation of closed lipid bilayers, the shape equation and boundary conditions of open lipid bilayers and two-component membranes, the shape equation and in-plane strain equations of cell membranes with cross-linking structures, and the stabilities of closed lipid bilayers and cell membranes. The key point of this scheme is to deal with the variational problems on surfaces embedded in three-dimensional Euclidean space by using exterior differential forms
Geometric properties of Banach spaces and nonlinear iterations
Chidume, Charles
2009-01-01
Nonlinear functional analysis and applications is an area of study that has provided fascination for many mathematicians across the world. This monograph delves specifically into the topic of the geometric properties of Banach spaces and nonlinear iterations, a subject of extensive research over the past thirty years. Chapters 1 to 5 develop materials on convexity and smoothness of Banach spaces, associated moduli and connections with duality maps. Key results obtained are summarized at the end of each chapter for easy reference. Chapters 6 to 23 deal with an in-depth, comprehensive and up-to-date coverage of the main ideas, concepts and results on iterative algorithms for the approximation of fixed points of nonlinear nonexpansive and pseudo-contractive-type mappings. This includes detailed workings on solutions of variational inequality problems, solutions of Hammerstein integral equations, and common fixed points (and common zeros) of families of nonlinear mappings. Carefully referenced and full of recent,...
Geometric morphometric footprint analysis of young women
Domjanic, Jacqueline; Fieder, Martin; Seidler, Horst; Mitteroecker, Philipp
2013-01-01
Background Most published attempts to quantify footprint shape are based on a small number of measurements. We applied geometric morphometric methods to study shape variation of the complete footprint outline in a sample of 83 adult women. Methods The outline of the footprint, including the toes, was represented by a comprehensive set of 85 landmarks and semilandmarks. Shape coordinates were computed by Generalized Procrustes Analysis. Results The first four principal components represented t...
Geometric Constructions with the Computer.
Chuan, Jen-chung
The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…
Geometric inequalities for axially symmetric black holes
International Nuclear Information System (INIS)
Dain, Sergio
2012-01-01
A geometric inequality in general relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities play an important role in the characterization of the gravitational collapse; they are closely related with the cosmic censorship conjecture. Axially symmetric black holes are the natural candidates to study these inequalities because the quasi-local angular momentum is well defined for them. We review recent results in this subject and we also describe the main ideas behind the proofs. Finally, a list of relevant open problems is presented. (topical review)
MM Algorithms for Geometric and Signomial Programming.
Lange, Kenneth; Zhou, Hua
2014-02-01
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.
A Color Image Watermarking Scheme Resistant against Geometrical Attacks
Directory of Open Access Journals (Sweden)
Y. Xing
2010-04-01
Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.
Directory of Open Access Journals (Sweden)
Luisa Toscano
2016-01-01
Full Text Available A new result of solvability for a wide class of systems of variational equations depending on parameters and governed by nonmonotone operators is found in a Banach real and reflexive space with applications to Dirichlet and Neumann problems related to nonlinear elliptic systems.
Corrochano, Eduardo Bayro
2010-01-01
This book presents contributions from a global selection of experts in the field. This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Written in an accessible style, the discussion of all applications is enhanced by the inclusion of numerous examples, figures and experimental analysis. Features: provides a thorough discussion of several tasks for image processing, pattern recognition, computer vision, robotics and computer graphics using the geometric algebra framework; int
Geometric multipartite entanglement measures
International Nuclear Information System (INIS)
Paz-Silva, Gerardo A.; Reina, John H.
2007-01-01
Within the framework of constructions for quantifying entanglement, we build a natural scenario for the assembly of multipartite entanglement measures based on Hopf bundle-like mappings obtained through Clifford algebra representations. Then, given the non-factorizability of an arbitrary two-qubit density matrix, we give an alternate quantity that allows the construction of two types of entanglement measures based on their arithmetical and geometrical averages over all pairs of qubits in a register of size N, and thus fully characterize its degree and type of entanglement. We find that such an arithmetical average is both additive and strongly super additive
Geometric correlations and multifractals
International Nuclear Information System (INIS)
Amritkar, R.E.
1991-07-01
There are many situations where the usual statistical methods are not adequate to characterize correlations in the system. To characterize such situations we introduce mutual correlation dimensions which describe geometric correlations in the system. These dimensions allow us to distinguish between variables which are perfectly correlated with or without a phase lag, variables which are uncorrelated and variables which are partially correlated. We demonstrate the utility of our formalism by considering two examples from dynamical systems. The first example is about the loss of memory in chaotic signals and describes auto-correlations while the second example is about synchronization of chaotic signals and describes cross-correlations. (author). 19 refs, 6 figs
Directory of Open Access Journals (Sweden)
V. S. Zarubin
2016-01-01
dependence of the absorption factor on the local intensity of this radiation. Furthermore, it can be a significant dependence of this factor on the local value of the material temperature, reflecting the above-mentioned relationship between the absorption of electromagnetic wave energy and the excitation of material microparticles. This process can be described by Boltzmann distribution function that comprises the energy to activate microparticles and the local value of temperature.This paper presents a variational formulation of the nonlinear problem of stationary heat conduction in a plate for the case when the radiation reduction factor in relation to the Bouguer law depends on the local temperature. This formulation includes a functional that can have several fixed points corresponding to different steady states of the plate temperature. Analysis of the properties of this functional enabled us to identify the stationary points, which correspond to the realized temperature distribution in the plate.
Discrete geometric structures for architecture
Pottmann, Helmut
2010-06-13
The emergence of freeform structures in contemporary architecture raises numerous challenging research problems, most of which are related to the actual fabrication and are a rich source of research topics in geometry and geometric computing. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization of supporting beams and nodes. A study of quadrilateral meshes with planar faces reveals beautiful relations to discrete differential geometry. In particular, we discuss meshes which discretize the network of principal curvature lines. Conical meshes are among these meshes; they possess conical offset meshes at a constant face/face distance, which in turn leads to a supporting beam layout with so-called torsion free nodes. This work can be generalized to a variety of multilayer structures and laid the ground for an adapted curvature theory for these meshes. There are also efforts on segmenting surfaces into planar hexagonal panels. Though these are less constrained than planar quadrilateral panels, this problem is still waiting for an elegant solution. Inspired by freeform designs in architecture which involve circles and spheres, we present a new kind of triangle mesh whose faces\\' in-circles form a packing, i.e., the in-circles of two triangles with a common edge have the same contact point on that edge. These "circle packing (CP) meshes" exhibit an aesthetic balance of shape and size of their faces. They are closely tied to sphere packings on surfaces and to various remarkable structures and patterns which are of interest in art, architecture, and design. CP meshes constitute a new link between architectural freeform design and computational conformal geometry. Recently, certain timber structures motivated us to study discrete patterns of geodesics on surfaces. This
Geometrization of quantum physics
International Nuclear Information System (INIS)
Ol'khov, O.A.
2009-01-01
It is shown that the Dirac equation for a free particle can be considered as a description of specific distortion of the space Euclidean geometry (space topological defect). This approach is based on the possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such a concept explains all so-called 'strange' properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of the suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There are no any particles a priory, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device
Geometrization of quantum physics
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
Havelka, Jan
2008-01-01
Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...
Directory of Open Access Journals (Sweden)
Chowdhury Molhammad SR
2000-01-01
Full Text Available Results are obtained on existence theorems of generalized bi-quasi-variational inequalities for quasi-semi-monotone and bi-quasi-semi-monotone operators in both compact and non-compact settings. We shall use the concept of escaping sequences introduced by Border (Fixed Point Theorem with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, 1985 to obtain results in non-compact settings. Existence theorems on non-compact generalized bi-complementarity problems for quasi-semi-monotone and bi-quasi-semi-monotone operators are also obtained. Moreover, as applications of some results of this paper on generalized bi-quasi-variational inequalities, we shall obtain existence of solutions for some kind of minimization problems with quasi- semi-monotone and bi-quasi-semi-monotone operators.
A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE
International Nuclear Information System (INIS)
Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V.
2010-01-01
Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.
Geometrical tile design for complex neighborhoods.
Czeizler, Eugen; Kari, Lila
2009-01-01
Recent research has showed that tile systems are one of the most suitable theoretical frameworks for the spatial study and modeling of self-assembly processes, such as the formation of DNA and protein oligomeric structures. A Wang tile is a unit square, with glues on its edges, attaching to other tiles and forming larger and larger structures. Although quite intuitive, the idea of glues placed on the edges of a tile is not always natural for simulating the interactions occurring in some real systems. For example, when considering protein self-assembly, the shape of a protein is the main determinant of its functions and its interactions with other proteins. Our goal is to use geometric tiles, i.e., square tiles with geometrical protrusions on their edges, for simulating tiled paths (zippers) with complex neighborhoods, by ribbons of geometric tiles with simple, local neighborhoods. This paper is a step toward solving the general case of an arbitrary neighborhood, by proposing geometric tile designs that solve the case of a "tall" von Neumann neighborhood, the case of the f-shaped neighborhood, and the case of a 3 x 5 "filled" rectangular neighborhood. The techniques can be combined and generalized to solve the problem in the case of any neighborhood, centered at the tile of reference, and included in a 3 x (2k + 1) rectangle.
Energy Technology Data Exchange (ETDEWEB)
EL-Nabulsi, Ahmad Rami [Department of Nuclear and Energy Engineering, Cheju National University, Ara-dong 1, Jeju 690-756 (Korea, Republic of)], E-mail: nabulsiahmadrami@yahoo.fr
2009-10-15
We communicate through this work the fractional calculus of variations and its corresponding Euler-Lagrange equations in 1D constrained holonomic, non-holonomic, and semi-holonomic dissipative dynamical system. The extension of the laws obtained to the 2D space state is done. Some interesting consequences are revealed.
Elsgolc, Lev D
2007-01-01
This concise text offers both professionals and students an introduction to the fundamentals and standard methods of the calculus of variations. In addition to surveys of problems with fixed and movable boundaries, it explores highly practical direct methods for the solution of variational problems.Topics include the method of variation in problems with fixed boundaries; variational problems with movable boundaries and other problems; sufficiency conditions for an extremum; variational problems of constrained extrema; and direct methods of solving variational problems. Each chapter features nu
Harmonic and geometric analysis
Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao
2015-01-01
This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights. The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...
International Nuclear Information System (INIS)
Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V
2009-01-01
The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.
Energy Technology Data Exchange (ETDEWEB)
Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm
2009-12-04
The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.
CSIR Research Space (South Africa)
Shatalov, M
2012-09-01
Full Text Available are transformed into systems of ordinary differential equations with initial conditions. This reduction is obtained by means of application of particular finite difference schemes to the spatial derivatives. Many of the wave propagation problems describing...
Regular Polygons and Geometric Series.
Jarrett, Joscelyn A.
1982-01-01
Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)
Geometric Invariants and Object Recognition.
1992-08-01
University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of
Transmuted Complementary Weibull Geometric Distribution
Directory of Open Access Journals (Sweden)
Ahmed Z. A fify
2014-12-01
Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the exibility of the transmuted version versus the complementary Weibull geometric distribution.
Geometric Reasoning for Automated Planning
Clement, Bradley J.; Knight, Russell L.; Broderick, Daniel
2012-01-01
An important aspect of mission planning for NASA s operation of the International Space Station is the allocation and management of space for supplies and equipment. The Stowage, Configuration Analysis, and Operations Planning teams collaborate to perform the bulk of that planning. A Geometric Reasoning Engine is developed in a way that can be shared by the teams to optimize item placement in the context of crew planning. The ISS crew spends (at the time of this writing) a third or more of their time moving supplies and equipment around. Better logistical support and optimized packing could make a significant impact on operational efficiency of the ISS. Currently, computational geometry and motion planning do not focus specifically on the optimized orientation and placement of 3D objects based on multiple distance and containment preferences and constraints. The software performs reasoning about the manipulation of 3D solid models in order to maximize an objective function based on distance. It optimizes for 3D orientation and placement. Spatial placement optimization is a general problem and can be applied to object packing or asset relocation.
Simulating geometrically complex blast scenarios
Directory of Open Access Journals (Sweden)
Ian G. Cullis
2016-04-01
Full Text Available The effects of blast waves generated by energetic and non-energetic sources are of continuing interest to the ballistics research community. Modern conflicts are increasingly characterised by asymmetric urban warfare, with improvised explosive devices (IEDs often playing a dominant role on the one hand and an armed forces requirement for minimal collateral effects from their weapons on the other. These problems are characterised by disparate length- and time-scales and may also be governed by complex physics. There is thus an increasing need to be able to rapidly assess and accurately predict the effects of energetic blast in topologically complex scenarios. To this end, this paper presents a new QinetiQ-developed advanced computational package called EAGLE-Blast, which is capable of accurately resolving the generation, propagation and interaction of blast waves around geometrically complex shapes such as vehicles and buildings. After a brief description of the numerical methodology, various blast scenario simulations are described and the results compared with experimental data to demonstrate the validation of the scheme and its ability to describe these complex scenarios accurately and efficiently. The paper concludes with a brief discussion on the use of the code in supporting the development of algorithms for fast running engineering models.
Directory of Open Access Journals (Sweden)
Liu Chun-Feng
2013-01-01
Full Text Available A reconstructive scheme for variational iteration method using the Yang-Laplace transform is proposed and developed with the Yang-Laplace transform. The identification of fractal Lagrange multiplier is investigated by the Yang-Laplace transform. The method is exemplified by a fractal heat conduction equation with local fractional derivative. The results developed are valid for a compact solution domain with high accuracy.
Plasma geometric optics analysis and computation
International Nuclear Information System (INIS)
Smith, T.M.
1983-01-01
Important practical applications in the generation, manipulation, and diagnosis of laboratory thermonuclear plasmas have created a need for elaborate computational capabilities in the study of high frequency wave propagation in plasmas. A reduced description of such waves suitable for digital computation is provided by the theory of plasma geometric optics. The existing theory is beset by a variety of special cases in which the straightforward analytical approach fails, and has been formulated with little attention to problems of numerical implementation of that analysis. The standard field equations are derived for the first time from kinetic theory. A discussion of certain terms previously, and erroneously, omitted from the expansion of the plasma constitutive relation is given. A powerful but little known computational prescription for determining the geometric optics field in the neighborhood of caustic singularities is rigorously developed, and a boundary layer analysis for the asymptotic matching of the plasma geometric optics field across caustic singularities is performed for the first time with considerable generality. A proper treatment of birefringence is detailed, wherein a breakdown of the fundamental perturbation theory is identified and circumvented. A general ray tracing computer code suitable for applications to radiation heating and diagnostic problems is presented and described
Geometric interpretation of optimal iteration strategies
International Nuclear Information System (INIS)
Jones, R.B.
1977-01-01
The relationship between inner and outer iteration errors is extremely complex, and even formal description of total error behavior is difficult. Inner and outer iteration error propagation is analyzed in a variational formalism for a reactor model describing multidimensional, one-group theory. In a generalization the work of Akimov and Sabek, the number of inner iterations performed during each outer serial that minimizes the total computation time is determined. The generalized analysis admits a geometric interpretation of total error behavior. The results can be applied to both transport and diffusion theory computer methods. 1 figure
Directory of Open Access Journals (Sweden)
Zhou Yinying
2014-01-01
Full Text Available We introduce a hybrid iterative scheme for finding a common element of the set of common fixed points for a family of infinitely nonexpansive mappings, the set of solutions of the varitional inequality problem and the equilibrium problem in Hilbert space. Under suitable conditions, some strong convergence theorems are obtained. Our results improve and extend the corresponding results in (Chang et al. (2009, Min and Chang (2012, Plubtieng and Punpaeng (2007, S. Takahashi and W. Takahashi (2007, Tada and Takahashi (2007, Gang and Changsong (2009, Ying (2013, Y. Yao and J. C. Yao (2007, and Yong-Cho and Kang (2012.
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.
2015-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Progressive geometric algorithms
Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.
2014-01-01
Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms
Towards a theory of geometric graphs
Pach, Janos
2004-01-01
The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...
Geometric mechanics of periodic pleated origami.
Wei, Z Y; Guo, Z V; Dudte, L; Liang, H Y; Mahadevan, L
2013-05-24
Origami structures are mechanical metamaterials with properties that arise almost exclusively from the geometry of the constituent folds and the constraint of piecewise isometric deformations. Here we characterize the geometry and planar and nonplanar effective elastic response of a simple periodically folded Miura-ori structure, which is composed of identical unit cells of mountain and valley folds with four-coordinated ridges, defined completely by two angles and two lengths. We show that the in-plane and out-of-plane Poisson's ratios are equal in magnitude, but opposite in sign, independent of material properties. Furthermore, we show that effective bending stiffness of the unit cell is singular, allowing us to characterize the two-dimensional deformation of a plate in terms of a one-dimensional theory. Finally, we solve the inverse design problem of determining the geometric parameters for the optimal geometric and mechanical response of these extreme structures.
Geometric inequalities for black holes
International Nuclear Information System (INIS)
Dain, Sergio
2013-01-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
Optical traps with geometric aberrations
International Nuclear Information System (INIS)
Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.
2006-01-01
We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems
Geometric inequalities for black holes
Energy Technology Data Exchange (ETDEWEB)
Dain, Sergio [Universidad Nacional de Cordoba (Argentina)
2013-07-01
Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)
An information geometric approach to least squares minimization
Transtrum, Mark; Machta, Benjamin; Sethna, James
2009-03-01
Parameter estimation by nonlinear least squares minimization is a ubiquitous problem that has an elegant geometric interpretation: all possible parameter values induce a manifold embedded within the space of data. The minimization problem is then to find the point on the manifold closest to the origin. The standard algorithm for minimizing sums of squares, the Levenberg-Marquardt algorithm, also has geometric meaning. When the standard algorithm fails to efficiently find accurate fits to the data, geometric considerations suggest improvements. Problems involving large numbers of parameters, such as often arise in biological contexts, are notoriously difficult. We suggest an algorithm based on geodesic motion that may offer improvements over the standard algorithm for a certain class of problems.
Diffusion Under Geometrical Constraint
Ogawa, Naohisa
2014-01-01
Here we discus the diffusion of particles in a curved tube. This kind of transport phenomenon is observed in biological cells and porous media. To solve such a problem, we discuss the three dimensional diffusion equation with a confining wall forming a thinner tube. We find that the curvature appears in a effective diffusion coefficient for such a quasi-one-dimensional system. As an application to higher dimensional case, we discuss the diffusion in a curved surface with ...
Energy Technology Data Exchange (ETDEWEB)
Jones, A. [UT MD Anderson Cancer Center (United States)
2015-06-15
With the current Maintenance of Certification (MOC) requirement for a practice quality improvement (PQI) project every 3 years, we all (well, most of us) find ourselves searching for projects that are both manageable and likely to have a positive impact on our clinical practice. In this session we will walk through the use of the Plan, Do, Study, Act (PDSA) cycle to address a common finding in practices where fluoroscopically guided interventions (FGI) are performed: variation in procedural doses among physicians. We will also examine strategies to secure physician support using carrots, not sticks. Learning Objectives: Review the PDSA cycle and its application to PQI. Discuss strategies for action in the example presented. Examine strategies for successful group PQI projects. A. Kyle Jones: Owner, FluoroSafety Joseph R. Steele: Consultant, FluoroSafety.
International Nuclear Information System (INIS)
Jones, A.
2015-01-01
With the current Maintenance of Certification (MOC) requirement for a practice quality improvement (PQI) project every 3 years, we all (well, most of us) find ourselves searching for projects that are both manageable and likely to have a positive impact on our clinical practice. In this session we will walk through the use of the Plan, Do, Study, Act (PDSA) cycle to address a common finding in practices where fluoroscopically guided interventions (FGI) are performed: variation in procedural doses among physicians. We will also examine strategies to secure physician support using carrots, not sticks. Learning Objectives: Review the PDSA cycle and its application to PQI. Discuss strategies for action in the example presented. Examine strategies for successful group PQI projects. A. Kyle Jones: Owner, FluoroSafety Joseph R. Steele: Consultant, FluoroSafety
Discrete geometric structures for architecture
Pottmann, Helmut
2010-01-01
. The talk will provide an overview of recent progress in this field, with a particular focus on discrete geometric structures. Most of these result from practical requirements on segmenting a freeform shape into planar panels and on the physical realization
Geometric Rationalization for Freeform Architecture
Jiang, Caigui
2016-01-01
The emergence of freeform architecture provides interesting geometric challenges with regards to the design and manufacturing of large-scale structures. To design these architectural structures, we have to consider two types of constraints. First
Geometrical optics in general relativity
Loinger, A.
2006-01-01
General relativity includes geometrical optics. This basic fact has relevant consequences that concern the physical meaning of the discontinuity surfaces propagated in the gravitational field - as it was first emphasized by Levi-Civita.
Mobile Watermarking against Geometrical Distortions
Directory of Open Access Journals (Sweden)
Jing Zhang
2015-08-01
Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.
Geometrical resonance effects in thin superconducting films
International Nuclear Information System (INIS)
Nedellec, P.
1977-01-01
Electron tunneling density of states measurements on thick and clear superconducting films (S 1 ) backed by films in the normal or superconducting state (S 2 ) show geometrical resonance effects associated with the spatial variation of Δ(x), the pair potential, near the interface S 1 -S 2 . The present understanding of this so-called 'Tomasch effect' is described. The dispersion relation and the nature of excitations in the superconducting state are introduced. It is shown that the introduction of Green functions give a general description of the superconducting state. The notion of Andreev scattering at the S 1 -S 2 interface is presented and connect the geometrical resonance effects to interference process between excitations. The different physical parameters involved are defined and used in the discussion of some experimental results: the variation of the period in energy with the superconducting thickness is connected to the renormalized group velocity of excitations traveling perpendicular to the film. The role of the barrier potential at the interface on the Tomasch effect is described. The main results discussed are: the decrease of the amplitude of the Tomasch structures with energy is due to the loss of the mixed electron-hole character of the superconducting excitations far away from the Fermi level; the variation of the pair potential at the interface is directly related to the amplitude of the oscillations; the tunneling selectivity is an important parameter as the amplitude as well as the phase of the oscillations are modified depending on the value of the selectivity; the phase of the Tomasch oscillations is different for an abrupt change of Δ at the interface and for a smooth variation. An ambiguity arises due to the interplay between these parameters. Finally, some experiments, which illustrate clearly the predicted effects are described [fr
Elsgolc, L E; Stark, M
1961-01-01
Calculus of Variations aims to provide an understanding of the basic notions and standard methods of the calculus of variations, including the direct methods of solution of the variational problems. The wide variety of applications of variational methods to different fields of mechanics and technology has made it essential for engineers to learn the fundamentals of the calculus of variations. The book begins with a discussion of the method of variation in problems with fixed boundaries. Subsequent chapters cover variational problems with movable boundaries and some other problems; sufficiency
The Inappropriate Symmetries of Multivariate Statistical Analysis in Geometric Morphometrics.
Bookstein, Fred L
In today's geometric morphometrics the commonest multivariate statistical procedures, such as principal component analysis or regressions of Procrustes shape coordinates on Centroid Size, embody a tacit roster of symmetries -axioms concerning the homogeneity of the multiple spatial domains or descriptor vectors involved-that do not correspond to actual biological fact. These techniques are hence inappropriate for any application regarding which we have a-priori biological knowledge to the contrary (e.g., genetic/morphogenetic processes common to multiple landmarks, the range of normal in anatomy atlases, the consequences of growth or function for form). But nearly every morphometric investigation is motivated by prior insights of this sort. We therefore need new tools that explicitly incorporate these elements of knowledge, should they be quantitative, to break the symmetries of the classic morphometric approaches. Some of these are already available in our literature but deserve to be known more widely: deflated (spatially adaptive) reference distributions of Procrustes coordinates, Sewall Wright's century-old variant of factor analysis, the geometric algebra of importing explicit biomechanical formulas into Procrustes space. Other methods, not yet fully formulated, might involve parameterized models for strain in idealized forms under load, principled approaches to the separation of functional from Brownian aspects of shape variation over time, and, in general, a better understanding of how the formalism of landmarks interacts with the many other approaches to quantification of anatomy. To more powerfully organize inferences from the high-dimensional measurements that characterize so much of today's organismal biology, tomorrow's toolkit must rely neither on principal component analysis nor on the Procrustes distance formula, but instead on sound prior biological knowledge as expressed in formulas whose coefficients are not all the same. I describe the problems
Time as a geometric property of space
Directory of Open Access Journals (Sweden)
James Michael Chappell
2016-11-01
Full Text Available The proper description of time remains a key unsolved problem in science. Newton conceived of time as absolute and universal which it `flows equably without relation to anything external'}. In the nineteenth century, the four-dimensional algebraic structure of the quaternions developed by Hamilton, inspired him to suggest that they could provide a unified representation of space and time. With the publishing of Einstein's theory of special relativity these ideas then lead to the generally accepted Minkowski spacetime formulation in 1908. Minkowski, though, rejected the formalism of quaternions suggested by Hamilton and adopted rather an approach using four-vectors. The Minkowski framework is indeed found to provide a versatile formalism for describing the relationship between space and time in accordance with Einstein's relativistic principles, but nevertheless fails to provide more fundamental insights into the nature of time itself. In order to answer this question we begin by exploring the geometric properties of three-dimensional space that we model using Clifford geometric algebra, which is found to contain sufficient complexity to provide a natural description of spacetime. This description using Clifford algebra is found to provide a natural alternative to the Minkowski formulation as well as providing new insights into the nature of time. Our main result is that time is the scalar component of a Clifford space and can be viewed as an intrinsic geometric property of three-dimensional space without the need for the specific addition of a fourth dimension.
Ingredients of the Eddy Soup: A Geometric Decomposition of Eddy-Mean Flow Interactions
Waterman, S.; Lilly, J. M.
2014-12-01
Understanding eddy-mean flow interactions is a long-standing problem in geophysical fluid dynamics with modern relevance to the task of representing eddy effects in coarse resolution models while preserving their dependence on the underlying dynamics of the flow field. Exploiting the recognition that the velocity covariance matrix/eddy stress tensor that describes eddy fluxes, also encodes information about eddy size, shape and orientation through its geometric representation in the form of the so-called variance ellipse, suggests a potentially fruitful way forward. Here we present a new framework that describes eddy-mean flow interactions in terms of a geometric description of the eddy motion, and illustrate it with an application to an unstable jet. Specifically we show that the eddy vorticity flux divergence F, a key dynamical quantity describing the average effect of fluctuations on the time-mean flow, may be decomposed into two components with distinct geometric interpretations: 1. variations in variance ellipse orientation; and 2. variations in the anisotropic part of the eddy kinetic energy, a function of the variance ellipse size and shape. Application of the divergence theorem shows that F integrated over a region is explained entirely by variations in these two quantities around the region's periphery. This framework has the potential to offer new insights into eddy-mean flow interactions in a number of ways. It identifies the ingredients of the eddy motion that have a mean flow forcing effect, it links eddy effects to spatial patterns of variance ellipse geometry that can suggest the mechanisms underpinning these effects, and finally it illustrates the importance of resolving eddy shape and orientation, and not just eddy size/energy, to accurately represent eddy feedback effects. These concepts will be both discussed and illustrated.
International Nuclear Information System (INIS)
Styro, B.I.; Luyanas, V.Yu.; Zinkyavichyus, P.K.
1977-01-01
Cosmogenic radioisotopes flows on the Earth's surface are investigated. Nuclear reactions by the action of slow neutrons (cosmic rays) are analysed. It has been testified that the role of Ne, Kr, Ze and nuclei of the volcanic substance in production of cosmogenic nuclids is insignificant. Radioisotopes can provide by meteorites while passing through the atmosphere as a result of ablation. The evaluations of the meteoritic sustance falling out to the Earth can be used as a base to calculate flows of a number of radioactive isotopes. The flow density of most isotopes which come with the meteoric substance are quite insignificant. However the 26 Al flows can be of the same value as that of the rate of their production in the atmosphere. Changes of the rate of the production of cosmogenic isotopes both due to the flow variations meteoric and as a result of the cosmic ray intensity oscillations first of all effect the stratospheral reservoir. Time oscillations of cosmogenic radioisotope flows to the Earth's surface will occur with some delay because the life time of isotopes in the stratosphere lasts several years. The evaluation is given of the difference of phases between oscillations of the stratospheral rate of the formation of long-living isotopes and the flow density to the Earth's surface. It can approximate to 1-2 years
Ward, Anthony R; Alarcón, Gabriela; Nigg, Joel T; Musser, Erica D
2015-11-01
Although attention deficit/hyperactivity disorder (ADHD) is associated with impairment in working memory and short-term memory, up to half of individual children with ADHD perform within a normative range. Heterogeneity in other ADHD-related mechanisms, which may compensate for or combine with cognitive weaknesses, is a likely explanation. One candidate is the robustness of parasympathetic regulation (as indexed by respiratory sinus arrhythmia; RSA). Theory and data suggest that a common neural network is likely tied to both heart-rate regulation and certain cognitive functions (including aspects of working and short-term memory). Cardiac-derived indices of parasympathetic reactivity were collected during short-term memory (STM) storage and rehearsal tasks from 243 children (116 ADHD, 127 controls). ADHD was associated with lower STM performance, replicating previous work. In addition, RSA reactivity moderated the association between STM and ADHD - both as a category and a dimension - independent of comorbidity. Specifically, conditional effects revealed that high levels of withdrawal interacted with weakened STM but high levels of augmentation moderated a positive association predicting ADHD. Thus, variations in parasympathetic reactivity may help explain neuropsychological heterogeneity in ADHD.
Visser, Janne C; Rommelse, Nanda N J; Lappenschaar, Martijn; Servatius-Oosterling, Iris J; Greven, Corina U; Buitelaar, Jan K
2017-08-01
The objectives of this study were to model more homogeneous subgroups within autism spectrum disorder (ASD) based on early trajectories of core symptoms; and to further characterize these subgroups in terms of trajectories of language, cognition, co-occurring (attention-deficit/hyperactivity disorder [ADHD]-related) traits and clinical outcome diagnosis. Children (N = 203) referred for possible ASD at ages 1 to 4 years were assessed at three time points at intervals ranging from 9 months to 3 years. Assessments included standardized measures for ASD (Autism Diagnostic Observation Schedule [ADOS]), language (ADOS-language item), nonverbal IQ (NV-IQ; different tests adequate to chronological/mental age), and parent-reported behavioral problems (Infant-Toddler Social and Emotional Assessment, Child Behavior Checklist). Latent-class growth curve analysis with ADOS total scores led to the identification of three main stable and two small improving groups: a severe-stable group (19.5% of sample)-the only group without considerable language improvement-showed persistent low NV-IQ and marked increase in attention problems over time; a moderate-stable group (21.7%) with below-average increasing NV-IQ; and a mild-stable group (48%) with stable-average NV-IQ and the highest scores on ADHD-related traits, whose ASD outcome diagnoses increased despite stable-low ASD scores. Two groups (each 5.4%) improved: one moved from severe to moderate ASD scores, and the other moved from moderate to mild/nonspectrum scores. Both of these groups improved on language, NV-IQ, and ADHD-related traits. Results support the high stability of ASD symptoms into various severity levels, but also highlight the significant contribution of non-ASD domains in defining and explaining the different ASD trajectories. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.
Geometric Algebra Techniques in Flux Compactifications
International Nuclear Information System (INIS)
Coman, Ioana Alexandra; Lazaroiu, Calin Iuliu; Babalic, Elena Mirela
2016-01-01
We study “constrained generalized Killing (s)pinors,” which characterize supersymmetric flux compactifications of supergravity theories. Using geometric algebra techniques, we give conceptually clear and computationally effective methods for translating supersymmetry conditions into differential and algebraic constraints on collections of differential forms. In particular, we give a synthetic description of Fierz identities, which are an important ingredient of such problems. As an application, we show how our approach can be used to efficiently treat N=1 compactification of M-theory on eight manifolds and prove that we recover results previously obtained in the literature.
ERC Workshop on Geometric Partial Differential Equations
Novaga, Matteo; Valdinoci, Enrico
2013-01-01
This book is the outcome of a conference held at the Centro De Giorgi of the Scuola Normale of Pisa in September 2012. The aim of the conference was to discuss recent results on nonlinear partial differential equations, and more specifically geometric evolutions and reaction-diffusion equations. Particular attention was paid to self-similar solutions, such as solitons and travelling waves, asymptotic behaviour, formation of singularities and qualitative properties of solutions. These problems arise in many models from Physics, Biology, Image Processing and Applied Mathematics in general, and have attracted a lot of attention in recent years.
Geometric singular perturbation analysis of systems with friction
DEFF Research Database (Denmark)
Bossolini, Elena
This thesis is concerned with the application of geometric singular perturbation theory to mechanical systems with friction. The mathematical background on geometric singular perturbation theory, on the blow-up method, on non-smooth dynamical systems and on regularization is presented. Thereafter......, two mechanical problems with two diﬀerent formulations of the friction force are introduced and analysed. The ﬁrst mechanical problem is a one-dimensional spring-block model describing earthquake faulting. The dynamics of earthquakes is naturally a multiple timescale problem: the timescale...... scales. The action of friction is generally explained as the loss and restoration of linkages between the surface asperities at the molecular scale. However, the consequences of friction are noticeable at much larger scales, like hundreds of kilometers. By using geometric singular perturbation theory...
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan
2015-01-01
Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.
Directory of Open Access Journals (Sweden)
Jorge Arrieta
Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.
Rao, D V; Brunetti, A; Gigante, G E; Takeda, T; Itai, Y; Akatsuka, T
2002-01-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K alpha radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)
Energy Technology Data Exchange (ETDEWEB)
Rao, D.V.; Cesareo, R.; Brunetti, A. [Sassari University, Istituto di Matematica e Fisica (Italy); Gigante, G.E. [Roma Universita, Dipt. di Fisica (Italy); Takeda, T.; Itai, Y. [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Akatsuka, T. [Yamagata Univ., Yonezawa (Japan). Faculty of Engineering
2002-10-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic K{alpha} radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work. (authors)
Rao, D. V.; Cesareo, R.; Brunetti, A.; Gigante, G. E.; Takeda, T.; Itai, Y.; Akatsuka, T.
2002-10-01
A new approach is developed to estimate the geometrical factors, solid angle approximation and geometrical efficiency for a system with experimental arrangements using X-ray tube and secondary target as an excitation source in order to produce the nearly monoenergetic Kα radiation to excite the sample. The variation of the solid angle is studied by changing the radius and length of the collimators towards and away from the source and sample. From these values the variation of the total solid angle and geometrical efficiency is deduced and the optimum value is used for the experimental work.
Spectrum interpretation problems with well-type Ge(Li) detectors due to self-absorption variations
International Nuclear Information System (INIS)
Bruin, M. de; Korthoven, P.J.M.; Bode, P.
1979-01-01
For use in instrumental neutron activation analysis, a well-type Ge(Li) detector compares favourably with a comparable detector without well. It combines a good energy resolution with a relatively high detector efficiency. Moreover, this efficiency is almost independent of sample dimensions. But the use of a well-type Ge(Li) detector also has been some drawbacks, as large summation effects will result from the high detector efficiency. The least severe aspect of this summation is the additional formation of many extra sum peaks in gamma-ray spectra of nuclides with moderate or highly complex decay schemes. This leads to higher computation times, but in general, the accuracy of the analysis will not be affected. A far more important aspect of the summation is found in the fact that the intensity ratios between high energy peaks and the sum peaks of self-absorption effects, which in a flat detector is limited to only the low energy part of the spectrum, may be extended to the high energy region. This leads to sample-dependent distortion of the high energy part of the gamma-ray spectrum which may result in misinterpretation of instrumental neutron activation analysis data. The only solution to this problem seems to be to prevent the relevant low energy photons from reaching the detector. This can be accomplished by using a high Z absorber inside the detector well. (Auth.)
Image quality assessment based on multiscale geometric analysis.
Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong
2009-07-01
Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has
A new geometrical gravitational theory
International Nuclear Information System (INIS)
Obata, T.; Chiba, J.; Oshima, H.
1981-01-01
A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)
Multiscale geometric modeling of macromolecules II: Lagrangian representation
Feng, Xin; Xia, Kelin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2013-01-01
Geometric modeling of biomolecules plays an essential role in the conceptualization of biolmolecular structure, function, dynamics and transport. Qualitatively, geometric modeling offers a basis for molecular visualization, which is crucial for the understanding of molecular structure and interactions. Quantitatively, geometric modeling bridges the gap between molecular information, such as that from X-ray, NMR and cryo-EM, and theoretical/mathematical models, such as molecular dynamics, the Poisson-Boltzmann equation and the Nernst-Planck equation. In this work, we present a family of variational multiscale geometric models for macromolecular systems. Our models are able to combine multiresolution geometric modeling with multiscale electrostatic modeling in a unified variational framework. We discuss a suite of techniques for molecular surface generation, molecular surface meshing, molecular volumetric meshing, and the estimation of Hadwiger’s functionals. Emphasis is given to the multiresolution representations of biomolecules and the associated multiscale electrostatic analyses as well as multiresolution curvature characterizations. The resulting fine resolution representations of a biomolecular system enable the detailed analysis of solvent-solute interaction, and ion channel dynamics, while our coarse resolution representations highlight the compatibility of protein-ligand bindings and possibility of protein-protein interactions. PMID:23813599
Existence of localizing solutions in plasticity via the geometric singular perturbation theory
Lee, Min-Gi; Tzavaras, Athanasios
2017-01-01
system has fast and slow time scales, forming a singularly perturbed problem. Geometric singular perturbation theory is applied to this problem to achieve an invariant surface. The flow on the invariant surface is analyzed via the Poincaré
Geometric group theory an introduction
Löh, Clara
2017-01-01
Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.
Geometric procedures for civil engineers
Tonias, Elias C
2016-01-01
This book provides a multitude of geometric constructions usually encountered in civil engineering and surveying practice. A detailed geometric solution is provided to each construction as well as a step-by-step set of programming instructions for incorporation into a computing system. The volume is comprised of 12 chapters and appendices that may be grouped in three major parts: the first is intended for those who love geometry for its own sake and its evolution through the ages, in general, and, more specifically, with the introduction of the computer. The second section addresses geometric features used in the book and provides support procedures used by the constructions presented. The remaining chapters and the appendices contain the various constructions. The volume is ideal for engineering practitioners in civil and construction engineering and allied areas.
Variational principles for locally variational forms
International Nuclear Information System (INIS)
Brajercik, J.; Krupka, D.
2005-01-01
We present the theory of higher order local variational principles in fibered manifolds, in which the fundamental global concept is a locally variational dynamical form. Any two Lepage forms, defining a local variational principle for this form, differ on intersection of their domains, by a variationally trivial form. In this sense, but in a different geometric setting, the local variational principles satisfy analogous properties as the variational functionals of the Chern-Simons type. The resulting theory of extremals and symmetries extends the first order theories of the Lagrange-Souriau form, presented by Grigore and Popp, and closed equivalents of the first order Euler-Lagrange forms of Hakova and Krupkova. Conceptually, our approach differs from Prieto, who uses the Poincare-Cartan forms, which do not have higher order global analogues
An introduction to geometrical physics
Aldrovandi, R
1995-01-01
This book stresses the unifying power of the geometrical framework in bringing together concepts from the different areas of physics. Common underpinnings of optics, elasticity, gravitation, relativistic fields, particle mechanics and other subjects are underlined. It attempts to extricate the notion of space currently in the physical literature from the metric connotation.The book's goal is to present mathematical ideas associated with geometrical physics in a rather introductory language. Included are many examples from elementary physics and also, for those wishing to reach a higher level o
Geometric integration for particle accelerators
International Nuclear Information System (INIS)
Forest, Etienne
2006-01-01
This paper is a very personal view of the field of geometric integration in accelerator physics-a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling-unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Geometric integration for particle accelerators
Forest, Étienne
2006-05-01
This paper is a very personal view of the field of geometric integration in accelerator physics—a field where often work of the highest quality is buried in lost technical notes or even not published; one has only to think of Simon van der Meer Nobel prize work on stochastic cooling—unpublished in any refereed journal. So I reconstructed the relevant history of geometrical integration in accelerator physics as much as I could by talking to collaborators and using my own understanding of the field. The reader should not be too surprised if this account is somewhere between history, science and perhaps even fiction.
Lattice degeneracies of geometric fermions
International Nuclear Information System (INIS)
Raszillier, H.
1983-05-01
We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)
Geometric reconstruction methods for electron tomography
Energy Technology Data Exchange (ETDEWEB)
Alpers, Andreas, E-mail: alpers@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Gardner, Richard J., E-mail: Richard.Gardner@wwu.edu [Department of Mathematics, Western Washington University, Bellingham, WA 98225-9063 (United States); König, Stefan, E-mail: koenig@ma.tum.de [Zentrum Mathematik, Technische Universität München, D-85747 Garching bei München (Germany); Pennington, Robert S., E-mail: robert.pennington@uni-ulm.de [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Boothroyd, Chris B., E-mail: ChrisBoothroyd@cantab.net [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Houben, Lothar, E-mail: l.houben@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Dunin-Borkowski, Rafal E., E-mail: rdb@fz-juelich.de [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, D-52425 Jülich (Germany); Joost Batenburg, Kees, E-mail: Joost.Batenburg@cwi.nl [Centrum Wiskunde and Informatica, NL-1098XG, Amsterdam, The Netherlands and Vision Lab, Department of Physics, University of Antwerp, B-2610 Wilrijk (Belgium)
2013-05-15
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand.
A geometric viewpoint on generalized hydrodynamics
Directory of Open Access Journals (Sweden)
Benjamin Doyon
2018-01-01
Full Text Available Generalized hydrodynamics (GHD is a large-scale theory for the dynamics of many-body integrable systems. It consists of an infinite set of conservation laws for quasi-particles traveling with effective (“dressed” velocities that depend on the local state. We show that these equations can be recast into a geometric dynamical problem. They are conservation equations with state-independent quasi-particle velocities, in a space equipped with a family of metrics, parametrized by the quasi-particles' type and speed, that depend on the local state. In the classical hard rod or soliton gas picture, these metrics measure the free length of space as perceived by quasi-particles; in the quantum picture, they weigh space with the density of states available to them. Using this geometric construction, we find a general solution to the initial value problem of GHD, in terms of a set of integral equations where time appears explicitly. These integral equations are solvable by iteration and provide an extremely efficient solution algorithm for GHD.
Geometric reconstruction methods for electron tomography
International Nuclear Information System (INIS)
Alpers, Andreas; Gardner, Richard J.; König, Stefan; Pennington, Robert S.; Boothroyd, Chris B.; Houben, Lothar; Dunin-Borkowski, Rafal E.; Joost Batenburg, Kees
2013-01-01
Electron tomography is becoming an increasingly important tool in materials science for studying the three-dimensional morphologies and chemical compositions of nanostructures. The image quality obtained by many current algorithms is seriously affected by the problems of missing wedge artefacts and non-linear projection intensities due to diffraction effects. The former refers to the fact that data cannot be acquired over the full 180° tilt range; the latter implies that for some orientations, crystalline structures can show strong contrast changes. To overcome these problems we introduce and discuss several algorithms from the mathematical fields of geometric and discrete tomography. The algorithms incorporate geometric prior knowledge (mainly convexity and homogeneity), which also in principle considerably reduces the number of tilt angles required. Results are discussed for the reconstruction of an InAs nanowire. - Highlights: ► Four algorithms for electron tomography are introduced that utilize prior knowledge. ► Objects are assumed to be homogeneous; convexity and regularity is also discussed. ► We are able to reconstruct slices of a nanowire from as few as four projections. ► Algorithms should be selected based on the specific reconstruction task at hand
Tomarelli, Franco
1996-01-01
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientis...
Some Differential Geometric Relations in the Elastic Shell
Directory of Open Access Journals (Sweden)
Xiaoqin Shen
2016-01-01
Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.
Implicit face prototype learning from geometric information.
Or, Charles C-F; Wilson, Hugh R
2013-04-19
There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.
Height and Tilt Geometric Texture
DEFF Research Database (Denmark)
Andersen, Vedrana; Desbrun, Mathieu; Bærentzen, Jakob Andreas
2009-01-01
compromise between functionality and simplicity: it can efficiently handle and process geometric texture too complex to be represented as a height field, without having recourse to full blown mesh editing algorithms. The height-and-tilt representation proposed here is fully intrinsic to the mesh, making...
In Defence of Geometrical Algebra
Blasjo, V.N.E.
The geometrical algebra hypothesis was once the received interpretation of Greek mathematics. In recent decades, however, it has become anathema to many. I give a critical review of all arguments against it and offer a consistent rebuttal case against the modern consensus. Consequently, I find that
Geometrical interpretation of extended supergravity
International Nuclear Information System (INIS)
Townsend, P.K.; Nieuwenhuizen, P.van
1977-01-01
SO 2 extended supergravity is shown to be a geometrical theory, whose underlying gauge group is OSp(4,2). The couplings which gauge the SO 2 symmetry as well as the accompanying cosmological and masslike terms are directly obtained, and the usual SO 2 model is obtained after a Wigner-Inoenue group contraction. (Auth.)
Geometric scaling in exclusive processes
International Nuclear Information System (INIS)
Munier, S.; Wallon, S.
2003-01-01
We show that according to the present understanding of the energy evolution of the observables measured in deep-inelastic scattering, the photon-proton scattering amplitude has to exhibit geometric scaling at each impact parameter. We suggest a way to test this experimentally at HERA. A qualitative analysis based on published data is presented and discussed. (orig.)
Geometric origin of central charges
International Nuclear Information System (INIS)
Lukierski, J.; Rytel, L.
1981-05-01
The complete set of N(N-1) central charge generators for D=4 N-extended super Poincare algebra is obtained by suitable contraction of OSp (2N; 4) superalgebra. The superspace realizations of the spinorial generators with central charges are derived. The conjugate set of N(N-1) additional bosonic superspace coordinates is introduced in an unique and geometric way. (author)
Vergence, Vision, and Geometric Optics
Keating, Michael P.
1975-01-01
Provides a definition of vergence in terms of the curvature of the wave fronts, and gives examples to illustrate the advantages of this approach. The vergence treatment of geometrical optics provides both conceptual and algebraic advantages, particularly for the life science student, over the traditional object distance-image distance-focal length…
Geometric phases and quantum computation
International Nuclear Information System (INIS)
Vedral, V.
2005-01-01
Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)
Cartan's geometrical structure of supergravity
International Nuclear Information System (INIS)
Baaklini, N.S.
1977-06-01
The geometrical partnership of the vierbein and the spin-3/2 field in the structure of the supergravity Lagrangian is emphasized. Both fields are introduced as component of the same matrix differential form. The only local symmetry of the theory is SL(2,C)
Geometric Transformations in Engineering Geometry
Directory of Open Access Journals (Sweden)
I. F. Borovikov
2015-01-01
Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry
Stress measurement in thin films by geometrical optics
Rossnagel, S. M.; Gilstrap, P.; Rujkorakarn, R.
1982-01-01
A variation of Newton's rings experiment is proposed for measuring film stress. The procedure described, the geometrical optics method, is used to measure radii of curvature for a series of film depositions with Ta, Al, and Mo films. The method has a sensitivity of 1 x 10 to the 9th dyn/sq cm, corresponding to the practical radius limit of about 50 m, and a repeatability usually within five percent. For the purposes of comparison, radii are also measured by Newton's rings method and the Talysurf method; all results are found to be in general agreement. Measurement times are also compared: the geometrical optics method requires only 1/2-1 minute. It is concluded that the geometrical optics method provides an inexpensive, fast, and a reasonably correct technique with which to measure stresses in film.
Optimization of biotechnological systems through geometric programming
Directory of Open Access Journals (Sweden)
Torres Nestor V
2007-09-01
Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into
Multiscale geometric modeling of macromolecules I: Cartesian representation
Xia, Kelin; Feng, Xin; Chen, Zhan; Tong, Yiying; Wei, Guo-Wei
2014-01-01
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace-Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
Multiscale geometric modeling of macromolecules I: Cartesian representation
Energy Technology Data Exchange (ETDEWEB)
Xia, Kelin [Department of Mathematics, Michigan State University, MI 48824 (United States); Feng, Xin [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Chen, Zhan [Department of Mathematics, Michigan State University, MI 48824 (United States); Tong, Yiying [Department of Computer Science and Engineering, Michigan State University, MI 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, MI 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, MI 48824 (United States)
2014-01-15
This paper focuses on the geometric modeling and computational algorithm development of biomolecular structures from two data sources: Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in the Eulerian (or Cartesian) representation. Molecular surface (MS) contains non-smooth geometric singularities, such as cusps, tips and self-intersecting facets, which often lead to computational instabilities in molecular simulations, and violate the physical principle of surface free energy minimization. Variational multiscale surface definitions are proposed based on geometric flows and solvation analysis of biomolecular systems. Our approach leads to geometric and potential driven Laplace–Beltrami flows for biomolecular surface evolution and formation. The resulting surfaces are free of geometric singularities and minimize the total free energy of the biomolecular system. High order partial differential equation (PDE)-based nonlinear filters are employed for EMDB data processing. We show the efficacy of this approach in feature-preserving noise reduction. After the construction of protein multiresolution surfaces, we explore the analysis and characterization of surface morphology by using a variety of curvature definitions. Apart from the classical Gaussian curvature and mean curvature, maximum curvature, minimum curvature, shape index, and curvedness are also applied to macromolecular surface analysis for the first time. Our curvature analysis is uniquely coupled to the analysis of electrostatic surface potential, which is a by-product of our variational multiscale solvation models. As an expository investigation, we particularly emphasize the numerical algorithms and computational protocols for practical applications of the above multiscale geometric models. Such information may otherwise be scattered over the vast literature on this topic. Based on the curvature and electrostatic analysis from our multiresolution surfaces, we introduce a new concept, the
On Geometric Variational Models for Inpainting Surface Holes (PREPRINT)
2006-01-01
email: haro@ima.umn.edu Phone: (612) 626-1501 Fax: (612) 626-7370 Affiliations: 1 Dept. de Tecnologia , University of Pompeu-Fabra, Passeig de...regions where the 3D model is incomplete. The main cause of holes are occlusions, but these can also be due to low reflectance, constraints in the...major areas where range scanners are used. With the increasing popularity of range scanners as 3D shape acquisition devices, with applications in
On Geometric Variational Models for Inpainting Surface Holes (PREPRINT)
National Research Council Canada - National Science Library
Caselles, Vicent; Haro, Gloria; Sapiro, Guillermo; Verdera, Joan
2006-01-01
.... These equations include a system for the joint interpolation of scalar and vector fields, a Laplacian-based minimization, a mean curvature diffusion flow, and an absolutely minimizing Lipschitz extension...
Geometric Aspects of Force Controllability for a Swimming Model
International Nuclear Information System (INIS)
Khapalov, A. Y.
2008-01-01
We study controllability properties (swimming capabilities) of a mathematical model of an abstract object which 'swims' in the 2-D Stokes fluid. Our goal is to investigate how the geometric shape of this object affects the forces acting upon it. Such problems are of interest in biology and engineering applications dealing with propulsion systems in fluids
Balanced partitions of 3-colored geometric sets in the plane
Bereg, S.; Hurtado, F.; Kano, M.; Korman, M.; Lara, D.; Seara, C.; Silveira, R.I.; Urrutia, J.; Verbeek, K.A.B.
2015-01-01
Let SS be a finite set of geometric objects partitioned into classes or colors . A subset S'¿SS'¿S is said to be balanced if S'S' contains the same amount of elements of SS from each of the colors. We study several problems on partitioning 33-colored sets of points and lines in the plane into two
Monomial geometric programming with an arbitrary fuzzy relational inequality
Directory of Open Access Journals (Sweden)
E. Shivanian
2015-11-01
Full Text Available In this paper, an optimization model with geometric objective function is presented. Geometric programming is widely used; many objective functions in optimization problems can be analyzed by geometric programming. We often encounter these in resource allocation and structure optimization and technology management, etc. On the other hand, fuzzy relation equalities and inequalities are also used in many areas. We here present a geometric programming model with a monomial objective function subject to the fuzzy relation inequality constraints with an arbitrary function. The feasible solution set is determined and compared with some common results in the literature. A necessary and sufficient condition and three other necessary conditions are presented to conceptualize the feasibility of the problem. In general a lower bound is always attainable for the optimal objective value by removing the components having no effect on the solution process. By separating problem to non-decreasing and non-increasing function to prove the optimal solution, we simplify operations to accelerate the resolution of the problem.
Geometric and Algebraic Approaches in the Concept of Complex Numbers
Panaoura, A.; Elia, I.; Gagatsis, A.; Giatilis, G.-P.
2006-01-01
This study explores pupils' performance and processes in tasks involving equations and inequalities of complex numbers requiring conversions from a geometric representation to an algebraic representation and conversions in the reverse direction, and also in complex numbers problem solving. Data were collected from 95 pupils of the final grade from…
Symmetry analysis of talus bone: A Geometric morphometric approach.
Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M
2014-01-01
The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.
On chromatic and geometrical calibration
DEFF Research Database (Denmark)
Folm-Hansen, Jørgen
1999-01-01
The main subject of the present thesis is different methods for the geometrical and chromatic calibration of cameras in various environments. For the monochromatic issues of the calibration we present the acquisition of monochrome images, the classic monochrome aberrations and the various sources...... the correct interpolation method is described. For the chromatic issues of calibration we present the acquisition of colour and multi-spectral images, the chromatic aberrations and the various lens/camera based non-uniformities of the illumination of the image plane. It is described how the monochromatic...... to design calibration targets for both geometrical and chromatic calibration are described. We present some possible systematical errors on the detection of the objects in the calibration targets, if viewed in a non orthogonal angle, if the intensities are uneven or if the image blurring is uneven. Finally...
Geometrical approach to tumor growth.
Escudero, Carlos
2006-08-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells and particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former paper [C. Escudero, Phys. Rev. E 73, 020902(R) (2006)], and in the present work we extend our analysis and try to shed light on the possible geometrical principles that drive tumor growth. We present two-dimensional models that reproduce the experimental observations, and analyze the unexplored three-dimensional case, for which interesting conclusions on tumor growth are derived.
Geometrical interpretation of optical absorption
Energy Technology Data Exchange (ETDEWEB)
Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)
2011-08-15
We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.
Parametric FEM for geometric biomembranes
Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.
2010-05-01
We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.
Geometrical methods in learning theory
International Nuclear Information System (INIS)
Burdet, G.; Combe, Ph.; Nencka, H.
2001-01-01
The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine
Geometrical approach to tumor growth
Escudero, Carlos
2006-01-01
Tumor growth has a number of features in common with a physical process known as molecular beam epitaxy. Both growth processes are characterized by the constraint of growth development to the body border, and surface diffusion of cells/particles at the growing edge. However, tumor growth implies an approximate spherical symmetry that makes necessary a geometrical treatment of the growth equations. The basic model was introduced in a former article [C. Escudero, Phys. Rev. E 73, 020902(R) (200...
Geometric Properties of Grassmannian Frames for and
Directory of Open Access Journals (Sweden)
Benedetto John J
2006-01-01
Full Text Available Grassmannian frames are frames satisfying a min-max correlation criterion. We translate a geometrically intuitive approach for two- and three-dimensional Euclidean space ( and into a new analytic method which is used to classify many Grassmannian frames in this setting. The method and associated algorithm decrease the maximum frame correlation, and hence give rise to the construction of specific examples of Grassmannian frames. Many of the results are known by other techniques, and even more generally, so that this paper can be viewed as tutorial. However, our analytic method is presented with the goal of developing it to address unresovled problems in -dimensional Hilbert spaces which serve as a setting for spherical codes, erasure channel modeling, and other aspects of communications theory.
Geometrical and fluidic tuning of periodically modulated thin metal films
DEFF Research Database (Denmark)
Gilardi, Giovanni; Xiao, Sanshui; Beccherelli, Romeo
2012-01-01
We numerically demonstrate near-zero transmission of light through two-dimensional arrays of isolated gold rings. The analysis of the device as an optofluidic sensor is presented to demonstrate the tuning of the device in relation to variations of volume and refractive index of an isotropic fluid...... positioned over the structure. We also evaluate the performance of the device with respect to geometrical parameters of the rings....
Exact Solutions for Einstein's Hyperbolic Geometric Flow
International Nuclear Information System (INIS)
He Chunlei
2008-01-01
In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow
Geometrical determination of the constant of motion in General Relativity
International Nuclear Information System (INIS)
Catoni, F.; Cannata, R.; Zampetti, P.
2009-01-01
In recent time a theorem, due to E. Beltrami, through which the integration of the geodesic equations of a curved manifold is obtained by means of a merely geometric method, has been revisited. This way of dealing with the problem is well in accordance with the geometric spirit of the Theory of General Relativity. In this paper we show another relevant consequence of this method. Actually, the constants of the motion, introduced in this geometrical way that is completely independent of Newton theory, are related to the conservation laws for test particles in the Einstein theory. These conservation laws may be compared with the conservation laws of Newton. In particular, by the conservation of energy (E) and the L z component of angular momentum, the equivalence of the conservation laws for the Schwarzschild field is verified and the difference between Newton and Einstein theories for the rotating bodies (Kerr metric) is obtained in a straightforward way.
The differential-geometric aspects of integrable dynamical systems
International Nuclear Information System (INIS)
Prykarpatsky, Y.A.; Samoilenko, A.M.; Prykarpatsky, A.K.; Bogolubov, N.N. Jr.; Blackmore, D.L.
2007-05-01
The canonical reduction method on canonically symplectic manifolds is analyzed in detail, and the relationships with the geometric properties of associated principal fiber bundles endowed with connection structures are described. Some results devoted to studying geometrical properties of nonabelian Yang-Mills type gauge field equations are presented. A symplectic theory approach is developed for partially solving the problem of algebraic-analytical construction of integral submanifold embeddings for integrable (via the abelian and nonabelian Liouville-Arnold theorems) Hamiltonian systems on canonically symplectic phase spaces. The fundamental role of the so-called Picard-Fuchs type equations is revealed, and their differential-geometric and algebraic properties are studied in detail. Some interesting examples of integrable Hamiltonian systems are are studied in detail in order to demonstrate the ease of implementation and effectiveness of the procedure for investigating the integral submanifold embedding mapping. (author)
Moiseiwitsch, B L
2004-01-01
This graduate-level text's primary objective is to demonstrate the expression of the equations of the various branches of mathematical physics in the succinct and elegant form of variational principles (and thereby illuminate their interrelationship). Its related intentions are to show how variational principles may be employed to determine the discrete eigenvalues for stationary state problems and to illustrate how to find the values of quantities (such as the phase shifts) that arise in the theory of scattering. Chapter-by-chapter treatment consists of analytical dynamics; optics, wave mecha
Geometrically Induced Interactions and Bifurcations
Binder, Bernd
2010-01-01
In order to evaluate the proper boundary conditions in spin dynamics eventually leading to the emergence of natural and artificial solitons providing for strong interactions and potentials with monopole charges, the paper outlines a new concept referring to a curvature-invariant formalism, where superintegrability is given by a special isometric condition. Instead of referring to the spin operators and Casimir/Euler invariants as the generator of rotations, a curvature-invariant description is introduced utilizing a double Gudermann mapping function (generator of sine Gordon solitons and Mercator projection) cross-relating two angular variables, where geometric phases and rotations arise between surfaces of different curvature. Applying this stereographic projection to a superintegrable Hamiltonian can directly map linear oscillators to Kepler/Coulomb potentials and/or monopoles with Pöschl-Teller potentials and vice versa. In this sense a large scale Kepler/Coulomb (gravitational, electro-magnetic) wave dynamics with a hyperbolic metric could be mapped as a geodesic vertex flow to a local oscillator singularity (Dirac monopole) with spherical metrics and vice versa. Attracting fixed points and dynamic constraints are given by special isometries with magic precession angles. The nonlinear angular encoding directly provides for a Shannon mutual information entropy measure of the geodesic phase space flow. The emerging monopole patterns show relations to spiral Fresnel holography and Berry/Aharonov-Bohm geometric phases subject to bifurcation instabilities and singularities from phase ambiguities due to a local (entropy) overload. Neutral solitons and virtual patterns emerging and mediating in the overlap region between charged or twisted holographic patterns are visualized and directly assigned to the Berry geometric phase revealing the role of photons, neutrons, and neutrinos binding repulsive charges in Coulomb, strong and weak interaction.
Moving walls and geometric phases
Energy Technology Data Exchange (ETDEWEB)
Facchi, Paolo, E-mail: paolo.facchi@ba.infn.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Garnero, Giancarlo, E-mail: giancarlo.garnero@uniba.it [Dipartimento di Fisica and MECENAS, Università di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Marmo, Giuseppe [Dipartimento di Scienze Fisiche and MECENAS, Università di Napoli “Federico II”, I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); Samuel, Joseph [Raman Research Institute, 560080 Bangalore (India)
2016-09-15
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity. For these boundary conditions we compute explicitly the geometric phase two-form on the parameter space. The unboundedness of the Hamiltonian describing the system leads to a natural prescription of renormalization for divergent contributions arising from the boundary.
Geometric Topology and Shape Theory
Segal, Jack
1987-01-01
The aim of this international conference the third of its type was to survey recent developments in Geometric Topology and Shape Theory with an emphasis on their interaction. The volume contains original research papers and carefully selected survey of currently active areas. The main topics and themes represented by the papers of this volume include decomposition theory, cell-like mappings and CE-equivalent compacta, covering dimension versus cohomological dimension, ANR's and LCn-compacta, homology manifolds, embeddings of continua into manifolds, complement theorems in shape theory, approximate fibrations and shape fibrations, fibered shape, exact homologies and strong shape theory.
Field guide to geometrical optics
Greivenkamp, John E
2004-01-01
This Field Guide derives from the treatment of geometrical optics that has evolved from both the undergraduate and graduate programs at the Optical Sciences Center at the University of Arizona. The development is both rigorous and complete, and it features a consistent notation and sign convention. This volume covers Gaussian imagery, paraxial optics, first-order optical system design, system examples, illumination, chromatic effects, and an introduction to aberrations. The appendices provide supplemental material on radiometry and photometry, the human eye, and several other topics.
Geometric phase from dielectric matrix
International Nuclear Information System (INIS)
Banerjee, D.
2005-10-01
The dielectric property of the anisotropic optical medium is found by considering the polarized photon as two component spinor of spherical harmonics. The Geometric Phase of a polarized photon has been evaluated in two ways: the phase two-form of the dielectric matrix through a twist and the Pancharatnam phase (GP) by changing the angular momentum of the incident polarized photon over a closed triangular path on the extended Poincare sphere. The helicity in connection with the spin angular momentum of the chiral photon plays the key role in developing these phase holonomies. (author)
A history of geometrical methods
Coolidge, Julian Lowell
2013-01-01
Full and authoritative, this history of the techniques for dealing with geometric questions begins with synthetic geometry and its origins in Babylonian and Egyptian mathematics; reviews the contributions of China, Japan, India, and Greece; and discusses the non-Euclidean geometries. Subsequent sections cover algebraic geometry, starting with the precursors and advancing to the great awakening with Descartes; and differential geometry, from the early work of Huygens and Newton to projective and absolute differential geometry. The author's emphasis on proofs and notations, his comparisons betwe
Destabilizing geometrical and bimaterial effects in frictional sliding
Aldam, M.; Bar Sinai, Y.; Svetlizky, I.; Fineberg, J.; Brener, E.; Xu, S.; Ben-Zion, Y.; Bouchbinder, E.
2017-12-01
Asymmetry of the two blocks forming a fault plane, i.e. the lack of reflection symmetry with respect to the fault plane, either geometrical or material, gives rise to generic destabilizing effects associated with the elastodynamic coupling between slip and normal stress variations. While geometric asymmetry exists in various geophysical contexts, such as thrust faults and landslide systems, its effect on fault dynamics is often overlooked. In the first part of the talk, I will show that geometrical asymmetry alone can destabilize velocity-strengthening faults, which are otherwise stable. I will further show that geometrical asymmetry accounts for a significant weakening effect observed in rupture propagation and present laboratory data that support the theory. In the second part of the talk, I will focus on material asymmetry and discuss an unexpected property of the well-studied frictional bimaterial effect. I will show that while the bimaterial coupling between slip and normal stress variations is a monotonically increasing function of the bimaterial contrast, when it is coupled to interfacial shear stress perturbations through a friction law, various physical quantities exhibit a non-monotonic dependence on the bimaterial contrast. This non-monotonicity is demonstrated for the stability of steady-sliding and for unsteady rupture propagation in faults described by various friction laws (regularized Coulomb, slip-weakening, rate-and-state friction), using analytic and numerical tools. All in all, the importance of bulk asymmetry to interfacial fault dynamics is highlighted. [1] Michael Aldam, Yohai Bar-Sinai, Ilya Svetlizky, Efim A. Brener, Jay Fineberg, and Eran Bouchbinder. Frictional Sliding without Geometrical Reflection Symmetry. Phys. Rev. X, 6(4):041023, 2016. [2] Michael Aldam, Shiqing Xu, Efim A. Brener, Yehuda Ben-Zion, and Eran Bouchbinder. Non-monotonicity of the frictional bimaterial effect. arXiv:1707.01132, 2017.
Mechanisms of geometrical seismic attenuation
Directory of Open Access Journals (Sweden)
Igor B. Morozov
2011-07-01
Full Text Available In several recent reports, we have explained the frequency dependence of the apparent seismic quality-factor (Q observed in many studies according to the effects of geometrical attenuation, which was defined as the zero-frequency limit of the temporal attenuation coefficient. In particular, geometrical attenuation was found to be positive for most waves traveling within the lithosphere. Here, we present three theoretical models that illustrate the origin of this geometrical attenuation, and we investigate the causes of its preferential positive values. In addition, we discuss the physical basis and limitations of both the conventional and new attenuation models. For waves in media with slowly varying properties, geometrical attenuation is caused by variations in the wavefront curvature, which can be both positive (for defocusing and negative (for focusing. In media with velocity/density contrasts, incoherent reflectivity leads to geometrical-attenuation coefficients which are proportional to the mean squared reflectivity and are always positive. For «coherent» reflectivity, the geometrical attenuation is approximately zero, and the attenuation process can be described according to the concept of «scattering Q». However, the true meaning of this parameter is in describing the mean reflectivity within the medium, and not that of the traditional resonator quality factor known in mechanics. The general conclusion from these models is that non-zero and often positive levels of geometrical attenuation are common in realistic, heterogeneous media, both observationally and theoretically. When transformed into the conventional Q-factor form, this positive geometrical attenuation leads to Q values that quickly increase with frequency. These predictions show that the positive frequency-dependent Q observed in many datasets might represent artifacts of the transformations of the attenuation coefficients into Q.
A Geometric Representation of Collective Attention Flows.
Directory of Open Access Journals (Sweden)
Peiteng Shi
Full Text Available With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery. 20% popular sites (Google.com, Myspace.com, Facebook.com, etc. attracting 75% attention flows with only 55% dissipations (log off users locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.
A Geometric Representation of Collective Attention Flows.
Shi, Peiteng; Huang, Xiaohan; Wang, Jun; Zhang, Jiang; Deng, Su; Wu, Yahui
2015-01-01
With the fast development of Internet and WWW, "information overload" has become an overwhelming problem, and collective attention of users will play a more important role nowadays. As a result, knowing how collective attention distributes and flows among different websites is the first step to understand the underlying dynamics of attention on WWW. In this paper, we propose a method to embed a large number of web sites into a high dimensional Euclidean space according to the novel concept of flow distance, which both considers connection topology between sites and collective click behaviors of users. With this geometric representation, we visualize the attention flow in the data set of Indiana university clickstream over one day. It turns out that all the websites can be embedded into a 20 dimensional ball, in which, close sites are always visited by users sequentially. The distributions of websites, attention flows, and dissipations can be divided into three spherical crowns (core, interim, and periphery). 20% popular sites (Google.com, Myspace.com, Facebook.com, etc.) attracting 75% attention flows with only 55% dissipations (log off users) locate in the central layer with the radius 4.1. While 60% sites attracting only about 22% traffics with almost 38% dissipations locate in the middle area with radius between 4.1 and 6.3. Other 20% sites are far from the central area. All the cumulative distributions of variables can be well fitted by "S"-shaped curves. And the patterns are stable across different periods. Thus, the overall distribution and the dynamics of collective attention on websites can be well exhibited by this geometric representation.
Institute of Scientific and Technical Information of China (English)
WANG ShunJin; ZHANG Hua
2007-01-01
Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.
Dark-field electron holography for the measurement of geometric phase
International Nuclear Information System (INIS)
Hytch, M.J.; Houdellier, F.; Huee, F.; Snoeck, E.
2011-01-01
The genesis, theoretical basis and practical application of the new electron holographic dark-field technique for mapping strain in nanostructures are presented. The development places geometric phase within a unified theoretical framework for phase measurements by electron holography. The total phase of the transmitted and diffracted beams is described as a sum of four contributions: crystalline, electrostatic, magnetic and geometric. Each contribution is outlined briefly and leads to the proposal to measure geometric phase by dark-field electron holography (DFEH). The experimental conditions, phase reconstruction and analysis are detailed for off-axis electron holography using examples from the field of semiconductors. A method for correcting for thickness variations will be proposed and demonstrated using the phase from the corresponding bright-field electron hologram. -- Highlights: → Unified description of phase measurements in electron holography. → Detailed description of dark-field electron holography for geometric phase measurements. → Correction procedure for systematic errors due to thickness variations.
Induced subgraph searching for geometric model fitting
Xiao, Fan; Xiao, Guobao; Yan, Yan; Wang, Xing; Wang, Hanzi
2017-11-01
In this paper, we propose a novel model fitting method based on graphs to fit and segment multiple-structure data. In the graph constructed on data, each model instance is represented as an induced subgraph. Following the idea of pursuing the maximum consensus, the multiple geometric model fitting problem is formulated as searching for a set of induced subgraphs including the maximum union set of vertices. After the generation and refinement of the induced subgraphs that represent the model hypotheses, the searching process is conducted on the "qualified" subgraphs. Multiple model instances can be simultaneously estimated by solving a converted problem. Then, we introduce the energy evaluation function to determine the number of model instances in data. The proposed method is able to effectively estimate the number and the parameters of model instances in data severely corrupted by outliers and noises. Experimental results on synthetic data and real images validate the favorable performance of the proposed method compared with several state-of-the-art fitting methods.
Geometrical charged-particle optics
Rose, Harald
2012-01-01
This second edition is an extended version of the first edition of Geometrical Charged-Particle Optics. The updated reference monograph is intended as a guide for researchers and graduate students who are seeking a comprehensive treatment of the design of instruments and beam-guiding systems of charged particles and their propagation in electromagnetic fields. Wave aspects are included in this edition for explaining electron holography, the Aharanov-Bohm effect and the resolution of electron microscopes limited by diffraction. Several methods for calculating the electromagnetic field are presented and procedures are outlined for calculating the properties of systems with arbitrarily curved axis. Detailed methods are presented for designing and optimizing special components such as aberration correctors, spectrometers, energy filters monochromators, ion traps, electron mirrors and cathode lenses. In particular, the optics of rotationally symmetric lenses, quadrupoles, and systems composed of these elements are...
Geometrical setting of solid mechanics
International Nuclear Information System (INIS)
Fiala, Zdenek
2011-01-01
Highlights: → Solid mechanics within the Riemannian symmetric manifold GL (3, R)/O (3, R). → Generalized logarithmic strain. → Consistent linearization. → Incremental principle of virtual power. → Time-discrete approximation. - Abstract: The starting point in the geometrical setting of solid mechanics is to represent deformation process of a solid body as a trajectory in a convenient space with Riemannian geometry, and then to use the corresponding tools for its analysis. Based on virtual power of internal stresses, we show that such a configuration space is the (globally) symmetric space of symmetric positive-definite real matrices. From this unifying point of view, we shall analyse the logarithmic strain, the stress rate, as well as linearization and intrinsic integration of corresponding evolution equation.
Geometric Methods in Physics XXXV
Odzijewicz, Anatol; Previato, Emma
2018-01-01
This book features a selection of articles based on the XXXV Białowieża Workshop on Geometric Methods in Physics, 2016. The series of Białowieża workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, and with applications to classical and quantum physics. In 2016 the special session "Integrability and Geometry" in particular attracted pioneers and leading specialists in the field. Traditionally, the Białowieża Workshop is followed by a School on Geometry and Physics, for advanced graduate students and early-career researchers, and the book also includes extended abstracts of the lecture series.
Geometric Operators on Boolean Functions
DEFF Research Database (Denmark)
Frisvad, Jeppe Revall; Falster, Peter
In truth-functional propositional logic, any propositional formula represents a Boolean function (according to some valuation of the formula). We describe operators based on Decartes' concept of constructing coordinate systems, for translation of a propositional formula to the image of a Boolean...... function. With this image of a Boolean function corresponding to a propositional formula, we prove that the orthogonal projection operator leads to a theorem describing all rules of inference in propositional reasoning. In other words, we can capture all kinds of inference in propositional logic by means...... of a few geometric operators working on the images of Boolean functions. The operators we describe, arise from the niche area of array-based logic and have previously been tightly bound to an array-based representation of Boolean functions. We redefine the operators in an abstract form to make them...
Geometric considerations in magnetron sputtering
International Nuclear Information System (INIS)
Thornton, J.A.
1982-01-01
The recent development of high performance magnetron type discharge sources has greatly enhaced the range of coating applications where sputtering is a viable deposition process. Magnetron sources can provide high current densities and sputtering rates, even at low pressures. They have much reduced substrate heating rates and can be scaled to large sizes. Magnetron sputter coating apparatuses can have a variety of geometric and plasma configurations. The target geometry affects the emission directions of both the sputtered atoms and the energetic ions which are neutralized and reflected at the cathode. This fact, coupled with the long mean free particle paths which are prevalent at low pressures, can make the coating properties very dependent on the apparatus geometry. This paper reviews the physics of magnetron operation and discusses the influences of apparatus geometry on the use of magnetrons for rf sputtering and reactive sputtering, as well as on the microstructure and internal stresses in sputtered metallic coatings. (author) [pt
International Nuclear Information System (INIS)
Kurakin, K.Yu.; Kozak, B.G.; Gorokhov, A.K.
2008-01-01
Reactor power variation causes additional thermo-mechanical loads on fuel rod clads increasing with increase in a number of loading cycles and fuel burn-up fraction. Power distribution resulted from power variation and motion of control rods is of rather complicated character that can be correctly considered only in detailed (pin-by-pin) presentation of the core neutron physics characteristics. (authors)
Introduction to geometric nonlinear control; Linearization, observability, decoupling
Energy Technology Data Exchange (ETDEWEB)
Respondek, W [Laboratoire de Mathematiques, INSA de Rouen (France)
2002-07-15
These notes are devoted to the problems of linearization, observability, and decoupling of nonlinear control systems. Together with notes of Bronislaw Jakubczyk in the same volume, they form an introduction to geometric methods in nonlinear control theory. In the first part we discuss equivalence of control systems. We consider various aspects of the problem: state-space and feedback equivalence, local and global equivalence, equivalence to linear and partially linear systems. In the second part we present the notion of observability and give a geometric rank condition for local observability and an algebraic characterization of local observability. We discuss unm observability, decompositions of non-observable systems, and properties of generic observable systems. In the third part we introduce the notion of invariant distributions and discuss disturbance decoupling and input-output decoupling. Many concepts and results are illustrated with examples. (author)
Geometric solitons of Hamiltonian flows on manifolds
Energy Technology Data Exchange (ETDEWEB)
Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)
2013-12-15
It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.
Operational geometric phase for mixed quantum states
International Nuclear Information System (INIS)
Andersson, O; Heydari, H
2013-01-01
The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)
Geometrical factors in the perception of sacredness
DEFF Research Database (Denmark)
Costa, Marco; Bonetti, Leonardo
2016-01-01
Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....
Hybrid Geometric Calibration Method for Multi-Platform Spaceborne SAR Image with Sparse Gcps
Lv, G.; Tang, X.; Ai, B.; Li, T.; Chen, Q.
2018-04-01
Geometric calibration is able to provide high-accuracy geometric coordinates of spaceborne SAR image through accurate geometric parameters in the Range-Doppler model by ground control points (GCPs). However, it is very difficult to obtain GCPs that covering large-scale areas, especially in the mountainous regions. In addition, the traditional calibration method is only used for single platform SAR images and can't support the hybrid geometric calibration for multi-platform images. To solve the above problems, a hybrid geometric calibration method for multi-platform spaceborne SAR images with sparse GCPs is proposed in this paper. First, we calibrate the master image that contains GCPs. Secondly, the point tracking algorithm is used to obtain the tie points (TPs) between the master and slave images. Finally, we calibrate the slave images using TPs as the GCPs. We take the Beijing-Tianjin- Hebei region as an example to study SAR image hybrid geometric calibration method using 3 TerraSAR-X images, 3 TanDEM-X images and 5 GF-3 images covering more than 235 kilometers in the north-south direction. Geometric calibration of all images is completed using only 5 GCPs. The GPS data extracted from GNSS receiver are used to assess the plane accuracy after calibration. The results after geometric calibration with sparse GCPs show that the geometric positioning accuracy is 3 m for TSX/TDX images and 7.5 m for GF-3 images.
Exploring Eucladoceros ecomorphology using geometric morphometrics.
Curran, Sabrina C
2015-01-01
An increasingly common method for reconstructing paleoenvironmental parameters of hominin sites is ecological functional morphology (ecomorphology). This study provides a geometric morphometric study of cervid rearlimb morphology as it relates to phylogeny, size, and ecomorphology. These methods are then applied to an extinct Pleistocene cervid, Eucladoceros, which is found in some of the earliest hominin-occupied sites in Eurasia. Variation in cervid postcranial functional morphology associated with different habitats can be summarized as trade-offs between joint stability versus mobility and rapid movement versus power-generation. Cervids in open habitats emphasize limb stability to avoid joint dislocation during rapid flight from predators. Closed-adapted cervids require more joint mobility to rapidly switch directions in complex habitats. Two skeletal features (of the tibia and calcaneus) have significant phylogenetic signals, while two (the femur and third phalanx) do not. Additionally, morphology of two of these features (tibia and third phalanx) were correlated with body size. For the tibial analysis (but not the third phalanx) this correlation was ameliorated when phylogeny was taken into account. Eucladoceros specimens from France and Romania fall on the more open side of the habitat continuum, a result that is at odds with reconstructions of their diet as browsers, suggesting that they may have had a behavioral regime unlike any extant cervid. © 2014 Wiley Periodicals, Inc.
Geometric perturbation theory and plasma physics
International Nuclear Information System (INIS)
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory, and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure in five different ways. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle-group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a long-standing question posed by Kruskal about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no adhoc elements, which is then applied to gyromotion. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A theory motivated by free electron lasers gives new restrictions on the change of area of projected parallelepipeds under canonical transformations
Quantum adiabatic approximation and the geometric phase
International Nuclear Information System (INIS)
Mostafazadeh, A.
1997-01-01
A precise definition of an adiabaticity parameter ν of a time-dependent Hamiltonian is proposed. A variation of the time-dependent perturbation theory is presented which yields a series expansion of the evolution operator U(τ)=summation scr(l) U (scr(l)) (τ) with U (scr(l)) (τ) being at least of the order ν scr(l) . In particular, U (0) (τ) corresponds to the adiabatic approximation and yields Berry close-quote s adiabatic phase. It is shown that this series expansion has nothing to do with the 1/τ expansion of U(τ). It is also shown that the nonadiabatic part of the evolution operator is generated by a transformed Hamiltonian which is off-diagonal in the eigenbasis of the initial Hamiltonian. This suggests the introduction of an adiabatic product expansion for U(τ) which turns out to yield exact expressions for U(τ) for a large number of quantum systems. In particular, a simple application of the adiabatic product expansion is used to show that for the Hamiltonian describing the dynamics of a magnetic dipole in an arbitrarily changing magnetic field, there exists another Hamiltonian with the same eigenvectors for which the Schroedinger equation is exactly solvable. Some related issues concerning geometric phases and their physical significance are also discussed. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Bora, B.; Bhuyan, H.; Favre, M.; Wyndham, E.; Chuaqui, H.
2012-01-01
Plasma series resonance (PSR) effect is well known in geometrically asymmetric capacitively couple radio frequency plasma. However, plasma series resonance effect in geometrically symmetric plasma has not been properly investigated. In this work, a theoretical approach is made to investigate the plasma series resonance effect and its influence on Ohmic and stochastic heating in geometrically symmetric discharge. Electrical asymmetry effect by means of dual frequency voltage waveform is applied to excite the plasma series resonance. The results show considerable variation in heating with phase difference between the voltage waveforms, which may be applicable in controlling the plasma parameters in such plasma.
Hydrodynamic Limit with Geometric Correction of Stationary Boltzmann Equation
Wu, Lei
2014-01-01
We consider the hydrodynamic limit of a stationary Boltzmann equation in a unit plate with in-flow boundary. We prove the solution can be approximated in $L^{\\infty}$ by the sum of interior solution which satisfies steady incompressible Navier-Stokes-Fourier system, and boundary layer with geometric correction. Also, we construct a counterexample to the classical theory which states the behavior of solution near boundary can be described by the Knudsen layer derived from the Milne problem.
Dual geometric-gauge field aspects of gravity
International Nuclear Information System (INIS)
Huei Peng; Wang, K.
1992-01-01
We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs
Geometrical and Graphical Solutions of Quadratic Equations.
Hornsby, E. John, Jr.
1990-01-01
Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)
Gradients of geometrically necessary dislocations from white beam microdiffraction
International Nuclear Information System (INIS)
Barabash, R.I.; Ice, G.E.; Pang, J.W.L.
2005-01-01
Variations in the local crystallographic orientation due to the presence of geometrically necessary dislocations and dislocation boundaries smear the distribution of intensity near Laue reflections. Here, some simple model distributions of geometrically necessary dislocations, GNDs, are used to estimate the dislocation tensor field from the intensity distribution of Laue peaks. Streaking of the Laue spots is found to be quantitatively and qualitatively distinct depending on the ratio between the absorption coefficient and the GND density gradient. In addition, different slip systems cause distinctly different Laue-pattern streaking. Experimental Laue patterns are therefore sensitive to stored dislocations and GNDs. As an example, white beam microdiffraction was applied to characterize the dislocation arrangement in a deformed polycrystalline Ni grain during in situ uniaxial tension
Dynamic facial expression recognition based on geometric and texture features
Li, Ming; Wang, Zengfu
2018-04-01
Recently, dynamic facial expression recognition in videos has attracted growing attention. In this paper, we propose a novel dynamic facial expression recognition method by using geometric and texture features. In our system, the facial landmark movements and texture variations upon pairwise images are used to perform the dynamic facial expression recognition tasks. For one facial expression sequence, pairwise images are created between the first frame and each of its subsequent frames. Integration of both geometric and texture features further enhances the representation of the facial expressions. Finally, Support Vector Machine is used for facial expression recognition. Experiments conducted on the extended Cohn-Kanade database show that our proposed method can achieve a competitive performance with other methods.
Geometric asymmetry driven Janus micromotors
Zhao, Guanjia; Pumera, Martin
2014-09-01
The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S
Inverse Kinematics for Industrial Robots using Conformal Geometric Algebra
Directory of Open Access Journals (Sweden)
Adam L. Kleppe
2016-01-01
Full Text Available This paper shows how the recently developed formulation of conformal geometric algebra can be used for analytic inverse kinematics of two six-link industrial manipulators with revolute joints. The paper demonstrates that the solution of the inverse kinematics in this framework relies on the intersection of geometric objects like lines, circles, planes and spheres, which provides the developer with valuable geometric intuition about the problem. It is believed that this will be very useful for new robot geometries and other mechanisms like cranes and topside drilling equipment. The paper extends previous results on inverse kinematics using conformal geometric algebra by providing consistent solutions for the joint angles for the different configurations depending on shoulder left or right, elbow up or down, and wrist flipped or not. Moreover, it is shown how to relate the solution to the Denavit-Hartenberg parameters of the robot. The solutions have been successfully implemented and tested extensively over the whole workspace of the manipulators.
International Nuclear Information System (INIS)
Balakin, A.B.; Murzakhanov, Z.G.; Grunskaya, L.V.
1994-01-01
A proposal on the experimental detection of extremely low-frequency variations of the electromagnetic Earth field at the gravitational-wave frequency and method for correlation processing results of the experiments are described. 14 refs
Information geometric methods for complexity
Felice, Domenico; Cafaro, Carlo; Mancini, Stefano
2018-03-01
Research on the use of information geometry (IG) in modern physics has witnessed significant advances recently. In this review article, we report on the utilization of IG methods to define measures of complexity in both classical and, whenever available, quantum physical settings. A paradigmatic example of a dramatic change in complexity is given by phase transitions (PTs). Hence, we review both global and local aspects of PTs described in terms of the scalar curvature of the parameter manifold and the components of the metric tensor, respectively. We also report on the behavior of geodesic paths on the parameter manifold used to gain insight into the dynamics of PTs. Going further, we survey measures of complexity arising in the geometric framework. In particular, we quantify complexity of networks in terms of the Riemannian volume of the parameter space of a statistical manifold associated with a given network. We are also concerned with complexity measures that account for the interactions of a given number of parts of a system that cannot be described in terms of a smaller number of parts of the system. Finally, we investigate complexity measures of entropic motion on curved statistical manifolds that arise from a probabilistic description of physical systems in the presence of limited information. The Kullback-Leibler divergence, the distance to an exponential family and volumes of curved parameter manifolds, are examples of essential IG notions exploited in our discussion of complexity. We conclude by discussing strengths, limits, and possible future applications of IG methods to the physics of complexity.
Geometrical aspects of quantum spaces
International Nuclear Information System (INIS)
Ho, P.M.
1996-01-01
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given
Yang Mills instantons, geometrical aspects
International Nuclear Information System (INIS)
Stora, R.
1977-09-01
The word instanton has been coined by analogy with the word soliton. They both refer to solutions of elliptic non linear field equations with boundary conditions at infinity (of euclidean space time in the first case, euclidean space in the second case) lying on the set of classical vacua in such a way that stable topological properties emerge, susceptible to survive quantum effects, if those are small. Under this assumption, instantons are believed to be relevant to the description of tunnelling effects between classical vacua and signal some characteristics of the vacuum at the quantum level, whereas solitons should be associated with particles, i.e. discrete points in the mass spectrum. In one case the euclidean action is finite, in the other case, the energy is finite. From the mathematical point of view, the geometrical phenomena associated with the existence of solitons have forced physicists to learn rudiments of algebraic topology. The study of euclidean classical Yang Mills fields involves naturally mathematical items falling under the headings: differential geometry (fibre bundles, connections); differential topology (characteristic classes, index theory) and more recently algebraic geometry. These notes are divided as follows: a first section is devoted to a description of the physicist's views; a second section is devoted to the mathematician's vie
Generalized Geometric Quantum Speed Limits
Directory of Open Access Journals (Sweden)
Diego Paiva Pires
2016-06-01
Full Text Available The attempt to gain a theoretical understanding of the concept of time in quantum mechanics has triggered significant progress towards the search for faster and more efficient quantum technologies. One of such advances consists in the interpretation of the time-energy uncertainty relations as lower bounds for the minimal evolution time between two distinguishable states of a quantum system, also known as quantum speed limits. We investigate how the nonuniqueness of a bona fide measure of distinguishability defined on the quantum-state space affects the quantum speed limits and can be exploited in order to derive improved bounds. Specifically, we establish an infinite family of quantum speed limits valid for unitary and nonunitary evolutions, based on an elegant information geometric formalism. Our work unifies and generalizes existing results on quantum speed limits and provides instances of novel bounds that are tighter than any established one based on the conventional quantum Fisher information. We illustrate our findings with relevant examples, demonstrating the importance of choosing different information metrics for open system dynamics, as well as clarifying the roles of classical populations versus quantum coherences, in the determination and saturation of the speed limits. Our results can find applications in the optimization and control of quantum technologies such as quantum computation and metrology, and might provide new insights in fundamental investigations of quantum thermodynamics.
Geometric structure of percolation clusters.
Xu, Xiao; Wang, Junfeng; Zhou, Zongzheng; Garoni, Timothy M; Deng, Youjin
2014-01-01
We investigate the geometric properties of percolation clusters by studying square-lattice bond percolation on the torus. We show that the density of bridges and nonbridges both tend to 1/4 for large system sizes. Using Monte Carlo simulations, we study the probability that a given edge is not a bridge but has both its loop arcs in the same loop and find that it is governed by the two-arm exponent. We then classify bridges into two types: branches and junctions. A bridge is a branch iff at least one of the two clusters produced by its deletion is a tree. Starting from a percolation configuration and deleting the branches results in a leaf-free configuration, whereas, deleting all bridges produces a bridge-free configuration. Although branches account for ≈43% of all occupied bonds, we find that the fractal dimensions of the cluster size and hull length of leaf-free configurations are consistent with those for standard percolation configurations. By contrast, we find that the fractal dimensions of the cluster size and hull length of bridge-free configurations are given by the backbone and external perimeter dimensions, respectively. We estimate the backbone fractal dimension to be 1.643 36(10).
Geometric Phase Generated Optical Illusion.
Yue, Fuyong; Zang, Xiaofei; Wen, Dandan; Li, Zile; Zhang, Chunmei; Liu, Huigang; Gerardot, Brian D; Wang, Wei; Zheng, Guoxing; Chen, Xianzhong
2017-09-12
An optical illusion, such as "Rubin's vase", is caused by the information gathered by the eye, which is processed in the brain to give a perception that does not tally with a physical measurement of the stimulus source. Metasurfaces are metamaterials of reduced dimensionality which have opened up new avenues for flat optics. The recent advancement in spin-controlled metasurface holograms has attracted considerate attention, providing a new method to realize optical illusions. We propose and experimentally demonstrate a metasurface device to generate an optical illusion. The metasurface device is designed to display two asymmetrically distributed off-axis images of "Rubin faces" with high fidelity, high efficiency and broadband operation that are interchangeable by controlling the helicity of the incident light. Upon the illumination of a linearly polarized light beam, the optical illusion of a 'vase' is perceived. Our result provides an intuitive demonstration of the figure-ground distinction that our brains make during the visual perception. The alliance between geometric metasurface and the optical illusion opens a pathway for new applications related to encryption, optical patterning, and information processing.
An introduction to geometric computation
International Nuclear Information System (INIS)
Nievergelt, J.
1991-01-01
Computational geometry has some appealing features that make it ideal for learning about algorithms and data structures, namely the problem statements are easily understood, intuitively meaningful, and mathematically rigorous, problem statement, solution, and every step of the construction have natural visual representations that support abstract thinking and help in detecting errors of reasoning, and finally, these algorithms are practical because is easy to come up with examples where they can be applied. Figs
Geometrical scaling, furry branching and minijets
International Nuclear Information System (INIS)
Hwa, R.C.
1988-01-01
Scaling properties and their violations in hadronic collisions are discussed in the framework of the geometrical branching model. Geometrical scaling supplemented by Furry branching characterizes the soft component, while the production of jets specifies the hard component. Many features of multiparticle production processes are well described by this model. 21 refs
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-05
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometric integrators for stochastic rigid body dynamics
Tretyakov, Mikhail
2016-01-01
Geometric integrators play an important role in simulating dynamical systems on long time intervals with high accuracy. We will illustrate geometric integration ideas within the stochastic context, mostly on examples of stochastic thermostats for rigid body dynamics. The talk will be mainly based on joint recent work with Rusland Davidchak and Tom Ouldridge.
Geometrical optics and the diffraction phenomenon
International Nuclear Information System (INIS)
Timofeev, Aleksandr V
2005-01-01
This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)
Solving Absolute Value Equations Algebraically and Geometrically
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Malinowska , Agnieszka B.; Torres , Delfim
2014-01-01
International audience; Introduces readers to the treatment of the calculus of variations with q-differences and Hahn difference operators Provides the reader with the first extended treatment of quantum variational calculus Shows how the techniques described can be applied to economic models as well as other mathematical systems This Brief puts together two subjects, quantum and variational calculi by considering variational problems involving Hahn quantum operators. The main advantage of it...
Geometric function theory: a modern view of a classical subject
International Nuclear Information System (INIS)
Crowdy, Darren
2008-01-01
Geometric function theory is a classical subject. Yet it continues to find new applications in an ever-growing variety of areas such as modern mathematical physics, more traditional fields of physics such as fluid dynamics, nonlinear integrable systems theory and the theory of partial differential equations. This paper surveys, with a view to modern applications, open problems and challenges in this subject. Here we advocate an approach based on the use of the Schottky–Klein prime function within a Schottky model of compact Riemann surfaces. (open problem)
Modification of equivalent charge method for the Roben three-dimensional problem in electrostatics
International Nuclear Information System (INIS)
Barsukov, A.B.; Surenskij, A.V.
1989-01-01
The approach of the Roben problem solution for the calculation of the potential of intermediate electrode of accelerating structure with HFQ focusing is considered. The solution is constructed on the basis of variational formulation of the equivalent charge method, where electrostatic problem is reduced to equations of root-mean-square residuals on the system conductors. The technique presented permits to solve efficiently the three-dimensional problems of electrostatics for rather complicated from geometrical viewpoint systems of electrodes. Processing time is comparable with methods of integral equations. 5 refs.; 2 figs
Geometrical properties of a 'snowflake' divertor
International Nuclear Information System (INIS)
Ryutov, D. D.
2007-01-01
Using a simple set of poloidal field coils, one can reach the situation in which the null of the poloidal magnetic field in the divertor region is of second order, not of first order as in the usual X-point divertor. Then, the separatrix in the vicinity of the null point splits the poloidal plane not into four sectors, but into six sectors, making the whole structure look like a snowflake (hence the name). This arrangement allows one to spread the heat load over a much broader area than in the case of a standard divertor. A disadvantage of this configuration is that it is topologically unstable, and, with the current in the plasma varying with time, it would switch either to the standard X-point mode, or to the mode with two X-points close to each other. To avoid this problem, it is suggested to have a current in the divertor coils that is roughly 5% higher than in an ''optimum'' regime (the one in which a snowflake separatrix is formed). In this mode, the configuration becomes stable and can be controlled by varying the current in the divertor coils in concert with the plasma current; on the other hand, a strong flaring of the scrape-off layer still remains in force. Geometrical properties of this configuration are analyzed. Potential advantages and disadvantages of this scheme are discussed
Refraction at a curved dielectric interface - Geometrical optics solution
Lee, S.-W.; Sheshadri, M. S.; Mittra, R.; Jamnejad, V.
1982-01-01
The transmission of a spherical or plane wave through an arbitrarily curved dielectric interface is solved by the geometrical optics theory. The transmitted field is proportional to the product of the conventional Fresnel's transmission coefficient and a divergence factor (DF), which describes the cross-sectional variation (convergence or divergence) of a ray pencil as the latter propagates in the transmitted region. The factor DF depends on the incident wavefront, the curvatures of the interface, and the relative indices of the two media. Explicit matrix formulas for calculating DF are given, and its physical significance is illustrated via examples.
The Jump Set under Geometric Regularization. Part 1: Basic Technique and First-Order Denoising
Valkonen, Tuomo
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Let u ∈ BV(Ω) solve the total variation (TV) denoising problem with L^{2}-squared fidelity and data f. Caselles, Chambolle, and Novaga [Multiscale Model. Simul., 6 (2008), pp. 879-894] have shown the containment H^{m-1} (Ju \\\\Jf) = 0 of the jump set Ju of u in that of f. Their proof unfortunately depends heavily on the co-area formula, as do many results in this area, and as such is not directly extensible to higher-order, curvature-based, and other advanced geometric regularizers, such as total generalized variation and Euler\\'s elastica. These have received increased attention in recent times due to their better practical regularization properties compared to conventional TV or wavelets. We prove analogous jump set containment properties for a general class of regularizers. We do this with novel Lipschitz transformation techniques and do not require the co-area formula. In the present Part 1 we demonstrate the general technique on first-order regularizers, while in Part 2 we will extend it to higher-order regularizers. In particular, we concentrate in this part on TV and, as a novelty, Huber-regularized TV. We also demonstrate that the technique would apply to nonconvex TV models as well as the Perona-Malik anisotropic diffusion, if these approaches were well-posed to begin with.
Geometric perturbation theory and plasma physics
Energy Technology Data Exchange (ETDEWEB)
Omohundro, S.M.
1985-04-04
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.
Geometric perturbation theory and plasma physics
International Nuclear Information System (INIS)
Omohundro, S.M.
1985-01-01
Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism
Geometric design of part feeders
Berretty, R.-P.M.
2000-01-01
This thesis presents solutions for problems derived from industrial assembly and robotic manipulation. The basic tasks in a factory are manufacturing the parts, and combining them into the desired product. In automating these tasks, we want to use robot manipulators that require little or no
Geometrization of the electromagnetic field and dark matter
International Nuclear Information System (INIS)
Pestov, I.B.
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field
Geometrization of the Electromagnetic Field and Dark Matter
Pestov, I B
2005-01-01
A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...
Image-Based Geometric Modeling and Mesh Generation
2013-01-01
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...
Improved Object Proposals with Geometrical Features for Autonomous Driving
Directory of Open Access Journals (Sweden)
Yiliu Feng
2017-01-01
Full Text Available This paper aims at generating high-quality object proposals for object detection in autonomous driving. Most existing proposal generation methods are designed for the general object detection, which may not perform well in a particular scene. We propose several geometrical features suited for autonomous driving and integrate them into state-of-the-art general proposal generation methods. In particular, we formulate the integration as a feature fusion problem by fusing the geometrical features with existing proposal generation methods in a Bayesian framework. Experiments on the challenging KITTI benchmark demonstrate that our approach improves the existing methods significantly. Combined with a convolutional neural net detector, our approach achieves state-of-the-art performance on all three KITTI object classes.
CIME course on Ricci Flow and Geometric Applications
Mantegazza, Carlo
2016-01-01
Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian). The lectures will be particularly valuable to young researchers interested in differential manifolds.
Geometric phase for N-level systems through unitary integration
International Nuclear Information System (INIS)
Uskov, D. B.; Rau, A. R. P.
2006-01-01
Geometric phases are important in quantum physics and are now central to fault-tolerant quantum computation. For spin 1/2, the Bloch sphere S 2 , together with a U(1) phase, provides a complete SU(2) description. We generalize to N-level systems and SU(N) in terms of a 2(N-1)-dimensional base space and reduction to a (N-1)-level problem, paralleling closely the two-dimensional case. This iteratively solves the time evolution of an N-level system and gives (N-1) geometric phases explicitly. A complete analytical construction of an S 4 Bloch-like sphere for two qubits is given for the Spin(5) or SO(5) subgroup of SU(4)
Iris-based medical analysis by geometric deformation features.
Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan
2013-01-01
Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.
Geometrical considerations in dose volume analysis in intracavitary treatment
International Nuclear Information System (INIS)
Deshpande, D.D.; Shrivastava, S.K.; Pradhan, A.S.; Viswanathan, P.S.; Dinshaw, K.A.
1996-01-01
The present work was aimed at to study the relationship between the volume enclosed by reference iodose surface and various geometrical parameters of the intracavitary applicator in treatment of carcinoma of cervix. Pearshape volume of the reference isodose derived from the Total Reference Air Kerma (TRAK) and the product of its dimensions, height H, width W and thickness T which is dependent on the applicator geometry, were estimated for 100 intracavitary applications treated by Selectron LDR machine. Orthogonal radiographs taken for each patient were used for measurement of actual geometric dimensions of the applicator and carrying out the dosimetry on TP-11 treatment planning system. The dimensions H, W and T of reference isodose surface (60 Gy) were also noted. Ratio of the product HWT and the pearshape volume was found mainly to be a function of colpostat separation and not of other geometrical parameters like maximum vertical and anterio-posterior dimension of the applicator. The ratio remained almost constant for a particular combination of uterine tandem and colpostat. Variation in the ratios were attributed to the non-standard geometry. The ratio of the volume of reference isodose surface to the product of its dimensions in the applicator depends upon the colpostat separation. (orig./MG) [de
Niu, Ye; Qi, Lin; Zhang, Fen; Zhao, Yi
2018-07-30
Core/shell hydrogel microcapsules attract increasing research attention due to their potentials in tissue engineering, food engineering, and drug delivery. Current approaches for generating core/shell hydrogel microcapsules suffer from large geometric variations. Geometrically defective core/shell microcapsules need to be removed before further use. High-throughput geometric characterization of such core/shell microcapsules is therefore necessary. In this work, a continuous-flow device was developed to measure the geometric properties of microcapsules with a hydrogel shell and an aqueous core. The microcapsules were pumped through a tapered microchannel patterned with an array of interdigitated microelectrodes. The geometric parameters (the shell thickness and the diameter) were derived from the displacement profiles of the microcapsules. The results show that this approach can successfully distinguish all unencapsulated microparticles. The geometric properties of core/shell microcapsules can be determined with high accuracy. The efficacy of this method was demonstrated through a drug releasing experiment where the optimization of the electrospray process based on geometric screening can lead to controlled and extended drug releasing profiles. This method does not require high-speed optical systems, simplifying the system configuration and making it an indeed miniaturized device. The throughput of up to 584 microcapsules per minute was achieved. This study provides a powerful tool for screening core/shell hydrogel microcapsules and is expected to facilitate the applications of these microcapsules in various fields. Copyright © 2018 Elsevier B.V. All rights reserved.
Geometrical formulation of the conformal Ward identity
International Nuclear Information System (INIS)
Kachkachi, M.
2002-08-01
In this paper we use deep ideas in complex geometry that proved to be very powerful in unveiling the Polyakov measure on the moduli space of Riemann surfaces and lead to obtain the partition function of perturbative string theory for 2, 3, 4 loops. Indeed, a geometrical interpretation of the conformal Ward identity in two dimensional conformal field theory is proposed: the conformal anomaly is interpreted as a deformation of the complex structure of the basic Riemann surface. This point of view is in line with the modern trend of geometric quantizations that are based on deformations of classical structures. Then, we solve the conformal Ward identity by using this geometrical formalism. (author)