WorldWideScience

Sample records for variance applying redescending

  1. Clustering with position-specific constraints on variance: Applying redescending M-estimators to label-free LC-MS data analysis

    Directory of Open Access Journals (Sweden)

    Mani D R

    2011-08-01

    Full Text Available Abstract Background Clustering is a widely applicable pattern recognition method for discovering groups of similar observations in data. While there are a large variety of clustering algorithms, very few of these can enforce constraints on the variation of attributes for data points included in a given cluster. In particular, a clustering algorithm that can limit variation within a cluster according to that cluster's position (centroid location can produce effective and optimal results in many important applications ranging from clustering of silicon pixels or calorimeter cells in high-energy physics to label-free liquid chromatography based mass spectrometry (LC-MS data analysis in proteomics and metabolomics. Results We present MEDEA (M-Estimator with DEterministic Annealing, an M-estimator based, new unsupervised algorithm that is designed to enforce position-specific constraints on variance during the clustering process. The utility of MEDEA is demonstrated by applying it to the problem of "peak matching"--identifying the common LC-MS peaks across multiple samples--in proteomic biomarker discovery. Using real-life datasets, we show that MEDEA not only outperforms current state-of-the-art model-based clustering methods, but also results in an implementation that is significantly more efficient, and hence applicable to much larger LC-MS data sets. Conclusions MEDEA is an effective and efficient solution to the problem of peak matching in label-free LC-MS data. The program implementing the MEDEA algorithm, including datasets, clustering results, and supplementary information is available from the author website at http://www.hephy.at/user/fru/medea/.

  2. Variance reduction methods applied to deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    All deep-penetration Monte Carlo calculations require variance reduction methods. Before beginning with a detailed approach to these methods, several general comments concerning deep-penetration calculations by Monte Carlo, the associated variance reduction, and the similarities and differences of these with regard to non-deep-penetration problems will be addressed. The experienced practitioner of Monte Carlo methods will easily find exceptions to any of these generalities, but it is felt that these comments will aid the novice in understanding some of the basic ideas and nomenclature. Also, from a practical point of view, the discussions and developments presented are oriented toward use of the computer codes which are presented in segments of this Monte Carlo course

  3. An improved minimum variance beamforming applied to plane-wave imaging in medical ultrasound

    DEFF Research Database (Denmark)

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh; Jensen, Jørgen Arendt

    2016-01-01

    Minimum variance beamformer (MVB) is an adaptive beamformer which provides images with higher resolution and contrast in comparison with non-adaptive beamformers like delay and sum (DAS). It finds weight vector of beamformer by minimizing output power while keeping the desired signal unchanged. We...

  4. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.

    Science.gov (United States)

    Lehermeier, Christina; Teyssèdre, Simon; Schön, Chris-Carolin

    2017-12-01

    A crucial step in plant breeding is the selection and combination of parents to form new crosses. Genome-based prediction guides the selection of high-performing parental lines in many crop breeding programs which ensures a high mean performance of progeny. To warrant maximum selection progress, a new cross should also provide a large progeny variance. The usefulness concept as measure of the gain that can be obtained from a specific cross accounts for variation in progeny variance. Here, it is shown that genetic gain can be considerably increased when crosses are selected based on their genomic usefulness criterion compared to selection based on mean genomic estimated breeding values. An efficient and improved method to predict the genetic variance of a cross based on Markov chain Monte Carlo samples of marker effects from a whole-genome regression model is suggested. In simulations representing selection procedures in crop breeding programs, the performance of this novel approach is compared with existing methods, like selection based on mean genomic estimated breeding values and optimal haploid values. In all cases, higher genetic gain was obtained compared with previously suggested methods. When 1% of progenies per cross were selected, the genetic gain based on the estimated usefulness criterion increased by 0.14 genetic standard deviation compared to a selection based on mean genomic estimated breeding values. Analytical derivations of the progeny genotypic variance-covariance matrix based on parental genotypes and genetic map information make simulations of progeny dispensable, and allow fast implementation in large-scale breeding programs. Copyright © 2017 by the Genetics Society of America.

  5. GPR image analysis to locate water leaks from buried pipes by applying variance filters

    Science.gov (United States)

    Ocaña-Levario, Silvia J.; Carreño-Alvarado, Elizabeth P.; Ayala-Cabrera, David; Izquierdo, Joaquín

    2018-05-01

    Nowadays, there is growing interest in controlling and reducing the amount of water lost through leakage in water supply systems (WSSs). Leakage is, in fact, one of the biggest problems faced by the managers of these utilities. This work addresses the problem of leakage in WSSs by using GPR (Ground Penetrating Radar) as a non-destructive method. The main objective is to identify and extract features from GPR images such as leaks and components in a controlled laboratory condition by a methodology based on second order statistical parameters and, using the obtained features, to create 3D models that allows quick visualization of components and leaks in WSSs from GPR image analysis and subsequent interpretation. This methodology has been used before in other fields and provided promising results. The results obtained with the proposed methodology are presented, analyzed, interpreted and compared with the results obtained by using a well-established multi-agent based methodology. These results show that the variance filter is capable of highlighting the characteristics of components and anomalies, in an intuitive manner, which can be identified by non-highly qualified personnel, using the 3D models we develop. This research intends to pave the way towards future intelligent detection systems that enable the automatic detection of leaks in WSSs.

  6. Power generation mixes evaluation applying the mean-variance theory. Analysis of the choices for Japanese energy policy

    International Nuclear Information System (INIS)

    Tabaru, Yasuhiko; Nonaka, Yuzuru; Nonaka, Shunsuke; Endou, Misao

    2013-01-01

    Optimal Japanese power generation mixes in 2030, for both economic efficiency and energy security (less cost variance risk), are evaluated by applying the mean-variance portfolio theory. Technical assumptions, including remaining generation capacity out of the present generation mix, future load duration curve, and Research and Development risks for some renewable energy technologies in 2030, are taken into consideration as either the constraints or parameters for the evaluation. Efficiency frontiers, which consist of the optimal generation mixes for several future scenarios, are identified, taking not only power balance but also capacity balance into account, and are compared with three power generation mixes submitted by the Japanese government as 'the choices for energy and environment'. (author)

  7. Evidence for Response Bias as a Source of Error Variance in Applied Assessment

    Science.gov (United States)

    McGrath, Robert E.; Mitchell, Matthew; Kim, Brian H.; Hough, Leaetta

    2010-01-01

    After 100 years of discussion, response bias remains a controversial topic in psychological measurement. The use of bias indicators in applied assessment is predicated on the assumptions that (a) response bias suppresses or moderates the criterion-related validity of substantive psychological indicators and (b) bias indicators are capable of…

  8. Particle swarm optimization applied to data reconciliation in nuclear power plant

    International Nuclear Information System (INIS)

    Valdetaro, Eduardo Damianik; Schirru, Roberto

    2009-01-01

    Mass and energy balance are important issues that needs to keep into account in nuclear power plants. Data Reconciliation and Parameter Estimation (DRPE) and gross errors detection are techniques of increasing interest. Works using Genetic Algorithm (GA) have been successfully used in the Data Reconciliation (DR) nonlinear optimization problem, and it seems that evolutionary algorithms performs well without the complex calculations used by the conventional methods. The aim of this paper is to present the Particle Swarm Optimization Algorithm (PSO) as an alternative to the use of modified GA, which was applied to data reconciliation with simultaneous gross errors detection. In this paper, the DR formulation uses a redescending estimator as objective function and simulation results show that PSO applied to DRPE problem is faster than modified GA presented in literature, do not involve complex calculations and do not need complex parameters to adjust. The PSO algorithm is also able to handle the non-differentiable characteristics of the redescending estimator. (author)

  9. Simultaneous estimation of cross-validation errors in least squares collocation applied for statistical testing and evaluation of the noise variance components

    Science.gov (United States)

    Behnabian, Behzad; Mashhadi Hossainali, Masoud; Malekzadeh, Ahad

    2018-02-01

    The cross-validation technique is a popular method to assess and improve the quality of prediction by least squares collocation (LSC). We present a formula for direct estimation of the vector of cross-validation errors (CVEs) in LSC which is much faster than element-wise CVE computation. We show that a quadratic form of CVEs follows Chi-squared distribution. Furthermore, a posteriori noise variance factor is derived by the quadratic form of CVEs. In order to detect blunders in the observations, estimated standardized CVE is proposed as the test statistic which can be applied when noise variances are known or unknown. We use LSC together with the methods proposed in this research for interpolation of crustal subsidence in the northern coast of the Gulf of Mexico. The results show that after detection and removing outliers, the root mean square (RMS) of CVEs and estimated noise standard deviation are reduced about 51 and 59%, respectively. In addition, RMS of LSC prediction error at data points and RMS of estimated noise of observations are decreased by 39 and 67%, respectively. However, RMS of LSC prediction error on a regular grid of interpolation points covering the area is only reduced about 4% which is a consequence of sparse distribution of data points for this case study. The influence of gross errors on LSC prediction results is also investigated by lower cutoff CVEs. It is indicated that after elimination of outliers, RMS of this type of errors is also reduced by 19.5% for a 5 km radius of vicinity. We propose a method using standardized CVEs for classification of dataset into three groups with presumed different noise variances. The noise variance components for each of the groups are estimated using restricted maximum-likelihood method via Fisher scoring technique. Finally, LSC assessment measures were computed for the estimated heterogeneous noise variance model and compared with those of the homogeneous model. The advantage of the proposed method is the

  10. Downside Variance Risk Premium

    OpenAIRE

    Feunou, Bruno; Jahan-Parvar, Mohammad; Okou, Cedric

    2015-01-01

    We propose a new decomposition of the variance risk premium in terms of upside and downside variance risk premia. The difference between upside and downside variance risk premia is a measure of skewness risk premium. We establish that the downside variance risk premium is the main component of the variance risk premium, and that the skewness risk premium is a priced factor with significant prediction power for aggregate excess returns. Our empirical investigation highlights the positive and s...

  11. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  12. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In the previous two sessions, it was assumed that the measurement error variances were known quantities when the variances of the safeguards indices were calculated. These known quantities are actually estimates based on historical data and on data generated by the measurement program. Session 34 discusses how measurement error parameters are estimated for different situations. The various error types are considered. The purpose of the session is to enable participants to: (1) estimate systematic error variances from standard data; (2) estimate random error variances from data as replicate measurement data; (3) perform a simple analysis of variances to characterize the measurement error structure when biases vary over time

  13. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Jaech, J.L.

    1984-01-01

    The estimation of measurement error parameters in safeguards systems is discussed. Both systematic and random errors are considered. A simple analysis of variances to characterize the measurement error structure with biases varying over time is presented

  14. On Mean-Variance Analysis

    OpenAIRE

    Li, Yang; Pirvu, Traian A

    2011-01-01

    This paper considers the mean variance portfolio management problem. We examine portfolios which contain both primary and derivative securities. The challenge in this context is due to portfolio's nonlinearities. The delta-gamma approximation is employed to overcome it. Thus, the optimization problem is reduced to a well posed quadratic program. The methodology developed in this paper can be also applied to pricing and hedging in incomplete markets.

  15. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  16. Restricted Variance Interaction Effects

    DEFF Research Database (Denmark)

    Cortina, Jose M.; Köhler, Tine; Keeler, Kathleen R.

    2018-01-01

    Although interaction hypotheses are increasingly common in our field, many recent articles point out that authors often have difficulty justifying them. The purpose of this article is to describe a particular type of interaction: the restricted variance (RV) interaction. The essence of the RV int...

  17. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th; Verburg, T.G.

    2001-01-01

    The present study was undertaken to explore possibilities to judge survey quality on basis of a limited and restricted number of a-priori observations. Here, quality is defined as the ratio between survey and local variance (signal-to-noise ratio). The results indicate that the presented surveys do not permit such judgement; the discussion also suggests that the 5-fold local sampling strategies do not merit any sound judgement. As it stands, uncertainties in local determinations may largely obscure possibilities to judge survey quality. The results further imply that surveys will benefit from procedures, controls and approaches in sampling and sample handling, to assess both average, variance and the nature of the distribution of elemental concentrations in local sites. This reasoning is compatible with the idea of the site as a basic homogeneous survey unit, which is implicitly and conceptually underlying any survey performed. (author)

  18. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.T.

    1999-01-01

    The present study deals with the (larger-scaled) biomonitoring survey and specifically focuses on the sampling site. In most surveys, the sampling site is simply selected or defined as a spot of (geographical) dimensions which is small relative to the dimensions of the total survey area. Implicitly it is assumed that the sampling site is essentially homogeneous with respect to the investigated variation in survey parameters. As such, the sampling site is mostly regarded as 'the basic unit' of the survey. As a logical consequence, the local (sampling site) variance should also be seen as a basic and important characteristic of the survey. During the study, work is carried out to gain more knowledge of the local variance. Multiple sampling is carried out at a specific site (tree bark, mosses, soils), multi-elemental analyses are carried out by NAA, and local variances are investigated by conventional statistics, factor analytical techniques, and bootstrapping. Consequences of the outcomes are discussed in the context of sampling, sample handling and survey quality. (author)

  19. Spectral Ambiguity of Allan Variance

    Science.gov (United States)

    Greenhall, C. A.

    1996-01-01

    We study the extent to which knowledge of Allan variance and other finite-difference variances determines the spectrum of a random process. The variance of first differences is known to determine the spectrum. We show that, in general, the Allan variance does not. A complete description of the ambiguity is given.

  20. Simulation study on heterogeneous variance adjustment for observations with different measurement error variance

    DEFF Research Database (Denmark)

    Pitkänen, Timo; Mäntysaari, Esa A; Nielsen, Ulrik Sander

    2013-01-01

    of variance correction is developed for the same observations. As automated milking systems are becoming more popular the current evaluation model needs to be enhanced to account for the different measurement error variances of observations from automated milking systems. In this simulation study different...... models and different approaches to account for heterogeneous variance when observations have different measurement error variances were investigated. Based on the results we propose to upgrade the currently applied models and to calibrate the heterogeneous variance adjustment method to yield same genetic......The Nordic Holstein yield evaluation model describes all available milk, protein and fat test-day yields from Denmark, Finland and Sweden. In its current form all variance components are estimated from observations recorded under conventional milking systems. Also the model for heterogeneity...

  1. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  2. Introduction to variance estimation

    CERN Document Server

    Wolter, Kirk M

    2007-01-01

    We live in the information age. Statistical surveys are used every day to determine or evaluate public policy and to make important business decisions. Correct methods for computing the precision of the survey data and for making inferences to the target population are absolutely essential to sound decision making. Now in its second edition, Introduction to Variance Estimation has for more than twenty years provided the definitive account of the theory and methods for correct precision calculations and inference, including examples of modern, complex surveys in which the methods have been used successfully. The book provides instruction on the methods that are vital to data-driven decision making in business, government, and academe. It will appeal to survey statisticians and other scientists engaged in the planning and conduct of survey research, and to those analyzing survey data and charged with extracting compelling information from such data. It will appeal to graduate students and university faculty who...

  3. Decomposition of Variance for Spatial Cox Processes.

    Science.gov (United States)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-03-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive or log linear random intensity functions. We moreover consider a new and flexible class of pair correlation function models given in terms of normal variance mixture covariance functions. The proposed methodology is applied to point pattern data sets of locations of tropical rain forest trees.

  4. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  5. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  6. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introducea general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive...

  7. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  8. Same Traits, Different Variance

    Directory of Open Access Journals (Sweden)

    Jamie S. Churchyard

    2014-02-01

    Full Text Available Personality trait questionnaires are regularly used in individual differences research to examine personality scores between participants, although trait researchers tend to place little value on intra-individual variation in item ratings within a measured trait. The few studies that examine variability indices have not considered how they are related to a selection of psychological outcomes, so we recruited 160 participants (age M = 24.16, SD = 9.54 who completed the IPIP-HEXACO personality questionnaire and several outcome measures. Heterogenous within-subject differences in item ratings were found for every trait/facet measured, with measurement error that remained stable across the questionnaire. Within-subject standard deviations, calculated as measures of individual variation in specific item ratings within a trait/facet, were related to outcomes including life satisfaction and depression. This suggests these indices represent valid constructs of variability, and that researchers administering behavior statement trait questionnaires with outcome measures should also apply item-level variability indices.

  9. Means and Variances without Calculus

    Science.gov (United States)

    Kinney, John J.

    2005-01-01

    This article gives a method of finding discrete approximations to continuous probability density functions and shows examples of its use, allowing students without calculus access to the calculation of means and variances.

  10. Regional sensitivity analysis using revised mean and variance ratio functions

    International Nuclear Information System (INIS)

    Wei, Pengfei; Lu, Zhenzhou; Ruan, Wenbin; Song, Jingwen

    2014-01-01

    The variance ratio function, derived from the contribution to sample variance (CSV) plot, is a regional sensitivity index for studying how much the output deviates from the original mean of model output when the distribution range of one input is reduced and to measure the contribution of different distribution ranges of each input to the variance of model output. In this paper, the revised mean and variance ratio functions are developed for quantifying the actual change of the model output mean and variance, respectively, when one reduces the range of one input. The connection between the revised variance ratio function and the original one is derived and discussed. It is shown that compared with the classical variance ratio function, the revised one is more suitable to the evaluation of model output variance due to reduced ranges of model inputs. A Monte Carlo procedure, which needs only a set of samples for implementing it, is developed for efficiently computing the revised mean and variance ratio functions. The revised mean and variance ratio functions are compared with the classical ones by using the Ishigami function. At last, they are applied to a planar 10-bar structure

  11. Realized Variance and Market Microstructure Noise

    DEFF Research Database (Denmark)

    Hansen, Peter R.; Lunde, Asger

    2006-01-01

    We study market microstructure noise in high-frequency data and analyze its implications for the realized variance (RV) under a general specification for the noise. We show that kernel-based estimators can unearth important characteristics of market microstructure noise and that a simple kernel......-based estimator dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones Industrial Average stocks reveals that market microstructure noise its time-dependent and correlated with increments in the efficient price. This has important implications for volatility...... estimation based on high-frequency data. Finally, we apply cointegration techniques to decompose transaction prices and bid-ask quotes into an estimate of the efficient price and noise. This framework enables us to study the dynamic effects on transaction prices and quotes caused by changes in the efficient...

  12. Revision: Variance Inflation in Regression

    Directory of Open Access Journals (Sweden)

    D. R. Jensen

    2013-01-01

    the intercept; and (iv variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.

  13. Modelling volatility by variance decomposition

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the condit...

  14. Gini estimation under infinite variance

    NARCIS (Netherlands)

    A. Fontanari (Andrea); N.N. Taleb (Nassim Nicholas); P. Cirillo (Pasquale)

    2018-01-01

    textabstractWe study the problems related to the estimation of the Gini index in presence of a fat-tailed data generating process, i.e. one in the stable distribution class with finite mean but infinite variance (i.e. with tail index α∈(1,2)). We show that, in such a case, the Gini coefficient

  15. The value of travel time variance

    OpenAIRE

    Fosgerau, Mogens; Engelson, Leonid

    2010-01-01

    This paper considers the value of travel time variability under scheduling preferences that are de�fined in terms of linearly time-varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can free...

  16. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  17. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  18. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  19. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  20. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  1. Beyond the Mean: Sensitivities of the Variance of Population Growth.

    Science.gov (United States)

    Trotter, Meredith V; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad

    2013-03-01

    Populations in variable environments are described by both a mean growth rate and a variance of stochastic population growth. Increasing variance will increase the width of confidence bounds around estimates of population size, growth, probability of and time to quasi-extinction. However, traditional sensitivity analyses of stochastic matrix models only consider the sensitivity of the mean growth rate. We derive an exact method for calculating the sensitivity of the variance in population growth to changes in demographic parameters. Sensitivities of the variance also allow a new sensitivity calculation for the cumulative probability of quasi-extinction. We apply this new analysis tool to an empirical dataset on at-risk polar bears to demonstrate its utility in conservation biology We find that in many cases a change in life history parameters will increase both the mean and variance of population growth of polar bears. This counterintuitive behaviour of the variance complicates predictions about overall population impacts of management interventions. Sensitivity calculations for cumulative extinction risk factor in changes to both mean and variance, providing a highly useful quantitative tool for conservation management. The mean stochastic growth rate and its sensitivities do not fully describe the dynamics of population growth. The use of variance sensitivities gives a more complete understanding of population dynamics and facilitates the calculation of new sensitivities for extinction processes.

  2. Confidence Interval Approximation For Treatment Variance In ...

    African Journals Online (AJOL)

    In a random effects model with a single factor, variation is partitioned into two as residual error variance and treatment variance. While a confidence interval can be imposed on the residual error variance, it is not possible to construct an exact confidence interval for the treatment variance. This is because the treatment ...

  3. Variance computations for functional of absolute risk estimates.

    Science.gov (United States)

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  4. Estimating High-Frequency Based (Co-) Variances: A Unified Approach

    DEFF Research Database (Denmark)

    Voev, Valeri; Nolte, Ingmar

    We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform, in terms of the root mean squared error criterion, the most recent...... and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Aït-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling...

  5. Variance bias analysis for the Gelbard's batch method

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Shim, Hyung Jin [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this paper, variances and the bias will be derived analytically when the Gelbard's batch method is applied. And then, the real variance estimated from this bias will be compared with the real variance calculated from replicas. Variance and the bias were derived analytically when the batch method was applied. If the batch method was applied to calculate the sample variance, covariance terms between tallies which exist in the batch were eliminated from the bias. With the 2 by 2 fission matrix problem, we could calculate real variance regardless of whether or not the batch method was applied. However as batch size got larger, standard deviation of real variance was increased. When we perform a Monte Carlo estimation, we could get a sample variance as the statistical uncertainty of it. However, this value is smaller than the real variance of it because a sample variance is biased. To reduce this bias, Gelbard devised the method which is called the Gelbard's batch method. It has been certificated that a sample variance get closer to the real variance when the batch method is applied. In other words, the bias get reduced. This fact is well known to everyone in the MC field. However, so far, no one has given the analytical interpretation on it.

  6. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  7. Power Estimation in Multivariate Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Jean François Allaire

    2007-09-01

    Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.

  8. The value of travel time variance

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Engelson, Leonid

    2011-01-01

    This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability...... that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending...... on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time....

  9. Speed Variance and Its Influence on Accidents.

    Science.gov (United States)

    Garber, Nicholas J.; Gadirau, Ravi

    A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…

  10. Variance function estimation for immunoassays

    International Nuclear Information System (INIS)

    Raab, G.M.; Thompson, R.; McKenzie, I.

    1980-01-01

    A computer program is described which implements a recently described, modified likelihood method of determining an appropriate weighting function to use when fitting immunoassay dose-response curves. The relationship between the variance of the response and its mean value is assumed to have an exponential form, and the best fit to this model is determined from the within-set variability of many small sets of repeated measurements. The program estimates the parameter of the exponential function with its estimated standard error, and tests the fit of the experimental data to the proposed model. Output options include a list of the actual and fitted standard deviation of the set of responses, a plot of actual and fitted standard deviation against the mean response, and an ordered list of the 10 sets of data with the largest ratios of actual to fitted standard deviation. The program has been designed for a laboratory user without computing or statistical expertise. The test-of-fit has proved valuable for identifying outlying responses, which may be excluded from further analysis by being set to negative values in the input file. (Auth.)

  11. Why risk is not variance: an expository note.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2008-08-01

    Variance (or standard deviation) of return is widely used as a measure of risk in financial investment risk analysis applications, where mean-variance analysis is applied to calculate efficient frontiers and undominated portfolios. Why, then, do health, safety, and environmental (HS&E) and reliability engineering risk analysts insist on defining risk more flexibly, as being determined by probabilities and consequences, rather than simply by variances? This note suggests an answer by providing a simple proof that mean-variance decision making violates the principle that a rational decisionmaker should prefer higher to lower probabilities of receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a continuous increasing indifference curve for mean-variance combinations at the origin is enough to imply that a decisionmaker must find unacceptable some prospects that offer a positive probability of gain and zero probability of loss. Unlike some previous analyses of limitations of variance as a risk metric, this expository note uses only simple mathematics and does not require the additional framework of von Neumann Morgenstern utility theory.

  12. A mean-variance frontier in discrete and continuous time

    NARCIS (Netherlands)

    Bekker, Paul A.

    2004-01-01

    The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation

  13. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  14. Influence of Family Structure on Variance Decomposition

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Sarup, Pernille Merete; Sørensen, Peter

    Partitioning genetic variance by sets of randomly sampled genes for complex traits in D. melanogaster and B. taurus, has revealed that population structure can affect variance decomposition. In fruit flies, we found that a high likelihood ratio is correlated with a high proportion of explained ge...... capturing pure noise. Therefore it is necessary to use both criteria, high likelihood ratio in favor of a more complex genetic model and proportion of genetic variance explained, to identify biologically important gene groups...

  15. Efficient Cardinality/Mean-Variance Portfolios

    OpenAIRE

    Brito, R. Pedro; Vicente, Luís Nunes

    2014-01-01

    International audience; We propose a novel approach to handle cardinality in portfolio selection, by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allow us to robustly compute (in-sample) the whole cardinality/mean-variance efficient frontier, for a variety of data sets and mean-variance models. Our results s...

  16. The phenotypic variance gradient - a novel concept.

    Science.gov (United States)

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  17. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros, E-mail: stavros.christoforou@gmail.com [Kirinthou 17, 34100, Chalkida (Greece); Hoogenboom, J. Eduard, E-mail: j.e.hoogenboom@tudelft.nl [Department of Applied Sciences, Delft University of Technology (Netherlands)

    2011-07-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k{sub eff} estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  18. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    International Nuclear Information System (INIS)

    Christoforou, Stavros; Hoogenboom, J. Eduard

    2011-01-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k_e_f_f estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  19. Least-squares variance component estimation

    NARCIS (Netherlands)

    Teunissen, P.J.G.; Amiri-Simkooei, A.R.

    2007-01-01

    Least-squares variance component estimation (LS-VCE) is a simple, flexible and attractive method for the estimation of unknown variance and covariance components. LS-VCE is simple because it is based on the well-known principle of LS; it is flexible because it works with a user-defined weight

  20. Expected Stock Returns and Variance Risk Premia

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Zhou, Hao

    risk premium with the P/E ratio results in an R2 for the quarterly returns of more than twenty-five percent. The results depend crucially on the use of "model-free", as opposed to standard Black-Scholes, implied variances, and realized variances constructed from high-frequency intraday, as opposed...

  1. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  2. Variance estimation for generalized Cavalieri estimators

    OpenAIRE

    Johanna Ziegel; Eva B. Vedel Jensen; Karl-Anton Dorph-Petersen

    2011-01-01

    The precision of stereological estimators based on systematic sampling is of great practical importance. This paper presents methods of data-based variance estimation for generalized Cavalieri estimators where errors in sampling positions may occur. Variance estimators are derived under perturbed systematic sampling, systematic sampling with cumulative errors and systematic sampling with random dropouts. Copyright 2011, Oxford University Press.

  3. Validation of consistency of Mendelian sampling variance.

    Science.gov (United States)

    Tyrisevä, A-M; Fikse, W F; Mäntysaari, E A; Jakobsen, J; Aamand, G P; Dürr, J; Lidauer, M H

    2018-03-01

    Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of the methods available today enable countries to validate their national evaluation models for heterogeneity of genetic variance. We describe a new validation method to fill this gap comprising the following steps: estimating within-year genetic variances using Mendelian sampling and its prediction error variance, fitting a weighted linear regression between the estimates and the years under study, identifying possible outliers, and defining a 95% empirical confidence interval for a possible trend in the estimates. We tested the specificity and sensitivity of the proposed validation method with simulated data using a real data structure. Moderate (M) and small (S) size populations were simulated under 3 scenarios: a control with homogeneous variance and 2 scenarios with yearly increases in phenotypic variance of 2 and 10%, respectively. Results showed that the new method was able to estimate genetic variance accurately enough to detect bias in genetic variance. Under the control scenario, the trend in genetic variance was practically zero in setting M. Testing cows with an average birth year class size of more than 43,000 in setting M showed that tolerance values are needed for both the trend and the outlier tests to detect only cases with a practical effect in larger data sets. Regardless of the magnitude (yearly increases in phenotypic variance of 2 or 10%) of the generated trend, it deviated statistically significantly from zero in all data replicates for both cows and bulls in setting M. In setting S with a mean of 27 bulls in a year class, the sampling error and thus the probability of a false-positive result clearly increased. Still, overall estimated genetic

  4. Portfolio optimization with mean-variance model

    Science.gov (United States)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  5. Gravity interpretation of dipping faults using the variance analysis method

    International Nuclear Information System (INIS)

    Essa, Khalid S

    2013-01-01

    A new algorithm is developed to estimate simultaneously the depth and the dip angle of a buried fault from the normalized gravity gradient data. This algorithm utilizes numerical first horizontal derivatives computed from the observed gravity anomaly, using filters of successive window lengths to estimate the depth and the dip angle of a buried dipping fault structure. For a fixed window length, the depth is estimated using a least-squares sense for each dip angle. The method is based on computing the variance of the depths determined from all horizontal gradient anomaly profiles using the least-squares method for each dip angle. The minimum variance is used as a criterion for determining the correct dip angle and depth of the buried structure. When the correct dip angle is used, the variance of the depths is always less than the variances computed using wrong dip angles. The technique can be applied not only to the true residuals, but also to the measured Bouguer gravity data. The method is applied to synthetic data with and without random errors and two field examples from Egypt and Scotland. In all cases examined, the estimated depths and other model parameters are found to be in good agreement with the actual values. (paper)

  6. Is fMRI ?noise? really noise? Resting state nuisance regressors remove variance with network structure

    OpenAIRE

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed ...

  7. Grammatical and lexical variance in English

    CERN Document Server

    Quirk, Randolph

    2014-01-01

    Written by one of Britain's most distinguished linguists, this book is concerned with the phenomenon of variance in English grammar and vocabulary across regional, social, stylistic and temporal space.

  8. A mean-variance frontier in discrete and continuous time

    OpenAIRE

    Bekker, Paul A.

    2004-01-01

    The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation is based on the solution for the frontier in discrete time. Using the same multiperiod framework as Li and Ng (2000), I provide an alternative derivation and an alternative formulation of the solu...

  9. On mean reward variance in semi-Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2005-01-01

    Roč. 62, č. 3 (2005), s. 387-397 ISSN 1432-2994 R&D Projects: GA ČR(CZ) GA402/05/0115; GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Markov and semi-Markov processes with rewards * variance of cumulative reward * asymptotic behaviour Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.259, year: 2005

  10. Mean-Variance Analysis in a Multiperiod Setting

    OpenAIRE

    Frauendorfer, Karl; Siede, Heiko

    1997-01-01

    Similar to the classical Markowitz approach it is possible to apply a mean-variance criterion to a multiperiod setting to obtain efficient portfolios. To represent the stochastic dynamic characteristics necessary for modelling returns a process of asset returns is discretized with respect to time and space and summarized in a scenario tree. The resulting optimization problem is solved by means of stochastic multistage programming. The optimal solutions show equivalent structural properties as...

  11. A Mean variance analysis of arbitrage portfolios

    Science.gov (United States)

    Fang, Shuhong

    2007-03-01

    Based on the careful analysis of the definition of arbitrage portfolio and its return, the author presents a mean-variance analysis of the return of arbitrage portfolios, which implies that Korkie and Turtle's results ( B. Korkie, H.J. Turtle, A mean-variance analysis of self-financing portfolios, Manage. Sci. 48 (2002) 427-443) are misleading. A practical example is given to show the difference between the arbitrage portfolio frontier and the usual portfolio frontier.

  12. Dynamic Mean-Variance Asset Allocation

    OpenAIRE

    Basak, Suleyman; Chabakauri, Georgy

    2009-01-01

    Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in ...

  13. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  14. The Variance Composition of Firm Growth Rates

    Directory of Open Access Journals (Sweden)

    Luiz Artur Ledur Brito

    2009-04-01

    Full Text Available Firms exhibit a wide variability in growth rates. This can be seen as another manifestation of the fact that firms are different from one another in several respects. This study investigated this variability using the variance components technique previously used to decompose the variance of financial performance. The main source of variation in growth rates, responsible for more than 40% of total variance, corresponds to individual, idiosyncratic firm aspects and not to industry, country, or macroeconomic conditions prevailing in specific years. Firm growth, similar to financial performance, is mostly unique to specific firms and not an industry or country related phenomenon. This finding also justifies using growth as an alternative outcome of superior firm resources and as a complementary dimension of competitive advantage. This also links this research with the resource-based view of strategy. Country was the second source of variation with around 10% of total variance. The analysis was done using the Compustat Global database with 80,320 observations, comprising 13,221 companies in 47 countries, covering the years of 1994 to 2002. It also compared the variance structure of growth to the variance structure of financial performance in the same sample.

  15. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  16. A class of multi-period semi-variance portfolio for petroleum exploration and development

    Science.gov (United States)

    Guo, Qiulin; Li, Jianzhong; Zou, Caineng; Guo, Yujuan; Yan, Wei

    2012-10-01

    Variance is substituted by semi-variance in Markowitz's portfolio selection model. For dynamic valuation on exploration and development projects, one period portfolio selection is extended to multi-period. In this article, a class of multi-period semi-variance exploration and development portfolio model is formulated originally. Besides, a hybrid genetic algorithm, which makes use of the position displacement strategy of the particle swarm optimiser as a mutation operation, is applied to solve the multi-period semi-variance model. For this class of portfolio model, numerical results show that the mode is effective and feasible.

  17. Variance risk premia in CO_2 markets: A political perspective

    International Nuclear Information System (INIS)

    Reckling, Dennis

    2016-01-01

    The European Commission discusses the change of free allocation plans to guarantee a stable market equilibrium. Selling over-allocated contracts effectively depreciates prices and negates the effect intended by the regulator to establish a stable price mechanism for CO_2 assets. Our paper investigates mispricing and allocation issues by quantitatively analyzing variance risk premia of CO_2 markets over the course of changing regimes (Phase I-III) for three different assets (European Union Allowances, Certified Emissions Reductions and European Reduction Units). The research paper gives recommendations to regulatory bodies in order to most effectively cap the overall carbon dioxide emissions. The analysis of an enriched dataset, comprising not only of additional CO_2 assets, but also containing data from the European Energy Exchange, shows that variance risk premia are equal to a sample average of 0.69 for European Union Allowances (EUA), 0.17 for Certified Emissions Reductions (CER) and 0.81 for European Reduction Units (ERU). We identify the existence of a common risk factor across different assets that justifies the presence of risk premia. Various policy implications with regards to gaining investors’ confidence in the market are being reviewed. Consequently, we recommend the implementation of a price collar approach to support stable prices for emission allowances. - Highlights: •Enriched dataset covering all three political phases of the CO_2 markets. •Clear policy implications for regulators to most effectively cap the overall CO_2 emissions pool. •Applying a cross-asset benchmark index for variance beta estimation. •CER contracts have been analyzed with respect to variance risk premia for the first time. •Increased forecasting accuracy for CO_2 asset returns by using variance risk premia.

  18. Integrating Variances into an Analytical Database

    Science.gov (United States)

    Sanchez, Carlos

    2010-01-01

    For this project, I enrolled in numerous SATERN courses that taught the basics of database programming. These include: Basic Access 2007 Forms, Introduction to Database Systems, Overview of Database Design, and others. My main job was to create an analytical database that can handle many stored forms and make it easy to interpret and organize. Additionally, I helped improve an existing database and populate it with information. These databases were designed to be used with data from Safety Variances and DCR forms. The research consisted of analyzing the database and comparing the data to find out which entries were repeated the most. If an entry happened to be repeated several times in the database, that would mean that the rule or requirement targeted by that variance has been bypassed many times already and so the requirement may not really be needed, but rather should be changed to allow the variance's conditions permanently. This project did not only restrict itself to the design and development of the database system, but also worked on exporting the data from the database to a different format (e.g. Excel or Word) so it could be analyzed in a simpler fashion. Thanks to the change in format, the data was organized in a spreadsheet that made it possible to sort the data by categories or types and helped speed up searches. Once my work with the database was done, the records of variances could be arranged so that they were displayed in numerical order, or one could search for a specific document targeted by the variances and restrict the search to only include variances that modified a specific requirement. A great part that contributed to my learning was SATERN, NASA's resource for education. Thanks to the SATERN online courses I took over the summer, I was able to learn many new things about computers and databases and also go more in depth into topics I already knew about.

  19. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  20. Estimating quadratic variation using realized variance

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    with a rather general SV model - which is a special case of the semimartingale model. Then QV is integrated variance and we can derive the asymptotic distribution of the RV and its rate of convergence. These results do not require us to specify a model for either the drift or volatility functions, although we...... have to impose some weak regularity assumptions. We illustrate the use of the limit theory on some exchange rate data and some stock data. We show that even with large values of M the RV is sometimes a quite noisy estimator of integrated variance. Copyright © 2002 John Wiley & Sons, Ltd....

  1. 29 CFR 1920.2 - Variances.

    Science.gov (United States)

    2010-07-01

    ...) PROCEDURE FOR VARIATIONS FROM SAFETY AND HEALTH REGULATIONS UNDER THE LONGSHOREMEN'S AND HARBOR WORKERS...) or 6(d) of the Williams-Steiger Occupational Safety and Health Act of 1970 (29 U.S.C. 655). The... under the Williams-Steiger Occupational Safety and Health Act of 1970, and any variance from §§ 1910.13...

  2. 78 FR 14122 - Revocation of Permanent Variances

    Science.gov (United States)

    2013-03-04

    ... Douglas Fir planking had to have at least a 1,900 fiber stress and 1,900,000 modulus of elasticity, while the Yellow Pine planking had to have at least 2,500 fiber stress and 2,000,000 modulus of elasticity... the permanent variances, and affected employees, to submit written data, views, and arguments...

  3. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    Investors in fixed income markets are willing to pay a very large premium to be hedged against shocks in expected volatility and the size of this premium can be studied through variance swaps. Using thirty years of option and high-frequency data, we document the following novel stylized facts...

  4. Biological Variance in Agricultural Products. Theoretical Considerations

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Konopacki, P.

    2003-01-01

    The food that we eat is uniform neither in shape or appearance nor in internal composition or content. Since technology became increasingly important, the presence of biological variance in our food became more and more of a nuisance. Techniques and procedures (statistical, technical) were

  5. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  6. Zero-intelligence realized variance estimation

    NARCIS (Netherlands)

    Gatheral, J.; Oomen, R.C.A.

    2010-01-01

    Given a time series of intra-day tick-by-tick price data, how can realized variance be estimated? The obvious estimator—the sum of squared returns between trades—is biased by microstructure effects such as bid-ask bounce and so in the past, practitioners were advised to drop most of the data and

  7. Variance Reduction Techniques in Monte Carlo Methods

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.

    2010-01-01

    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the

  8. Reexamining financial and economic predictability with new estimators of realized variance and variance risk premium

    DEFF Research Database (Denmark)

    Casas, Isabel; Mao, Xiuping; Veiga, Helena

    This study explores the predictive power of new estimators of the equity variance risk premium and conditional variance for future excess stock market returns, economic activity, and financial instability, both during and after the last global financial crisis. These estimators are obtained from...... time-varying coefficient models are the ones showing considerably higher predictive power for stock market returns and financial instability during the financial crisis, suggesting that an extreme volatility period requires models that can adapt quickly to turmoil........ Moreover, a comparison of the overall results reveals that the conditional variance gains predictive power during the global financial crisis period. Furthermore, both the variance risk premium and conditional variance are determined to be predictors of future financial instability, whereas conditional...

  9. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.

  10. R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization.

    Science.gov (United States)

    Dazard, Jean-Eudes; Xu, Hua; Rao, J Sunil

    2011-01-01

    We present an implementation in the R language for statistical computing of our recent non-parametric joint adaptive mean-variance regularization and variance stabilization procedure. The method is specifically suited for handling difficult problems posed by high-dimensional multivariate datasets ( p ≫ n paradigm), such as in 'omics'-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. The implementation offers a complete set of features including: (i) normalization and/or variance stabilization function, (ii) computation of mean-variance-regularized t and F statistics, (iii) generation of diverse diagnostic plots, (iv) synthetic and real 'omics' test datasets, (v) computationally efficient implementation, using C interfacing, and an option for parallel computing, (vi) manual and documentation on how to setup a cluster. To make each feature as user-friendly as possible, only one subroutine per functionality is to be handled by the end-user. It is available as an R package, called MVR ('Mean-Variance Regularization'), downloadable from the CRAN.

  11. A proxy for variance in dense matching over homogeneous terrain

    Science.gov (United States)

    Altena, Bas; Cockx, Liesbet; Goedemé, Toon

    2014-05-01

    Automation in photogrammetry and avionics have brought highly autonomous UAV mapping solutions on the market. These systems have great potential for geophysical research, due to their mobility and simplicity of work. Flight planning can be done on site and orientation parameters are estimated automatically. However, one major drawback is still present: if contrast is lacking, stereoscopy fails. Consequently, topographic information cannot be obtained precisely through photogrammetry for areas with low contrast. Even though more robustness is added in the estimation through multi-view geometry, a precise product is still lacking. For the greater part, interpolation is applied over these regions, where the estimation is constrained by uniqueness, its epipolar line and smoothness. Consequently, digital surface models are generated with an estimate of the topography, without holes but also without an indication of its variance. Every dense matching algorithm is based on a similarity measure. Our methodology uses this property to support the idea that if only noise is present, no correspondence can be detected. Therefore, the noise level is estimated in respect to the intensity signal of the topography (SNR) and this ratio serves as a quality indicator for the automatically generated product. To demonstrate this variance indicator, two different case studies were elaborated. The first study is situated at an open sand mine near the village of Kiezegem, Belgium. Two different UAV systems flew over the site. One system had automatic intensity regulation, and resulted in low contrast over the sandy interior of the mine. That dataset was used to identify the weak estimations of the topography and was compared with the data from the other UAV flight. In the second study a flight campaign with the X100 system was conducted along the coast near Wenduine, Belgium. The obtained images were processed through structure-from-motion software. Although the beach had a very low

  12. A Fay-Herriot Model with Different Random Effect Variances

    Czech Academy of Sciences Publication Activity Database

    Hobza, Tomáš; Morales, D.; Herrador, M.; Esteban, M.D.

    2011-01-01

    Roč. 40, č. 5 (2011), s. 785-797 ISSN 0361-0926 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : small area estimation * Fay-Herriot model * Linear mixed model * Labor Force Survey Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.274, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/hobza-a%20fay-herriot%20model%20with%20different%20random%20effect%20variances.pdf

  13. Variance-based sensitivity analysis for wastewater treatment plant modelling.

    Science.gov (United States)

    Cosenza, Alida; Mannina, Giorgio; Vanrolleghem, Peter A; Neumann, Marc B

    2014-02-01

    Global sensitivity analysis (GSA) is a valuable tool to support the use of mathematical models that characterise technical or natural systems. In the field of wastewater modelling, most of the recent applications of GSA use either regression-based methods, which require close to linear relationships between the model outputs and model factors, or screening methods, which only yield qualitative results. However, due to the characteristics of membrane bioreactors (MBR) (non-linear kinetics, complexity, etc.) there is an interest to adequately quantify the effects of non-linearity and interactions. This can be achieved with variance-based sensitivity analysis methods. In this paper, the Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method is applied to an integrated activated sludge model (ASM2d) for an MBR system including microbial product formation and physical separation processes. Twenty-one model outputs located throughout the different sections of the bioreactor and 79 model factors are considered. Significant interactions among the model factors are found. Contrary to previous GSA studies for ASM models, we find the relationship between variables and factors to be non-linear and non-additive. By analysing the pattern of the variance decomposition along the plant, the model factors having the highest variance contributions were identified. This study demonstrates the usefulness of variance-based methods in membrane bioreactor modelling where, due to the presence of membranes and different operating conditions than those typically found in conventional activated sludge systems, several highly non-linear effects are present. Further, the obtained results highlight the relevant role played by the modelling approach for MBR taking into account simultaneously biological and physical processes. © 2013.

  14. Variance gradients and uncertainty budgets for nonlinear measurement functions with independent inputs

    International Nuclear Information System (INIS)

    Campanelli, Mark; Kacker, Raghu; Kessel, Rüdiger

    2013-01-01

    A novel variance-based measure for global sensitivity analysis, termed a variance gradient (VG), is presented for constructing uncertainty budgets under the Guide to the Expression of Uncertainty in Measurement (GUM) framework for nonlinear measurement functions with independent inputs. The motivation behind VGs is the desire of metrologists to understand which inputs' variance reductions would most effectively reduce the variance of the measurand. VGs are particularly useful when the application of the first supplement to the GUM is indicated because of the inadequacy of measurement function linearization. However, VGs reduce to a commonly understood variance decomposition in the case of a linear(ized) measurement function with independent inputs for which the original GUM readily applies. The usefulness of VGs is illustrated by application to an example from the first supplement to the GUM, as well as to the benchmark Ishigami function. A comparison of VGs to other available sensitivity measures is made. (paper)

  15. Study of the variance of a Monte Carlo calculation. Application to weighting; Etude de la variance d'un calcul de Monte Carlo. Application a la ponderation

    Energy Technology Data Exchange (ETDEWEB)

    Lanore, Jeanne-Marie [Commissariat a l' Energie Atomique - CEA, Centre d' Etudes Nucleaires de Fontenay-aux-Roses, Direction des Piles Atomiques, Departement des Etudes de Piles, Service d' Etudes de Protections de Piles (France)

    1969-04-15

    One of the main difficulties in Monte Carlo computations is the estimation of the results variance. Generally, only an apparent variance can be observed over a few calculations, often very different from the actual variance. By studying a large number of short calculations, the authors have tried to evaluate the real variance, and then to apply the obtained results to the optimization of the computations. The program used is the Poker one-dimensional Monte Carlo program. Calculations are performed in two types of fictitious environments: a body with constant cross section, without absorption, where all shocks are elastic and isotropic; a body with variable cross section (presenting a very pronounced peak and hole), with an anisotropy for high energy elastic shocks, and with the possibility of inelastic shocks (this body presents all the features that can appear in a real case)

  16. The Theory of Variances in Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-01

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature

  17. Fundamentals of exploratory analysis of variance

    CERN Document Server

    Hoaglin, David C; Tukey, John W

    2009-01-01

    The analysis of variance is presented as an exploratory component of data analysis, while retaining the customary least squares fitting methods. Balanced data layouts are used to reveal key ideas and techniques for exploration. The approach emphasizes both the individual observations and the separate parts that the analysis produces. Most chapters include exercises and the appendices give selected percentage points of the Gaussian, t, F chi-squared and studentized range distributions.

  18. Variance analysis refines overhead cost control.

    Science.gov (United States)

    Cooper, J C; Suver, J D

    1992-02-01

    Many healthcare organizations may not fully realize the benefits of standard cost accounting techniques because they fail to routinely report volume variances in their internal reports. If overhead allocation is routinely reported on internal reports, managers can determine whether billing remains current or lost charges occur. Healthcare organizations' use of standard costing techniques can lead to more realistic performance measurements and information system improvements that alert management to losses from unrecovered overhead in time for corrective action.

  19. The Genealogical Consequences of Fecundity Variance Polymorphism

    Science.gov (United States)

    Taylor, Jesse E.

    2009-01-01

    The genealogical consequences of within-generation fecundity variance polymorphism are studied using coalescent processes structured by genetic backgrounds. I show that these processes have three distinctive features. The first is that the coalescent rates within backgrounds are not jointly proportional to the infinitesimal variance, but instead depend only on the frequencies and traits of genotypes containing each allele. Second, the coalescent processes at unlinked loci are correlated with the genealogy at the selected locus; i.e., fecundity variance polymorphism has a genomewide impact on genealogies. Third, in diploid models, there are infinitely many combinations of fecundity distributions that have the same diffusion approximation but distinct coalescent processes; i.e., in this class of models, ancestral processes and allele frequency dynamics are not in one-to-one correspondence. Similar properties are expected to hold in models that allow for heritable variation in other traits that affect the coalescent effective population size, such as sex ratio or fecundity and survival schedules. PMID:19433628

  20. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  1. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    Science.gov (United States)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  2. Is fMRI "noise" really noise? Resting state nuisance regressors remove variance with network structure.

    Science.gov (United States)

    Bright, Molly G; Murphy, Kevin

    2015-07-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured "signal" as well as "noise." Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. Copyright © 2015. Published by Elsevier Inc.

  3. Analysis of force variance for a continuous miner drum using the Design of Experiments method

    Energy Technology Data Exchange (ETDEWEB)

    S. Somanchi; V.J. Kecojevic; C.J. Bise [Pennsylvania State University, University Park, PA (United States)

    2006-06-15

    Continuous miners (CMs) are excavating machines designed to extract a variety of minerals by underground mining. The variance in force experienced by the cutting drum is a very important aspect that must be considered during drum design. A uniform variance essentially means that an equal load is applied on the individual cutting bits and this, in turn, enables better cutting action, greater efficiency, and longer bit and machine life. There are certain input parameters used in the drum design whose exact relationships with force variance are not clearly understood. This paper determines (1) the factors that have a significant effect on the force variance of the drum and (2) the values that can be assigned to these factors to minimize the force variance. A computer program, Continuous Miner Drum (CMD), was developed in collaboration with Kennametal, Inc. to facilitate the mechanical design of CM drums. CMD also facilitated data collection for determining significant factors affecting force variance. Six input parameters, including centre pitch, outer pitch, balance angle, shift angle, set angle and relative angle were tested at two levels. Trials were configured using the Design of Experiments (DoE) method where 2{sup 6} full-factorial experimental design was selected to investigate the effect of these factors on force variance. Results from the analysis show that all parameters except balance angle, as well as their interactions, significantly affect the force variance.

  4. Using the PLUM procedure of SPSS to fit unequal variance and generalized signal detection models.

    Science.gov (United States)

    DeCarlo, Lawrence T

    2003-02-01

    The recent addition of aprocedure in SPSS for the analysis of ordinal regression models offers a simple means for researchers to fit the unequal variance normal signal detection model and other extended signal detection models. The present article shows how to implement the analysis and how to interpret the SPSS output. Examples of fitting the unequal variance normal model and other generalized signal detection models are given. The approach offers a convenient means for applying signal detection theory to a variety of research.

  5. Visual SLAM Using Variance Grid Maps

    Science.gov (United States)

    Howard, Andrew B.; Marks, Tim K.

    2011-01-01

    An algorithm denoted Gamma-SLAM performs further processing, in real time, of preprocessed digitized images acquired by a stereoscopic pair of electronic cameras aboard an off-road robotic ground vehicle to build accurate maps of the terrain and determine the location of the vehicle with respect to the maps. Part of the name of the algorithm reflects the fact that the process of building the maps and determining the location with respect to them is denoted simultaneous localization and mapping (SLAM). Most prior real-time SLAM algorithms have been limited in applicability to (1) systems equipped with scanning laser range finders as the primary sensors in (2) indoor environments (or relatively simply structured outdoor environments). The few prior vision-based SLAM algorithms have been feature-based and not suitable for real-time applications and, hence, not suitable for autonomous navigation on irregularly structured terrain. The Gamma-SLAM algorithm incorporates two key innovations: Visual odometry (in contradistinction to wheel odometry) is used to estimate the motion of the vehicle. An elevation variance map (in contradistinction to an occupancy or an elevation map) is used to represent the terrain. The Gamma-SLAM algorithm makes use of a Rao-Blackwellized particle filter (RBPF) from Bayesian estimation theory for maintaining a distribution over poses and maps. The core idea of the RBPF approach is that the SLAM problem can be factored into two parts: (1) finding the distribution over robot trajectories, and (2) finding the map conditioned on any given trajectory. The factorization involves the use of a particle filter in which each particle encodes both a possible trajectory and a map conditioned on that trajectory. The base estimate of the trajectory is derived from visual odometry, and the map conditioned on that trajectory is a Cartesian grid of elevation variances. In comparison with traditional occupancy or elevation grid maps, the grid elevation variance

  6. Markov bridges, bisection and variance reduction

    DEFF Research Database (Denmark)

    Asmussen, Søren; Hobolth, Asger

    . In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...

  7. Variance-based Salt Body Reconstruction

    KAUST Repository

    Ovcharenko, Oleg

    2017-05-26

    Seismic inversions of salt bodies are challenging when updating velocity models based on Born approximation- inspired gradient methods. We propose a variance-based method for velocity model reconstruction in regions complicated by massive salt bodies. The novel idea lies in retrieving useful information from simultaneous updates corresponding to different single frequencies. Instead of the commonly used averaging of single-iteration monofrequency gradients, our algorithm iteratively reconstructs salt bodies in an outer loop based on updates from a set of multiple frequencies after a few iterations of full-waveform inversion. The variance among these updates is used to identify areas where considerable cycle-skipping occurs. In such areas, we update velocities by interpolating maximum velocities within a certain region. The result of several recursive interpolations is later used as a new starting model to improve results of conventional full-waveform inversion. An application on part of the BP 2004 model highlights the evolution of the proposed approach and demonstrates its effectiveness.

  8. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  9. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, S.; Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  10. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    International Nuclear Information System (INIS)

    Christoforou, S.; Hoogenboom, J. E.

    2006-01-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  11. The derivative based variance sensitivity analysis for the distribution parameters and its computation

    International Nuclear Information System (INIS)

    Wang, Pan; Lu, Zhenzhou; Ren, Bo; Cheng, Lei

    2013-01-01

    The output variance is an important measure for the performance of a structural system, and it is always influenced by the distribution parameters of inputs. In order to identify the influential distribution parameters and make it clear that how those distribution parameters influence the output variance, this work presents the derivative based variance sensitivity decomposition according to Sobol′s variance decomposition, and proposes the derivative based main and total sensitivity indices. By transforming the derivatives of various orders variance contributions into the form of expectation via kernel function, the proposed main and total sensitivity indices can be seen as the “by-product” of Sobol′s variance based sensitivity analysis without any additional output evaluation. Since Sobol′s variance based sensitivity indices have been computed efficiently by the sparse grid integration method, this work also employs the sparse grid integration method to compute the derivative based main and total sensitivity indices. Several examples are used to demonstrate the rationality of the proposed sensitivity indices and the accuracy of the applied method

  12. Analysis of Variance in Statistical Image Processing

    Science.gov (United States)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  13. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    We study equity (EVRP) and Treasury variance risk premia (TVRP) jointly and document a number of findings: First, relative to their volatility, TVRP are comparable in magnitude to EVRP. Second, while there is mild positive co-movement between EVRP and TVRP unconditionally, time series estimates...... equity returns for horizons up to 6-months, long maturity TVRP contain robust information for long run equity returns. Finally, exploiting the dynamics of real and nominal Treasuries we document that short maturity break-even rates are a power determinant of the joint dynamics of EVRP, TVRP and their co-movement...... of correlation display distinct spikes in both directions and have been notably volatile since the financial crisis. Third $(i)$ short maturity TVRP predict excess returns on short maturity bonds; $(ii)$ long maturity TVRP and EVRP predict excess returns on long maturity bonds; and $(iii)$ while EVRP predict...

  14. Hybrid biasing approaches for global variance reduction

    International Nuclear Information System (INIS)

    Wu, Zeyun; Abdel-Khalik, Hany S.

    2013-01-01

    A new variant of Monte Carlo—deterministic (DT) hybrid variance reduction approach based on Gaussian process theory is presented for accelerating convergence of Monte Carlo simulation and compared with Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) approach implemented in the SCALE package from Oak Ridge National Laboratory. The new approach, denoted the Gaussian process approach, treats the responses of interest as normally distributed random processes. The Gaussian process approach improves the selection of the weight windows of simulated particles by identifying a subspace that captures the dominant sources of statistical response variations. Like the FW-CADIS approach, the Gaussian process approach utilizes particle importance maps obtained from deterministic adjoint models to derive weight window biasing. In contrast to the FW-CADIS approach, the Gaussian process approach identifies the response correlations (via a covariance matrix) and employs them to reduce the computational overhead required for global variance reduction (GVR) purpose. The effective rank of the covariance matrix identifies the minimum number of uncorrelated pseudo responses, which are employed to bias simulated particles. Numerical experiments, serving as a proof of principle, are presented to compare the Gaussian process and FW-CADIS approaches in terms of the global reduction in standard deviation of the estimated responses. - Highlights: ► Hybrid Monte Carlo Deterministic Method based on Gaussian Process Model is introduced. ► Method employs deterministic model to calculate responses correlations. ► Method employs correlations to bias Monte Carlo transport. ► Method compared to FW-CADIS methodology in SCALE code. ► An order of magnitude speed up is achieved for a PWR core model.

  15. The Importance of Variance in Statistical Analysis: Don't Throw Out the Baby with the Bathwater.

    Science.gov (United States)

    Peet, Martha W.

    This paper analyzes what happens to the effect size of a given dataset when the variance is removed by categorization for the purpose of applying "OVA" methods (analysis of variance, analysis of covariance). The dataset is from a classic study by Holzinger and Swinefors (1939) in which more than 20 ability test were administered to 301…

  16. Variance Component Selection With Applications to Microbiome Taxonomic Data

    Directory of Open Access Journals (Sweden)

    Jing Zhai

    2018-03-01

    Full Text Available High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  17. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    Science.gov (United States)

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  18. Gender variance in childhood and sexual orientation in adulthood: a prospective study.

    Science.gov (United States)

    Steensma, Thomas D; van der Ende, Jan; Verhulst, Frank C; Cohen-Kettenis, Peggy T

    2013-11-01

    Several retrospective and prospective studies have reported on the association between childhood gender variance and sexual orientation and gender discomfort in adulthood. In most of the retrospective studies, samples were drawn from the general population. The samples in the prospective studies consisted of clinically referred children. In understanding the extent to which the association applies for the general population, prospective studies using random samples are needed. This prospective study examined the association between childhood gender variance, and sexual orientation and gender discomfort in adulthood in the general population. In 1983, we measured childhood gender variance, in 406 boys and 473 girls. In 2007, sexual orientation and gender discomfort were assessed. Childhood gender variance was measured with two items from the Child Behavior Checklist/4-18. Sexual orientation was measured for four parameters of sexual orientation (attraction, fantasy, behavior, and identity). Gender discomfort was assessed by four questions (unhappiness and/or uncertainty about one's gender, wish or desire to be of the other gender, and consideration of living in the role of the other gender). For both men and women, the presence of childhood gender variance was associated with homosexuality for all four parameters of sexual orientation, but not with bisexuality. The report of adulthood homosexuality was 8 to 15 times higher for participants with a history of gender variance (10.2% to 12.2%), compared to participants without a history of gender variance (1.2% to 1.7%). The presence of childhood gender variance was not significantly associated with gender discomfort in adulthood. This study clearly showed a significant association between childhood gender variance and a homosexual sexual orientation in adulthood in the general population. In contrast to the findings in clinically referred gender-variant children, the presence of a homosexual sexual orientation in

  19. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Science.gov (United States)

    2011-12-19

    ... Administration (``OSHA'' or ``the Agency'') granted permanent variances to 24 companies engaged in the... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0054] Proposed Revocation of Permanent Variances AGENCY: Occupational Safety and Health Administration (OSHA...

  20. variance components and genetic parameters for live weight

    African Journals Online (AJOL)

    admin

    Against this background the present study estimated the (co)variance .... Starting values for the (co)variance components of two-trait models were ..... Estimates of genetic parameters for weaning weight of beef accounting for direct-maternal.

  1. The Distribution of the Sample Minimum-Variance Frontier

    OpenAIRE

    Raymond Kan; Daniel R. Smith

    2008-01-01

    In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us t...

  2. Dynamics of Variance Risk Premia, Investors' Sentiment and Return Predictability

    DEFF Research Database (Denmark)

    Rombouts, Jerome V.K.; Stentoft, Lars; Violante, Francesco

    We develop a joint framework linking the physical variance and its risk neutral expectation implying variance risk premia that are persistent, appropriately reacting to changes in level and variability of the variance and naturally satisfying the sign constraint. Using option market data and real...... events and only marginally by the premium associated with normal price fluctuations....

  3. Variance stabilization for computing and comparing grand mean waveforms in MEG and EEG.

    Science.gov (United States)

    Matysiak, Artur; Kordecki, Wojciech; Sielużycki, Cezary; Zacharias, Norman; Heil, Peter; König, Reinhard

    2013-07-01

    Grand means of time-varying signals (waveforms) across subjects in magnetoencephalography (MEG) and electroencephalography (EEG) are commonly computed as arithmetic averages and compared between conditions, for example, by subtraction. However, the prerequisite for these operations, homogeneity of the variance of the waveforms in time, and for most common parametric statistical tests also between conditions, is rarely met. We suggest that the heteroscedasticity observed instead results because waveforms may differ by factors and additive terms and follow a mixed model. We propose to apply the asinh-transformation to stabilize the variance in such cases. We demonstrate the homogeneous variance and the normal distributions of data achieved by this transformation using simulated waveforms, and we apply it to real MEG data and show its benefits. The asinh-transformation is thus an essential and useful processing step prior to computing and comparing grand mean waveforms in MEG and EEG. Copyright © 2013 Society for Psychophysiological Research.

  4. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    Science.gov (United States)

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  5. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  6. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2017-02-01

    Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the

  7. Allowing variance may enlarge the safe operating space for exploited ecosystems

    NARCIS (Netherlands)

    Carpenter, S.R.; Brock, W.A.; Folke, Carl; Nes, Van E.H.; Scheffer, Marten; Polasky, Stephen

    2015-01-01

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictabilitymay therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously,may lead to

  8. Do exchange rates follow random walks? A variance ratio test of the ...

    African Journals Online (AJOL)

    The random-walk hypothesis in foreign-exchange rates market is one of the most researched areas, particularly in developed economies. However, emerging markets in sub-Saharan Africa have received little attention in this regard. This study applies Lo and MacKinlay's (1988) conventional variance ratio test and Wright's ...

  9. A Decomposition Algorithm for Mean-Variance Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...

  10. The impact of pre-selected variance inflation factor thresholds on the ...

    African Journals Online (AJOL)

    It is basically an index that measures how much the variance of an estimated ... the literature were not considered, such as penalised regularisation methods like the Lasso ... Y = 1 if a customer has defaulted, otherwise Y = 0). ..... method- ology is applied, but different VIF-thresholds have to be satisfied during the collinearity.

  11. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    Science.gov (United States)

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  12. Estimating the encounter rate variance in distance sampling

    Science.gov (United States)

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  13. Variances as order parameter and complexity measure for random Boolean networks

    International Nuclear Information System (INIS)

    Luque, Bartolo; Ballesteros, Fernando J; Fernandez, Manuel

    2005-01-01

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems

  14. Variances as order parameter and complexity measure for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Luque, Bartolo [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain); Ballesteros, Fernando J [Observatori Astronomic, Universitat de Valencia, Ed. Instituts d' Investigacio, Pol. La Coma s/n, E-46980 Paterna, Valencia (Spain); Fernandez, Manuel [Departamento de Matematica Aplicada y EstadIstica, Escuela Superior de Ingenieros Aeronauticos, Universidad Politecnica de Madrid, Plaza Cardenal Cisneros 3, Madrid 28040 (Spain)

    2005-02-04

    Several order parameters have been considered to predict and characterize the transition between ordered and disordered phases in random Boolean networks, such as the Hamming distance between replicas or the stable core, which have been successfully used. In this work, we propose a natural and clear new order parameter: the temporal variance. We compute its value analytically and compare it with the results of numerical experiments. Finally, we propose a complexity measure based on the compromise between temporal and spatial variances. This new order parameter and its related complexity measure can be easily applied to other complex systems.

  15. Calculating the variance and prediction intervals for estimates obtained from allometric relationships

    CSIR Research Space (South Africa)

    Nickless, A

    2010-09-01

    Full Text Available that across the range of x values, the variability in the error does not change (i.e. no heteroscedasticity). Often the power function in allometry is used: y = axbε This can be converted to: ln(yi) = β0 + β1 ln(xi) + εi The above assumptions now apply... to the regression relationship with the logged variables. Therefore ln(yi) is assumed to be normally distributed with mean µ=β0+β1 ln(xi) and variance σ2*. From regression theory it is known that the expected value (e) and variance (Var) of ln(yi) is given by...

  16. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE.

    Science.gov (United States)

    Xie, Xianchao; Kou, S C; Brown, Lawrence

    2016-03-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.

  17. Variance swap payoffs, risk premia and extreme market conditions

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars; Violante, Francesco

    This paper estimates the Variance Risk Premium (VRP) directly from synthetic variance swap payoffs. Since variance swap payoffs are highly volatile, we extract the VRP by using signal extraction techniques based on a state-space representation of our model in combination with a simple economic....... The latter variables and the VRP generate different return predictability on the major US indices. A factor model is proposed to extract a market VRP which turns out to be priced when considering Fama and French portfolios....

  18. Towards a mathematical foundation of minimum-variance theory

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom); Zhang Kewei [SMS, Sussex University, Brighton (United Kingdom); Wei Gang [Mathematical Department, Baptist University, Hong Kong (China)

    2002-08-30

    The minimum-variance theory which accounts for arm and eye movements with noise signal inputs was proposed by Harris and Wolpert (1998 Nature 394 780-4). Here we present a detailed theoretical analysis of the theory and analytical solutions of the theory are obtained. Furthermore, we propose a new version of the minimum-variance theory, which is more realistic for a biological system. For the new version we show numerically that the variance is considerably reduced. (author)

  19. RR-Interval variance of electrocardiogram for atrial fibrillation detection

    Science.gov (United States)

    Nuryani, N.; Solikhah, M.; Nugoho, A. S.; Afdala, A.; Anzihory, E.

    2016-11-01

    Atrial fibrillation is a serious heart problem originated from the upper chamber of the heart. The common indication of atrial fibrillation is irregularity of R peak-to-R-peak time interval, which is shortly called RR interval. The irregularity could be represented using variance or spread of RR interval. This article presents a system to detect atrial fibrillation using variances. Using clinical data of patients with atrial fibrillation attack, it is shown that the variance of electrocardiographic RR interval are higher during atrial fibrillation, compared to the normal one. Utilizing a simple detection technique and variances of RR intervals, we find a good performance of atrial fibrillation detection.

  20. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Ankirchner, Stefan, E-mail: ankirchner@hcm.uni-bonn.de [Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Angewandte Mathematik, Hausdorff Center for Mathematics (Germany); Dermoune, Azzouz, E-mail: Azzouz.Dermoune@math.univ-lille1.fr [Universite des Sciences et Technologies de Lille, Laboratoire Paul Painleve UMR CNRS 8524 (France)

    2011-08-15

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  1. Network Structure and Biased Variance Estimation in Respondent Driven Sampling.

    Science.gov (United States)

    Verdery, Ashton M; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.

  2. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    International Nuclear Information System (INIS)

    Ankirchner, Stefan; Dermoune, Azzouz

    2011-01-01

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  3. Discrete and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  4. Discrete time and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  5. Variance-to-mean method generalized by linear difference filter technique

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ohsaki, Hiroshi; Horiguchi, Tetsuo; Yamane, Yoshihiro; Shiroya, Seiji

    1998-01-01

    The conventional variance-to-mean method (Feynman-α method) seriously suffers the divergency of the variance under such a transient condition as a reactor power drift. Strictly speaking, then, the use of the Feynman-α is restricted to a steady state. To apply the method to more practical uses, it is desirable to overcome this kind of difficulty. For this purpose, we propose an usage of higher-order difference filter technique to reduce the effect of the reactor power drift, and derive several new formulae taking account of the filtering. The capability of the formulae proposed was demonstrated through experiments in the Kyoto University Critical Assembly. The experimental results indicate that the divergency of the variance can be effectively suppressed by the filtering technique, and that the higher-order filter becomes necessary with increasing variation rate in power

  6. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.jp; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507 (Japan)

    2016-09-15

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  7. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    International Nuclear Information System (INIS)

    Matsuo, Yukinori; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  8. Prediction-error variance in Bayesian model updating: a comparative study

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model

  9. Analysis of Gene Expression Variance in Schizophrenia Using Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Anna A. Igolkina

    2018-06-01

    Full Text Available Schizophrenia (SCZ is a psychiatric disorder of unknown etiology. There is evidence suggesting that aberrations in neurodevelopment are a significant attribute of schizophrenia pathogenesis and progression. To identify biologically relevant molecular abnormalities affecting neurodevelopment in SCZ we used cultured neural progenitor cells derived from olfactory neuroepithelium (CNON cells. Here, we tested the hypothesis that variance in gene expression differs between individuals from SCZ and control groups. In CNON cells, variance in gene expression was significantly higher in SCZ samples in comparison with control samples. Variance in gene expression was enriched in five molecular pathways: serine biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal adhesion. More than 14% of variance in disease status was explained within the logistic regression model (C-value = 0.70 by predictors accounting for gene expression in 69 genes from these five pathways. Structural equation modeling (SEM was applied to explore how the structure of these five pathways was altered between SCZ patients and controls. Four out of five pathways showed differences in the estimated relationships among genes: between KRAS and NF1, and KRAS and SOS1 in the MAPK pathway; between PSPH and SHMT2 in serine biosynthesis; between AKT3 and TSC2 in the PI3K-Akt signaling pathway; and between CRK and RAPGEF1 in the focal adhesion pathway. Our analysis provides evidence that variance in gene expression is an important characteristic of SCZ, and SEM is a promising method for uncovering altered relationships between specific genes thus suggesting affected gene regulation associated with the disease. We identified altered gene-gene interactions in pathways enriched for genes with increased variance in expression in SCZ. These pathways and loci were previously implicated in SCZ, providing further support for the hypothesis that gene expression variance plays important role in the etiology

  10. Variance of a potential of mean force obtained using the weighted histogram analysis method.

    Science.gov (United States)

    Cukier, Robert I

    2013-11-27

    A potential of mean force (PMF) that provides the free energy of a thermally driven system along some chosen reaction coordinate (RC) is a useful descriptor of systems characterized by complex, high dimensional potential energy surfaces. Umbrella sampling window simulations use potential energy restraints to provide more uniform sampling along a RC so that potential energy barriers that would otherwise make equilibrium sampling computationally difficult can be overcome. Combining the results from the different biased window trajectories can be accomplished using the Weighted Histogram Analysis Method (WHAM). Here, we provide an analysis of the variance of a PMF along the reaction coordinate. We assume that the potential restraints used for each window lead to Gaussian distributions for the window reaction coordinate densities and that the data sampling in each window is from an equilibrium ensemble sampled so that successive points are statistically independent. Also, we assume that neighbor window densities overlap, as required in WHAM, and that further-than-neighbor window density overlap is negligible. Then, an analytic expression for the variance of the PMF along the reaction coordinate at a desired level of spatial resolution can be generated. The variance separates into a sum over all windows with two kinds of contributions: One from the variance of the biased window density normalized by the total biased window density and the other from the variance of the local (for each window's coordinate range) PMF. Based on the desired spatial resolution of the PMF, the former variance can be minimized relative to that from the latter. The method is applied to a model system that has features of a complex energy landscape evocative of a protein with two conformational states separated by a free energy barrier along a collective reaction coordinate. The variance can be constructed from data that is already available from the WHAM PMF construction.

  11. Allowing variance may enlarge the safe operating space for exploited ecosystems.

    Science.gov (United States)

    Carpenter, Stephen R; Brock, William A; Folke, Carl; van Nes, Egbert H; Scheffer, Marten

    2015-11-17

    Variable flows of food, water, or other ecosystem services complicate planning. Management strategies that decrease variability and increase predictability may therefore be preferred. However, actions to decrease variance over short timescales (2-4 y), when applied continuously, may lead to long-term ecosystem changes with adverse consequences. We investigated the effects of managing short-term variance in three well-understood models of ecosystem services: lake eutrophication, harvest of a wild population, and yield of domestic herbivores on a rangeland. In all cases, actions to decrease variance can increase the risk of crossing critical ecosystem thresholds, resulting in less desirable ecosystem states. Managing to decrease short-term variance creates ecosystem fragility by changing the boundaries of safe operating spaces, suppressing information needed for adaptive management, cancelling signals of declining resilience, and removing pressures that may build tolerance of stress. Thus, the management of variance interacts strongly and inseparably with the management of resilience. By allowing for variation, learning, and flexibility while observing change, managers can detect opportunities and problems as they develop while sustaining the capacity to deal with them.

  12. Is fMRI “noise” really noise? Resting state nuisance regressors remove variance with network structure

    Science.gov (United States)

    Bright, Molly G.; Murphy, Kevin

    2015-01-01

    Noise correction is a critical step towards accurate mapping of resting state BOLD fMRI connectivity. Noise sources related to head motion or physiology are typically modelled by nuisance regressors, and a generalised linear model is applied to regress out the associated signal variance. In this study, we use independent component analysis (ICA) to characterise the data variance typically discarded in this pre-processing stage in a cohort of 12 healthy volunteers. The signal variance removed by 24, 12, 6, or only 3 head motion parameters demonstrated network structure typically associated with functional connectivity, and certain networks were discernable in the variance extracted by as few as 2 physiologic regressors. Simulated nuisance regressors, unrelated to the true data noise, also removed variance with network structure, indicating that any group of regressors that randomly sample variance may remove highly structured “signal” as well as “noise.” Furthermore, to support this we demonstrate that random sampling of the original data variance continues to exhibit robust network structure, even when as few as 10% of the original volumes are considered. Finally, we examine the diminishing returns of increasing the number of nuisance regressors used in pre-processing, showing that excessive use of motion regressors may do little better than chance in removing variance within a functional network. It remains an open challenge to understand the balance between the benefits and confounds of noise correction using nuisance regressors. PMID:25862264

  13. ANALISIS PORTOFOLIO RESAMPLED EFFICIENT FRONTIER BERDASARKAN OPTIMASI MEAN-VARIANCE

    OpenAIRE

    Abdurakhman, Abdurakhman

    2008-01-01

    Keputusan alokasi asset yang tepat pada investasi portofolio dapat memaksimalkan keuntungan dan atau meminimalkan risiko. Metode yang sering dipakai dalam optimasi portofolio adalah metode Mean-Variance Markowitz. Dalam prakteknya, metode ini mempunyai kelemahan tidak terlalu stabil. Sedikit perubahan dalam estimasi parameter input menyebabkan perubahan besar pada komposisi portofolio. Untuk itu dikembangkan metode optimasi portofolio yang dapat mengatasi ketidakstabilan metode Mean-Variance ...

  14. Capturing option anomalies with a variance-dependent pricing kernel

    NARCIS (Netherlands)

    Christoffersen, P.; Heston, S.; Jacobs, K.

    2013-01-01

    We develop a GARCH option model with a variance premium by combining the Heston-Nandi (2000) dynamic with a new pricing kernel that nests Rubinstein (1976) and Brennan (1979). While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is

  15. Realized range-based estimation of integrated variance

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    2007-01-01

    We provide a set of probabilistic laws for estimating the quadratic variation of continuous semimartingales with the realized range-based variance-a statistic that replaces every squared return of the realized variance with a normalized squared range. If the entire sample path of the process is a...

  16. Diagnostic checking in linear processes with infinit variance

    OpenAIRE

    Krämer, Walter; Runde, Ralf

    1998-01-01

    We consider empirical autocorrelations of residuals from infinite variance autoregressive processes. Unlike the finite-variance case, it emerges that the limiting distribution, after suitable normalization, is not always more concentrated around zero when residuals rather than true innovations are employed.

  17. Evaluation of Mean and Variance Integrals without Integration

    Science.gov (United States)

    Joarder, A. H.; Omar, M. H.

    2007-01-01

    The mean and variance of some continuous distributions, in particular the exponentially decreasing probability distribution and the normal distribution, are considered. Since they involve integration by parts, many students do not feel comfortable. In this note, a technique is demonstrated for deriving mean and variance through differential…

  18. Adjustment of heterogenous variances and a calving year effect in ...

    African Journals Online (AJOL)

    Data at the beginning and at the end of lactation period, have higher variances than tests in the middle of the lactation. Furthermore, first lactations have lower mean and variances compared to second and third lactations. This is a deviation from the basic assumptions required for the application of repeatability models.

  19. Direct encoding of orientation variance in the visual system.

    Science.gov (United States)

    Norman, Liam J; Heywood, Charles A; Kentridge, Robert W

    2015-01-01

    Our perception of regional irregularity, an example of which is orientation variance, seems effortless when we view two patches of texture that differ in this attribute. Little is understood, however, of how the visual system encodes a regional statistic like orientation variance, but there is some evidence to suggest that it is directly encoded by populations of neurons tuned broadly to high or low levels. The present study shows that selective adaptation to low or high levels of variance results in a perceptual aftereffect that shifts the perceived level of variance of a subsequently viewed texture in the direction away from that of the adapting stimulus (Experiments 1 and 2). Importantly, the effect is durable across changes in mean orientation, suggesting that the encoding of orientation variance is independent of global first moment orientation statistics (i.e., mean orientation). In Experiment 3 it was shown that the variance-specific aftereffect did not show signs of being encoded in a spatiotopic reference frame, similar to the equivalent aftereffect of adaptation to the first moment orientation statistic (the tilt aftereffect), which is represented in the primary visual cortex and exists only in retinotopic coordinates. Experiment 4 shows that a neuropsychological patient with damage to ventral areas of the cortex but spared intact early areas retains sensitivity to orientation variance. Together these results suggest that orientation variance is encoded directly by the visual system and possibly at an early cortical stage.

  20. Genotypic-specific variance in Caenorhabditis elegans lifetime fecundity.

    Science.gov (United States)

    Diaz, S Anaid; Viney, Mark

    2014-06-01

    Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently-wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet-hedging strategy used by this species.

  1. On the Endogeneity of the Mean-Variance Efficient Frontier.

    Science.gov (United States)

    Somerville, R. A.; O'Connell, Paul G. J.

    2002-01-01

    Explains that the endogeneity of the efficient frontier in the mean-variance model of portfolio selection is commonly obscured in portfolio selection literature and in widely used textbooks. Demonstrates endogeneity and discusses the impact of parameter changes on the mean-variance efficient frontier and on the beta coefficients of individual…

  2. 42 CFR 456.522 - Content of request for variance.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Content of request for variance. 456.522 Section 456.522 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... perform UR within the time requirements for which the variance is requested and its good faith efforts to...

  3. 29 CFR 1905.5 - Effect of variances.

    Science.gov (United States)

    2010-07-01

    ...-STEIGER OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1905.5 Effect of variances. All variances... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... concerning a proposed penalty or period of abatement is pending before the Occupational Safety and Health...

  4. 29 CFR 1904.38 - Variances from the recordkeeping rule.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Other OSHA Injury and Illness... he or she finds appropriate. (iv) If the Assistant Secretary grants your variance petition, OSHA will... Secretary is reviewing your variance petition. (4) If I have already been cited by OSHA for not following...

  5. Gender Variance and Educational Psychology: Implications for Practice

    Science.gov (United States)

    Yavuz, Carrie

    2016-01-01

    The area of gender variance appears to be more visible in both the media and everyday life. Within educational psychology literature gender variance remains underrepresented. The positioning of educational psychologists working across the three levels of child and family, school or establishment and education authority/council, means that they are…

  6. Mean-Variance Portfolio Selection with Margin Requirements

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2013-01-01

    Full Text Available We study the continuous-time mean-variance portfolio selection problem in the situation when investors must pay margin for short selling. The problem is essentially a nonlinear stochastic optimal control problem because the coefficients of positive and negative parts of control variables are different. We can not apply the results of stochastic linearquadratic (LQ problem. Also the solution of corresponding Hamilton-Jacobi-Bellman (HJB equation is not smooth. Li et al. (2002 studied the case when short selling is prohibited; therefore they only need to consider the positive part of control variables, whereas we need to handle both the positive part and the negative part of control variables. The main difficulty is that the positive part and the negative part are not independent. The previous results are not directly applicable. By decomposing the problem into several subproblems we figure out the solutions of HJB equation in two disjoint regions and then prove it is the viscosity solution of HJB equation. Finally we formulate solution of optimal portfolio and the efficient frontier. We also present two examples showing how different margin rates affect the optimal solutions and the efficient frontier.

  7. Scale dependence in species turnover reflects variance in species occupancy.

    Science.gov (United States)

    McGlinn, Daniel J; Hurlbert, Allen H

    2012-02-01

    Patterns of species turnover may reflect the processes driving community dynamics across scales. While the majority of studies on species turnover have examined pairwise comparison metrics (e.g., the average Jaccard dissimilarity), it has been proposed that the species-area relationship (SAR) also offers insight into patterns of species turnover because these two patterns may be analytically linked. However, these previous links only apply in a special case where turnover is scale invariant, and we demonstrate across three different plant communities that over 90% of the pairwise turnover values are larger than expected based on scale-invariant predictions from the SAR. Furthermore, the degree of scale dependence in turnover was negatively related to the degree of variance in the occupancy frequency distribution (OFD). These findings suggest that species turnover diverges from scale invariance, and as such pairwise turnover and the slope of the SAR are not redundant. Furthermore, models developed to explain the OFD should be linked with those developed to explain species turnover to achieve a more unified understanding of community structure.

  8. Minimum Variance Portfolios in the Brazilian Equity Market

    Directory of Open Access Journals (Sweden)

    Alexandre Rubesam

    2013-03-01

    Full Text Available We investigate minimum variance portfolios in the Brazilian equity market using different methods to estimate the covariance matrix, from the simple model of using the sample covariance to multivariate GARCH models. We compare the performance of the minimum variance portfolios to those of the following benchmarks: (i the IBOVESPA equity index, (ii an equally-weighted portfolio, (iii the maximum Sharpe ratio portfolio and (iv the maximum growth portfolio. Our results show that the minimum variance portfolio has higher returns with lower risk compared to the benchmarks. We also consider long-short 130/30 minimum variance portfolios and obtain similar results. The minimum variance portfolio invests in relatively few stocks with low βs measured with respect to the IBOVESPA index, being easily replicable by individual and institutional investors alike.

  9. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  10. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Vilches, M.; Lallena, A.M.

    2007-01-01

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool

  11. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  12. Decomposing variation in male reproductive success: age-specific variances and covariances through extra-pair and within-pair reproduction.

    Science.gov (United States)

    Lebigre, Christophe; Arcese, Peter; Reid, Jane M

    2013-07-01

    Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased

  13. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Meta-analysis of SNPs involved in variance heterogeneity using Levene's test for equal variances

    Science.gov (United States)

    Deng, Wei Q; Asma, Senay; Paré, Guillaume

    2014-01-01

    Meta-analysis is a commonly used approach to increase the sample size for genome-wide association searches when individual studies are otherwise underpowered. Here, we present a meta-analysis procedure to estimate the heterogeneity of the quantitative trait variance attributable to genetic variants using Levene's test without needing to exchange individual-level data. The meta-analysis of Levene's test offers the opportunity to combine the considerable sample size of a genome-wide meta-analysis to identify the genetic basis of phenotypic variability and to prioritize single-nucleotide polymorphisms (SNPs) for gene–gene and gene–environment interactions. The use of Levene's test has several advantages, including robustness to departure from the normality assumption, freedom from the influence of the main effects of SNPs, and no assumption of an additive genetic model. We conducted a meta-analysis of the log-transformed body mass index of 5892 individuals and identified a variant with a highly suggestive Levene's test P-value of 4.28E-06 near the NEGR1 locus known to be associated with extreme obesity. PMID:23921533

  15. Comparison of variance estimators for metaanalysis of instrumental variable estimates

    NARCIS (Netherlands)

    Schmidt, A. F.; Hingorani, A. D.; Jefferis, B. J.; White, J.; Groenwold, R. H H; Dudbridge, F.; Ben-Shlomo, Y.; Chaturvedi, N.; Engmann, J.; Hughes, A.; Humphries, S.; Hypponen, E.; Kivimaki, M.; Kuh, D.; Kumari, M.; Menon, U.; Morris, R.; Power, C.; Price, J.; Wannamethee, G.; Whincup, P.

    2016-01-01

    Background: Mendelian randomization studies perform instrumental variable (IV) analysis using genetic IVs. Results of individual Mendelian randomization studies can be pooled through meta-analysis. We explored how different variance estimators influence the meta-analysed IV estimate. Methods: Two

  16. Capturing Option Anomalies with a Variance-Dependent Pricing Kernel

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Heston, Steven; Jacobs, Kris

    2013-01-01

    We develop a GARCH option model with a new pricing kernel allowing for a variance premium. While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is nonmonotonic. A negative variance premium makes it U shaped. We present new semiparametric...... evidence to confirm this U-shaped relationship between the risk-neutral and physical probability densities. The new pricing kernel substantially improves our ability to reconcile the time-series properties of stock returns with the cross-section of option prices. It provides a unified explanation...... for the implied volatility puzzle, the overreaction of long-term options to changes in short-term variance, and the fat tails of the risk-neutral return distribution relative to the physical distribution....

  17. Phenotypic variance explained by local ancestry in admixed African Americans.

    Science.gov (United States)

    Shriner, Daniel; Bentley, Amy R; Doumatey, Ayo P; Chen, Guanjie; Zhou, Jie; Adeyemo, Adebowale; Rotimi, Charles N

    2015-01-01

    We surveyed 26 quantitative traits and disease outcomes to understand the proportion of phenotypic variance explained by local ancestry in admixed African Americans. After inferring local ancestry as the number of African-ancestry chromosomes at hundreds of thousands of genotyped loci across all autosomes, we used a linear mixed effects model to estimate the variance explained by local ancestry in two large independent samples of unrelated African Americans. We found that local ancestry at major and polygenic effect genes can explain up to 20 and 8% of phenotypic variance, respectively. These findings provide evidence that most but not all additive genetic variance is explained by genetic markers undifferentiated by ancestry. These results also inform the proportion of health disparities due to genetic risk factors and the magnitude of error in association studies not controlling for local ancestry.

  18. Allowable variance set on left ventricular function parameter

    International Nuclear Information System (INIS)

    Zhou Li'na; Qi Zhongzhi; Zeng Yu; Ou Xiaohong; Li Lin

    2010-01-01

    Purpose: To evaluate the influence of allowable Variance settings on left ventricular function parameter of the arrhythmia patients during gated myocardial perfusion imaging. Method: 42 patients with evident arrhythmia underwent myocardial perfusion SPECT, 3 different allowable variance with 20%, 60%, 100% would be set before acquisition for every patients,and they will be acquired simultaneously. After reconstruction by Astonish, end-diastole volume(EDV) and end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) would be computed with Quantitative Gated SPECT(QGS). Using SPSS software EDV, ESV, EF values of analysis of variance. Result: there is no statistical difference between three groups. Conclusion: arrhythmia patients undergo Gated myocardial perfusion imaging, Allowable Variance settings on EDV, ESV, EF value does not have a statistical meaning. (authors)

  19. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  20. Minimum variance Monte Carlo importance sampling with parametric dependence

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Halton, J.; Maynard, C.W.

    1981-01-01

    An approach for Monte Carlo Importance Sampling with parametric dependence is proposed. It depends upon obtaining by proper weighting over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adapted and other results rejected. Numerical calculation for the estimation of intergrals are compared to Crude Monte Carlo. Results explain the occurrences of the effective biases (even though the theoretical bias is zero) and infinite variances which arise in calculations involving severe biasing and a moderate number of historis. Extension to particle transport applications is briefly discussed. The approach constitutes an extension of a theory on the application of Monte Carlo for the calculation of functional dependences introduced by Frolov and Chentsov to biasing, or importance sample calculations; and is a generalization which avoids nonconvergence to the optimal values in some cases of a multistage method for variance reduction introduced by Spanier. (orig.) [de

  1. Advanced methods of analysis variance on scenarios of nuclear prospective

    International Nuclear Information System (INIS)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-01-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  2. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  3. Heritability, variance components and genetic advance of some ...

    African Journals Online (AJOL)

    Heritability, variance components and genetic advance of some yield and yield related traits in Ethiopian ... African Journal of Biotechnology ... randomized complete block design at Adet Agricultural Research Station in 2008 cropping season.

  4. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  5. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong; Ma, Yanyuan; Carroll, Raymond J.

    2009-01-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing

  6. Volatility and variance swaps : A comparison of quantitative models to calculate the fair volatility and variance strike

    OpenAIRE

    Röring, Johan

    2017-01-01

    Volatility is a common risk measure in the field of finance that describes the magnitude of an asset’s up and down movement. From only being a risk measure, volatility has become an asset class of its own and volatility derivatives enable traders to get an isolated exposure to an asset’s volatility. Two kinds of volatility derivatives are volatility swaps and variance swaps. The problem with volatility swaps and variance swaps is that they require estimations of the future variance and volati...

  7. ASYMMETRY OF MARKET RETURNS AND THE MEAN VARIANCE FRONTIER

    OpenAIRE

    SENGUPTA, Jati K.; PARK, Hyung S.

    1994-01-01

    The hypothesis that the skewness and asymmetry have no significant impact on the mean variance frontier is found to be strongly violated by monthly U.S. data over the period January 1965 through December 1974. This result raises serious doubts whether the common market portifolios such as SP 500, value weighted and equal weighted returns can serve as suitable proxies for meanvariance efficient portfolios in the CAPM framework. A new test for assessing the impact of skewness on the variance fr...

  8. Problems of variance reduction in the simulation of random variables

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    The definition of the uniform linear generator is given and some of the mostly used tests to evaluate the uniformity and the independence of the obtained determinations are listed. The problem of calculating, through simulation, some moment W of a random variable function is taken into account. The Monte Carlo method enables the moment W to be estimated and the estimator variance to be obtained. Some techniques for the construction of other estimators of W with a reduced variance are introduced

  9. Cumulative prospect theory and mean variance analysis. A rigorous comparison

    OpenAIRE

    Hens, Thorsten; Mayer, Janos

    2012-01-01

    We compare asset allocations derived for cumulative prospect theory(CPT) based on two different methods: Maximizing CPT along the mean–variance efficient frontier and maximizing it without that restriction. We find that with normally distributed returns the difference is negligible. However, using standard asset allocation data of pension funds the difference is considerable. Moreover, with derivatives like call options the restriction to the mean-variance efficient frontier results in a siza...

  10. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  11. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    Science.gov (United States)

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  12. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  13. Mean-Variance Optimization in Markov Decision Processes

    OpenAIRE

    Mannor, Shie; Tsitsiklis, John N.

    2011-01-01

    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudo-polynomial exact and approximation algorithms.

  14. The asymptotic variance of departures in critically loaded queues

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.

    2011-01-01

    We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +

  15. Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-07-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  16. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong

    2009-04-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing to the small number of replications. Various methods have been proposed in the literature to overcome this lack of degrees of freedom problem. In this context, it is commonly observed that the variance increases proportionally with the intensity level, which has led many researchers to assume that the variance is a function of the mean. Here we concentrate on estimation of the variance as a function of an unknown mean in two models: the constant coefficient of variation model and the quadratic variance-mean model. Because the means are unknown and estimated with few degrees of freedom, naive methods that use the sample mean in place of the true mean are generally biased because of the errors-in-variables phenomenon. We propose three methods for overcoming this bias. The first two are variations on the theme of the so-called heteroscedastic simulation-extrapolation estimator, modified to estimate the variance function consistently. The third class of estimators is entirely different, being based on semiparametric information calculations. Simulations show the power of our methods and their lack of bias compared with the naive method that ignores the measurement error. The methodology is illustrated by using microarray data from leukaemia patients.

  17. Approximate zero-variance Monte Carlo estimation of Markovian unreliability

    International Nuclear Information System (INIS)

    Delcoux, J.L.; Labeau, P.E.; Devooght, J.

    1997-01-01

    Monte Carlo simulation has become an important tool for the estimation of reliability characteristics, since conventional numerical methods are no more efficient when the size of the system to solve increases. However, evaluating by a simulation the probability of occurrence of very rare events means playing a very large number of histories of the system, which leads to unacceptable computation times. Acceleration and variance reduction techniques have to be worked out. We show in this paper how to write the equations of Markovian reliability as a transport problem, and how the well known zero-variance scheme can be adapted to this application. But such a method is always specific to the estimation of one quality, while a Monte Carlo simulation allows to perform simultaneously estimations of diverse quantities. Therefore, the estimation of one of them could be made more accurate while degrading at the same time the variance of other estimations. We propound here a method to reduce simultaneously the variance for several quantities, by using probability laws that would lead to zero-variance in the estimation of a mean of these quantities. Just like the zero-variance one, the method we propound is impossible to perform exactly. However, we show that simple approximations of it may be very efficient. (author)

  18. A versatile omnibus test for detecting mean and variance heterogeneity.

    Science.gov (United States)

    Cao, Ying; Wei, Peng; Bailey, Matthew; Kauwe, John S K; Maxwell, Taylor J

    2014-01-01

    Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant, we demonstrate how LD can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D', and relatively low r² values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance-only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.

  19. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  20. Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-01-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  1. The problem of low variance voxels in statistical parametric mapping; a new hat avoids a 'haircut'.

    Science.gov (United States)

    Ridgway, Gerard R; Litvak, Vladimir; Flandin, Guillaume; Friston, Karl J; Penny, Will D

    2012-02-01

    Statistical parametric mapping (SPM) locates significant clusters based on a ratio of signal to noise (a 'contrast' of the parameters divided by its standard error) meaning that very low noise regions, for example outside the brain, can attain artefactually high statistical values. Similarly, the commonly applied preprocessing step of Gaussian spatial smoothing can shift the peak statistical significance away from the peak of the contrast and towards regions of lower variance. These problems have previously been identified in positron emission tomography (PET) (Reimold et al., 2006) and voxel-based morphometry (VBM) (Acosta-Cabronero et al., 2008), but can also appear in functional magnetic resonance imaging (fMRI) studies. Additionally, for source-reconstructed magneto- and electro-encephalography (M/EEG), the problems are particularly severe because sparsity-favouring priors constrain meaningfully large signal and variance to a small set of compactly supported regions within the brain. (Acosta-Cabronero et al., 2008) suggested adding noise to background voxels (the 'haircut'), effectively increasing their noise variance, but at the cost of contaminating neighbouring regions with the added noise once smoothed. Following theory and simulations, we propose to modify--directly and solely--the noise variance estimate, and investigate this solution on real imaging data from a range of modalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Quantitative genetic variance and multivariate clines in the Ivyleaf morning glory, Ipomoea hederacea.

    Science.gov (United States)

    Stock, Amanda J; Campitelli, Brandon E; Stinchcombe, John R

    2014-08-19

    Clinal variation is commonly interpreted as evidence of adaptive differentiation, although clines can also be produced by stochastic forces. Understanding whether clines are adaptive therefore requires comparing clinal variation to background patterns of genetic differentiation at presumably neutral markers. Although this approach has frequently been applied to single traits at a time, we have comparatively fewer examples of how multiple correlated traits vary clinally. Here, we characterize multivariate clines in the Ivyleaf morning glory, examining how suites of traits vary with latitude, with the goal of testing for divergence in trait means that would indicate past evolutionary responses. We couple this with analysis of genetic variance in clinally varying traits in 20 populations to test whether past evolutionary responses have depleted genetic variance, or whether genetic variance declines approaching the range margin. We find evidence of clinal differentiation in five quantitative traits, with little evidence of isolation by distance at neutral loci that would suggest non-adaptive or stochastic mechanisms. Within and across populations, the traits that contribute most to population differentiation and clinal trends in the multivariate phenotype are genetically variable as well, suggesting that a lack of genetic variance will not cause absolute evolutionary constraints. Our data are broadly consistent theoretical predictions of polygenic clines in response to shallow environmental gradients. Ecologically, our results are consistent with past findings of natural selection on flowering phenology, presumably due to season-length variation across the range. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  4. Genetic Variance in Homophobia: Evidence from Self- and Peer Reports.

    Science.gov (United States)

    Zapko-Willmes, Alexandra; Kandler, Christian

    2018-01-01

    The present twin study combined self- and peer assessments of twins' general homophobia targeting gay men in order to replicate previous behavior genetic findings across different rater perspectives and to disentangle self-rater-specific variance from common variance in self- and peer-reported homophobia (i.e., rater-consistent variance). We hypothesized rater-consistent variance in homophobia to be attributable to genetic and nonshared environmental effects, and self-rater-specific variance to be partially accounted for by genetic influences. A sample of 869 twins and 1329 peer raters completed a seven item scale containing cognitive, affective, and discriminatory homophobic tendencies. After correction for age and sex differences, we found most of the genetic contributions (62%) and significant nonshared environmental contributions (16%) to individual differences in self-reports on homophobia to be also reflected in peer-reported homophobia. A significant genetic component, however, was self-report-specific (38%), suggesting that self-assessments alone produce inflated heritability estimates to some degree. Different explanations are discussed.

  5. How does variance in fertility change over the demographic transition?

    Science.gov (United States)

    Hruschka, Daniel J; Burger, Oskar

    2016-04-19

    Most work on the human fertility transition has focused on declines in mean fertility. However, understanding changes in the variance of reproductive outcomes can be equally important for evolutionary questions about the heritability of fertility, individual determinants of fertility and changing patterns of reproductive skew. Here, we document how variance in completed fertility among women (45-49 years) differs across 200 surveys in 72 low- to middle-income countries where fertility transitions are currently in progress at various stages. Nearly all (91%) of samples exhibit variance consistent with a Poisson process of fertility, which places systematic, and often severe, theoretical upper bounds on the proportion of variance that can be attributed to individual differences. In contrast to the pattern of total variance, these upper bounds increase from high- to mid-fertility samples, then decline again as samples move from mid to low fertility. Notably, the lowest fertility samples often deviate from a Poisson process. This suggests that as populations move to low fertility their reproduction shifts from a rate-based process to a focus on an ideal number of children. We discuss the implications of these findings for predicting completed fertility from individual-level variables. © 2016 The Author(s).

  6. Applied physics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The Physics Division research program that is dedicated primarily to applied research goals involves the interaction of energetic particles with solids. This applied research is carried out in conjunction with the basic research studies from which it evolved

  7. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    International Nuclear Information System (INIS)

    Song Ningfang; Yuan Rui; Jin Jing

    2011-01-01

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 0 /h 2 , K = 1.1714exp-3 0 /h 1.5 , B = 1.3185exp-3 0 /h, N = 5.982exp-4 0 /h 0.5 and Q = 5.197exp-7 0 in real time, and tracks degradation of gyro performance from initail values, R = 0.651 0 /h 2 , K = 0.801 0 /h 1.5 , B = 0.385 0 /h, N = 0.0874 0 /h 0.5 and Q = 8.085exp-5 0 , to final estimations, R = 9.548 0 /h 2 , K = 9.524 0 /h 1.5 , B = 2.234 0 /h, N = 0.5594 0 /h 0.5 and Q = 5.113exp-4 0 , due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  8. Impact of Damping Uncertainty on SEA Model Response Variance

    Science.gov (United States)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  9. Genetic and environmental variance in content dimensions of the MMPI.

    Science.gov (United States)

    Rose, R J

    1988-08-01

    To evaluate genetic and environmental variance in the Minnesota Multiphasic Personality Inventory (MMPI), I studied nine factor scales identified in the first item factor analysis of normal adult MMPIs in a sample of 820 adolescent and young adult co-twins. Conventional twin comparisons documented heritable variance in six of the nine MMPI factors (Neuroticism, Psychoticism, Extraversion, Somatic Complaints, Inadequacy, and Cynicism), whereas significant influence from shared environmental experience was found for four factors (Masculinity versus Femininity, Extraversion, Religious Orthodoxy, and Intellectual Interests). Genetic variance in the nine factors was more evident in results from twin sisters than those of twin brothers, and a developmental-genetic analysis, using hierarchical multiple regressions of double-entry matrixes of the twins' raw data, revealed that in four MMPI factor scales, genetic effects were significantly modulated by age or gender or their interaction during the developmental period from early adolescence to early adulthood.

  10. A new variance stabilizing transformation for gene expression data analysis.

    Science.gov (United States)

    Kelmansky, Diana M; Martínez, Elena J; Leiva, Víctor

    2013-12-01

    In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.

  11. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  12. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  13. Measuring kinetics of complex single ion channel data using mean-variance histograms.

    Science.gov (United States)

    Patlak, J B

    1993-07-01

    The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance

  14. The mean and variance of phylogenetic diversity under rarefaction.

    Science.gov (United States)

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  15. Theoretical and practical study of the variance and efficiency of a Monte Carlo calculation due to Russian roulette

    International Nuclear Information System (INIS)

    Hoogenboom, J. E.

    2004-01-01

    Although Russian roulette is applied very often in Monte Carlo calculations, not much literature exists on its quantitative influence on the variance and efficiency of a Monte Carlo calculation. Elaborating on the work of Lux and Koblinger using moment equations, new relevant equations are derived to calculate the variance of a Monte Carlo simulation using Russian roulette. To demonstrate its practical application the theory is applied to a simplified transport model resulting in explicit analytical expressions for the variance of a Monte Carlo calculation and for the expected number of collisions per history. From these expressions numerical results are shown and compared with actual Monte Carlo calculations, showing an excellent agreement. By considering the number of collisions in a Monte Carlo calculation as a measure of the CPU time, also the efficiency of the Russian roulette can be studied. It opens the way for further investigations, including optimization of Russian roulette parameters. (authors)

  16. Time Consistent Strategies for Mean-Variance Asset-Liability Management Problems

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2013-01-01

    Full Text Available This paper studies the optimal time consistent investment strategies in multiperiod asset-liability management problems under mean-variance criterion. By applying time consistent model of Chen et al. (2013 and employing dynamic programming technique, we derive two-time consistent policies for asset-liability management problems in a market with and without a riskless asset, respectively. We show that the presence of liability does affect the optimal strategy. More specifically, liability leads a parallel shift of optimal time-consistent investment policy. Moreover, for an arbitrarily risk averse investor (under the variance criterion with liability, the time-diversification effects could be ignored in a market with a riskless asset; however, it should be considered in a market without any riskless asset.

  17. Multilevel variance estimators in MLMC and application for random obstacle problems

    KAUST Repository

    Chernov, Alexey

    2014-01-06

    The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.

  18. A log-sinh transformation for data normalization and variance stabilization

    Science.gov (United States)

    Wang, Q. J.; Shrestha, D. L.; Robertson, D. E.; Pokhrel, P.

    2012-05-01

    When quantifying model prediction uncertainty, it is statistically convenient to represent model errors that are normally distributed with a constant variance. The Box-Cox transformation is the most widely used technique to normalize data and stabilize variance, but it is not without limitations. In this paper, a log-sinh transformation is derived based on a pattern of errors commonly seen in hydrological model predictions. It is suited to applications where prediction variables are positively skewed and the spread of errors is seen to first increase rapidly, then slowly, and eventually approach a constant as the prediction variable becomes greater. The log-sinh transformation is applied in two case studies, and the results are compared with one- and two-parameter Box-Cox transformations.

  19. Multilevel variance estimators in MLMC and application for random obstacle problems

    KAUST Repository

    Chernov, Alexey; Bierig, Claudio

    2014-01-01

    The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.

  20. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    sample). The GBSeq data can be used directly in genomic models in the form of individual SNP allele-frequency estimates (e.g., reference reads/total reads per polymorphic site per individual), but is subject to measurement error due to the low sequencing depth per individual. Due to technical reasons....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  1. Variance estimation for sensitivity analysis of poverty and inequality measures

    Directory of Open Access Journals (Sweden)

    Christian Dudel

    2017-04-01

    Full Text Available Estimates of poverty and inequality are often based on application of a single equivalence scale, despite the fact that a large number of different equivalence scales can be found in the literature. This paper describes a framework for sensitivity analysis which can be used to account for the variability of equivalence scales and allows to derive variance estimates of results of sensitivity analysis. Simulations show that this method yields reliable estimates. An empirical application reveals that accounting for both variability of equivalence scales and sampling variance leads to confidence intervals which are wide.

  2. Studying Variance in the Galactic Ultra-compact Binary Population

    Science.gov (United States)

    Larson, Shane; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  3. Variance of a product with application to uranium estimation

    International Nuclear Information System (INIS)

    Lowe, V.W.; Waterman, M.S.

    1976-01-01

    The U in a container can either be determined directly by NDA or by estimating the weight of material in the container and the concentration of U in this material. It is important to examine the statistical properties of estimating the amount of U by multiplying the estimates of weight and concentration. The variance of the product determines the accuracy of the estimate of the amount of uranium. This paper examines the properties of estimates of the variance of the product of two random variables

  4. Variance components for body weight in Japanese quails (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    RO Resende

    2005-03-01

    Full Text Available The objective of this study was to estimate the variance components for body weight in Japanese quails by Bayesian procedures. The body weight at hatch (BWH and at 7 (BW07, 14 (BW14, 21 (BW21 and 28 days of age (BW28 of 3,520 quails was recorded from August 2001 to June 2002. A multiple-trait animal model with additive genetic, maternal environment and residual effects was implemented by Gibbs sampling methodology. A single Gibbs sampling with 80,000 rounds was generated by the program MTGSAM (Multiple Trait Gibbs Sampling in Animal Model. Normal and inverted Wishart distributions were used as prior distributions for the random effects and the variance components, respectively. Variance components were estimated based on the 500 samples that were left after elimination of 30,000 rounds in the burn-in period and 100 rounds of each thinning interval. The posterior means of additive genetic variance components were 0.15; 4.18; 14.62; 27.18 and 32.68; the posterior means of maternal environment variance components were 0.23; 1.29; 2.76; 4.12 and 5.16; and the posterior means of residual variance components were 0.084; 6.43; 22.66; 31.21 and 30.85, at hatch, 7, 14, 21 and 28 days old, respectively. The posterior means of heritability were 0.33; 0.35; 0.36; 0.43 and 0.47 at hatch, 7, 14, 21 and 28 days old, respectively. These results indicate that heritability increased with age. On the other hand, after hatch there was a marked reduction in the maternal environment variance proportion of the phenotypic variance, whose estimates were 0.50; 0.11; 0.07; 0.07 and 0.08 for BWH, BW07, BW14, BW21 and BW28, respectively. The genetic correlation between weights at different ages was high, except for those estimates between BWH and weight at other ages. Changes in body weight of quails can be efficiently achieved by selection.

  5. Levine's guide to SPSS for analysis of variance

    CERN Document Server

    Braver, Sanford L; Page, Melanie

    2003-01-01

    A greatly expanded and heavily revised second edition, this popular guide provides instructions and clear examples for running analyses of variance (ANOVA) and several other related statistical tests of significance with SPSS. No other guide offers the program statements required for the more advanced tests in analysis of variance. All of the programs in the book can be run using any version of SPSS, including versions 11 and 11.5. A table at the end of the preface indicates where each type of analysis (e.g., simple comparisons) can be found for each type of design (e.g., mixed two-factor desi

  6. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  7. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  8. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  9. Impact of an equality constraint on the class-specific residual variances in regression mixtures: A Monte Carlo simulation study.

    Science.gov (United States)

    Kim, Minjung; Lamont, Andrea E; Jaki, Thomas; Feaster, Daniel; Howe, George; Van Horn, M Lee

    2016-06-01

    Regression mixture models are a novel approach to modeling the heterogeneous effects of predictors on an outcome. In the model-building process, often residual variances are disregarded and simplifying assumptions are made without thorough examination of the consequences. In this simulation study, we investigated the impact of an equality constraint on the residual variances across latent classes. We examined the consequences of constraining the residual variances on class enumeration (finding the true number of latent classes) and on the parameter estimates, under a number of different simulation conditions meant to reflect the types of heterogeneity likely to exist in applied analyses. The results showed that bias in class enumeration increased as the difference in residual variances between the classes increased. Also, an inappropriate equality constraint on the residual variances greatly impacted on the estimated class sizes and showed the potential to greatly affect the parameter estimates in each class. These results suggest that it is important to make assumptions about residual variances with care and to carefully report what assumptions are made.

  10. Track length estimation applied to point detectors

    International Nuclear Information System (INIS)

    Rief, H.; Dubi, A.; Elperin, T.

    1984-01-01

    The concept of the track length estimator is applied to the uncollided point flux estimator (UCF) leading to a new algorithm of calculating fluxes at a point. It consists essentially of a line integral of the UCF, and although its variance is unbounded, the convergence rate is that of a bounded variance estimator. In certain applications, involving detector points in the vicinity of collimated beam sources, it has a lower variance than the once-more-collided point flux estimator, and its application is more straightforward

  11. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed like- lihood function, or estimating function, corresponding...

  12. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2014-01-01

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By definition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modified likelihood function, or estimating function, corresponding...

  13. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed likelihood function, or estimating function, corresponding...

  14. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    Science.gov (United States)

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  15. Genetic variance components for residual feed intake and feed ...

    African Journals Online (AJOL)

    Feeding costs of animals is a major determinant of profitability in livestock production enterprises. Genetic selection to improve feed efficiency aims to reduce feeding cost in beef cattle and thereby improve profitability. This study estimated genetic (co)variances between weaning weight and other production, reproduction ...

  16. Cumulative Prospect Theory, Option Returns, and the Variance Premium

    NARCIS (Netherlands)

    Baele, Lieven; Driessen, Joost; Ebert, Sebastian; Londono Yarce, J.M.; Spalt, Oliver

    The variance premium and the pricing of out-of-the-money (OTM) equity index options are major challenges to standard asset pricing models. We develop a tractable equilibrium model with Cumulative Prospect Theory (CPT) preferences that can overcome both challenges. The key insight is that the

  17. Hydrograph variances over different timescales in hydropower production networks

    Science.gov (United States)

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of white noise) as a result of current production objectives.

  18. Bounds for Tail Probabilities of the Sample Variance

    Directory of Open Access Journals (Sweden)

    Van Zuijlen M

    2009-01-01

    Full Text Available We provide bounds for tail probabilities of the sample variance. The bounds are expressed in terms of Hoeffding functions and are the sharpest known. They are designed having in mind applications in auditing as well as in processing data related to environment.

  19. Robust estimation of the noise variance from background MR data

    NARCIS (Netherlands)

    Sijbers, J.; Den Dekker, A.J.; Poot, D.; Bos, R.; Verhoye, M.; Van Camp, N.; Van der Linden, A.

    2006-01-01

    In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance (MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is revisited and a new, robust, and easy to use method is presented based on maximum

  20. Stable limits for sums of dependent infinite variance random variables

    DEFF Research Database (Denmark)

    Bartkiewicz, Katarzyna; Jakubowski, Adam; Mikosch, Thomas

    2011-01-01

    The aim of this paper is to provide conditions which ensure that the affinely transformed partial sums of a strictly stationary process converge in distribution to an infinite variance stable distribution. Conditions for this convergence to hold are known in the literature. However, most of these...

  1. Computing the Expected Value and Variance of Geometric Measures

    DEFF Research Database (Denmark)

    Staals, Frank; Tsirogiannis, Constantinos

    2017-01-01

    distance (MPD), the squared Euclidean distance from the centroid, and the diameter of the minimum enclosing disk. We also describe an efficient (1-e)-approximation algorithm for computing the mean and variance of the mean pairwise distance. We implemented three of our algorithms and we show that our...

  2. Estimation of the additive and dominance variances in South African ...

    African Journals Online (AJOL)

    The objective of this study was to estimate dominance variance for number born alive (NBA), 21- day litter weight (LWT21) and interval between parities (FI) in South African Landrace pigs. A total of 26223 NBA, 21335 LWT21 and 16370 FI records were analysed. Bayesian analysis via Gibbs sampling was used to estimate ...

  3. A note on minimum-variance theory and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, Sussex University, Brighton, BN1 9QH (United Kingdom); Tartaglia, Giangaetano [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy); Tirozzi, Brunello [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy)

    2004-04-30

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons.

  4. A Visual Model for the Variance and Standard Deviation

    Science.gov (United States)

    Orris, J. B.

    2011-01-01

    This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.

  5. Multidimensional adaptive testing with a minimum error-variance criterion

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1997-01-01

    The case of adaptive testing under a multidimensional logistic response model is addressed. An adaptive algorithm is proposed that minimizes the (asymptotic) variance of the maximum-likelihood (ML) estimator of a linear combination of abilities of interest. The item selection criterion is a simple

  6. Asymptotics of variance of the lattice point count

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří

    2008-01-01

    Roč. 58, č. 3 (2008), s. 751-758 ISSN 0011-4642 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : point lattice * variance Subject RIV: BA - General Mathematics Impact factor: 0.210, year: 2008

  7. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind v...

  8. Estimates of variance components for postweaning feed intake and ...

    African Journals Online (AJOL)

    Mike

    2013-03-09

    Mar 9, 2013 ... transformation of RFIp and RDGp to z-scores (mean = 0.0, variance = 1.0) and then ... generation pedigree (n = 9 653) used for this analysis. ..... Nkrumah, J.D., Basarab, J.A., Wang, Z., Li, C., Price, M.A., Okine, E.K., Crews Jr., ...

  9. An observation on the variance of a predicted response in ...

    African Journals Online (AJOL)

    ... these properties and computational simplicity. To avoid over fitting, along with the obvious advantage of having a simpler equation, it is shown that the addition of a variable to a regression equation does not reduce the variance of a predicted response. Key words: Linear regression; Partitioned matrix; Predicted response ...

  10. An entropy approach to size and variance heterogeneity

    NARCIS (Netherlands)

    Balasubramanyan, L.; Stefanou, S.E.; Stokes, J.R.

    2012-01-01

    In this paper, we investigate the effect of bank size differences on cost efficiency heterogeneity using a heteroskedastic stochastic frontier model. This model is implemented by using an information theoretic maximum entropy approach. We explicitly model both bank size and variance heterogeneity

  11. The Threat of Common Method Variance Bias to Theory Building

    Science.gov (United States)

    Reio, Thomas G., Jr.

    2010-01-01

    The need for more theory building scholarship remains one of the pressing issues in the field of HRD. Researchers can employ quantitative, qualitative, and/or mixed methods to support vital theory-building efforts, understanding however that each approach has its limitations. The purpose of this article is to explore common method variance bias as…

  12. 40 CFR 268.44 - Variance from a treatment standard.

    Science.gov (United States)

    2010-07-01

    ... complete petition may be requested as needed to send to affected states and Regional Offices. (e) The... provide an opportunity for public comment. The final decision on a variance from a treatment standard will... than) the concentrations necessary to minimize short- and long-term threats to human health and the...

  13. Application of effective variance method for contamination monitor calibration

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  14. The VIX, the Variance Premium, and Expected Returns

    DEFF Research Database (Denmark)

    Osterrieder, Daniela Maria; Ventosa-Santaulària, Daniel; Vera-Valdés, Eduardo

    2018-01-01

    . These problems are eliminated if risk is captured by the variance premium (VP) instead; it is unobservable, however. We propose a 2SLS estimator that produces consistent estimates without observing the VP. Using this method, we find a positive risk–return trade-off and long-run return predictability. Our...

  15. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  16. Variance-optimal hedging for processes with stationary independent increments

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Kallsen, J.; Krawczyk, L.

    We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we...

  17. Adaptive Nonparametric Variance Estimation for a Ratio Estimator ...

    African Journals Online (AJOL)

    Kernel estimators for smooth curves require modifications when estimating near end points of the support, both for practical and asymptotic reasons. The construction of such boundary kernels as solutions of variational problem is a difficult exercise. For estimating the error variance of a ratio estimator, we suggest an ...

  18. A note on minimum-variance theory and beyond

    International Nuclear Information System (INIS)

    Feng Jianfeng; Tartaglia, Giangaetano; Tirozzi, Brunello

    2004-01-01

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons

  19. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    Science.gov (United States)

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  20. Molecular variance of the Tunisian almond germplasm assessed by ...

    African Journals Online (AJOL)

    The genetic variance analysis of 82 almond (Prunus dulcis Mill.) genotypes was performed using ten genomic simple sequence repeats (SSRs). A total of 50 genotypes from Tunisia including local landraces identified while prospecting the different sites of Bizerte and Sidi Bouzid (Northern and central parts) which are the ...

  1. Starting design for use in variance exchange algorithms | Iwundu ...

    African Journals Online (AJOL)

    A new method of constructing the initial design for use in variance exchange algorithms is presented. The method chooses support points to go into the design as measures of distances of the support points from the centre of the geometric region and of permutation-invariant sets. The initial design is as close as possible to ...

  2. Decomposition of variance in terms of conditional means

    Directory of Open Access Journals (Sweden)

    Alessandro Figà Talamanca

    2013-05-01

    Full Text Available Two different sets of data are used to test an apparently new approach to the analysis of the variance of a numerical variable which depends on qualitative variables. We suggest that this approach be used to complement other existing techniques to study the interdependence of the variables involved. According to our method, the variance is expressed as a sum of orthogonal components, obtained as differences of conditional means, with respect to the qualitative characters. The resulting expression for the variance depends on the ordering in which the characters are considered. We suggest an algorithm which leads to an ordering which is deemed natural. The first set of data concerns the score achieved by a population of students on an entrance examination based on a multiple choice test with 30 questions. In this case the qualitative characters are dyadic and correspond to correct or incorrect answer to each question. The second set of data concerns the delay to obtain the degree for a population of graduates of Italian universities. The variance in this case is analyzed with respect to a set of seven specific qualitative characters of the population studied (gender, previous education, working condition, parent's educational level, field of study, etc..

  3. A Hold-out method to correct PCA variance inflation

    DEFF Research Database (Denmark)

    Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Hansen, Lars Kai

    2012-01-01

    In this paper we analyze the problem of variance inflation experienced by the PCA algorithm when working in an ill-posed scenario where the dimensionality of the training set is larger than its sample size. In an earlier article a correction method based on a Leave-One-Out (LOO) procedure...

  4. Heterogeneity of variance and its implications on dairy cattle breeding

    African Journals Online (AJOL)

    Milk yield data (n = 12307) from 116 Holstein-Friesian herds were grouped into three production environments based on mean and standard deviation of herd 305-day milk yield and evaluated for within herd variation using univariate animal model procedures. Variance components were estimated by derivative free REML ...

  5. Effects of Diversification of Assets on Mean and Variance | Jayeola ...

    African Journals Online (AJOL)

    Diversification is a means of minimizing risk and maximizing returns by investing in a variety of assets of the portfolio. This paper is written to determine the effects of diversification of three types of Assets; uncorrelated, perfectly correlated and perfectly negatively correlated assets on mean and variance. To go about this, ...

  6. Perspective projection for variance pose face recognition from camera calibration

    Science.gov (United States)

    Fakhir, M. M.; Woo, W. L.; Chambers, J. A.; Dlay, S. S.

    2016-04-01

    Variance pose is an important research topic in face recognition. The alteration of distance parameters across variance pose face features is a challenging. We provide a solution for this problem using perspective projection for variance pose face recognition. Our method infers intrinsic camera parameters of the image which enable the projection of the image plane into 3D. After this, face box tracking and centre of eyes detection can be identified using our novel technique to verify the virtual face feature measurements. The coordinate system of the perspective projection for face tracking allows the holistic dimensions for the face to be fixed in different orientations. The training of frontal images and the rest of the poses on FERET database determine the distance from the centre of eyes to the corner of box face. The recognition system compares the gallery of images against different poses. The system initially utilises information on position of both eyes then focuses principally on closest eye in order to gather data with greater reliability. Differentiation between the distances and position of the right and left eyes is a unique feature of our work with our algorithm outperforming other state of the art algorithms thus enabling stable measurement in variance pose for each individual.

  7. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  8. Hedging with stock index futures: downside risk versus the variance

    NARCIS (Netherlands)

    Brouwer, F.; Nat, van der M.

    1995-01-01

    In this paper we investigate hedging a stock portfolio with stock index futures.Instead of defining the hedge ratio as the minimum variance hedge ratio, we considerseveral measures of downside risk: the semivariance according to Markowitz [ 19591 andthe various lower partial moments according to

  9. The variance quadtree algorithm: use for spatial sampling design

    NARCIS (Netherlands)

    Minasny, B.; McBratney, A.B.; Walvoort, D.J.J.

    2007-01-01

    Spatial sampling schemes are mainly developed to determine sampling locations that can cover the variation of environmental properties in the area of interest. Here we proposed the variance quadtree algorithm for sampling in an area with prior information represented as ancillary or secondary

  10. Properties of realized variance under alternative sampling schemes

    NARCIS (Netherlands)

    Oomen, R.C.A.

    2006-01-01

    This paper investigates the statistical properties of the realized variance estimator in the presence of market microstructure noise. Different from the existing literature, the analysis relies on a pure jump process for high frequency security prices and explicitly distinguishes among alternative

  11. Variance component and heritability estimates of early growth traits ...

    African Journals Online (AJOL)

    as selection criteria for meat production in sheep (Anon, 1970; Olson et ai., 1976;. Lasslo et ai., 1985; Badenhorst et ai., 1991). If these traits are to be included in a breeding programme, accurate estimates of breeding values will be needed to optimize selection programmes. This requires a knowledge of variance and co-.

  12. Variances in consumers prices of selected food Items among ...

    African Journals Online (AJOL)

    The study focused on the determination of variances among consumer prices of rice (local white), beans (white) and garri (yellow) in Watts, Okurikang and 8 Miles markets in southern zone of Cross River State. Completely randomized design was used to test the research hypothesis. Comparing the consumer prices of rice, ...

  13. Age Differences in the Variance of Personality Characteristics

    Czech Academy of Sciences Publication Activity Database

    Mottus, R.; Allik, J.; Hřebíčková, Martina; Kööts-Ausmees, L.; Realo, A.

    2016-01-01

    Roč. 30, č. 1 (2016), s. 4-11 ISSN 0890-2070 R&D Projects: GA ČR GA13-25656S Institutional support: RVO:68081740 Keywords : variance * individual differences * personality * five-factor model Subject RIV: AN - Psychology Impact factor: 3.707, year: 2016

  14. Variance in exposed perturbations impairs retention of visuomotor adaptation.

    Science.gov (United States)

    Canaveral, Cesar Augusto; Danion, Frédéric; Berrigan, Félix; Bernier, Pierre-Michel

    2017-11-01

    Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay. NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of

  15. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  16. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  17. Variance in population firing rate as a measure of slow time-scale correlation

    Directory of Open Access Journals (Sweden)

    Adam C. Snyder

    2013-12-01

    Full Text Available Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research.

  18. Excluded-Mean-Variance Neural Decision Analyzer for Qualitative Group Decision Making

    Directory of Open Access Journals (Sweden)

    Ki-Young Song

    2012-01-01

    Full Text Available Many qualitative group decisions in professional fields such as law, engineering, economics, psychology, and medicine that appear to be crisp and certain are in reality shrouded in fuzziness as a result of uncertain environments and the nature of human cognition within which the group decisions are made. In this paper we introduce an innovative approach to group decision making in uncertain situations by using a mean-variance neural approach. The key idea of this proposed approach is to compute the excluded mean of individual evaluations and weight it by applying a variance influence function (VIF; this process of weighting the excluded mean by VIF provides an improved result in the group decision making. In this paper, a case study with the proposed excluded-mean-variance approach is also presented. The results of this case study indicate that this proposed approach can improve the effectiveness of qualitative decision making by providing the decision maker with a new cognitive tool to assist in the reasoning process.

  19. Mean and variance evolutions of the hot and cold temperatures in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Parey, Sylvie [EDF/R and D, Chatou Cedex (France); Dacunha-Castelle, D. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); Hoang, T.T.H. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); EDF/R and D, Chatou Cedex (France)

    2010-02-15

    In this paper, we examine the trends of temperature series in Europe, for the mean as well as for the variance in hot and cold seasons. To do so, we use as long and homogenous series as possible, provided by the European Climate Assessment and Dataset project for different locations in Europe, as well as the European ENSEMBLES project gridded dataset and the ERA40 reanalysis. We provide a definition of trends that we keep as intrinsic as possible and apply non-parametric statistical methods to analyse them. Obtained results show a clear link between trends in mean and variance of the whole series of hot or cold temperatures: in general, variance increases when the absolute value of temperature increases, i.e. with increasing summer temperature and decreasing winter temperature. This link is reinforced in locations where winter and summer climate has more variability. In very cold or very warm climates, the variability is lower and the link between the trends is weaker. We performed the same analysis on outputs of six climate models proposed by European teams for the 1961-2000 period (1950-2000 for one model), available through the PCMDI portal for the IPCC fourth assessment climate model simulations. The models generally perform poorly and have difficulties in capturing the relation between the two trends, especially in summer. (orig.)

  20. Application of a CADIS-like variance reduction technique to electron transport

    International Nuclear Information System (INIS)

    Dionne, B.; Haghighat, A.

    2004-01-01

    This paper studies the use of approximate deterministic importance functions to calculate the lower-weight bounds of the MCNP5 weight-window variance reduction technique when applied to electron transport simulations. This approach follows the CADIS (Consistent Adjoint Driven Importance Sampling) methodology developed for neutral particles shielding calculations. The importance functions are calculated using the one-dimensional CEPXS/ONELD code package. Considering a simple 1-D problem, this paper shows that our methodology can produce speedups up to ∼82 using an approximate electron importance function distributions computed in ∼8 seconds. (author)

  1. Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2013-01-01

    Roč. 7, č. 3 (2013), s. 146-161 ISSN 0572-3043 R&D Projects: GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Grant - others:AVČR a CONACyT(CZ) 171396 Institutional support: RVO:67985556 Keywords : Discrete-time Markov decision chains * exponential utility functions * certainty equivalent * mean-variance optimality * connections between risk -sensitive and risk -neutral models Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-0399099.pdf

  2. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    Science.gov (United States)

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  3. Genetic selection for increased mean and reduced variance of twinning rate in Belclare ewes.

    Science.gov (United States)

    Cottle, D J; Gilmour, A R; Pabiou, T; Amer, P R; Fahey, A G

    2016-04-01

    It is sometimes possible to breed for more uniform individuals by selecting animals with a greater tendency to be less variable, that is, those with a smaller environmental variance. This approach has been applied to reproduction traits in various animal species. We have evaluated fecundity in the Irish Belclare sheep breed by analyses of flocks with differing average litter size (number of lambs per ewe per year, NLB) and have estimated the genetic variance in environmental variance of lambing traits using double hierarchical generalized linear models (DHGLM). The data set comprised of 9470 litter size records from 4407 ewes collected in 56 flocks. The percentage of pedigreed lambing ewes with singles, twins and triplets was 30, 54 and 14%, respectively, in 2013 and has been relatively constant for the last 15 years. The variance of NLB increases with the mean in this data; the correlation of mean and standard deviation across sires is 0.50. The breeding goal is to increase the mean NLB without unduly increasing the incidence of triplets and higher litter sizes. The heritability estimates for lambing traits were NLB, 0.09; triplet occurrence (TRI) 0.07; and twin occurrence (TWN), 0.02. The highest and lowest twinning flocks differed by 23% (75% versus 52%) in the proportion of ewes lambing twins. Fitting bivariate sire models to NLB and the residual from the NLB model using a double hierarchical generalized linear model (DHGLM) model found a strong genetic correlation (0.88 ± 0.07) between the sire effect for the magnitude of the residual (VE ) and sire effects for NLB, confirming the general observation that increased average litter size is associated with increased variability in litter size. We propose a threshold model that may help breeders with low litter size increase the percentage of twin bearers without unduly increasing the percentage of ewes bearing triplets in Belclare sheep. © 2015 Blackwell Verlag GmbH.

  4. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  5. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    Science.gov (United States)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  6. PORTFOLIO COMPOSITION WITH MINIMUM VARIANCE: COMPARISON WITH MARKET BENCHMARKS

    Directory of Open Access Journals (Sweden)

    Daniel Menezes Cavalcante

    2016-07-01

    Full Text Available Portfolio optimization strategies are advocated as being able to allow the composition of stocks portfolios that provide returns above market benchmarks. This study aims to determine whether, in fact, portfolios based on the minimum variance strategy, optimized by the Modern Portfolio Theory, are able to achieve earnings above market benchmarks in Brazil. Time series of 36 securities traded on the BM&FBOVESPA have been analyzed in a long period of time (1999-2012, with sample windows of 12, 36, 60 and 120 monthly observations. The results indicated that the minimum variance portfolio performance is superior to market benchmarks (CDI and IBOVESPA in terms of return and risk-adjusted return, especially in medium and long-term investment horizons.

  7. Compounding approach for univariate time series with nonstationary variances

    Science.gov (United States)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  8. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... the case of Support Vector Machines (SVMS) and we propose a non-parametric scheme to restore proper generalizability. We illustrate the algorithm and its ability to restore performance on a wide range of benchmark data sets....... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  9. Robust LOD scores for variance component-based linkage analysis.

    Science.gov (United States)

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  10. Response variance in functional maps: neural darwinism revisited.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  11. Response variance in functional maps: neural darwinism revisited.

    Science.gov (United States)

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  12. Replica approach to mean-variance portfolio optimization

    Science.gov (United States)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  13. Spatial analysis based on variance of moving window averages

    OpenAIRE

    Wu, B M; Subbarao, K V; Ferrandino, F J; Hao, J J

    2006-01-01

    A new method for analysing spatial patterns was designed based on the variance of moving window averages (VMWA), which can be directly calculated in geographical information systems or a spreadsheet program (e.g. MS Excel). Different types of artificial data were generated to test the method. Regardless of data types, the VMWA method correctly determined the mean cluster sizes. This method was also employed to assess spatial patterns in historical plant disease survey data encompassing both a...

  14. Efficient Scores, Variance Decompositions and Monte Carlo Swindles.

    Science.gov (United States)

    1984-08-28

    to ;r Then a version .of Pythagoras ’ theorem gives the variance decomposition (6.1) varT var S var o(T-S) P P0 0 0 One way to see this is to note...complete sufficient statistics for (B, a) , and that the standard- ized residuals a(y - XB) 6 are ancillary. Basu’s sufficiency- ancillarity theorem

  15. The mean and variance of phylogenetic diversity under rarefaction

    OpenAIRE

    Nipperess, David A.; Matsen, Frederick A.

    2013-01-01

    Phylogenetic diversity (PD) depends on sampling intensity, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD. We have derived exact formulae for t...

  16. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  17. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    International Nuclear Information System (INIS)

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-01-01

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  18. Improved estimation of the variance in Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2008-01-01

    Results for the effective multiplication factor in a Monte Carlo criticality calculations are often obtained from averages over a number of cycles or batches after convergence of the fission source distribution to the fundamental mode. Then the standard deviation of the effective multiplication factor is also obtained from the k eff results over these cycles. As the number of cycles will be rather small, the estimate of the variance or standard deviation in k eff will not be very reliable, certainly not for the first few cycles after source convergence. In this paper the statistics for k eff are based on the generation of new fission neutron weights during each history in a cycle. It is shown that this gives much more reliable results for the standard deviation even after a small number of cycles. Also attention is paid to the variance of the variance (VoV) and the standard deviation of the standard deviation. A derivation is given how to obtain an unbiased estimate for the VoV, even for a small number of samples. (authors)

  19. Improved estimation of the variance in Monte Carlo criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard [Delft University of Technology, Delft (Netherlands)

    2008-07-01

    Results for the effective multiplication factor in a Monte Carlo criticality calculations are often obtained from averages over a number of cycles or batches after convergence of the fission source distribution to the fundamental mode. Then the standard deviation of the effective multiplication factor is also obtained from the k{sub eff} results over these cycles. As the number of cycles will be rather small, the estimate of the variance or standard deviation in k{sub eff} will not be very reliable, certainly not for the first few cycles after source convergence. In this paper the statistics for k{sub eff} are based on the generation of new fission neutron weights during each history in a cycle. It is shown that this gives much more reliable results for the standard deviation even after a small number of cycles. Also attention is paid to the variance of the variance (VoV) and the standard deviation of the standard deviation. A derivation is given how to obtain an unbiased estimate for the VoV, even for a small number of samples. (authors)

  20. A general transform for variance reduction in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Becker, T.L.; Larsen, E.W.

    2011-01-01

    This paper describes a general transform to reduce the variance of the Monte Carlo estimate of some desired solution, such as flux or biological dose. This transform implicitly includes many standard variance reduction techniques, including source biasing, collision biasing, the exponential transform for path-length stretching, and weight windows. Rather than optimizing each of these techniques separately or choosing semi-empirical biasing parameters based on the experience of a seasoned Monte Carlo practitioner, this General Transform unites all these variance techniques to achieve one objective: a distribution of Monte Carlo particles that attempts to optimize the desired solution. Specifically, this transform allows Monte Carlo particles to be distributed according to the user's specification by using information obtained from a computationally inexpensive deterministic simulation of the problem. For this reason, we consider the General Transform to be a hybrid Monte Carlo/Deterministic method. The numerical results con rm that the General Transform distributes particles according to the user-specified distribution and generally provide reasonable results for shielding applications. (author)

  1. On the expected value and variance for an estimator of the spatio-temporal product density function

    DEFF Research Database (Denmark)

    Rodríguez-Corté, Francisco J.; Ghorbani, Mohammad; Mateu, Jorge

    Second-order characteristics are used to analyse the spatio-temporal structure of the underlying point process, and thus these methods provide a natural starting point for the analysis of spatio-temporal point process data. We restrict our attention to the spatio-temporal product density function......, and develop a non-parametric edge-corrected kernel estimate of the product density under the second-order intensity-reweighted stationary hypothesis. The expectation and variance of the estimator are obtained, and closed form expressions derived under the Poisson case. A detailed simulation study is presented...... to compare our close expression for the variance with estimated ones for Poisson cases. The simulation experiments show that the theoretical form for the variance gives acceptable values, which can be used in practice. Finally, we apply the resulting estimator to data on the spatio-temporal distribution...

  2. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  3. Incident Reporting to Improve Patient Safety: The Effects of Process Variance on Pediatric Patient Safety in the Emergency Department.

    Science.gov (United States)

    OʼConnell, Karen J; Shaw, Kathy N; Ruddy, Richard M; Mahajan, Prashant V; Lichenstein, Richard; Olsen, Cody S; Funai, Tomohiko; Blumberg, Stephen; Chamberlain, James M

    2018-04-01

    Medical errors threaten patient safety, especially in the pediatric emergency department (ED) where overcrowding, multiple handoffs, and workflow interruptions are common. Errors related to process variance involve situations that are not consistent with standard ED operations or routine patient care. We performed a planned subanalysis of the Pediatric Emergency Care Applied Research Network incident reporting data classified as process variance events. Confidential deidentified incident reports (IRs) were collected and classified by 2 independent investigators. Events categorized as process variance were then subtyped for severity and contributing factors. Data were analyzed using descriptive statistics. The study intention was to describe and measure reported medical errors related to process variance in 17 EDs in the Pediatric Emergency Care Applied Research Network from 2007 to 2008. Between July 2007 and June 2008, 2906 eligible reports were reviewed. Process variance events were identified in 15.4% (447/2906). The majority were related to patient flow (35.4%), handoff communication (17.2%), and patient identification errors (15.9%). Most staff involved included nurses (47.9%) and physicians (28%); trainees were infrequently reported. The majority of events did not result in harm (65.7%); 17.9% (80/447) of cases were classified as unsafe conditions but did not reach the patient. Temporary harm requiring further treatment or hospitalization was reported in 5.6% (25/447). No events resulted in permanent harm, near death, or death. Contributing factors included human factors (92.1%), in particular handoff communication, interpersonal skills, and compliance with established procedures, and system-level errors (18.1%), including unclear or unavailable policies and inadequate staffing levels. Although process variance events accounted for approximately 1 in 6 reported safety events, very few led to patient harm. Because human and system-level factors contributed to

  4. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.

    Science.gov (United States)

    Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L

    2012-12-01

    The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).

  5. On the noise variance of a digital mammography system

    International Nuclear Information System (INIS)

    Burgess, Arthur

    2004-01-01

    A recent paper by Cooper et al. [Med. Phys. 30, 2614-2621 (2003)] contains some apparently anomalous results concerning the relationship between pixel variance and x-ray exposure for a digital mammography system. They found an unexpected peak in a display domain pixel variance plot as a function of 1/mAs (their Fig. 5) with a decrease in the range corresponding to high display data values, corresponding to low x-ray exposures. As they pointed out, if the detector response is linear in exposure and the transformation from raw to display data scales is logarithmic, then pixel variance should be a monotonically increasing function in the figure. They concluded that the total system transfer curve, between input exposure and display image data values, is not logarithmic over the full exposure range. They separated data analysis into two regions and plotted the logarithm of display image pixel variance as a function of the logarithm of the mAs used to produce the phantom images. They found a slope of minus one for high mAs values and concluded that the transfer function is logarithmic in this region. They found a slope of 0.6 for the low mAs region and concluded that the transfer curve was neither linear nor logarithmic for low exposure values. It is known that the digital mammography system investigated by Cooper et al. has a linear relationship between exposure and raw data values [Vedantham et al., Med. Phys. 27, 558-567 (2000)]. The purpose of this paper is to show that the variance effect found by Cooper et al. (their Fig. 5) arises because the transformation from the raw data scale (14 bits) to the display scale (12 bits), for the digital mammography system they investigated, is not logarithmic for raw data values less than about 300 (display data values greater than about 3300). At low raw data values the transformation is linear and prevents over-ranging of the display data scale. Parametric models for the two transformations will be presented. Results of pixel

  6. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  7. Applied Enzymology.

    Science.gov (United States)

    Manoharan, Asha; Dreisbach, Joseph H.

    1988-01-01

    Describes some examples of chemical and industrial applications of enzymes. Includes a background, a discussion of structure and reactivity, enzymes as therapeutic agents, enzyme replacement, enzymes used in diagnosis, industrial applications of enzymes, and immobilizing enzymes. Concludes that applied enzymology is an important factor in…

  8. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    Energy Technology Data Exchange (ETDEWEB)

    Song Ningfang; Yuan Rui; Jin Jing, E-mail: rayleing@139.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China)

    2011-09-15

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 {sup 0}/h{sup 2}, K = 1.1714exp-3 {sup 0}/h{sup 1.5}, B = 1.3185exp-3 {sup 0}/h, N = 5.982exp-4 {sup 0}/h{sup 0.5} and Q = 5.197exp-7 {sup 0} in real time, and tracks degradation of gyro performance from initail values, R = 0.651 {sup 0}/h{sup 2}, K = 0.801 {sup 0}/h{sup 1.5}, B = 0.385 {sup 0}/h, N = 0.0874 {sup 0}/h{sup 0.5} and Q = 8.085exp-5 {sup 0}, to final estimations, R = 9.548 {sup 0}/h{sup 2}, K = 9.524 {sup 0}/h{sup 1.5}, B = 2.234 {sup 0}/h, N = 0.5594 {sup 0}/h{sup 0.5} and Q = 5.113exp-4 {sup 0}, due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  9. Fringe biasing: A variance reduction technique for optically thick meshes

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R. P. [AWE PLC, Aldermaston Reading, Berkshire, RG7 4PR (United Kingdom)

    2013-07-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  10. Fringe biasing: A variance reduction technique for optically thick meshes

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R. P.

    2013-01-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  11. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  12. History matching of a complex epidemiological model of human immunodeficiency virus transmission by using variance emulation.

    Science.gov (United States)

    Andrianakis, I; Vernon, I; McCreesh, N; McKinley, T J; Oakley, J E; Nsubuga, R N; Goldstein, M; White, R G

    2017-08-01

    Complex stochastic models are commonplace in epidemiology, but their utility depends on their calibration to empirical data. History matching is a (pre)calibration method that has been applied successfully to complex deterministic models. In this work, we adapt history matching to stochastic models, by emulating the variance in the model outputs, and therefore accounting for its dependence on the model's input values. The method proposed is applied to a real complex epidemiological model of human immunodeficiency virus in Uganda with 22 inputs and 18 outputs, and is found to increase the efficiency of history matching, requiring 70% of the time and 43% fewer simulator evaluations compared with a previous variant of the method. The insight gained into the structure of the human immunodeficiency virus model, and the constraints placed on it, are then discussed.

  13. Double Minimum Variance Beamforming Method to Enhance Photoacoustic Imaging

    OpenAIRE

    Paridar, Roya; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    One of the common algorithms used to reconstruct photoacoustic (PA) images is the non-adaptive Delay-and-Sum (DAS) beamformer. However, the quality of the reconstructed PA images obtained by DAS is not satisfying due to its high level of sidelobes and wide mainlobe. In contrast, adaptive beamformers, such as minimum variance (MV), result in an improved image compared to DAS. In this paper, a novel beamforming method, called Double MV (D-MV) is proposed to enhance the image quality compared to...

  14. A Note on the Kinks at the Mean Variance Frontier

    OpenAIRE

    Vörös, J.; Kriens, J.; Strijbosch, L.W.G.

    1997-01-01

    In this paper the standard portfolio case with short sales restrictions is analyzed.Dybvig pointed out that if there is a kink at a risky portfolio on the efficient frontier, then the securities in this portfolio have equal expected return and the converse of this statement is false.For the existence of kinks at the efficient frontier the sufficient condition is given here and a new procedure is used to derive the efficient frontier, i.e. the characteristics of the mean variance frontier.

  15. Variance reduction techniques in the simulation of Markov processes

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    We study a functional r of the stationary distribution of a homogeneous Markov chain. It is often difficult or impossible to perform the analytical calculation of r and so it is reasonable to estimate r by a simulation process. A consistent estimator r(n) of r is obtained with respect to a chain with a countable state space. Suitably modifying the estimator r(n) of r one obtains a new consistent estimator which has a smaller variance than r(n). The same is obtained in the case of finite state space

  16. A guide to SPSS for analysis of variance

    CERN Document Server

    Levine, Gustav

    2013-01-01

    This book offers examples of programs designed for analysis of variance and related statistical tests of significance that can be run with SPSS. The reader may copy these programs directly, changing only the names or numbers of levels of factors according to individual needs. Ways of altering command specifications to fit situations with larger numbers of factors are discussed and illustrated, as are ways of combining program statements to request a variety of analyses in the same program. The first two chapters provide an introduction to the use of SPSS, Versions 3 and 4. General rules conce

  17. Diffusion-Based Trajectory Observers with Variance Constraints

    DEFF Research Database (Denmark)

    Alcocer, Alex; Jouffroy, Jerome; Oliveira, Paulo

    Diffusion-based trajectory observers have been recently proposed as a simple and efficient framework to solve diverse smoothing problems in underwater navigation. For instance, to obtain estimates of the trajectories of an underwater vehicle given position fixes from an acoustic positioning system...... of smoothing and is determined by resorting to trial and error. This paper presents a methodology to choose the observer gain by taking into account a priori information on the variance of the position measurement errors. Experimental results with data from an acoustic positioning system are presented...

  18. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  19. Applied dynamics

    CERN Document Server

    Schiehlen, Werner

    2014-01-01

    Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis.

  20. Applied optics

    International Nuclear Information System (INIS)

    Orszag, A.; Antonetti, A.

    1988-01-01

    The 1988 progress report, of the Applied Optics laboratory, of the (Polytechnic School, France), is presented. The optical fiber activities are focused on the development of an optical gyrometer, containing a resonance cavity. The following domains are included, in the research program: the infrared laser physics, the laser sources, the semiconductor physics, the multiple-photon ionization and the nonlinear optics. Investigations on the biomedical, the biological and biophysical domains are carried out. The published papers and the congress communications are listed [fr

  1. Parameter uncertainty effects on variance-based sensitivity analysis

    International Nuclear Information System (INIS)

    Yu, W.; Harris, T.J.

    2009-01-01

    In the past several years there has been considerable commercial and academic interest in methods for variance-based sensitivity analysis. The industrial focus is motivated by the importance of attributing variance contributions to input factors. A more complete understanding of these relationships enables companies to achieve goals related to quality, safety and asset utilization. In a number of applications, it is possible to distinguish between two types of input variables-regressive variables and model parameters. Regressive variables are those that can be influenced by process design or by a control strategy. With model parameters, there are typically no opportunities to directly influence their variability. In this paper, we propose a new method to perform sensitivity analysis through a partitioning of the input variables into these two groupings: regressive variables and model parameters. A sequential analysis is proposed, where first an sensitivity analysis is performed with respect to the regressive variables. In the second step, the uncertainty effects arising from the model parameters are included. This strategy can be quite useful in understanding process variability and in developing strategies to reduce overall variability. When this method is used for nonlinear models which are linear in the parameters, analytical solutions can be utilized. In the more general case of models that are nonlinear in both the regressive variables and the parameters, either first order approximations can be used, or numerically intensive methods must be used

  2. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  3. Worldwide variance in the potential utilization of Gamma Knife radiosurgery.

    Science.gov (United States)

    Hamilton, Travis; Dade Lunsford, L

    2016-12-01

    OBJECTIVE The role of Gamma Knife radiosurgery (GKRS) has expanded worldwide during the past 3 decades. The authors sought to evaluate whether experienced users vary in their estimate of its potential use. METHODS Sixty-six current Gamma Knife users from 24 countries responded to an electronic survey. They estimated the potential role of GKRS for benign and malignant tumors, vascular malformations, and functional disorders. These estimates were compared with published disease epidemiological statistics and the 2014 use reports provided by the Leksell Gamma Knife Society (16,750 cases). RESULTS Respondents reported no significant variation in the estimated use in many conditions for which GKRS is performed: meningiomas, vestibular schwannomas, and arteriovenous malformations. Significant variance in the estimated use of GKRS was noted for pituitary tumors, craniopharyngiomas, and cavernous malformations. For many current indications, the authors found significant variance in GKRS users based in the Americas, Europe, and Asia. Experts estimated that GKRS was used in only 8.5% of the 196,000 eligible cases in 2014. CONCLUSIONS Although there was a general worldwide consensus regarding many major indications for GKRS, significant variability was noted for several more controversial roles. This expert opinion survey also suggested that GKRS is significantly underutilized for many current diagnoses, especially in the Americas. Future studies should be conducted to investigate health care barriers to GKRS for many patients.

  4. Hidden temporal order unveiled in stock market volatility variance

    Directory of Open Access Journals (Sweden)

    Y. Shapira

    2011-06-01

    Full Text Available When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

  5. Waste Isolation Pilot Plant no-migration variance petition

    International Nuclear Information System (INIS)

    1990-01-01

    Section 3004 of RCRA allows EPA to grant a variance from the land disposal restrictions when a demonstration can be made that, to a reasonable degree of certainty, there will be no migration of hazardous constituents from the disposal unit for as long as the waste remains hazardous. Specific requirements for making this demonstration are found in 40 CFR 268.6, and EPA has published a draft guidance document to assist petitioners in preparing a variance request. Throughout the course of preparing this petition, technical staff from DOE, EPA, and their contractors have met frequently to discuss and attempt to resolve issues specific to radioactive mixed waste and the WIPP facility. The DOE believes it meets or exceeds all requirements set forth for making a successful ''no-migration'' demonstration. The petition presents information under five general headings: (1) waste information; (2) site characterization; (3) facility information; (4) assessment of environmental impacts, including the results of waste mobility modeling; and (5) analysis of uncertainties. Additional background and supporting documentation is contained in the 15 appendices to the petition, as well as in an extensive addendum published in October 1989

  6. Deterministic mean-variance-optimal consumption and investment

    DEFF Research Database (Denmark)

    Christiansen, Marcus; Steffensen, Mogens

    2013-01-01

    In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature that the consum......In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature...... that the consumption rate and the investment proportion are constrained to be deterministic processes. As a result we get rid of a series of unwanted features of the stochastic solution including diffusive consumption, satisfaction points and consistency problems. Deterministic strategies typically appear in unit......-linked life insurance contracts, where the life-cycle investment strategy is age dependent but wealth independent. We explain how optimal deterministic strategies can be found numerically and present an example from life insurance where we compare the optimal solution with suboptimal deterministic strategies...

  7. MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE

    Directory of Open Access Journals (Sweden)

    I GEDE ERY NISCAHYANA

    2016-08-01

    Full Text Available When the returns of stock prices show the existence of autocorrelation and heteroscedasticity, then conditional mean variance models are suitable method to model the behavior of the stocks. In this thesis, the implementation of the conditional mean variance model to the autocorrelated and heteroscedastic return was discussed. The aim of this thesis was to assess the effect of the autocorrelated and heteroscedastic returns to the optimal solution of a portfolio. The margin of four stocks, Fortune Mate Indonesia Tbk (FMII.JK, Bank Permata Tbk (BNLI.JK, Suryamas Dutamakmur Tbk (SMDM.JK dan Semen Gresik Indonesia Tbk (SMGR.JK were estimated by GARCH(1,1 model with standard innovations following the standard normal distribution and the t-distribution.  The estimations were used to construct a portfolio. The portfolio optimal was found when the standard innovation used was t-distribution with the standard deviation of 1.4532 and the mean of 0.8023 consisting of 0.9429 (94% of FMII stock, 0.0473 (5% of  BNLI stock, 0% of SMDM stock, 1% of  SMGR stock.

  8. Variance decomposition-based sensitivity analysis via neural networks

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Masini, Riccardo; Zio, Enrico; Cojazzi, Giacomo

    2003-01-01

    This paper illustrates a method for efficiently performing multiparametric sensitivity analyses of the reliability model of a given system. These analyses are of great importance for the identification of critical components in highly hazardous plants, such as the nuclear or chemical ones, thus providing significant insights for their risk-based design and management. The technique used to quantify the importance of a component parameter with respect to the system model is based on a classical decomposition of the variance. When the model of the system is realistically complicated (e.g. by aging, stand-by, maintenance, etc.), its analytical evaluation soon becomes impractical and one is better off resorting to Monte Carlo simulation techniques which, however, could be computationally burdensome. Therefore, since the variance decomposition method requires a large number of system evaluations, each one to be performed by Monte Carlo, the need arises for possibly substituting the Monte Carlo simulation model with a fast, approximated, algorithm. Here we investigate an approach which makes use of neural networks appropriately trained on the results of a Monte Carlo system reliability/availability evaluation to quickly provide with reasonable approximation, the values of the quantities of interest for the sensitivity analyses. The work was a joint effort between the Department of Nuclear Engineering of the Polytechnic of Milan, Italy, and the Institute for Systems, Informatics and Safety, Nuclear Safety Unit of the Joint Research Centre in Ispra, Italy which sponsored the project

  9. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  10. Mean-Variance-Validation Technique for Sequential Kriging Metamodels

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Kim, Ho Sung

    2010-01-01

    The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean 0 validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean 0 validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels

  11. PET image reconstruction: mean, variance, and optimal minimax criterion

    International Nuclear Information System (INIS)

    Liu, Huafeng; Guo, Min; Gao, Fei; Shi, Pengcheng; Xue, Liying; Nie, Jing

    2015-01-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min–max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H ∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential. (paper)

  12. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    Science.gov (United States)

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  13. On the mean and variance of the writhe of random polygons

    International Nuclear Information System (INIS)

    Portillo, J; Scharein, R; Arsuaga, J; Vazquez, M; Diao, Y

    2011-01-01

    We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an 'ideal' conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n) behaves as a linear function of the length of the equilateral random polygon.

  14. On the mean and variance of the writhe of random polygons.

    Science.gov (United States)

    Portillo, J; Diao, Y; Scharein, R; Arsuaga, J; Vazquez, M

    We here address two problems concerning the writhe of random polygons. First, we study the behavior of the mean writhe as a function length. Second, we study the variance of the writhe. Suppose that we are dealing with a set of random polygons with the same length and knot type, which could be the model of some circular DNA with the same topological property. In general, a simple way of detecting chirality of this knot type is to compute the mean writhe of the polygons; if the mean writhe is non-zero then the knot is chiral. How accurate is this method? For example, if for a specific knot type K the mean writhe decreased to zero as the length of the polygons increased, then this method would be limited in the case of long polygons. Furthermore, we conjecture that the sign of the mean writhe is a topological invariant of chiral knots. This sign appears to be the same as that of an "ideal" conformation of the knot. We provide numerical evidence to support these claims, and we propose a new nomenclature of knots based on the sign of their expected writhes. This nomenclature can be of particular interest to applied scientists. The second part of our study focuses on the variance of the writhe, a problem that has not received much attention in the past. In this case, we focused on the equilateral random polygons. We give numerical as well as analytical evidence to show that the variance of the writhe of equilateral random polygons (of length n ) behaves as a linear function of the length of the equilateral random polygon.

  15. Spatially tuned normalization explains attention modulation variance within neurons.

    Science.gov (United States)

    Ni, Amy M; Maunsell, John H R

    2017-09-01

    Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical

  16. Applied geodesy

    International Nuclear Information System (INIS)

    Turner, S.

    1987-01-01

    This volume is based on the proceedings of the CERN Accelerator School's course on Applied Geodesy for Particle Accelerators held in April 1986. The purpose was to record and disseminate the knowledge gained in recent years on the geodesy of accelerators and other large systems. The latest methods for positioning equipment to sub-millimetric accuracy in deep underground tunnels several tens of kilometers long are described, as well as such sophisticated techniques as the Navstar Global Positioning System and the Terrameter. Automation of better known instruments such as the gyroscope and Distinvar is also treated along with the highly evolved treatment of components in a modern accelerator. Use of the methods described can be of great benefit in many areas of research and industrial geodesy such as surveying, nautical and aeronautical engineering, astronomical radio-interferometry, metrology of large components, deformation studies, etc

  17. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  18. Estimation of measurement variance in the context of environment statistics

    Science.gov (United States)

    Maiti, Pulakesh

    2015-02-01

    The object of environment statistics is for providing information on the environment, on its most important changes over time, across locations and identifying the main factors that influence them. Ultimately environment statistics would be required to produce higher quality statistical information. For this timely, reliable and comparable data are needed. Lack of proper and uniform definitions, unambiguous classifications pose serious problems to procure qualitative data. These cause measurement errors. We consider the problem of estimating measurement variance so that some measures may be adopted to improve upon the quality of data on environmental goods and services and on value statement in economic terms. The measurement technique considered here is that of employing personal interviewers and the sampling considered here is that of two-stage sampling.

  19. Risk Management - Variance Minimization or Lower Tail Outcome Elimination

    DEFF Research Database (Denmark)

    Aabo, Tom

    2002-01-01

    on future cash flows (the budget), while risk managers concerned about costly lower tail outcomes will hedge (considerably) less depending on the level of uncertainty. A risk management strategy of lower tail outcome elimination is in line with theoretical recommendations in a corporate value......This paper illustrates the profound difference between a risk management strategy of variance minimization and a risk management strategy of lower tail outcome elimination. Risk managers concerned about the variability of cash flows will tend to center their hedge decisions on their best guess......-adding perspective. A cross-case study of blue-chip industrial companies partly supports the empirical use of a risk management strategy of lower tail outcome elimination but does not exclude other factors from (co-)driving the observations....

  20. Draft no-migration variance petition. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Department of Energy is responsible for the disposition of transuranic (TRU) waste generated by national defense-related activities. Approximately 2,6 million cubic feet of these waste have been generated and are stored at various facilities across the country. The Waste Isolation Pilot Plant (WIPP), was sited and constructed to meet stringent disposal requirements. In order to permanently dispose of TRU waste, the DOE has elected to petition the US EPA for a variance from the Land Disposal Restrictions of RCRA. This document fulfills the reporting requirements for the petition. This report is Volume 1 which discusses the regulatory frame work, site characterization, facility description, waste description, environmental impact analysis, monitoring, quality assurance, long-term compliance analysis, and regulatory compliance assessment

  1. Static models, recursive estimators and the zero-variance approach

    KAUST Repository

    Rubino, Gerardo

    2016-01-07

    When evaluating dependability aspects of complex systems, most models belong to the static world, where time is not an explicit variable. These models suffer from the same problems than dynamic ones (stochastic processes), such as the frequent combinatorial explosion of the state spaces. In the Monte Carlo domain, on of the most significant difficulties is the rare event situation. In this talk, we describe this context and a recent technique that appears to be at the top performance level in the area, where we combined ideas that lead to very fast estimation procedures with another approach called zero-variance approximation. Both ideas produced a very efficient method that has the right theoretical property concerning robustness, the Bounded Relative Error one. Some examples illustrate the results.

  2. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  3. Interdependence of NAFTA capital markets: A minimum variance portfolio approach

    Directory of Open Access Journals (Sweden)

    López-Herrera Francisco

    2014-01-01

    Full Text Available We estimate the long-run relationships among NAFTA capital market returns and then calculate the weights of a “time-varying minimum variance portfolio” that includes the Canadian, Mexican, and USA capital markets between March 2007 and March 2009, a period of intense turbulence in international markets. Our results suggest that the behavior of NAFTA market investors is not consistent with that of a theoretical “risk-averse” agent during periods of high uncertainty and may be either considered as irrational or attributed to a possible “home country bias”. This finding represents valuable information for portfolio managers and contributes to a better understanding of the nature of the markets in which they invest. It also has practical implications in the design of international portfolio investment policies.

  4. Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model

    Science.gov (United States)

    Deng, Guang-Feng; Lin, Woo-Tsong

    This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.

  5. Minimum variance linear unbiased estimators of loss and inventory

    International Nuclear Information System (INIS)

    Stewart, K.B.

    1977-01-01

    The article illustrates a number of approaches for estimating the material balance inventory and a constant loss amount from the accountability data from a sequence of accountability periods. The approaches all lead to linear estimates that have minimum variance. Techniques are shown whereby ordinary least squares, weighted least squares and generalized least squares computer programs can be used. Two approaches are recursive in nature and lend themselves to small specialized computer programs. Another approach is developed that is easy to program; could be used with a desk calculator and can be used in a recursive way from accountability period to accountability period. Some previous results are also reviewed that are very similar in approach to the present ones and vary only in the way net throughput measurements are statistically modeled. 5 refs

  6. Cosmic variance in inflation with two light scalars

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Brahma, Suddhasattwa; Deutsch, Anne-Sylvie; Shandera, Sarah, E-mail: bpb165@psu.edu, E-mail: suddhasattwa.brahma@gmail.com, E-mail: asdeutsch@psu.edu, E-mail: shandera@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, University Park, PA, 16802 (United States)

    2016-05-01

    We examine the squeezed limit of the bispectrum when a light scalar with arbitrary non-derivative self-interactions is coupled to the inflaton. We find that when the hidden sector scalar is sufficiently light ( m ∼< 0.1 H ), the coupling between long and short wavelength modes from the series of higher order correlation functions (from arbitrary order contact diagrams) causes the statistics of the fluctuations to vary in sub-volumes. This means that observations of primordial non-Gaussianity cannot be used to uniquely reconstruct the potential of the hidden field. However, the local bispectrum induced by mode-coupling from these diagrams always has the same squeezed limit, so the field's locally determined mass is not affected by this cosmic variance.

  7. Use of an excess variance approach for the certification of reference materials by interlaboratory comparison

    International Nuclear Information System (INIS)

    Crozet, M.; Rigaux, C.; Roudil, D.; Tuffery, B.; Ruas, A.; Desenfant, M.

    2014-01-01

    In the nuclear field, the accuracy and comparability of analytical results are crucial to insure correct accountancy, good process control and safe operational conditions. All of these require reliable measurements based on reference materials whose certified values must be obtained by robust metrological approaches according to the requirements of ISO guides 34 and 35. The data processing of the characterization step is one of the key steps of a reference material production process. Among several methods, the use of interlaboratory comparison results for reference material certification is very common. The DerSimonian and Laird excess variance approach, described and implemented in this paper, is a simple and efficient method for the data processing of interlaboratory comparison results for reference material certification. By taking into account not only the laboratory uncertainties but also the spread of the individual results into the calculation of the weighted mean, this approach minimizes the risk to get biased certified values in the case where one or several laboratories either underestimate their measurement uncertainties or do not identify all measurement biases. This statistical method has been applied to a new CETAMA plutonium reference material certified by interlaboratory comparison and has been compared to the classical weighted mean approach described in ISO Guide 35. This paper shows the benefits of using an 'excess variance' approach for the certification of reference material by interlaboratory comparison. (authors)

  8. RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.

    Science.gov (United States)

    Glaab, Enrico; Schneider, Reinhard

    2015-07-01

    High-throughput omics datasets often contain technical replicates included to account for technical sources of noise in the measurement process. Although summarizing these replicate measurements by using robust averages may help to reduce the influence of noise on downstream data analysis, the information on the variance across the replicate measurements is lost in the averaging process and therefore typically disregarded in subsequent statistical analyses.We introduce RepExplore, a web-service dedicated to exploit the information captured in the technical replicate variance to provide more reliable and informative differential expression and abundance statistics for omics datasets. The software builds on previously published statistical methods, which have been applied successfully to biomedical omics data but are difficult to use without prior experience in programming or scripting. RepExplore facilitates the analysis by providing a fully automated data processing and interactive ranking tables, whisker plot, heat map and principal component analysis visualizations to interpret omics data and derived statistics. Freely available at http://www.repexplore.tk enrico.glaab@uni.lu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  9. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  10. Improved analysis of all-sky meteor radar measurements of gravity wave variances and momentum fluxes

    Directory of Open Access Journals (Sweden)

    V. F. Andrioli

    2013-05-01

    Full Text Available The advantages of using a composite day analysis for all-sky interferometric meteor radars when measuring mean winds and tides are widely known. On the other hand, problems arise if this technique is applied to Hocking's (2005 gravity wave analysis for all-sky meteor radars. In this paper we describe how a simple change in the procedure makes it possible to use a composite day in Hocking's analysis. Also, we explain how a modified composite day can be constructed to test its ability to measure gravity wave momentum fluxes. Test results for specified mean, tidal, and gravity wave fields, including tidal amplitudes and gravity wave momentum fluxes varying strongly with altitude and/or time, suggest that the modified composite day allows characterization of monthly mean profiles of the gravity wave momentum fluxes, with good accuracy at least at the altitudes where the meteor counts are large (from 89 to 92.5 km. In the present work we also show that the variances measured with Hocking's method are often contaminated by the tidal fields and suggest a method of empirical correction derived from a simple simulation model. The results presented here greatly increase our confidence because they show that our technique is able to remove the tide-induced false variances from Hocking's analysis.

  11. Deviation of the Variances of Classical Estimators and Negative Integer Moment Estimator from Minimum Variance Bound with Reference to Maxwell Distribution

    Directory of Open Access Journals (Sweden)

    G. R. Pasha

    2006-07-01

    Full Text Available In this paper, we present that how much the variances of the classical estimators, namely, maximum likelihood estimator and moment estimator deviate from the minimum variance bound while estimating for the Maxwell distribution. We also sketch this difference for the negative integer moment estimator. We note the poor performance of the negative integer moment estimator in the said consideration while maximum likelihood estimator attains minimum variance bound and becomes an attractive choice.

  12. Applying radiation

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.; Jung, R.G.; Applebaum, D.C.; Fairand, B.P.; Gallagher, W.J.; Uecker, R.L.; Muckerheide, M.C.

    1979-01-01

    The invention discloses a method and apparatus for applying radiation by producing X-rays of a selected spectrum and intensity and directing them to a desired location. Radiant energy is directed from a laser onto a target to produce such X-rays at the target, which is so positioned adjacent to the desired location as to emit the X-rays toward the desired location; or such X-rays are produced in a region away from the desired location, and are channeled to the desired location. The radiant energy directing means may be shaped (as with bends; adjustable, if desired) to circumvent any obstruction between the laser and the target. Similarly, the X-ray channeling means may be shaped (as with fixed or adjustable bends) to circumvent any obstruction between the region where the X-rays are produced and the desired location. For producing a radiograph in a living organism the X-rays are provided in a short pulse to avoid any blurring of the radiograph from movement of or in the organism. For altering tissue in a living organism the selected spectrum and intensity are such as to affect substantially the tissue in a preselected volume without injuring nearby tissue. Typically, the selected spectrum comprises the range of about 0.1 to 100 keV, and the intensity is selected to provide about 100 to 1000 rads at the desired location. The X-rays may be produced by stimulated emission thereof, typically in a single direction

  13. Robust Sequential Covariance Intersection Fusion Kalman Filtering over Multi-agent Sensor Networks with Measurement Delays and Uncertain Noise Variances

    Institute of Scientific and Technical Information of China (English)

    QI Wen-Juan; ZHANG Peng; DENG Zi-Li

    2014-01-01

    This paper deals with the problem of designing robust sequential covariance intersection (SCI) fusion Kalman filter for the clustering multi-agent sensor network system with measurement delays and uncertain noise variances. The sensor network is partitioned into clusters by the nearest neighbor rule. Using the minimax robust estimation principle, based on the worst-case conservative sensor network system with conservative upper bounds of noise variances, and applying the unbiased linear minimum variance (ULMV) optimal estimation rule, we present the two-layer SCI fusion robust steady-state Kalman filter which can reduce communication and computation burdens and save energy sources, and guarantee that the actual filtering error variances have a less-conservative upper-bound. A Lyapunov equation method for robustness analysis is proposed, by which the robustness of the local and fused Kalman filters is proved. The concept of the robust accuracy is presented and the robust accuracy relations of the local and fused robust Kalman filters are proved. It is proved that the robust accuracy of the global SCI fuser is higher than those of the local SCI fusers and the robust accuracies of all SCI fusers are higher than that of each local robust Kalman filter. A simulation example for a tracking system verifies the robustness and robust accuracy relations.

  14. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  15. Search-free license plate localization based on saliency and local variance estimation

    Science.gov (United States)

    Safaei, Amin; Tang, H. L.; Sanei, S.

    2015-02-01

    In recent years, the performance and accuracy of automatic license plate number recognition (ALPR) systems have greatly improved, however the increasing number of applications for such systems have made ALPR research more challenging than ever. The inherent computational complexity of search dependent algorithms remains a major problem for current ALPR systems. This paper proposes a novel search-free method of localization based on the estimation of saliency and local variance. Gabor functions are then used to validate the choice of candidate license plate. The algorithm was applied to three image datasets with different levels of complexity and the results compared with a number of benchmark methods, particularly in terms of speed. The proposed method outperforms the state of the art methods and can be used for real time applications.

  16. Mean-Variance stochastic goal programming for sustainable mutual funds' portfolio selection.

    Directory of Open Access Journals (Sweden)

    García-Bernabeu, Ana

    2015-11-01

    Full Text Available Mean-Variance Stochastic Goal Programming models (MV-SGP provide satisficing investment solutions in uncertain contexts. In this work, an MV-SGP model is proposed for portfolio selection which includes goals with regards to traditional and sustainable assets. The proposed approach is based on a two-step procedure. In the first step, sustainability and/or financial screens are applied to a set of assets (mutual funds previously evaluated with TOPSIS to determine the opportunity set. In a second step, satisficing portfolios of assets are obtained using a Goal Programming approach. Two different goals are considered. The first goal reflects only the purely financial side of the target while the second goal is referred to the sustainable side. Aversion to Risk Absolute (ARA coefficients are estimated and incorporated in our investment decision making approach using two different approaches.

  17. A flexible model for the mean and variance functions, with application to medical cost data.

    Science.gov (United States)

    Chen, Jinsong; Liu, Lei; Zhang, Daowen; Shih, Ya-Chen T

    2013-10-30

    Medical cost data are often skewed to the right and heteroscedastic, having a nonlinear relation with covariates. To tackle these issues, we consider an extension to generalized linear models by assuming nonlinear associations of covariates in the mean function and allowing the variance to be an unknown but smooth function of the mean. We make no further assumption on the distributional form. The unknown functions are described by penalized splines, and the estimation is carried out using nonparametric quasi-likelihood. Simulation studies show the flexibility and advantages of our approach. We apply the model to the annual medical costs of heart failure patients in the clinical data repository at the University of Virginia Hospital System. Copyright © 2013 John Wiley & Sons, Ltd.

  18. International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches

    Directory of Open Access Journals (Sweden)

    Fathi Abid

    2014-05-01

    Full Text Available This paper applies the mean-variance portfolio optimization (PO approach and the stochastic dominance (SD test to examine preferences for international diversification versus domestic diversification from American investors’ viewpoints. Our PO results imply that the domestic diversification strategy dominates the international diversification strategy at a lower risk level and the reverse is true at a higher risk level. Our SD analysis shows that there is no arbitrage opportunity between international and domestic stock markets; domestically diversified portfolios with smaller risk dominate internationally diversified portfolios with larger risk and vice versa; and at the same risk level, there is no difference between the domestically and internationally diversified portfolios. Nonetheless, we cannot find any domestically diversified portfolios that stochastically dominate all internationally diversified portfolios, but we find some internationally diversified portfolios with small risk that dominate all the domestically diversified portfolios.

  19. Application of variance reduction techniques of Monte-Carlo method to deep penetration shielding problems

    International Nuclear Information System (INIS)

    Rawat, K.K.; Subbaiah, K.V.

    1996-01-01

    General purpose Monte Carlo code MCNP is being widely employed for solving deep penetration problems by applying variance reduction techniques. These techniques depend on the nature and type of the problem being solved. Application of geometry splitting and implicit capture method are examined to study the deep penetration problems of neutron, gamma and coupled neutron-gamma in thick shielding materials. The typical problems chosen are: i) point isotropic monoenergetic gamma ray source of 1 MeV energy in nearly infinite water medium, ii) 252 Cf spontaneous source at the centre of 140 cm thick water and concrete and iii) 14 MeV fast neutrons incident on the axis of 100 cm thick concrete disk. (author). 7 refs., 5 figs

  20. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    OpenAIRE

    Ma, Hui-qiang

    2014-01-01

    We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance effici...

  1. The pricing of long and short run variance and correlation risk in stock returns

    NARCIS (Netherlands)

    Cosemans, M.

    2011-01-01

    This paper studies the pricing of long and short run variance and correlation risk. The predictive power of the market variance risk premium for returns is driven by the correlation risk premium and the systematic part of individual variance premia. Furthermore, I find that aggregate volatility risk

  2. Spot Variance Path Estimation and its Application to High Frequency Jump Testing

    NARCIS (Netherlands)

    Bos, C.S.; Janus, P.; Koopman, S.J.

    2012-01-01

    This paper considers spot variance path estimation from datasets of intraday high-frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects, and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used to

  3. Model determination in a case of heterogeneity of variance using sampling techniques.

    Science.gov (United States)

    Varona, L; Moreno, C; Garcia-Cortes, L A; Altarriba, J

    1997-01-12

    A sampling determination procedure has been described in a case of heterogeneity of variance. The procedure makes use of the predictive distributions of each data given the rest of the data and the structure of the assumed model. The computation of these predictive distributions is carried out using a Gibbs Sampling procedure. The final criterion to compare between models is the Mean Square Error between the expectation of predictive distributions and real data. The procedure has been applied to a data set of weight at 210 days in the Spanish Pirenaica beef cattle breed. Three proposed models have been compared: (a) Single Trait Animal Model; (b) Heterogeneous Variance Animal Model; and (c) Multiple Trait Animal Model. After applying the procedure, the most adjusted model was the Heterogeneous Variance Animal Model. This result is probably due to a compromise between the complexity of the model and the amount of available information. The estimated heritabilities under the preferred model have been 0.489 ± 0.076 for males and 0.331 ± 0.082 for females. RESUMEN: Contraste de modelos en un caso de heterogeneidad de varianzas usando métodos de muestreo Se ha descrito un método de contraste de modelos mediante técnicas de muestreo en un caso de heterogeneidad de varianza entre sexos. El procedimiento utiliza las distribucviones predictivas de cada dato, dado el resto de datos y la estructura del modelo. El criterio para coparar modelos es el error cuadrático medio entre la esperanza de las distribuciones predictivas y los datos reales. El procedimiento se ha aplicado en datos de peso a los 210 días en la raza bovina Pirenaica. Se han propuesto tres posibles modelos: (a) Modelo Animal Unicaracter; (b) Modelo Animal con Varianzas Heterogéneas; (c) Modelo Animal Multicaracter. El modelo mejor ajustado fue el Modelo Animal con Varianzas Heterogéneas. Este resultado es probablemente debido a un compromiso entre la complejidad del modelo y la cantidad de datos

  4. Waste Isolation Pilot Plant No-Migration Variance Petition

    International Nuclear Information System (INIS)

    1990-03-01

    The purpose of the WIPP No-Migration Variance Petition is to demonstrate, according to the requirements of RCRA section 3004(d) and 40 CFR section 268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the facility for as long as the wastes remain hazardous. The DOE submitted the petition to the EPA in March 1989. Upon completion of its initial review, the EPA provided to DOE a Notice of Deficiencies (NOD). DOE responded to the EPA's NOD and met with the EPA's reviewers of the petition several times during 1989. In August 1989, EPA requested that DOE submit significant additional information addressing a variety of topics including: waste characterization, ground water hydrology, geology and dissolution features, monitoring programs, the gas generation test program, and other aspects of the project. This additional information was provided to EPA in January 1990 when DOE submitted Revision 1 of the Addendum to the petition. For clarity and ease of review, this document includes all of these submittals, and the information has been updated where appropriate. This document is divided into the following sections: Introduction, 1.0: Facility Description, 2.0: Waste Description, 3.0; Site Characterization, 4.0; Environmental Impact Analysis, 5.0; Prediction and Assessment of Infrequent Events, 6.0; and References, 7.0

  5. Beyond the GUM: variance-based sensitivity analysis in metrology

    International Nuclear Information System (INIS)

    Lira, I

    2016-01-01

    Variance-based sensitivity analysis is a well established tool for evaluating the contribution of the uncertainties in the inputs to the uncertainty in the output of a general mathematical model. While the literature on this subject is quite extensive, it has not found widespread use in metrological applications. In this article we present a succinct review of the fundamentals of sensitivity analysis, in a form that should be useful to most people familiarized with the Guide to the Expression of Uncertainty in Measurement (GUM). Through two examples, it is shown that in linear measurement models, no new knowledge is gained by using sensitivity analysis that is not already available after the terms in the so-called ‘law of propagation of uncertainties’ have been computed. However, if the model behaves non-linearly in the neighbourhood of the best estimates of the input quantities—and if these quantities are assumed to be statistically independent—sensitivity analysis is definitely advantageous for gaining insight into how they can be ranked according to their importance in establishing the uncertainty of the measurand. (paper)

  6. Improving computational efficiency of Monte Carlo simulations with variance reduction

    International Nuclear Information System (INIS)

    Turner, A.; Davis, A.

    2013-01-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  7. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  8. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  9. Dominance genetic variance for traits under directional selection in Drosophila serrata.

    Science.gov (United States)

    Sztepanacz, Jacqueline L; Blows, Mark W

    2015-05-01

    In contrast to our growing understanding of patterns of additive genetic variance in single- and multi-trait combinations, the relative contribution of nonadditive genetic variance, particularly dominance variance, to multivariate phenotypes is largely unknown. While mechanisms for the evolution of dominance genetic variance have been, and to some degree remain, subject to debate, the pervasiveness of dominance is widely recognized and may play a key role in several evolutionary processes. Theoretical and empirical evidence suggests that the contribution of dominance variance to phenotypic variance may increase with the correlation between a trait and fitness; however, direct tests of this hypothesis are few. Using a multigenerational breeding design in an unmanipulated population of Drosophila serrata, we estimated additive and dominance genetic covariance matrices for multivariate wing-shape phenotypes, together with a comprehensive measure of fitness, to determine whether there is an association between directional selection and dominance variance. Fitness, a trait unequivocally under directional selection, had no detectable additive genetic variance, but significant dominance genetic variance contributing 32% of the phenotypic variance. For single and multivariate morphological traits, however, no relationship was observed between trait-fitness correlations and dominance variance. A similar proportion of additive and dominance variance was found to contribute to phenotypic variance for single traits, and double the amount of additive compared to dominance variance was found for the multivariate trait combination under directional selection. These data suggest that for many fitness components a positive association between directional selection and dominance genetic variance may not be expected. Copyright © 2015 by the Genetics Society of America.

  10. Simultaneous Monte Carlo zero-variance estimates of several correlated means

    International Nuclear Information System (INIS)

    Booth, T.E.

    1998-01-01

    Zero-variance biasing procedures are normally associated with estimating a single mean or tally. In particular, a zero-variance solution occurs when every sampling is made proportional to the product of the true probability multiplied by the expected score (importance) subsequent to the sampling; i.e., the zero-variance sampling is importance weighted. Because every tally has a different importance function, a zero-variance biasing for one tally cannot be a zero-variance biasing for another tally (unless the tallies are perfectly correlated). The way to optimize the situation when the required tallies have positive correlation is shown

  11. The impact of grid and spectral nudging on the variance of the near-surface wind speed

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.

    2015-01-01

    Grid and spectral nudging are effective ways of preventing drift from large scale weather patterns in regional climate models. However, the effect of nudging on the wind-speed variance is unclear. In this study, the impact of grid and spectral nudging on near-surface and upper boundary layer wind...... nudging at and above 1150 m above ground level (AGL). Nested 5 km simulations are not nudged directly, but inherit boundary conditions from the 15 km experiments. Spatial and temporal spectra show that grid nudging causes smoothing of the wind in the 15 km domain at all wavenumbers, both at 1150 m AGL...... and near the surface where nudging is not applied directly, while spectral nudging mainly affects longer wavenumbers. Maps of mesoscale variance show spatial smoothing for both grid and spectral nudging, although the effect is less pronounced for spectral nudging. On the inner, 5 km domain, an indirect...

  12. Minimal variance hedging of natural gas derivatives in exponential Lévy models: Theory and empirical performance

    International Nuclear Information System (INIS)

    Ewald, Christian-Oliver; Nawar, Roy; Siu, Tak Kuen

    2013-01-01

    We consider the problem of hedging European options written on natural gas futures, in a market where prices of traded assets exhibit jumps, by trading in the underlying asset. We provide a general expression for the hedging strategy which minimizes the variance of the terminal hedging error, in terms of stochastic integral representations of the payoffs of the options involved. This formula is then applied to compute hedge ratios for common options in various models with jumps, leading to easily computable expressions. As a benchmark we take the standard Black–Scholes and Merton delta hedges. We show that in natural gas option markets minimal variance hedging with underlying consistently outperform the benchmarks by quite a margin. - Highlights: ► We derive hedging strategies for European type options written on natural gas futures. ► These are tested empirically using Henry Hub natural gas futures and options data. ► We find that our hedges systematically outperform classical benchmarks

  13. Variance Swaps in BM&F: Pricing and Viability of Hedge

    Directory of Open Access Journals (Sweden)

    Richard John Brostowicz Junior

    2010-07-01

    Full Text Available A variance swap can theoretically be priced with an infinite set of vanilla calls and puts options considering that the realized variance follows a purely diffusive process with continuous monitoring. In this article we willanalyze the possible differences in pricing considering discrete monitoring of realized variance. It will analyze the pricing of variance swaps with payoff in dollars, since there is a OTC market that works this way and thatpotentially serve as a hedge for the variance swaps traded in BM&F. Additionally, will be tested the feasibility of hedge of variance swaps when there is liquidity in just a few exercise prices, as is the case of FX optionstraded in BM&F. Thus be assembled portfolios containing variance swaps and their replicating portfolios using the available exercise prices as proposed in (DEMETERFI et al., 1999. With these portfolios, the effectiveness of the hedge was not robust in mostly of tests conducted in this work.

  14. Improving precision in gel electrophoresis by stepwisely decreasing variance components.

    Science.gov (United States)

    Schröder, Simone; Brandmüller, Asita; Deng, Xi; Ahmed, Aftab; Wätzig, Hermann

    2009-10-15

    Many methods have been developed in order to increase selectivity and sensitivity in proteome research. However, gel electrophoresis (GE) which is one of the major techniques in this area, is still known for its often unsatisfactory precision. Percental relative standard deviations (RSD%) up to 60% have been reported. In this case the improvement of precision and sensitivity is absolutely essential, particularly for the quality control of biopharmaceuticals. Our work reflects the remarkable and completely irregular changes of the background signal from gel to gel. This irregularity was identified as one of the governing error sources. These background changes can be strongly reduced by using a signal detection in the near-infrared (NIR) range. This particular detection method provides the most sensitive approach for conventional CCB (Colloidal Coomassie Blue) stained gels, which is reflected in a total error of just 5% (RSD%). In order to further investigate variance components in GE, an experimental Plackett-Burman screening design was performed. The influence of seven potential factors on the precision was investigated using 10 proteins with different properties analyzed by NIR detection. The results emphasized the individuality of the proteins. Completely different factors were identified to be significant for each protein. However, out of seven investigated parameters, just four showed a significant effect on some proteins, namely the parameters of: destaining time, staining temperature, changes of detergent additives (SDS and LDS) in the sample buffer, and the age of the gels. As a result, precision can only be improved individually for each protein or protein classes. Further understanding of the unique properties of proteins should enable us to improve the precision in gel electrophoresis.

  15. Working Around Cosmic Variance: Remote Quadrupole Measurements of the CMB

    Science.gov (United States)

    Adil, Arsalan; Bunn, Emory

    2018-01-01

    Anisotropies in the CMB maps continue to revolutionize our understanding of the Cosmos. However, the statistical interpretation of these anisotropies is tainted with a posteriori statistics. The problem is particularly emphasized for lower order multipoles, i.e. in the cosmic variance regime of the power spectrum. Naturally, the solution lies in acquiring a new data set – a rather difficult task given the sample size of the Universe.The CMB temperature, in theory, depends on: the direction of photon propagation, the time at which the photons are observed, and the observer’s location in space. In existing CMB data, only the first parameter varies. However, as first pointed out by Kamionkowski and Loeb, a solution lies in making the so-called “Remote Quadrupole Measurements” by analyzing the secondary polarization produced by incoming CMB photons via the Sunyaev-Zel’dovich (SZ) effect. These observations allow us to measure the projected CMB quadrupole at the location and look-back time of a galaxy cluster.At low redshifts, the remote quadrupole is strongly correlated to the CMB anisotropy from our last scattering surface. We provide here a formalism for computing the covariance and relation matrices for both the two-point correlation function on the last scattering surface of a galaxy cluster and the cross correlation of the remote quadrupole with the local CMB. We then calculate these matrices based on a fiducial model and a non-standard model that suppresses power at large angles for ~104 clusters up to z=2. We anticipate to make a priori predictions of the differences between our expectations for the standard and non-standard models. Such an analysis is timely in the wake of the CMB S4 era which will provide us with an extensive SZ cluster catalogue.

  16. Feynman variance-to-mean in the context of passive neutron coincidence counting

    Energy Technology Data Exchange (ETDEWEB)

    Croft, S., E-mail: scroft@lanl.gov [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Favalli, A.; Hauck, D.K.; Henzlova, D.; Santi, P.A. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States)

    2012-09-11

    Passive Neutron Coincidence Counting (PNCC) based on shift register autocorrelation time analysis of the detected neutron pulse train is an important Nondestructive Assay (NDA) method. It is used extensively in the quantification of plutonium and other spontaneously fissile materials for purposes of nuclear materials accountancy. In addition to the totals count rate, which is also referred to as the singles, gross or trigger rate, a quantity known as the reals coincidence rate, also called the pairs or doubles, is obtained from the difference between the measured neutron multiplicities in two measurement gates triggered by the incoming events on the pulse train. The reals rate is a measure of the number of time correlated pairs present on the pulse train and this can be related to the fission rates (and hence material mass) since fissions emit neutrons in bursts which are also detected in characteristic clusters. A closely related measurement objective is the determination of the reactivity of systems as they approach criticality. In this field an alternative autocorrelation signature is popular, the so called Feynman variance-to-mean technique which makes use of the multiplicity histogram formed the periodic, or clock-triggered opening of a coincidence gate. Workers in these two application areas share common challenges and improvement opportunities but are often separated by tradition, problem focus and technical language. The purpose of this paper is to recognize the close link between the Feynman variance-to-mean metric and traditional PNCC using shift register logic applied to correlated pulse trains. We, show using relationships for the late-gate (or accidentals) histogram recorded using a multiplicity shift register, how the Feynman Y-statistic, defined as the excess variance-to-mean ratio, can be expressed in terms of the singles and doubles rates familiar to the safeguards and waste assay communities. These two specialisms now have a direct bridge between

  17. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  18. Evolution of sociality by natural selection on variances in reproductive fitness: evidence from a social bee

    Directory of Open Access Journals (Sweden)

    Stevens Mark I

    2007-08-01

    Full Text Available Abstract Background The Central Limit Theorem (CLT is a statistical principle that states that as the number of repeated samples from any population increase, the variance among sample means will decrease and means will become more normally distributed. It has been conjectured that the CLT has the potential to provide benefits for group living in some animals via greater predictability in food acquisition, if the number of foraging bouts increases with group size. The potential existence of benefits for group living derived from a purely statistical principle is highly intriguing and it has implications for the origins of sociality. Results Here we show that in a social allodapine bee the relationship between cumulative food acquisition (measured as total brood weight and colony size accords with the CLT. We show that deviations from expected food income decrease with group size, and that brood weights become more normally distributed both over time and with increasing colony size, as predicted by the CLT. Larger colonies are better able to match egg production to expected food intake, and better able to avoid costs associated with producing more brood than can be reared while reducing the risk of under-exploiting the food resources that may be available. Conclusion These benefits to group living derive from a purely statistical principle, rather than from ecological, ergonomic or genetic factors, and could apply to a wide variety of species. This in turn suggests that the CLT may provide benefits at the early evolutionary stages of sociality and that evolution of group size could result from selection on variances in reproductive fitness. In addition, they may help explain why sociality has evolved in some groups and not others.

  19. Evolution of sociality by natural selection on variances in reproductive fitness: evidence from a social bee.

    Science.gov (United States)

    Stevens, Mark I; Hogendoorn, Katja; Schwarz, Michael P

    2007-08-29

    The Central Limit Theorem (CLT) is a statistical principle that states that as the number of repeated samples from any population increase, the variance among sample means will decrease and means will become more normally distributed. It has been conjectured that the CLT has the potential to provide benefits for group living in some animals via greater predictability in food acquisition, if the number of foraging bouts increases with group size. The potential existence of benefits for group living derived from a purely statistical principle is highly intriguing and it has implications for the origins of sociality. Here we show that in a social allodapine bee the relationship between cumulative food acquisition (measured as total brood weight) and colony size accords with the CLT. We show that deviations from expected food income decrease with group size, and that brood weights become more normally distributed both over time and with increasing colony size, as predicted by the CLT. Larger colonies are better able to match egg production to expected food intake, and better able to avoid costs associated with producing more brood than can be reared while reducing the risk of under-exploiting the food resources that may be available. These benefits to group living derive from a purely statistical principle, rather than from ecological, ergonomic or genetic factors, and could apply to a wide variety of species. This in turn suggests that the CLT may provide benefits at the early evolutionary stages of sociality and that evolution of group size could result from selection on variances in reproductive fitness. In addition, they may help explain why sociality has evolved in some groups and not others.

  20. A comparison between temporal and subband minimum variance adaptive beamforming

    Science.gov (United States)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar

  1. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    International Nuclear Information System (INIS)

    Westner, Guenther; Madlener, Reinhard

    2010-01-01

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  2. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther; Madlener, Reinhard [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  3. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    International Nuclear Information System (INIS)

    Oliver Gao, H.; Stasko, Timon H.

    2009-01-01

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice.

  4. Application of Higher Order Fission Matrix for Real Variance Estimation in McCARD Monte Carlo Eigenvalue Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ho Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Shim, Hyung Jin [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    In a Monte Carlo (MC) eigenvalue calculation, it is well known that the apparent variance of a local tally such as pin power differs from the real variance considerably. The MC method in eigenvalue calculations uses a power iteration method. In the power iteration method, the fission matrix (FM) and fission source density (FSD) are used as the operator and the solution. The FM is useful to estimate a variance and covariance because the FM can be calculated by a few cycle calculations even at inactive cycle. Recently, S. Carney have implemented the higher order fission matrix (HOFM) capabilities into the MCNP6 MC code in order to apply to extend the perturbation theory to second order. In this study, the HOFM capability by the Hotelling deflation method was implemented into McCARD and used to predict the behavior of a real and apparent SD ratio. In the simple 1D slab problems, the Endo's theoretical model predicts well the real to apparent SD ratio. It was noted that the Endo's theoretical model with the McCARD higher mode FS solutions by the HOFM yields much better the real to apparent SD ratio than that with the analytic solutions. In the near future, the application for a high dominance ratio problem such as BEAVRS benchmark will be conducted.

  5. Diversification in the driveway: mean-variance optimization for greenhouse gas emissions reduction from the next generation of vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Oliver Gao, H.; Stasko, Timon H. [School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2009-12-15

    Modern portfolio theory is applied to the problem of selecting which vehicle technologies and fuels to use in the next generation of vehicles. Selecting vehicles with the lowest lifetime cost is complicated by the fact that future prices are uncertain, just as selecting securities for an investment portfolio is complicated by the fact that future returns are uncertain. A quadratic program is developed based on modern portfolio theory, with the objective of minimizing the expected lifetime cost of the 'vehicle portfolio'. Constraints limit greenhouse gas emissions, as well as the variance of the cost. A case study is performed for light-duty passenger vehicles in the United States, drawing emissions and usage data from the US Environmental Protection Agency's MOVES and Department of Energy's GREET models, among other sources. Four vehicle technologies are considered: conventional gasoline, conventional diesel, grid-independent (non-plug-in) gasoline-electric hybrid, and flex fuel using E85. Results indicate that much of the uncertainty surrounding cost stems from fuel price fluctuations, and that fuel efficient vehicles can lower cost variance. Hybrids exhibit the lowest cost variances of the technologies considered, making them an arguably financially conservative choice. (author)

  6. A Mean-Variance Criterion for Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    , the tractability of the resulting optimal control problem is addressed. We use a power management case study to compare different variations of the mean-variance strategy with EMPC based on the certainty equivalence principle. The certainty equivalence strategy is much more computationally efficient than the mean......-variance strategies, but it does not account for the variance of the uncertain parameters. Openloop simulations suggest that a single-stage mean-variance approach yields a significantly lower operating cost than the certainty equivalence strategy. In closed-loop, the single-stage formulation is overly conservative...... be modified to perform almost as well as the two-stage mean-variance formulation. Nevertheless, we argue that the mean-variance approach can be used both as a strategy for evaluating less computational demanding methods such as the certainty equivalence method, and as an individual control strategy when...

  7. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2014-01-01

    Full Text Available We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.

  8. Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function

    OpenAIRE

    Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace

    2008-01-01

    The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro...

  9. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  10. A characterization of optimal portfolios under the tail mean-variance criterion

    OpenAIRE

    Owadally, I.; Landsman, Z.

    2013-01-01

    The tail mean–variance model was recently introduced for use in risk management and portfolio choice; it involves a criterion that focuses on the risk of rare but large losses, which is particularly important when losses have heavy-tailed distributions. If returns or losses follow a multivariate elliptical distribution, the use of risk measures that satisfy certain well-known properties is equivalent to risk management in the classical mean–variance framework. The tail mean–variance criterion...

  11. A geometric approach to multiperiod mean variance optimization of assets and liabilities

    OpenAIRE

    Leippold, Markus; Trojani, Fabio; Vanini, Paolo

    2005-01-01

    We present a geometric approach to discrete time multiperiod mean variance portfolio optimization that largely simplifies the mathematical analysis and the economic interpretation of such model settings. We show that multiperiod mean variance optimal policies can be decomposed in an orthogonal set of basis strategies, each having a clear economic interpretation. This implies that the corresponding multi period mean variance frontiers are spanned by an orthogonal basis of dynamic returns. Spec...

  12. Uncertainty quantification for radiation measurements: Bottom-up error variance estimation using calibration information

    International Nuclear Information System (INIS)

    Burr, T.; Croft, S.; Krieger, T.; Martin, K.; Norman, C.; Walsh, S.

    2016-01-01

    One example of top-down uncertainty quantification (UQ) involves comparing two or more measurements on each of multiple items. One example of bottom-up UQ expresses a measurement result as a function of one or more input variables that have associated errors, such as a measured count rate, which individually (or collectively) can be evaluated for impact on the uncertainty in the resulting measured value. In practice, it is often found that top-down UQ exhibits larger error variances than bottom-up UQ, because some error sources are present in the fielded assay methods used in top-down UQ that are not present (or not recognized) in the assay studies used in bottom-up UQ. One would like better consistency between the two approaches in order to claim understanding of the measurement process. The purpose of this paper is to refine bottom-up uncertainty estimation by using calibration information so that if there are no unknown error sources, the refined bottom-up uncertainty estimate will agree with the top-down uncertainty estimate to within a specified tolerance. Then, in practice, if the top-down uncertainty estimate is larger than the refined bottom-up uncertainty estimate by more than the specified tolerance, there must be omitted sources of error beyond those predicted from calibration uncertainty. The paper develops a refined bottom-up uncertainty approach for four cases of simple linear calibration: (1) inverse regression with negligible error in predictors, (2) inverse regression with non-negligible error in predictors, (3) classical regression followed by inversion with negligible error in predictors, and (4) classical regression followed by inversion with non-negligible errors in predictors. Our illustrations are of general interest, but are drawn from our experience with nuclear material assay by non-destructive assay. The main example we use is gamma spectroscopy that applies the enrichment meter principle. Previous papers that ignore error in predictors

  13. Individual and collective bodies: using measures of variance and association in contextual epidemiology.

    Science.gov (United States)

    Merlo, J; Ohlsson, H; Lynch, K F; Chaix, B; Subramanian, S V

    2009-12-01

    Social epidemiology investigates both individuals and their collectives. Although the limits that define the individual bodies are very apparent, the collective body's geographical or cultural limits (eg "neighbourhood") are more difficult to discern. Also, epidemiologists normally investigate causation as changes in group means. However, many variables of interest in epidemiology may cause a change in the variance of the distribution of the dependent variable. In spite of that, variance is normally considered a measure of uncertainty or a nuisance rather than a source of substantive information. This reasoning is also true in many multilevel investigations, whereas understanding the distribution of variance across levels should be fundamental. This means-centric reductionism is mostly concerned with risk factors and creates a paradoxical situation, as social medicine is not only interested in increasing the (mean) health of the population, but also in understanding and decreasing inappropriate health and health care inequalities (variance). Critical essay and literature review. The present study promotes (a) the application of measures of variance and clustering to evaluate the boundaries one uses in defining collective levels of analysis (eg neighbourhoods), (b) the combined use of measures of variance and means-centric measures of association, and (c) the investigation of causes of health variation (variance-altering causation). Both measures of variance and means-centric measures of association need to be included when performing contextual analyses. The variance approach, a new aspect of contextual analysis that cannot be interpreted in means-centric terms, allows perspectives to be expanded.

  14. Estimating integrated variance in the presence of microstructure noise using linear regression

    Science.gov (United States)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  15. Variance-in-Mean Effects of the Long Forward-Rate Slope

    DEFF Research Database (Denmark)

    Christiansen, Charlotte

    2005-01-01

    This paper contains an empirical analysis of the dependence of the long forward-rate slope on the long-rate variance. The long forward-rate slope and the long rate are described by a bivariate GARCH-in-mean model. In accordance with theory, a negative long-rate variance-in-mean effect for the long...... forward-rate slope is documented. Thus, the greater the long-rate variance, the steeper the long forward-rate curve slopes downward (the long forward-rate slope is negative). The variance-in-mean effect is both statistically and economically significant....

  16. A study of heterogeneity of environmental variance for slaughter weight in pigs

    DEFF Research Database (Denmark)

    Ibánez-Escriche, N; Varona, L; Sorensen, D

    2008-01-01

    This work presents an analysis of heterogeneity of environmental variance for slaughter weight (175 days) in pigs. This heterogeneity is associated with systematic and additive genetic effects. The model also postulates the presence of additive genetic effects affecting the mean and environmental...... variance. The study reveals the presence of genetic variation at the level of the mean and the variance, but an absence of correlation, or a small negative correlation, between both types of additive genetic effects. In addition, we show that both, the additive genetic effects on the mean and those...... on environmental variance have an important influence upon the future economic performance of selected individuals...

  17. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments.

    Science.gov (United States)

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena

    2006-10-01

    Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.

  18. The genotype-environment interaction variance in rice-seed protein determination

    International Nuclear Information System (INIS)

    Ismachin, M.

    1976-01-01

    Many environmental factors influence the protein content of cereal seed. This fact procured difficulties in breeding for protein. Yield is another example on which so many environmental factors are of influence. The length of time required by the plant to reach maturity, is also affected by the environmental factors; even though its effect is not too decisive. In this investigation the genotypic variance and the genotype-environment interaction variance which contribute to the total variance or phenotypic variance was analysed, with purpose to give an idea to the breeder how selection should be made. It was found that genotype-environment interaction variance is larger than the genotypic variance in contribution to total variance of protein-seed determination or yield. In the analysis of the time required to reach maturity it was found that genotypic variance is larger than the genotype-environment interaction variance. It is therefore clear, why selection for time required to reach maturity is much easier than selection for protein or yield. Selected protein in one location may be different from that to other locations. (author)

  19. Optimal control of LQG problem with an explicit trade-off between mean and variance

    Science.gov (United States)

    Qian, Fucai; Xie, Guo; Liu, Ding; Xie, Wenfang

    2011-12-01

    For discrete-time linear-quadratic Gaussian (LQG) control problems, a utility function on the expectation and the variance of the conventional performance index is considered. The utility function is viewed as an overall objective of the system and can perform the optimal trade-off between the mean and the variance of performance index. The nonlinear utility function is first converted into an auxiliary parameters optimisation problem about the expectation and the variance. Then an optimal closed-loop feedback controller for the nonseparable mean-variance minimisation problem is designed by nonlinear mathematical programming. Finally, simulation results are given to verify the algorithm's effectiveness obtained in this article.

  20. Replication Variance Estimation under Two-phase Sampling in the Presence of Non-response

    Directory of Open Access Journals (Sweden)

    Muqaddas Javed

    2014-09-01

    Full Text Available Kim and Yu (2011 discussed replication variance estimator for two-phase stratified sampling. In this paper estimators for mean have been proposed in two-phase stratified sampling for different situation of existence of non-response at first phase and second phase. The expressions of variances of these estimators have been derived. Furthermore, replication-based jackknife variance estimators of these variances have also been derived. Simulation study has been conducted to investigate the performance of the suggested estimators.

  1. A mean–variance objective for robust production optimization in uncertain geological scenarios

    DEFF Research Database (Denmark)

    Capolei, Andrea; Suwartadi, Eka; Foss, Bjarne

    2014-01-01

    directly. In the mean–variance bi-criterion objective function risk appears directly, it also considers an ensemble of reservoir models, and has robust optimization as a special extreme case. The mean–variance objective is common for portfolio optimization problems in finance. The Markowitz portfolio...... optimization problem is the original and simplest example of a mean–variance criterion for mitigating risk. Risk is mitigated in oil production by including both the expected NPV (mean of NPV) and the risk (variance of NPV) for the ensemble of possible reservoir models. With the inclusion of the risk...

  2. The Variance between Recommended and Nursing Staff Levels at Womack Army Medical Center

    National Research Council Canada - National Science Library

    Holcek, Robert A

    2007-01-01

    .... This study considered five possible rationales for the existing variances - workload changes, staff experience, observation patients, recovery patients, and outpatient procedures - for 117 work...

  3. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines.

    Science.gov (United States)

    Osthushenrich, Tanja; Frisch, Matthias; Herzog, Eva

    2017-01-01

    In a line or a hybrid breeding program superior lines are selected from a breeding pool as parental lines for the next breeding cycle. From a cross of two parental lines, new lines are derived by single-seed descent (SSD) or doubled haploid (DH) technology. However, not all possible crosses between the parental lines can be carried out due to limited resources. Our objectives were to present formulas to characterize a cross by the mean and variance of the genotypic values of the lines derived from the cross, and to apply the formulas to predict means and variances of flowering time traits in recombinant inbred line families of a publicly available data set in maize. We derived formulas which are based on the expected linkage disequilibrium (LD) between two loci and which can be used for arbitrary mating systems. Results were worked out for SSD and DH lines derived from a cross after an arbitrary number of intermating generations. The means and variances were highly correlated with results obtained by the simulation software PopVar. Compared with these simulations, computation time for our closed formulas was about ten times faster. The means and variances for flowering time traits observed in the recombinant inbred line families of the investigated data set showed correlations of around 0.9 for the means and of 0.46 and 0.65 for the standard deviations with the estimated values. We conclude that our results provide a framework that can be exploited to increase the efficiency of hybrid and line breeding programs by extending genomic selection approaches to the selection of crossing partners.

  4. Genomic selection of crossing partners on basis of the expected mean and variance of their derived lines

    Science.gov (United States)

    Osthushenrich, Tanja; Frisch, Matthias

    2017-01-01

    In a line or a hybrid breeding program superior lines are selected from a breeding pool as parental lines for the next breeding cycle. From a cross of two parental lines, new lines are derived by single-seed descent (SSD) or doubled haploid (DH) technology. However, not all possible crosses between the parental lines can be carried out due to limited resources. Our objectives were to present formulas to characterize a cross by the mean and variance of the genotypic values of the lines derived from the cross, and to apply the formulas to predict means and variances of flowering time traits in recombinant inbred line families of a publicly available data set in maize. We derived formulas which are based on the expected linkage disequilibrium (LD) between two loci and which can be used for arbitrary mating systems. Results were worked out for SSD and DH lines derived from a cross after an arbitrary number of intermating generations. The means and variances were highly correlated with results obtained by the simulation software PopVar. Compared with these simulations, computation time for our closed formulas was about ten times faster. The means and variances for flowering time traits observed in the recombinant inbred line families of the investigated data set showed correlations of around 0.9 for the means and of 0.46 and 0.65 for the standard deviations with the estimated values. We conclude that our results provide a framework that can be exploited to increase the efficiency of hybrid and line breeding programs by extending genomic selection approaches to the selection of crossing partners. PMID:29200436

  5. ADVANTG An Automated Variance Reduction Parameter Generator, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Scott W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Seth R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevill, Aaron M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ibrahim, Ahmad M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Evans, Thomas M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wagner, John C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Johnson, Jeffrey O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grove, Robert E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    The primary objective of ADVANTG is to reduce both the user effort and the computational time required to obtain accurate and precise tally estimates across a broad range of challenging transport applications. ADVANTG has been applied to simulations of real-world radiation shielding, detection, and neutron activation problems. Examples of shielding applications include material damage and dose rate analyses of the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source and High Flux Isotope Reactor (Risner and Blakeman 2013) and the ITER Tokamak (Ibrahim et al. 2011). ADVANTG has been applied to a suite of radiation detection, safeguards, and special nuclear material movement detection test problems (Shaver et al. 2011). ADVANTG has also been used in the prediction of activation rates within light water reactor facilities (Pantelias and Mosher 2013). In these projects, ADVANTG was demonstrated to significantly increase the tally figure of merit (FOM) relative to an analog MCNP simulation. The ADVANTG-generated parameters were also shown to be more effective than manually generated geometry splitting parameters.

  6. On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models

    Science.gov (United States)

    Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.

    2017-12-01

    Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.

  7. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    Science.gov (United States)

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  8. On Mean-Variance Hedging of Bond Options with Stochastic Risk Premium Factor

    NARCIS (Netherlands)

    Aihara, ShinIchi; Bagchi, Arunabha; Kumar, Suresh K.

    2014-01-01

    We consider the mean-variance hedging problem for pricing bond options using the yield curve as the observation. The model considered contains infinite-dimensional noise sources with the stochastically- varying risk premium. Hence our model is incomplete. We consider mean-variance hedging under the

  9. Investor preferences for oil spot and futures based on mean-variance and stochastic dominance

    NARCIS (Netherlands)

    H.H. Lean (Hooi Hooi); M.J. McAleer (Michael); W.-K. Wong (Wing-Keung)

    2010-01-01

    textabstractThis paper examines investor preferences for oil spot and futures based on mean-variance (MV) and stochastic dominance (SD). The mean-variance criterion cannot distinct the preferences of spot and market whereas SD tests leads to the conclusion that spot dominates futures in the downside

  10. Within-category variance and lexical tone discrimination in native and non-native speakers

    NARCIS (Netherlands)

    Hoffmann, C.W.G.; Sadakata, M.; Chen, A.; Desain, P.W.M.; McQueen, J.M.; Gussenhove, C.; Chen, Y.; Dediu, D.

    2014-01-01

    In this paper, we show how acoustic variance within lexical tones in disyllabic Mandarin Chinese pseudowords affects discrimination abilities in both native and non-native speakers of Mandarin Chinese. Within-category acoustic variance did not hinder native speakers in discriminating between lexical

  11. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    Science.gov (United States)

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  12. 29 CFR 1926.2 - Variances from safety and health standards.

    Science.gov (United States)

    2010-07-01

    ... from safety and health standards. (a) Variances from standards which are, or may be, published in this... 29 Labor 8 2010-07-01 2010-07-01 false Variances from safety and health standards. 1926.2 Section 1926.2 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION...

  13. Using variances to comply with resource conservation and recovery act treatment standards

    International Nuclear Information System (INIS)

    Ranek, N.L.

    2002-01-01

    When a waste generated, treated, or disposed of at a site in the United States is classified as hazardous under the Resource Conservation and Recovery Act and is destined for land disposal, the waste manager responsible for that site must select an approach to comply with land disposal restrictions (LDR) treatment standards. This paper focuses on the approach of obtaining a variance from existing, applicable LDR treatment standards. It describes the types of available variances, which include (1) determination of equivalent treatment (DET); (2) treatability variance; and (3) treatment variance for contaminated soil. The process for obtaining each type of variance is also described. Data are presented showing that historically the U.S. Environmental Protection Agency (EPA) processed DET petitions within one year of their date of submission. However, a 1999 EPA policy change added public participation to the DET petition review, which may lengthen processing time in the future. Regarding site-specific treatability variances, data are presented showing an EPA processing time of between 10 and 16 months. Only one generically applicable treatability variance has been granted, which took 30 months to process. No treatment variances for contaminated soil, which were added to the federal LDR program in 1998, are identified as having been granted.

  14. Heritable Environmental Variance Causes Nonlinear Relationships Between Traits: Application to Birth Weight and Stillbirth of Pigs

    NARCIS (Netherlands)

    Mulder, H.A.; Hill, W.G.; Knol, E.F.

    2015-01-01

    There is recent evidence from laboratory experiments and analysis of livestock populations that not only the phenotype itself, but also its environmental variance, is under genetic control. Little is known about the relationships between the environmental variance of one trait and mean levels of

  15. Exploring variance in residential electricity consumption: Household features and building properties

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Odlare, Monica; Wallin, Fredrik; Wester, Lars

    2012-01-01

    Highlights: ► Statistical analysis of variance are of considerable value in identifying key indicators for policy update. ► Variance in residential electricity use is partly explained by household features. ► Variance in residential electricity use is partly explained by building properties. ► Household behavior has a profound impact on individual electricity use. -- Abstract: Improved means of controlling electricity consumption plays an important part in boosting energy efficiency in the Swedish power market. Developing policy instruments to that end requires more in-depth statistics on electricity use in the residential sector, among other things. The aim of the study has accordingly been to assess the extent of variance in annual electricity consumption in single-family homes as well as to estimate the impact of household features and building properties in this respect using independent samples t-tests and one-way as well as univariate independent samples analyses of variance. Statistically significant variances associated with geographic area, heating system, number of family members, family composition, year of construction, electric water heater and electric underfloor heating have been established. The overall result of the analyses is nevertheless that variance in residential electricity consumption cannot be fully explained by independent variables related to household and building characteristics alone. As for the methodological approach, the results further suggest that methods for statistical analysis of variance are of considerable value in indentifying key indicators for policy update and development.

  16. Bayesian evaluation of constrained hypotheses on variances of multiple independent groups

    NARCIS (Netherlands)

    Böing-Messing, F.; van Assen, M.A.L.M.; Hofman, A.D.; Hoijtink, H.; Mulder, J.

    2017-01-01

    Research has shown that independent groups often differ not only in their means, but also in their variances. Comparing and testing variances is therefore of crucial importance to understand the effect of a grouping variable on an outcome variable. Researchers may have specific expectations

  17. Impact of time-inhomogeneous jumps and leverage type effects on returns and realised variances

    DEFF Research Database (Denmark)

    Veraart, Almut

    This paper studies the effect of time-inhomogeneous jumps and leverage type effects on realised variance calculations when the logarithmic asset price is given by a Lévy-driven stochastic volatility model. In such a model, the realised variance is an inconsistent estimator of the integrated...

  18. Prediction of breeding values and selection responses with genetic heterogeneity of environmental variance

    NARCIS (Netherlands)

    Mulder, H.A.; Bijma, P.; Hill, W.G.

    2007-01-01

    There is empirical evidence that genotypes differ not only in mean, but also in environmental variance of the traits they affect. Genetic heterogeneity of environmental variance may indicate genetic differences in environmental sensitivity. The aim of this study was to develop a general framework

  19. Analysis of ulnar variance as a risk factor for developing scaphoid nonunion.

    Science.gov (United States)

    Lirola-Palmero, S; Salvà-Coll, G; Terrades-Cladera, F J

    2015-01-01

    Ulnar variance may be a risk factor of developing scaphoid non-union. A review was made of the posteroanterior wrist radiographs of 95 patients who were diagnosed of scaphoid fracture. All fractures with displacement less than 1mm treated conservatively were included. The ulnar variance was measured in all patients. Ulnar variance was measured in standard posteroanterior wrist radiographs of 95 patients. Eighteen patients (19%) developed scaphoid nonunion, with a mean value of ulnar variance of -1.34 (-/+ 0.85) mm (CI -2.25 - 0.41). Seventy seven patients (81%) healed correctly, and the mean value of ulnar variance was -0.04 (-/+ 1.85) mm (CI -0.46 - 0.38). A significant difference was observed in the distribution of ulnar variance (pvariance less than -1mm, and ulnar variance greater than -1mm. It appears that patients with ulnar variance less than -1mm had an OR 4.58 (CI 1.51 to 13.89) with pvariance less than -1mm have a greater risk of developing scaphoid nonunion, OR 4.58 (CI 1.51 to 13.89) with p<.007. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  20. Accounting for non-stationary variance in geostatistical mapping of soil properties

    NARCIS (Netherlands)

    Wadoux, Alexandre M.J.C.; Brus, Dick J.; Heuvelink, Gerard B.M.

    2018-01-01

    Simple and ordinary kriging assume a constant mean and variance of the soil variable of interest. This assumption is often implausible because the mean and/or variance are linked to terrain attributes, parent material or other soil forming factors. In kriging with external drift (KED)

  1. Robust Means Modeling: An Alternative for Hypothesis Testing of Independent Means under Variance Heterogeneity and Nonnormality

    Science.gov (United States)

    Fan, Weihua; Hancock, Gregory R.

    2012-01-01

    This study proposes robust means modeling (RMM) approaches for hypothesis testing of mean differences for between-subjects designs in order to control the biasing effects of nonnormality and variance inequality. Drawing from structural equation modeling (SEM), the RMM approaches make no assumption of variance homogeneity and employ robust…

  2. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    Science.gov (United States)

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  3. On the multiplicity of option prices under CEV with positive elasticity of variance

    NARCIS (Netherlands)

    Veestraeten, D.

    2017-01-01

    The discounted stock price under the Constant Elasticity of Variance model is not a martingale when the elasticity of variance is positive. Two expressions for the European call price then arise, namely the price for which put-call parity holds and the price that represents the lowest cost of

  4. On the multiplicity of option prices under CEV with positive elasticity of variance

    NARCIS (Netherlands)

    Veestraeten, D.

    2014-01-01

    The discounted stock price under the Constant Elasticity of Variance (CEV) model is a strict local martingale when the elasticity of variance is positive. Two expressions for the European call price then arise, namely the risk-neutral call price and an alternative price that is linked to the unique

  5. Some novel inequalities for fuzzy variables on the variance and its rational upper bound

    Directory of Open Access Journals (Sweden)

    Xiajie Yi

    2016-02-01

    Full Text Available Abstract Variance is of great significance in measuring the degree of deviation, which has gained extensive usage in many fields in practical scenarios. The definition of the variance on the basis of the credibility measure was first put forward in 2002. Following this idea, the calculation of the accurate value of the variance for some special fuzzy variables, like the symmetric and asymmetric triangular fuzzy numbers and the Gaussian fuzzy numbers, is presented in this paper, which turns out to be far more complicated. Thus, in order to better implement variance in real-life projects like risk control and quality management, we suggest a rational upper bound of the variance based on an inequality, together with its calculation formula, which can largely simplify the calculation process within a reasonable range. Meanwhile, some discussions between the variance and its rational upper bound are presented to show the rationality of the latter. Furthermore, two inequalities regarding the rational upper bound of variance and standard deviation of the sum of two fuzzy variables and their individual variances and standard deviations are proved. Subsequently, some numerical examples are illustrated to show the effectiveness and the feasibility of the proposed inequalities.

  6. Understanding the Degrees of Freedom of Sample Variance by Using Microsoft Excel

    Science.gov (United States)

    Ding, Jian-Hua; Jin, Xian-Wen; Shuai, Ling-Ying

    2017-01-01

    In this article, the degrees of freedom of the sample variance are simulated by using the Visual Basic for Applications of Microsoft Excel 2010. The simulation file dynamically displays why the sample variance should be calculated by dividing the sum of squared deviations by n-1 rather than n, which is helpful for students to grasp the meaning of…

  7. Testing constancy of unconditional variance in volatility models by misspecification and specification tests

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Terasvirta, Timo

    The topic of this paper is testing the hypothesis of constant unconditional variance in GARCH models against the alternative that the unconditional variance changes deterministically over time. Tests of this hypothesis have previously been performed as misspecification tests after fitting a GARCH...... models. An application to exchange rate returns is included....

  8. Genetic heterogeneity of within-family variance of body weight in Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Sonesson, Anna K; Odegård, Jørgen; Rönnegård, Lars

    2013-10-17

    Canalization is defined as the stability of a genotype against minor variations in both environment and genetics. Genetic variation in degree of canalization causes heterogeneity of within-family variance. The aims of this study are twofold: (1) quantify genetic heterogeneity of (within-family) residual variance in Atlantic salmon and (2) test whether the observed heterogeneity of (within-family) residual variance can be explained by simple scaling effects. Analysis of body weight in Atlantic salmon using a double hierarchical generalized linear model (DHGLM) revealed substantial heterogeneity of within-family variance. The 95% prediction interval for within-family variance ranged from ~0.4 to 1.2 kg2, implying that the within-family variance of the most extreme high families is expected to be approximately three times larger than the extreme low families. For cross-sectional data, DHGLM with an animal mean sub-model resulted in severe bias, while a corresponding sire-dam model was appropriate. Heterogeneity of variance was not sensitive to Box-Cox transformations of phenotypes, which implies that heterogeneity of variance exists beyond what would be expected from simple scaling effects. Substantial heterogeneity of within-family variance was found for body weight in Atlantic salmon. A tendency towards higher variance with higher means (scaling effects) was observed, but heterogeneity of within-family variance existed beyond what could be explained by simple scaling effects. For cross-sectional data, using the animal mean sub-model in the DHGLM resulted in biased estimates of variance components, which differed substantially both from a standard linear mean animal model and a sire-dam DHGLM model. Although genetic differences in canalization were observed, selection for increased canalization is difficult, because there is limited individual information for the variance sub-model, especially when based on cross-sectional data. Furthermore, potential macro

  9. Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.

    Science.gov (United States)

    Malkin, Zinovy

    2016-04-01

    The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. In addition, some physically connected scalar time series naturally form series of multidimensional vectors. For example, three station coordinates time series X, Y, and Z can be combined to analyze 3-D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multidimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multidimensional AVAR (MAVAR), and weighted multidimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astrogeodetic time series.

  10. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  11. MCNP Variance Reduction technique application for the Development Of the Citrusdal Irradiation Facility

    International Nuclear Information System (INIS)

    Makgae, R.

    2008-01-01

    A private company, Citrus Research International (CIR) is intending to construct an insect irradiation facility for the irradiation of insect for pest management in south western region of South Africa. The facility will employ a Co-60 cylindrical source in the chamber. An adequate thickness for the concrete shielding walls and the ability of the labyrinth leading to the irradiation chamber, to attenuate radiation to dose rates that are acceptably low, were determined. Two methods of MCNP variance reduction techniques were applied to accommodate the two pathways of deep penetration to evaluate the radiological impact outside the 150 cm concrete walls and steaming of gamma photons through the labyrinth. The point-kernel based MicroShield software was used in the deep penetration calculations for the walls around the source room to test its accuracy and the results obtained are in good agreement with about 15-20% difference. The dose rate mapping due to radiation Streaming along the labyrinth to the facility entrance is also to be validated with the Attila code, which is a deterministic code that solves the Discrete Ordinates approximation. This file provides a template for writing papers for the conference. (authors)

  12. MCNP Variance Reduction technique application for the Development Of the Citrusdal Irradiation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Makgae, R. [Pebble Bed Modular Reactor (PBMR), P.O. Box 9396, Centurion (South Africa)

    2008-07-01

    A private company, Citrus Research International (CIR) is intending to construct an insect irradiation facility for the irradiation of insect for pest management in south western region of South Africa. The facility will employ a Co-60 cylindrical source in the chamber. An adequate thickness for the concrete shielding walls and the ability of the labyrinth leading to the irradiation chamber, to attenuate radiation to dose rates that are acceptably low, were determined. Two methods of MCNP variance reduction techniques were applied to accommodate the two pathways of deep penetration to evaluate the radiological impact outside the 150 cm concrete walls and steaming of gamma photons through the labyrinth. The point-kernel based MicroShield software was used in the deep penetration calculations for the walls around the source room to test its accuracy and the results obtained are in good agreement with about 15-20% difference. The dose rate mapping due to radiation Streaming along the labyrinth to the facility entrance is also to be validated with the Attila code, which is a deterministic code that solves the Discrete Ordinates approximation. This file provides a template for writing papers for the conference. (authors)

  13. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Science.gov (United States)

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  14. Universality of spectrum of passive scalar variance at very high Schmidt number in isotropic steady turbulence

    Science.gov (United States)

    Gotoh, Toshiyuki

    2012-11-01

    Spectrum of passive scalar variance at very high Schmidt number up to 1000 in isotropic steady turbulence has been studied by using very high resolution DNS. Gaussian random force and scalar source which are isotropic and white in time are applied at low wavenumber band. Since the Schmidt number is very large, the system was integrated for 72 large eddy turn over time for the system to forgot the initial state. It is found that the scalar spectrum attains the asymptotic k-1 spectrum in the viscous-convective range and the constant CB is found to be 5.7 which is larger than 4.9 obtained by DNS under the uniform mean scalar gradient. Reasons for the difference are inferred as the Reynolds number effect, anisotropy, difference in the scalar injection, duration of time average, and the universality of the constant is discussed. The constant CB is also compared with the prediction by the Lagrangian statistical theory for the passive scalar. The scalar spectrum in the far diffusive range is found to be exponential, which is consistent with the Kraichnan's spectrum. However, the Kraichnan spectrum was derived under the assumption that the velocity field is white in time, therefore theoretical explanation of the agreement needs to be explored. Grant-in-Aid for Scientific Research No. 21360082, Ministry of Education, Culture, Sports, Science and Technology of Japan.

  15. Iterative Minimum Variance Beamformer with Low Complexity for Medical Ultrasound Imaging.

    Science.gov (United States)

    Deylami, Ali Mohades; Asl, Babak Mohammadzadeh

    2018-06-04

    Minimum variance beamformer (MVB) improves the resolution and contrast of medical ultrasound images compared with delay and sum (DAS) beamformer. The weight vector of this beamformer should be calculated for each imaging point independently, with a cost of increasing computational complexity. The large number of necessary calculations limits this beamformer to application in real-time systems. A beamformer is proposed based on the MVB with lower computational complexity while preserving its advantages. This beamformer avoids matrix inversion, which is the most complex part of the MVB, by solving the optimization problem iteratively. The received signals from two imaging points close together do not vary much in medical ultrasound imaging. Therefore, using the previously optimized weight vector for one point as initial weight vector for the new neighboring point can improve the convergence speed and decrease the computational complexity. The proposed method was applied on several data sets, and it has been shown that the method can regenerate the results obtained by the MVB while the order of complexity is decreased from O(L 3 ) to O(L 2 ). Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  16. Multiblock variance partitioning: A new approach for comparing variation in multiple data blocks

    Energy Technology Data Exchange (ETDEWEB)

    Skov, Thomas [Quality and Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C (Denmark)], E-mail: thsk@life.ku.dk; Ballabio, Davide [Milano Chemometrics and QSAR Research Group, Department of Environmental Sciences, University of Milano-Bicocca, P.za della Scienza, 1-20126 Milano (Italy); Bro, Rasmus [Quality and Technology, Department of Food Science, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg C (Denmark)

    2008-05-12

    More than one multi-informative analytical technique is often applied when describing the condition of a set of samples. Often a part of the information found in these data blocks is redundant and can be extracted from more blocks. This study puts forward a method (multiblock variance partitioning-MVP) to compare the information/variation in different data blocks using simple quantitative measures. These measures are the unique part of the variation only found in one data block and the common part that can be found in more data blocks. These different parts are found using PLS models between predictor blocks and a common response. MVP provides a different view on the information in different blocks than normal multiblock analysis. It will be shown that this has many applications in very diverse fields such as process control, assessor performance in sensory analysis, efficiency of preprocessing methods and as complementary information to an interval PLS analysis. Here the ideas of the MVP approach are presented in detail using a study of red wines from different regions measured with GC-MS and FT-IR instruments providing different kinds of data representations.

  17. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    Science.gov (United States)

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  18. Real-time QRS detection using integrated variance for ECG gated cardiac MRI

    Directory of Open Access Journals (Sweden)

    Schmidt Marcus

    2016-09-01

    Full Text Available During magnetic resonance imaging (MRI, a patient’s vital signs are required for different purposes. In cardiac MRI (CMR, an electrocardiogram (ECG of the patient is required for triggering the image acquisition process. However, a reliable QRS detection of an ECG signal acquired inside an MRI scanner is a challenging task due to the magnetohydrodynamic (MHD effect which interferes with the ECG. The aim of this work was to develop a reliable QRS detector usable inside the MRI which also fulfills the standards for medical devices (IEC 60601-2-27. Therefore, a novel real-time QRS detector based on integrated variance measurements is presented. The algorithm was trained on ANSI/AAMI EC13 test waveforms and was then applied to two databases with 12-lead ECG signals recorded inside and outside an MRI scanner. Reliable results for both databases were achieved for the ECG signals recorded inside (DBMRI: sensitivity Se = 99.94%, positive predictive value +P = 99.84% and outside (DBInCarT: Se = 99.29%, +P = 99.72% the MRI. Due to the accurate R-peak detection in real-time this can be used for monitoring and triggering in MRI exams.

  19. Multilevel covariance regression with correlated random effects in the mean and variance structure.

    Science.gov (United States)

    Quintero, Adrian; Lesaffre, Emmanuel

    2017-09-01

    Multivariate regression methods generally assume a constant covariance matrix for the observations. In case a heteroscedastic model is needed, the parametric and nonparametric covariance regression approaches can be restrictive in the literature. We propose a multilevel regression model for the mean and covariance structure, including random intercepts in both components and allowing for correlation between them. The implied conditional covariance function can be different across clusters as a result of the random effect in the variance structure. In addition, allowing for correlation between the random intercepts in the mean and covariance makes the model convenient for skewedly distributed responses. Furthermore, it permits us to analyse directly the relation between the mean response level and the variability in each cluster. Parameter estimation is carried out via Gibbs sampling. We compare the performance of our model to other covariance modelling approaches in a simulation study. Finally, the proposed model is applied to the RN4CAST dataset to identify the variables that impact burnout of nurses in Belgium. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Application of variance reduction technique to nuclear transmutation system driven by accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasa, Toshinobu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In Japan, it is the basic policy to dispose the high level radioactive waste arising from spent nuclear fuel in stable deep strata after glass solidification. If the useful elements in the waste can be separated and utilized, resources are effectively used, and it can be expected to guarantee high economical efficiency and safety in the disposal in strata. Japan Atomic Energy Research Institute proposed the hybrid type transmutation system, in which high intensity proton accelerator and subcritical fast core are combined, or the nuclear reactor which is optimized for the exclusive use for transmutation. The tungsten target, minor actinide nitride fuel transmutation system and the melted minor actinide chloride salt target fuel transmutation system are outlined. The conceptual figures of both systems are shown. As the method of analysis, Version 2.70 of Lahet Code System which was developed by Los Alamos National Laboratory in USA was adopted. In case of carrying out the analysis of accelerator-driven subcritical core in the energy range below 20 MeV, variance reduction technique must be applied. (K.I.)

  1. How the Weak Variance of Momentum Can Turn Out to be Negative

    Science.gov (United States)

    Feyereisen, M. R.

    2015-05-01

    Weak values are average quantities, therefore investigating their associated variance is crucial in understanding their place in quantum mechanics. We develop the concept of a position-postselected weak variance of momentum as cohesively as possible, building primarily on material from Moyal (Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, Cambridge, 1949) and Sonego (Found Phys 21(10):1135, 1991) . The weak variance is defined in terms of the Wigner function, using a standard construction from probability theory. We show this corresponds to a measurable quantity, which is not itself a weak value. It also leads naturally to a connection between the imaginary part of the weak value of momentum and the quantum potential. We study how the negativity of the Wigner function causes negative weak variances, and the implications this has on a class of `subquantum' theories. We also discuss the role of weak variances in studying determinism, deriving the classical limit from a variational principle.

  2. Simultaneous Monte Carlo zero-variance estimates of several correlated means

    International Nuclear Information System (INIS)

    Booth, T.E.

    1997-08-01

    Zero variance procedures have been in existence since the dawn of Monte Carlo. Previous works all treat the problem of zero variance solutions for a single tally. One often wants to get low variance solutions to more than one tally. When the sets of random walks needed for two tallies are similar, it is more efficient to do zero variance biasing for both tallies in the same Monte Carlo run, instead of two separate runs. The theory presented here correlates the random walks of particles by the similarity of their tallies. Particles with dissimilar tallies rapidly become uncorrelated whereas particles with similar tallies will stay correlated through most of their random walk. The theory herein should allow practitioners to make efficient use of zero-variance biasing procedures in practical problems

  3. An efficient sampling approach for variance-based sensitivity analysis based on the law of total variance in the successive intervals without overlapping

    Science.gov (United States)

    Yun, Wanying; Lu, Zhenzhou; Jiang, Xian

    2018-06-01

    To efficiently execute the variance-based global sensitivity analysis, the law of total variance in the successive intervals without overlapping is proved at first, on which an efficient space-partition sampling-based approach is subsequently proposed in this paper. Through partitioning the sample points of output into different subsets according to different inputs, the proposed approach can efficiently evaluate all the main effects concurrently by one group of sample points. In addition, there is no need for optimizing the partition scheme in the proposed approach. The maximum length of subintervals is decreased by increasing the number of sample points of model input variables in the proposed approach, which guarantees the convergence condition of the space-partition approach well. Furthermore, a new interpretation on the thought of partition is illuminated from the perspective of the variance ratio function. Finally, three test examples and one engineering application are employed to demonstrate the accuracy, efficiency and robustness of the proposed approach.

  4. The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther, E-mail: guenther.westner@eon-energie.co [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany); Madlener, Reinhard, E-mail: rmadlener@eonerc.rwth-aachen.d [Institute for Future Energy Consumer Needs and Behavior (FCN), Faculty of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. - Research highlights: {yields}Preconditions for CHP investments differ significantly between the EU member states. {yields}Regional diversification of CHP investments can reduce the total portfolio risk. {yields}Risk reduction depends on the chosen CHP technology.

  5. Optimization Stock Portfolio With Mean-Variance and Linear Programming: Case In Indonesia Stock Market

    Directory of Open Access Journals (Sweden)

    Yen Sun

    2010-05-01

    Full Text Available It is observed that the number of Indonesia’s domestic investor who involved in the stock exchange is very less compare to its total number of population (only about 0.1%. As a result, Indonesia Stock Exchange (IDX is highly affected by foreign investor that can threat the economy. Domestic investor tends to invest in risk-free asset such as deposit in the bank since they are not familiar yet with the stock market and anxious about the risk (risk-averse type of investor. Therefore, it is important to educate domestic investor to involve in the stock exchange. Investing in portfolio of stock is one of the best choices for risk-averse investor (such as Indonesia domestic investor since it offers lower risk for a given level of return. This paper studies the optimization of Indonesian stock portfolio. The data is the historical return of 10 stocks of LQ 45 for 5 time series (January 2004 – December 2008. It will be focus on selecting stocks into a portfolio, setting 10 of stock portfolios using mean variance method combining with the linear programming (solver. Furthermore, based on Efficient Frontier concept and Sharpe measurement, there will be one stock portfolio picked as an optimum Portfolio (Namely Portfolio G. Then, Performance of portfolio G will be evaluated by using Sharpe, Treynor and Jensen Measurement to show whether the return of Portfolio G exceeds the market return. This paper also illustrates how the stock composition of the Optimum Portfolio (G succeeds to predict the portfolio return in the future (5th January – 3rd April 2009. The result of the study observed that optimization portfolio using Mean-Variance (consistent with Markowitz theory combine with linear programming can be applied into Indonesia stock’s portfolio. All the measurements (Sharpe, Jensen, and Treynor show that the portfolio G is a superior portfolio. It is also been found that the composition (weights stocks of optimum portfolio (G can be used to

  6. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle.

    Science.gov (United States)

    Vandenplas, J; Bastin, C; Gengler, N; Mulder, H A

    2013-09-01

    Animals that are robust to environmental changes are desirable in the current dairy industry. Genetic differences in micro-environmental sensitivity can be studied through heterogeneity of residual variance between animals. However, residual variance between animals is usually assumed to be homogeneous in traditional genetic evaluations. The aim of this study was to investigate genetic heterogeneity of residual variance by estimating variance components in residual variance for milk yield, somatic cell score, contents in milk (g/dL) of 2 groups of milk fatty acids (i.e., saturated and unsaturated fatty acids), and the content in milk of one individual fatty acid (i.e., oleic acid, C18:1 cis-9), for first-parity Holstein cows in the Walloon Region of Belgium. A total of 146,027 test-day records from 26,887 cows in 747 herds were available. All cows had at least 3 records and a known sire. These sires had at least 10 cows with records and each herd × test-day had at least 5 cows. The 5 traits were analyzed separately based on fixed lactation curve and random regression test-day models for the mean. Estimation of variance components was performed by running iteratively expectation maximization-REML algorithm by the implementation of double hierarchical generalized linear models. Based on fixed lactation curve test-day mean models, heritability for residual variances ranged between 1.01×10(-3) and 4.17×10(-3) for all traits. The genetic standard deviation in residual variance (i.e., approximately the genetic coefficient of variation of residual variance) ranged between 0.12 and 0.17. Therefore, some genetic variance in micro-environmental sensitivity existed in the Walloon Holstein dairy cattle for the 5 studied traits. The standard deviations due to herd × test-day and permanent environment in residual variance ranged between 0.36 and 0.45 for herd × test-day effect and between 0.55 and 0.97 for permanent environmental effect. Therefore, nongenetic effects also

  7. Development of a treatability variance guidance document for US DOE mixed-waste streams

    International Nuclear Information System (INIS)

    Scheuer, N.; Spikula, R.; Harms, T.

    1990-03-01

    In response to the US Department of Energy's (DOE's) anticipated need for variances from the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDRs), a treatability variance guidance document was prepared. The guidance manual is for use by DOE facilities and operations offices. The manual was prepared as a part of an ongoing effort by DOE-EH to provide guidance for the operations offices and facilities to comply with the RCRA (LDRs). A treatability variance is an alternative treatment standard granted by EPA for a restricted waste. Such a variance is not an exemption from the requirements of the LDRs, but rather is an alternative treatment standard that must be met before land disposal. The manual, Guidance For Obtaining Variance From the Treatment Standards of the RCRA Land Disposal Restrictions (1), leads the reader through the process of evaluating whether a variance from the treatment standard is a viable approach and through the data-gathering and data-evaluation processes required to develop a petition requesting a variance. The DOE review and coordination process is also described and model language for use in petitions for DOE radioactive mixed waste (RMW) is provided. The guidance manual focuses on RMW streams, however the manual also is applicable to nonmixed, hazardous waste streams. 4 refs

  8. Thermospheric mass density model error variance as a function of time scale

    Science.gov (United States)

    Emmert, J. T.; Sutton, E. K.

    2017-12-01

    In the increasingly crowded low-Earth orbit environment, accurate estimation of orbit prediction uncertainties is essential for collision avoidance. Poor characterization of such uncertainty can result in unnecessary and costly avoidance maneuvers (false positives) or disregard of a collision risk (false negatives). Atmospheric drag is a major source of orbit prediction uncertainty, and is particularly challenging to account for because it exerts a cumulative influence on orbital trajectories and is therefore not amenable to representation by a single uncertainty parameter. To address this challenge, we examine the variance of measured accelerometer-derived and orbit-derived mass densities with respect to predictions by thermospheric empirical models, using the data-minus-model variance as a proxy for model uncertainty. Our analysis focuses mainly on the power spectrum of the residuals, and we construct an empirical model of the variance as a function of time scale (from 1 hour to 10 years), altitude, and solar activity. We find that the power spectral density approximately follows a power-law process but with an enhancement near the 27-day solar rotation period. The residual variance increases monotonically with altitude between 250 and 550 km. There are two components to the variance dependence on solar activity: one component is 180 degrees out of phase (largest variance at solar minimum), and the other component lags 2 years behind solar maximum (largest variance in the descending phase of the solar cycle).

  9. Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances.

    Science.gov (United States)

    Böing-Messing, Florian; Mulder, Joris

    2018-05-03

    In comparing characteristics of independent populations, researchers frequently expect a certain structure of the population variances. These expectations can be formulated as hypotheses with equality and/or inequality constraints on the variances. In this article, we consider the Bayes factor for testing such (in)equality-constrained hypotheses on variances. Application of Bayes factors requires specification of a prior under every hypothesis to be tested. However, specifying subjective priors for variances based on prior information is a difficult task. We therefore consider so-called automatic or default Bayes factors. These methods avoid the need for the user to specify priors by using information from the sample data. We present three automatic Bayes factors for testing variances. The first is a Bayes factor with equal priors on all variances, where the priors are specified automatically using a small share of the information in the sample data. The second is the fractional Bayes factor, where a fraction of the likelihood is used for automatic prior specification. The third is an adjustment of the fractional Bayes factor such that the parsimony of inequality-constrained hypotheses is properly taken into account. The Bayes factors are evaluated by investigating different properties such as information consistency and large sample consistency. Based on this evaluation, it is concluded that the adjusted fractional Bayes factor is generally recommendable for testing equality- and inequality-constrained hypotheses on variances.

  10. Variance heterogeneity in Saccharomyces cerevisiae expression data: trans-regulation and epistasis.

    Science.gov (United States)

    Nelson, Ronald M; Pettersson, Mats E; Li, Xidan; Carlborg, Örjan

    2013-01-01

    Here, we describe the results from the first variance heterogeneity Genome Wide Association Study (VGWAS) on yeast expression data. Using this forward genetics approach, we show that the genetic regulation of gene-expression in the budding yeast, Saccharomyces cerevisiae, includes mechanisms that can lead to variance heterogeneity in the expression between genotypes. Additionally, we performed a mean effect association study (GWAS). Comparing the mean and variance heterogeneity analyses, we find that the mean expression level is under genetic regulation from a larger absolute number of loci but that a higher proportion of the variance controlling loci were trans-regulated. Both mean and variance regulating loci cluster in regulatory hotspots that affect a large number of phenotypes; a single variance-controlling locus, mapping close to DIA2, was found to be involved in more than 10% of the significant associations. It has been suggested in the literature that variance-heterogeneity between the genotypes might be due to genetic interactions. We therefore screened the multi-locus genotype-phenotype maps for several traits where multiple associations were found, for indications of epistasis. Several examples of two and three locus genetic interactions were found to involve variance-controlling loci, with reports from the literature corroborating the functional connections between the loci. By using a new analytical approach to re-analyze a powerful existing dataset, we are thus able to both provide novel insights to the genetic mechanisms involved in the regulation of gene-expression in budding yeast and experimentally validate epistasis as an important mechanism underlying genetic variance-heterogeneity between genotypes.

  11. Assessment of ulnar variance: a radiological investigation in a Dutch population

    Energy Technology Data Exchange (ETDEWEB)

    Schuurman, A.H. [Dept. of Plastic, Reconstructive and Hand Surgery, University Medical Centre, Utrecht (Netherlands); Dept. of Plastic Surgery, University Medical Centre, Utrecht (Netherlands); Maas, M.; Dijkstra, P.F. [Dept. of Radiology, Univ. of Amsterdam (Netherlands); Kauer, J.M.G. [Dept. of Anatomy and Embryology, Univ. of Nijmegen (Netherlands)

    2001-11-01

    Objective: A radiological study was performed to evaluate ulnar variance in 68 Dutch patients using an electronic digitizer compared with Palmer's concentric circle method. Using the digitizer method only, the effect of different wrist positions and grip on ulnar variance was then investigated. Finally the distribution of ulnar variance in the selected patients was investigated also using the digitizer method. Design and patients: All radiographs were performed with the wrist in a standard zero-rotation position (posteroanterior) and in supination (anteroposterior). Palmer's concentric circle method and an electronic digitizer connected to a personal computer were used to measure ulnar variance. The digitizer consists of a Plexiglas plate with an electronically activated grid beneath it. A radiograph is placed on the plate and a cursor activates a point on the grid. Three plots are marked on the radius and one plot on the most distal part of the ulnar head. The digitizer then determines the difference between a radius passing through the radius plots and the ulnar plot. Results and conclusions: Using the concentric circle method we found an ulna plus predominance, but an ulna minus predominance when using the digitizer method. Overall the ulnar variance distribution for Palmer's method was 41.9% ulna plus, 25.7% neutral and 32.4% ulna minus variance, and for the digitizer method was 40.4% ulna plus, 1.5% neutral and 58.1% ulna minus. The percentage ulnar variance greater than 1 mm on standard radiographs increased from 23% to 58% using the digitizer, with maximum grip, clearly demonstrating the (dynamic) effect of grip on ulnar variance. This almost threefold increase was found to be a significant difference. Significant differences were found between ulnar variance when different wrist positions were compared. (orig.)

  12. The Impact of Jump Distributions on the Implied Volatility of Variance

    DEFF Research Database (Denmark)

    Nicolato, Elisa; Pisani, Camilla; Pedersen, David Sloth

    2017-01-01

    We consider a tractable affine stochastic volatility model that generalizes the seminal Heston (1993) model by augmenting it with jumps in the instantaneous variance process. In this framework, we consider both realized variance options and VIX options, and we examine the impact of the distribution...... of jumps on the associated implied volatility smile. We provide sufficient conditions for the asymptotic behavior of the implied volatility of variance for small and large strikes. In particular, by selecting alternative jump distributions, we show that one can obtain fundamentally different shapes...

  13. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  14. Explicit formulas for the variance of discounted life-cycle cost

    International Nuclear Information System (INIS)

    Noortwijk, Jan M. van

    2003-01-01

    In life-cycle costing analyses, optimal design is usually achieved by minimising the expected value of the discounted costs. As well as the expected value, the corresponding variance may be useful for estimating, for example, the uncertainty bounds of the calculated discounted costs. However, general explicit formulas for calculating the variance of the discounted costs over an unbounded time horizon are not yet available. In this paper, explicit formulas for this variance are presented. They can be easily implemented in software to optimise structural design and maintenance management. The use of the mathematical results is illustrated with some examples

  15. Genetic control of residual variance of yearling weight in Nellore beef cattle.

    Science.gov (United States)

    Iung, L H S; Neves, H H R; Mulder, H A; Carvalheiro, R

    2017-04-01

    There is evidence for genetic variability in residual variance of livestock traits, which offers the potential for selection for increased uniformity of production. Different statistical approaches have been employed to study this topic; however, little is known about the concordance between them. The aim of our study was to investigate the genetic heterogeneity of residual variance on yearling weight (YW; 291.15 ± 46.67) in a Nellore beef cattle population; to compare the results of the statistical approaches, the two-step approach and the double hierarchical generalized linear model (DHGLM); and to evaluate the effectiveness of power transformation to accommodate scale differences. The comparison was based on genetic parameters, accuracy of EBV for residual variance, and cross-validation to assess predictive performance of both approaches. A total of 194,628 yearling weight records from 625 sires were used in the analysis. The results supported the hypothesis of genetic heterogeneity of residual variance on YW in Nellore beef cattle and the opportunity of selection, measured through the genetic coefficient of variation of residual variance (0.10 to 0.12 for the two-step approach and 0.17 for DHGLM, using an untransformed data set). However, low estimates of genetic variance associated with positive genetic correlations between mean and residual variance (about 0.20 for two-step and 0.76 for DHGLM for an untransformed data set) limit the genetic response to selection for uniformity of production while simultaneously increasing YW itself. Moreover, large sire families are needed to obtain accurate estimates of genetic merit for residual variance, as indicated by the low heritability estimates (Box-Cox transformation was able to decrease the dependence of the variance on the mean and decreased the estimates of genetic parameters for residual variance. The transformation reduced but did not eliminate all the genetic heterogeneity of residual variance, highlighting

  16. Investigating the minimum achievable variance in a Monte Carlo criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros; Eduard Hoogenboom, J. [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2008-07-01

    The sources of variance in a Monte Carlo criticality calculation are identified and their contributions analyzed. A zero-variance configuration is initially simulated using analytically calculated adjoint functions for biasing. From there, the various sources are analyzed. It is shown that the minimum threshold comes from the fact that the fission source is approximated. In addition, the merits of a simple variance reduction method, such as implicit capture, are shown when compared to an analog simulation. Finally, it is shown that when non-exact adjoint functions are used for biasing, the variance reduction is rather insensitive to the quality of the adjoints, suggesting that the generation of the adjoints should have as low CPU cost as possible, in order to o et the CPU cost in the implementation of the biasing of a simulation. (authors)

  17. Global Distributions of Temperature Variances At Different Stratospheric Altitudes From Gps/met Data

    Science.gov (United States)

    Gavrilov, N. M.; Karpova, N. V.; Jacobi, Ch.

    The GPS/MET measurements at altitudes 5 - 35 km are used to obtain global distribu- tions of small-scale temperature variances at different stratospheric altitudes. Individ- ual temperature profiles are smoothed using second order polynomial approximations in 5 - 7 km thick layers centered at 10, 20 and 30 km. Temperature inclinations from the averaged values and their variances obtained for each profile are averaged for each month of year during the GPS/MET experiment. Global distributions of temperature variances have inhomogeneous structure. Locations and latitude distributions of the maxima and minima of the variances depend on altitudes and season. One of the rea- sons for the small-scale temperature perturbations in the stratosphere could be internal gravity waves (IGWs). Some assumptions are made about peculiarities of IGW gener- ation and propagation in the tropo-stratosphere based on the results of GPS/MET data analysis.

  18. Fluctuations in atomic collision cascades - variance and correlations in sputtering and defect distributions

    International Nuclear Information System (INIS)

    Chakarova, R.; Pazsit, I.

    1997-01-01

    Fluctuation phenomena are investigated in various collision processes, i.e. ion bombardment induced sputtering and defect creation. The mean and variance of the sputter yield and the vacancies and interstitials are calculated as functions of the ion energy and the ion-target mass ratio. It is found that the relative variance of the defects in half-spaces and the relative variance of the sputter yield are not monotonous functions of the mass ratio. Two-point correlation functions in the depth variable, as well as sputtered energy, are also calculated. These functions help interpreting the behaviour of the relative variances of the integrated quantities, as well as understanding the cascade dynamics. All calculations are based on Lindhard power-law cross sections and use a binary collision Monte Carlo algorithm. 30 refs, 25 figs

  19. Fluctuations in atomic collision cascades - variance and correlations in sputtering and defect distributions

    Energy Technology Data Exchange (ETDEWEB)

    Chakarova, R.; Pazsit, I.

    1997-01-01

    Fluctuation phenomena are investigated in various collision processes, i.e. ion bombardment induced sputtering and defect creation. The mean and variance of the sputter yield and the vacancies and interstitials are calculated as functions of the ion energy and the ion-target mass ratio. It is found that the relative variance of the defects in half-spaces and the relative variance of the sputter yield are not monotonous functions of the mass ratio. Two-point correlation functions in the depth variable, as well as sputtered energy, are also calculated. These functions help interpreting the behaviour of the relative variances of the integrated quantities, as well as understanding the cascade dynamics. All calculations are based on Lindhard power-law cross sections and use a binary collision Monte Carlo algorithm. 30 refs, 25 figs.

  20. 75 FR 6364 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls

    Science.gov (United States)

    2010-02-09

    ..., channels, or shore- line or river-bank protection systems such as revetments, sand dunes, and barrier...) toe (subject to preexisting right-of-way). f. The vegetation variance process is not a mechanism to...

  1. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    Science.gov (United States)

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  2. Gender Variance in Childhood and Sexual Orientation in Adulthood: A Prospective Study

    NARCIS (Netherlands)

    Steensma, T.D.; van den Ende, J..; Verhulst, F.C.; Cohen-Kettenis, P.T.

    2013-01-01

    Introduction. Several retrospective and prospective studies have reported on the association between childhood gender variance and sexual orientation and gender discomfort in adulthood. In most of the retrospective studies, samples were drawn from the general population. The samples in the

  3. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  4. Use of genomic models to study genetic control of environmental variance

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    . The genomic model commonly found in the literature, with marker effects affecting mean only, is extended to investigate putative effects at the level of the environmental variance. Two classes of models are proposed and their behaviour, studied using simulated data, indicates that they are capable...... of detecting genetic variation at the level of mean and variance. Implementation is via Markov chain Monte Carlo (McMC) algorithms. The models are compared in terms of a measure of global fit, in their ability to detect QTL effects and in terms of their predictive power. The models are subsequently fitted...... to back fat thickness data in pigs. The analysis of back fat thickness shows that the data support genomic models with effects on the mean but not on the variance. The relative sizes of experiment necessary to detect effects on mean and variance is discussed and an extension of the McMC algorithm...

  5. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  6. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation

    DEFF Research Database (Denmark)

    Yang, Ye; Christensen, Ole Fredslund; Sorensen, Daniel

    2011-01-01

    of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box–Cox transformations. Litter size data in rabbits and pigs that had previously been analysed...... in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box–Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis...... in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected...

  7. Mean-variance portfolio selection and efficient frontier for defined contribution pension schemes

    DEFF Research Database (Denmark)

    Højgaard, Bjarne; Vigna, Elena

    We solve a mean-variance portfolio selection problem in the accumulation phase of a defined contribution pension scheme. The efficient frontier, which is found for the 2 asset case as well as the n + 1 asset case, gives the member the possibility to decide his own risk/reward profile. The mean...... as a mean-variance optimization problem. It is shown that the corresponding mean and variance of the final fund belong to the efficient frontier and also the opposite, that each point on the efficient frontier corresponds to a target-based optimization problem. Furthermore, numerical results indicate...... that the largely adopted lifestyle strategy seems to be very far from being efficient in the mean-variance setting....

  8. Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework

    International Nuclear Information System (INIS)

    Zhou, X.Y.; Li, D.

    2000-01-01

    This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be 'embedded' into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem

  9. The variance of the locally measured Hubble parameter explained with different estimators

    DEFF Research Database (Denmark)

    Odderskov, Io Sandberg Hess; Hannestad, Steen; Brandbyge, Jacob

    2017-01-01

    We study the expected variance of measurements of the Hubble constant, H0, as calculated in either linear perturbation theory or using non-linear velocity power spectra derived from N-body simulations. We compare the variance with that obtained by carrying out mock observations in the N......-body simulations, and show that the estimator typically used for the local Hubble constant in studies based on perturbation theory is different from the one used in studies based on N-body simulations. The latter gives larger weight to distant sources, which explains why studies based on N-body simulations tend...... to obtain a smaller variance than that found from studies based on the power spectrum. Although both approaches result in a variance too small to explain the discrepancy between the value of H0 from CMB measurements and the value measured in the local universe, these considerations are important in light...

  10. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    Directory of Open Access Journals (Sweden)

    Daheng Peng

    2017-10-01

    Full Text Available In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  11. DFT-based channel estimation and noise variance estimation techniques for single-carrier FDMA

    OpenAIRE

    Huang, G; Nix, AR; Armour, SMD

    2010-01-01

    Practical frequency domain equalization (FDE) systems generally require knowledge of the channel and the noise variance to equalize the received signal in a frequency-selective fading channel. Accurate channel estimate and noise variance estimate are thus desirable to improve receiver performance. In this paper we investigate the performance of the denoise channel estimator and the approximate linear minimum mean square error (A-LMMSE) channel estimator with channel power delay profile (PDP) ...

  12. Kalman filtering techniques for reducing variance of digital speckle displacement measurement noise

    Institute of Scientific and Technical Information of China (English)

    Donghui Li; Li Guo

    2006-01-01

    @@ Target dynamics are assumed to be known in measuring digital speckle displacement. Use is made of a simple measurement equation, where measurement noise represents the effect of disturbances introduced in measurement process. From these assumptions, Kalman filter can be designed to reduce variance of measurement noise. An optical and analysis system was set up, by which object motion with constant displacement and constant velocity is experimented with to verify validity of Kalman filtering techniques for reduction of measurement noise variance.

  13. An unbiased estimator of the variance of simple random sampling using mixed random-systematic sampling

    OpenAIRE

    Padilla, Alberto

    2009-01-01

    Systematic sampling is a commonly used technique due to its simplicity and ease of implementation. The drawback of this simplicity is that it is not possible to estimate the design variance without bias. There are several ways to circumvent this problem. One method is to suppose that the variable of interest has a random order in the population, so the sample variance of simple random sampling without replacement is used. By means of a mixed random - systematic sample, an unbiased estimator o...

  14. VARIANCE COMPONENTS AND SELECTION FOR FEATHER PECKING BEHAVIOR IN LAYING HENS

    OpenAIRE

    Su, Guosheng; Kjaer, Jørgen B.; Sørensen, Poul

    2005-01-01

    Variance components and selection response for feather pecking behaviour were studied by analysing the data from a divergent selection experiment. An investigation show that a Box-Cox transformation with power =-0.2 made the data be approximately normally distributed and fit best by the given model. Variance components and selection response were estimated using Bayesian analysis with Gibbs sampling technique. The total variation was rather large for the two traits in both low feather peckin...

  15. Increased gender variance in autism spectrum disorders and attention deficit hyperactivity disorder.

    Science.gov (United States)

    Strang, John F; Kenworthy, Lauren; Dominska, Aleksandra; Sokoloff, Jennifer; Kenealy, Laura E; Berl, Madison; Walsh, Karin; Menvielle, Edgardo; Slesaransky-Poe, Graciela; Kim, Kyung-Eun; Luong-Tran, Caroline; Meagher, Haley; Wallace, Gregory L

    2014-11-01

    Evidence suggests over-representation of autism spectrum disorders (ASDs) and behavioral difficulties among people referred for gender issues, but rates of the wish to be the other gender (gender variance) among different neurodevelopmental disorders are unknown. This chart review study explored rates of gender variance as reported by parents on the Child Behavior Checklist (CBCL) in children with different neurodevelopmental disorders: ASD (N = 147, 24 females and 123 males), attention deficit hyperactivity disorder (ADHD; N = 126, 38 females and 88 males), or a medical neurodevelopmental disorder (N = 116, 57 females and 59 males), were compared with two non-referred groups [control sample (N = 165, 61 females and 104 males) and non-referred participants in the CBCL standardization sample (N = 1,605, 754 females and 851 males)]. Significantly greater proportions of participants with ASD (5.4%) or ADHD (4.8%) had parent reported gender variance than in the combined medical group (1.7%) or non-referred comparison groups (0-0.7%). As compared to non-referred comparisons, participants with ASD were 7.59 times more likely to express gender variance; participants with ADHD were 6.64 times more likely to express gender variance. The medical neurodevelopmental disorder group did not differ from non-referred samples in likelihood to express gender variance. Gender variance was related to elevated emotional symptoms in ADHD, but not in ASD. After accounting for sex ratio differences between the neurodevelopmental disorder and non-referred comparison groups, gender variance occurred equally in females and males.

  16. Identification of melanoma cells: a method based in mean variance of signatures via spectral densities.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Angulo-Molina, Aracely

    2017-04-01

    In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.

  17. Tests and Confidence Intervals for an Extended Variance Component Using the Modified Likelihood Ratio Statistic

    DEFF Research Database (Denmark)

    Christensen, Ole Fredslund; Frydenberg, Morten; Jensen, Jens Ledet

    2005-01-01

    The large deviation modified likelihood ratio statistic is studied for testing a variance component equal to a specified value. Formulas are presented in the general balanced case, whereas in the unbalanced case only the one-way random effects model is studied. Simulation studies are presented......, showing that the normal approximation to the large deviation modified likelihood ratio statistic gives confidence intervals for variance components with coverage probabilities very close to the nominal confidence coefficient....

  18. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    OpenAIRE

    Daheng Peng; Fang Zhang

    2017-01-01

    In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  19. Regime shifts in mean-variance efficient frontiers: some international evidence

    OpenAIRE

    Massimo Guidolin; Federica Ria

    2010-01-01

    Regime switching models have been assuming a central role in financial applications because of their well-known ability to capture the presence of rich non-linear patterns in the joint distribution of asset returns. This paper examines how the presence of regimes in means, variances, and correlations of asset returns translates into explicit dynamics of the Markowitz mean-variance frontier. In particular, the paper shows both theoretically and through an application to international equity po...

  20. Markov switching mean-variance frontier dynamics: theory and international evidence

    OpenAIRE

    M. Guidolin; F. Ria

    2010-01-01

    It is well-known that regime switching models are able to capture the presence of rich non-linear patterns in the joint distribution of asset returns. After reviewing key concepts and technical issues related to specifying, estimating, and using multivariate Markov switching models in financial applications, in this paper we map the presence of regimes in means, variances, and covariances of asset returns into explicit dynamics of the Markowitz mean-variance frontier. In particular, we show b...

  1. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    Science.gov (United States)

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  2. Variance to mean ratio, R(t), for poisson processes on phylogenetic trees.

    Science.gov (United States)

    Goldman, N

    1994-09-01

    The ratio of expected variance to mean, R(t), of numbers of DNA base substitutions for contemporary sequences related by a "star" phylogeny is widely seen as a measure of the adherence of the sequences' evolution to a Poisson process with a molecular clock, as predicted by the "neutral theory" of molecular evolution under certain conditions. A number of estimators of R(t) have been proposed, all predicted to have mean 1 and distributions based on the chi 2. Various genes have previously been analyzed and found to have values of R(t) far in excess of 1, calling into question important aspects of the neutral theory. In this paper, I use Monte Carlo simulation to show that the previously suggested means and distributions of estimators of R(t) are highly inaccurate. The analysis is applied to star phylogenies and to general phylogenetic trees, and well-known gene sequences are reanalyzed. For star phylogenies the results show that Kimura's estimators ("The Neutral Theory of Molecular Evolution," Cambridge Univ. Press, Cambridge, 1983) are unsatisfactory for statistical testing of R(t), but confirm the accuracy of Bulmer's correction factor (Genetics 123: 615-619, 1989). For all three nonstar phylogenies studied, attained values of all three estimators of R(t), although larger than 1, are within their true confidence limits under simple Poisson process models. This shows that lineage effects can be responsible for high estimates of R(t), restoring some limited confidence in the molecular clock and showing that the distinction between lineage and molecular clock effects is vital.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. A Mathematical Framework for Critical Transitions: Normal Forms, Variance and Applications

    Science.gov (United States)

    Kuehn, Christian

    2013-06-01

    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast-subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension-two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.

  4. Variance in centrality within rock hyrax social networks predicts adult longevity.

    Directory of Open Access Journals (Sweden)

    Adi Barocas

    Full Text Available BACKGROUND: In communal mammals the levels of social interaction among group members vary considerably. In recent years, biologists have realized that within-group interactions may affect survival of the group members. Several recent studies have demonstrated that the social integration of adult females is positively associated with infant survival, and female longevity is affected by the strength and stability of the individual social bonds. Our aim was to determine the social factors that influence adult longevity in social mammals. METHODOLOGY/PRINCIPAL FINDINGS: As a model system, we studied the social rock hyrax (Procavia capensis, a plural breeder with low reproductive skew, whose groups are mainly composed of females. We applied network theory using 11 years of behavioral data to quantify the centrality of individuals within groups, and found adult longevity to be inversely correlated to the variance in centrality. In other words, animals in groups with more equal associations lived longer. Individual centrality was not correlated with longevity, implying that social tension may affect all group members and not only the weakest or less connected ones. CONCLUSIONS/SIGNIFICANCE: Our novel findings support previous studies emphasizing the adaptive value of social associations and the consequences of inequality among adults within social groups. However, contrary to previous studies, we suggest that it is not the number or strength of associations that an adult individual has (i.e. centrality that is important, but the overall configuration of social relationships within the group (i.e. centrality SD that is a key factor in influencing longevity.

  5. The Role of Mechanical Variance and Spatial Clustering on the Likelihood of Tumor Incidence and Growth

    Science.gov (United States)

    Mirzakhel, Zibah

    When considering factors that contribute to cancer progression, modifications to both the biological and mechanical pathways play significant roles. However, less attention is placed on how the mechanical pathways can specifically contribute to cancerous behavior. Experimental studies have found that malignant cells are significantly softer than healthy, normal cells. In a tissue environment where healthy or malignant cells exist, a distribution of cell stiffness values is observed, with the mean values used to differentiate between these two populations. Rather than focus on the mean values, emphasis will be placed on the distribution, where instances of soft and stiff cells exist in the healthy tissue environment. Since cell deformability is a trait associated with cancer, the question arises as to whether the mechanical variation observed in healthy tissue cell stiffness distributions can influence any instances of tumor growth. To approach this, a 3D discrete model of cells is used, able to monitor and predict the behavior of individual cells while determining any instances of tumor growth in a healthy tissue. In addition to the mechanical variance, the spatial arrangement of cells will also be modeled, as cell interaction could further implicate any incidences of tumor-like malignant populations within the tissue. Results have shown that the likelihood of tumor incidence is driven by both by the increases in the mechanical variation in the distributions as well as larger clustering of cells that are mechanically similar, quantified primarily through higher proliferation rates of tumor-like soft cells. This can be observed though prominent negative shifts in the mean of the distribution, as it begins to transition and show instances of earlystage tumor growth. The model reveals the impact that both the mechanical variation and spatial arrangement of cells has on tumor progression, suggesting the use of these parameters as potential novel biomarkers. With a

  6. Mixed emotions: Sensitivity to facial variance in a crowd of faces.

    Science.gov (United States)

    Haberman, Jason; Lee, Pegan; Whitney, David

    2015-01-01

    The visual system automatically represents summary information from crowds of faces, such as the average expression. This is a useful heuristic insofar as it provides critical information about the state of the world, not simply information about the state of one individual. However, the average alone is not sufficient for making decisions about how to respond to a crowd. The variance or heterogeneity of the crowd--the mixture of emotions--conveys information about the reliability of the average, essential for determining whether the average can be trusted. Despite its importance, the representation of variance within a crowd of faces has yet to be examined. This is addressed here in three experiments. In the first experiment, observers viewed a sample set of faces that varied in emotion, and then adjusted a subsequent set to match the variance of the sample set. To isolate variance as the summary statistic of interest, the average emotion of both sets was random. Results suggested that observers had information regarding crowd variance. The second experiment verified that this was indeed a uniquely high-level phenomenon, as observers were unable to derive the variance of an inverted set of faces as precisely as an upright set of faces. The third experiment replicated and extended the first two experiments using method-of-constant-stimuli. Together, these results show that the visual system is sensitive to emergent information about the emotional heterogeneity, or ambivalence, in crowds of faces.

  7. Numerical experiment on variance biases and Monte Carlo neutronics analysis with thermal hydraulic feedback

    International Nuclear Information System (INIS)

    Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim

    2003-01-01

    Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)

  8. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†

    Science.gov (United States)

    Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia

    2015-01-01

    Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144

  9. Analysis of a genetically structured variance heterogeneity model using the Box-Cox transformation.

    Science.gov (United States)

    Yang, Ye; Christensen, Ole F; Sorensen, Daniel

    2011-02-01

    Over recent years, statistical support for the presence of genetic factors operating at the level of the environmental variance has come from fitting a genetically structured heterogeneous variance model to field or experimental data in various species. Misleading results may arise due to skewness of the marginal distribution of the data. To investigate how the scale of measurement affects inferences, the genetically structured heterogeneous variance model is extended to accommodate the family of Box-Cox transformations. Litter size data in rabbits and pigs that had previously been analysed in the untransformed scale were reanalysed in a scale equal to the mode of the marginal posterior distribution of the Box-Cox parameter. In the rabbit data, the statistical evidence for a genetic component at the level of the environmental variance is considerably weaker than that resulting from an analysis in the original metric. In the pig data, the statistical evidence is stronger, but the coefficient of correlation between additive genetic effects affecting mean and variance changes sign, compared to the results in the untransformed scale. The study confirms that inferences on variances can be strongly affected by the presence of asymmetry in the distribution of data. We recommend that to avoid one important source of spurious inferences, future work seeking support for a genetic component acting on environmental variation using a parametric approach based on normality assumptions confirms that these are met.

  10. Origin and consequences of the relationship between protein mean and variance.

    Science.gov (United States)

    Vallania, Francesco Luigi Massimo; Sherman, Marc; Goodwin, Zane; Mogno, Ilaria; Cohen, Barak Alon; Mitra, Robi David

    2014-01-01

    Cell-to-cell variance in protein levels (noise) is a ubiquitous phenomenon that can increase fitness by generating phenotypic differences within clonal populations of cells. An important challenge is to identify the specific molecular events that control noise. This task is complicated by the strong dependence of a protein's cell-to-cell variance on its mean expression level through a power-law like relationship (σ2∝μ1.69). Here, we dissect the nature of this relationship using a stochastic model parameterized with experimentally measured values. This framework naturally recapitulates the power-law like relationship (σ2∝μ1.6) and accurately predicts protein variance across the yeast proteome (r2 = 0.935). Using this model we identified two distinct mechanisms by which protein variance can be increased. Variables that affect promoter activation, such as nucleosome positioning, increase protein variance by changing the exponent of the power-law relationship. In contrast, variables that affect processes downstream of promoter activation, such as mRNA and protein synthesis, increase protein variance in a mean-dependent manner following the power-law. We verified our findings experimentally using an inducible gene expression system in yeast. We conclude that the power-law-like relationship between noise and protein mean is due to the kinetics of promoter activation. Our results provide a framework for understanding how molecular processes shape stochastic variation across the genome.

  11. An elementary components of variance analysis for multi-center quality control

    International Nuclear Information System (INIS)

    Munson, P.J.; Rodbard, D.

    1977-01-01

    The serious variability of RIA results from different laboratories indicates the need for multi-laboratory collaborative quality control (QC) studies. Statistical analysis methods for such studies using an 'analysis of variance with components of variance estimation' are discussed. This technique allocates the total variance into components corresponding to between-laboratory, between-assay, and residual or within-assay variability. Components of variance analysis also provides an intelligent way to combine the results of several QC samples run at different evels, from which we may decide if any component varies systematically with dose level; if not, pooling of estimates becomes possible. We consider several possible relationships of standard deviation to the laboratory mean. Each relationship corresponds to an underlying statistical model, and an appropriate analysis technique. Tests for homogeneity of variance may be used to determine if an appropriate model has been chosen, although the exact functional relationship of standard deviation to lab mean may be difficult to establish. Appropriate graphical display of the data aids in visual understanding of the data. A plot of the ranked standard deviation vs. ranked laboratory mean is a convenient way to summarize a QC study. This plot also allows determination of the rank correlation, which indicates a net relationship of variance to laboratory mean. (orig.) [de

  12. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.

    Science.gov (United States)

    Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L

    2017-10-01

    Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.

  13. Detecting parent of origin and dominant QTL in a two-generation commercial poultry pedigree using variance component methodology

    Directory of Open Access Journals (Sweden)

    Haley Christopher S

    2009-01-01

    Full Text Available Abstract Introduction Variance component QTL methodology was used to analyse three candidate regions on chicken chromosomes 1, 4 and 5 for dominant and parent-of-origin QTL effects. Data were available for bodyweight and conformation score measured at 40 days from a two-generation commercial broiler dam line. One hundred dams were nested in 46 sires with phenotypes and genotypes on 2708 offspring. Linear models were constructed to simultaneously estimate fixed, polygenic and QTL effects. Different genetic models were compared using likelihood ratio test statistics derived from the comparison of full with reduced or null models. Empirical thresholds were derived by permutation analysis. Results Dominant QTL were found for bodyweight on chicken chromosome 4 and for bodyweight and conformation score on chicken chromosome 5. Suggestive evidence for a maternally expressed QTL for bodyweight and conformation score was found on chromosome 1 in a region corresponding to orthologous imprinted regions in the human and mouse. Conclusion Initial results suggest that variance component analysis can be applied within commercial populations for the direct detection of segregating dominant and parent of origin effects.

  14. Within- and between-person and group variance in behavior and beliefs in cross-cultural longitudinal data.

    Science.gov (United States)

    Deater-Deckard, Kirby; Godwin, Jennifer; Lansford, Jennifer E; Bacchini, Dario; Bombi, Anna Silvia; Bornstein, Marc H; Chang, Lei; Di Giunta, Laura; Dodge, Kenneth A; Malone, Patrick S; Oburu, Paul; Pastorelli, Concetta; Skinner, Ann T; Sorbring, Emma; Steinberg, Laurence; Tapanya, Sombat; Alampay, Liane Peña; Uribe Tirado, Liliana Maria; Zelli, Arnaldo; Al-Hassan, Suha M

    2018-01-01

    This study grapples with what it means to be part of a cultural group, from a statistical modeling perspective. The method we present compares within- and between-cultural group variability, in behaviors in families. We demonstrate the method using a cross-cultural study of adolescent development and parenting, involving three biennial waves of longitudinal data from 1296 eight-year-olds and their parents (multiple cultures in nine countries). Family members completed surveys about parental negativity and positivity, child academic and social-emotional adjustment, and attitudes about parenting and adolescent behavior. Variance estimates were computed at the cultural group, person, and within-person level using multilevel models. Of the longitudinally consistent variance, most was within and not between cultural groups-although there was a wide range of between-group differences. This approach to quantifying cultural group variability may prove valuable when applied to quantitative studies of acculturation. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. All rights reserved.

  15. How the variance of some extraction variables may affect the quality of espresso coffees served in coffee shops.

    Science.gov (United States)

    Severini, Carla; Derossi, Antonio; Fiore, Anna G; De Pilli, Teresa; Alessandrino, Ofelia; Del Mastro, Arcangela

    2016-07-01

    To improve the quality of espresso coffee, the variables under the control of the barista, such as grinding grade, coffee quantity and pressure applied to the coffee cake, as well as their variance, are of great importance. A nonlinear mixed effect modeling was used to obtain information on the changes in chemical attributes of espresso coffee (EC) as a function of the variability of extraction conditions. During extraction, the changes in volume were well described by a logistic model, whereas the chemical attributes were better fit by a first-order kinetic. The major source of information was contained in the grinding grade, which accounted for 87-96% of the variance of the experimental data. The variability of the grinding produced changes in caffeine content in the range of 80.03 mg and 130.36 mg when using a constant grinding grade of 6.5. The variability in volume and chemical attributes of EC is large. Grinding had the most important effect as the variability in particle size distribution observed for each grinding level had a profound effect on the quality of EC. Standardization of grinding would be of crucial importance for obtaining all espresso coffees with a high quality. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.

    Science.gov (United States)

    Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying

    2017-08-01

    Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.

  17. Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology

    International Nuclear Information System (INIS)

    Kirov, A S; Schmidtlein, C R; Piao, J Z

    2008-01-01

    Correcting positron emission tomography (PET) images for the partial volume effect (PVE) due to the limited resolution of PET has been a long-standing challenge. Various approaches including incorporation of the system response function in the reconstruction have been previously tested. We present a post-reconstruction PVE correction based on iterative deconvolution using a 3D maximum likelihood expectation-maximization (MLEM) algorithm. To achieve convergence we used a one step late (OSL) regularization procedure based on the assumption of local monotonic behavior of the PET signal following Alenius et al. This technique was further modified to selectively control variance depending on the local topology of the PET image. No prior 'anatomic' information is needed in this approach. An estimate of the noise properties of the image is used instead. The procedure was tested for symmetric and isotropic deconvolution functions with Gaussian shape and full width at half-maximum (FWHM) ranging from 6.31 mm to infinity. The method was applied to simulated and experimental scans of the NEMA NU 2 image quality phantom with the GE Discovery LS PET/CT scanner. The phantom contained uniform activity spheres with diameters ranging from 1 cm to 3.7 cm within uniform background. The optimal sphere activity to variance ratio was obtained when the deconvolution function was replaced by a step function few voxels wide. In this case, the deconvolution method converged in ∼3-5 iterations for most points on both the simulated and experimental images. For the 1 cm diameter sphere, the contrast recovery improved from 12% to 36% in the simulated and from 21% to 55% in the experimental data. Recovery coefficients between 80% and 120% were obtained for all larger spheres, except for the 13 mm diameter sphere in the simulated scan (68%). No increase in variance was observed except for a few voxels neighboring strong activity gradients and inside the largest spheres. Testing the method for

  18. Forward-Weighted CADIS Method for Variance Reduction of Monte Carlo Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.

    2010-01-01

    Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses use high-fidelity transport codes to produce few-group parameters at the assembly level for use in low-order methods applied at the core level. Monte Carlo (MC) methods, which allow detailed and accurate modeling of the full geometry and energy details and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the several-decade-old methodology used in current practice. However, the prohibitive computational requirements associated with obtaining fully converged system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. A goal of current research at Oak Ridge National Laboratory (ORNL) is to change this paradigm by enabling the direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome is the slow non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, research has focused on development in the following two areas: (1) a hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The focus of this paper is limited to the first area mentioned above. It describes the FW-CADIS method applied to variance reduction of MC reactor analyses and provides initial results for calculating

  19. UV spectral fingerprinting and analysis of variance-principal component analysis: a useful tool for characterizing sources of variance in plant materials.

    Science.gov (United States)

    Luthria, Devanand L; Mukhopadhyay, Sudarsan; Robbins, Rebecca J; Finley, John W; Banuelos, Gary S; Harnly, James M

    2008-07-23

    UV spectral fingerprints, in combination with analysis of variance-principal components analysis (ANOVA-PCA), can differentiate between cultivars and growing conditions (or treatments) and can be used to identify sources of variance. Broccoli samples, composed of two cultivars, were grown under seven different conditions or treatments (four levels of Se-enriched irrigation waters, organic farming, and conventional farming with 100 and 80% irrigation based on crop evaporation and transpiration rate). Freeze-dried powdered samples were extracted with methanol-water (60:40, v/v) and analyzed with no prior separation. Spectral fingerprints were acquired for the UV region (220-380 nm) using a 50-fold dilution of the extract. ANOVA-PCA was used to construct subset matrices that permitted easy verification of the hypothesis that cultivar and treatment contributed to a difference in the chemical expression of the broccoli. The sums of the squares of the same matrices were used to show that cultivar, treatment, and analytical repeatability contributed 30.5, 68.3, and 1.2% of the variance, respectively.

  20. Ulnar variance: its relationship to ulnar foveal morphology and forearm kinematics.

    Science.gov (United States)

    Kataoka, Toshiyuki; Moritomo, Hisao; Omokawa, Shohei; Iida, Akio; Murase, Tsuyoshi; Sugamoto, Kazuomi

    2012-04-01

    It is unclear how individual differences in the anatomy of the distal ulna affect kinematics and pathology of the distal radioulnar joint. This study evaluated how ulnar variance relates to ulnar foveal morphology and the pronosupination axis of the forearm. We performed 3-dimensional computed tomography studies in vivo on 28 forearms in maximum supination and pronation to determine the anatomical center of the ulnar distal pole and the forearm pronosupination axis. We calculated the forearm pronosupination axis using a markerless bone registration technique, which determined the pronosupination center as the point where the axis emerges on the distal ulnar surface. We measured the depth of the anatomical center and classified it into 2 types: concave, with a depth of 0.8 mm or more, and flat, with a depth less than 0.8 mm. We examined whether ulnar variance correlated with foveal type and the distance between anatomical and pronosupination centers. A total of 18 cases had a concave-type fovea surrounded by the C-shaped articular facet of the distal pole, and 10 had a flat-type fovea with a flat surface without evident central depression. Ulnar variance of the flat type was 3.5 ± 1.2 mm, which was significantly greater than the 1.2 ± 1.1 mm of the concave type. Ulnar variance positively correlated with distance between the anatomical and pronosupination centers. Flat-type ulnar heads have a significantly greater ulnar variance than concave types. The pronosupination axis passes through the ulnar head more medially and farther from the anatomical center with increasing ulnar variance. This study suggests that ulnar variance is related in part to foveal morphology and pronosupination axis. This information provides a starting point for future studies investigating how foveal morphology relates to distal ulnar problems. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.