WorldWideScience

Sample records for variance anova method

  1. Homogeneity tests for variances and mean test under heterogeneity conditions in a single way ANOVA method

    International Nuclear Information System (INIS)

    Morales P, J.R.; Avila P, P.

    1996-01-01

    If we have consider the maximum permissible levels showed for the case of oysters, it results forbidding to collect oysters at the four stations of the El Chijol Channel ( Veracruz, Mexico), as well as along the channel itself, because the metal concentrations studied exceed these limits. In this case the application of Welch tests were not necessary. For the water hyacinth the means of the treatments were unequal in Fe, Cu, Ni, and Zn. This case is more illustrative, for the conclusion has been reached through the application of the Welch tests to treatments with heterogeneous variances. (Author)

  2. Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn [School of Information Science and Technology, ShanghaiTech University, Shanghai 200031 (China); Lin, Guang, E-mail: guanglin@purdue.edu [Department of Mathematics & School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2016-07-15

    In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.

  3. Comparative study between EDXRF and ASTM E572 methods using two-way ANOVA

    Science.gov (United States)

    Krummenauer, A.; Veit, H. M.; Zoppas-Ferreira, J.

    2018-03-01

    Comparison with reference method is one of the necessary requirements for the validation of non-standard methods. This comparison was made using the experiment planning technique with two-way ANOVA. In ANOVA, the results obtained using the EDXRF method, to be validated, were compared with the results obtained using the ASTM E572-13 standard test method. Fisher's tests (F-test) were used to comparative study between of the elements: molybdenum, niobium, copper, nickel, manganese, chromium and vanadium. All F-tests of the elements indicate that the null hypothesis (Ho) has not been rejected. As a result, there is no significant difference between the methods compared. Therefore, according to this study, it is concluded that the EDXRF method was approved in this method comparison requirement.

  4. The impact of sample non-normality on ANOVA and alternative methods.

    Science.gov (United States)

    Lantz, Björn

    2013-05-01

    In this journal, Zimmerman (2004, 2011) has discussed preliminary tests that researchers often use to choose an appropriate method for comparing locations when the assumption of normality is doubtful. The conceptual problem with this approach is that such a two-stage process makes both the power and the significance of the entire procedure uncertain, as type I and type II errors are possible at both stages. A type I error at the first stage, for example, will obviously increase the probability of a type II error at the second stage. Based on the idea of Schmider et al. (2010), which proposes that simulated sets of sample data be ranked with respect to their degree of normality, this paper investigates the relationship between population non-normality and sample non-normality with respect to the performance of the ANOVA, Brown-Forsythe test, Welch test, and Kruskal-Wallis test when used with different distributions, sample sizes, and effect sizes. The overall conclusion is that the Kruskal-Wallis test is considerably less sensitive to the degree of sample normality when populations are distinctly non-normal and should therefore be the primary tool used to compare locations when it is known that populations are not at least approximately normal. © 2012 The British Psychological Society.

  5. Optimization of Parameters for Manufacture Nanopowder Bioceramics at Machine Pulverisette 6 by Taguchi and ANOVA Method

    Science.gov (United States)

    Van Hoten, Hendri; Gunawarman; Mulyadi, Ismet Hari; Kurniawan Mainil, Afdhal; Putra, Bismantoloa dan

    2018-02-01

    This research is about manufacture nanopowder Bioceramics from local materials used Ball Milling for biomedical applications. Source materials for the manufacture of medicines are plants, animal tissues, microbial structures and engineering biomaterial. The form of raw material medicines is a powder before mixed. In the case of medicines, research is to find sources of biomedical materials that will be in the nanoscale powders can be used as raw material for medicine. One of the biomedical materials that can be used as raw material for medicine is of the type of bioceramics is chicken eggshells. This research will develop methods for manufacture nanopowder material from chicken eggshells with Ball Milling using the Taguchi method and ANOVA. Eggshell milled using a variation of Milling rate on 150, 200 and 250 rpm, the time variation of 1, 2 and 3 hours and variations the grinding balls to eggshell powder weight ratio (BPR) 1: 6, 1: 8, 1: 10. Before milled with Ball Milling crushed eggshells in advance and calcinate to a temperature of 900°C. After the milled material characterization of the fine powder of eggshell using SEM to see its size. The result of this research is optimum parameter of Taguchi Design analysis that is 250 rpm milling rate, 3 hours milling time and BPR is 1: 6 with the average eggshell powder size is 1.305 μm. Milling speed, milling time and ball to powder weight of ratio have contribution successively equal to 60.82%, 30.76% and 6.64% by error equal to 1.78%.

  6. A default Bayesian hypothesis test for ANOVA designs

    NARCIS (Netherlands)

    Wetzels, R.; Grasman, R.P.P.P.; Wagenmakers, E.J.

    2012-01-01

    This article presents a Bayesian hypothesis test for analysis of variance (ANOVA) designs. The test is an application of standard Bayesian methods for variable selection in regression models. We illustrate the effect of various g-priors on the ANOVA hypothesis test. The Bayesian test for ANOVA

  7. Variance Reduction Techniques in Monte Carlo Methods

    NARCIS (Netherlands)

    Kleijnen, Jack P.C.; Ridder, A.A.N.; Rubinstein, R.Y.

    2010-01-01

    Monte Carlo methods are simulation algorithms to estimate a numerical quantity in a statistical model of a real system. These algorithms are executed by computer programs. Variance reduction techniques (VRT) are needed, even though computer speed has been increasing dramatically, ever since the

  8. ANOVA for the behavioral sciences researcher

    CERN Document Server

    Cardinal, Rudolf N

    2013-01-01

    This new book provides a theoretical and practical guide to analysis of variance (ANOVA) for those who have not had a formal course in this technique, but need to use this analysis as part of their research.From their experience in teaching this material and applying it to research problems, the authors have created a summary of the statistical theory underlying ANOVA, together with important issues, guidance, practical methods, references, and hints about using statistical software. These have been organized so that the student can learn the logic of the analytical techniques but also use the

  9. Advanced methods of analysis variance on scenarios of nuclear prospective

    International Nuclear Information System (INIS)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-01-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  10. ANOVA and ANCOVA A GLM Approach

    CERN Document Server

    Rutherford, Andrew

    2012-01-01

    Provides an in-depth treatment of ANOVA and ANCOVA techniques from a linear model perspective ANOVA and ANCOVA: A GLM Approach provides a contemporary look at the general linear model (GLM) approach to the analysis of variance (ANOVA) of one- and two-factor psychological experiments. With its organized and comprehensive presentation, the book successfully guides readers through conventional statistical concepts and how to interpret them in GLM terms, treating the main single- and multi-factor designs as they relate to ANOVA and ANCOVA. The book begins with a brief history of the separate dev

  11. The Threat of Common Method Variance Bias to Theory Building

    Science.gov (United States)

    Reio, Thomas G., Jr.

    2010-01-01

    The need for more theory building scholarship remains one of the pressing issues in the field of HRD. Researchers can employ quantitative, qualitative, and/or mixed methods to support vital theory-building efforts, understanding however that each approach has its limitations. The purpose of this article is to explore common method variance bias as…

  12. Application of effective variance method for contamination monitor calibration

    International Nuclear Information System (INIS)

    Goncalez, O.L.; Freitas, I.S.M. de.

    1990-01-01

    In this report, the calibration of a thin window Geiger-Muller type monitor for alpha superficial contamination is presented. The calibration curve is obtained by the method of the least-squares fitting with effective variance. The method and the approach for the calculation are briefly discussed. (author)

  13. A Hold-out method to correct PCA variance inflation

    DEFF Research Database (Denmark)

    Garcia-Moreno, Pablo; Artes-Rodriguez, Antonio; Hansen, Lars Kai

    2012-01-01

    In this paper we analyze the problem of variance inflation experienced by the PCA algorithm when working in an ill-posed scenario where the dimensionality of the training set is larger than its sample size. In an earlier article a correction method based on a Leave-One-Out (LOO) procedure...

  14. Gravity interpretation of dipping faults using the variance analysis method

    International Nuclear Information System (INIS)

    Essa, Khalid S

    2013-01-01

    A new algorithm is developed to estimate simultaneously the depth and the dip angle of a buried fault from the normalized gravity gradient data. This algorithm utilizes numerical first horizontal derivatives computed from the observed gravity anomaly, using filters of successive window lengths to estimate the depth and the dip angle of a buried dipping fault structure. For a fixed window length, the depth is estimated using a least-squares sense for each dip angle. The method is based on computing the variance of the depths determined from all horizontal gradient anomaly profiles using the least-squares method for each dip angle. The minimum variance is used as a criterion for determining the correct dip angle and depth of the buried structure. When the correct dip angle is used, the variance of the depths is always less than the variances computed using wrong dip angles. The technique can be applied not only to the true residuals, but also to the measured Bouguer gravity data. The method is applied to synthetic data with and without random errors and two field examples from Egypt and Scotland. In all cases examined, the estimated depths and other model parameters are found to be in good agreement with the actual values. (paper)

  15. Variance reduction methods applied to deep-penetration problems

    International Nuclear Information System (INIS)

    Cramer, S.N.

    1984-01-01

    All deep-penetration Monte Carlo calculations require variance reduction methods. Before beginning with a detailed approach to these methods, several general comments concerning deep-penetration calculations by Monte Carlo, the associated variance reduction, and the similarities and differences of these with regard to non-deep-penetration problems will be addressed. The experienced practitioner of Monte Carlo methods will easily find exceptions to any of these generalities, but it is felt that these comments will aid the novice in understanding some of the basic ideas and nomenclature. Also, from a practical point of view, the discussions and developments presented are oriented toward use of the computer codes which are presented in segments of this Monte Carlo course

  16. Double Minimum Variance Beamforming Method to Enhance Photoacoustic Imaging

    OpenAIRE

    Paridar, Roya; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    One of the common algorithms used to reconstruct photoacoustic (PA) images is the non-adaptive Delay-and-Sum (DAS) beamformer. However, the quality of the reconstructed PA images obtained by DAS is not satisfying due to its high level of sidelobes and wide mainlobe. In contrast, adaptive beamformers, such as minimum variance (MV), result in an improved image compared to DAS. In this paper, a novel beamforming method, called Double MV (D-MV) is proposed to enhance the image quality compared to...

  17. The Influencing Factor Analysis on the Performance Evaluation of Assembly Line Balancing Problem Level 1 (SALBP-1) Based on ANOVA Method

    Science.gov (United States)

    Chen, Jie; Hu, Jiangnan

    2017-06-01

    Industry 4.0 and lean production has become the focus of manufacturing. A current issue is to analyse the performance of the assembly line balancing. This study focus on distinguishing the factors influencing the assembly line balancing. The one-way ANOVA method is applied to explore the significant degree of distinguished factors. And regression model is built to find key points. The maximal task time (tmax ), the quantity of tasks (n), and degree of convergence of precedence graph (conv) are critical for the performance of assembly line balancing. The conclusion will do a favor to the lean production in the manufacturing.

  18. Optimization of friction welding by taguchi and ANOVA method on commercial aluminium tube to Al 2025 tube plate with backing block using an external tool

    International Nuclear Information System (INIS)

    Kanna, S.; Kumaraswamidhs, L. A.; Kumaran, S. Senthil

    2016-01-01

    The aim of the present work is to optimize the Friction welding of tube to tube plate using an external tool (FWTPET) with clearance fit of commercial aluminum tube to Al 2025 tube plate using an external tool. Conventional frictional welding is suitable to weld only symmetrical joints either tube to tube or rod to rod but in this research with the help of external tool, the welding has been done by unsymmetrical shape of tube to tube plate also. In this investigation, the various welding parameters such as tool rotating speed (rpm), projection of tube (mm) and depth of cut (mm) are determined according to the Taguchi L9 orthogonal array. The two conditions were considered in this process to examine this experiment; where condition 1 is flat plate with plain tube Without holes [WOH] on the circumference of the surface and condition 2 is flat plate with plane tube has holes on its circumference of the surface With holes [WH]. Taguchi L9 orthogonal array was utilized to find the most significant control factors which will yield better joint strength. Besides, the most influential process parameter has been determined using statistical Analysis of variance (ANOVA). Finally, the comparison of each result has been done for conditions by means percentage of contribution and regression analysis. The general regression equation is formulated and better strength is obtained and it is validated by means of confirmation test. It was observed that value of optimal welded joint strength for both tube without holes and tube with holes are to be 319.485 MPa and 264.825 MPa, respectively.

  19. Optimization of friction welding by taguchi and ANOVA method on commercial aluminium tube to Al 2025 tube plate with backing block using an external tool

    Energy Technology Data Exchange (ETDEWEB)

    Kanna, S.; Kumaraswamidhs, L. A. [Indian Institute of Technology, Dhanbad (India); Kumaran, S. Senthil [RVS School of Engineering and Technology, Dindigul (India)

    2016-05-15

    The aim of the present work is to optimize the Friction welding of tube to tube plate using an external tool (FWTPET) with clearance fit of commercial aluminum tube to Al 2025 tube plate using an external tool. Conventional frictional welding is suitable to weld only symmetrical joints either tube to tube or rod to rod but in this research with the help of external tool, the welding has been done by unsymmetrical shape of tube to tube plate also. In this investigation, the various welding parameters such as tool rotating speed (rpm), projection of tube (mm) and depth of cut (mm) are determined according to the Taguchi L9 orthogonal array. The two conditions were considered in this process to examine this experiment; where condition 1 is flat plate with plain tube Without holes [WOH] on the circumference of the surface and condition 2 is flat plate with plane tube has holes on its circumference of the surface With holes [WH]. Taguchi L9 orthogonal array was utilized to find the most significant control factors which will yield better joint strength. Besides, the most influential process parameter has been determined using statistical Analysis of variance (ANOVA). Finally, the comparison of each result has been done for conditions by means percentage of contribution and regression analysis. The general regression equation is formulated and better strength is obtained and it is validated by means of confirmation test. It was observed that value of optimal welded joint strength for both tube without holes and tube with holes are to be 319.485 MPa and 264.825 MPa, respectively.

  20. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here. © 2016 The Author(s).

  1. Variance bias analysis for the Gelbard's batch method

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Shim, Hyung Jin [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    In this paper, variances and the bias will be derived analytically when the Gelbard's batch method is applied. And then, the real variance estimated from this bias will be compared with the real variance calculated from replicas. Variance and the bias were derived analytically when the batch method was applied. If the batch method was applied to calculate the sample variance, covariance terms between tallies which exist in the batch were eliminated from the bias. With the 2 by 2 fission matrix problem, we could calculate real variance regardless of whether or not the batch method was applied. However as batch size got larger, standard deviation of real variance was increased. When we perform a Monte Carlo estimation, we could get a sample variance as the statistical uncertainty of it. However, this value is smaller than the real variance of it because a sample variance is biased. To reduce this bias, Gelbard devised the method which is called the Gelbard's batch method. It has been certificated that a sample variance get closer to the real variance when the batch method is applied. In other words, the bias get reduced. This fact is well known to everyone in the MC field. However, so far, no one has given the analytical interpretation on it.

  2. Permutation Tests for Stochastic Ordering and ANOVA

    CERN Document Server

    Basso, Dario; Salmaso, Luigi; Solari, Aldo

    2009-01-01

    Permutation testing for multivariate stochastic ordering and ANOVA designs is a fundamental issue in many scientific fields such as medicine, biology, pharmaceutical studies, engineering, economics, psychology, and social sciences. This book presents advanced methods and related R codes to perform complex multivariate analyses

  3. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application

    Science.gov (United States)

    Zahodne, Laura B.; Manly, Jennifer J.; Brickman, Adam M.; Narkhede, Atul; Griffith, Erica Y.; Guzman, Vanessa A.; Schupf, Nicole; Stern, Yaakov

    2016-01-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. PMID:26348002

  4. Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application.

    Science.gov (United States)

    Zahodne, Laura B; Manly, Jennifer J; Brickman, Adam M; Narkhede, Atul; Griffith, Erica Y; Guzman, Vanessa A; Schupf, Nicole; Stern, Yaakov

    2015-10-01

    Cognitive reserve describes the mismatch between brain integrity and cognitive performance. Older adults with high cognitive reserve are more resilient to age-related brain pathology. Traditionally, cognitive reserve is indexed indirectly via static proxy variables (e.g., years of education). More recently, cross-sectional studies have suggested that reserve can be expressed as residual variance in episodic memory performance that remains after accounting for demographic factors and brain pathology (whole brain, hippocampal, and white matter hyperintensity volumes). The present study extends these methods to a longitudinal framework in a community-based cohort of 244 older adults who underwent two comprehensive neuropsychological and structural magnetic resonance imaging sessions over 4.6 years. On average, residual memory variance decreased over time, consistent with the idea that cognitive reserve is depleted over time. Individual differences in change in residual memory variance predicted incident dementia, independent of baseline residual memory variance. Multiple-group latent difference score models revealed tighter coupling between brain and language changes among individuals with decreasing residual memory variance. These results suggest that changes in residual memory variance may capture a dynamic aspect of cognitive reserve and could be a useful way to summarize individual cognitive responses to brain changes. Change in residual memory variance among initially non-demented older adults was a better predictor of incident dementia than residual memory variance measured at one time-point. Copyright © 2015. Published by Elsevier Ltd.

  5. Analysis of force variance for a continuous miner drum using the Design of Experiments method

    Energy Technology Data Exchange (ETDEWEB)

    S. Somanchi; V.J. Kecojevic; C.J. Bise [Pennsylvania State University, University Park, PA (United States)

    2006-06-15

    Continuous miners (CMs) are excavating machines designed to extract a variety of minerals by underground mining. The variance in force experienced by the cutting drum is a very important aspect that must be considered during drum design. A uniform variance essentially means that an equal load is applied on the individual cutting bits and this, in turn, enables better cutting action, greater efficiency, and longer bit and machine life. There are certain input parameters used in the drum design whose exact relationships with force variance are not clearly understood. This paper determines (1) the factors that have a significant effect on the force variance of the drum and (2) the values that can be assigned to these factors to minimize the force variance. A computer program, Continuous Miner Drum (CMD), was developed in collaboration with Kennametal, Inc. to facilitate the mechanical design of CM drums. CMD also facilitated data collection for determining significant factors affecting force variance. Six input parameters, including centre pitch, outer pitch, balance angle, shift angle, set angle and relative angle were tested at two levels. Trials were configured using the Design of Experiments (DoE) method where 2{sup 6} full-factorial experimental design was selected to investigate the effect of these factors on force variance. Results from the analysis show that all parameters except balance angle, as well as their interactions, significantly affect the force variance.

  6. Methods to estimate the between‐study variance and its uncertainty in meta‐analysis†

    Science.gov (United States)

    Jackson, Dan; Viechtbauer, Wolfgang; Bender, Ralf; Bowden, Jack; Knapp, Guido; Kuss, Oliver; Higgins, Julian PT; Langan, Dean; Salanti, Georgia

    2015-01-01

    Meta‐analyses are typically used to estimate the overall/mean of an outcome of interest. However, inference about between‐study variability, which is typically modelled using a between‐study variance parameter, is usually an additional aim. The DerSimonian and Laird method, currently widely used by default to estimate the between‐study variance, has been long challenged. Our aim is to identify known methods for estimation of the between‐study variance and its corresponding uncertainty, and to summarise the simulation and empirical evidence that compares them. We identified 16 estimators for the between‐study variance, seven methods to calculate confidence intervals, and several comparative studies. Simulation studies suggest that for both dichotomous and continuous data the estimator proposed by Paule and Mandel and for continuous data the restricted maximum likelihood estimator are better alternatives to estimate the between‐study variance. Based on the scenarios and results presented in the published studies, we recommend the Q‐profile method and the alternative approach based on a ‘generalised Cochran between‐study variance statistic’ to compute corresponding confidence intervals around the resulting estimates. Our recommendations are based on a qualitative evaluation of the existing literature and expert consensus. Evidence‐based recommendations require an extensive simulation study where all methods would be compared under the same scenarios. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons Ltd. PMID:26332144

  7. Variance-to-mean method generalized by linear difference filter technique

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ohsaki, Hiroshi; Horiguchi, Tetsuo; Yamane, Yoshihiro; Shiroya, Seiji

    1998-01-01

    The conventional variance-to-mean method (Feynman-α method) seriously suffers the divergency of the variance under such a transient condition as a reactor power drift. Strictly speaking, then, the use of the Feynman-α is restricted to a steady state. To apply the method to more practical uses, it is desirable to overcome this kind of difficulty. For this purpose, we propose an usage of higher-order difference filter technique to reduce the effect of the reactor power drift, and derive several new formulae taking account of the filtering. The capability of the formulae proposed was demonstrated through experiments in the Kyoto University Critical Assembly. The experimental results indicate that the divergency of the variance can be effectively suppressed by the filtering technique, and that the higher-order filter becomes necessary with increasing variation rate in power

  8. Sequential experimental design based generalised ANOVA

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Souvik, E-mail: csouvik41@gmail.com; Chowdhury, Rajib, E-mail: rajibfce@iitr.ac.in

    2016-07-15

    Over the last decade, surrogate modelling technique has gained wide popularity in the field of uncertainty quantification, optimization, model exploration and sensitivity analysis. This approach relies on experimental design to generate training points and regression/interpolation for generating the surrogate. In this work, it is argued that conventional experimental design may render a surrogate model inefficient. In order to address this issue, this paper presents a novel distribution adaptive sequential experimental design (DA-SED). The proposed DA-SED has been coupled with a variant of generalised analysis of variance (G-ANOVA), developed by representing the component function using the generalised polynomial chaos expansion. Moreover, generalised analytical expressions for calculating the first two statistical moments of the response, which are utilized in predicting the probability of failure, have also been developed. The proposed approach has been utilized in predicting probability of failure of three structural mechanics problems. It is observed that the proposed approach yields accurate and computationally efficient estimate of the failure probability.

  9. The Variance-covariance Method using IOWGA Operator for Tourism Forecast Combination

    Directory of Open Access Journals (Sweden)

    Liangping Wu

    2014-08-01

    Full Text Available Three combination methods commonly used in tourism forecasting are the simple average method, the variance-covariance method and the discounted MSFE method. These methods assign the different weights that can not change at each time point to each individual forecasting model. In this study, we introduce the IOWGA operator combination method which can overcome the defect of previous three combination methods into tourism forecasting. Moreover, we further investigate the performance of the four combination methods through the theoretical evaluation and the forecasting evaluation. The results of the theoretical evaluation show that the IOWGA operator combination method obtains extremely well performance and outperforms the other forecast combination methods. Furthermore, the IOWGA operator combination method can be of well forecast performance and performs almost the same to the variance-covariance combination method for the forecasting evaluation. The IOWGA operator combination method mainly reflects the maximization of improving forecasting accuracy and the variance-covariance combination method mainly reflects the decrease of the forecast error. For future research, it may be worthwhile introducing and examining other new combination methods that may improve forecasting accuracy or employing other techniques to control the time for updating the weights in combined forecasts.

  10. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    Noack, K.

    1982-01-01

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  11. Variance of a potential of mean force obtained using the weighted histogram analysis method.

    Science.gov (United States)

    Cukier, Robert I

    2013-11-27

    A potential of mean force (PMF) that provides the free energy of a thermally driven system along some chosen reaction coordinate (RC) is a useful descriptor of systems characterized by complex, high dimensional potential energy surfaces. Umbrella sampling window simulations use potential energy restraints to provide more uniform sampling along a RC so that potential energy barriers that would otherwise make equilibrium sampling computationally difficult can be overcome. Combining the results from the different biased window trajectories can be accomplished using the Weighted Histogram Analysis Method (WHAM). Here, we provide an analysis of the variance of a PMF along the reaction coordinate. We assume that the potential restraints used for each window lead to Gaussian distributions for the window reaction coordinate densities and that the data sampling in each window is from an equilibrium ensemble sampled so that successive points are statistically independent. Also, we assume that neighbor window densities overlap, as required in WHAM, and that further-than-neighbor window density overlap is negligible. Then, an analytic expression for the variance of the PMF along the reaction coordinate at a desired level of spatial resolution can be generated. The variance separates into a sum over all windows with two kinds of contributions: One from the variance of the biased window density normalized by the total biased window density and the other from the variance of the local (for each window's coordinate range) PMF. Based on the desired spatial resolution of the PMF, the former variance can be minimized relative to that from the latter. The method is applied to a model system that has features of a complex energy landscape evocative of a protein with two conformational states separated by a free energy barrier along a collective reaction coordinate. The variance can be constructed from data that is already available from the WHAM PMF construction.

  12. Estimating Mean and Variance Through Quantiles : An Experimental Comparison of Different Methods

    NARCIS (Netherlands)

    Moors, J.J.A.; Strijbosch, L.W.G.; van Groenendaal, W.J.H.

    2002-01-01

    If estimates of mean and variance are needed and only experts' opinions are available, the literature agrees that it is wise behaviour to ask only for their (subjective) estimates of quantiles: from these, estimates of the desired parameters are calculated.Quite a number of methods have been

  13. Isolating Trait and Method Variance in the Measurement of Callous and Unemotional Traits.

    Science.gov (United States)

    Paiva-Salisbury, Melissa L; Gill, Andrew D; Stickle, Timothy R

    2017-09-01

    To examine hypothesized influence of method variance from negatively keyed items in measurement of callous-unemotional (CU) traits, nine a priori confirmatory factor analysis model comparisons of the Inventory of Callous-Unemotional Traits were evaluated on multiple fit indices and theoretical coherence. Tested models included a unidimensional model, a three-factor model, a three-bifactor model, an item response theory-shortened model, two item-parceled models, and three correlated trait-correlated method minus one models (unidimensional, correlated three-factor, and bifactor). Data were self-reports of 234 adolescents (191 juvenile offenders, 43 high school students; 63% male; ages 11-17 years). Consistent with hypotheses, models accounting for method variance substantially improved fit to the data. Additionally, bifactor models with a general CU factor better fit the data compared with correlated factor models, suggesting a general CU factor is important to understanding the construct of CU traits. Future Inventory of Callous-Unemotional Traits analyses should account for method variance from item keying and response bias to isolate trait variance.

  14. Analysis of rhythmic variance - ANORVA. A new simple method for detecting rhythms in biological time series

    Directory of Open Access Journals (Sweden)

    Peter Celec

    2004-01-01

    Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin

  15. ANOVA-HDMR structure of the higher order nodal diffusion solution

    International Nuclear Information System (INIS)

    Bokov, P. M.; Prinsloo, R. H.; Tomasevic, D. I.

    2013-01-01

    Nodal diffusion methods still represent a standard in global reactor calculations, but employ some ad-hoc approximations (such as the quadratic leakage approximation) which limit their accuracy in cases where reference quality solutions are sought. In this work we solve the nodal diffusion equations utilizing the so-called higher-order nodal methods to generate reference quality solutions and to decompose the obtained solutions via a technique known as High Dimensional Model Representation (HDMR). This representation and associated decomposition of the solution provides a new formulation of the transverse leakage term. The HDMR structure is investigated via the technique of Analysis of Variance (ANOVA), which indicates why the existing class of transversely-integrated nodal methods prove to be so successful. Furthermore, the analysis leads to a potential solution method for generating reference quality solutions at a much reduced calculational cost, by applying the ANOVA technique to the full higher order solution. (authors)

  16. Partial Variance of Increments Method in Solar Wind Observations and Plasma Simulations

    Science.gov (United States)

    Greco, A.; Matthaeus, W. H.; Perri, S.; Osman, K. T.; Servidio, S.; Wan, M.; Dmitruk, P.

    2018-02-01

    The method called "PVI" (Partial Variance of Increments) has been increasingly used in analysis of spacecraft and numerical simulation data since its inception in 2008. The purpose of the method is to study the kinematics and formation of coherent structures in space plasmas, a topic that has gained considerable attention, leading the development of identification methods, observations, and associated theoretical research based on numerical simulations. This review paper will summarize key features of the method and provide a synopsis of the main results obtained by various groups using the method. This will enable new users or those considering methods of this type to find details and background collected in one place.

  17. A model and variance reduction method for computing statistical outputs of stochastic elliptic partial differential equations

    International Nuclear Information System (INIS)

    Vidal-Codina, F.; Nguyen, N.C.; Giles, M.B.; Peraire, J.

    2015-01-01

    We present a model and variance reduction method for the fast and reliable computation of statistical outputs of stochastic elliptic partial differential equations. Our method consists of three main ingredients: (1) the hybridizable discontinuous Galerkin (HDG) discretization of elliptic partial differential equations (PDEs), which allows us to obtain high-order accurate solutions of the governing PDE; (2) the reduced basis method for a new HDG discretization of the underlying PDE to enable real-time solution of the parameterized PDE in the presence of stochastic parameters; and (3) a multilevel variance reduction method that exploits the statistical correlation among the different reduced basis approximations and the high-fidelity HDG discretization to accelerate the convergence of the Monte Carlo simulations. The multilevel variance reduction method provides efficient computation of the statistical outputs by shifting most of the computational burden from the high-fidelity HDG approximation to the reduced basis approximations. Furthermore, we develop a posteriori error estimates for our approximations of the statistical outputs. Based on these error estimates, we propose an algorithm for optimally choosing both the dimensions of the reduced basis approximations and the sizes of Monte Carlo samples to achieve a given error tolerance. We provide numerical examples to demonstrate the performance of the proposed method

  18. Analysis of inconsistent source sampling in monte carlo weight-window variance reduction methods

    Directory of Open Access Journals (Sweden)

    David P. Griesheimer

    2017-09-01

    Full Text Available The application of Monte Carlo (MC to large-scale fixed-source problems has recently become possible with new hybrid methods that automate generation of parameters for variance reduction techniques. Two common variance reduction techniques, weight windows and source biasing, have been automated and popularized by the consistent adjoint-driven importance sampling (CADIS method. This method uses the adjoint solution from an inexpensive deterministic calculation to define a consistent set of weight windows and source particles for a subsequent MC calculation. One of the motivations for source consistency is to avoid the splitting or rouletting of particles at birth, which requires computational resources. However, it is not always possible or desirable to implement such consistency, which results in inconsistent source biasing. This paper develops an original framework that mathematically expresses the coupling of the weight window and source biasing techniques, allowing the authors to explore the impact of inconsistent source sampling on the variance of MC results. A numerical experiment supports this new framework and suggests that certain classes of problems may be relatively insensitive to inconsistent source sampling schemes with moderate levels of splitting and rouletting.

  19. Dynamic Allan Variance Analysis Method with Time-Variant Window Length Based on Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Shanshan Gu

    2015-01-01

    Full Text Available To solve the problem that dynamic Allan variance (DAVAR with fixed length of window cannot meet the identification accuracy requirement of fiber optic gyro (FOG signal over all time domains, a dynamic Allan variance analysis method with time-variant window length based on fuzzy control is proposed. According to the characteristic of FOG signal, a fuzzy controller with the inputs of the first and second derivatives of FOG signal is designed to estimate the window length of the DAVAR. Then the Allan variances of the signals during the time-variant window are simulated to obtain the DAVAR of the FOG signal to describe the dynamic characteristic of the time-varying FOG signal. Additionally, a performance evaluation index of the algorithm based on radar chart is proposed. Experiment results show that, compared with different fixed window lengths DAVAR methods, the change of FOG signal with time can be identified effectively and the evaluation index of performance can be enhanced by 30% at least by the DAVAR method with time-variant window length based on fuzzy control.

  20. An ANOVA approach for statistical comparisons of brain networks.

    Science.gov (United States)

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  1. A nonparametric mean-variance smoothing method to assess Arabidopsis cold stress transcriptional regulator CBF2 overexpression microarray data.

    Science.gov (United States)

    Hu, Pingsha; Maiti, Tapabrata

    2011-01-01

    Microarray is a powerful tool for genome-wide gene expression analysis. In microarray expression data, often mean and variance have certain relationships. We present a non-parametric mean-variance smoothing method (NPMVS) to analyze differentially expressed genes. In this method, a nonlinear smoothing curve is fitted to estimate the relationship between mean and variance. Inference is then made upon shrinkage estimation of posterior means assuming variances are known. Different methods have been applied to simulated datasets, in which a variety of mean and variance relationships were imposed. The simulation study showed that NPMVS outperformed the other two popular shrinkage estimation methods in some mean-variance relationships; and NPMVS was competitive with the two methods in other relationships. A real biological dataset, in which a cold stress transcription factor gene, CBF2, was overexpressed, has also been analyzed with the three methods. Gene ontology and cis-element analysis showed that NPMVS identified more cold and stress responsive genes than the other two methods did. The good performance of NPMVS is mainly due to its shrinkage estimation for both means and variances. In addition, NPMVS exploits a non-parametric regression between mean and variance, instead of assuming a specific parametric relationship between mean and variance. The source code written in R is available from the authors on request.

  2. Sound recovery via intensity variations of speckle pattern pixels selected with variance-based method

    Science.gov (United States)

    Zhu, Ge; Yao, Xu-Ri; Qiu, Peng; Mahmood, Waqas; Yu, Wen-Kai; Sun, Zhi-Bin; Zhai, Guang-Jie; Zhao, Qing

    2018-02-01

    In general, the sound waves can cause the vibration of the objects that are encountered in the traveling path. If we make a laser beam illuminate the rough surface of an object, it will be scattered into a speckle pattern that vibrates with these sound waves. Here, an efficient variance-based method is proposed to recover the sound information from speckle patterns captured by a high-speed camera. This method allows us to select the proper pixels that have large variances of the gray-value variations over time, from a small region of the speckle patterns. The gray-value variations of these pixels are summed together according to a simple model to recover the sound with a high signal-to-noise ratio. Meanwhile, our method will significantly simplify the computation compared with the traditional digital-image-correlation technique. The effectiveness of the proposed method has been verified by applying a variety of objects. The experimental results illustrate that the proposed method is robust to the quality of the speckle patterns and costs more than one-order less time to perform the same number of the speckle patterns. In our experiment, a sound signal of time duration 1.876 s is recovered from various objects with time consumption of 5.38 s only.

  3. Mean-Variance-CvaR Model of Multiportfolio Optimization via Linear Weighted Sum Method

    Directory of Open Access Journals (Sweden)

    Younes Elahi

    2014-01-01

    Full Text Available We propose a new approach to optimizing portfolios to mean-variance-CVaR (MVC model. Although of several researches have studied the optimal MVC model of portfolio, the linear weighted sum method (LWSM was not implemented in the area. The aim of this paper is to investigate the optimal portfolio model based on MVC via LWSM. With this method, the solution of the MVC model of portfolio as the multiobjective problem is presented. In data analysis section, this approach in investing on two assets is investigated. An MVC model of the multiportfolio was implemented in MATLAB and tested on the presented problem. It is shown that, by using three objective functions, it helps the investors to manage their portfolio better and thereby minimize the risk and maximize the return of the portfolio. The main goal of this study is to modify the current models and simplify it by using LWSM to obtain better results.

  4. Application of variance reduction techniques of Monte-Carlo method to deep penetration shielding problems

    International Nuclear Information System (INIS)

    Rawat, K.K.; Subbaiah, K.V.

    1996-01-01

    General purpose Monte Carlo code MCNP is being widely employed for solving deep penetration problems by applying variance reduction techniques. These techniques depend on the nature and type of the problem being solved. Application of geometry splitting and implicit capture method are examined to study the deep penetration problems of neutron, gamma and coupled neutron-gamma in thick shielding materials. The typical problems chosen are: i) point isotropic monoenergetic gamma ray source of 1 MeV energy in nearly infinite water medium, ii) 252 Cf spontaneous source at the centre of 140 cm thick water and concrete and iii) 14 MeV fast neutrons incident on the axis of 100 cm thick concrete disk. (author). 7 refs., 5 figs

  5. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda. Carlos Haya, s/n, E-29010 Malaga (Spain)], E-mail: garciapareja@gmail.com; Vilches, M. [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda. de las Fuerzas Armadas, 2, E-18014 Granada (Spain); Lallena, A.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2007-09-21

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool.

  6. Ant colony method to control variance reduction techniques in the Monte Carlo simulation of clinical electron linear accelerators

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Vilches, M.; Lallena, A.M.

    2007-01-01

    The ant colony method is used to control the application of variance reduction techniques to the simulation of clinical electron linear accelerators of use in cancer therapy. In particular, splitting and Russian roulette, two standard variance reduction methods, are considered. The approach can be applied to any accelerator in a straightforward way and permits, in addition, to investigate the 'hot' regions of the accelerator, an information which is basic to develop a source model for this therapy tool

  7. Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study

    International Nuclear Information System (INIS)

    Zhai, Qingqing; Yang, Jun; Zhao, Yu

    2014-01-01

    Variance-based sensitivity analysis has been widely studied and asserted itself among practitioners. Monte Carlo simulation methods are well developed in the calculation of variance-based sensitivity indices but they do not make full use of each model run. Recently, several works mentioned a scatter-plot partitioning method to estimate the variance-based sensitivity indices from given data, where a single bunch of samples is sufficient to estimate all the sensitivity indices. This paper focuses on the space-partition method in the estimation of variance-based sensitivity indices, and its convergence and other performances are investigated. Since the method heavily depends on the partition scheme, the influence of the partition scheme is discussed and the optimal partition scheme is proposed based on the minimized estimator's variance. A decomposition and integration procedure is proposed to improve the estimation quality for higher order sensitivity indices. The proposed space-partition method is compared with the more traditional method and test cases show that it outperforms the traditional one

  8. Identification of melanoma cells: a method based in mean variance of signatures via spectral densities.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Angulo-Molina, Aracely

    2017-04-01

    In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.

  9. MCNP variance reduction overview

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Booth, T.E.

    1985-01-01

    The MCNP code is rich in variance reduction features. Standard variance reduction methods found in most Monte Carlo codes are available as well as a number of methods unique to MCNP. We discuss the variance reduction features presently in MCNP as well as new ones under study for possible inclusion in future versions of the code

  10. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  11. Forward-Weighted CADIS Method for Variance Reduction of Monte Carlo Reactor Analyses

    International Nuclear Information System (INIS)

    Wagner, John C.; Mosher, Scott W.

    2010-01-01

    Current state-of-the-art tools and methods used to perform 'real' commercial reactor analyses use high-fidelity transport codes to produce few-group parameters at the assembly level for use in low-order methods applied at the core level. Monte Carlo (MC) methods, which allow detailed and accurate modeling of the full geometry and energy details and are considered the 'gold standard' for radiation transport solutions, are playing an ever-increasing role in correcting and/or verifying the several-decade-old methodology used in current practice. However, the prohibitive computational requirements associated with obtaining fully converged system-wide solutions restrict the role of MC to benchmarking deterministic results at a limited number of state-points for a limited number of relevant quantities. A goal of current research at Oak Ridge National Laboratory (ORNL) is to change this paradigm by enabling the direct use of MC for full-core reactor analyses. The most significant of the many technical challenges that must be overcome is the slow non-uniform convergence of system-wide MC estimates and the memory requirements associated with detailed solutions throughout a reactor (problems involving hundreds of millions of different material and tally regions due to fuel irradiation, temperature distributions, and the needs associated with multi-physics code coupling). To address these challenges, research has focused on development in the following two areas: (1) a hybrid deterministic/MC method for determining high-precision fluxes throughout the problem space in k-eigenvalue problems and (2) an efficient MC domain-decomposition algorithm that partitions the problem phase space onto multiple processors for massively parallel systems, with statistical uncertainty estimation. The focus of this paper is limited to the first area mentioned above. It describes the FW-CADIS method applied to variance reduction of MC reactor analyses and provides initial results for calculating

  12. ANOVA-principal component analysis and ANOVA-simultaneous component analysis: a comparison.

    NARCIS (Netherlands)

    Zwanenburg, G.; Hoefsloot, H.C.J.; Westerhuis, J.A.; Jansen, J.J.; Smilde, A.K.

    2011-01-01

    ANOVA-simultaneous component analysis (ASCA) is a recently developed tool to analyze multivariate data. In this paper, we enhance the explorative capability of ASCA by introducing a projection of the observations on the principal component subspace to visualize the variation among the measurements.

  13. Method for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations

    CSIR Research Space (South Africa)

    Kirton, A

    2010-08-01

    Full Text Available for calculating the variance and prediction intervals for biomass estimates obtained from allometric equations A KIRTON B SCHOLES S ARCHIBALD CSIR Ecosystem Processes and Dynamics, Natural Resources and the Environment P.O. BOX 395, Pretoria, 0001, South... intervals (confidence intervals for predicted values) for allometric estimates can be obtained using an example of estimating tree biomass from stem diameter. It explains how to deal with relationships which are in the power function form - a common form...

  14. Application of one-way ANOVA in completely randomized experiments

    Science.gov (United States)

    Wahid, Zaharah; Izwan Latiff, Ahmad; Ahmad, Kartini

    2017-12-01

    This paper describes an application of a statistical technique one-way ANOVA in completely randomized experiments with three replicates. This technique was employed to a single factor with four levels and multiple observations at each level. The aim of this study is to investigate the relationship between chemical oxygen demand index and location on-sites. Two different approaches are employed for the analyses; critical value and p-value. It also presents key assumptions of the technique to be satisfied by the data in order to obtain valid results. Pairwise comparisons by Turkey method are also considered and discussed to determine where the significant differences among the means is after the ANOVA has been performed. The results revealed that there are statistically significant relationship exist between the chemical oxygen demand index and the location on-sites.

  15. Cautionary Note on Reporting Eta-Squared Values from Multifactor ANOVA Designs

    Science.gov (United States)

    Pierce, Charles A.; Block, Richard A.; Aguinis, Herman

    2004-01-01

    The authors provide a cautionary note on reporting accurate eta-squared values from multifactor analysis of variance (ANOVA) designs. They reinforce the distinction between classical and partial eta-squared as measures of strength of association. They provide examples from articles published in premier psychology journals in which the authors…

  16. Use of "t"-Test and ANOVA in Career-Technical Education Research

    Science.gov (United States)

    Rojewski, Jay W.; Lee, In Heok; Gemici, Sinan

    2012-01-01

    Use of t-tests and analysis of variance (ANOVA) procedures in published research from three scholarly journals in career and technical education (CTE) during a recent 5-year period was examined. Information on post hoc analyses, reporting of effect size, alpha adjustments to account for multiple tests, power, and examination of assumptions…

  17. The spatial variance of hill slope erosion in Loess Hilly Area by 137Cs tracing method

    International Nuclear Information System (INIS)

    Li Mian; Yang Jianfeng; Shen Zhenzhou; Hou Jiancai

    2009-01-01

    Based on analysis of 137 Cs activities in soil profiles on hill slope of different slope lengths in the Loess Hilly Area in China, the spatial variance of erosion was studied. The results show that the slope length has great impact on the spatial distribution of the soil erosion intensity, and the soil erosion intensity on loess hill slope was in a fluctuating tendency. In the influx process of runoff in a small watershed, net soil loss intensity increased first and then decreased with flow distance. (authors)

  18. How large are actor and partner effects of personality on relationship satisfaction? The importance of controlling for shared method variance.

    Science.gov (United States)

    Orth, Ulrich

    2013-10-01

    Previous research suggests that the personality of a relationship partner predicts not only the individual's own satisfaction with the relationship but also the partner's satisfaction. Based on the actor-partner interdependence model, the present research tested whether actor and partner effects of personality are biased when the same method (e.g., self-report) is used for the assessment of personality and relationship satisfaction and, consequently, shared method variance is not controlled for. Data came from 186 couples, of whom both partners provided self- and partner reports on the Big Five personality traits. Depending on the research design, actor effects were larger than partner effects (when using only self-reports), smaller than partner effects (when using only partner reports), or of about the same size as partner effects (when using self- and partner reports). The findings attest to the importance of controlling for shared method variance in dyadic data analysis.

  19. A practical look at Monte Carlo variance reduction methods in radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Olsher, Richard H. [Los Alamos National Laboratory, Los Alamos (United States)

    2006-04-15

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission.

  20. A practical look at Monte Carlo variance reduction methods in radiation shielding

    International Nuclear Information System (INIS)

    Olsher, Richard H.

    2006-01-01

    With the advent of inexpensive computing power over the past two decades, applications of Monte Carlo radiation transport techniques have proliferated dramatically. At Los Alamos, the Monte Carlo codes MCNP5 and MCNPX are used routinely on personal computer platforms for radiation shielding analysis and dosimetry calculations. These codes feature a rich palette of Variance Reduction (VR) techniques. The motivation of VR is to exchange user efficiency for computational efficiency. It has been said that a few hours of user time often reduces computational time by several orders of magnitude. Unfortunately, user time can stretch into the many hours as most VR techniques require significant user experience and intervention for proper optimization. It is the purpose of this paper to outline VR strategies, tested in practice, optimized for several common radiation shielding tasks, with the hope of reducing user setup time for similar problems. A strategy is defined in this context to mean a collection of MCNP radiation transport physics options and VR techniques that work synergistically to optimize a particular shielding task. Examples are offered the areas of source definition, skyshine, streaming, and transmission

  1. A variance-reduced electrothermal Monte Carlo method for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio; Di Stefano, Vincenza [Univ. degli Studi di Catania (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) Leibniz-Institut im Forschungsverbund Berlin e.V., Berlin (Germany)

    2012-11-01

    This paper is concerned with electron transport and heat generation in semiconductor devices. An improved version of the electrothermal Monte Carlo method is presented. This modification has better approximation properties due to reduced statistical fluctuations. The corresponding transport equations are provided and results of numerical experiments are presented.

  2. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    Science.gov (United States)

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  3. Advanced methods of analysis variance on scenarios of nuclear prospective; Metodos avanzados de analisis de varianza en escenarios de prospectiva nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-07-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  4. ANOVA Based Approch for Efficient Customer Recognition: Dealing with Common Names

    OpenAIRE

    Saberi , Morteza; Saberi , Zahra

    2015-01-01

    Part 2: Artificial Intelligence for Knowledge Management; International audience; This study proposes an Analysis of Variance (ANOVA) technique that focuses on the efficient recognition of customers with common names. The continuous improvement of Information and communications technologies (ICT) has led customers to have new expectations and concerns from their related organization. These new expectations bring various difficulties for organizations’ help desk to meet their customers’ needs....

  5. A Hybrid One-Way ANOVA Approach for the Robust and Efficient Estimation of Differential Gene Expression with Multiple Patterns.

    Directory of Open Access Journals (Sweden)

    Mohammad Manir Hossain Mollah

    Full Text Available Identifying genes that are differentially expressed (DE between two or more conditions with multiple patterns of expression is one of the primary objectives of gene expression data analysis. Several statistical approaches, including one-way analysis of variance (ANOVA, are used to identify DE genes. However, most of these methods provide misleading results for two or more conditions with multiple patterns of expression in the presence of outlying genes. In this paper, an attempt is made to develop a hybrid one-way ANOVA approach that unifies the robustness and efficiency of estimation using the minimum β-divergence method to overcome some problems that arise in the existing robust methods for both small- and large-sample cases with multiple patterns of expression.The proposed method relies on a β-weight function, which produces values between 0 and 1. The β-weight function with β = 0.2 is used as a measure of outlier detection. It assigns smaller weights (≥ 0 to outlying expressions and larger weights (≤ 1 to typical expressions. The distribution of the β-weights is used to calculate the cut-off point, which is compared to the observed β-weight of an expression to determine whether that gene expression is an outlier. This weight function plays a key role in unifying the robustness and efficiency of estimation in one-way ANOVA.Analyses of simulated gene expression profiles revealed that all eight methods (ANOVA, SAM, LIMMA, EBarrays, eLNN, KW, robust BetaEB and proposed perform almost identically for m = 2 conditions in the absence of outliers. However, the robust BetaEB method and the proposed method exhibited considerably better performance than the other six methods in the presence of outliers. In this case, the BetaEB method exhibited slightly better performance than the proposed method for the small-sample cases, but the the proposed method exhibited much better performance than the BetaEB method for both the small- and large

  6. Biomarker Detection in Association Studies: Modeling SNPs Simultaneously via Logistic ANOVA

    KAUST Repository

    Jung, Yoonsuh; Huang, Jianhua Z.; Hu, Jianhua

    2014-01-01

    In genome-wide association studies, the primary task is to detect biomarkers in the form of Single Nucleotide Polymorphisms (SNPs) that have nontrivial associations with a disease phenotype and some other important clinical/environmental factors. However, the extremely large number of SNPs comparing to the sample size inhibits application of classical methods such as the multiple logistic regression. Currently the most commonly used approach is still to analyze one SNP at a time. In this paper, we propose to consider the genotypes of the SNPs simultaneously via a logistic analysis of variance (ANOVA) model, which expresses the logit transformed mean of SNP genotypes as the summation of the SNP effects, effects of the disease phenotype and/or other clinical variables, and the interaction effects. We use a reduced-rank representation of the interaction-effect matrix for dimensionality reduction, and employ the L 1-penalty in a penalized likelihood framework to filter out the SNPs that have no associations. We develop a Majorization-Minimization algorithm for computational implementation. In addition, we propose a modified BIC criterion to select the penalty parameters and determine the rank number. The proposed method is applied to a Multiple Sclerosis data set and simulated data sets and shows promise in biomarker detection.

  7. Biomarker Detection in Association Studies: Modeling SNPs Simultaneously via Logistic ANOVA

    KAUST Repository

    Jung, Yoonsuh

    2014-10-02

    In genome-wide association studies, the primary task is to detect biomarkers in the form of Single Nucleotide Polymorphisms (SNPs) that have nontrivial associations with a disease phenotype and some other important clinical/environmental factors. However, the extremely large number of SNPs comparing to the sample size inhibits application of classical methods such as the multiple logistic regression. Currently the most commonly used approach is still to analyze one SNP at a time. In this paper, we propose to consider the genotypes of the SNPs simultaneously via a logistic analysis of variance (ANOVA) model, which expresses the logit transformed mean of SNP genotypes as the summation of the SNP effects, effects of the disease phenotype and/or other clinical variables, and the interaction effects. We use a reduced-rank representation of the interaction-effect matrix for dimensionality reduction, and employ the L 1-penalty in a penalized likelihood framework to filter out the SNPs that have no associations. We develop a Majorization-Minimization algorithm for computational implementation. In addition, we propose a modified BIC criterion to select the penalty parameters and determine the rank number. The proposed method is applied to a Multiple Sclerosis data set and simulated data sets and shows promise in biomarker detection.

  8. Analysis of degree of nonlinearity and stochastic nature of HRV signal during meditation using delay vector variance method.

    Science.gov (United States)

    Reddy, L Ram Gopal; Kuntamalla, Srinivas

    2011-01-01

    Heart rate variability analysis is fast gaining acceptance as a potential non-invasive means of autonomic nervous system assessment in research as well as clinical domains. In this study, a new nonlinear analysis method is used to detect the degree of nonlinearity and stochastic nature of heart rate variability signals during two forms of meditation (Chi and Kundalini). The data obtained from an online and widely used public database (i.e., MIT/BIH physionet database), is used in this study. The method used is the delay vector variance (DVV) method, which is a unified method for detecting the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. From the results it is clear that there is a significant change in the nonlinearity and stochastic nature of the signal before and during the meditation (p value > 0.01). During Chi meditation there is a increase in stochastic nature and decrease in nonlinear nature of the signal. There is a significant decrease in the degree of nonlinearity and stochastic nature during Kundalini meditation.

  9. Analysis of latent variance reduction methods in phase space Monte Carlo calculations for 6, 10 and 18 MV photons by using MCNP code

    International Nuclear Information System (INIS)

    Ezzati, A.O.; Sohrabpour, M.

    2013-01-01

    In this study, azimuthal particle redistribution (APR), and azimuthal particle rotational splitting (APRS) methods are implemented in MCNPX2.4 source code. First of all, the efficiency of these methods was compared to two tallying methods. The APRS is more efficient than the APR method in track length estimator tallies. However in the energy deposition tally, both methods have nearly the same efficiency. Latent variance reduction factors were obtained for 6, 10 and 18 MV photons as well. The APRS relative efficiency contours were obtained. These obtained contours reveal that by increasing the photon energies, the contours depth and the surrounding areas were further increased. The relative efficiency contours indicated that the variance reduction factor is position and energy dependent. The out of field voxels relative efficiency contours showed that latent variance reduction methods increased the Monte Carlo (MC) simulation efficiency in the out of field voxels. The APR and APRS average variance reduction factors had differences less than 0.6% for splitting number of 1000. -- Highlights: ► The efficiency of APR and APRS methods was compared to two tallying methods. ► The APRS is more efficient than the APR method in track length estimator tallies. ► In the energy deposition tally, both methods have nearly the same efficiency. ► Variance reduction factors of these methods are position and energy dependent.

  10. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.jp; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro [Department of Radiation Oncology and Image-applied Therapy, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo, Kyoto 606-8507 (Japan)

    2016-09-15

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  11. Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy

    International Nuclear Information System (INIS)

    Matsuo, Yukinori; Nakamura, Mitsuhiro; Mizowaki, Takashi; Hiraoka, Masahiro

    2016-01-01

    Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiple causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.

  12. Variance-based sensitivity indices for models with dependent inputs

    International Nuclear Information System (INIS)

    Mara, Thierry A.; Tarantola, Stefano

    2012-01-01

    Computational models are intensively used in engineering for risk analysis or prediction of future outcomes. Uncertainty and sensitivity analyses are of great help in these purposes. Although several methods exist to perform variance-based sensitivity analysis of model output with independent inputs only a few are proposed in the literature in the case of dependent inputs. This is explained by the fact that the theoretical framework for the independent case is set and a univocal set of variance-based sensitivity indices is defined. In the present work, we propose a set of variance-based sensitivity indices to perform sensitivity analysis of models with dependent inputs. These measures allow us to distinguish between the mutual dependent contribution and the independent contribution of an input to the model response variance. Their definition relies on a specific orthogonalisation of the inputs and ANOVA-representations of the model output. In the applications, we show the interest of the new sensitivity indices for model simplification setting. - Highlights: ► Uncertainty and sensitivity analyses are of great help in engineering. ► Several methods exist to perform variance-based sensitivity analysis of model output with independent inputs. ► We define a set of variance-based sensitivity indices for models with dependent inputs. ► Inputs mutual contributions are distinguished from their independent contributions. ► Analytical and computational tests are performed and discussed.

  13. Estimation of nonlinearities from pseudodynamic and dynamic responses of bridge structures using the Delay Vector Variance method

    Science.gov (United States)

    Jaksic, Vesna; Mandic, Danilo P.; Karoumi, Raid; Basu, Bidroha; Pakrashi, Vikram

    2016-01-01

    Analysis of the variability in the responses of large structural systems and quantification of their linearity or nonlinearity as a potential non-invasive means of structural system assessment from output-only condition remains a challenging problem. In this study, the Delay Vector Variance (DVV) method is used for full scale testing of both pseudo-dynamic and dynamic responses of two bridges, in order to study the degree of nonlinearity of their measured response signals. The DVV detects the presence of determinism and nonlinearity in a time series and is based upon the examination of local predictability of a signal. The pseudo-dynamic data is obtained from a concrete bridge during repair while the dynamic data is obtained from a steel railway bridge traversed by a train. We show that DVV is promising as a marker in establishing the degree to which a change in the signal nonlinearity reflects the change in the real behaviour of a structure. It is also useful in establishing the sensitivity of instruments or sensors deployed to monitor such changes.

  14. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    International Nuclear Information System (INIS)

    Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi

    2016-01-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  15. Adaptive surrogate modeling by ANOVA and sparse polynomial dimensional decomposition for global sensitivity analysis in fluid simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kunkun, E-mail: ktg@illinois.edu [The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC), University of Illinois at Urbana–Champaign, 1308 W Main St, Urbana, IL 61801 (United States); Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Congedo, Pietro M. [Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Abgrall, Rémi [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)

    2016-06-01

    The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.

  16. Intercentre variance in patient reported outcomes is lower than objective rheumatoid arthritis activity measures

    DEFF Research Database (Denmark)

    Khan, Nasim Ahmed; Spencer, Horace Jack; Nikiphorou, Elena

    2017-01-01

    Objective: To assess intercentre variability in the ACR core set measures, DAS28 based on three variables (DAS28v3) and Routine Assessment of Patient Index Data 3 in a multinational study. Methods: Seven thousand and twenty-three patients were recruited (84 centres; 30 countries) using a standard...... built to adjust for the remaining ACR core set measure (for each ACR core set measure or each composite index), socio-demographics and medical characteristics. ANOVA and analysis of covariance models yielded similar results, and ANOVA tables were used to present variance attributable to recruiting...... centre. Results: The proportion of variances attributable to recruiting centre was lower for patient reported outcomes (PROs: pain, HAQ, patient global) compared with objective measures (joint counts, ESR, physician global) in all models. In the full model, variance in PROs attributable to recruiting...

  17. Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism

    OpenAIRE

    Arias-Castro, Ery; Candès, Emmanuel J.; Plan, Yaniv

    2011-01-01

    Testing for the significance of a subset of regression coefficients in a linear model, a staple of statistical analysis, goes back at least to the work of Fisher who introduced the analysis of variance (ANOVA). We study this problem under the assumption that the coefficient vector is sparse, a common situation in modern high-dimensional settings. Suppose we have $p$ covariates and that under the alternative, the response only depends upon the order of $p^{1-\\alpha}$ of those, $0\\le\\alpha\\le1$...

  18. Development of phased mission analysis program with Monte Carlo method. Improvement of the variance reduction technique with biasing towards top event

    International Nuclear Information System (INIS)

    Yang Jinan; Mihara, Takatsugu

    1998-12-01

    This report presents a variance reduction technique to estimate the reliability and availability of highly complex systems during phased mission time using the Monte Carlo simulation. In this study, we introduced the variance reduction technique with a concept of distance between the present system state and the cut set configurations. Using this technique, it becomes possible to bias the transition from the operating states to the failed states of components towards the closest cut set. Therefore a component failure can drive the system towards a cut set configuration more effectively. JNC developed the PHAMMON (Phased Mission Analysis Program with Monte Carlo Method) code which involved the two kinds of variance reduction techniques: (1) forced transition, and (2) failure biasing. However, these techniques did not guarantee an effective reduction in variance. For further improvement, a variance reduction technique incorporating the distance concept was introduced to the PHAMMON code and the numerical calculation was carried out for the different design cases of decay heat removal system in a large fast breeder reactor. Our results indicate that the technique addition of this incorporating distance concept is an effective means of further reducing the variance. (author)

  19. Estimating linear effects in ANOVA designs: the easy way.

    Science.gov (United States)

    Pinhas, Michal; Tzelgov, Joseph; Ganor-Stern, Dana

    2012-09-01

    Research in cognitive science has documented numerous phenomena that are approximated by linear relationships. In the domain of numerical cognition, the use of linear regression for estimating linear effects (e.g., distance and SNARC effects) became common following Fias, Brysbaert, Geypens, and d'Ydewalle's (1996) study on the SNARC effect. While their work has become the model for analyzing linear effects in the field, it requires statistical analysis of individual participants and does not provide measures of the proportions of variability accounted for (cf. Lorch & Myers, 1990). In the present methodological note, using both the distance and SNARC effects as examples, we demonstrate how linear effects can be estimated in a simple way within the framework of repeated measures analysis of variance. This method allows for estimating effect sizes in terms of both slope and proportions of variability accounted for. Finally, we show that our method can easily be extended to estimate linear interaction effects, not just linear effects calculated as main effects.

  20. Prediction and Control of Cutting Tool Vibration in Cnc Lathe with Anova and Ann

    Directory of Open Access Journals (Sweden)

    S. S. Abuthakeer

    2011-06-01

    Full Text Available Machining is a complex process in which many variables can deleterious the desired results. Among them, cutting tool vibration is the most critical phenomenon which influences dimensional precision of the components machined, functional behavior of the machine tools and life of the cutting tool. In a machining operation, the cutting tool vibrations are mainly influenced by cutting parameters like cutting speed, depth of cut and tool feed rate. In this work, the cutting tool vibrations are controlled using a damping pad made of Neoprene. Experiments were conducted in a CNC lathe where the tool holder is supported with and without damping pad. The cutting tool vibration signals were collected through a data acquisition system supported by LabVIEW software. To increase the buoyancy and reliability of the experiments, a full factorial experimental design was used. Experimental data collected were tested with analysis of variance (ANOVA to understand the influences of the cutting parameters. Empirical models have been developed using analysis of variance (ANOVA. Experimental studies and data analysis have been performed to validate the proposed damping system. Multilayer perceptron neural network model has been constructed with feed forward back-propagation algorithm using the acquired data. On the completion of the experimental test ANN is used to validate the results obtained and also to predict the behavior of the system under any cutting condition within the operating range. The onsite tests show that the proposed system reduces the vibration of cutting tool to a greater extend.

  1. Multimethod Assessment of Psychopathy in Relation to Factors of Internalizing and Externalizing from the Personality Assessment Inventory: The Impact of Method Variance and Suppressor Effects

    Science.gov (United States)

    Blonigen, Daniel M.; Patrick, Christopher J.; Douglas, Kevin S.; Poythress, Norman G.; Skeem, Jennifer L.; Lilienfeld, Scott O.; Edens, John F.; Krueger, Robert F.

    2010-01-01

    Research to date has revealed divergent relations across factors of psychopathy measures with criteria of "internalizing" (INT; anxiety, depression) and "externalizing" (EXT; antisocial behavior, substance use). However, failure to account for method variance and suppressor effects has obscured the consistency of these findings…

  2. Evaluation of errors in prior mean and variance in the estimation of integrated circuit failure rates using Bayesian methods

    Science.gov (United States)

    Fletcher, B. C.

    1972-01-01

    The critical point of any Bayesian analysis concerns the choice and quantification of the prior information. The effects of prior data on a Bayesian analysis are studied. Comparisons of the maximum likelihood estimator, the Bayesian estimator, and the known failure rate are presented. The results of the many simulated trails are then analyzed to show the region of criticality for prior information being supplied to the Bayesian estimator. In particular, effects of prior mean and variance are determined as a function of the amount of test data available.

  3. Semi-empirical prediction of moisture build-up in an electronic enclosure using analysis of variance (ANOVA)

    DEFF Research Database (Denmark)

    Shojaee Nasirabadi, Parizad; Conseil, Helene; Mohanty, Sankhya

    2016-01-01

    Electronic systems are exposed to harsh environmental conditions such as high humidity in many applications. Moisture transfer into electronic enclosures and condensation can cause several problems as material degradation and corrosion. Therefore, it is important to control the moisture content...... and the relative humidity inside electronic enclosures. In this work, moisture transfer into a typical polycarbonate electronic enclosure with a cylindrical shape opening is studied. The effects of four influential parameters namely, initial relative humidity inside the enclosure, radius and length of the opening...... and temperature are studied. A set of experiments are done based on a fractional factorial design in order to estimate the time constant for moisture transfer into the enclosure by fitting the experimental data to an analytical quasi-steady-state model. According to the statistical analysis, temperature...

  4. Hidden multiplicity in exploratory multiway ANOVA: Prevalence and remedies

    NARCIS (Netherlands)

    Cramer, A.O.J.; van Ravenzwaaij, D.; Matzke, D.; Steingroever, H.; Wetzels, R.; Grasman, R.P.P.P.; Waldorp, L.J.; Wagenmakers, E.-J.

    2016-01-01

    Many psychologists do not realize that exploratory use of the popular multiway analysis of variance harbors a multiple-comparison problem. In the case of two factors, three separate null hypotheses are subject to test (i.e., two main effects and one interaction). Consequently, the probability of at

  5. Downside Variance Risk Premium

    OpenAIRE

    Feunou, Bruno; Jahan-Parvar, Mohammad; Okou, Cedric

    2015-01-01

    We propose a new decomposition of the variance risk premium in terms of upside and downside variance risk premia. The difference between upside and downside variance risk premia is a measure of skewness risk premium. We establish that the downside variance risk premium is the main component of the variance risk premium, and that the skewness risk premium is a priced factor with significant prediction power for aggregate excess returns. Our empirical investigation highlights the positive and s...

  6. Means and Variances without Calculus

    Science.gov (United States)

    Kinney, John J.

    2005-01-01

    This article gives a method of finding discrete approximations to continuous probability density functions and shows examples of its use, allowing students without calculus access to the calculation of means and variances.

  7. Introduction to variance estimation

    CERN Document Server

    Wolter, Kirk M

    2007-01-01

    We live in the information age. Statistical surveys are used every day to determine or evaluate public policy and to make important business decisions. Correct methods for computing the precision of the survey data and for making inferences to the target population are absolutely essential to sound decision making. Now in its second edition, Introduction to Variance Estimation has for more than twenty years provided the definitive account of the theory and methods for correct precision calculations and inference, including examples of modern, complex surveys in which the methods have been used successfully. The book provides instruction on the methods that are vital to data-driven decision making in business, government, and academe. It will appeal to survey statisticians and other scientists engaged in the planning and conduct of survey research, and to those analyzing survey data and charged with extracting compelling information from such data. It will appeal to graduate students and university faculty who...

  8. Analysis of Variance in Statistical Image Processing

    Science.gov (United States)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  9. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M. [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States) and Department of Biomedical Engineering, University of California, Davis, Davis, California, 95616 (United States)

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  10. Variance analysis of the Monte Carlo perturbation source method in inhomogeneous linear particle transport problems. Derivation of formulae

    International Nuclear Information System (INIS)

    Noack, K.

    1981-01-01

    The perturbation source method is used in the Monte Carlo method in calculating small effects in a particle field. It offers primising possibilities for introducing positive correlation between subtracting estimates even in the cases where other methods fail, in the case of geometrical variations of a given arrangement. The perturbation source method is formulated on the basis of integral equations for the particle fields. The formulae for the second moment of the difference of events are derived. Explicity a certain class of transport games and different procedures for generating the so-called perturbation particles are considered [ru

  11. Statistical methods for estimating normal blood chemistry ranges and variance in rainbow trout (Salmo gairdneri), Shasta Strain

    Science.gov (United States)

    Wedemeyer, Gary A.; Nelson, Nancy C.

    1975-01-01

    Gaussian and nonparametric (percentile estimate and tolerance interval) statistical methods were used to estimate normal ranges for blood chemistry (bicarbonate, bilirubin, calcium, hematocrit, hemoglobin, magnesium, mean cell hemoglobin concentration, osmolality, inorganic phosphorus, and pH for juvenile rainbow (Salmo gairdneri, Shasta strain) trout held under defined environmental conditions. The percentile estimate and Gaussian methods gave similar normal ranges, whereas the tolerance interval method gave consistently wider ranges for all blood variables except hemoglobin. If the underlying frequency distribution is unknown, the percentile estimate procedure would be the method of choice.

  12. Optimum Combination and Effect Analysis of Piezoresistor Dimensions in Micro Piezoresistive Pressure Sensor Using Design of Experiments and ANOVA: a Taguchi Approach

    Directory of Open Access Journals (Sweden)

    Kirankumar B. Balavalad

    2017-04-01

    Full Text Available Piezoresistive (PZR pressure sensors have gained importance because of their robust construction, high sensitivity and good linearity. The conventional PZR pressure sensor consists of 4 piezoresistors placed on diaphragm and are connected in the form of Wheatstone bridge. These sensors convert stress applied on them into change in resistance, which is quantified into voltage using Wheatstone bridge mechanism. It is observed form the literature that, the dimensions of piezoresistors are very crucial in the performance of the piezoresistive pressure sensor. This paper presents, a novel mechanism of finding best combinations and effect of individual piezoresistors dimensions viz., Length, Width and Thickness, using DoE and ANOVA (Analysis of Variance method, following Taguchi experimentation approach. The paper presents a unique method to find optimum combination of piezoresistors dimensions and also clearly illustrates the effect the dimensions on the output of the sensor. The optimum combinations and the output response of sensor is predicted using DoE and the validation simulation is done. The result of the validation simulation is compared with the predicted value of sensor response i.e., V. Predicted value of V is 1.074 V and the validation simulation gave the response for V as 1.19 V. This actually validates that the model (DoE and ANOVA is adequate in describing V in terms of the variables defined.

  13. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In the previous two sessions, it was assumed that the measurement error variances were known quantities when the variances of the safeguards indices were calculated. These known quantities are actually estimates based on historical data and on data generated by the measurement program. Session 34 discusses how measurement error parameters are estimated for different situations. The various error types are considered. The purpose of the session is to enable participants to: (1) estimate systematic error variances from standard data; (2) estimate random error variances from data as replicate measurement data; (3) perform a simple analysis of variances to characterize the measurement error structure when biases vary over time

  14. Forward-weighted CADIS method for variance reduction of Monte Carlo calculations of distributions and multiple localized quantities

    International Nuclear Information System (INIS)

    Wagner, J. C.; Blakeman, E. D.; Peplow, D. E.

    2009-01-01

    This paper presents a new hybrid (Monte Carlo/deterministic) method for increasing the efficiency of Monte Carlo calculations of distributions, such as flux or dose rate distributions (e.g., mesh tallies), as well as responses at multiple localized detectors and spectra. This method, referred to as Forward-Weighted CADIS (FW-CADIS), is a variation on the Consistent Adjoint Driven Importance Sampling (CADIS) method, which has been used for some time to very effectively improve the efficiency of Monte Carlo calculations of localized quantities, e.g., flux, dose, or reaction rate at a specific location. The basis of this method is the development of an importance function that represents the importance of particles to the objective of uniform Monte Carlo particle density in the desired tally regions. Implementation of this method utilizes the results from a forward deterministic calculation to develop a forward-weighted source for a deterministic adjoint calculation. The resulting adjoint function is then used to generate consistent space- and energy-dependent source biasing parameters and weight windows that are used in a forward Monte Carlo calculation to obtain approximately uniform statistical uncertainties in the desired tally regions. The FW-CADIS method has been implemented in the ADVANTG/MCNP framework and has been fully automated within the MAVRIC sequence of SCALE 6. Results of the application of the method to enabling the calculation of dose rates throughout an entire full-scale pressurized-water reactor facility are presented and discussed. (authors)

  15. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems

    International Nuclear Information System (INIS)

    Bouwman, R; Broeders, M; Van Engen, R; Young, K; Lazzari, B; Ravaglia, V

    2009-01-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does not discriminate sufficiently between systems with and without additional noise besides quantum noise. This paper attempts to give an alternative and relatively simple method for noise analysis which can divide noise into electronic noise, structured noise and quantum noise. Quantum noise needs to be the dominant noise source in clinical images for optimal performance of a digital mammography system, and therefore the amount of electronic and structured noise should be minimal. For several digital mammography systems, the noise was separated into components based on the measured pixel value, standard deviation (SD) of the image and the detector entrance dose. The results showed that differences between systems exist. Our findings confirm that the proposed method is able to discriminate systems based on their noise performance and is able to detect possible quality problems. Therefore, we suggest to replace the current method for noise analysis as described in the European Guidelines by the alternative method described in this paper.

  16. An alternative method for noise analysis using pixel variance as part of quality control procedures on digital mammography systems.

    NARCIS (Netherlands)

    Bouwman, R.; Young, K.; Lazzari, B.; Ravaglia, V.; Broeders, M.J.M.; Engen, R. van

    2009-01-01

    According to the European Guidelines for quality assured breast cancer screening and diagnosis, noise analysis is one of the measurements that needs to be performed as part of quality control procedures on digital mammography systems. However, the method recommended in the European Guidelines does

  17. Theoretical variance analysis of single- and dual-energy computed tomography methods for calculating proton stopping power ratios of biological tissues

    International Nuclear Information System (INIS)

    Yang, M; Zhu, X R; Mohan, R; Dong, L; Virshup, G; Clayton, J

    2010-01-01

    We discovered an empirical relationship between the logarithm of mean excitation energy (ln I m ) and the effective atomic number (EAN) of human tissues, which allows for computing patient-specific proton stopping power ratios (SPRs) using dual-energy CT (DECT) imaging. The accuracy of the DECT method was evaluated for 'standard' human tissues as well as their variance. The DECT method was compared to the existing standard clinical practice-a procedure introduced by Schneider et al at the Paul Scherrer Institute (the stoichiometric calibration method). In this simulation study, SPRs were derived from calculated CT numbers of known material compositions, rather than from measurement. For standard human tissues, both methods achieved good accuracy with the root-mean-square (RMS) error well below 1%. For human tissues with small perturbations from standard human tissue compositions, the DECT method was shown to be less sensitive than the stoichiometric calibration method. The RMS error remained below 1% for most cases using the DECT method, which implies that the DECT method might be more suitable for measuring patient-specific tissue compositions to improve the accuracy of treatment planning for charged particle therapy. In this study, the effects of CT imaging artifacts due to the beam hardening effect, scatter, noise, patient movement, etc were not analyzed. The true potential of the DECT method achieved in theoretical conditions may not be fully achievable in clinical settings. Further research and development may be needed to take advantage of the DECT method to characterize individual human tissues.

  18. An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling

    Science.gov (United States)

    Li, Weixuan; Lin, Guang; Zhang, Dongxiao

    2014-02-01

    The probabilistic collocation-based Kalman filter (PCKF) is a recently developed approach for solving inverse problems. It resembles the ensemble Kalman filter (EnKF) in every aspect-except that it represents and propagates model uncertainty by polynomial chaos expansion (PCE) instead of an ensemble of model realizations. Previous studies have shown PCKF is a more efficient alternative to EnKF for many data assimilation problems. However, the accuracy and efficiency of PCKF depends on an appropriate truncation of the PCE series. Having more polynomial chaos basis functions in the expansion helps to capture uncertainty more accurately but increases computational cost. Selection of basis functions is particularly important for high-dimensional stochastic problems because the number of polynomial chaos basis functions required to represent model uncertainty grows dramatically as the number of input parameters (random dimensions) increases. In classic PCKF algorithms, the PCE basis functions are pre-set based on users' experience. Also, for sequential data assimilation problems, the basis functions kept in PCE expression remain unchanged in different Kalman filter loops, which could limit the accuracy and computational efficiency of classic PCKF algorithms. To address this issue, we present a new algorithm that adaptively selects PCE basis functions for different problems and automatically adjusts the number of basis functions in different Kalman filter loops. The algorithm is based on adaptive functional ANOVA (analysis of variance) decomposition, which approximates a high-dimensional function with the summation of a set of low-dimensional functions. Thus, instead of expanding the original model into PCE, we implement the PCE expansion on these low-dimensional functions, which is much less costly. We also propose a new adaptive criterion for ANOVA that is more suited for solving inverse problems. The new algorithm was tested with different examples and demonstrated

  19. Backfitting in Smoothing Spline Anova, with Application to Historical Global Temperature Data

    Science.gov (United States)

    Luo, Zhen

    In the attempt to estimate the temperature history of the earth using the surface observations, various biases can exist. An important source of bias is the incompleteness of sampling over both time and space. There have been a few methods proposed to deal with this problem. Although they can correct some biases resulting from incomplete sampling, they have ignored some other significant biases. In this dissertation, a smoothing spline ANOVA approach which is a multivariate function estimation method is proposed to deal simultaneously with various biases resulting from incomplete sampling. Besides that, an advantage of this method is that we can get various components of the estimated temperature history with a limited amount of information stored. This method can also be used for detecting erroneous observations in the data base. The method is illustrated through an example of modeling winter surface air temperature as a function of year and location. Extension to more complicated models are discussed. The linear system associated with the smoothing spline ANOVA estimates is too large to be solved by full matrix decomposition methods. A computational procedure combining the backfitting (Gauss-Seidel) algorithm and the iterative imputation algorithm is proposed. This procedure takes advantage of the tensor product structure in the data to make the computation feasible in an environment of limited memory. Various related issues are discussed, e.g., the computation of confidence intervals and the techniques to speed up the convergence of the backfitting algorithm such as collapsing and successive over-relaxation.

  20. [Analysis of variance of repeated data measured by water maze with SPSS].

    Science.gov (United States)

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (PSPSS statistical package is available to fulfil this process.

  1. Estimation of measurement variances

    International Nuclear Information System (INIS)

    Jaech, J.L.

    1984-01-01

    The estimation of measurement error parameters in safeguards systems is discussed. Both systematic and random errors are considered. A simple analysis of variances to characterize the measurement error structure with biases varying over time is presented

  2. A COSMIC VARIANCE COOKBOOK

    International Nuclear Information System (INIS)

    Moster, Benjamin P.; Rix, Hans-Walter; Somerville, Rachel S.; Newman, Jeffrey A.

    2011-01-01

    Deep pencil beam surveys ( 2 ) are of fundamental importance for studying the high-redshift universe. However, inferences about galaxy population properties (e.g., the abundance of objects) are in practice limited by 'cosmic variance'. This is the uncertainty in observational estimates of the number density of galaxies arising from the underlying large-scale density fluctuations. This source of uncertainty can be significant, especially for surveys which cover only small areas and for massive high-redshift galaxies. Cosmic variance for a given galaxy population can be determined using predictions from cold dark matter theory and the galaxy bias. In this paper, we provide tools for experiment design and interpretation. For a given survey geometry, we present the cosmic variance of dark matter as a function of mean redshift z-bar and redshift bin size Δz. Using a halo occupation model to predict galaxy clustering, we derive the galaxy bias as a function of mean redshift for galaxy samples of a given stellar mass range. In the linear regime, the cosmic variance of these galaxy samples is the product of the galaxy bias and the dark matter cosmic variance. We present a simple recipe using a fitting function to compute cosmic variance as a function of the angular dimensions of the field, z-bar , Δz, and stellar mass m * . We also provide tabulated values and a software tool. The accuracy of the resulting cosmic variance estimates (δσ v /σ v ) is shown to be better than 20%. We find that for GOODS at z-bar =2 and with Δz = 0.5, the relative cosmic variance of galaxies with m * >10 11 M sun is ∼38%, while it is ∼27% for GEMS and ∼12% for COSMOS. For galaxies of m * ∼ 10 10 M sun , the relative cosmic variance is ∼19% for GOODS, ∼13% for GEMS, and ∼6% for COSMOS. This implies that cosmic variance is a significant source of uncertainty at z-bar =2 for small fields and massive galaxies, while for larger fields and intermediate mass galaxies, cosmic

  3. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)

    2009-08-15

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  4. A quantitative method to track protein translocation between intracellular compartments in real-time in live cells using weighted local variance image analysis.

    Directory of Open Access Journals (Sweden)

    Guillaume Calmettes

    Full Text Available The genetic expression of cloned fluorescent proteins coupled to time-lapse fluorescence microscopy has opened the door to the direct visualization of a wide range of molecular interactions in living cells. In particular, the dynamic translocation of proteins can now be explored in real time at the single-cell level. Here we propose a reliable, easy-to-implement, quantitative image processing method to assess protein translocation in living cells based on the computation of spatial variance maps of time-lapse images. The method is first illustrated and validated on simulated images of a fluorescently-labeled protein translocating from mitochondria to cytoplasm, and then applied to experimental data obtained with fluorescently-labeled hexokinase 2 in different cell types imaged by regular or confocal microscopy. The method was found to be robust with respect to cell morphology changes and mitochondrial dynamics (fusion, fission, movement during the time-lapse imaging. Its ease of implementation should facilitate its application to a broad spectrum of time-lapse imaging studies.

  5. A new method based on fractal variance function for analysis and quantification of sympathetic and vagal activity in variability of R-R time series in ECG signals

    International Nuclear Information System (INIS)

    Conte, Elio; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.

  6. ANOVA parameters influence in LCF experimental data and simulation results

    Directory of Open Access Journals (Sweden)

    Vercelli A.

    2010-06-01

    Full Text Available The virtual design of components undergoing thermo mechanical fatigue (TMF and plastic strains is usually run in many phases. The numerical finite element method gives a useful instrument which becomes increasingly effective as the geometrical and numerical modelling gets more accurate. The constitutive model definition plays an important role in the effectiveness of the numerical simulation [1, 2] as, for example, shown in Figure 1. In this picture it is shown how a good cyclic plasticity constitutive model can simulate a cyclic load experiment. The component life estimation is the subsequent phase and it needs complex damage and life estimation models [3-5] which take into account of several parameters and phenomena contributing to damage and life duration. The calibration of these constitutive and damage models requires an accurate testing activity. In the present paper the main topic of the research activity is to investigate whether the parameters, which result to be influent in the experimental activity, influence the numerical simulations, thus defining the effectiveness of the models in taking into account of all the phenomena actually influencing the life of the component. To obtain this aim a procedure to tune the parameters needed to estimate the life of mechanical components undergoing TMF and plastic strains is presented for commercial steel. This procedure aims to be easy and to allow calibrating both material constitutive model (for the numerical structural simulation and the damage and life model (for life assessment. The procedure has been applied to specimens. The experimental activity has been developed on three sets of tests run at several temperatures: static tests, high cycle fatigue (HCF tests, low cycle fatigue (LCF tests. The numerical structural FEM simulations have been run on a commercial non linear solver, ABAQUS®6.8. The simulations replied the experimental tests. The stress, strain, thermal results from the thermo

  7. Application of the FW-CADIS variance reduction method to calculate a precise N-flux distribution for the FRJ-2 research reactor

    International Nuclear Information System (INIS)

    Abbasi, F.; Nabbi, R.; Thomauske, B.; Ulrich, J.

    2014-01-01

    For the decommissioning of nuclear facilities, activity and dose rate atlases (ADAs) are required to create and manage a decommissioning plan and optimize the radiation protection measures. By the example of the research reactor FRJ-2, a detailed MCNP model for Monte-Carlo neutron and radiation transport calculations based on a full scale outer core CAD-model was generated. To cope with the inadequacies of the MCNP code for the simulation of a large and complex system like FRJ-2, the FW-CADIS method was embedded in the MCNP simulation runs to optimise particle sampling and weighting. The MAVRIC sequence of the SCALE6 program package, capable of generating importance maps, was applied for this purpose. The application resulted in a significant increase in efficiency and performance of the whole simulation method and in optimised utilization of the computer resources. As a result, the distribution of the neutron flux in the entire reactor structures - as a basis for the generation of the detailed activity atlas - was produced with a low level of variance and a high level of spatial, numerical and statistical precision.

  8. Application of the FW-CADIS variance reduction method to calculate a precise N-flux distribution for the FRJ-2 research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, F.; Nabbi, R.; Thomauske, B.; Ulrich, J. [RWTH Aachen Univ. (Germany). Inst. of Nuclear Engineering and Technology

    2014-11-15

    For the decommissioning of nuclear facilities, activity and dose rate atlases (ADAs) are required to create and manage a decommissioning plan and optimize the radiation protection measures. By the example of the research reactor FRJ-2, a detailed MCNP model for Monte-Carlo neutron and radiation transport calculations based on a full scale outer core CAD-model was generated. To cope with the inadequacies of the MCNP code for the simulation of a large and complex system like FRJ-2, the FW-CADIS method was embedded in the MCNP simulation runs to optimise particle sampling and weighting. The MAVRIC sequence of the SCALE6 program package, capable of generating importance maps, was applied for this purpose. The application resulted in a significant increase in efficiency and performance of the whole simulation method and in optimised utilization of the computer resources. As a result, the distribution of the neutron flux in the entire reactor structures - as a basis for the generation of the detailed activity atlas - was produced with a low level of variance and a high level of spatial, numerical and statistical precision.

  9. Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation.

    Science.gov (United States)

    Neal, Benjamin P; Lin, Tsung-Han; Winter, Rivah N; Treibitz, Tali; Beijbom, Oscar; Kriegman, David; Kline, David I; Greg Mitchell, B

    2015-08-01

    Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from short-term observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Two-dimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semi-automated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26% for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.

  10. WASP (Write a Scientific Paper) using Excel 9: Analysis of variance.

    Science.gov (United States)

    Grech, Victor

    2018-06-01

    Analysis of variance (ANOVA) may be required by researchers as an inferential statistical test when more than two means require comparison. This paper explains how to perform ANOVA in Microsoft Excel. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Restricted Variance Interaction Effects

    DEFF Research Database (Denmark)

    Cortina, Jose M.; Köhler, Tine; Keeler, Kathleen R.

    2018-01-01

    Although interaction hypotheses are increasingly common in our field, many recent articles point out that authors often have difficulty justifying them. The purpose of this article is to describe a particular type of interaction: the restricted variance (RV) interaction. The essence of the RV int...

  12. Characterization of near infrared spectral variance in the authentication of skim and nonfat dry milk powder collection using ANOVA-PCA, Pooled-ANOVA, and partial least squares regression

    Science.gov (United States)

    Forty-one samples of skim milk powder (SMP) and non-fat dry milk (NFDM) from 8 suppliers, 13 production sites, and 3 processing temperatures were analyzed by NIR diffuse reflectance spectrometry over a period of three days. NIR reflectance spectra (1700-2500 nm) were converted to pseudo-absorbance ...

  13. Least-squares variance component estimation

    NARCIS (Netherlands)

    Teunissen, P.J.G.; Amiri-Simkooei, A.R.

    2007-01-01

    Least-squares variance component estimation (LS-VCE) is a simple, flexible and attractive method for the estimation of unknown variance and covariance components. LS-VCE is simple because it is based on the well-known principle of LS; it is flexible because it works with a user-defined weight

  14. Variance estimation for generalized Cavalieri estimators

    OpenAIRE

    Johanna Ziegel; Eva B. Vedel Jensen; Karl-Anton Dorph-Petersen

    2011-01-01

    The precision of stereological estimators based on systematic sampling is of great practical importance. This paper presents methods of data-based variance estimation for generalized Cavalieri estimators where errors in sampling positions may occur. Variance estimators are derived under perturbed systematic sampling, systematic sampling with cumulative errors and systematic sampling with random dropouts. Copyright 2011, Oxford University Press.

  15. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.Th; Verburg, T.G.

    2001-01-01

    The present study was undertaken to explore possibilities to judge survey quality on basis of a limited and restricted number of a-priori observations. Here, quality is defined as the ratio between survey and local variance (signal-to-noise ratio). The results indicate that the presented surveys do not permit such judgement; the discussion also suggests that the 5-fold local sampling strategies do not merit any sound judgement. As it stands, uncertainties in local determinations may largely obscure possibilities to judge survey quality. The results further imply that surveys will benefit from procedures, controls and approaches in sampling and sample handling, to assess both average, variance and the nature of the distribution of elemental concentrations in local sites. This reasoning is compatible with the idea of the site as a basic homogeneous survey unit, which is implicitly and conceptually underlying any survey performed. (author)

  16. Local variances in biomonitoring

    International Nuclear Information System (INIS)

    Wolterbeek, H.T.

    1999-01-01

    The present study deals with the (larger-scaled) biomonitoring survey and specifically focuses on the sampling site. In most surveys, the sampling site is simply selected or defined as a spot of (geographical) dimensions which is small relative to the dimensions of the total survey area. Implicitly it is assumed that the sampling site is essentially homogeneous with respect to the investigated variation in survey parameters. As such, the sampling site is mostly regarded as 'the basic unit' of the survey. As a logical consequence, the local (sampling site) variance should also be seen as a basic and important characteristic of the survey. During the study, work is carried out to gain more knowledge of the local variance. Multiple sampling is carried out at a specific site (tree bark, mosses, soils), multi-elemental analyses are carried out by NAA, and local variances are investigated by conventional statistics, factor analytical techniques, and bootstrapping. Consequences of the outcomes are discussed in the context of sampling, sample handling and survey quality. (author)

  17. Reinforcing Sampling Distributions through a Randomization-Based Activity for Introducing ANOVA

    Science.gov (United States)

    Taylor, Laura; Doehler, Kirsten

    2015-01-01

    This paper examines the use of a randomization-based activity to introduce the ANOVA F-test to students. The two main goals of this activity are to successfully teach students to comprehend ANOVA F-tests and to increase student comprehension of sampling distributions. Four sections of students in an advanced introductory statistics course…

  18. TU-H-CAMPUS-IeP1-01: Bias and Computational Efficiency of Variance Reduction Methods for the Monte Carlo Simulation of Imaging Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D; Badano, A [Division of Imaging, Diagnostics and Software Reliability, OSEL/CDRH, Food & Drug Administration, MD (United States); Sempau, J [Technical University of Catalonia, Barcelona (Spain)

    2016-06-15

    Purpose: Variance reduction techniques (VRTs) are employed in Monte Carlo simulations to obtain estimates with reduced statistical uncertainty for a given simulation time. In this work, we study the bias and efficiency of a VRT for estimating the response of imaging detectors. Methods: We implemented Directed Sampling (DS), preferentially directing a fraction of emitted optical photons directly towards the detector by altering the isotropic model. The weight of each optical photon is appropriately modified to maintain simulation estimates unbiased. We use a Monte Carlo tool called fastDETECT2 (part of the hybridMANTIS open-source package) for optical transport, modified for VRT. The weight of each photon is calculated as the ratio of original probability (no VRT) and the new probability for a particular direction. For our analysis of bias and efficiency, we use pulse height spectra, point response functions, and Swank factors. We obtain results for a variety of cases including analog (no VRT, isotropic distribution), and DS with 0.2 and 0.8 optical photons directed towards the sensor plane. We used 10,000, 25-keV primaries. Results: The Swank factor for all cases in our simplified model converged fast (within the first 100 primaries) to a stable value of 0.9. The root mean square error per pixel for DS VRT for the point response function between analog and VRT cases was approximately 5e-4. Conclusion: Our preliminary results suggest that DS VRT does not affect the estimate of the mean for the Swank factor. Our findings indicate that it may be possible to design VRTs for imaging detector simulations to increase computational efficiency without introducing bias.

  19. Violation of the Sphericity Assumption and Its Effect on Type-I Error Rates in Repeated Measures ANOVA and Multi-Level Linear Models (MLM).

    Science.gov (United States)

    Haverkamp, Nicolas; Beauducel, André

    2017-01-01

    We investigated the effects of violations of the sphericity assumption on Type I error rates for different methodical approaches of repeated measures analysis using a simulation approach. In contrast to previous simulation studies on this topic, up to nine measurement occasions were considered. Effects of the level of inter-correlations between measurement occasions on Type I error rates were considered for the first time. Two populations with non-violation of the sphericity assumption, one with uncorrelated measurement occasions and one with moderately correlated measurement occasions, were generated. One population with violation of the sphericity assumption combines uncorrelated with highly correlated measurement occasions. A second population with violation of the sphericity assumption combines moderately correlated and highly correlated measurement occasions. From these four populations without any between-group effect or within-subject effect 5,000 random samples were drawn. Finally, the mean Type I error rates for Multilevel linear models (MLM) with an unstructured covariance matrix (MLM-UN), MLM with compound-symmetry (MLM-CS) and for repeated measures analysis of variance (rANOVA) models (without correction, with Greenhouse-Geisser-correction, and Huynh-Feldt-correction) were computed. To examine the effect of both the sample size and the number of measurement occasions, sample sizes of n = 20, 40, 60, 80, and 100 were considered as well as measurement occasions of m = 3, 6, and 9. With respect to rANOVA, the results plead for a use of rANOVA with Huynh-Feldt-correction, especially when the sphericity assumption is violated, the sample size is rather small and the number of measurement occasions is large. For MLM-UN, the results illustrate a massive progressive bias for small sample sizes ( n = 20) and m = 6 or more measurement occasions. This effect could not be found in previous simulation studies with a smaller number of measurement occasions. The

  20. Validation of consistency of Mendelian sampling variance.

    Science.gov (United States)

    Tyrisevä, A-M; Fikse, W F; Mäntysaari, E A; Jakobsen, J; Aamand, G P; Dürr, J; Lidauer, M H

    2018-03-01

    Experiences from international sire evaluation indicate that the multiple-trait across-country evaluation method is sensitive to changes in genetic variance over time. Top bulls from birth year classes with inflated genetic variance will benefit, hampering reliable ranking of bulls. However, none of the methods available today enable countries to validate their national evaluation models for heterogeneity of genetic variance. We describe a new validation method to fill this gap comprising the following steps: estimating within-year genetic variances using Mendelian sampling and its prediction error variance, fitting a weighted linear regression between the estimates and the years under study, identifying possible outliers, and defining a 95% empirical confidence interval for a possible trend in the estimates. We tested the specificity and sensitivity of the proposed validation method with simulated data using a real data structure. Moderate (M) and small (S) size populations were simulated under 3 scenarios: a control with homogeneous variance and 2 scenarios with yearly increases in phenotypic variance of 2 and 10%, respectively. Results showed that the new method was able to estimate genetic variance accurately enough to detect bias in genetic variance. Under the control scenario, the trend in genetic variance was practically zero in setting M. Testing cows with an average birth year class size of more than 43,000 in setting M showed that tolerance values are needed for both the trend and the outlier tests to detect only cases with a practical effect in larger data sets. Regardless of the magnitude (yearly increases in phenotypic variance of 2 or 10%) of the generated trend, it deviated statistically significantly from zero in all data replicates for both cows and bulls in setting M. In setting S with a mean of 27 bulls in a year class, the sampling error and thus the probability of a false-positive result clearly increased. Still, overall estimated genetic

  1. Spectral Ambiguity of Allan Variance

    Science.gov (United States)

    Greenhall, C. A.

    1996-01-01

    We study the extent to which knowledge of Allan variance and other finite-difference variances determines the spectrum of a random process. The variance of first differences is known to determine the spectrum. We show that, in general, the Allan variance does not. A complete description of the ambiguity is given.

  2. Batch variation between branchial cell cultures: An analysis of variance

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Grosell, M.; Kristensen, L.

    2003-01-01

    We present in detail how a statistical analysis of variance (ANOVA) is used to sort out the effect of an unexpected batch-to-batch variation between cell cultures. Two separate cultures of rainbow trout branchial cells were grown on permeable filtersupports ("inserts"). They were supposed...... and introducing the observed difference between batches as one of the factors in an expanded three-dimensional ANOVA, we were able to overcome an otherwisecrucial lack of sufficiently reproducible duplicate values. We could thereby show that the effect of changing the apical medium was much more marked when...... the radioactive lipid precursors were added on the apical, rather than on the basolateral, side. Theinsert cell cultures were obviously polarized. We argue that it is not reasonable to reject troublesome experimental results, when we do not know a priori that something went wrong. The ANOVA is a very useful...

  3. Levine's guide to SPSS for analysis of variance

    CERN Document Server

    Braver, Sanford L; Page, Melanie

    2003-01-01

    A greatly expanded and heavily revised second edition, this popular guide provides instructions and clear examples for running analyses of variance (ANOVA) and several other related statistical tests of significance with SPSS. No other guide offers the program statements required for the more advanced tests in analysis of variance. All of the programs in the book can be run using any version of SPSS, including versions 11 and 11.5. A table at the end of the preface indicates where each type of analysis (e.g., simple comparisons) can be found for each type of design (e.g., mixed two-factor desi

  4. Simulation study on heterogeneous variance adjustment for observations with different measurement error variance

    DEFF Research Database (Denmark)

    Pitkänen, Timo; Mäntysaari, Esa A; Nielsen, Ulrik Sander

    2013-01-01

    of variance correction is developed for the same observations. As automated milking systems are becoming more popular the current evaluation model needs to be enhanced to account for the different measurement error variances of observations from automated milking systems. In this simulation study different...... models and different approaches to account for heterogeneous variance when observations have different measurement error variances were investigated. Based on the results we propose to upgrade the currently applied models and to calibrate the heterogeneous variance adjustment method to yield same genetic......The Nordic Holstein yield evaluation model describes all available milk, protein and fat test-day yields from Denmark, Finland and Sweden. In its current form all variance components are estimated from observations recorded under conventional milking systems. Also the model for heterogeneity...

  5. Combining analysis of variance and three‐way factor analysis methods for studying additive and multiplicative effects in sensory panel data

    DEFF Research Database (Denmark)

    Romano, Rosaria; Næs, Tormod; Brockhoff, Per Bruun

    2015-01-01

    Data from descriptive sensory analysis are essentially three‐way data with assessors, samples and attributes as the three ways in the data set. Because of this, there are several ways that the data can be analysed. The paper focuses on the analysis of sensory characteristics of products while...... in the use of the scale with reference to the existing structure of relationships between sensory descriptors. The multivariate assessor model will be tested on a data set from milk. Relations between the proposed model and other multiplicative models like parallel factor analysis and analysis of variance...

  6. The influence of SO4 and NO3 to the acidity (pH) of rainwater using minimum variance quadratic unbiased estimation (MIVQUE) and maximum likelihood methods

    Science.gov (United States)

    Dilla, Shintia Ulfa; Andriyana, Yudhie; Sudartianto

    2017-03-01

    Acid rain causes many bad effects in life. It is formed by two strong acids, sulfuric acid (H2SO4) and nitric acid (HNO3), where sulfuric acid is derived from SO2 and nitric acid from NOx {x=1,2}. The purpose of the research is to find out the influence of So4 and NO3 levels contained in the rain to the acidity (pH) of rainwater. The data are incomplete panel data with two-way error component model. The panel data is a collection of some of the observations that observed from time to time. It is said incomplete if each individual has a different amount of observation. The model used in this research is in the form of random effects model (REM). Minimum variance quadratic unbiased estimation (MIVQUE) is used to estimate the variance error components, while maximum likelihood estimation is used to estimate the parameters. As a result, we obtain the following model: Ŷ* = 0.41276446 - 0.00107302X1 + 0.00215470X2.

  7. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  8. Group-wise ANOVA simultaneous component analysis for designed omics experiments

    NARCIS (Netherlands)

    Saccenti, Edoardo; Smilde, Age K.; Camacho, José

    2018-01-01

    Introduction: Modern omics experiments pertain not only to the measurement of many variables but also follow complex experimental designs where many factors are manipulated at the same time. This data can be conveniently analyzed using multivariate tools like ANOVA-simultaneous component analysis

  9. Why we should use simpler models if the data allow this: relevance for ANOVA designs in experimental biology

    Directory of Open Access Journals (Sweden)

    Lazic Stanley E

    2008-07-01

    Full Text Available Abstract Background Analysis of variance (ANOVA is a common statistical technique in physiological research, and often one or more of the independent/predictor variables such as dose, time, or age, can be treated as a continuous, rather than a categorical variable during analysis – even if subjects were randomly assigned to treatment groups. While this is not common, there are a number of advantages of such an approach, including greater statistical power due to increased precision, a simpler and more informative interpretation of the results, greater parsimony, and transformation of the predictor variable is possible. Results An example is given from an experiment where rats were randomly assigned to receive either 0, 60, 180, or 240 mg/L of fluoxetine in their drinking water, with performance on the forced swim test as the outcome measure. Dose was treated as either a categorical or continuous variable during analysis, with the latter analysis leading to a more powerful test (p = 0.021 vs. p = 0.159. This will be true in general, and the reasons for this are discussed. Conclusion There are many advantages to treating variables as continuous numeric variables if the data allow this, and this should be employed more often in experimental biology. Failure to use the optimal analysis runs the risk of missing significant effects or relationships.

  10. Absolute variation of the mechanical characteristics of halloysite reinforced polyurethane nanocomposites complemented by Taguchi and ANOVA approaches

    Science.gov (United States)

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    The variation of the results of the mechanical properties of halloysite nanotubes (HNTs) reinforced thermoplastic polyurethane (TPU) at different HNTs loadings was implemented as a tool for analysis. The preparation of HNTs-TPU nanocomposites was performed under four controlled parameters of mixing temperature, mixing speed, mixing time, and HNTs loading at three levels each to satisfy Taguchi method orthogonal array L9 aiming to optimize these parameters for the best measurements of tensile strength, Young's modulus, and tensile strain (known as responses). The maximum variation of the experimental results for each response was determined and analysed based on the optimized results predicted by Taguchi method and ANOVA. It was found that the maximum absolute variations of the three mentioned responses are 69%, 352%, and 126%, respectively. The analysis has shown that the preparation of the optimized tensile strength requires 1 wt.% HNTs loading (excluding 2 wt.% and 3 wt.%), mixing temperature of 190 °C (excluding 200 °C and 210 °C), and mixing speed of 30 rpm (excluding 40 rpm and 50 rpm). In addition, the analysis has determined that the mixing time at 20 min has no effect on the preparation. The mentioned analysis was fortified by ANOVA, images of FESEM, and DSC results. Seemingly, the agglomeration and distribution of HNTs in the nanocomposite play an important role in the process. The outcome of the analysis could be considered as a very important step towards the reliability of Taguchi method.

  11. INFLUENCE OF TECHNOLOGICAL PARAMETERS ON AGROTEXTILES WATER ABSORBENCY USING ANOVA MODEL

    Directory of Open Access Journals (Sweden)

    LUPU Iuliana G.

    2016-05-01

    Full Text Available Agrotextiles are now days extensively being used in horticulture, farming and other agricultural activities. Agriculture and textiles are the largest industries in the world providing basic needs such as food and clothing. Agrotextiles plays a significant role to help control environment for crop protection, eliminate variations in climate, weather change and generate optimum condition for plant growth. Water absorptive capacity is a very important property of needle-punched nonwovens used as irrigation substrate in horticulture. Nonwovens used as watering substrate distribute water uniformly and act as slight water buffer owing to the absorbent capacity. The paper analyzes the influence of needling process parameters on water absorptive capacity of needle-punched nonwovens by using ANOVA model. The model allows the identification of optimal action parameters in a shorter time and with less material expenses than by experimental research. The frequency of needle board and needle depth penetration has been used as independent variables while the water absorptive capacity as dependent variable for ANOVA regression model. Based on employed ANOVA model we have established that there is a significant influence of needling parameters on water absorbent capacity. The higher of depth needle penetration and needle board frequency, the higher is the compactness of fabric. A less porous structure has a lower water absorptive capacity.

  12. R package MVR for Joint Adaptive Mean-Variance Regularization and Variance Stabilization.

    Science.gov (United States)

    Dazard, Jean-Eudes; Xu, Hua; Rao, J Sunil

    2011-01-01

    We present an implementation in the R language for statistical computing of our recent non-parametric joint adaptive mean-variance regularization and variance stabilization procedure. The method is specifically suited for handling difficult problems posed by high-dimensional multivariate datasets ( p ≫ n paradigm), such as in 'omics'-type data, among which are that the variance is often a function of the mean, variable-specific estimators of variances are not reliable, and tests statistics have low powers due to a lack of degrees of freedom. The implementation offers a complete set of features including: (i) normalization and/or variance stabilization function, (ii) computation of mean-variance-regularized t and F statistics, (iii) generation of diverse diagnostic plots, (iv) synthetic and real 'omics' test datasets, (v) computationally efficient implementation, using C interfacing, and an option for parallel computing, (vi) manual and documentation on how to setup a cluster. To make each feature as user-friendly as possible, only one subroutine per functionality is to be handled by the end-user. It is available as an R package, called MVR ('Mean-Variance Regularization'), downloadable from the CRAN.

  13. Variance function estimation for immunoassays

    International Nuclear Information System (INIS)

    Raab, G.M.; Thompson, R.; McKenzie, I.

    1980-01-01

    A computer program is described which implements a recently described, modified likelihood method of determining an appropriate weighting function to use when fitting immunoassay dose-response curves. The relationship between the variance of the response and its mean value is assumed to have an exponential form, and the best fit to this model is determined from the within-set variability of many small sets of repeated measurements. The program estimates the parameter of the exponential function with its estimated standard error, and tests the fit of the experimental data to the proposed model. Output options include a list of the actual and fitted standard deviation of the set of responses, a plot of actual and fitted standard deviation against the mean response, and an ordered list of the 10 sets of data with the largest ratios of actual to fitted standard deviation. The program has been designed for a laboratory user without computing or statistical expertise. The test-of-fit has proved valuable for identifying outlying responses, which may be excluded from further analysis by being set to negative values in the input file. (Auth.)

  14. Survey of waste disposal methods in Awka metropolis | Bill | Journal ...

    African Journals Online (AJOL)

    Waste disposal methods commonly practiced in Awka metropolis, Anambra state were investigated from August to October, 2013. Data was analyzed with both descriptive statistics of frequency and percentages, and alternate hypotheses were tested using Analysis of Variance (ANOVA) at a significance level of 0.05.

  15. Constrained statistical inference: sample-size tables for ANOVA and regression

    Directory of Open Access Journals (Sweden)

    Leonard eVanbrabant

    2015-01-01

    Full Text Available Researchers in the social and behavioral sciences often have clear expectations about the order/direction of the parameters in their statistical model. For example, a researcher might expect that regression coefficient beta1 is larger than beta2 and beta3. The corresponding hypothesis is H: beta1 > {beta2, beta3} and this is known as an (order constrained hypothesis. A major advantage of testing such a hypothesis is that power can be gained and inherently a smaller sample size is needed. This article discusses this gain in sample size reduction, when an increasing number of constraints is included into the hypothesis. The main goal is to present sample-size tables for constrained hypotheses. A sample-size table contains the necessary sample-size at a prespecified power (say, 0.80 for an increasing number of constraints. To obtain sample-size tables, two Monte Carlo simulations were performed, one for ANOVA and one for multiple regression. Three results are salient. First, in an ANOVA the needed sample-size decreases with 30% to 50% when complete ordering of the parameters is taken into account. Second, small deviations from the imposed order have only a minor impact on the power. Third, at the maximum number of constraints, the linear regression results are comparable with the ANOVA results. However, in the case of fewer constraints, ordering the parameters (e.g., beta1 > beta2 results in a higher power than assigning a positive or a negative sign to the parameters (e.g., beta1 > 0.

  16. Absolute variation of the mechanical characteristics of halloysite reinforced polyurethane nanocomposites complemented by Taguchi and ANOVA approaches

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    Full Text Available The variation of the results of the mechanical properties of halloysite nanotubes (HNTs reinforced thermoplastic polyurethane (TPU at different HNTs loadings was implemented as a tool for analysis. The preparation of HNTs-TPU nanocomposites was performed under four controlled parameters of mixing temperature, mixing speed, mixing time, and HNTs loading at three levels each to satisfy Taguchi method orthogonal array L9 aiming to optimize these parameters for the best measurements of tensile strength, Young’s modulus, and tensile strain (known as responses. The maximum variation of the experimental results for each response was determined and analysed based on the optimized results predicted by Taguchi method and ANOVA. It was found that the maximum absolute variations of the three mentioned responses are 69%, 352%, and 126%, respectively. The analysis has shown that the preparation of the optimized tensile strength requires 1 wt.% HNTs loading (excluding 2 wt.% and 3 wt.%, mixing temperature of 190 °C (excluding 200 °C and 210 °C, and mixing speed of 30 rpm (excluding 40 rpm and 50 rpm. In addition, the analysis has determined that the mixing time at 20 min has no effect on the preparation. The mentioned analysis was fortified by ANOVA, images of FESEM, and DSC results. Seemingly, the agglomeration and distribution of HNTs in the nanocomposite play an important role in the process. The outcome of the analysis could be considered as a very important step towards the reliability of Taguchi method. Keywords: Nanocomposite, Design-of-experiment, Taguchi optimization method, Mechanical properties

  17. Visualizing Experimental Designs for Balanced ANOVA Models using Lisp-Stat

    Directory of Open Access Journals (Sweden)

    Philip W. Iversen

    2004-12-01

    Full Text Available The structure, or Hasse, diagram described by Taylor and Hilton (1981, American Statistician provides a visual display of the relationships between factors for balanced complete experimental designs. Using the Hasse diagram, rules exist for determining the appropriate linear model, ANOVA table, expected means squares, and F-tests in the case of balanced designs. This procedure has been implemented in Lisp-Stat using a software representation of the experimental design. The user can interact with the Hasse diagram to add, change, or delete factors and see the effect on the proposed analysis. The system has potential uses in teaching and consulting.

  18. Study of variance and covariance terms in linear attenuation coefficient measurements of irregular samples through the two media method by gamma-ray transmission

    International Nuclear Information System (INIS)

    Kuramoto, R.Y.R.Renato Yoichi Ribeiro.; Appoloni, Carlos Roberto

    2002-01-01

    The two media method permits the application of Beer's law (Thesis (Master Degree), Universidade Estadual de Londrina, PR, Brazil, pp. 23) for the linear attenuation coefficient determination of irregular thickness samples by gamma-ray transmission. However, the use of this methodology introduces experimental complexity due to the great number of variables to be measured. As consequence of this complexity, the uncertainties associated with each of these variables may be correlated. In this paper, we examine the covariance terms in the uncertainty propagation, and quantify the correlation among the uncertainties of each of the variables in question

  19. Analysis of half diallel mating designs I: a practical analysis procedure for ANOVA approximation.

    Science.gov (United States)

    G.R. Johnson; J.N. King

    1998-01-01

    Procedures to analyze half-diallel mating designs using the SAS statistical package are presented. The procedure requires two runs of PROC and VARCOMP and results in estimates of additive and non-additive genetic variation. The procedures described can be modified to work on most statistical software packages which can compute variance component estimates. The...

  20. Hidden multiplicity in multiway ANOVA: Prevalence, consequences, and remedies. : Prevalence and remedies

    NARCIS (Netherlands)

    Cramer, Angélique O.J.; van Ravenzwaaij, Don; Matzke, Dora; Steingroever, Helen; Wetzels, Ruud; Grasman, Raoul P.P.P.; Waldorp, Lourens J.; Wagenmakers, Eric-Jan

    Many psychologists do not realize that exploratory use of the popular multiway analysis of variance harbors a multiple-comparison problem. In the case of two factors, three separate null hypotheses are subject to test (i.e., two main effects and one interaction). Consequently, the probability of at

  1. Revision: Variance Inflation in Regression

    Directory of Open Access Journals (Sweden)

    D. R. Jensen

    2013-01-01

    the intercept; and (iv variance deflation may occur, where ill-conditioned data yield smaller variances than their orthogonal surrogates. Conventional VIFs have all regressors linked, or none, often untenable in practice. Beyond these, our models enable the unlinking of regressors that can be unlinked, while preserving dependence among those intrinsically linked. Moreover, known collinearity indices are extended to encompass angles between subspaces of regressors. To reaccess ill-conditioned data, we consider case studies ranging from elementary examples to data from the literature.

  2. Modelling volatility by variance decomposition

    DEFF Research Database (Denmark)

    Amado, Cristina; Teräsvirta, Timo

    In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the variance of the model to have a smooth time-varying structure of either additive or multiplicative type. The suggested parameterisations describe both nonlinearity and structural change in the condit...

  3. Gini estimation under infinite variance

    NARCIS (Netherlands)

    A. Fontanari (Andrea); N.N. Taleb (Nassim Nicholas); P. Cirillo (Pasquale)

    2018-01-01

    textabstractWe study the problems related to the estimation of the Gini index in presence of a fat-tailed data generating process, i.e. one in the stable distribution class with finite mean but infinite variance (i.e. with tail index α∈(1,2)). We show that, in such a case, the Gini coefficient

  4. ANOVA IN MARKETING RESEARCH OF CONSUMER BEHAVIOR OF DIFFERENT CATEGORIES IN GEORGIAN MARKET

    Directory of Open Access Journals (Sweden)

    NUGZAR TODUA

    2015-03-01

    Full Text Available Consumer behavior research was conducted on bank services and (non-alcohol soft drinks. Based on four different currencies and ten services there are analyses made on bank clients’ distribution by bank services and currencies, percentage distribution by bank services, percentage distribution of bank services by currencies. Similar results are also received in case of ten soft drinks with their five characteristics: consumers quantities split by types of soft drinks and attributes; Attributes percentage split by types of soft drinks; Types of soft drinks percentage split by attributes. With usage of ANOVA, based on the marketing research outcomes it is concluded that bank clients’ total quantities i.e. populations’ unknown mean scores do not differ from each other. In the soft drinks research case consumers’ total quantities i.e. populations’ unknown mean scores vary by characteristics

  5. Feynman variance-to-mean method

    International Nuclear Information System (INIS)

    Dowdy, E.J.; Hansen, G.E.; Robba, A.A.

    1985-01-01

    The Feynman and other fluctuation techniques have been shown to be useful for determining the multiplication of subcritical systems. The moments of the counting distribution from neutron detectors is analyzed to yield the multiplication value. The authors present the methodology and some selected applications and results and comparisons with Monte Carlo calculations

  6. The Theory of Variances in Equilibrium Reconstruction

    International Nuclear Information System (INIS)

    Zakharov, Leonid E.; Lewandowski, Jerome; Foley, Elizabeth L.; Levinton, Fred M.; Yuh, Howard Y.; Drozdov, Vladimir; McDonald, Darren

    2008-01-01

    The theory of variances of equilibrium reconstruction is presented. It complements existing practices with information regarding what kind of plasma profiles can be reconstructed, how accurately, and what remains beyond the abilities of diagnostic systems. The σ-curves, introduced by the present theory, give a quantitative assessment of quality of effectiveness of diagnostic systems in constraining equilibrium reconstructions. The theory also suggests a method for aligning the accuracy of measurements of different physical nature

  7. Fundamentals of exploratory analysis of variance

    CERN Document Server

    Hoaglin, David C; Tukey, John W

    2009-01-01

    The analysis of variance is presented as an exploratory component of data analysis, while retaining the customary least squares fitting methods. Balanced data layouts are used to reveal key ideas and techniques for exploration. The approach emphasizes both the individual observations and the separate parts that the analysis produces. Most chapters include exercises and the appendices give selected percentage points of the Gaussian, t, F chi-squared and studentized range distributions.

  8. Variance based OFDM frame synchronization

    Directory of Open Access Journals (Sweden)

    Z. Fedra

    2012-04-01

    Full Text Available The paper deals with a new frame synchronization scheme for OFDM systems and calculates the complexity of this scheme. The scheme is based on the computing of the detection window variance. The variance is computed in two delayed times, so a modified Early-Late loop is used for the frame position detection. The proposed algorithm deals with different variants of OFDM parameters including guard interval, cyclic prefix, and has good properties regarding the choice of the algorithm's parameters since the parameters may be chosen within a wide range without having a high influence on system performance. The verification of the proposed algorithm functionality has been performed on a development environment using universal software radio peripheral (USRP hardware.

  9. Variance decomposition in stochastic simulators.

    Science.gov (United States)

    Le Maître, O P; Knio, O M; Moraes, A

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  10. Variance decomposition in stochastic simulators

    Science.gov (United States)

    Le Maître, O. P.; Knio, O. M.; Moraes, A.

    2015-06-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  11. Variance decomposition in stochastic simulators

    Energy Technology Data Exchange (ETDEWEB)

    Le Maître, O. P., E-mail: olm@limsi.fr [LIMSI-CNRS, UPR 3251, Orsay (France); Knio, O. M., E-mail: knio@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708 (United States); Moraes, A., E-mail: alvaro.moraesgutierrez@kaust.edu.sa [King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-06-28

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  12. Variance decomposition in stochastic simulators

    KAUST Repository

    Le Maî tre, O. P.; Knio, O. M.; Moraes, Alvaro

    2015-01-01

    This work aims at the development of a mathematical and computational approach that enables quantification of the inherent sources of stochasticity and of the corresponding sensitivities in stochastic simulations of chemical reaction networks. The approach is based on reformulating the system dynamics as being generated by independent standardized Poisson processes. This reformulation affords a straightforward identification of individual realizations for the stochastic dynamics of each reaction channel, and consequently a quantitative characterization of the inherent sources of stochasticity in the system. By relying on the Sobol-Hoeffding decomposition, the reformulation enables us to perform an orthogonal decomposition of the solution variance. Thus, by judiciously exploiting the inherent stochasticity of the system, one is able to quantify the variance-based sensitivities associated with individual reaction channels, as well as the importance of channel interactions. Implementation of the algorithms is illustrated in light of simulations of simplified systems, including the birth-death, Schlögl, and Michaelis-Menten models.

  13. On Mean-Variance Analysis

    OpenAIRE

    Li, Yang; Pirvu, Traian A

    2011-01-01

    This paper considers the mean variance portfolio management problem. We examine portfolios which contain both primary and derivative securities. The challenge in this context is due to portfolio's nonlinearities. The delta-gamma approximation is employed to overcome it. Thus, the optimization problem is reduced to a well posed quadratic program. The methodology developed in this paper can be also applied to pricing and hedging in incomplete markets.

  14. Discussion on variance reduction technique for shielding

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Fujio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    As the task of the engineering design activity of the international thermonuclear fusion experimental reactor (ITER), on 316 type stainless steel (SS316) and the compound system of SS316 and water, the shielding experiment using the D-T neutron source of FNS in Japan Atomic Energy Research Institute has been carried out. However, in these analyses, enormous working time and computing time were required for determining the Weight Window parameter. Limitation or complication was felt when the variance reduction by Weight Window method of MCNP code was carried out. For the purpose of avoiding this difficulty, investigation was performed on the effectiveness of the variance reduction by cell importance method. The conditions of calculation in all cases are shown. As the results, the distribution of fractional standard deviation (FSD) related to neutrons and gamma-ray flux in the direction of shield depth is reported. There is the optimal importance change, and when importance was increased at the same rate as that of the attenuation of neutron or gamma-ray flux, the optimal variance reduction can be done. (K.I.)

  15. Confidence Interval Approximation For Treatment Variance In ...

    African Journals Online (AJOL)

    In a random effects model with a single factor, variation is partitioned into two as residual error variance and treatment variance. While a confidence interval can be imposed on the residual error variance, it is not possible to construct an exact confidence interval for the treatment variance. This is because the treatment ...

  16. Temperature variance study in Monte-Carlo photon transport theory

    International Nuclear Information System (INIS)

    Giorla, J.

    1985-10-01

    We study different Monte-Carlo methods for solving radiative transfer problems, and particularly Fleck's Monte-Carlo method. We first give the different time-discretization schemes and the corresponding stability criteria. Then we write the temperature variance as a function of the variances of temperature and absorbed energy at the previous time step. Finally we obtain some stability criteria for the Monte-Carlo method in the stationary case [fr

  17. Power and Sample Size Calculations for Testing Linear Combinations of Group Means under Variance Heterogeneity with Applications to Meta and Moderation Analyses

    Science.gov (United States)

    Shieh, Gwowen; Jan, Show-Li

    2015-01-01

    The general formulation of a linear combination of population means permits a wide range of research questions to be tested within the context of ANOVA. However, it has been stressed in many research areas that the homogeneous variances assumption is frequently violated. To accommodate the heterogeneity of variance structure, the…

  18. A Framework for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method.

    Science.gov (United States)

    Zhang, Z; Werner, F.; Cho, H. -M.; Wind, Galina; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2017-01-01

    The so-called bi-spectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near infrared (VIS/NIR) band and the other in a shortwave-infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In this study, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the t and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval.

  19. Investigation of flood pattern using ANOVA statistic and remote sensing in Malaysia

    International Nuclear Information System (INIS)

    Ya'acob, Norsuzila; Ismail, Nor Syazwani; Mustafa, Norfazira; Yusof, Azita Laily

    2014-01-01

    Flood is an overflow or inundation that comes from river or other body of water and causes or threatens damages. In Malaysia, there are no formal categorization of flood but often broadly categorized as monsoonal, flash or tidal floods. This project will be focus on flood causes by monsoon. For the last few years, the number of extreme flood was occurred and brings great economic impact. The extreme weather pattern is the main sector contributes for this phenomenon. In 2010, several districts in the states of Kedah neighbour-hoods state have been hit by floods and it is caused by tremendous weather pattern. During this tragedy, the ratio of the rainfalls volume was not fixed for every region, and the flood happened when the amount of water increase rapidly and start to overflow. This is the main objective why this project has been carried out, and the analysis data has been done from August until October in 2010. The investigation was done to find the possibility correlation pattern parameters related to the flood. ANOVA statistic was used to calculate the percentage of parameters was involved and Regression and correlation calculate the strength of coefficient among parameters related to the flood while remote sensing image was used for validation between the calculation accuracy. According to the results, the prediction is successful as the coefficient of relation in flood event is 0.912 and proved by Terra-SAR image on 4th November 2010. The rates of change in weather pattern give the impact to the flood

  20. Minimum Variance Portfolios in the Brazilian Equity Market

    Directory of Open Access Journals (Sweden)

    Alexandre Rubesam

    2013-03-01

    Full Text Available We investigate minimum variance portfolios in the Brazilian equity market using different methods to estimate the covariance matrix, from the simple model of using the sample covariance to multivariate GARCH models. We compare the performance of the minimum variance portfolios to those of the following benchmarks: (i the IBOVESPA equity index, (ii an equally-weighted portfolio, (iii the maximum Sharpe ratio portfolio and (iv the maximum growth portfolio. Our results show that the minimum variance portfolio has higher returns with lower risk compared to the benchmarks. We also consider long-short 130/30 minimum variance portfolios and obtain similar results. The minimum variance portfolio invests in relatively few stocks with low βs measured with respect to the IBOVESPA index, being easily replicable by individual and institutional investors alike.

  1. Comparison of variance estimators for metaanalysis of instrumental variable estimates

    NARCIS (Netherlands)

    Schmidt, A. F.; Hingorani, A. D.; Jefferis, B. J.; White, J.; Groenwold, R. H H; Dudbridge, F.; Ben-Shlomo, Y.; Chaturvedi, N.; Engmann, J.; Hughes, A.; Humphries, S.; Hypponen, E.; Kivimaki, M.; Kuh, D.; Kumari, M.; Menon, U.; Morris, R.; Power, C.; Price, J.; Wannamethee, G.; Whincup, P.

    2016-01-01

    Background: Mendelian randomization studies perform instrumental variable (IV) analysis using genetic IVs. Results of individual Mendelian randomization studies can be pooled through meta-analysis. We explored how different variance estimators influence the meta-analysed IV estimate. Methods: Two

  2. Beyond the Mean: Sensitivities of the Variance of Population Growth.

    Science.gov (United States)

    Trotter, Meredith V; Krishna-Kumar, Siddharth; Tuljapurkar, Shripad

    2013-03-01

    Populations in variable environments are described by both a mean growth rate and a variance of stochastic population growth. Increasing variance will increase the width of confidence bounds around estimates of population size, growth, probability of and time to quasi-extinction. However, traditional sensitivity analyses of stochastic matrix models only consider the sensitivity of the mean growth rate. We derive an exact method for calculating the sensitivity of the variance in population growth to changes in demographic parameters. Sensitivities of the variance also allow a new sensitivity calculation for the cumulative probability of quasi-extinction. We apply this new analysis tool to an empirical dataset on at-risk polar bears to demonstrate its utility in conservation biology We find that in many cases a change in life history parameters will increase both the mean and variance of population growth of polar bears. This counterintuitive behaviour of the variance complicates predictions about overall population impacts of management interventions. Sensitivity calculations for cumulative extinction risk factor in changes to both mean and variance, providing a highly useful quantitative tool for conservation management. The mean stochastic growth rate and its sensitivities do not fully describe the dynamics of population growth. The use of variance sensitivities gives a more complete understanding of population dynamics and facilitates the calculation of new sensitivities for extinction processes.

  3. Assessing a learning process with functional ANOVA estimators of EEG power spectral densities.

    Science.gov (United States)

    Gutiérrez, David; Ramírez-Moreno, Mauricio A

    2016-04-01

    We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

  4. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong

    2009-04-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing to the small number of replications. Various methods have been proposed in the literature to overcome this lack of degrees of freedom problem. In this context, it is commonly observed that the variance increases proportionally with the intensity level, which has led many researchers to assume that the variance is a function of the mean. Here we concentrate on estimation of the variance as a function of an unknown mean in two models: the constant coefficient of variation model and the quadratic variance-mean model. Because the means are unknown and estimated with few degrees of freedom, naive methods that use the sample mean in place of the true mean are generally biased because of the errors-in-variables phenomenon. We propose three methods for overcoming this bias. The first two are variations on the theme of the so-called heteroscedastic simulation-extrapolation estimator, modified to estimate the variance function consistently. The third class of estimators is entirely different, being based on semiparametric information calculations. Simulations show the power of our methods and their lack of bias compared with the naive method that ignores the measurement error. The methodology is illustrated by using microarray data from leukaemia patients.

  5. Joint Adaptive Mean-Variance Regularization and Variance Stabilization of High Dimensional Data.

    Science.gov (United States)

    Dazard, Jean-Eudes; Rao, J Sunil

    2012-07-01

    The paper addresses a common problem in the analysis of high-dimensional high-throughput "omics" data, which is parameter estimation across multiple variables in a set of data where the number of variables is much larger than the sample size. Among the problems posed by this type of data are that variable-specific estimators of variances are not reliable and variable-wise tests statistics have low power, both due to a lack of degrees of freedom. In addition, it has been observed in this type of data that the variance increases as a function of the mean. We introduce a non-parametric adaptive regularization procedure that is innovative in that : (i) it employs a novel "similarity statistic"-based clustering technique to generate local-pooled or regularized shrinkage estimators of population parameters, (ii) the regularization is done jointly on population moments, benefiting from C. Stein's result on inadmissibility, which implies that usual sample variance estimator is improved by a shrinkage estimator using information contained in the sample mean. From these joint regularized shrinkage estimators, we derived regularized t-like statistics and show in simulation studies that they offer more statistical power in hypothesis testing than their standard sample counterparts, or regular common value-shrinkage estimators, or when the information contained in the sample mean is simply ignored. Finally, we show that these estimators feature interesting properties of variance stabilization and normalization that can be used for preprocessing high-dimensional multivariate data. The method is available as an R package, called 'MVR' ('Mean-Variance Regularization'), downloadable from the CRAN website.

  6. Variance-based Salt Body Reconstruction

    KAUST Repository

    Ovcharenko, Oleg

    2017-05-26

    Seismic inversions of salt bodies are challenging when updating velocity models based on Born approximation- inspired gradient methods. We propose a variance-based method for velocity model reconstruction in regions complicated by massive salt bodies. The novel idea lies in retrieving useful information from simultaneous updates corresponding to different single frequencies. Instead of the commonly used averaging of single-iteration monofrequency gradients, our algorithm iteratively reconstructs salt bodies in an outer loop based on updates from a set of multiple frequencies after a few iterations of full-waveform inversion. The variance among these updates is used to identify areas where considerable cycle-skipping occurs. In such areas, we update velocities by interpolating maximum velocities within a certain region. The result of several recursive interpolations is later used as a new starting model to improve results of conventional full-waveform inversion. An application on part of the BP 2004 model highlights the evolution of the proposed approach and demonstrates its effectiveness.

  7. Speed Variance and Its Influence on Accidents.

    Science.gov (United States)

    Garber, Nicholas J.; Gadirau, Ravi

    A study was conducted to investigate the traffic engineering factors that influence speed variance and to determine to what extent speed variance affects accident rates. Detailed analyses were carried out to relate speed variance with posted speed limit, design speeds, and other traffic variables. The major factor identified was the difference…

  8. Approximate zero-variance Monte Carlo estimation of Markovian unreliability

    International Nuclear Information System (INIS)

    Delcoux, J.L.; Labeau, P.E.; Devooght, J.

    1997-01-01

    Monte Carlo simulation has become an important tool for the estimation of reliability characteristics, since conventional numerical methods are no more efficient when the size of the system to solve increases. However, evaluating by a simulation the probability of occurrence of very rare events means playing a very large number of histories of the system, which leads to unacceptable computation times. Acceleration and variance reduction techniques have to be worked out. We show in this paper how to write the equations of Markovian reliability as a transport problem, and how the well known zero-variance scheme can be adapted to this application. But such a method is always specific to the estimation of one quality, while a Monte Carlo simulation allows to perform simultaneously estimations of diverse quantities. Therefore, the estimation of one of them could be made more accurate while degrading at the same time the variance of other estimations. We propound here a method to reduce simultaneously the variance for several quantities, by using probability laws that would lead to zero-variance in the estimation of a mean of these quantities. Just like the zero-variance one, the method we propound is impossible to perform exactly. However, we show that simple approximations of it may be very efficient. (author)

  9. Problems of variance reduction in the simulation of random variables

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    The definition of the uniform linear generator is given and some of the mostly used tests to evaluate the uniformity and the independence of the obtained determinations are listed. The problem of calculating, through simulation, some moment W of a random variable function is taken into account. The Monte Carlo method enables the moment W to be estimated and the estimator variance to be obtained. Some techniques for the construction of other estimators of W with a reduced variance are introduced

  10. Cumulative prospect theory and mean variance analysis. A rigorous comparison

    OpenAIRE

    Hens, Thorsten; Mayer, Janos

    2012-01-01

    We compare asset allocations derived for cumulative prospect theory(CPT) based on two different methods: Maximizing CPT along the mean–variance efficient frontier and maximizing it without that restriction. We find that with normally distributed returns the difference is negligible. However, using standard asset allocation data of pension funds the difference is considerable. Moreover, with derivatives like call options the restriction to the mean-variance efficient frontier results in a siza...

  11. Comparing estimates of genetic variance across different relationship models.

    Science.gov (United States)

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Sub-Pixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bi-Spectral Method

    Science.gov (United States)

    Zhang, Z.; Werner, F.; Cho, H. -M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, Kerry

    2016-01-01

    The bi-spectral method retrieves cloud optical thickness and cloud droplet effective radius simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VISNIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring sub-pixel variations of cloud reflectances can lead to a significant bias in the retrieved and re. In the literature, the retrievals of and re are often assumed to be independent and considered separately when investigating the impact of sub-pixel cloud reflectance variations on the bi-spectral method. As a result, the impact on is contributed only by the sub-pixel variation of VISNIR band reflectance and the impact on re only by the sub-pixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of sub-pixel variances of VISNIR and SWIR cloud reflectances and their covariance on the and re retrievals. This framework takes into account the fact that the retrievals are determined by both VISNIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how sub-pixel cloud reflectance variations impact the and re retrievals based on the bi-spectral method. In particular, our framework provides a mathematical explanation of how the sub-pixel variation in VISNIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our framework can be used

  13. A Framework Based on 2-D Taylor Expansion for Quantifying the Impacts of Subpixel Reflectance Variance and Covariance on Cloud Optical Thickness and Effective Radius Retrievals Based on the Bispectral Method

    Science.gov (United States)

    Zhang, Z.; Werner, F.; Cho, H.-M.; Wind, G.; Platnick, S.; Ackerman, A. S.; Di Girolamo, L.; Marshak, A.; Meyer, K.

    2016-01-01

    The bispectral method retrieves cloud optical thickness (t) and cloud droplet effective radius (re) simultaneously from a pair of cloud reflectance observations, one in a visible or near-infrared (VIS/NIR) band and the other in a shortwave infrared (SWIR) band. A cloudy pixel is usually assumed to be horizontally homogeneous in the retrieval. Ignoring subpixel variations of cloud reflectances can lead to a significant bias in the retrieved t and re. In the literature, the retrievals of t and re are often assumed to be independent and considered separately when investigating the impact of subpixel cloud reflectance variations on the bispectral method. As a result, the impact on t is contributed only by the subpixel variation of VIS/NIR band reflectance and the impact on re only by the subpixel variation of SWIR band reflectance. In our new framework, we use the Taylor expansion of a two-variable function to understand and quantify the impacts of subpixel variances of VIS/NIR and SWIR cloud reflectances and their covariance on the t and re retrievals. This framework takes into account the fact that the retrievals are determined by both VIS/NIR and SWIR band observations in a mutually dependent way. In comparison with previous studies, it provides a more comprehensive understanding of how subpixel cloud reflectance variations impact the t and re retrievals based on the bispectral method. In particular, our framework provides a mathematical explanation of how the subpixel variation in VIS/NIR band influences the re retrieval and why it can sometimes outweigh the influence of variations in the SWIR band and dominate the error in re retrievals, leading to a potential contribution of positive bias to the re retrieval. We test our framework using synthetic cloud fields from a large-eddy simulation and real observations from Moderate Resolution Imaging Spectroradiometer. The predicted results based on our framework agree very well with the numerical simulations. Our

  14. Hybrid biasing approaches for global variance reduction

    International Nuclear Information System (INIS)

    Wu, Zeyun; Abdel-Khalik, Hany S.

    2013-01-01

    A new variant of Monte Carlo—deterministic (DT) hybrid variance reduction approach based on Gaussian process theory is presented for accelerating convergence of Monte Carlo simulation and compared with Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) approach implemented in the SCALE package from Oak Ridge National Laboratory. The new approach, denoted the Gaussian process approach, treats the responses of interest as normally distributed random processes. The Gaussian process approach improves the selection of the weight windows of simulated particles by identifying a subspace that captures the dominant sources of statistical response variations. Like the FW-CADIS approach, the Gaussian process approach utilizes particle importance maps obtained from deterministic adjoint models to derive weight window biasing. In contrast to the FW-CADIS approach, the Gaussian process approach identifies the response correlations (via a covariance matrix) and employs them to reduce the computational overhead required for global variance reduction (GVR) purpose. The effective rank of the covariance matrix identifies the minimum number of uncorrelated pseudo responses, which are employed to bias simulated particles. Numerical experiments, serving as a proof of principle, are presented to compare the Gaussian process and FW-CADIS approaches in terms of the global reduction in standard deviation of the estimated responses. - Highlights: ► Hybrid Monte Carlo Deterministic Method based on Gaussian Process Model is introduced. ► Method employs deterministic model to calculate responses correlations. ► Method employs correlations to bias Monte Carlo transport. ► Method compared to FW-CADIS methodology in SCALE code. ► An order of magnitude speed up is achieved for a PWR core model.

  15. Robust estimation of the noise variance from background MR data

    NARCIS (Netherlands)

    Sijbers, J.; Den Dekker, A.J.; Poot, D.; Bos, R.; Verhoye, M.; Van Camp, N.; Van der Linden, A.

    2006-01-01

    In the literature, many methods are available for estimation of the variance of the noise in magnetic resonance (MR) images. A commonly used method, based on the maximum of the background mode of the histogram, is revisited and a new, robust, and easy to use method is presented based on maximum

  16. Estimadores de componentes de variância em delineamento de blocos aumentados com tratamentos novos de uma ou mais populações Estimators of variance components in the augmented block design with new treatments from one or more populations

    Directory of Open Access Journals (Sweden)

    João Batista Duarte

    2001-09-01

    Full Text Available O objetivo do trabalho foi comparar, por meio de simulação, as estimativas de componentes de variância produzidas pelos métodos ANOVA (análise da variância, ML (máxima verossimilhança, REML (máxima verossimilhança restrita e MIVQUE(0 (estimador quadrático não viesado de variância mínima, no delineamento de blocos aumentados com tratamentos adicionais (progênies de uma ou mais procedências (cruzamentos. Os resultados indicaram superioridade relativa do método MIVQUE(0. O método ANOVA, embora não tendencioso, apresentou as estimativas de menor precisão. Os métodos de máxima verossimilhança, sobretudo ML, tenderam a subestimar a variância do erro experimental ( e a superestimar as variâncias genotípicas (, em especial nos experimentos de menor tamanho (n/>0,5. Contudo, o método produziu as piores estimativas de variâncias genotípicas quando as progênies vieram de diferentes cruzamentos e os experimentos foram pequenos.This work compares by simulation estimates of variance components produced by the ANOVA (analysis of variance, ML (maximum likelihood, REML (restricted maximum likelihood, and MIVQUE(0 (minimum variance quadratic unbiased estimator methods for augmented block design with additional treatments (progenies stemming from one or more origins (crosses. Results showed the superiority of the MIVQUE(0 estimation. The ANOVA method, although unbiased, showed estimates with lower precision. The ML and REML methods produced downwards biased estimates for error variance (, and upwards biased estimates for genotypic variances (, particularly the ML method. Biases for the REML estimation became negligible when progenies were derived from a single cross, and experiments were of larger size with ratios />0.5. This method, however, provided the worst estimates for genotypic variances when progenies were derived from several crosses and the experiments were of small size (n<120 observations.

  17. Allowable variance set on left ventricular function parameter

    International Nuclear Information System (INIS)

    Zhou Li'na; Qi Zhongzhi; Zeng Yu; Ou Xiaohong; Li Lin

    2010-01-01

    Purpose: To evaluate the influence of allowable Variance settings on left ventricular function parameter of the arrhythmia patients during gated myocardial perfusion imaging. Method: 42 patients with evident arrhythmia underwent myocardial perfusion SPECT, 3 different allowable variance with 20%, 60%, 100% would be set before acquisition for every patients,and they will be acquired simultaneously. After reconstruction by Astonish, end-diastole volume(EDV) and end-systolic volume (ESV) and left ventricular ejection fraction (LVEF) would be computed with Quantitative Gated SPECT(QGS). Using SPSS software EDV, ESV, EF values of analysis of variance. Result: there is no statistical difference between three groups. Conclusion: arrhythmia patients undergo Gated myocardial perfusion imaging, Allowable Variance settings on EDV, ESV, EF value does not have a statistical meaning. (authors)

  18. Minimum variance Monte Carlo importance sampling with parametric dependence

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.; Halton, J.; Maynard, C.W.

    1981-01-01

    An approach for Monte Carlo Importance Sampling with parametric dependence is proposed. It depends upon obtaining by proper weighting over a single stage the overall functional dependence of the variance on the importance function parameter over a broad range of its values. Results corresponding to minimum variance are adapted and other results rejected. Numerical calculation for the estimation of intergrals are compared to Crude Monte Carlo. Results explain the occurrences of the effective biases (even though the theoretical bias is zero) and infinite variances which arise in calculations involving severe biasing and a moderate number of historis. Extension to particle transport applications is briefly discussed. The approach constitutes an extension of a theory on the application of Monte Carlo for the calculation of functional dependences introduced by Frolov and Chentsov to biasing, or importance sample calculations; and is a generalization which avoids nonconvergence to the optimal values in some cases of a multistage method for variance reduction introduced by Spanier. (orig.) [de

  19. Variance Function Partially Linear Single-Index Models1.

    Science.gov (United States)

    Lian, Heng; Liang, Hua; Carroll, Raymond J

    2015-01-01

    We consider heteroscedastic regression models where the mean function is a partially linear single index model and the variance function depends upon a generalized partially linear single index model. We do not insist that the variance function depend only upon the mean function, as happens in the classical generalized partially linear single index model. We develop efficient and practical estimation methods for the variance function and for the mean function. Asymptotic theory for the parametric and nonparametric parts of the model is developed. Simulations illustrate the results. An empirical example involving ozone levels is used to further illustrate the results, and is shown to be a case where the variance function does not depend upon the mean function.

  20. Evolution of Genetic Variance during Adaptive Radiation.

    Science.gov (United States)

    Walter, Greg M; Aguirre, J David; Blows, Mark W; Ortiz-Barrientos, Daniel

    2018-04-01

    Genetic correlations between traits can concentrate genetic variance into fewer phenotypic dimensions that can bias evolutionary trajectories along the axis of greatest genetic variance and away from optimal phenotypes, constraining the rate of evolution. If genetic correlations limit adaptation, rapid adaptive divergence between multiple contrasting environments may be difficult. However, if natural selection increases the frequency of rare alleles after colonization of new environments, an increase in genetic variance in the direction of selection can accelerate adaptive divergence. Here, we explored adaptive divergence of an Australian native wildflower by examining the alignment between divergence in phenotype mean and divergence in genetic variance among four contrasting ecotypes. We found divergence in mean multivariate phenotype along two major axes represented by different combinations of plant architecture and leaf traits. Ecotypes also showed divergence in the level of genetic variance in individual traits and the multivariate distribution of genetic variance among traits. Divergence in multivariate phenotypic mean aligned with divergence in genetic variance, with much of the divergence in phenotype among ecotypes associated with changes in trait combinations containing substantial levels of genetic variance. Overall, our results suggest that natural selection can alter the distribution of genetic variance underlying phenotypic traits, increasing the amount of genetic variance in the direction of natural selection and potentially facilitating rapid adaptive divergence during an adaptive radiation.

  1. Fundamental Frequency Extraction Method using Central Clipping and its Importance for the Classification of Emotional State

    Directory of Open Access Journals (Sweden)

    Pavol Partila

    2012-01-01

    Full Text Available The paper deals with a classification of emotional state. We implemented a method for extracting the fundamental speech signal frequency by means of a central clipping and examined a correlation between emotional state and fundamental speech frequency. For this purpose, we applied an approach of exploratory data analysis. The ANOVA (Analysis of variance test confirmed that a modification in the speaker's emotional state changes the fundamental frequency of human vocal tract. The main contribution of the paper lies in investigation, of central clipping method by the ANOVA.

  2. UV spectral fingerprinting and analysis of variance-principal component analysis: a useful tool for characterizing sources of variance in plant materials.

    Science.gov (United States)

    Luthria, Devanand L; Mukhopadhyay, Sudarsan; Robbins, Rebecca J; Finley, John W; Banuelos, Gary S; Harnly, James M

    2008-07-23

    UV spectral fingerprints, in combination with analysis of variance-principal components analysis (ANOVA-PCA), can differentiate between cultivars and growing conditions (or treatments) and can be used to identify sources of variance. Broccoli samples, composed of two cultivars, were grown under seven different conditions or treatments (four levels of Se-enriched irrigation waters, organic farming, and conventional farming with 100 and 80% irrigation based on crop evaporation and transpiration rate). Freeze-dried powdered samples were extracted with methanol-water (60:40, v/v) and analyzed with no prior separation. Spectral fingerprints were acquired for the UV region (220-380 nm) using a 50-fold dilution of the extract. ANOVA-PCA was used to construct subset matrices that permitted easy verification of the hypothesis that cultivar and treatment contributed to a difference in the chemical expression of the broccoli. The sums of the squares of the same matrices were used to show that cultivar, treatment, and analytical repeatability contributed 30.5, 68.3, and 1.2% of the variance, respectively.

  3. Power Estimation in Multivariate Analysis of Variance

    Directory of Open Access Journals (Sweden)

    Jean François Allaire

    2007-09-01

    Full Text Available Power is often overlooked in designing multivariate studies for the simple reason that it is believed to be too complicated. In this paper, it is shown that power estimation in multivariate analysis of variance (MANOVA can be approximated using a F distribution for the three popular statistics (Hotelling-Lawley trace, Pillai-Bartlett trace, Wilk`s likelihood ratio. Consequently, the same procedure, as in any statistical test, can be used: computation of the critical F value, computation of the noncentral parameter (as a function of the effect size and finally estimation of power using a noncentral F distribution. Various numerical examples are provided which help to understand and to apply the method. Problems related to post hoc power estimation are discussed.

  4. Effects of measurement errors on psychometric measurements in ergonomics studies: Implications for correlations, ANOVA, linear regression, factor analysis, and linear discriminant analysis.

    Science.gov (United States)

    Liu, Yan; Salvendy, Gavriel

    2009-05-01

    This paper aims to demonstrate the effects of measurement errors on psychometric measurements in ergonomics studies. A variety of sources can cause random measurement errors in ergonomics studies and these errors can distort virtually every statistic computed and lead investigators to erroneous conclusions. The effects of measurement errors on five most widely used statistical analysis tools have been discussed and illustrated: correlation; ANOVA; linear regression; factor analysis; linear discriminant analysis. It has been shown that measurement errors can greatly attenuate correlations between variables, reduce statistical power of ANOVA, distort (overestimate, underestimate or even change the sign of) regression coefficients, underrate the explanation contributions of the most important factors in factor analysis and depreciate the significance of discriminant function and discrimination abilities of individual variables in discrimination analysis. The discussions will be restricted to subjective scales and survey methods and their reliability estimates. Other methods applied in ergonomics research, such as physical and electrophysiological measurements and chemical and biomedical analysis methods, also have issues of measurement errors, but they are beyond the scope of this paper. As there has been increasing interest in the development and testing of theories in ergonomics research, it has become very important for ergonomics researchers to understand the effects of measurement errors on their experiment results, which the authors believe is very critical to research progress in theory development and cumulative knowledge in the ergonomics field.

  5. Spot Variance Path Estimation and its Application to High Frequency Jump Testing

    NARCIS (Netherlands)

    Bos, C.S.; Janus, P.; Koopman, S.J.

    2012-01-01

    This paper considers spot variance path estimation from datasets of intraday high-frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects, and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used to

  6. Influence of Family Structure on Variance Decomposition

    DEFF Research Database (Denmark)

    Edwards, Stefan McKinnon; Sarup, Pernille Merete; Sørensen, Peter

    Partitioning genetic variance by sets of randomly sampled genes for complex traits in D. melanogaster and B. taurus, has revealed that population structure can affect variance decomposition. In fruit flies, we found that a high likelihood ratio is correlated with a high proportion of explained ge...... capturing pure noise. Therefore it is necessary to use both criteria, high likelihood ratio in favor of a more complex genetic model and proportion of genetic variance explained, to identify biologically important gene groups...

  7. Efficient Cardinality/Mean-Variance Portfolios

    OpenAIRE

    Brito, R. Pedro; Vicente, Luís Nunes

    2014-01-01

    International audience; We propose a novel approach to handle cardinality in portfolio selection, by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allow us to robustly compute (in-sample) the whole cardinality/mean-variance efficient frontier, for a variety of data sets and mean-variance models. Our results s...

  8. The phenotypic variance gradient - a novel concept.

    Science.gov (United States)

    Pertoldi, Cino; Bundgaard, Jørgen; Loeschcke, Volker; Barker, James Stuart Flinton

    2014-11-01

    Evolutionary ecologists commonly use reaction norms, which show the range of phenotypes produced by a set of genotypes exposed to different environments, to quantify the degree of phenotypic variance and the magnitude of plasticity of morphometric and life-history traits. Significant differences among the values of the slopes of the reaction norms are interpreted as significant differences in phenotypic plasticity, whereas significant differences among phenotypic variances (variance or coefficient of variation) are interpreted as differences in the degree of developmental instability or canalization. We highlight some potential problems with this approach to quantifying phenotypic variance and suggest a novel and more informative way to plot reaction norms: namely "a plot of log (variance) on the y-axis versus log (mean) on the x-axis, with a reference line added". This approach gives an immediate impression of how the degree of phenotypic variance varies across an environmental gradient, taking into account the consequences of the scaling effect of the variance with the mean. The evolutionary implications of the variation in the degree of phenotypic variance, which we call a "phenotypic variance gradient", are discussed together with its potential interactions with variation in the degree of phenotypic plasticity and canalization.

  9. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    OpenAIRE

    Ma, Hui-qiang

    2014-01-01

    We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance effici...

  10. A versatile omnibus test for detecting mean and variance heterogeneity.

    Science.gov (United States)

    Cao, Ying; Wei, Peng; Bailey, Matthew; Kauwe, John S K; Maxwell, Taylor J

    2014-01-01

    Recent research has revealed loci that display variance heterogeneity through various means such as biological disruption, linkage disequilibrium (LD), gene-by-gene (G × G), or gene-by-environment interaction. We propose a versatile likelihood ratio test that allows joint testing for mean and variance heterogeneity (LRT(MV)) or either effect alone (LRT(M) or LRT(V)) in the presence of covariates. Using extensive simulations for our method and others, we found that all parametric tests were sensitive to nonnormality regardless of any trait transformations. Coupling our test with the parametric bootstrap solves this issue. Using simulations and empirical data from a known mean-only functional variant, we demonstrate how LD can produce variance-heterogeneity loci (vQTL) in a predictable fashion based on differential allele frequencies, high D', and relatively low r² values. We propose that a joint test for mean and variance heterogeneity is more powerful than a variance-only test for detecting vQTL. This takes advantage of loci that also have mean effects without sacrificing much power to detect variance only effects. We discuss using vQTL as an approach to detect G × G interactions and also how vQTL are related to relationship loci, and how both can create prior hypothesis for each other and reveal the relationships between traits and possibly between components of a composite trait.

  11. Starting design for use in variance exchange algorithms | Iwundu ...

    African Journals Online (AJOL)

    A new method of constructing the initial design for use in variance exchange algorithms is presented. The method chooses support points to go into the design as measures of distances of the support points from the centre of the geometric region and of permutation-invariant sets. The initial design is as close as possible to ...

  12. Expected Stock Returns and Variance Risk Premia

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Zhou, Hao

    risk premium with the P/E ratio results in an R2 for the quarterly returns of more than twenty-five percent. The results depend crucially on the use of "model-free", as opposed to standard Black-Scholes, implied variances, and realized variances constructed from high-frequency intraday, as opposed...

  13. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  14. Optimization of cooling tower performance analysis using Taguchi method

    OpenAIRE

    Ramkumar Ramakrishnan; Ragupathy Arumugam

    2013-01-01

    This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N) analysis, analysis of variance (ANOVA) and regression were carried out in order to determine the effects of process...

  15. Portfolio optimization with mean-variance model

    Science.gov (United States)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  16. Fractal fluctuations and quantum-like chaos in the brain by analysis of variability of brain waves: A new method based on a fractal variance function and random matrix theory: A link with El Naschie fractal Cantorian space-time and V. Weiss and H. Weiss golden ratio in brain

    International Nuclear Information System (INIS)

    Conte, Elio; Khrennikov, Andrei; Federici, Antonio; Zbilut, Joseph P.

    2009-01-01

    We develop a new method for analysis of fundamental brain waves as recorded by the EEG. To this purpose we introduce a Fractal Variance Function that is based on the calculation of the variogram. The method is completed by using Random Matrix Theory. Some examples are given. We also discuss the link of such formulation with H. Weiss and V. Weiss golden ratio found in the brain, and with El Naschie fractal Cantorian space-time theory.

  17. Spatial analysis based on variance of moving window averages

    OpenAIRE

    Wu, B M; Subbarao, K V; Ferrandino, F J; Hao, J J

    2006-01-01

    A new method for analysing spatial patterns was designed based on the variance of moving window averages (VMWA), which can be directly calculated in geographical information systems or a spreadsheet program (e.g. MS Excel). Different types of artificial data were generated to test the method. Regardless of data types, the VMWA method correctly determined the mean cluster sizes. This method was also employed to assess spatial patterns in historical plant disease survey data encompassing both a...

  18. The use of the barbell cluster ANOVA design for the assessment of Environmental Pollution (1987): a case study, Wigierski National Park, NE Poland

    Energy Technology Data Exchange (ETDEWEB)

    Migaszewski, Zdzislaw M. [Pedagogical University, Institute of Chemistry, Geochemistry and the Environment Div., ul. Checinska 5, 25-020 Kielce (Poland)]. E-mail: zmig@pu.kielce.pl; Galuszka, Agnieszka [Pedagogical University, Institute of Chemistry, Geochemistry and the Environment Div., ul. Checinska 5, 25-020 Kielce (Poland); Paslaski, Piotr [Central Chemical Laboratory of the Polish Geological Institute, ul. Rakowiecka 4, 00-975 Warsaw (Poland)

    2005-01-01

    This report presents an assessment of chemical variability in natural ecosystems of Wigierski National Park (NE Poland) derived from the calculation of geochemical baselines using a barbell cluster ANOVA design. This method enabled us to obtain statistically valid information with a minimum number of samples collected. Results of summary statistics are presented for elemental concentrations in the soil horizons-O (Ol + Ofh), -A and -B, 1- and 2-year old Pinus sylvestris L. (Scots pine) needles, pine bark and Hypogymnia physodes (L.) Nyl. (lichen) thalli, as well as pH and TOC. The scope of this study also encompassed S and C stable isotope determinations and SEM examinations on Scots pine needles. The variability for S and trace metals in soils and plant bioindicators is primarily governed by parent material lithology and to a lesser extent by anthropogenic factors. This fact enabled us to study concentrations that are close to regional background levels. - The barbell cluster ANOVA design allowed the number of samples collected to be reduced to a minimum.

  19. The mean and variance of phylogenetic diversity under rarefaction.

    Science.gov (United States)

    Nipperess, David A; Matsen, Frederick A

    2013-06-01

    Phylogenetic diversity (PD) depends on sampling depth, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD.We have derived exact formulae for the mean and variance of PD under rarefaction. We confirm that these formulae are correct by comparing exact solution mean and variance to that calculated by repeated random (Monte Carlo) subsampling of a dataset of stem counts of woody shrubs of Toohey Forest, Queensland, Australia. We also demonstrate the application of the method using two examples: identifying hotspots of mammalian diversity in Australasian ecoregions, and characterising the human vaginal microbiome.There is a very high degree of correspondence between the analytical and random subsampling methods for calculating mean and variance of PD under rarefaction, although the Monte Carlo method requires a large number of random draws to converge on the exact solution for the variance.Rarefaction of mammalian PD of ecoregions in Australasia to a common standard of 25 species reveals very different rank orderings of ecoregions, indicating quite different hotspots of diversity than those obtained for unrarefied PD. The application of these methods to the vaginal microbiome shows that a classical score used to quantify bacterial vaginosis is correlated with the shape of the rarefaction curve.The analytical formulae for the mean and variance of PD under rarefaction are both exact and more efficient than repeated subsampling. Rarefaction of PD allows for many applications where comparisons of samples of different depth is required.

  20. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  1. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  2. Variance estimation for sensitivity analysis of poverty and inequality measures

    Directory of Open Access Journals (Sweden)

    Christian Dudel

    2017-04-01

    Full Text Available Estimates of poverty and inequality are often based on application of a single equivalence scale, despite the fact that a large number of different equivalence scales can be found in the literature. This paper describes a framework for sensitivity analysis which can be used to account for the variability of equivalence scales and allows to derive variance estimates of results of sensitivity analysis. Simulations show that this method yields reliable estimates. An empirical application reveals that accounting for both variability of equivalence scales and sampling variance leads to confidence intervals which are wide.

  3. The VIX, the Variance Premium, and Expected Returns

    DEFF Research Database (Denmark)

    Osterrieder, Daniela Maria; Ventosa-Santaulària, Daniel; Vera-Valdés, Eduardo

    2018-01-01

    . These problems are eliminated if risk is captured by the variance premium (VP) instead; it is unobservable, however. We propose a 2SLS estimator that produces consistent estimates without observing the VP. Using this method, we find a positive risk–return trade-off and long-run return predictability. Our...

  4. Monte Carlo variance reduction approaches for non-Boltzmann tallies

    International Nuclear Information System (INIS)

    Booth, T.E.

    1992-12-01

    Quantities that depend on the collective effects of groups of particles cannot be obtained from the standard Boltzmann transport equation. Monte Carlo estimates of these quantities are called non-Boltzmann tallies and have become increasingly important recently. Standard Monte Carlo variance reduction techniques were designed for tallies based on individual particles rather than groups of particles. Experience with non-Boltzmann tallies and analog Monte Carlo has demonstrated the severe limitations of analog Monte Carlo for many non-Boltzmann tallies. In fact, many calculations absolutely require variance reduction methods to achieve practical computation times. Three different approaches to variance reduction for non-Boltzmann tallies are described and shown to be unbiased. The advantages and disadvantages of each of the approaches are discussed

  5. Grammatical and lexical variance in English

    CERN Document Server

    Quirk, Randolph

    2014-01-01

    Written by one of Britain's most distinguished linguists, this book is concerned with the phenomenon of variance in English grammar and vocabulary across regional, social, stylistic and temporal space.

  6. A Mean variance analysis of arbitrage portfolios

    Science.gov (United States)

    Fang, Shuhong

    2007-03-01

    Based on the careful analysis of the definition of arbitrage portfolio and its return, the author presents a mean-variance analysis of the return of arbitrage portfolios, which implies that Korkie and Turtle's results ( B. Korkie, H.J. Turtle, A mean-variance analysis of self-financing portfolios, Manage. Sci. 48 (2002) 427-443) are misleading. A practical example is given to show the difference between the arbitrage portfolio frontier and the usual portfolio frontier.

  7. Dynamic Mean-Variance Asset Allocation

    OpenAIRE

    Basak, Suleyman; Chabakauri, Georgy

    2009-01-01

    Mean-variance criteria remain prevalent in multi-period problems, and yet not much is known about their dynamically optimal policies. We provide a fully analytical characterization of the optimal dynamic mean-variance portfolios within a general incomplete-market economy, and recover a simple structure that also inherits several conventional properties of static models. We also identify a probability measure that incorporates intertemporal hedging demands and facilitates much tractability in ...

  8. Gene set analysis using variance component tests.

    Science.gov (United States)

    Huang, Yen-Tsung; Lin, Xihong

    2013-06-28

    Gene set analyses have become increasingly important in genomic research, as many complex diseases are contributed jointly by alterations of numerous genes. Genes often coordinate together as a functional repertoire, e.g., a biological pathway/network and are highly correlated. However, most of the existing gene set analysis methods do not fully account for the correlation among the genes. Here we propose to tackle this important feature of a gene set to improve statistical power in gene set analyses. We propose to model the effects of an independent variable, e.g., exposure/biological status (yes/no), on multiple gene expression values in a gene set using a multivariate linear regression model, where the correlation among the genes is explicitly modeled using a working covariance matrix. We develop TEGS (Test for the Effect of a Gene Set), a variance component test for the gene set effects by assuming a common distribution for regression coefficients in multivariate linear regression models, and calculate the p-values using permutation and a scaled chi-square approximation. We show using simulations that type I error is protected under different choices of working covariance matrices and power is improved as the working covariance approaches the true covariance. The global test is a special case of TEGS when correlation among genes in a gene set is ignored. Using both simulation data and a published diabetes dataset, we show that our test outperforms the commonly used approaches, the global test and gene set enrichment analysis (GSEA). We develop a gene set analyses method (TEGS) under the multivariate regression framework, which directly models the interdependence of the expression values in a gene set using a working covariance. TEGS outperforms two widely used methods, GSEA and global test in both simulation and a diabetes microarray data.

  9. Genetic variants influencing phenotypic variance heterogeneity.

    Science.gov (United States)

    Ek, Weronica E; Rask-Andersen, Mathias; Karlsson, Torgny; Enroth, Stefan; Gyllensten, Ulf; Johansson, Åsa

    2018-03-01

    Most genetic studies identify genetic variants associated with disease risk or with the mean value of a quantitative trait. More rarely, genetic variants associated with variance heterogeneity are considered. In this study, we have identified such variance single-nucleotide polymorphisms (vSNPs) and examined if these represent biological gene × gene or gene × environment interactions or statistical artifacts caused by multiple linked genetic variants influencing the same phenotype. We have performed a genome-wide study, to identify vSNPs associated with variance heterogeneity in DNA methylation levels. Genotype data from over 10 million single-nucleotide polymorphisms (SNPs), and DNA methylation levels at over 430 000 CpG sites, were analyzed in 729 individuals. We identified vSNPs for 7195 CpG sites (P mean DNA methylation levels. We further showed that variance heterogeneity between genotypes mainly represents additional, often rare, SNPs in linkage disequilibrium (LD) with the respective vSNP and for some vSNPs, multiple low frequency variants co-segregating with one of the vSNP alleles. Therefore, our results suggest that variance heterogeneity of DNA methylation mainly represents phenotypic effects by multiple SNPs, rather than biological interactions. Such effects may also be important for interpreting variance heterogeneity of more complex clinical phenotypes.

  10. The Variance Composition of Firm Growth Rates

    Directory of Open Access Journals (Sweden)

    Luiz Artur Ledur Brito

    2009-04-01

    Full Text Available Firms exhibit a wide variability in growth rates. This can be seen as another manifestation of the fact that firms are different from one another in several respects. This study investigated this variability using the variance components technique previously used to decompose the variance of financial performance. The main source of variation in growth rates, responsible for more than 40% of total variance, corresponds to individual, idiosyncratic firm aspects and not to industry, country, or macroeconomic conditions prevailing in specific years. Firm growth, similar to financial performance, is mostly unique to specific firms and not an industry or country related phenomenon. This finding also justifies using growth as an alternative outcome of superior firm resources and as a complementary dimension of competitive advantage. This also links this research with the resource-based view of strategy. Country was the second source of variation with around 10% of total variance. The analysis was done using the Compustat Global database with 80,320 observations, comprising 13,221 companies in 47 countries, covering the years of 1994 to 2002. It also compared the variance structure of growth to the variance structure of financial performance in the same sample.

  11. AN ADAPTIVE OPTIMAL KALMAN FILTER FOR STOCHASTIC VIBRATION CONTROL SYSTEM WITH UNKNOWN NOISE VARIANCES

    Institute of Scientific and Technical Information of China (English)

    Li Shu; Zhuo Jiashou; Ren Qingwen

    2000-01-01

    In this paper, an optimal criterion is presented for adaptive Kalman filter in a control sys tem with unknown variances of stochastic vibration by constructing a function of noise variances and minimizing the function. We solve the model and measure variances by using DFP optimal method to guarantee the results of Kalman filter to be optimized. Finally, the control of vibration can be implemented by LQG method.

  12. Estimating integrated variance in the presence of microstructure noise using linear regression

    Science.gov (United States)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  13. AnovArray: a set of SAS macros for the analysis of variance of gene expression data

    Directory of Open Access Journals (Sweden)

    Renard Jean-Paul

    2005-06-01

    Full Text Available Abstract Background Analysis of variance is a powerful approach to identify differentially expressed genes in a complex experimental design for microarray and macroarray data. The advantage of the anova model is the possibility to evaluate multiple sources of variation in an experiment. Results AnovArray is a package implementing ANOVA for gene expression data using SAS® statistical software. The originality of the package is 1 to quantify the different sources of variation on all genes together, 2 to provide a quality control of the model, 3 to propose two models for a gene's variance estimation and to perform a correction for multiple comparisons. Conclusion AnovArray is freely available at http://www-mig.jouy.inra.fr/stat/AnovArray and requires only SAS® statistical software.

  14. A Variance Distribution Model of Surface EMG Signals Based on Inverse Gamma Distribution.

    Science.gov (United States)

    Hayashi, Hideaki; Furui, Akira; Kurita, Yuichi; Tsuji, Toshio

    2017-11-01

    Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this variance. Variance distribution estimation based on marginal likelihood maximization is also outlined in this paper. The procedure can be approximated using rectified and smoothed EMG signals, thereby allowing the determination of distribution parameters in real time at low computational cost. Results: A simulation experiment was performed to evaluate the accuracy of distribution estimation using artificially generated EMG signals, with results demonstrating that the proposed model's accuracy is higher than that of maximum-likelihood-based estimation. Analysis of variance distribution using real EMG data also suggested a relationship between variance distribution and signal-dependent noise. Conclusion: The study reported here was conducted to examine the performance of a proposed surface EMG model capable of representing variance distribution and a related distribution parameter estimation method. Experiments using artificial and real EMG data demonstrated the validity of the model. Significance: Variance distribution estimated using the proposed model exhibits potential in the estimation of muscle force. Objective: This paper describes the formulation of a surface electromyogram (EMG) model capable of representing the variance distribution of EMG signals. Methods: In the model, EMG signals are handled based on a Gaussian white noise process with a mean of zero for each variance value. EMG signal variance is taken as a random variable that follows inverse gamma distribution, allowing the representation of noise superimposed onto this

  15. Integrating Variances into an Analytical Database

    Science.gov (United States)

    Sanchez, Carlos

    2010-01-01

    For this project, I enrolled in numerous SATERN courses that taught the basics of database programming. These include: Basic Access 2007 Forms, Introduction to Database Systems, Overview of Database Design, and others. My main job was to create an analytical database that can handle many stored forms and make it easy to interpret and organize. Additionally, I helped improve an existing database and populate it with information. These databases were designed to be used with data from Safety Variances and DCR forms. The research consisted of analyzing the database and comparing the data to find out which entries were repeated the most. If an entry happened to be repeated several times in the database, that would mean that the rule or requirement targeted by that variance has been bypassed many times already and so the requirement may not really be needed, but rather should be changed to allow the variance's conditions permanently. This project did not only restrict itself to the design and development of the database system, but also worked on exporting the data from the database to a different format (e.g. Excel or Word) so it could be analyzed in a simpler fashion. Thanks to the change in format, the data was organized in a spreadsheet that made it possible to sort the data by categories or types and helped speed up searches. Once my work with the database was done, the records of variances could be arranged so that they were displayed in numerical order, or one could search for a specific document targeted by the variances and restrict the search to only include variances that modified a specific requirement. A great part that contributed to my learning was SATERN, NASA's resource for education. Thanks to the SATERN online courses I took over the summer, I was able to learn many new things about computers and databases and also go more in depth into topics I already knew about.

  16. A Mean-Variance Criterion for Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    , the tractability of the resulting optimal control problem is addressed. We use a power management case study to compare different variations of the mean-variance strategy with EMPC based on the certainty equivalence principle. The certainty equivalence strategy is much more computationally efficient than the mean......-variance strategies, but it does not account for the variance of the uncertain parameters. Openloop simulations suggest that a single-stage mean-variance approach yields a significantly lower operating cost than the certainty equivalence strategy. In closed-loop, the single-stage formulation is overly conservative...... be modified to perform almost as well as the two-stage mean-variance formulation. Nevertheless, we argue that the mean-variance approach can be used both as a strategy for evaluating less computational demanding methods such as the certainty equivalence method, and as an individual control strategy when...

  17. Decomposition of Variance for Spatial Cox Processes.

    Science.gov (United States)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-03-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive or log linear random intensity functions. We moreover consider a new and flexible class of pair correlation function models given in terms of normal variance mixture covariance functions. The proposed methodology is applied to point pattern data sets of locations of tropical rain forest trees.

  18. Variance in binary stellar population synthesis

    Science.gov (United States)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  19. Estimating quadratic variation using realized variance

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2002-01-01

    with a rather general SV model - which is a special case of the semimartingale model. Then QV is integrated variance and we can derive the asymptotic distribution of the RV and its rate of convergence. These results do not require us to specify a model for either the drift or volatility functions, although we...... have to impose some weak regularity assumptions. We illustrate the use of the limit theory on some exchange rate data and some stock data. We show that even with large values of M the RV is sometimes a quite noisy estimator of integrated variance. Copyright © 2002 John Wiley & Sons, Ltd....

  20. Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function

    OpenAIRE

    Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace

    2008-01-01

    The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro...

  1. Decomposition of variance in terms of conditional means

    Directory of Open Access Journals (Sweden)

    Alessandro Figà Talamanca

    2013-05-01

    Full Text Available Two different sets of data are used to test an apparently new approach to the analysis of the variance of a numerical variable which depends on qualitative variables. We suggest that this approach be used to complement other existing techniques to study the interdependence of the variables involved. According to our method, the variance is expressed as a sum of orthogonal components, obtained as differences of conditional means, with respect to the qualitative characters. The resulting expression for the variance depends on the ordering in which the characters are considered. We suggest an algorithm which leads to an ordering which is deemed natural. The first set of data concerns the score achieved by a population of students on an entrance examination based on a multiple choice test with 30 questions. In this case the qualitative characters are dyadic and correspond to correct or incorrect answer to each question. The second set of data concerns the delay to obtain the degree for a population of graduates of Italian universities. The variance in this case is analyzed with respect to a set of seven specific qualitative characters of the population studied (gender, previous education, working condition, parent's educational level, field of study, etc..

  2. Perspective projection for variance pose face recognition from camera calibration

    Science.gov (United States)

    Fakhir, M. M.; Woo, W. L.; Chambers, J. A.; Dlay, S. S.

    2016-04-01

    Variance pose is an important research topic in face recognition. The alteration of distance parameters across variance pose face features is a challenging. We provide a solution for this problem using perspective projection for variance pose face recognition. Our method infers intrinsic camera parameters of the image which enable the projection of the image plane into 3D. After this, face box tracking and centre of eyes detection can be identified using our novel technique to verify the virtual face feature measurements. The coordinate system of the perspective projection for face tracking allows the holistic dimensions for the face to be fixed in different orientations. The training of frontal images and the rest of the poses on FERET database determine the distance from the centre of eyes to the corner of box face. The recognition system compares the gallery of images against different poses. The system initially utilises information on position of both eyes then focuses principally on closest eye in order to gather data with greater reliability. Differentiation between the distances and position of the right and left eyes is a unique feature of our work with our algorithm outperforming other state of the art algorithms thus enabling stable measurement in variance pose for each individual.

  3. Variance-based sensitivity analysis for wastewater treatment plant modelling.

    Science.gov (United States)

    Cosenza, Alida; Mannina, Giorgio; Vanrolleghem, Peter A; Neumann, Marc B

    2014-02-01

    Global sensitivity analysis (GSA) is a valuable tool to support the use of mathematical models that characterise technical or natural systems. In the field of wastewater modelling, most of the recent applications of GSA use either regression-based methods, which require close to linear relationships between the model outputs and model factors, or screening methods, which only yield qualitative results. However, due to the characteristics of membrane bioreactors (MBR) (non-linear kinetics, complexity, etc.) there is an interest to adequately quantify the effects of non-linearity and interactions. This can be achieved with variance-based sensitivity analysis methods. In this paper, the Extended Fourier Amplitude Sensitivity Testing (Extended-FAST) method is applied to an integrated activated sludge model (ASM2d) for an MBR system including microbial product formation and physical separation processes. Twenty-one model outputs located throughout the different sections of the bioreactor and 79 model factors are considered. Significant interactions among the model factors are found. Contrary to previous GSA studies for ASM models, we find the relationship between variables and factors to be non-linear and non-additive. By analysing the pattern of the variance decomposition along the plant, the model factors having the highest variance contributions were identified. This study demonstrates the usefulness of variance-based methods in membrane bioreactor modelling where, due to the presence of membranes and different operating conditions than those typically found in conventional activated sludge systems, several highly non-linear effects are present. Further, the obtained results highlight the relevant role played by the modelling approach for MBR taking into account simultaneously biological and physical processes. © 2013.

  4. 29 CFR 1920.2 - Variances.

    Science.gov (United States)

    2010-07-01

    ...) PROCEDURE FOR VARIATIONS FROM SAFETY AND HEALTH REGULATIONS UNDER THE LONGSHOREMEN'S AND HARBOR WORKERS...) or 6(d) of the Williams-Steiger Occupational Safety and Health Act of 1970 (29 U.S.C. 655). The... under the Williams-Steiger Occupational Safety and Health Act of 1970, and any variance from §§ 1910.13...

  5. 78 FR 14122 - Revocation of Permanent Variances

    Science.gov (United States)

    2013-03-04

    ... Douglas Fir planking had to have at least a 1,900 fiber stress and 1,900,000 modulus of elasticity, while the Yellow Pine planking had to have at least 2,500 fiber stress and 2,000,000 modulus of elasticity... the permanent variances, and affected employees, to submit written data, views, and arguments...

  6. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    Investors in fixed income markets are willing to pay a very large premium to be hedged against shocks in expected volatility and the size of this premium can be studied through variance swaps. Using thirty years of option and high-frequency data, we document the following novel stylized facts...

  7. Biological Variance in Agricultural Products. Theoretical Considerations

    NARCIS (Netherlands)

    Tijskens, L.M.M.; Konopacki, P.

    2003-01-01

    The food that we eat is uniform neither in shape or appearance nor in internal composition or content. Since technology became increasingly important, the presence of biological variance in our food became more and more of a nuisance. Techniques and procedures (statistical, technical) were

  8. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  9. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    2013-01-01

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introduce a general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models...

  10. Decomposition of variance for spatial Cox processes

    DEFF Research Database (Denmark)

    Jalilian, Abdollah; Guan, Yongtao; Waagepetersen, Rasmus

    Spatial Cox point processes is a natural framework for quantifying the various sources of variation governing the spatial distribution of rain forest trees. We introducea general criterion for variance decomposition for spatial Cox processes and apply it to specific Cox process models with additive...

  11. Variance Swap Replication: Discrete or Continuous?

    Directory of Open Access Journals (Sweden)

    Fabien Le Floc’h

    2018-02-01

    Full Text Available The popular replication formula to price variance swaps assumes continuity of traded option strikes. In practice, however, there is only a discrete set of option strikes traded on the market. We present here different discrete replication strategies and explain why the continuous replication price is more relevant.

  12. Zero-intelligence realized variance estimation

    NARCIS (Netherlands)

    Gatheral, J.; Oomen, R.C.A.

    2010-01-01

    Given a time series of intra-day tick-by-tick price data, how can realized variance be estimated? The obvious estimator—the sum of squared returns between trades—is biased by microstructure effects such as bid-ask bounce and so in the past, practitioners were advised to drop most of the data and

  13. Reexamining financial and economic predictability with new estimators of realized variance and variance risk premium

    DEFF Research Database (Denmark)

    Casas, Isabel; Mao, Xiuping; Veiga, Helena

    This study explores the predictive power of new estimators of the equity variance risk premium and conditional variance for future excess stock market returns, economic activity, and financial instability, both during and after the last global financial crisis. These estimators are obtained from...... time-varying coefficient models are the ones showing considerably higher predictive power for stock market returns and financial instability during the financial crisis, suggesting that an extreme volatility period requires models that can adapt quickly to turmoil........ Moreover, a comparison of the overall results reveals that the conditional variance gains predictive power during the global financial crisis period. Furthermore, both the variance risk premium and conditional variance are determined to be predictors of future financial instability, whereas conditional...

  14. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  15. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2014-01-01

    Full Text Available We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.

  16. Variational Variance Reduction for Monte Carlo Criticality Calculations

    International Nuclear Information System (INIS)

    Densmore, Jeffery D.; Larsen, Edward W.

    2001-01-01

    A new variational variance reduction (VVR) method for Monte Carlo criticality calculations was developed. This method employs (a) a variational functional that is more accurate than the standard direct functional, (b) a representation of the deterministically obtained adjoint flux that is especially accurate for optically thick problems with high scattering ratios, and (c) estimates of the forward flux obtained by Monte Carlo. The VVR method requires no nonanalog Monte Carlo biasing, but it may be used in conjunction with Monte Carlo biasing schemes. Some results are presented from a class of criticality calculations involving alternating arrays of fuel and moderator regions

  17. Sources of variance in BC mass measurements from a small marine engine: Influence of the instruments, fuels and loads

    Science.gov (United States)

    Jiang, Yu; Yang, Jiacheng; Gagné, Stéphanie; Chan, Tak W.; Thomson, Kevin; Fofie, Emmanuel; Cary, Robert A.; Rutherford, Dan; Comer, Bryan; Swanson, Jacob; Lin, Yue; Van Rooy, Paul; Asa-Awuku, Akua; Jung, Heejung; Barsanti, Kelley; Karavalakis, Georgios; Cocker, David; Durbin, Thomas D.; Miller, J. Wayne; Johnson, Kent C.

    2018-06-01

    Knowledge of black carbon (BC) emission factors from ships is important from human health and environmental perspectives. A study of instruments measuring BC and fuels typically used in marine operation was carried out on a small marine engine. Six analytical methods measured the BC emissions in the exhaust of the marine engine operated at two load points (25% and 75%) while burning one of three fuels: a distillate marine (DMA), a low sulfur, residual marine (RMB-30) and a high-sulfur residual marine (RMG-380). The average emission factors with all instruments increased from 0.08 to 1.88 gBC/kg fuel in going from 25 to 75% load. An analysis of variance (ANOVA) tested BC emissions against instrument, load, and combined fuel properties and showed that both engine load and fuels had a statistically significant impact on BC emission factors. While BC emissions were impacted by the fuels used, none of the fuel properties investigated (sulfur content, viscosity, carbon residue and CCAI) was a primary driver for BC emissions. Of the two residual fuels, RMB-30 with the lower sulfur content, lower viscosity and lower residual carbon, had the highest BC emission factors. BC emission factors determined with the different instruments showed a good correlation with the PAS values with correlation coefficients R2 >0.95. A key finding of this research is the relative BC measured values were mostly independent of load and fuel, except for some instruments in certain fuel and load combinations.

  18. An Analysis of Variance Approach for the Estimation of Response Time Distributions in Tests

    Science.gov (United States)

    Attali, Yigal

    2010-01-01

    Generalizability theory and analysis of variance methods are employed, together with the concept of objective time pressure, to estimate response time distributions and the degree of time pressure in timed tests. By estimating response time variance components due to person, item, and their interaction, and fixed effects due to item types and…

  19. Realized Variance and Market Microstructure Noise

    DEFF Research Database (Denmark)

    Hansen, Peter R.; Lunde, Asger

    2006-01-01

    We study market microstructure noise in high-frequency data and analyze its implications for the realized variance (RV) under a general specification for the noise. We show that kernel-based estimators can unearth important characteristics of market microstructure noise and that a simple kernel......-based estimator dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones Industrial Average stocks reveals that market microstructure noise its time-dependent and correlated with increments in the efficient price. This has important implications for volatility...... estimation based on high-frequency data. Finally, we apply cointegration techniques to decompose transaction prices and bid-ask quotes into an estimate of the efficient price and noise. This framework enables us to study the dynamic effects on transaction prices and quotes caused by changes in the efficient...

  20. Variance analysis refines overhead cost control.

    Science.gov (United States)

    Cooper, J C; Suver, J D

    1992-02-01

    Many healthcare organizations may not fully realize the benefits of standard cost accounting techniques because they fail to routinely report volume variances in their internal reports. If overhead allocation is routinely reported on internal reports, managers can determine whether billing remains current or lost charges occur. Healthcare organizations' use of standard costing techniques can lead to more realistic performance measurements and information system improvements that alert management to losses from unrecovered overhead in time for corrective action.

  1. The Genealogical Consequences of Fecundity Variance Polymorphism

    Science.gov (United States)

    Taylor, Jesse E.

    2009-01-01

    The genealogical consequences of within-generation fecundity variance polymorphism are studied using coalescent processes structured by genetic backgrounds. I show that these processes have three distinctive features. The first is that the coalescent rates within backgrounds are not jointly proportional to the infinitesimal variance, but instead depend only on the frequencies and traits of genotypes containing each allele. Second, the coalescent processes at unlinked loci are correlated with the genealogy at the selected locus; i.e., fecundity variance polymorphism has a genomewide impact on genealogies. Third, in diploid models, there are infinitely many combinations of fecundity distributions that have the same diffusion approximation but distinct coalescent processes; i.e., in this class of models, ancestral processes and allele frequency dynamics are not in one-to-one correspondence. Similar properties are expected to hold in models that allow for heritable variation in other traits that affect the coalescent effective population size, such as sex ratio or fecundity and survival schedules. PMID:19433628

  2. Robust LOD scores for variance component-based linkage analysis.

    Science.gov (United States)

    Blangero, J; Williams, J T; Almasy, L

    2000-01-01

    The variance component method is now widely used for linkage analysis of quantitative traits. Although this approach offers many advantages, the importance of the underlying assumption of multivariate normality of the trait distribution within pedigrees has not been studied extensively. Simulation studies have shown that traits with leptokurtic distributions yield linkage test statistics that exhibit excessive Type I error when analyzed naively. We derive analytical formulae relating the deviation from the expected asymptotic distribution of the lod score to the kurtosis and total heritability of the quantitative trait. A simple correction constant yields a robust lod score for any deviation from normality and for any pedigree structure, and effectively eliminates the problem of inflated Type I error due to misspecification of the underlying probability model in variance component-based linkage analysis.

  3. Replica approach to mean-variance portfolio optimization

    Science.gov (United States)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  4. Variance Component Selection With Applications to Microbiome Taxonomic Data

    Directory of Open Access Journals (Sweden)

    Jing Zhai

    2018-03-01

    Full Text Available High-throughput sequencing technology has enabled population-based studies of the role of the human microbiome in disease etiology and exposure response. Microbiome data are summarized as counts or composition of the bacterial taxa at different taxonomic levels. An important problem is to identify the bacterial taxa that are associated with a response. One method is to test the association of specific taxon with phenotypes in a linear mixed effect model, which incorporates phylogenetic information among bacterial communities. Another type of approaches consider all taxa in a joint model and achieves selection via penalization method, which ignores phylogenetic information. In this paper, we consider regression analysis by treating bacterial taxa at different level as multiple random effects. For each taxon, a kernel matrix is calculated based on distance measures in the phylogenetic tree and acts as one variance component in the joint model. Then taxonomic selection is achieved by the lasso (least absolute shrinkage and selection operator penalty on variance components. Our method integrates biological information into the variable selection problem and greatly improves selection accuracies. Simulation studies demonstrate the superiority of our methods versus existing methods, for example, group-lasso. Finally, we apply our method to a longitudinal microbiome study of Human Immunodeficiency Virus (HIV infected patients. We implement our method using the high performance computing language Julia. Software and detailed documentation are freely available at https://github.com/JingZhai63/VCselection.

  5. Minimum variance and variance of outgoing quality limit MDS-1(c1, c2) plans

    Science.gov (United States)

    Raju, C.; Vidya, R.

    2016-06-01

    In this article, the outgoing quality (OQ) and total inspection (TI) of multiple deferred state sampling plans MDS-1(c1,c2) are studied. It is assumed that the inspection is rejection rectification. Procedures for designing MDS-1(c1,c2) sampling plans with minimum variance of OQ and TI are developed. A procedure for obtaining a plan for a designated upper limit for the variance of the OQ (VOQL) is outlined.

  6. Assessment of ulnar variance: a radiological investigation in a Dutch population

    Energy Technology Data Exchange (ETDEWEB)

    Schuurman, A.H. [Dept. of Plastic, Reconstructive and Hand Surgery, University Medical Centre, Utrecht (Netherlands); Dept. of Plastic Surgery, University Medical Centre, Utrecht (Netherlands); Maas, M.; Dijkstra, P.F. [Dept. of Radiology, Univ. of Amsterdam (Netherlands); Kauer, J.M.G. [Dept. of Anatomy and Embryology, Univ. of Nijmegen (Netherlands)

    2001-11-01

    Objective: A radiological study was performed to evaluate ulnar variance in 68 Dutch patients using an electronic digitizer compared with Palmer's concentric circle method. Using the digitizer method only, the effect of different wrist positions and grip on ulnar variance was then investigated. Finally the distribution of ulnar variance in the selected patients was investigated also using the digitizer method. Design and patients: All radiographs were performed with the wrist in a standard zero-rotation position (posteroanterior) and in supination (anteroposterior). Palmer's concentric circle method and an electronic digitizer connected to a personal computer were used to measure ulnar variance. The digitizer consists of a Plexiglas plate with an electronically activated grid beneath it. A radiograph is placed on the plate and a cursor activates a point on the grid. Three plots are marked on the radius and one plot on the most distal part of the ulnar head. The digitizer then determines the difference between a radius passing through the radius plots and the ulnar plot. Results and conclusions: Using the concentric circle method we found an ulna plus predominance, but an ulna minus predominance when using the digitizer method. Overall the ulnar variance distribution for Palmer's method was 41.9% ulna plus, 25.7% neutral and 32.4% ulna minus variance, and for the digitizer method was 40.4% ulna plus, 1.5% neutral and 58.1% ulna minus. The percentage ulnar variance greater than 1 mm on standard radiographs increased from 23% to 58% using the digitizer, with maximum grip, clearly demonstrating the (dynamic) effect of grip on ulnar variance. This almost threefold increase was found to be a significant difference. Significant differences were found between ulnar variance when different wrist positions were compared. (orig.)

  7. Optimizing Injection Molding Parameters of Different Halloysites Type-Reinforced Thermoplastic Polyurethane Nanocomposites via Taguchi Complemented with ANOVA

    Directory of Open Access Journals (Sweden)

    Tayser Sumer Gaaz

    2016-11-01

    Taguchi and ANOVA approaches. Seemingly, mHNTs has shown its very important role in the resulting product.

  8. Estimation of noise-free variance to measure heterogeneity.

    Directory of Open Access Journals (Sweden)

    Tilo Winkler

    Full Text Available Variance is a statistical parameter used to characterize heterogeneity or variability in data sets. However, measurements commonly include noise, as random errors superimposed to the actual value, which may substantially increase the variance compared to a noise-free data set. Our aim was to develop and validate a method to estimate noise-free spatial heterogeneity of pulmonary perfusion using dynamic positron emission tomography (PET scans. On theoretical grounds, we demonstrate a linear relationship between the total variance of a data set derived from averages of n multiple measurements, and the reciprocal of n. Using multiple measurements with varying n yields estimates of the linear relationship including the noise-free variance as the constant parameter. In PET images, n is proportional to the number of registered decay events, and the variance of the image is typically normalized by the square of its mean value yielding a coefficient of variation squared (CV(2. The method was evaluated with a Jaszczak phantom as reference spatial heterogeneity (CV(r(2 for comparison with our estimate of noise-free or 'true' heterogeneity (CV(t(2. We found that CV(t(2 was only 5.4% higher than CV(r2. Additional evaluations were conducted on 38 PET scans of pulmonary perfusion using (13NN-saline injection. The mean CV(t(2 was 0.10 (range: 0.03-0.30, while the mean CV(2 including noise was 0.24 (range: 0.10-0.59. CV(t(2 was in average 41.5% of the CV(2 measured including noise (range: 17.8-71.2%. The reproducibility of CV(t(2 was evaluated using three repeated PET scans from five subjects. Individual CV(t(2 were within 16% of each subject's mean and paired t-tests revealed no difference among the results from the three consecutive PET scans. In conclusion, our method provides reliable noise-free estimates of CV(t(2 in PET scans, and may be useful for similar statistical problems in experimental data.

  9. A general transform for variance reduction in Monte Carlo simulations

    International Nuclear Information System (INIS)

    Becker, T.L.; Larsen, E.W.

    2011-01-01

    This paper describes a general transform to reduce the variance of the Monte Carlo estimate of some desired solution, such as flux or biological dose. This transform implicitly includes many standard variance reduction techniques, including source biasing, collision biasing, the exponential transform for path-length stretching, and weight windows. Rather than optimizing each of these techniques separately or choosing semi-empirical biasing parameters based on the experience of a seasoned Monte Carlo practitioner, this General Transform unites all these variance techniques to achieve one objective: a distribution of Monte Carlo particles that attempts to optimize the desired solution. Specifically, this transform allows Monte Carlo particles to be distributed according to the user's specification by using information obtained from a computationally inexpensive deterministic simulation of the problem. For this reason, we consider the General Transform to be a hybrid Monte Carlo/Deterministic method. The numerical results con rm that the General Transform distributes particles according to the user-specified distribution and generally provide reasonable results for shielding applications. (author)

  10. Modality-Driven Classification and Visualization of Ensemble Variance

    Energy Technology Data Exchange (ETDEWEB)

    Bensema, Kevin; Gosink, Luke; Obermaier, Harald; Joy, Kenneth I.

    2016-10-01

    Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. We apply a similar method to time-varying ensembles to illustrate the relationship between peak variance and bimodal or multimodal behavior. These classification schemes enable a deeper understanding of the behavior of the ensemble members by distinguishing between distributions that can be described by a single tendency and distributions which reflect divergent trends in the ensemble.

  11. Visual SLAM Using Variance Grid Maps

    Science.gov (United States)

    Howard, Andrew B.; Marks, Tim K.

    2011-01-01

    An algorithm denoted Gamma-SLAM performs further processing, in real time, of preprocessed digitized images acquired by a stereoscopic pair of electronic cameras aboard an off-road robotic ground vehicle to build accurate maps of the terrain and determine the location of the vehicle with respect to the maps. Part of the name of the algorithm reflects the fact that the process of building the maps and determining the location with respect to them is denoted simultaneous localization and mapping (SLAM). Most prior real-time SLAM algorithms have been limited in applicability to (1) systems equipped with scanning laser range finders as the primary sensors in (2) indoor environments (or relatively simply structured outdoor environments). The few prior vision-based SLAM algorithms have been feature-based and not suitable for real-time applications and, hence, not suitable for autonomous navigation on irregularly structured terrain. The Gamma-SLAM algorithm incorporates two key innovations: Visual odometry (in contradistinction to wheel odometry) is used to estimate the motion of the vehicle. An elevation variance map (in contradistinction to an occupancy or an elevation map) is used to represent the terrain. The Gamma-SLAM algorithm makes use of a Rao-Blackwellized particle filter (RBPF) from Bayesian estimation theory for maintaining a distribution over poses and maps. The core idea of the RBPF approach is that the SLAM problem can be factored into two parts: (1) finding the distribution over robot trajectories, and (2) finding the map conditioned on any given trajectory. The factorization involves the use of a particle filter in which each particle encodes both a possible trajectory and a map conditioned on that trajectory. The base estimate of the trajectory is derived from visual odometry, and the map conditioned on that trajectory is a Cartesian grid of elevation variances. In comparison with traditional occupancy or elevation grid maps, the grid elevation variance

  12. Markov bridges, bisection and variance reduction

    DEFF Research Database (Denmark)

    Asmussen, Søren; Hobolth, Asger

    . In this paper we firstly consider the problem of generating sample paths from a continuous-time Markov chain conditioned on the endpoints using a new algorithm based on the idea of bisection. Secondly we study the potential of the bisection algorithm for variance reduction. In particular, examples are presented......Time-continuous Markov jump processes is a popular modelling tool in disciplines ranging from computational finance and operations research to human genetics and genomics. The data is often sampled at discrete points in time, and it can be useful to simulate sample paths between the datapoints...

  13. The value of travel time variance

    OpenAIRE

    Fosgerau, Mogens; Engelson, Leonid

    2010-01-01

    This paper considers the value of travel time variability under scheduling preferences that are de�fined in terms of linearly time-varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can free...

  14. Analysis of conditional genetic effects and variance components in developmental genetics.

    Science.gov (United States)

    Zhu, J

    1995-12-01

    A genetic model with additive-dominance effects and genotype x environment interactions is presented for quantitative traits with time-dependent measures. The genetic model for phenotypic means at time t conditional on phenotypic means measured at previous time (t-1) is defined. Statistical methods are proposed for analyzing conditional genetic effects and conditional genetic variance components. Conditional variances can be estimated by minimum norm quadratic unbiased estimation (MINQUE) method. An adjusted unbiased prediction (AUP) procedure is suggested for predicting conditional genetic effects. A worked example from cotton fruiting data is given for comparison of unconditional and conditional genetic variances and additive effects.

  15. Parameter uncertainty effects on variance-based sensitivity analysis

    International Nuclear Information System (INIS)

    Yu, W.; Harris, T.J.

    2009-01-01

    In the past several years there has been considerable commercial and academic interest in methods for variance-based sensitivity analysis. The industrial focus is motivated by the importance of attributing variance contributions to input factors. A more complete understanding of these relationships enables companies to achieve goals related to quality, safety and asset utilization. In a number of applications, it is possible to distinguish between two types of input variables-regressive variables and model parameters. Regressive variables are those that can be influenced by process design or by a control strategy. With model parameters, there are typically no opportunities to directly influence their variability. In this paper, we propose a new method to perform sensitivity analysis through a partitioning of the input variables into these two groupings: regressive variables and model parameters. A sequential analysis is proposed, where first an sensitivity analysis is performed with respect to the regressive variables. In the second step, the uncertainty effects arising from the model parameters are included. This strategy can be quite useful in understanding process variability and in developing strategies to reduce overall variability. When this method is used for nonlinear models which are linear in the parameters, analytical solutions can be utilized. In the more general case of models that are nonlinear in both the regressive variables and the parameters, either first order approximations can be used, or numerically intensive methods must be used

  16. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, S.; Hoogenboom, J. E. [Delft Univ. of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2006-07-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  17. A zero-variance-based scheme for variance reduction in Monte Carlo criticality

    International Nuclear Information System (INIS)

    Christoforou, S.; Hoogenboom, J. E.

    2006-01-01

    A zero-variance scheme is derived and proven theoretically for criticality cases, and a simplified transport model is used for numerical demonstration. It is shown in practice that by appropriate biasing of the transition and collision kernels, a significant reduction in variance can be achieved. This is done using the adjoint forms of the emission and collision densities, obtained from a deterministic calculation, according to the zero-variance scheme. By using an appropriate algorithm, the figure of merit of the simulation increases by up to a factor of 50, with the possibility of an even larger improvement. In addition, it is shown that the biasing speeds up the convergence of the initial source distribution. (authors)

  18. Exploring variance in residential electricity consumption: Household features and building properties

    International Nuclear Information System (INIS)

    Bartusch, Cajsa; Odlare, Monica; Wallin, Fredrik; Wester, Lars

    2012-01-01

    Highlights: ► Statistical analysis of variance are of considerable value in identifying key indicators for policy update. ► Variance in residential electricity use is partly explained by household features. ► Variance in residential electricity use is partly explained by building properties. ► Household behavior has a profound impact on individual electricity use. -- Abstract: Improved means of controlling electricity consumption plays an important part in boosting energy efficiency in the Swedish power market. Developing policy instruments to that end requires more in-depth statistics on electricity use in the residential sector, among other things. The aim of the study has accordingly been to assess the extent of variance in annual electricity consumption in single-family homes as well as to estimate the impact of household features and building properties in this respect using independent samples t-tests and one-way as well as univariate independent samples analyses of variance. Statistically significant variances associated with geographic area, heating system, number of family members, family composition, year of construction, electric water heater and electric underfloor heating have been established. The overall result of the analyses is nevertheless that variance in residential electricity consumption cannot be fully explained by independent variables related to household and building characteristics alone. As for the methodological approach, the results further suggest that methods for statistical analysis of variance are of considerable value in indentifying key indicators for policy update and development.

  19. A proxy for variance in dense matching over homogeneous terrain

    Science.gov (United States)

    Altena, Bas; Cockx, Liesbet; Goedemé, Toon

    2014-05-01

    variance in intensity, the topography was reconstructed entirely. This indicates that to a large extent interpolation was applied. To assess this amount of interpolation processing is done with imagery which is gradually downgraded. Through linking these products with the variance indicator (SNR) this results in a quantitative relation of the interpolation influence onto the topography estimation in respect to contrast. Our proposed method is capable of providing a clear indication of variance in reconstructions from UAV photogrammetry. This indicator has a practical advantage, as it can be implemented before the computational intensive matching phase. As such an acquired dataset can be tested in the field. If an area with too little contrast is identified, camera settings can be adjusted for a new flight, or additional measurements can be done through traditional means.

  20. The derivative based variance sensitivity analysis for the distribution parameters and its computation

    International Nuclear Information System (INIS)

    Wang, Pan; Lu, Zhenzhou; Ren, Bo; Cheng, Lei

    2013-01-01

    The output variance is an important measure for the performance of a structural system, and it is always influenced by the distribution parameters of inputs. In order to identify the influential distribution parameters and make it clear that how those distribution parameters influence the output variance, this work presents the derivative based variance sensitivity decomposition according to Sobol′s variance decomposition, and proposes the derivative based main and total sensitivity indices. By transforming the derivatives of various orders variance contributions into the form of expectation via kernel function, the proposed main and total sensitivity indices can be seen as the “by-product” of Sobol′s variance based sensitivity analysis without any additional output evaluation. Since Sobol′s variance based sensitivity indices have been computed efficiently by the sparse grid integration method, this work also employs the sparse grid integration method to compute the derivative based main and total sensitivity indices. Several examples are used to demonstrate the rationality of the proposed sensitivity indices and the accuracy of the applied method

  1. Variance Risk Premia on Stocks and Bonds

    DEFF Research Database (Denmark)

    Mueller, Philippe; Sabtchevsky, Petar; Vedolin, Andrea

    We study equity (EVRP) and Treasury variance risk premia (TVRP) jointly and document a number of findings: First, relative to their volatility, TVRP are comparable in magnitude to EVRP. Second, while there is mild positive co-movement between EVRP and TVRP unconditionally, time series estimates...... equity returns for horizons up to 6-months, long maturity TVRP contain robust information for long run equity returns. Finally, exploiting the dynamics of real and nominal Treasuries we document that short maturity break-even rates are a power determinant of the joint dynamics of EVRP, TVRP and their co-movement...... of correlation display distinct spikes in both directions and have been notably volatile since the financial crisis. Third $(i)$ short maturity TVRP predict excess returns on short maturity bonds; $(ii)$ long maturity TVRP and EVRP predict excess returns on long maturity bonds; and $(iii)$ while EVRP predict...

  2. The value of travel time variance

    DEFF Research Database (Denmark)

    Fosgerau, Mogens; Engelson, Leonid

    2011-01-01

    This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability...... that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending...... on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time....

  3. Kriging with Unknown Variance Components for Regional Ionospheric Reconstruction

    Directory of Open Access Journals (Sweden)

    Ling Huang

    2017-02-01

    Full Text Available Ionospheric delay effect is a critical issue that limits the accuracy of precise Global Navigation Satellite System (GNSS positioning and navigation for single-frequency users, especially in mid- and low-latitude regions where variations in the ionosphere are larger. Kriging spatial interpolation techniques have been recently introduced to model the spatial correlation and variability of ionosphere, which intrinsically assume that the ionosphere field is stochastically stationary but does not take the random observational errors into account. In this paper, by treating the spatial statistical information on ionosphere as prior knowledge and based on Total Electron Content (TEC semivariogram analysis, we use Kriging techniques to spatially interpolate TEC values. By assuming that the stochastic models of both the ionospheric signals and measurement errors are only known up to some unknown factors, we propose a new Kriging spatial interpolation method with unknown variance components for both the signals of ionosphere and TEC measurements. Variance component estimation has been integrated with Kriging to reconstruct regional ionospheric delays. The method has been applied to data from the Crustal Movement Observation Network of China (CMONOC and compared with the ordinary Kriging and polynomial interpolations with spherical cap harmonic functions, polynomial functions and low-degree spherical harmonic functions. The statistics of results indicate that the daily ionospheric variations during the experimental period characterized by the proposed approach have good agreement with the other methods, ranging from 10 to 80 TEC Unit (TECU, 1 TECU = 1 × 1016 electrons/m2 with an overall mean of 28.2 TECU. The proposed method can produce more appropriate estimations whose general TEC level is as smooth as the ordinary Kriging but with a smaller standard deviation around 3 TECU than others. The residual results show that the interpolation precision of the

  4. Variance analysis of forecasted streamflow maxima in a wet temperate climate

    Science.gov (United States)

    Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.

    2018-05-01

    Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.

  5. 76 FR 78698 - Proposed Revocation of Permanent Variances

    Science.gov (United States)

    2011-12-19

    ... Administration (``OSHA'' or ``the Agency'') granted permanent variances to 24 companies engaged in the... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2011-0054] Proposed Revocation of Permanent Variances AGENCY: Occupational Safety and Health Administration (OSHA...

  6. variance components and genetic parameters for live weight

    African Journals Online (AJOL)

    admin

    Against this background the present study estimated the (co)variance .... Starting values for the (co)variance components of two-trait models were ..... Estimates of genetic parameters for weaning weight of beef accounting for direct-maternal.

  7. The Distribution of the Sample Minimum-Variance Frontier

    OpenAIRE

    Raymond Kan; Daniel R. Smith

    2008-01-01

    In this paper, we present a finite sample analysis of the sample minimum-variance frontier under the assumption that the returns are independent and multivariate normally distributed. We show that the sample minimum-variance frontier is a highly biased estimator of the population frontier, and we propose an improved estimator of the population frontier. In addition, we provide the exact distribution of the out-of-sample mean and variance of sample minimum-variance portfolios. This allows us t...

  8. Variance decomposition-based sensitivity analysis via neural networks

    International Nuclear Information System (INIS)

    Marseguerra, Marzio; Masini, Riccardo; Zio, Enrico; Cojazzi, Giacomo

    2003-01-01

    This paper illustrates a method for efficiently performing multiparametric sensitivity analyses of the reliability model of a given system. These analyses are of great importance for the identification of critical components in highly hazardous plants, such as the nuclear or chemical ones, thus providing significant insights for their risk-based design and management. The technique used to quantify the importance of a component parameter with respect to the system model is based on a classical decomposition of the variance. When the model of the system is realistically complicated (e.g. by aging, stand-by, maintenance, etc.), its analytical evaluation soon becomes impractical and one is better off resorting to Monte Carlo simulation techniques which, however, could be computationally burdensome. Therefore, since the variance decomposition method requires a large number of system evaluations, each one to be performed by Monte Carlo, the need arises for possibly substituting the Monte Carlo simulation model with a fast, approximated, algorithm. Here we investigate an approach which makes use of neural networks appropriately trained on the results of a Monte Carlo system reliability/availability evaluation to quickly provide with reasonable approximation, the values of the quantities of interest for the sensitivity analyses. The work was a joint effort between the Department of Nuclear Engineering of the Polytechnic of Milan, Italy, and the Institute for Systems, Informatics and Safety, Nuclear Safety Unit of the Joint Research Centre in Ispra, Italy which sponsored the project

  9. Dynamics of Variance Risk Premia, Investors' Sentiment and Return Predictability

    DEFF Research Database (Denmark)

    Rombouts, Jerome V.K.; Stentoft, Lars; Violante, Francesco

    We develop a joint framework linking the physical variance and its risk neutral expectation implying variance risk premia that are persistent, appropriately reacting to changes in level and variability of the variance and naturally satisfying the sign constraint. Using option market data and real...... events and only marginally by the premium associated with normal price fluctuations....

  10. An Empirical Temperature Variance Source Model in Heated Jets

    Science.gov (United States)

    Khavaran, Abbas; Bridges, James

    2012-01-01

    An acoustic analogy approach is implemented that models the sources of jet noise in heated jets. The equivalent sources of turbulent mixing noise are recognized as the differences between the fluctuating and Favre-averaged Reynolds stresses and enthalpy fluxes. While in a conventional acoustic analogy only Reynolds stress components are scrutinized for their noise generation properties, it is now accepted that a comprehensive source model should include the additional entropy source term. Following Goldstein s generalized acoustic analogy, the set of Euler equations are divided into two sets of equations that govern a non-radiating base flow plus its residual components. When the base flow is considered as a locally parallel mean flow, the residual equations may be rearranged to form an inhomogeneous third-order wave equation. A general solution is written subsequently using a Green s function method while all non-linear terms are treated as the equivalent sources of aerodynamic sound and are modeled accordingly. In a previous study, a specialized Reynolds-averaged Navier-Stokes (RANS) solver was implemented to compute the variance of thermal fluctuations that determine the enthalpy flux source strength. The main objective here is to present an empirical model capable of providing a reasonable estimate of the stagnation temperature variance in a jet. Such a model is parameterized as a function of the mean stagnation temperature gradient in the jet, and is evaluated using commonly available RANS solvers. The ensuing thermal source distribution is compared with measurements as well as computational result from a dedicated RANS solver that employs an enthalpy variance and dissipation rate model. Turbulent mixing noise predictions are presented for a wide range of jet temperature ratios from 1.0 to 3.20.

  11. Numerical experiment on variance biases and Monte Carlo neutronics analysis with thermal hydraulic feedback

    International Nuclear Information System (INIS)

    Hyung, Jin Shim; Beom, Seok Han; Chang, Hyo Kim

    2003-01-01

    Monte Carlo (MC) power method based on the fixed number of fission sites at the beginning of each cycle is known to cause biases in the variances of the k-eigenvalue (keff) and the fission reaction rate estimates. Because of the biases, the apparent variances of keff and the fission reaction rate estimates from a single MC run tend to be smaller or larger than the real variances of the corresponding quantities, depending on the degree of the inter-generational correlation of the sample. We demonstrate this through a numerical experiment involving 100 independent MC runs for the neutronics analysis of a 17 x 17 fuel assembly of a pressurized water reactor (PWR). We also demonstrate through the numerical experiment that Gelbard and Prael's batch method and Ueki et al's covariance estimation method enable one to estimate the approximate real variances of keff and the fission reaction rate estimates from a single MC run. We then show that the use of the approximate real variances from the two-bias predicting methods instead of the apparent variances provides an efficient MC power iteration scheme that is required in the MC neutronics analysis of a real system to determine the pin power distribution consistent with the thermal hydraulic (TH) conditions of individual pins of the system. (authors)

  12. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  13. A New Approach for Predicting the Variance of Random Decrement Functions

    DEFF Research Database (Denmark)

    Asmussen, J. C.; Brincker, Rune

    1998-01-01

    mean Gaussian distributed processes the RD functions are proportional to the correlation functions of the processes. If a linear structur is loaded by Gaussian white noise the modal parameters can be extracted from the correlation funtions of the response, only. One of the weaknesses of the RD...... technique is that no consistent approach to estimate the variance of the RD functions is known. Only approximate relations are available, which can only be used under special conditions. The variance of teh RD functions contains valuable information about accuracy of the estimates. Furthermore, the variance...... can be used as basis for a decision about how many time lags from the RD funtions should be used in the modal parameter extraction procedure. This paper suggests a new method for estimating the variance of the RD functions. The method is consistent in the sense that the accuracy of the approach...

  14. Enhancement of high-energy distribution tail in Monte Carlo semiconductor simulations using a Variance Reduction Scheme

    Directory of Open Access Journals (Sweden)

    Vincenza Di Stefano

    2009-11-01

    Full Text Available The Multicomb variance reduction technique has been introduced in the Direct Monte Carlo Simulation for submicrometric semiconductor devices. The method has been implemented in bulk silicon. The simulations show that the statistical variance of hot electrons is reduced with some computational cost. The method is efficient and easy to implement in existing device simulators.

  15. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    Directory of Open Access Journals (Sweden)

    Daheng Peng

    2017-10-01

    Full Text Available In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  16. An unbiased estimator of the variance of simple random sampling using mixed random-systematic sampling

    OpenAIRE

    Padilla, Alberto

    2009-01-01

    Systematic sampling is a commonly used technique due to its simplicity and ease of implementation. The drawback of this simplicity is that it is not possible to estimate the design variance without bias. There are several ways to circumvent this problem. One method is to suppose that the variable of interest has a random order in the population, so the sample variance of simple random sampling without replacement is used. By means of a mixed random - systematic sample, an unbiased estimator o...

  17. Mean-variance Optimal Reinsurance-investment Strategy in Continuous Time

    OpenAIRE

    Daheng Peng; Fang Zhang

    2017-01-01

    In this paper, Lagrange method is used to solve the continuous-time mean-variance reinsurance-investment problem. Proportional reinsurance, multiple risky assets and risk-free asset are considered synthetically in the optimal strategy for insurers. By solving the backward stochastic differential equation for the Lagrange multiplier, we get the mean-variance optimal reinsurance-investment strategy and its effective frontier in explicit forms.

  18. Automatic Bayes Factors for Testing Equality- and Inequality-Constrained Hypotheses on Variances.

    Science.gov (United States)

    Böing-Messing, Florian; Mulder, Joris

    2018-05-03

    In comparing characteristics of independent populations, researchers frequently expect a certain structure of the population variances. These expectations can be formulated as hypotheses with equality and/or inequality constraints on the variances. In this article, we consider the Bayes factor for testing such (in)equality-constrained hypotheses on variances. Application of Bayes factors requires specification of a prior under every hypothesis to be tested. However, specifying subjective priors for variances based on prior information is a difficult task. We therefore consider so-called automatic or default Bayes factors. These methods avoid the need for the user to specify priors by using information from the sample data. We present three automatic Bayes factors for testing variances. The first is a Bayes factor with equal priors on all variances, where the priors are specified automatically using a small share of the information in the sample data. The second is the fractional Bayes factor, where a fraction of the likelihood is used for automatic prior specification. The third is an adjustment of the fractional Bayes factor such that the parsimony of inequality-constrained hypotheses is properly taken into account. The Bayes factors are evaluated by investigating different properties such as information consistency and large sample consistency. Based on this evaluation, it is concluded that the adjusted fractional Bayes factor is generally recommendable for testing equality- and inequality-constrained hypotheses on variances.

  19. Worldwide variance in the potential utilization of Gamma Knife radiosurgery.

    Science.gov (United States)

    Hamilton, Travis; Dade Lunsford, L

    2016-12-01

    OBJECTIVE The role of Gamma Knife radiosurgery (GKRS) has expanded worldwide during the past 3 decades. The authors sought to evaluate whether experienced users vary in their estimate of its potential use. METHODS Sixty-six current Gamma Knife users from 24 countries responded to an electronic survey. They estimated the potential role of GKRS for benign and malignant tumors, vascular malformations, and functional disorders. These estimates were compared with published disease epidemiological statistics and the 2014 use reports provided by the Leksell Gamma Knife Society (16,750 cases). RESULTS Respondents reported no significant variation in the estimated use in many conditions for which GKRS is performed: meningiomas, vestibular schwannomas, and arteriovenous malformations. Significant variance in the estimated use of GKRS was noted for pituitary tumors, craniopharyngiomas, and cavernous malformations. For many current indications, the authors found significant variance in GKRS users based in the Americas, Europe, and Asia. Experts estimated that GKRS was used in only 8.5% of the 196,000 eligible cases in 2014. CONCLUSIONS Although there was a general worldwide consensus regarding many major indications for GKRS, significant variability was noted for several more controversial roles. This expert opinion survey also suggested that GKRS is significantly underutilized for many current diagnoses, especially in the Americas. Future studies should be conducted to investigate health care barriers to GKRS for many patients.

  20. Hidden temporal order unveiled in stock market volatility variance

    Directory of Open Access Journals (Sweden)

    Y. Shapira

    2011-06-01

    Full Text Available When analyzed by standard statistical methods, the time series of the daily return of financial indices appear to behave as Markov random series with no apparent temporal order or memory. This empirical result seems to be counter intuitive since investor are influenced by both short and long term past market behaviors. Consequently much effort has been devoted to unveil hidden temporal order in the market dynamics. Here we show that temporal order is hidden in the series of the variance of the stocks volatility. First we show that the correlation between the variances of the daily returns and means of segments of these time series is very large and thus cannot be the output of random series, unless it has some temporal order in it. Next we show that while the temporal order does not show in the series of the daily return, rather in the variation of the corresponding volatility series. More specifically, we found that the behavior of the shuffled time series is equivalent to that of a random time series, while that of the original time series have large deviations from the expected random behavior, which is the result of temporal structure. We found the same generic behavior in 10 different stock markets from 7 different countries. We also present analysis of specially constructed sequences in order to better understand the origin of the observed temporal order in the market sequences. Each sequence was constructed from segments with equal number of elements taken from algebraic distributions of three different slopes.

  1. MENENTUKAN PORTOFOLIO OPTIMAL MENGGUNAKAN MODEL CONDITIONAL MEAN VARIANCE

    Directory of Open Access Journals (Sweden)

    I GEDE ERY NISCAHYANA

    2016-08-01

    Full Text Available When the returns of stock prices show the existence of autocorrelation and heteroscedasticity, then conditional mean variance models are suitable method to model the behavior of the stocks. In this thesis, the implementation of the conditional mean variance model to the autocorrelated and heteroscedastic return was discussed. The aim of this thesis was to assess the effect of the autocorrelated and heteroscedastic returns to the optimal solution of a portfolio. The margin of four stocks, Fortune Mate Indonesia Tbk (FMII.JK, Bank Permata Tbk (BNLI.JK, Suryamas Dutamakmur Tbk (SMDM.JK dan Semen Gresik Indonesia Tbk (SMGR.JK were estimated by GARCH(1,1 model with standard innovations following the standard normal distribution and the t-distribution.  The estimations were used to construct a portfolio. The portfolio optimal was found when the standard innovation used was t-distribution with the standard deviation of 1.4532 and the mean of 0.8023 consisting of 0.9429 (94% of FMII stock, 0.0473 (5% of  BNLI stock, 0% of SMDM stock, 1% of  SMGR stock.

  2. Mean-Variance-Validation Technique for Sequential Kriging Metamodels

    International Nuclear Information System (INIS)

    Lee, Tae Hee; Kim, Ho Sung

    2010-01-01

    The rigorous validation of the accuracy of metamodels is an important topic in research on metamodel techniques. Although a leave-k-out cross-validation technique involves a considerably high computational cost, it cannot be used to measure the fidelity of metamodels. Recently, the mean 0 validation technique has been proposed to quantitatively determine the accuracy of metamodels. However, the use of mean 0 validation criterion may lead to premature termination of a sampling process even if the kriging model is inaccurate. In this study, we propose a new validation technique based on the mean and variance of the response evaluated when sequential sampling method, such as maximum entropy sampling, is used. The proposed validation technique is more efficient and accurate than the leave-k-out cross-validation technique, because instead of performing numerical integration, the kriging model is explicitly integrated to accurately evaluate the mean and variance of the response evaluated. The error in the proposed validation technique resembles a root mean squared error, thus it can be used to determine a stop criterion for sequential sampling of metamodels

  3. PET image reconstruction: mean, variance, and optimal minimax criterion

    International Nuclear Information System (INIS)

    Liu, Huafeng; Guo, Min; Gao, Fei; Shi, Pengcheng; Xue, Liying; Nie, Jing

    2015-01-01

    Given the noise nature of positron emission tomography (PET) measurements, it is critical to know the image quality and reliability as well as expected radioactivity map (mean image) for both qualitative interpretation and quantitative analysis. While existing efforts have often been devoted to providing only the reconstructed mean image, we present a unified framework for joint estimation of the mean and corresponding variance of the radioactivity map based on an efficient optimal min–max criterion. The proposed framework formulates the PET image reconstruction problem to be a transformation from system uncertainties to estimation errors, where the minimax criterion is adopted to minimize the estimation errors with possibly maximized system uncertainties. The estimation errors, in the form of a covariance matrix, express the measurement uncertainties in a complete way. The framework is then optimized by ∞-norm optimization and solved with the corresponding H ∞ filter. Unlike conventional statistical reconstruction algorithms, that rely on the statistical modeling methods of the measurement data or noise, the proposed joint estimation stands from the point of view of signal energies and can handle from imperfect statistical assumptions to even no a priori statistical assumptions. The performance and accuracy of reconstructed mean and variance images are validated using Monte Carlo simulations. Experiments on phantom scans with a small animal PET scanner and real patient scans are also conducted for assessment of clinical potential. (paper)

  4. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    Science.gov (United States)

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  5. Optimization of Process Parameters During Drilling of Glass-Fiber Polyester Reinforced Composites Using DOE and ANOVA

    Directory of Open Access Journals (Sweden)

    N.S. Mohan

    2010-09-01

    Full Text Available Polymer-based composite material possesses superior properties such as high strength-to-weight ratio, stiffness-to-weight ratio and good corrosive resistance and therefore, is attractive for high performance applications such as in aerospace, defense and sport goods industries. Drilling is one of the indispensable methods for building products with composite panels. Surface quality and dimensional accuracy play an important role in the performance of a machined component. In machining processes, however, the quality of the component is greatly influenced by the cutting conditions, tool geometry, tool material, machining process, chip formation, work piece material, tool wear and vibration during cutting. Drilling tests were conducted on glass fiber reinforced plastic composite [GFRP] laminates using an instrumented CNC milling center. A series of experiments are conducted using TRIAC VMC CNC machining center to correlate the cutting parameters and material parameters on the cutting thrust, torque and surface roughness. The measured results were collected and analyzed with the help of the commercial software packages MINITAB14 and Taly Profile. The surface roughness of the drilled holes was measured using Rank Taylor Hobson Surtronic 3+ instrument. The method could be useful in predicting thrust, torque and surface roughness parameters as a function of process variables. The main objective is to optimize the process parameters to achieve low cutting thrust, torque and good surface roughness. From the analysis it is evident that among all the significant parameters, speed and drill size have significant influence cutting thrust and drill size and specimen thickness on the torque and surface roughness. It was also found that feed rate does not have significant influence on the characteristic output of the drilling process.

  6. Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation

    Directory of Open Access Journals (Sweden)

    Y. Tang

    2007-01-01

    Full Text Available This study seeks to identify sensitivity tools that will advance our understanding of lumped hydrologic models for the purposes of model improvement, calibration efficiency and improved measurement schemes. Four sensitivity analysis methods were tested: (1 local analysis using parameter estimation software (PEST, (2 regional sensitivity analysis (RSA, (3 analysis of variance (ANOVA, and (4 Sobol's method. The methods' relative efficiencies and effectiveness have been analyzed and compared. These four sensitivity methods were applied to the lumped Sacramento soil moisture accounting model (SAC-SMA coupled with SNOW-17. Results from this study characterize model sensitivities for two medium sized watersheds within the Juniata River Basin in Pennsylvania, USA. Comparative results for the 4 sensitivity methods are presented for a 3-year time series with 1 h, 6 h, and 24 h time intervals. The results of this study show that model parameter sensitivities are heavily impacted by the choice of analysis method as well as the model time interval. Differences between the two adjacent watersheds also suggest strong influences of local physical characteristics on the sensitivity methods' results. This study also contributes a comprehensive assessment of the repeatability, robustness, efficiency, and ease-of-implementation of the four sensitivity methods. Overall ANOVA and Sobol's method were shown to be superior to RSA and PEST. Relative to one another, ANOVA has reduced computational requirements and Sobol's method yielded more robust sensitivity rankings.

  7. Investigating the minimum achievable variance in a Monte Carlo criticality calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros; Eduard Hoogenboom, J. [Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2008-07-01

    The sources of variance in a Monte Carlo criticality calculation are identified and their contributions analyzed. A zero-variance configuration is initially simulated using analytically calculated adjoint functions for biasing. From there, the various sources are analyzed. It is shown that the minimum threshold comes from the fact that the fission source is approximated. In addition, the merits of a simple variance reduction method, such as implicit capture, are shown when compared to an analog simulation. Finally, it is shown that when non-exact adjoint functions are used for biasing, the variance reduction is rather insensitive to the quality of the adjoints, suggesting that the generation of the adjoints should have as low CPU cost as possible, in order to o et the CPU cost in the implementation of the biasing of a simulation. (authors)

  8. Comment on Hoffman and Rovine (2007): SPSS MIXED can estimate models with heterogeneous variances.

    Science.gov (United States)

    Weaver, Bruce; Black, Ryan A

    2015-06-01

    Hoffman and Rovine (Behavior Research Methods, 39:101-117, 2007) have provided a very nice overview of how multilevel models can be useful to experimental psychologists. They included two illustrative examples and provided both SAS and SPSS commands for estimating the models they reported. However, upon examining the SPSS syntax for the models reported in their Table 3, we found no syntax for models 2B and 3B, both of which have heterogeneous error variances. Instead, there is syntax that estimates similar models with homogeneous error variances and a comment stating that SPSS does not allow heterogeneous errors. But that is not correct. We provide SPSS MIXED commands to estimate models 2B and 3B with heterogeneous error variances and obtain results nearly identical to those reported by Hoffman and Rovine in their Table 3. Therefore, contrary to the comment in Hoffman and Rovine's syntax file, SPSS MIXED can estimate models with heterogeneous error variances.

  9. Regional sensitivity analysis using revised mean and variance ratio functions

    International Nuclear Information System (INIS)

    Wei, Pengfei; Lu, Zhenzhou; Ruan, Wenbin; Song, Jingwen

    2014-01-01

    The variance ratio function, derived from the contribution to sample variance (CSV) plot, is a regional sensitivity index for studying how much the output deviates from the original mean of model output when the distribution range of one input is reduced and to measure the contribution of different distribution ranges of each input to the variance of model output. In this paper, the revised mean and variance ratio functions are developed for quantifying the actual change of the model output mean and variance, respectively, when one reduces the range of one input. The connection between the revised variance ratio function and the original one is derived and discussed. It is shown that compared with the classical variance ratio function, the revised one is more suitable to the evaluation of model output variance due to reduced ranges of model inputs. A Monte Carlo procedure, which needs only a set of samples for implementing it, is developed for efficiently computing the revised mean and variance ratio functions. The revised mean and variance ratio functions are compared with the classical ones by using the Ishigami function. At last, they are applied to a planar 10-bar structure

  10. Multi-population Genomic Relationships for Estimating Current Genetic Variances Within and Genetic Correlations Between Populations.

    Science.gov (United States)

    Wientjes, Yvonne C J; Bijma, Piter; Vandenplas, Jérémie; Calus, Mario P L

    2017-10-01

    Different methods are available to calculate multi-population genomic relationship matrices. Since those matrices differ in base population, it is anticipated that the method used to calculate genomic relationships affects the estimate of genetic variances, covariances, and correlations. The aim of this article is to define the multi-population genomic relationship matrix to estimate current genetic variances within and genetic correlations between populations. The genomic relationship matrix containing two populations consists of four blocks, one block for population 1, one block for population 2, and two blocks for relationships between the populations. It is known, based on literature, that by using current allele frequencies to calculate genomic relationships within a population, current genetic variances are estimated. In this article, we theoretically derived the properties of the genomic relationship matrix to estimate genetic correlations between populations and validated it using simulations. When the scaling factor of across-population genomic relationships is equal to the product of the square roots of the scaling factors for within-population genomic relationships, the genetic correlation is estimated unbiasedly even though estimated genetic variances do not necessarily refer to the current population. When this property is not met, the correlation based on estimated variances should be multiplied by a correction factor based on the scaling factors. In this study, we present a genomic relationship matrix which directly estimates current genetic variances as well as genetic correlations between populations. Copyright © 2017 by the Genetics Society of America.

  11. Static models, recursive estimators and the zero-variance approach

    KAUST Repository

    Rubino, Gerardo

    2016-01-07

    When evaluating dependability aspects of complex systems, most models belong to the static world, where time is not an explicit variable. These models suffer from the same problems than dynamic ones (stochastic processes), such as the frequent combinatorial explosion of the state spaces. In the Monte Carlo domain, on of the most significant difficulties is the rare event situation. In this talk, we describe this context and a recent technique that appears to be at the top performance level in the area, where we combined ideas that lead to very fast estimation procedures with another approach called zero-variance approximation. Both ideas produced a very efficient method that has the right theoretical property concerning robustness, the Bounded Relative Error one. Some examples illustrate the results.

  12. Estimating the encounter rate variance in distance sampling

    Science.gov (United States)

    Fewster, R.M.; Buckland, S.T.; Burnham, K.P.; Borchers, D.L.; Jupp, P.E.; Laake, J.L.; Thomas, L.

    2009-01-01

    The dominant source of variance in line transect sampling is usually the encounter rate variance. Systematic survey designs are often used to reduce the true variability among different realizations of the design, but estimating the variance is difficult and estimators typically approximate the variance by treating the design as a simple random sample of lines. We explore the properties of different encounter rate variance estimators under random and systematic designs. We show that a design-based variance estimator improves upon the model-based estimator of Buckland et al. (2001, Introduction to Distance Sampling. Oxford: Oxford University Press, p. 79) when transects are positioned at random. However, if populations exhibit strong spatial trends, both estimators can have substantial positive bias under systematic designs. We show that poststratification is effective in reducing this bias. ?? 2008, The International Biometric Society.

  13. Variance swap payoffs, risk premia and extreme market conditions

    DEFF Research Database (Denmark)

    Rombouts, Jeroen V.K.; Stentoft, Lars; Violante, Francesco

    This paper estimates the Variance Risk Premium (VRP) directly from synthetic variance swap payoffs. Since variance swap payoffs are highly volatile, we extract the VRP by using signal extraction techniques based on a state-space representation of our model in combination with a simple economic....... The latter variables and the VRP generate different return predictability on the major US indices. A factor model is proposed to extract a market VRP which turns out to be priced when considering Fama and French portfolios....

  14. Towards a mathematical foundation of minimum-variance theory

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom); Zhang Kewei [SMS, Sussex University, Brighton (United Kingdom); Wei Gang [Mathematical Department, Baptist University, Hong Kong (China)

    2002-08-30

    The minimum-variance theory which accounts for arm and eye movements with noise signal inputs was proposed by Harris and Wolpert (1998 Nature 394 780-4). Here we present a detailed theoretical analysis of the theory and analytical solutions of the theory are obtained. Furthermore, we propose a new version of the minimum-variance theory, which is more realistic for a biological system. For the new version we show numerically that the variance is considerably reduced. (author)

  15. RR-Interval variance of electrocardiogram for atrial fibrillation detection

    Science.gov (United States)

    Nuryani, N.; Solikhah, M.; Nugoho, A. S.; Afdala, A.; Anzihory, E.

    2016-11-01

    Atrial fibrillation is a serious heart problem originated from the upper chamber of the heart. The common indication of atrial fibrillation is irregularity of R peak-to-R-peak time interval, which is shortly called RR interval. The irregularity could be represented using variance or spread of RR interval. This article presents a system to detect atrial fibrillation using variances. Using clinical data of patients with atrial fibrillation attack, it is shown that the variance of electrocardiographic RR interval are higher during atrial fibrillation, compared to the normal one. Utilizing a simple detection technique and variances of RR intervals, we find a good performance of atrial fibrillation detection.

  16. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Ankirchner, Stefan, E-mail: ankirchner@hcm.uni-bonn.de [Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Angewandte Mathematik, Hausdorff Center for Mathematics (Germany); Dermoune, Azzouz, E-mail: Azzouz.Dermoune@math.univ-lille1.fr [Universite des Sciences et Technologies de Lille, Laboratoire Paul Painleve UMR CNRS 8524 (France)

    2011-08-15

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  17. Network Structure and Biased Variance Estimation in Respondent Driven Sampling.

    Science.gov (United States)

    Verdery, Ashton M; Mouw, Ted; Bauldry, Shawn; Mucha, Peter J

    2015-01-01

    This paper explores bias in the estimation of sampling variance in Respondent Driven Sampling (RDS). Prior methodological work on RDS has focused on its problematic assumptions and the biases and inefficiencies of its estimators of the population mean. Nonetheless, researchers have given only slight attention to the topic of estimating sampling variance in RDS, despite the importance of variance estimation for the construction of confidence intervals and hypothesis tests. In this paper, we show that the estimators of RDS sampling variance rely on a critical assumption that the network is First Order Markov (FOM) with respect to the dependent variable of interest. We demonstrate, through intuitive examples, mathematical generalizations, and computational experiments that current RDS variance estimators will always underestimate the population sampling variance of RDS in empirical networks that do not conform to the FOM assumption. Analysis of 215 observed university and school networks from Facebook and Add Health indicates that the FOM assumption is violated in every empirical network we analyze, and that these violations lead to substantially biased RDS estimators of sampling variance. We propose and test two alternative variance estimators that show some promise for reducing biases, but which also illustrate the limits of estimating sampling variance with only partial information on the underlying population social network.

  18. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    International Nuclear Information System (INIS)

    Ankirchner, Stefan; Dermoune, Azzouz

    2011-01-01

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  19. Discrete and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  20. Discrete time and continuous time dynamic mean-variance analysis

    OpenAIRE

    Reiss, Ariane

    1999-01-01

    Contrary to static mean-variance analysis, very few papers have dealt with dynamic mean-variance analysis. Here, the mean-variance efficient self-financing portfolio strategy is derived for n risky assets in discrete and continuous time. In the discrete setting, the resulting portfolio is mean-variance efficient in a dynamic sense. It is shown that the optimal strategy for n risky assets may be dominated if the expected terminal wealth is constrained to exactly attain a certain goal instead o...

  1. Study To Build Method For Analyzing Some Component Of Airborne Which Cause Respiratory Disease

    International Nuclear Information System (INIS)

    Vo Thi Anh; Nguyen Thuy Binh; Vuong Thu Bac; Ha Lan Anh; Nguyen Hong Thinh; Duong Van Thang; Nguyen Mai Anh; Vo Tuong Hanh

    2013-01-01

    Aerosol sampler is located at the top of the three floors building of INST. The amount of PM particle and components such as black carbon; chemical elements; violated organic compounds and microorganisms are analyzed by appropriate methods. Using the method of regression and analysis of variance ANOVA to find out correlation between there pollution components and patients treated at the Department of Respiratory in Hanoi E-Hospital. It shown that microorganisms, benzene, toluene, element sulfur and element silica have effects on monthly number of patients treated respiratory diseases at the E-Hospital. (author)

  2. The Importance of Variance in Statistical Analysis: Don't Throw Out the Baby with the Bathwater.

    Science.gov (United States)

    Peet, Martha W.

    This paper analyzes what happens to the effect size of a given dataset when the variance is removed by categorization for the purpose of applying "OVA" methods (analysis of variance, analysis of covariance). The dataset is from a classic study by Holzinger and Swinefors (1939) in which more than 20 ability test were administered to 301…

  3. Mixed emotions: Sensitivity to facial variance in a crowd of faces.

    Science.gov (United States)

    Haberman, Jason; Lee, Pegan; Whitney, David

    2015-01-01

    The visual system automatically represents summary information from crowds of faces, such as the average expression. This is a useful heuristic insofar as it provides critical information about the state of the world, not simply information about the state of one individual. However, the average alone is not sufficient for making decisions about how to respond to a crowd. The variance or heterogeneity of the crowd--the mixture of emotions--conveys information about the reliability of the average, essential for determining whether the average can be trusted. Despite its importance, the representation of variance within a crowd of faces has yet to be examined. This is addressed here in three experiments. In the first experiment, observers viewed a sample set of faces that varied in emotion, and then adjusted a subsequent set to match the variance of the sample set. To isolate variance as the summary statistic of interest, the average emotion of both sets was random. Results suggested that observers had information regarding crowd variance. The second experiment verified that this was indeed a uniquely high-level phenomenon, as observers were unable to derive the variance of an inverted set of faces as precisely as an upright set of faces. The third experiment replicated and extended the first two experiments using method-of-constant-stimuli. Together, these results show that the visual system is sensitive to emergent information about the emotional heterogeneity, or ambivalence, in crowds of faces.

  4. An elementary components of variance analysis for multi-center quality control

    International Nuclear Information System (INIS)

    Munson, P.J.; Rodbard, D.

    1977-01-01

    The serious variability of RIA results from different laboratories indicates the need for multi-laboratory collaborative quality control (QC) studies. Statistical analysis methods for such studies using an 'analysis of variance with components of variance estimation' are discussed. This technique allocates the total variance into components corresponding to between-laboratory, between-assay, and residual or within-assay variability. Components of variance analysis also provides an intelligent way to combine the results of several QC samples run at different evels, from which we may decide if any component varies systematically with dose level; if not, pooling of estimates becomes possible. We consider several possible relationships of standard deviation to the laboratory mean. Each relationship corresponds to an underlying statistical model, and an appropriate analysis technique. Tests for homogeneity of variance may be used to determine if an appropriate model has been chosen, although the exact functional relationship of standard deviation to lab mean may be difficult to establish. Appropriate graphical display of the data aids in visual understanding of the data. A plot of the ranked standard deviation vs. ranked laboratory mean is a convenient way to summarize a QC study. This plot also allows determination of the rank correlation, which indicates a net relationship of variance to laboratory mean. (orig.) [de

  5. The impact of pre-selected variance inflation factor thresholds on the ...

    African Journals Online (AJOL)

    It is basically an index that measures how much the variance of an estimated ... the literature were not considered, such as penalised regularisation methods like the Lasso ... Y = 1 if a customer has defaulted, otherwise Y = 0). ..... method- ology is applied, but different VIF-thresholds have to be satisfied during the collinearity.

  6. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    International Nuclear Information System (INIS)

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditional Monte Carlo simulation of ''real'' particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ''black box''. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases

  7. ANALISIS PORTOFOLIO RESAMPLED EFFICIENT FRONTIER BERDASARKAN OPTIMASI MEAN-VARIANCE

    OpenAIRE

    Abdurakhman, Abdurakhman

    2008-01-01

    Keputusan alokasi asset yang tepat pada investasi portofolio dapat memaksimalkan keuntungan dan atau meminimalkan risiko. Metode yang sering dipakai dalam optimasi portofolio adalah metode Mean-Variance Markowitz. Dalam prakteknya, metode ini mempunyai kelemahan tidak terlalu stabil. Sedikit perubahan dalam estimasi parameter input menyebabkan perubahan besar pada komposisi portofolio. Untuk itu dikembangkan metode optimasi portofolio yang dapat mengatasi ketidakstabilan metode Mean-Variance ...

  8. Capturing option anomalies with a variance-dependent pricing kernel

    NARCIS (Netherlands)

    Christoffersen, P.; Heston, S.; Jacobs, K.

    2013-01-01

    We develop a GARCH option model with a variance premium by combining the Heston-Nandi (2000) dynamic with a new pricing kernel that nests Rubinstein (1976) and Brennan (1979). While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is

  9. Realized range-based estimation of integrated variance

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark

    2007-01-01

    We provide a set of probabilistic laws for estimating the quadratic variation of continuous semimartingales with the realized range-based variance-a statistic that replaces every squared return of the realized variance with a normalized squared range. If the entire sample path of the process is a...

  10. Diagnostic checking in linear processes with infinit variance

    OpenAIRE

    Krämer, Walter; Runde, Ralf

    1998-01-01

    We consider empirical autocorrelations of residuals from infinite variance autoregressive processes. Unlike the finite-variance case, it emerges that the limiting distribution, after suitable normalization, is not always more concentrated around zero when residuals rather than true innovations are employed.

  11. Evaluation of Mean and Variance Integrals without Integration

    Science.gov (United States)

    Joarder, A. H.; Omar, M. H.

    2007-01-01

    The mean and variance of some continuous distributions, in particular the exponentially decreasing probability distribution and the normal distribution, are considered. Since they involve integration by parts, many students do not feel comfortable. In this note, a technique is demonstrated for deriving mean and variance through differential…

  12. Adjustment of heterogenous variances and a calving year effect in ...

    African Journals Online (AJOL)

    Data at the beginning and at the end of lactation period, have higher variances than tests in the middle of the lactation. Furthermore, first lactations have lower mean and variances compared to second and third lactations. This is a deviation from the basic assumptions required for the application of repeatability models.

  13. Direct encoding of orientation variance in the visual system.

    Science.gov (United States)

    Norman, Liam J; Heywood, Charles A; Kentridge, Robert W

    2015-01-01

    Our perception of regional irregularity, an example of which is orientation variance, seems effortless when we view two patches of texture that differ in this attribute. Little is understood, however, of how the visual system encodes a regional statistic like orientation variance, but there is some evidence to suggest that it is directly encoded by populations of neurons tuned broadly to high or low levels. The present study shows that selective adaptation to low or high levels of variance results in a perceptual aftereffect that shifts the perceived level of variance of a subsequently viewed texture in the direction away from that of the adapting stimulus (Experiments 1 and 2). Importantly, the effect is durable across changes in mean orientation, suggesting that the encoding of orientation variance is independent of global first moment orientation statistics (i.e., mean orientation). In Experiment 3 it was shown that the variance-specific aftereffect did not show signs of being encoded in a spatiotopic reference frame, similar to the equivalent aftereffect of adaptation to the first moment orientation statistic (the tilt aftereffect), which is represented in the primary visual cortex and exists only in retinotopic coordinates. Experiment 4 shows that a neuropsychological patient with damage to ventral areas of the cortex but spared intact early areas retains sensitivity to orientation variance. Together these results suggest that orientation variance is encoded directly by the visual system and possibly at an early cortical stage.

  14. Genotypic-specific variance in Caenorhabditis elegans lifetime fecundity.

    Science.gov (United States)

    Diaz, S Anaid; Viney, Mark

    2014-06-01

    Organisms live in heterogeneous environments, so strategies that maximze fitness in such environments will evolve. Variation in traits is important because it is the raw material on which natural selection acts during evolution. Phenotypic variation is usually thought to be due to genetic variation and/or environmentally induced effects. Therefore, genetically identical individuals in a constant environment should have invariant traits. Clearly, genetically identical individuals do differ phenotypically, usually thought to be due to stochastic processes. It is now becoming clear, especially from studies of unicellular species, that phenotypic variance among genetically identical individuals in a constant environment can be genetically controlled and that therefore, in principle, this can be subject to selection. However, there has been little investigation of these phenomena in multicellular species. Here, we have studied the mean lifetime fecundity (thus a trait likely to be relevant to reproductive success), and variance in lifetime fecundity, in recently-wild isolates of the model nematode Caenorhabditis elegans. We found that these genotypes differed in their variance in lifetime fecundity: some had high variance in fecundity, others very low variance. We find that this variance in lifetime fecundity was negatively related to the mean lifetime fecundity of the lines, and that the variance of the lines was positively correlated between environments. We suggest that the variance in lifetime fecundity may be a bet-hedging strategy used by this species.

  15. On the Endogeneity of the Mean-Variance Efficient Frontier.

    Science.gov (United States)

    Somerville, R. A.; O'Connell, Paul G. J.

    2002-01-01

    Explains that the endogeneity of the efficient frontier in the mean-variance model of portfolio selection is commonly obscured in portfolio selection literature and in widely used textbooks. Demonstrates endogeneity and discusses the impact of parameter changes on the mean-variance efficient frontier and on the beta coefficients of individual…

  16. 42 CFR 456.522 - Content of request for variance.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Content of request for variance. 456.522 Section 456.522 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... perform UR within the time requirements for which the variance is requested and its good faith efforts to...

  17. 29 CFR 1905.5 - Effect of variances.

    Science.gov (United States)

    2010-07-01

    ...-STEIGER OCCUPATIONAL SAFETY AND HEALTH ACT OF 1970 General § 1905.5 Effect of variances. All variances... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... concerning a proposed penalty or period of abatement is pending before the Occupational Safety and Health...

  18. 29 CFR 1904.38 - Variances from the recordkeeping rule.

    Science.gov (United States)

    2010-07-01

    ..., DEPARTMENT OF LABOR RECORDING AND REPORTING OCCUPATIONAL INJURIES AND ILLNESSES Other OSHA Injury and Illness... he or she finds appropriate. (iv) If the Assistant Secretary grants your variance petition, OSHA will... Secretary is reviewing your variance petition. (4) If I have already been cited by OSHA for not following...

  19. Gender Variance and Educational Psychology: Implications for Practice

    Science.gov (United States)

    Yavuz, Carrie

    2016-01-01

    The area of gender variance appears to be more visible in both the media and everyday life. Within educational psychology literature gender variance remains underrepresented. The positioning of educational psychologists working across the three levels of child and family, school or establishment and education authority/council, means that they are…

  20. OPTIMAL SHRINKAGE ESTIMATION OF MEAN PARAMETERS IN FAMILY OF DISTRIBUTIONS WITH QUADRATIC VARIANCE.

    Science.gov (United States)

    Xie, Xianchao; Kou, S C; Brown, Lawrence

    2016-03-01

    This paper discusses the simultaneous inference of mean parameters in a family of distributions with quadratic variance function. We first introduce a class of semi-parametric/parametric shrinkage estimators and establish their asymptotic optimality properties. Two specific cases, the location-scale family and the natural exponential family with quadratic variance function, are then studied in detail. We conduct a comprehensive simulation study to compare the performance of the proposed methods with existing shrinkage estimators. We also apply the method to real data and obtain encouraging results.

  1. Improving computational efficiency of Monte Carlo simulations with variance reduction

    International Nuclear Information System (INIS)

    Turner, A.; Davis, A.

    2013-01-01

    CCFE perform Monte-Carlo transport simulations on large and complex tokamak models such as ITER. Such simulations are challenging since streaming and deep penetration effects are equally important. In order to make such simulations tractable, both variance reduction (VR) techniques and parallel computing are used. It has been found that the application of VR techniques in such models significantly reduces the efficiency of parallel computation due to 'long histories'. VR in MCNP can be accomplished using energy-dependent weight windows. The weight window represents an 'average behaviour' of particles, and large deviations in the arriving weight of a particle give rise to extreme amounts of splitting being performed and a long history. When running on parallel clusters, a long history can have a detrimental effect on the parallel efficiency - if one process is computing the long history, the other CPUs complete their batch of histories and wait idle. Furthermore some long histories have been found to be effectively intractable. To combat this effect, CCFE has developed an adaptation of MCNP which dynamically adjusts the WW where a large weight deviation is encountered. The method effectively 'de-optimises' the WW, reducing the VR performance but this is offset by a significant increase in parallel efficiency. Testing with a simple geometry has shown the method does not bias the result. This 'long history method' has enabled CCFE to significantly improve the performance of MCNP calculations for ITER on parallel clusters, and will be beneficial for any geometry combining streaming and deep penetration effects. (authors)

  2. Exploring Omics data from designed experiments using analysis of variance multiblock Orthogonal Partial Least Squares

    International Nuclear Information System (INIS)

    Boccard, Julien; Rudaz, Serge

    2016-01-01

    Many experimental factors may have an impact on chemical or biological systems. A thorough investigation of the potential effects and interactions between the factors is made possible by rationally planning the trials using systematic procedures, i.e. design of experiments. However, assessing factors' influences remains often a challenging task when dealing with hundreds to thousands of correlated variables, whereas only a limited number of samples is available. In that context, most of the existing strategies involve the ANOVA-based partitioning of sources of variation and the separate analysis of ANOVA submatrices using multivariate methods, to account for both the intrinsic characteristics of the data and the study design. However, these approaches lack the ability to summarise the data using a single model and remain somewhat limited for detecting and interpreting subtle perturbations hidden in complex Omics datasets. In the present work, a supervised multiblock algorithm based on the Orthogonal Partial Least Squares (OPLS) framework, is proposed for the joint analysis of ANOVA submatrices. This strategy has several advantages: (i) the evaluation of a unique multiblock model accounting for all sources of variation; (ii) the computation of a robust estimator (goodness of fit) for assessing the ANOVA decomposition reliability; (iii) the investigation of an effect-to-residuals ratio to quickly evaluate the relative importance of each effect and (iv) an easy interpretation of the model with appropriate outputs. Case studies from metabolomics and transcriptomics, highlighting the ability of the method to handle Omics data obtained from fixed-effects full factorial designs, are proposed for illustration purposes. Signal variations are easily related to main effects or interaction terms, while relevant biochemical information can be derived from the models. - Highlights: • A new method is proposed for the analysis of Omics data generated using design of experiments

  3. Exploring Omics data from designed experiments using analysis of variance multiblock Orthogonal Partial Least Squares

    Energy Technology Data Exchange (ETDEWEB)

    Boccard, Julien, E-mail: julien.boccard@unige.ch; Rudaz, Serge

    2016-05-12

    Many experimental factors may have an impact on chemical or biological systems. A thorough investigation of the potential effects and interactions between the factors is made possible by rationally planning the trials using systematic procedures, i.e. design of experiments. However, assessing factors' influences remains often a challenging task when dealing with hundreds to thousands of correlated variables, whereas only a limited number of samples is available. In that context, most of the existing strategies involve the ANOVA-based partitioning of sources of variation and the separate analysis of ANOVA submatrices using multivariate methods, to account for both the intrinsic characteristics of the data and the study design. However, these approaches lack the ability to summarise the data using a single model and remain somewhat limited for detecting and interpreting subtle perturbations hidden in complex Omics datasets. In the present work, a supervised multiblock algorithm based on the Orthogonal Partial Least Squares (OPLS) framework, is proposed for the joint analysis of ANOVA submatrices. This strategy has several advantages: (i) the evaluation of a unique multiblock model accounting for all sources of variation; (ii) the computation of a robust estimator (goodness of fit) for assessing the ANOVA decomposition reliability; (iii) the investigation of an effect-to-residuals ratio to quickly evaluate the relative importance of each effect and (iv) an easy interpretation of the model with appropriate outputs. Case studies from metabolomics and transcriptomics, highlighting the ability of the method to handle Omics data obtained from fixed-effects full factorial designs, are proposed for illustration purposes. Signal variations are easily related to main effects or interaction terms, while relevant biochemical information can be derived from the models. - Highlights: • A new method is proposed for the analysis of Omics data generated using design of

  4. Scaling law for noise variance and spatial resolution in differential phase contrast computed tomography

    International Nuclear Information System (INIS)

    Chen Guanghong; Zambelli, Joseph; Li Ke; Bevins, Nicholas; Qi Zhihua

    2011-01-01

    Purpose: The noise variance versus spatial resolution relationship in differential phase contrast (DPC) projection imaging and computed tomography (CT) are derived and compared to conventional absorption-based x-ray projection imaging and CT. Methods: The scaling law for DPC-CT is theoretically derived and subsequently validated with phantom results from an experimental Talbot-Lau interferometer system. Results: For the DPC imaging method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both in theory and experimental results, in DPC-CT the noise variance scales with spatial resolution following an inverse linear relationship with fixed slice thickness. Conclusions: The scaling law in DPC-CT implies a lesser noise, and therefore dose, penalty for moving to higher spatial resolutions when compared to conventional absorption-based CT in order to maintain the same contrast-to-noise ratio.

  5. Integrating mean and variance heterogeneities to identify differentially expressed genes.

    Science.gov (United States)

    Ouyang, Weiwei; An, Qiang; Zhao, Jinying; Qin, Huaizhen

    2016-12-06

    In functional genomics studies, tests on mean heterogeneity have been widely employed to identify differentially expressed genes with distinct mean expression levels under different experimental conditions. Variance heterogeneity (aka, the difference between condition-specific variances) of gene expression levels is simply neglected or calibrated for as an impediment. The mean heterogeneity in the expression level of a gene reflects one aspect of its distribution alteration; and variance heterogeneity induced by condition change may reflect another aspect. Change in condition may alter both mean and some higher-order characteristics of the distributions of expression levels of susceptible genes. In this report, we put forth a conception of mean-variance differentially expressed (MVDE) genes, whose expression means and variances are sensitive to the change in experimental condition. We mathematically proved the null independence of existent mean heterogeneity tests and variance heterogeneity tests. Based on the independence, we proposed an integrative mean-variance test (IMVT) to combine gene-wise mean heterogeneity and variance heterogeneity induced by condition change. The IMVT outperformed its competitors under comprehensive simulations of normality and Laplace settings. For moderate samples, the IMVT well controlled type I error rates, and so did existent mean heterogeneity test (i.e., the Welch t test (WT), the moderated Welch t test (MWT)) and the procedure of separate tests on mean and variance heterogeneities (SMVT), but the likelihood ratio test (LRT) severely inflated type I error rates. In presence of variance heterogeneity, the IMVT appeared noticeably more powerful than all the valid mean heterogeneity tests. Application to the gene profiles of peripheral circulating B raised solid evidence of informative variance heterogeneity. After adjusting for background data structure, the IMVT replicated previous discoveries and identified novel experiment

  6. Variance estimation for complex indicators of poverty and inequality using linearization techniques

    Directory of Open Access Journals (Sweden)

    Guillaume Osier

    2009-12-01

    Full Text Available The paper presents the Eurostat experience in calculating measures of precision, including standard errors, confidence intervals and design effect coefficients - the ratio of the variance of a statistic with the actual sample design to the variance of that statistic with a simple random sample of same size - for the "Laeken" indicators, that is, a set of complex indicators of poverty and inequality which had been set out in the framework of the EU-SILC project (European Statistics on Income and Living Conditions. The Taylor linearization method (Tepping, 1968; Woodruff, 1971; Wolter, 1985; Tille, 2000 is actually a well-established method to obtain variance estimators for nonlinear statistics such as ratios, correlation or regression coefficients. It consists of approximating a nonlinear statistic with a linear function of the observations by using first-order Taylor Series expansions. Then, an easily found variance estimator of the linear approximation is used as an estimator of the variance of the nonlinear statistic. Although the Taylor linearization method handles all the nonlinear statistics which can be expressed as a smooth function of estimated totals, the approach fails to encompass the "Laeken" indicators since the latter are having more complex mathematical expressions. Consequently, a generalized linearization method (Deville, 1999, which relies on the concept of influence function (Hampel, Ronchetti, Rousseeuw and Stahel, 1986, has been implemented. After presenting the EU-SILC instrument and the main target indicators for which variance estimates are needed, the paper elaborates on the main features of the linearization approach based on influence functions. Ultimately, estimated standard errors, confidence intervals and design effect coefficients obtained from this approach are presented and discussed.

  7. Advanced Variance Reduction Strategies for Optimizing Mesh Tallies in MAVRIC

    International Nuclear Information System (INIS)

    Peplow, Douglas E.; Blakeman, Edward D; Wagner, John C

    2007-01-01

    More often than in the past, Monte Carlo methods are being used to compute fluxes or doses over large areas using mesh tallies (a set of region tallies defined on a mesh that overlays the geometry). For problems that demand that the uncertainty in each mesh cell be less than some set maximum, computation time is controlled by the cell with the largest uncertainty. This issue becomes quite troublesome in deep-penetration problems, and advanced variance reduction techniques are required to obtain reasonable uncertainties over large areas. The CADIS (Consistent Adjoint Driven Importance Sampling) methodology has been shown to very efficiently optimize the calculation of a response (flux or dose) for a single point or a small region using weight windows and a biased source based on the adjoint of that response. This has been incorporated into codes such as ADVANTG (based on MCNP) and the new sequence MAVRIC, which will be available in the next release of SCALE. In an effort to compute lower uncertainties everywhere in the problem, Larsen's group has also developed several methods to help distribute particles more evenly, based on forward estimates of flux. This paper focuses on the use of a forward estimate to weight the placement of the source in the adjoint calculation used by CADIS, which we refer to as a forward-weighted CADIS (FW-CADIS)

  8. Multilevel Modeling of the Performance Variance

    Directory of Open Access Journals (Sweden)

    Alexandre Teixeira Dias

    2012-12-01

    Full Text Available Focusing on the identification of the role played by Industry on the relations between Corporate Strategic Factors and Performance, the hierarchical multilevel modeling method was adopted when measuring and analyzing the relations between the variables that comprise each level of analysis. The adequacy of the multilevel perspective to the study of the proposed relations was identified and the relative importance analysis point out to the lower relevance of industry as a moderator of the effects of corporate strategic factors on performance, when the latter was measured by means of return on assets, and that industry don‟t moderates the relations between corporate strategic factors and Tobin‟s Q. The main conclusions of the research are that the organizations choices in terms of corporate strategy presents a considerable influence and plays a key role on the determination of performance level, but that industry should be considered when analyzing the performance variation despite its role as a moderator or not of the relations between corporate strategic factors and performance.

  9. Toward a more robust variance-based global sensitivity analysis of model outputs

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C

    2007-10-15

    Global sensitivity analysis (GSA) measures the variation of a model output as a function of the variations of the model inputs given their ranges. In this paper we consider variance-based GSA methods that do not rely on certain assumptions about the model structure such as linearity or monotonicity. These variance-based methods decompose the output variance into terms of increasing dimensionality called 'sensitivity indices', first introduced by Sobol' [25]. Sobol' developed a method of estimating these sensitivity indices using Monte Carlo simulations. McKay [13] proposed an efficient method using replicated Latin hypercube sampling to compute the 'correlation ratios' or 'main effects', which have been shown to be equivalent to Sobol's first-order sensitivity indices. Practical issues with using these variance estimators are how to choose adequate sample sizes and how to assess the accuracy of the results. This paper proposes a modified McKay main effect method featuring an adaptive procedure for accuracy assessment and improvement. We also extend our adaptive technique to the computation of second-order sensitivity indices. Details of the proposed adaptive procedure as wells as numerical results are included in this paper.

  10. Analysis of Gene Expression Variance in Schizophrenia Using Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Anna A. Igolkina

    2018-06-01

    Full Text Available Schizophrenia (SCZ is a psychiatric disorder of unknown etiology. There is evidence suggesting that aberrations in neurodevelopment are a significant attribute of schizophrenia pathogenesis and progression. To identify biologically relevant molecular abnormalities affecting neurodevelopment in SCZ we used cultured neural progenitor cells derived from olfactory neuroepithelium (CNON cells. Here, we tested the hypothesis that variance in gene expression differs between individuals from SCZ and control groups. In CNON cells, variance in gene expression was significantly higher in SCZ samples in comparison with control samples. Variance in gene expression was enriched in five molecular pathways: serine biosynthesis, PI3K-Akt, MAPK, neurotrophin and focal adhesion. More than 14% of variance in disease status was explained within the logistic regression model (C-value = 0.70 by predictors accounting for gene expression in 69 genes from these five pathways. Structural equation modeling (SEM was applied to explore how the structure of these five pathways was altered between SCZ patients and controls. Four out of five pathways showed differences in the estimated relationships among genes: between KRAS and NF1, and KRAS and SOS1 in the MAPK pathway; between PSPH and SHMT2 in serine biosynthesis; between AKT3 and TSC2 in the PI3K-Akt signaling pathway; and between CRK and RAPGEF1 in the focal adhesion pathway. Our analysis provides evidence that variance in gene expression is an important characteristic of SCZ, and SEM is a promising method for uncovering altered relationships between specific genes thus suggesting affected gene regulation associated with the disease. We identified altered gene-gene interactions in pathways enriched for genes with increased variance in expression in SCZ. These pathways and loci were previously implicated in SCZ, providing further support for the hypothesis that gene expression variance plays important role in the etiology

  11. Technical Note: On the efficiency of variance reduction techniques for Monte Carlo estimates of imaging noise.

    Science.gov (United States)

    Sharma, Diksha; Sempau, Josep; Badano, Aldo

    2018-02-01

    Monte Carlo simulations require large number of histories to obtain reliable estimates of the quantity of interest and its associated statistical uncertainty. Numerous variance reduction techniques (VRTs) have been employed to increase computational efficiency by reducing the statistical uncertainty. We investigate the effect of two VRTs for optical transport methods on accuracy and computing time for the estimation of variance (noise) in x-ray imaging detectors. We describe two VRTs. In the first, we preferentially alter the direction of the optical photons to increase detection probability. In the second, we follow only a fraction of the total optical photons generated. In both techniques, the statistical weight of photons is altered to maintain the signal mean. We use fastdetect2, an open-source, freely available optical transport routine from the hybridmantis package. We simulate VRTs for a variety of detector models and energy sources. The imaging data from the VRT simulations are then compared to the analog case (no VRT) using pulse height spectra, Swank factor, and the variance of the Swank estimate. We analyze the effect of VRTs on the statistical uncertainty associated with Swank factors. VRTs increased the relative efficiency by as much as a factor of 9. We demonstrate that we can achieve the same variance of the Swank factor with less computing time. With this approach, the simulations can be stopped when the variance of the variance estimates reaches the desired level of uncertainty. We implemented analytic estimates of the variance of Swank factor and demonstrated the effect of VRTs on image quality calculations. Our findings indicate that the Swank factor is dominated by the x-ray interaction profile as compared to the additional uncertainty introduced in the optical transport by the use of VRTs. For simulation experiments that aim at reducing the uncertainty in the Swank factor estimate, any of the proposed VRT can be used for increasing the relative

  12. An elementary components of variance analysis for multi-centre quality control

    International Nuclear Information System (INIS)

    Munson, P.J.; Rodbard, D.

    1978-01-01

    The serious variability of RIA results from different laboratories indicates the need for multi-laboratory collaborative quality-control (QC) studies. Simple graphical display of data in the form of histograms is useful but insufficient. The paper discusses statistical analysis methods for such studies using an ''analysis of variance with components of variance estimation''. This technique allocates the total variance into components corresponding to between-laboratory, between-assay, and residual or within-assay variability. Problems with RIA data, e.g. severe non-uniformity of variance and/or departure from a normal distribution violate some of the usual assumptions underlying analysis of variance. In order to correct these problems, it is often necessary to transform the data before analysis by using a logarithmic, square-root, percentile, ranking, RIDIT, ''Studentizing'' or other transformation. Ametric transformations such as ranks or percentiles protect against the undue influence of outlying observations, but discard much intrinsic information. Several possible relationships of standard deviation to the laboratory mean are considered. Each relationship corresponds to an underlying statistical model and an appropriate analysis technique. Tests for homogeneity of variance may be used to determine whether an appropriate model has been chosen, although the exact functional relationship of standard deviation to laboratory mean may be difficult to establish. Appropriate graphical display aids visual understanding of the data. A plot of the ranked standard deviation versus ranked laboratory mean is a convenient way to summarize a QC study. This plot also allows determination of the rank correlation, which indicates a net relationship of variance to laboratory mean

  13. Variance computations for functional of absolute risk estimates.

    Science.gov (United States)

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  14. Estimating High-Frequency Based (Co-) Variances: A Unified Approach

    DEFF Research Database (Denmark)

    Voev, Valeri; Nolte, Ingmar

    We propose a unified framework for estimating integrated variances and covariances based on simple OLS regressions, allowing for a general market microstructure noise specification. We show that our estimators can outperform, in terms of the root mean squared error criterion, the most recent...... and commonly applied estimators, such as the realized kernels of Barndorff-Nielsen, Hansen, Lunde & Shephard (2006), the two-scales realized variance of Zhang, Mykland & Aït-Sahalia (2005), the Hayashi & Yoshida (2005) covariance estimator, and the realized variance and covariance with the optimal sampling...

  15. Meta-analysis of SNPs involved in variance heterogeneity using Levene's test for equal variances

    Science.gov (United States)

    Deng, Wei Q; Asma, Senay; Paré, Guillaume

    2014-01-01

    Meta-analysis is a commonly used approach to increase the sample size for genome-wide association searches when individual studies are otherwise underpowered. Here, we present a meta-analysis procedure to estimate the heterogeneity of the quantitative trait variance attributable to genetic variants using Levene's test without needing to exchange individual-level data. The meta-analysis of Levene's test offers the opportunity to combine the considerable sample size of a genome-wide meta-analysis to identify the genetic basis of phenotypic variability and to prioritize single-nucleotide polymorphisms (SNPs) for gene–gene and gene–environment interactions. The use of Levene's test has several advantages, including robustness to departure from the normality assumption, freedom from the influence of the main effects of SNPs, and no assumption of an additive genetic model. We conducted a meta-analysis of the log-transformed body mass index of 5892 individuals and identified a variant with a highly suggestive Levene's test P-value of 4.28E-06 near the NEGR1 locus known to be associated with extreme obesity. PMID:23921533

  16. A Decomposition Algorithm for Mean-Variance Economic Model Predictive Control of Stochastic Linear Systems

    DEFF Research Database (Denmark)

    Sokoler, Leo Emil; Dammann, Bernd; Madsen, Henrik

    2014-01-01

    This paper presents a decomposition algorithm for solving the optimal control problem (OCP) that arises in Mean-Variance Economic Model Predictive Control of stochastic linear systems. The algorithm applies the alternating direction method of multipliers to a reformulation of the OCP...

  17. High Efficiency Computation of the Variances of Structural Evolutionary Random Responses

    Directory of Open Access Journals (Sweden)

    J.H. Lin

    2000-01-01

    Full Text Available For structures subjected to stationary or evolutionary white/colored random noise, their various response variances satisfy algebraic or differential Lyapunov equations. The solution of these Lyapunov equations used to be very difficult. A precise integration method is proposed in the present paper, which solves such Lyapunov equations accurately and very efficiently.

  18. Teaching renewable energy using online PBL in investigating its effect on behaviour towards energy conservation among Malaysian students: ANOVA repeated measures approach

    Science.gov (United States)

    Nordin, Norfarah; Samsudin, Mohd Ali; Hadi Harun, Abdul

    2017-01-01

    This research aimed to investigate whether online problem based learning (PBL) approach to teach renewable energy topic improves students’ behaviour towards energy conservation. A renewable energy online problem based learning (REePBaL) instruction package was developed based on the theory of constructivism and adaptation of the online learning model. This study employed a single group quasi-experimental design to ascertain the changed in students’ behaviour towards energy conservation after underwent the intervention. The study involved 48 secondary school students in a Malaysian public school. ANOVA Repeated Measure technique was employed in order to compare scores of students’ behaviour towards energy conservation before and after the intervention. Based on the finding, students’ behaviour towards energy conservation improved after the intervention.

  19. DSC, FT-IR, NIR, NIR-PCA and NIR-ANOVA for determination of chemical stability of diuretic drugs: impact of excipients

    Directory of Open Access Journals (Sweden)

    Gumieniczek Anna

    2018-03-01

    Full Text Available It is well known that drugs can directly react with excipients. In addition, excipients can be a source of impurities that either directly react with drugs or catalyze their degradation. Thus, binary mixtures of three diuretics, torasemide, furosemide and amiloride with different excipients, i.e. citric acid anhydrous, povidone K25 (PVP, magnesium stearate (Mg stearate, lactose, D-mannitol, glycine, calcium hydrogen phosphate anhydrous (CaHPO4 and starch, were examined to detect interactions. High temperature and humidity or UV/VIS irradiation were applied as stressing conditions. Differential scanning calorimetry (DSC, FT-IR and NIR were used to adequately collect information. In addition, chemometric assessments of NIR signals with principal component analysis (PCA and ANOVA were applied.

  20. Genetic factors explain half of all variance in serum eosinophil cationic protein

    DEFF Research Database (Denmark)

    Elmose, Camilla; Sverrild, Asger; van der Sluis, Sophie

    2014-01-01

    with variation in serum ECP and to determine the relative proportion of the variation in ECP due to genetic and non-genetic factors, in an adult twin sample. METHODS: A sample of 575 twins, selected through a proband with self-reported asthma, had serum ECP, lung function, airway responsiveness to methacholine......, exhaled nitric oxide, and skin test reactivity, measured. Linear regression analysis and variance component models were used to study factors associated with variation in ECP and the relative genetic influence on ECP levels. RESULTS: Sex (regression coefficient = -0.107, P ... was statistically non-significant (r = -0.11, P = 0.50). CONCLUSION: Around half of all variance in serum ECP is explained by genetic factors. Serum ECP is influenced by sex, BMI, and airway responsiveness. Serum ECP and airway responsiveness seem not to share genetic variance....

  1. Tip displacement variance of manipulator to simultaneous horizontal and vertical stochastic base excitations

    International Nuclear Information System (INIS)

    Rahi, A.; Bahrami, M.; Rastegar, J.

    2002-01-01

    The tip displacement variance of an articulated robotic manipulator to simultaneous horizontal and vertical stochastic base excitation is studied. The dynamic equations for an n-links manipulator subjected to both horizontal and vertical stochastic excitations are derived by Lagrangian method and decoupled for small displacement of joints. The dynamic response covariance of the manipulator links is computed in the coordinate frame attached to the base and then the principal variance of tip displacement is determined. Finally, simulation for a two-link planner robotic manipulator under base excitation is developed. Then sensitivity of the principal variance of tip displacement and tip velocity to manipulator configuration, damping, excitation parameters and manipulator links length are investigated

  2. Aligning Event Logs to Task-Time Matrix Clinical Pathways in BPMN for Variance Analysis.

    Science.gov (United States)

    Yan, Hui; Van Gorp, Pieter; Kaymak, Uzay; Lu, Xudong; Ji, Lei; Chiau, Choo Chiap; Korsten, Hendrikus H M; Duan, Huilong

    2018-03-01

    Clinical pathways (CPs) are popular healthcare management tools to standardize care and ensure quality. Analyzing CP compliance levels and variances is known to be useful for training and CP redesign purposes. Flexible semantics of the business process model and notation (BPMN) language has been shown to be useful for the modeling and analysis of complex protocols. However, in practical cases one may want to exploit that CPs often have the form of task-time matrices. This paper presents a new method parsing complex BPMN models and aligning traces to the models heuristically. A case study on variance analysis is undertaken, where a CP from the practice and two large sets of patients data from an electronic medical record (EMR) database are used. The results demonstrate that automated variance analysis between BPMN task-time models and real-life EMR data are feasible, whereas that was not the case for the existing analysis techniques. We also provide meaningful insights for further improvement.

  3. Capturing Option Anomalies with a Variance-Dependent Pricing Kernel

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Heston, Steven; Jacobs, Kris

    2013-01-01

    We develop a GARCH option model with a new pricing kernel allowing for a variance premium. While the pricing kernel is monotonic in the stock return and in variance, its projection onto the stock return is nonmonotonic. A negative variance premium makes it U shaped. We present new semiparametric...... evidence to confirm this U-shaped relationship between the risk-neutral and physical probability densities. The new pricing kernel substantially improves our ability to reconcile the time-series properties of stock returns with the cross-section of option prices. It provides a unified explanation...... for the implied volatility puzzle, the overreaction of long-term options to changes in short-term variance, and the fat tails of the risk-neutral return distribution relative to the physical distribution....

  4. Phenotypic variance explained by local ancestry in admixed African Americans.

    Science.gov (United States)

    Shriner, Daniel; Bentley, Amy R; Doumatey, Ayo P; Chen, Guanjie; Zhou, Jie; Adeyemo, Adebowale; Rotimi, Charles N

    2015-01-01

    We surveyed 26 quantitative traits and disease outcomes to understand the proportion of phenotypic variance explained by local ancestry in admixed African Americans. After inferring local ancestry as the number of African-ancestry chromosomes at hundreds of thousands of genotyped loci across all autosomes, we used a linear mixed effects model to estimate the variance explained by local ancestry in two large independent samples of unrelated African Americans. We found that local ancestry at major and polygenic effect genes can explain up to 20 and 8% of phenotypic variance, respectively. These findings provide evidence that most but not all additive genetic variance is explained by genetic markers undifferentiated by ancestry. These results also inform the proportion of health disparities due to genetic risk factors and the magnitude of error in association studies not controlling for local ancestry.

  5. Host nutrition alters the variance in parasite transmission potential.

    Science.gov (United States)

    Vale, Pedro F; Choisy, Marc; Little, Tom J

    2013-04-23

    The environmental conditions experienced by hosts are known to affect their mean parasite transmission potential. How different conditions may affect the variance of transmission potential has received less attention, but is an important question for disease management, especially if specific ecological contexts are more likely to foster a few extremely infectious hosts. Using the obligate-killing bacterium Pasteuria ramosa and its crustacean host Daphnia magna, we analysed how host nutrition affected the variance of individual parasite loads, and, therefore, transmission potential. Under low food, individual parasite loads showed similar mean and variance, following a Poisson distribution. By contrast, among well-nourished hosts, parasite loads were right-skewed and overdispersed, following a negative binomial distribution. Abundant food may, therefore, yield individuals causing potentially more transmission than the population average. Measuring both the mean and variance of individual parasite loads in controlled experimental infections may offer a useful way of revealing risk factors for potential highly infectious hosts.

  6. Heritability, variance components and genetic advance of some ...

    African Journals Online (AJOL)

    Heritability, variance components and genetic advance of some yield and yield related traits in Ethiopian ... African Journal of Biotechnology ... randomized complete block design at Adet Agricultural Research Station in 2008 cropping season.

  7. Variance estimation in the analysis of microarray data

    KAUST Repository

    Wang, Yuedong; Ma, Yanyuan; Carroll, Raymond J.

    2009-01-01

    Microarrays are one of the most widely used high throughput technologies. One of the main problems in the area is that conventional estimates of the variances that are required in the t-statistic and other statistics are unreliable owing

  8. Components of variance involved in estimating soil water content and water content change using a neutron moisture meter

    International Nuclear Information System (INIS)

    Sinclair, D.F.; Williams, J.

    1979-01-01

    There have been significant developments in the design and use of neutron moisture meters since Hewlett et al.(1964) investigated the sources of variance when using this instrument to estimate soil moisture. There appears to be little in the literature, however, which updates these findings. This paper aims to isolate the components of variance when moisture content and moisture change are estimated using the neutron scattering method with current technology and methods

  9. The influence of speed abilities and technical skills in early adolescence on adult success in soccer: A long-term prospective analysis using ANOVA and SEM approaches

    Science.gov (United States)

    2017-01-01

    Several talent development programs in youth soccer have implemented motor diagnostics measuring performance factors. However, the predictive value of such tests for adult success is a controversial topic in talent research. This prospective cohort study evaluated the long-term predictive value of 1) motor tests and 2) players’ speed abilities (SA) and technical skills (TS) in early adolescence. The sample consisted of 14,178 U12 players from the German talent development program. Five tests (sprint, agility, dribbling, ball control, shooting) were conducted and players’ height, weight as well as relative age were assessed at nationwide diagnostics between 2004 and 2006. In the 2014/15 season, the players were then categorized as professional (n = 89), semi-professional (n = 913), or non-professional players (n = 13,176), indicating their adult performance level (APL). The motor tests’ prognostic relevance was determined using ANOVAs. Players’ future success was predicted by a logistic regression threshold model. This structural equation model comprised a measurement model with the motor tests and two correlated latent factors, SA and TS, with simultaneous consideration for the manifest covariates height, weight and relative age. Each motor predictor and anthropometric characteristic discriminated significantly between the APL (p < .001; η2 ≤ .02). The threshold model significantly predicted the APL (R2 = 24.8%), and in early adolescence the factor TS (p < .001) seems to have a stronger effect on adult performance than SA (p < .05). Both approaches (ANOVA, SEM) verified the diagnostics’ predictive validity over a long-term period (≈ 9 years). However, because of the limited effect sizes, the motor tests’ prognostic relevance remains ambiguous. A challenge for future research lies in the integration of different (e.g., person-oriented or multilevel) multivariate approaches that expand beyond the “traditional” topic of single tests’ predictive

  10. Volatility and variance swaps : A comparison of quantitative models to calculate the fair volatility and variance strike

    OpenAIRE

    Röring, Johan

    2017-01-01

    Volatility is a common risk measure in the field of finance that describes the magnitude of an asset’s up and down movement. From only being a risk measure, volatility has become an asset class of its own and volatility derivatives enable traders to get an isolated exposure to an asset’s volatility. Two kinds of volatility derivatives are volatility swaps and variance swaps. The problem with volatility swaps and variance swaps is that they require estimations of the future variance and volati...

  11. ASYMMETRY OF MARKET RETURNS AND THE MEAN VARIANCE FRONTIER

    OpenAIRE

    SENGUPTA, Jati K.; PARK, Hyung S.

    1994-01-01

    The hypothesis that the skewness and asymmetry have no significant impact on the mean variance frontier is found to be strongly violated by monthly U.S. data over the period January 1965 through December 1974. This result raises serious doubts whether the common market portifolios such as SP 500, value weighted and equal weighted returns can serve as suitable proxies for meanvariance efficient portfolios in the CAPM framework. A new test for assessing the impact of skewness on the variance fr...

  12. Towards the ultimate variance-conserving convection scheme

    International Nuclear Information System (INIS)

    Os, J.J.A.M. van; Uittenbogaard, R.E.

    2004-01-01

    In the past various arguments have been used for applying kinetic energy-conserving advection schemes in numerical simulations of incompressible fluid flows. One argument is obeying the programmed dissipation by viscous stresses or by sub-grid stresses in Direct Numerical Simulation and Large Eddy Simulation, see e.g. [Phys. Fluids A 3 (7) (1991) 1766]. Another argument is that, according to e.g. [J. Comput. Phys. 6 (1970) 392; 1 (1966) 119], energy-conserving convection schemes are more stable i.e. by prohibiting a spurious blow-up of volume-integrated energy in a closed volume without external energy sources. In the above-mentioned references it is stated that nonlinear instability is due to spatial truncation rather than to time truncation and therefore these papers are mainly concerned with the spatial integration. In this paper we demonstrate that discretized temporal integration of a spatially variance-conserving convection scheme can induce non-energy conserving solutions. In this paper the conservation of the variance of a scalar property is taken as a simple model for the conservation of kinetic energy. In addition, the derivation and testing of a variance-conserving scheme allows for a clear definition of kinetic energy-conserving advection schemes for solving the Navier-Stokes equations. Consequently, we first derive and test a strictly variance-conserving space-time discretization for the convection term in the convection-diffusion equation. Our starting point is the variance-conserving spatial discretization of the convection operator presented by Piacsek and Williams [J. Comput. Phys. 6 (1970) 392]. In terms of its conservation properties, our variance-conserving scheme is compared to other spatially variance-conserving schemes as well as with the non-variance-conserving schemes applied in our shallow-water solver, see e.g. [Direct and Large-eddy Simulation Workshop IV, ERCOFTAC Series, Kluwer Academic Publishers, 2001, pp. 409-287

  13. Global Variance Risk Premium and Forex Return Predictability

    OpenAIRE

    Aloosh, Arash

    2014-01-01

    In a long-run risk model with stochastic volatility and frictionless markets, I express expected forex returns as a function of consumption growth variances and stock variance risk premiums (VRPs)—the difference between the risk-neutral and statistical expectations of market return variation. This provides a motivation for using the forward-looking information available in stock market volatility indices to predict forex returns. Empirically, I find that stock VRPs predict forex returns at a ...

  14. Global Gravity Wave Variances from Aura MLS: Characteristics and Interpretation

    Science.gov (United States)

    2008-12-01

    slight longitudinal variations, with secondary high- latitude peaks occurring over Greenland and Europe . As the QBO changes to the westerly phase, the...equatorial GW temperature variances from suborbital data (e.g., Eck- ermann et al. 1995). The extratropical wave variances are generally larger in the...emanating from tropopause altitudes, presumably radiated from tropospheric jet stream in- stabilities associated with baroclinic storm systems that

  15. Mean-Variance Optimization in Markov Decision Processes

    OpenAIRE

    Mannor, Shie; Tsitsiklis, John N.

    2011-01-01

    We consider finite horizon Markov decision processes under performance measures that involve both the mean and the variance of the cumulative reward. We show that either randomized or history-based policies can improve performance. We prove that the complexity of computing a policy that maximizes the mean reward under a variance constraint is NP-hard for some cases, and strongly NP-hard for others. We finally offer pseudo-polynomial exact and approximation algorithms.

  16. The asymptotic variance of departures in critically loaded queues

    NARCIS (Netherlands)

    Al Hanbali, Ahmad; Mandjes, M.R.H.; Nazarathy, Y.; Whitt, W.

    2011-01-01

    We consider the asymptotic variance of the departure counting process D(t) of the GI/G/1 queue; D(t) denotes the number of departures up to time t. We focus on the case where the system load ϱ equals 1, and prove that the asymptotic variance rate satisfies limt→∞varD(t) / t = λ(1 - 2 / π)(ca2 +

  17. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  18. Variance and covariance calculations for nuclear materials accounting using ''MAVARIC''

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-07-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  19. Why risk is not variance: an expository note.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2008-08-01

    Variance (or standard deviation) of return is widely used as a measure of risk in financial investment risk analysis applications, where mean-variance analysis is applied to calculate efficient frontiers and undominated portfolios. Why, then, do health, safety, and environmental (HS&E) and reliability engineering risk analysts insist on defining risk more flexibly, as being determined by probabilities and consequences, rather than simply by variances? This note suggests an answer by providing a simple proof that mean-variance decision making violates the principle that a rational decisionmaker should prefer higher to lower probabilities of receiving a fixed gain, all else being equal. Indeed, simply hypothesizing a continuous increasing indifference curve for mean-variance combinations at the origin is enough to imply that a decisionmaker must find unacceptable some prospects that offer a positive probability of gain and zero probability of loss. Unlike some previous analyses of limitations of variance as a risk metric, this expository note uses only simple mathematics and does not require the additional framework of von Neumann Morgenstern utility theory.

  20. Variance and covariance calculations for nuclear materials accounting using 'MAVARIC'

    International Nuclear Information System (INIS)

    Nasseri, K.K.

    1987-01-01

    Determination of the detection sensitivity of a materials accounting system to the loss of special nuclear material (SNM) requires (1) obtaining a relation for the variance of the materials balance by propagation of the instrument errors for the measured quantities that appear in the materials balance equation and (2) substituting measured values and their error standard deviations into this relation and calculating the variance of the materials balance. MAVARIC (Materials Accounting VARIance Calculations) is a custom spreadsheet, designed using the second release of Lotus 1-2-3, that significantly reduces the effort required to make the necessary variance (and covariance) calculations needed to determine the detection sensitivity of a materials accounting system. Predefined macros within the spreadsheet allow the user to carry out long, tedious procedures with only a few keystrokes. MAVARIC requires that the user enter the following data into one of four data tables, depending on the type of the term in the materials balance equation; the SNM concentration, the bulk mass (or solution volume), the measurement error standard deviations, and the number of measurements made during an accounting period. The user can also specify if there are correlations between transfer terms. Based on these data entries, MAVARIC can calculate the variance of the materials balance and the square root of this variance, from which the detection sensitivity of the accounting system can be determined

  1. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    International Nuclear Information System (INIS)

    Song Ningfang; Yuan Rui; Jin Jing

    2011-01-01

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 0 /h 2 , K = 1.1714exp-3 0 /h 1.5 , B = 1.3185exp-3 0 /h, N = 5.982exp-4 0 /h 0.5 and Q = 5.197exp-7 0 in real time, and tracks degradation of gyro performance from initail values, R = 0.651 0 /h 2 , K = 0.801 0 /h 1.5 , B = 0.385 0 /h, N = 0.0874 0 /h 0.5 and Q = 8.085exp-5 0 , to final estimations, R = 9.548 0 /h 2 , K = 9.524 0 /h 1.5 , B = 2.234 0 /h, N = 0.5594 0 /h 0.5 and Q = 5.113exp-4 0 , due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  2. Decomposing variation in male reproductive success: age-specific variances and covariances through extra-pair and within-pair reproduction.

    Science.gov (United States)

    Lebigre, Christophe; Arcese, Peter; Reid, Jane M

    2013-07-01

    Age-specific variances and covariances in reproductive success shape the total variance in lifetime reproductive success (LRS), age-specific opportunities for selection, and population demographic variance and effective size. Age-specific (co)variances in reproductive success achieved through different reproductive routes must therefore be quantified to predict population, phenotypic and evolutionary dynamics in age-structured populations. While numerous studies have quantified age-specific variation in mean reproductive success, age-specific variances and covariances in reproductive success, and the contributions of different reproductive routes to these (co)variances, have not been comprehensively quantified in natural populations. We applied 'additive' and 'independent' methods of variance decomposition to complete data describing apparent (social) and realised (genetic) age-specific reproductive success across 11 cohorts of socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia). We thereby quantified age-specific (co)variances in male within-pair and extra-pair reproductive success (WPRS and EPRS) and the contributions of these (co)variances to the total variances in age-specific reproductive success and LRS. 'Additive' decomposition showed that within-age and among-age (co)variances in WPRS across males aged 2-4 years contributed most to the total variance in LRS. Age-specific (co)variances in EPRS contributed relatively little. However, extra-pair reproduction altered age-specific variances in reproductive success relative to the social mating system, and hence altered the relative contributions of age-specific reproductive success to the total variance in LRS. 'Independent' decomposition showed that the (co)variances in age-specific WPRS, EPRS and total reproductive success, and the resulting opportunities for selection, varied substantially across males that survived to each age. Furthermore, extra-pair reproduction increased

  3. Mixed model with spatial variance-covariance structure for accommodating of local stationary trend and its influence on multi-environmental crop variety trial assessment

    Energy Technology Data Exchange (ETDEWEB)

    Negash, A. W.; Mwambi, H.; Zewotir, T.; Eweke, G.

    2014-06-01

    The most common procedure for analyzing multi-environmental trials is based on the assumption that the residual error variance is homogenous across all locations considered. However, this may often be unrealistic, and therefore limit the accuracy of variety evaluation or the reliability of variety recommendations. The objectives of this study were to show the advantages of mixed models with spatial variance-covariance structures, and direct implications of model choice on the inference of varietal performance, ranking and testing based on two multi-environmental data sets from realistic national trials. A model comparison with a {chi}{sup 2}-test for the trials in the two data sets (wheat data set BW00RVTI and barley data set BW01RVII) suggested that selected spatial variance-covariance structures fitted the data significantly better than the ANOVA model. The forms of optimally-fitted spatial variance-covariance, ranking and consistency ratio test were not the same from one trial (location) to the other. Linear mixed models with single stage analysis including spatial variance-covariance structure with a group factor of location on the random model also improved the real estimation of genotype effect and their ranking. The model also improved varietal performance estimation because of its capacity to handle additional sources of variation, location and genotype by location (environment) interaction variation and accommodating of local stationary trend. (Author)

  4. Efficacy of Blood Sources and Artificial Blood Feeding Methods in Rearing of Aedes aegypti (Diptera: Culicidae for Sterile Insect Technique and Incompatible Insect Technique Approaches in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Nayana Gunathilaka

    2017-01-01

    Full Text Available Introduction. Selection of the artificial membrane feeding technique and blood meal source has been recognized as key considerations in mass rearing of vectors. Methodology. Artificial membrane feeding techniques, namely, glass plate, metal plate, and Hemotek membrane feeding method, and three blood sources (human, cattle, and chicken were evaluated based on feeding rates, fecundity, and hatching rates of Aedes aegypti. Significance in the variations among blood feeding was investigated by one-way ANOVA, cluster analysis of variance (ANOSIM, and principal coordinates (PCO analysis. Results. Feeding rates of Ae. aegypti significantly differed among the membrane feeding techniques as suggested by one-way ANOVA (p0.05. Conclusions. Metal plate method could be recommended as the most effective membrane feeding technique for mass rearing of Ae. aegypti, due to its high feeding rate and cost effectiveness. Cattle blood could be recommended for mass rearing Ae. aegypti.

  5. Measuring kinetics of complex single ion channel data using mean-variance histograms.

    Science.gov (United States)

    Patlak, J B

    1993-07-01

    The measurement of single ion channel kinetics is difficult when those channels exhibit subconductance events. When the kinetics are fast, and when the current magnitudes are small, as is the case for Na+, Ca2+, and some K+ channels, these difficulties can lead to serious errors in the estimation of channel kinetics. I present here a method, based on the construction and analysis of mean-variance histograms, that can overcome these problems. A mean-variance histogram is constructed by calculating the mean current and the current variance within a brief "window" (a set of N consecutive data samples) superimposed on the digitized raw channel data. Systematic movement of this window over the data produces large numbers of mean-variance pairs which can be assembled into a two-dimensional histogram. Defined current levels (open, closed, or sublevel) appear in such plots as low variance regions. The total number of events in such low variance regions is estimated by curve fitting and plotted as a function of window width. This function decreases with the same time constants as the original dwell time probability distribution for each of the regions. The method can therefore be used: 1) to present a qualitative summary of the single channel data from which the signal-to-noise ratio, open channel noise, steadiness of the baseline, and number of conductance levels can be quickly determined; 2) to quantify the dwell time distribution in each of the levels exhibited. In this paper I present the analysis of a Na+ channel recording that had a number of complexities. The signal-to-noise ratio was only about 8 for the main open state, open channel noise, and fast flickers to other states were present, as were a substantial number of subconductance states. "Standard" half-amplitude threshold analysis of these data produce open and closed time histograms that were well fitted by the sum of two exponentials, but with apparently erroneous time constants, whereas the mean-variance

  6. Neuroticism explains unwanted variance in Implicit Association Tests of personality: Possible evidence for an affective valence confound

    Directory of Open Access Journals (Sweden)

    Monika eFleischhauer

    2013-09-01

    Full Text Available Meta-analytic data highlight the value of the Implicit Association Test (IAT as an indirect measure of personality. Based on evidence suggesting that confounding factors such as cognitive abilities contribute to the IAT effect, this study provides a first investigation of whether basic personality traits explain unwanted variance in the IAT. In a gender-balanced sample of 204 volunteers, the Big-Five dimensions were assessed via self-report, peer-report, and IAT. By means of structural equation modeling, latent Big-Five personality factors (based on self- and peer-report were estimated and their predictive value for unwanted variance in the IAT was examined. In a first analysis, unwanted variance was defined in the sense of method-specific variance which may result from differences in task demands between the two IAT block conditions and which can be mirrored by the absolute size of the IAT effects. In a second analysis, unwanted variance was examined in a broader sense defined as those systematic variance components in the raw IAT scores that are not explained by the latent implicit personality factors. In contrast to the absolute IAT scores, this also considers biases associated with the direction of IAT effects (i.e., whether they are positive or negative in sign, biases that might result, for example, from the IAT’s stimulus or category features. None of the explicit Big-Five factors was predictive for method-specific variance in the IATs (first analysis. However, when considering unwanted variance that goes beyond pure method-specific variance (second analysis, a substantial effect of neuroticism occurred that may have been driven by the affective valence of IAT attribute categories and the facilitated processing of negative stimuli, typically associated with neuroticism. The findings thus point to the necessity of using attribute category labels and stimuli of similar affective valence in personality IATs to avoid confounding due to

  7. Improving precision in gel electrophoresis by stepwisely decreasing variance components.

    Science.gov (United States)

    Schröder, Simone; Brandmüller, Asita; Deng, Xi; Ahmed, Aftab; Wätzig, Hermann

    2009-10-15

    Many methods have been developed in order to increase selectivity and sensitivity in proteome research. However, gel electrophoresis (GE) which is one of the major techniques in this area, is still known for its often unsatisfactory precision. Percental relative standard deviations (RSD%) up to 60% have been reported. In this case the improvement of precision and sensitivity is absolutely essential, particularly for the quality control of biopharmaceuticals. Our work reflects the remarkable and completely irregular changes of the background signal from gel to gel. This irregularity was identified as one of the governing error sources. These background changes can be strongly reduced by using a signal detection in the near-infrared (NIR) range. This particular detection method provides the most sensitive approach for conventional CCB (Colloidal Coomassie Blue) stained gels, which is reflected in a total error of just 5% (RSD%). In order to further investigate variance components in GE, an experimental Plackett-Burman screening design was performed. The influence of seven potential factors on the precision was investigated using 10 proteins with different properties analyzed by NIR detection. The results emphasized the individuality of the proteins. Completely different factors were identified to be significant for each protein. However, out of seven investigated parameters, just four showed a significant effect on some proteins, namely the parameters of: destaining time, staining temperature, changes of detergent additives (SDS and LDS) in the sample buffer, and the age of the gels. As a result, precision can only be improved individually for each protein or protein classes. Further understanding of the unique properties of proteins should enable us to improve the precision in gel electrophoresis.

  8. CMB-S4 and the hemispherical variance anomaly

    Science.gov (United States)

    O'Dwyer, Márcio; Copi, Craig J.; Knox, Lloyd; Starkman, Glenn D.

    2017-09-01

    Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic. In real space, this anomaly can be quantified by the temperature variance in the Northern and Southern Ecliptic hemispheres, with the Northern hemisphere displaying an anomalously low variance while the Southern hemisphere appears unremarkable [consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM)]. While this is a well-established result in temperature, the low signal-to-noise ratio in current polarization data prevents a similar comparison. This will change with a proposed ground-based CMB experiment, CMB-S4. With that in mind, we generate realizations of polarization maps constrained by the temperature data and predict the distribution of the hemispherical variance in polarization considering two different sky coverage scenarios possible in CMB-S4: full Ecliptic north coverage and just the portion of the North that can be observed from a ground-based telescope at the high Chilean Atacama plateau. We find that even in the set of realizations constrained by the temperature data, the low Northern hemisphere variance observed in temperature is not expected in polarization. Therefore, observing an anomalously low variance in polarization would make the hypothesis that the temperature anomaly is simply a statistical fluke more unlikely and thus increase the motivation for physical explanations. We show, within ΛCDM, how variance measurements in both sky coverage scenarios are related. We find that the variance makes for a good statistic in cases where the sky coverage is limited, however, full northern coverage is still preferable.

  9. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    Directory of Open Access Journals (Sweden)

    Liyun Zhuang

    2017-01-01

    Full Text Available This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE, which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE. Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image.

  10. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance

    Science.gov (United States)

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image. PMID:29403529

  11. Image Enhancement via Subimage Histogram Equalization Based on Mean and Variance.

    Science.gov (United States)

    Zhuang, Liyun; Guan, Yepeng

    2017-01-01

    This paper puts forward a novel image enhancement method via Mean and Variance based Subimage Histogram Equalization (MVSIHE), which effectively increases the contrast of the input image with brightness and details well preserved compared with some other methods based on histogram equalization (HE). Firstly, the histogram of input image is divided into four segments based on the mean and variance of luminance component, and the histogram bins of each segment are modified and equalized, respectively. Secondly, the result is obtained via the concatenation of the processed subhistograms. Lastly, the normalization method is deployed on intensity levels, and the integration of the processed image with the input image is performed. 100 benchmark images from a public image database named CVG-UGR-Database are used for comparison with other state-of-the-art methods. The experiment results show that the algorithm can not only enhance image information effectively but also well preserve brightness and details of the original image.

  12. Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance.

    Science.gov (United States)

    Poplová, Michaela; Sovka, Pavel; Cifra, Michal

    2017-01-01

    Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal.

  13. Motor equivalence and structure of variance: multi-muscle postural synergies in Parkinson's disease.

    Science.gov (United States)

    Falaki, Ali; Huang, Xuemei; Lewis, Mechelle M; Latash, Mark L

    2017-07-01

    We explored posture-stabilizing multi-muscle synergies with two methods of analysis of multi-element, abundant systems: (1) Analysis of inter-cycle variance; and (2) Analysis of motor equivalence, both quantified within the framework of the uncontrolled manifold (UCM) hypothesis. Data collected in two earlier studies of patients with Parkinson's disease (PD) were re-analyzed. One study compared synergies in the space of muscle modes (muscle groups with parallel scaling of activation) during tasks performed by early-stage PD patients and controls. The other study explored the effects of dopaminergic medication on multi-muscle-mode synergies. Inter-cycle variance and absolute magnitude of the center of pressure displacement across consecutive cycles were quantified during voluntary whole-body sway within the UCM and orthogonal to the UCM space. The patients showed smaller indices of variance within the UCM and motor equivalence compared to controls. The indices were also smaller in the off-drug compared to on-drug condition. There were strong across-subject correlations between the inter-cycle variance within/orthogonal to the UCM and motor equivalent/non-motor equivalent displacements. This study has shown that, at least for cyclical tasks, analysis of variance and analysis of motor equivalence lead to metrics of stability that correlate with each other and show similar effects of disease and medication. These results show, for the first time, intimate links between indices of variance and motor equivalence. They suggest that analysis of motor equivalence, which requires only a handful of trials, could be used broadly in the field of motor disorders to analyze problems with action stability.

  14. Genetic Variance in Homophobia: Evidence from Self- and Peer Reports.

    Science.gov (United States)

    Zapko-Willmes, Alexandra; Kandler, Christian

    2018-01-01

    The present twin study combined self- and peer assessments of twins' general homophobia targeting gay men in order to replicate previous behavior genetic findings across different rater perspectives and to disentangle self-rater-specific variance from common variance in self- and peer-reported homophobia (i.e., rater-consistent variance). We hypothesized rater-consistent variance in homophobia to be attributable to genetic and nonshared environmental effects, and self-rater-specific variance to be partially accounted for by genetic influences. A sample of 869 twins and 1329 peer raters completed a seven item scale containing cognitive, affective, and discriminatory homophobic tendencies. After correction for age and sex differences, we found most of the genetic contributions (62%) and significant nonshared environmental contributions (16%) to individual differences in self-reports on homophobia to be also reflected in peer-reported homophobia. A significant genetic component, however, was self-report-specific (38%), suggesting that self-assessments alone produce inflated heritability estimates to some degree. Different explanations are discussed.

  15. How does variance in fertility change over the demographic transition?

    Science.gov (United States)

    Hruschka, Daniel J; Burger, Oskar

    2016-04-19

    Most work on the human fertility transition has focused on declines in mean fertility. However, understanding changes in the variance of reproductive outcomes can be equally important for evolutionary questions about the heritability of fertility, individual determinants of fertility and changing patterns of reproductive skew. Here, we document how variance in completed fertility among women (45-49 years) differs across 200 surveys in 72 low- to middle-income countries where fertility transitions are currently in progress at various stages. Nearly all (91%) of samples exhibit variance consistent with a Poisson process of fertility, which places systematic, and often severe, theoretical upper bounds on the proportion of variance that can be attributed to individual differences. In contrast to the pattern of total variance, these upper bounds increase from high- to mid-fertility samples, then decline again as samples move from mid to low fertility. Notably, the lowest fertility samples often deviate from a Poisson process. This suggests that as populations move to low fertility their reproduction shifts from a rate-based process to a focus on an ideal number of children. We discuss the implications of these findings for predicting completed fertility from individual-level variables. © 2016 The Author(s).

  16. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    Science.gov (United States)

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  17. Analysis of covariance with pre-treatment measurements in randomized trials under the cases that covariances and post-treatment variances differ between groups.

    Science.gov (United States)

    Funatogawa, Takashi; Funatogawa, Ikuko; Shyr, Yu

    2011-05-01

    When primary endpoints of randomized trials are continuous variables, the analysis of covariance (ANCOVA) with pre-treatment measurements as a covariate is often used to compare two treatment groups. In the ANCOVA, equal slopes (coefficients of pre-treatment measurements) and equal residual variances are commonly assumed. However, random allocation guarantees only equal variances of pre-treatment measurements. Unequal covariances and variances of post-treatment measurements indicate unequal slopes and, usually, unequal residual variances. For non-normal data with unequal covariances and variances of post-treatment measurements, it is known that the ANCOVA with equal slopes and equal variances using an ordinary least-squares method provides an asymptotically normal estimator for the treatment effect. However, the asymptotic variance of the estimator differs from the variance estimated from a standard formula, and its property is unclear. Furthermore, the asymptotic properties of the ANCOVA with equal slopes and unequal variances using a generalized least-squares method are unclear. In this paper, we consider non-normal data with unequal covariances and variances of post-treatment measurements, and examine the asymptotic properties of the ANCOVA with equal slopes using the variance estimated from a standard formula. Analytically, we show that the actual type I error rate, thus the coverage, of the ANCOVA with equal variances is asymptotically at a nominal level under equal sample sizes. That of the ANCOVA with unequal variances using a generalized least-squares method is asymptotically at a nominal level, even under unequal sample sizes. In conclusion, the ANCOVA with equal slopes can be asymptotically justified under random allocation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Com aplicar les proves paramètriques bivariades t de Student i ANOVA en SPSS. Cas pràctic

    Directory of Open Access Journals (Sweden)

    María-José Rubio-Hurtado

    2012-07-01

    Full Text Available Les proves paramètriques són un tipus de proves de significació estadística que quantifiquen l'associació o independència entre una variable quantitativa i una categòrica. Les proves paramètriques són exigents amb certs requisits previs per a la seva aplicació: la distribució Normal de la variable quantitativa en els grups que es comparen, l'homogeneïtat de variàncies en les poblacions de les quals procedeixen els grups i una n mostral no inferior a 30. El seu no compliment comporta la necessitat de recórrer a proves estadístiques no paramètriques. Les proves paramètriques es classifiquen en dos: prova t (per a una mostra o per a dues mostres relacionades o independents i prova ANOVA (per a més de dues mostres independents.

  19. Impact of Damping Uncertainty on SEA Model Response Variance

    Science.gov (United States)

    Schiller, Noah; Cabell, Randolph; Grosveld, Ferdinand

    2010-01-01

    Statistical Energy Analysis (SEA) is commonly used to predict high-frequency vibroacoustic levels. This statistical approach provides the mean response over an ensemble of random subsystems that share the same gross system properties such as density, size, and damping. Recently, techniques have been developed to predict the ensemble variance as well as the mean response. However these techniques do not account for uncertainties in the system properties. In the present paper uncertainty in the damping loss factor is propagated through SEA to obtain more realistic prediction bounds that account for both ensemble and damping variance. The analysis is performed on a floor-equipped cylindrical test article that resembles an aircraft fuselage. Realistic bounds on the damping loss factor are determined from measurements acquired on the sidewall of the test article. The analysis demonstrates that uncertainties in damping have the potential to significantly impact the mean and variance of the predicted response.

  20. Genetic and environmental variance in content dimensions of the MMPI.

    Science.gov (United States)

    Rose, R J

    1988-08-01

    To evaluate genetic and environmental variance in the Minnesota Multiphasic Personality Inventory (MMPI), I studied nine factor scales identified in the first item factor analysis of normal adult MMPIs in a sample of 820 adolescent and young adult co-twins. Conventional twin comparisons documented heritable variance in six of the nine MMPI factors (Neuroticism, Psychoticism, Extraversion, Somatic Complaints, Inadequacy, and Cynicism), whereas significant influence from shared environmental experience was found for four factors (Masculinity versus Femininity, Extraversion, Religious Orthodoxy, and Intellectual Interests). Genetic variance in the nine factors was more evident in results from twin sisters than those of twin brothers, and a developmental-genetic analysis, using hierarchical multiple regressions of double-entry matrixes of the twins' raw data, revealed that in four MMPI factor scales, genetic effects were significantly modulated by age or gender or their interaction during the developmental period from early adolescence to early adulthood.

  1. A new variance stabilizing transformation for gene expression data analysis.

    Science.gov (United States)

    Kelmansky, Diana M; Martínez, Elena J; Leiva, Víctor

    2013-12-01

    In this paper, we introduce a new family of power transformations, which has the generalized logarithm as one of its members, in the same manner as the usual logarithm belongs to the family of Box-Cox power transformations. Although the new family has been developed for analyzing gene expression data, it allows a wider scope of mean-variance related data to be reached. We study the analytical properties of the new family of transformations, as well as the mean-variance relationships that are stabilized by using its members. We propose a methodology based on this new family, which includes a simple strategy for selecting the family member adequate for a data set. We evaluate the finite sample behavior of different classical and robust estimators based on this strategy by Monte Carlo simulations. We analyze real genomic data by using the proposed transformation to empirically show how the new methodology allows the variance of these data to be stabilized.

  2. Pricing perpetual American options under multiscale stochastic elasticity of variance

    International Nuclear Information System (INIS)

    Yoon, Ji-Hun

    2015-01-01

    Highlights: • We study the effects of the stochastic elasticity of variance on perpetual American option. • Our SEV model consists of a fast mean-reverting factor and a slow mean-revering factor. • A slow scale factor has a very significant impact on the option price. • We analyze option price structures through the market prices of elasticity risk. - Abstract: This paper studies pricing the perpetual American options under a constant elasticity of variance type of underlying asset price model where the constant elasticity is replaced by a fast mean-reverting Ornstein–Ulenbeck process and a slowly varying diffusion process. By using a multiscale asymptotic analysis, we find the impact of the stochastic elasticity of variance on the option prices and the optimal exercise prices with respect to model parameters. Our results enhance the existing option price structures in view of flexibility and applicability through the market prices of elasticity risk

  3. On the Spike Train Variability Characterized by Variance-to-Mean Power Relationship.

    Science.gov (United States)

    Koyama, Shinsuke

    2015-07-01

    We propose a statistical method for modeling the non-Poisson variability of spike trains observed in a wide range of brain regions. Central to our approach is the assumption that the variance and the mean of interspike intervals are related by a power function characterized by two parameters: the scale factor and exponent. It is shown that this single assumption allows the variability of spike trains to have an arbitrary scale and various dependencies on the firing rate in the spike count statistics, as well as in the interval statistics, depending on the two parameters of the power function. We also propose a statistical model for spike trains that exhibits the variance-to-mean power relationship. Based on this, a maximum likelihood method is developed for inferring the parameters from rate-modulated spike trains. The proposed method is illustrated on simulated and experimental spike trains.

  4. Swarm based mean-variance mapping optimization (MVMOS) for solving economic dispatch

    Science.gov (United States)

    Khoa, T. H.; Vasant, P. M.; Singh, M. S. Balbir; Dieu, V. N.

    2014-10-01

    The economic dispatch (ED) is an essential optimization task in the power generation system. It is defined as the process of allocating the real power output of generation units to meet required load demand so as their total operating cost is minimized while satisfying all physical and operational constraints. This paper introduces a novel optimization which named as Swarm based Mean-variance mapping optimization (MVMOS). The technique is the extension of the original single particle mean-variance mapping optimization (MVMO). Its features make it potentially attractive algorithm for solving optimization problems. The proposed method is implemented for three test power systems, including 3, 13 and 20 thermal generation units with quadratic cost function and the obtained results are compared with many other methods available in the literature. Test results have indicated that the proposed method can efficiently implement for solving economic dispatch.

  5. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  6. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  7. Studying Variance in the Galactic Ultra-compact Binary Population

    Science.gov (United States)

    Larson, Shane; Breivik, Katelyn

    2017-01-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations on week-long timescales, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  8. Variance of a product with application to uranium estimation

    International Nuclear Information System (INIS)

    Lowe, V.W.; Waterman, M.S.

    1976-01-01

    The U in a container can either be determined directly by NDA or by estimating the weight of material in the container and the concentration of U in this material. It is important to examine the statistical properties of estimating the amount of U by multiplying the estimates of weight and concentration. The variance of the product determines the accuracy of the estimate of the amount of uranium. This paper examines the properties of estimates of the variance of the product of two random variables

  9. Variance components for body weight in Japanese quails (Coturnix japonica

    Directory of Open Access Journals (Sweden)

    RO Resende

    2005-03-01

    Full Text Available The objective of this study was to estimate the variance components for body weight in Japanese quails by Bayesian procedures. The body weight at hatch (BWH and at 7 (BW07, 14 (BW14, 21 (BW21 and 28 days of age (BW28 of 3,520 quails was recorded from August 2001 to June 2002. A multiple-trait animal model with additive genetic, maternal environment and residual effects was implemented by Gibbs sampling methodology. A single Gibbs sampling with 80,000 rounds was generated by the program MTGSAM (Multiple Trait Gibbs Sampling in Animal Model. Normal and inverted Wishart distributions were used as prior distributions for the random effects and the variance components, respectively. Variance components were estimated based on the 500 samples that were left after elimination of 30,000 rounds in the burn-in period and 100 rounds of each thinning interval. The posterior means of additive genetic variance components were 0.15; 4.18; 14.62; 27.18 and 32.68; the posterior means of maternal environment variance components were 0.23; 1.29; 2.76; 4.12 and 5.16; and the posterior means of residual variance components were 0.084; 6.43; 22.66; 31.21 and 30.85, at hatch, 7, 14, 21 and 28 days old, respectively. The posterior means of heritability were 0.33; 0.35; 0.36; 0.43 and 0.47 at hatch, 7, 14, 21 and 28 days old, respectively. These results indicate that heritability increased with age. On the other hand, after hatch there was a marked reduction in the maternal environment variance proportion of the phenotypic variance, whose estimates were 0.50; 0.11; 0.07; 0.07 and 0.08 for BWH, BW07, BW14, BW21 and BW28, respectively. The genetic correlation between weights at different ages was high, except for those estimates between BWH and weight at other ages. Changes in body weight of quails can be efficiently achieved by selection.

  10. Variance squeezing and entanglement of the XX central spin model

    International Nuclear Information System (INIS)

    El-Orany, Faisal A A; Abdalla, M Sebawe

    2011-01-01

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  11. Asymptotic variance of grey-scale surface area estimators

    DEFF Research Database (Denmark)

    Svane, Anne Marie

    Grey-scale local algorithms have been suggested as a fast way of estimating surface area from grey-scale digital images. Their asymptotic mean has already been described. In this paper, the asymptotic behaviour of the variance is studied in isotropic and sufficiently smooth settings, resulting...... in a general asymptotic bound. For compact convex sets with nowhere vanishing Gaussian curvature, the asymptotics can be described more explicitly. As in the case of volume estimators, the variance is decomposed into a lattice sum and an oscillating term of at most the same magnitude....

  12. Variance squeezing and entanglement of the XX central spin model

    Energy Technology Data Exchange (ETDEWEB)

    El-Orany, Faisal A A [Department of Mathematics and Computer Science, Faculty of Science, Suez Canal University, Ismailia (Egypt); Abdalla, M Sebawe, E-mail: m.sebaweh@physics.org [Mathematics Department, College of Science, King Saud University PO Box 2455, Riyadh 11451 (Saudi Arabia)

    2011-01-21

    In this paper, we study the quantum properties for a system that consists of a central atom interacting with surrounding spins through the Heisenberg XX couplings of equal strength. Employing the Heisenberg equations of motion we manage to derive an exact solution for the dynamical operators. We consider that the central atom and its surroundings are initially prepared in the excited state and in the coherent spin state, respectively. For this system, we investigate the evolution of variance squeezing and entanglement. The nonclassical effects have been remarked in the behavior of all components of the system. The atomic variance can exhibit revival-collapse phenomenon based on the value of the detuning parameter.

  13. Empirical single sample quantification of bias and variance in Q-ball imaging.

    Science.gov (United States)

    Hainline, Allison E; Nath, Vishwesh; Parvathaneni, Prasanna; Blaber, Justin A; Schilling, Kurt G; Anderson, Adam W; Kang, Hakmook; Landman, Bennett A

    2018-02-06

    The bias and variance of high angular resolution diffusion imaging methods have not been thoroughly explored in the literature and may benefit from the simulation extrapolation (SIMEX) and bootstrap techniques to estimate bias and variance of high angular resolution diffusion imaging metrics. The SIMEX approach is well established in the statistics literature and uses simulation of increasingly noisy data to extrapolate back to a hypothetical case with no noise. The bias of calculated metrics can then be computed by subtracting the SIMEX estimate from the original pointwise measurement. The SIMEX technique has been studied in the context of diffusion imaging to accurately capture the bias in fractional anisotropy measurements in DTI. Herein, we extend the application of SIMEX and bootstrap approaches to characterize bias and variance in metrics obtained from a Q-ball imaging reconstruction of high angular resolution diffusion imaging data. The results demonstrate that SIMEX and bootstrap approaches provide consistent estimates of the bias and variance of generalized fractional anisotropy, respectively. The RMSE for the generalized fractional anisotropy estimates shows a 7% decrease in white matter and an 8% decrease in gray matter when compared with the observed generalized fractional anisotropy estimates. On average, the bootstrap technique results in SD estimates that are approximately 97% of the true variation in white matter, and 86% in gray matter. Both SIMEX and bootstrap methods are flexible, estimate population characteristics based on single scans, and may be extended for bias and variance estimation on a variety of high angular resolution diffusion imaging metrics. © 2018 International Society for Magnetic Resonance in Medicine.

  14. STUDY LINKS SOLVING THE MAXIMUM TASK OF LINEAR CONVOLUTION «EXPECTED RETURNS-VARIANCE» AND THE MINIMUM VARIANCE WITH RESTRICTIONS ON RETURNS

    Directory of Open Access Journals (Sweden)

    Maria S. Prokhorova

    2014-01-01

    Full Text Available The article deals with a study of problemsof finding the optimal portfolio securitiesusing convolutions expectation of portfolioreturns and portfolio variance. Value of thecoefficient of risk, in which the problem ofmaximizing the variance - limited yieldis equivalent to maximizing a linear convolution of criteria for «expected returns-variance» is obtained. An automated method for finding the optimal portfolio, onthe basis of which the results of the studydemonstrated is proposed.

  15. Assessment of texture stationarity using the asymptotic behavior of the empirical mean and variance.

    Science.gov (United States)

    Blanc, Rémy; Da Costa, Jean-Pierre; Stitou, Youssef; Baylou, Pierre; Germain, Christian

    2008-09-01

    Given textured images considered as realizations of 2-D stochastic processes, a framework is proposed to evaluate the stationarity of their mean and variance. Existing strategies focus on the asymptotic behavior of the empirical mean and variance (respectively EM and EV), known for some types of nondeterministic processes. In this paper, the theoretical asymptotic behaviors of the EM and EV are studied for large classes of second-order stationary ergodic processes, in the sense of the Wold decomposition scheme, including harmonic and evanescent processes. Minimal rates of convergence for the EM and the EV are derived for these processes; they are used as criteria for assessing the stationarity of textures. The experimental estimation of the rate of convergence is achieved using a nonparametric block sub-sampling method. Our framework is evaluated on synthetic processes with stationary or nonstationary mean and variance and on real textures. It is shown that anomalies in the asymptotic behavior of the empirical estimators allow detecting nonstationarities of the mean and variance of the processes in an objective way.

  16. A load factor based mean-variance analysis for fuel diversification

    Energy Technology Data Exchange (ETDEWEB)

    Gotham, Douglas; Preckel, Paul; Ruangpattana, Suriya [State Utility Forecasting Group, Purdue University, West Lafayette, IN (United States); Muthuraman, Kumar [McCombs School of Business, University of Texas, Austin, TX (United States); Rardin, Ronald [Department of Industrial Engineering, University of Arkansas, Fayetteville, AR (United States)

    2009-03-15

    Fuel diversification implies the selection of a mix of generation technologies for long-term electricity generation. The goal is to strike a good balance between reduced costs and reduced risk. The method of analysis that has been advocated and adopted for such studies is the mean-variance portfolio analysis pioneered by Markowitz (Markowitz, H., 1952. Portfolio selection. Journal of Finance 7(1) 77-91). However the standard mean-variance methodology, does not account for the ability of various fuels/technologies to adapt to varying loads. Such analysis often provides results that are easily dismissed by regulators and practitioners as unacceptable, since load cycles play critical roles in fuel selection. To account for such issues and still retain the convenience and elegance of the mean-variance approach, we propose a variant of the mean-variance analysis using the decomposition of the load into various types and utilizing the load factors of each load type. We also illustrate the approach using data for the state of Indiana and demonstrate the ability of the model in providing useful insights. (author)

  17. Improved Stress Corrosion Cracking Resistance and Strength of a Two-Step Aged Al-Zn-Mg-Cu Alloy Using Taguchi Method

    Science.gov (United States)

    Lin, Lianghua; Liu, Zhiyi; Ying, Puyou; Liu, Meng

    2015-12-01

    Multi-step heat treatment effectively enhances the stress corrosion cracking (SCC) resistance but usually degrades the mechanical properties of Al-Zn-Mg-Cu alloys. With the aim to enhance SCC resistance as well as strength of Al-Zn-Mg-Cu alloys, we have optimized the process parameters during two-step aging of Al-6.1Zn-2.8Mg-1.9Cu alloy by Taguchi's L9 orthogonal array. In this work, analysis of variance (ANOVA) was performed to find out the significant heat treatment parameters. The slow strain rate testing combined with scanning electron microscope and transmission electron microscope was employed to study the SCC behaviors of Al-Zn-Mg-Cu alloy. Results showed that the contour map produced by ANOVA offered a reliable reference for selection of optimum heat treatment parameters. By using this method, a desired combination of mechanical performances and SCC resistance was obtained.

  18. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    Energy Technology Data Exchange (ETDEWEB)

    Christoforou, Stavros, E-mail: stavros.christoforou@gmail.com [Kirinthou 17, 34100, Chalkida (Greece); Hoogenboom, J. Eduard, E-mail: j.e.hoogenboom@tudelft.nl [Department of Applied Sciences, Delft University of Technology (Netherlands)

    2011-07-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k{sub eff} estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  19. Demonstration of a zero-variance based scheme for variance reduction to a mini-core Monte Carlo calculation

    International Nuclear Information System (INIS)

    Christoforou, Stavros; Hoogenboom, J. Eduard

    2011-01-01

    A zero-variance based scheme is implemented and tested in the MCNP5 Monte Carlo code. The scheme is applied to a mini-core reactor using the adjoint function obtained from a deterministic calculation for biasing the transport kernels. It is demonstrated that the variance of the k_e_f_f estimate is halved compared to a standard criticality calculation. In addition, the biasing does not affect source distribution convergence of the system. However, since the code lacked optimisations for speed, we were not able to demonstrate an appropriate increase in the efficiency of the calculation, because of the higher CPU time cost. (author)

  20. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed like- lihood function, or estimating function, corresponding...

  1. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2014-01-01

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By definition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modified likelihood function, or estimating function, corresponding...

  2. Multivariate Variance Targeting in the BEKK-GARCH Model

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    This paper considers asymptotic inference in the multivariate BEKK model based on (co-)variance targeting (VT). By de…nition the VT estimator is a two-step estimator and the theory presented is based on expansions of the modi…ed likelihood function, or estimating function, corresponding...

  3. Genetic variance components for residual feed intake and feed ...

    African Journals Online (AJOL)

    Feeding costs of animals is a major determinant of profitability in livestock production enterprises. Genetic selection to improve feed efficiency aims to reduce feeding cost in beef cattle and thereby improve profitability. This study estimated genetic (co)variances between weaning weight and other production, reproduction ...

  4. Cumulative Prospect Theory, Option Returns, and the Variance Premium

    NARCIS (Netherlands)

    Baele, Lieven; Driessen, Joost; Ebert, Sebastian; Londono Yarce, J.M.; Spalt, Oliver

    The variance premium and the pricing of out-of-the-money (OTM) equity index options are major challenges to standard asset pricing models. We develop a tractable equilibrium model with Cumulative Prospect Theory (CPT) preferences that can overcome both challenges. The key insight is that the

  5. Hydrograph variances over different timescales in hydropower production networks

    Science.gov (United States)

    Zmijewski, Nicholas; Wörman, Anders

    2016-08-01

    The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of white noise) as a result of current production objectives.

  6. Bounds for Tail Probabilities of the Sample Variance

    Directory of Open Access Journals (Sweden)

    Van Zuijlen M

    2009-01-01

    Full Text Available We provide bounds for tail probabilities of the sample variance. The bounds are expressed in terms of Hoeffding functions and are the sharpest known. They are designed having in mind applications in auditing as well as in processing data related to environment.

  7. Stable limits for sums of dependent infinite variance random variables

    DEFF Research Database (Denmark)

    Bartkiewicz, Katarzyna; Jakubowski, Adam; Mikosch, Thomas

    2011-01-01

    The aim of this paper is to provide conditions which ensure that the affinely transformed partial sums of a strictly stationary process converge in distribution to an infinite variance stable distribution. Conditions for this convergence to hold are known in the literature. However, most of these...

  8. Computing the Expected Value and Variance of Geometric Measures

    DEFF Research Database (Denmark)

    Staals, Frank; Tsirogiannis, Constantinos

    2017-01-01

    distance (MPD), the squared Euclidean distance from the centroid, and the diameter of the minimum enclosing disk. We also describe an efficient (1-e)-approximation algorithm for computing the mean and variance of the mean pairwise distance. We implemented three of our algorithms and we show that our...

  9. Estimation of the additive and dominance variances in South African ...

    African Journals Online (AJOL)

    The objective of this study was to estimate dominance variance for number born alive (NBA), 21- day litter weight (LWT21) and interval between parities (FI) in South African Landrace pigs. A total of 26223 NBA, 21335 LWT21 and 16370 FI records were analysed. Bayesian analysis via Gibbs sampling was used to estimate ...

  10. A note on minimum-variance theory and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianfeng [Department of Informatics, Sussex University, Brighton, BN1 9QH (United Kingdom); Tartaglia, Giangaetano [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy); Tirozzi, Brunello [Physics Department, Rome University ' La Sapienza' , Rome 00185 (Italy)

    2004-04-30

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons.

  11. A Visual Model for the Variance and Standard Deviation

    Science.gov (United States)

    Orris, J. B.

    2011-01-01

    This paper shows how the variance and standard deviation can be represented graphically by looking at each squared deviation as a graphical object--in particular, as a square. A series of displays show how the standard deviation is the size of the average square.

  12. Multidimensional adaptive testing with a minimum error-variance criterion

    NARCIS (Netherlands)

    van der Linden, Willem J.

    1997-01-01

    The case of adaptive testing under a multidimensional logistic response model is addressed. An adaptive algorithm is proposed that minimizes the (asymptotic) variance of the maximum-likelihood (ML) estimator of a linear combination of abilities of interest. The item selection criterion is a simple

  13. Asymptotics of variance of the lattice point count

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří

    2008-01-01

    Roč. 58, č. 3 (2008), s. 751-758 ISSN 0011-4642 R&D Projects: GA AV ČR(CZ) IAA100110502 Institutional research plan: CEZ:AV0Z50110509 Keywords : point lattice * variance Subject RIV: BA - General Mathematics Impact factor: 0.210, year: 2008

  14. Vertical velocity variances and Reynold stresses at Brookhaven

    DEFF Research Database (Denmark)

    Busch, Niels E.; Brown, R.M.; Frizzola, J.A.

    1970-01-01

    Results of wind tunnel tests of the Brookhaven annular bivane are presented. The energy transfer functions describing the instrument response and the numerical filter employed in the data reduction process have been used to obtain corrected values of the normalized variance of the vertical wind v...

  15. Estimates of variance components for postweaning feed intake and ...

    African Journals Online (AJOL)

    Mike

    2013-03-09

    Mar 9, 2013 ... transformation of RFIp and RDGp to z-scores (mean = 0.0, variance = 1.0) and then ... generation pedigree (n = 9 653) used for this analysis. ..... Nkrumah, J.D., Basarab, J.A., Wang, Z., Li, C., Price, M.A., Okine, E.K., Crews Jr., ...

  16. An observation on the variance of a predicted response in ...

    African Journals Online (AJOL)

    ... these properties and computational simplicity. To avoid over fitting, along with the obvious advantage of having a simpler equation, it is shown that the addition of a variable to a regression equation does not reduce the variance of a predicted response. Key words: Linear regression; Partitioned matrix; Predicted response ...

  17. An entropy approach to size and variance heterogeneity

    NARCIS (Netherlands)

    Balasubramanyan, L.; Stefanou, S.E.; Stokes, J.R.

    2012-01-01

    In this paper, we investigate the effect of bank size differences on cost efficiency heterogeneity using a heteroskedastic stochastic frontier model. This model is implemented by using an information theoretic maximum entropy approach. We explicitly model both bank size and variance heterogeneity

  18. 40 CFR 268.44 - Variance from a treatment standard.

    Science.gov (United States)

    2010-07-01

    ... complete petition may be requested as needed to send to affected states and Regional Offices. (e) The... provide an opportunity for public comment. The final decision on a variance from a treatment standard will... than) the concentrations necessary to minimize short- and long-term threats to human health and the...

  19. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  20. Variance-optimal hedging for processes with stationary independent increments

    DEFF Research Database (Denmark)

    Hubalek, Friedrich; Kallsen, J.; Krawczyk, L.

    We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we...

  1. Adaptive Nonparametric Variance Estimation for a Ratio Estimator ...

    African Journals Online (AJOL)

    Kernel estimators for smooth curves require modifications when estimating near end points of the support, both for practical and asymptotic reasons. The construction of such boundary kernels as solutions of variational problem is a difficult exercise. For estimating the error variance of a ratio estimator, we suggest an ...

  2. A note on minimum-variance theory and beyond

    International Nuclear Information System (INIS)

    Feng Jianfeng; Tartaglia, Giangaetano; Tirozzi, Brunello

    2004-01-01

    We revisit the minimum-variance theory proposed by Harris and Wolpert (1998 Nature 394 780-4), discuss the implications of the theory on modelling the firing patterns of single neurons and analytically find the optimal control signals, trajectories and velocities. Under the rate coding assumption, input control signals employed in the minimum-variance theory should be Fitts processes rather than Poisson processes. Only if information is coded by interspike intervals, Poisson processes are in agreement with the inputs employed in the minimum-variance theory. For the integrate-and-fire model with Fitts process inputs, interspike intervals of efferent spike trains are very irregular. We introduce diffusion approximations to approximate neural models with renewal process inputs and present theoretical results on calculating moments of interspike intervals of the integrate-and-fire model. Results in Feng, et al (2002 J. Phys. A: Math. Gen. 35 7287-304) are generalized. In conclusion, we present a complete picture on the minimum-variance theory ranging from input control signals, to model outputs, and to its implications on modelling firing patterns of single neurons

  3. Handling nonnormality and variance heterogeneity for quantitative sublethal toxicity tests.

    Science.gov (United States)

    Ritz, Christian; Van der Vliet, Leana

    2009-09-01

    The advantages of using regression-based techniques to derive endpoints from environmental toxicity data are clear, and slowly, this superior analytical technique is gaining acceptance. As use of regression-based analysis becomes more widespread, some of the associated nuances and potential problems come into sharper focus. Looking at data sets that cover a broad spectrum of standard test species, we noticed that some model fits to data failed to meet two key assumptions-variance homogeneity and normality-that are necessary for correct statistical analysis via regression-based techniques. Failure to meet these assumptions often is caused by reduced variance at the concentrations showing severe adverse effects. Although commonly used with linear regression analysis, transformation of the response variable only is not appropriate when fitting data using nonlinear regression techniques. Through analysis of sample data sets, including Lemna minor, Eisenia andrei (terrestrial earthworm), and algae, we show that both the so-called Box-Cox transformation and use of the Poisson distribution can help to correct variance heterogeneity and nonnormality and so allow nonlinear regression analysis to be implemented. Both the Box-Cox transformation and the Poisson distribution can be readily implemented into existing protocols for statistical analysis. By correcting for nonnormality and variance heterogeneity, these two statistical tools can be used to encourage the transition to regression-based analysis and the depreciation of less-desirable and less-flexible analytical techniques, such as linear interpolation.

  4. Molecular variance of the Tunisian almond germplasm assessed by ...

    African Journals Online (AJOL)

    The genetic variance analysis of 82 almond (Prunus dulcis Mill.) genotypes was performed using ten genomic simple sequence repeats (SSRs). A total of 50 genotypes from Tunisia including local landraces identified while prospecting the different sites of Bizerte and Sidi Bouzid (Northern and central parts) which are the ...

  5. Heterogeneity of variance and its implications on dairy cattle breeding

    African Journals Online (AJOL)

    Milk yield data (n = 12307) from 116 Holstein-Friesian herds were grouped into three production environments based on mean and standard deviation of herd 305-day milk yield and evaluated for within herd variation using univariate animal model procedures. Variance components were estimated by derivative free REML ...

  6. Effects of Diversification of Assets on Mean and Variance | Jayeola ...

    African Journals Online (AJOL)

    Diversification is a means of minimizing risk and maximizing returns by investing in a variety of assets of the portfolio. This paper is written to determine the effects of diversification of three types of Assets; uncorrelated, perfectly correlated and perfectly negatively correlated assets on mean and variance. To go about this, ...

  7. On zero variance Monte Carlo path-stretching schemes

    International Nuclear Information System (INIS)

    Lux, I.

    1983-01-01

    A zero variance path-stretching biasing scheme proposed for a special case by Dwivedi is derived in full generality. The procedure turns out to be the generalization of the exponential transform. It is shown that the biased game can be interpreted as an analog simulation procedure, thus saving some computational effort in comparison with the corresponding nonanalog game

  8. A mean-variance frontier in discrete and continuous time

    NARCIS (Netherlands)

    Bekker, Paul A.

    2004-01-01

    The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation

  9. Hedging with stock index futures: downside risk versus the variance

    NARCIS (Netherlands)

    Brouwer, F.; Nat, van der M.

    1995-01-01

    In this paper we investigate hedging a stock portfolio with stock index futures.Instead of defining the hedge ratio as the minimum variance hedge ratio, we considerseveral measures of downside risk: the semivariance according to Markowitz [ 19591 andthe various lower partial moments according to

  10. The variance quadtree algorithm: use for spatial sampling design

    NARCIS (Netherlands)

    Minasny, B.; McBratney, A.B.; Walvoort, D.J.J.

    2007-01-01

    Spatial sampling schemes are mainly developed to determine sampling locations that can cover the variation of environmental properties in the area of interest. Here we proposed the variance quadtree algorithm for sampling in an area with prior information represented as ancillary or secondary

  11. Properties of realized variance under alternative sampling schemes

    NARCIS (Netherlands)

    Oomen, R.C.A.

    2006-01-01

    This paper investigates the statistical properties of the realized variance estimator in the presence of market microstructure noise. Different from the existing literature, the analysis relies on a pure jump process for high frequency security prices and explicitly distinguishes among alternative

  12. Variance component and heritability estimates of early growth traits ...

    African Journals Online (AJOL)

    as selection criteria for meat production in sheep (Anon, 1970; Olson et ai., 1976;. Lasslo et ai., 1985; Badenhorst et ai., 1991). If these traits are to be included in a breeding programme, accurate estimates of breeding values will be needed to optimize selection programmes. This requires a knowledge of variance and co-.

  13. Variances in consumers prices of selected food Items among ...

    African Journals Online (AJOL)

    The study focused on the determination of variances among consumer prices of rice (local white), beans (white) and garri (yellow) in Watts, Okurikang and 8 Miles markets in southern zone of Cross River State. Completely randomized design was used to test the research hypothesis. Comparing the consumer prices of rice, ...

  14. Age Differences in the Variance of Personality Characteristics

    Czech Academy of Sciences Publication Activity Database

    Mottus, R.; Allik, J.; Hřebíčková, Martina; Kööts-Ausmees, L.; Realo, A.

    2016-01-01

    Roč. 30, č. 1 (2016), s. 4-11 ISSN 0890-2070 R&D Projects: GA ČR GA13-25656S Institutional support: RVO:68081740 Keywords : variance * individual differences * personality * five-factor model Subject RIV: AN - Psychology Impact factor: 3.707, year: 2016

  15. Variance in exposed perturbations impairs retention of visuomotor adaptation.

    Science.gov (United States)

    Canaveral, Cesar Augusto; Danion, Frédéric; Berrigan, Félix; Bernier, Pierre-Michel

    2017-11-01

    Sensorimotor control requires an accurate estimate of the state of the body. The brain optimizes state estimation by combining sensory signals with predictions of the sensory consequences of motor commands using a forward model. Given that both sensory signals and predictions are uncertain (i.e., noisy), the brain optimally weights the relative reliance on each source of information during adaptation. In support, it is known that uncertainty in the sensory predictions influences the rate and generalization of visuomotor adaptation. We investigated whether uncertainty in the sensory predictions affects the retention of a new visuomotor relationship. This was done by exposing three separate groups to a visuomotor rotation whose mean was common at 15° counterclockwise but whose variance around the mean differed (i.e., SD of 0°, 3.2°, or 4.5°). Retention was assessed by measuring the persistence of the adapted behavior in a no-vision phase. Results revealed that mean reach direction late in adaptation was similar across groups, suggesting it depended mainly on the mean of exposed rotations and was robust to differences in variance. However, retention differed across groups, with higher levels of variance being associated with a more rapid reversion toward nonadapted behavior. A control experiment ruled out the possibility that differences in retention were accounted for by differences in success rates. Exposure to variable rotations may have increased the uncertainty in sensory predictions, making the adapted forward model more labile and susceptible to change or decay. NEW & NOTEWORTHY The brain predicts the sensory consequences of motor commands through a forward model. These predictions are subject to uncertainty. We use visuomotor adaptation and modulate uncertainty in the sensory predictions by manipulating the variance in exposed rotations. Results reveal that variance does not influence the final extent of adaptation but selectively impairs the retention of

  16. Variance risk premia in CO_2 markets: A political perspective

    International Nuclear Information System (INIS)

    Reckling, Dennis

    2016-01-01

    The European Commission discusses the change of free allocation plans to guarantee a stable market equilibrium. Selling over-allocated contracts effectively depreciates prices and negates the effect intended by the regulator to establish a stable price mechanism for CO_2 assets. Our paper investigates mispricing and allocation issues by quantitatively analyzing variance risk premia of CO_2 markets over the course of changing regimes (Phase I-III) for three different assets (European Union Allowances, Certified Emissions Reductions and European Reduction Units). The research paper gives recommendations to regulatory bodies in order to most effectively cap the overall carbon dioxide emissions. The analysis of an enriched dataset, comprising not only of additional CO_2 assets, but also containing data from the European Energy Exchange, shows that variance risk premia are equal to a sample average of 0.69 for European Union Allowances (EUA), 0.17 for Certified Emissions Reductions (CER) and 0.81 for European Reduction Units (ERU). We identify the existence of a common risk factor across different assets that justifies the presence of risk premia. Various policy implications with regards to gaining investors’ confidence in the market are being reviewed. Consequently, we recommend the implementation of a price collar approach to support stable prices for emission allowances. - Highlights: •Enriched dataset covering all three political phases of the CO_2 markets. •Clear policy implications for regulators to most effectively cap the overall CO_2 emissions pool. •Applying a cross-asset benchmark index for variance beta estimation. •CER contracts have been analyzed with respect to variance risk premia for the first time. •Increased forecasting accuracy for CO_2 asset returns by using variance risk premia.

  17. On estimation of the noise variance in high-dimensional linear models

    OpenAIRE

    Golubev, Yuri; Krymova, Ekaterina

    2017-01-01

    We consider the problem of recovering the unknown noise variance in the linear regression model. To estimate the nuisance (a vector of regression coefficients) we use a family of spectral regularisers of the maximum likelihood estimator. The noise estimation is based on the adaptive normalisation of the squared error. We derive the upper bound for the concentration of the proposed method around the ideal estimator (the case of zero nuisance).

  18. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    Science.gov (United States)

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  19. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    Science.gov (United States)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  20. Estimation of the biserial correlation and its sampling variance for use in meta-analysis.

    Science.gov (United States)

    Jacobs, Perke; Viechtbauer, Wolfgang

    2017-06-01

    Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship between two continuous variables. When only dichotomous measurements are available for one of the two variables, the biserial correlation coefficient can be used to estimate the product-moment correlation between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial correlation coefficients can therefore be integrated with product-moment correlation coefficients in the same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for meta-analytic purposes and reports simulation results comparing different methods for estimating the coefficient's sampling variance. The findings indicate that commonly employed methods yield inconsistent estimates of the sampling variance across a broad range of research situations. In contrast, consistent estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature. A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the construction of confidence intervals for individual coefficients with close to nominal coverage probabilities in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Comparison of particle swarm optimization and simulated annealing for locating additional boreholes considering combined variance minimization

    Science.gov (United States)

    Soltani-Mohammadi, Saeed; Safa, Mohammad; Mokhtari, Hadi

    2016-10-01

    One of the most important stages in complementary exploration is optimal designing the additional drilling pattern or defining the optimum number and location of additional boreholes. Quite a lot research has been carried out in this regard in which for most of the proposed algorithms, kriging variance minimization as a criterion for uncertainty assessment is defined as objective function and the problem could be solved through optimization methods. Although kriging variance implementation is known to have many advantages in objective function definition, it is not sensitive to local variability. As a result, the only factors evaluated for locating the additional boreholes are initial data configuration and variogram model parameters and the effects of local variability are omitted. In this paper, with the goal of considering the local variability in boundaries uncertainty assessment, the application of combined variance is investigated to define the objective function. Thus in order to verify the applicability of the proposed objective function, it is used to locate the additional boreholes in Esfordi phosphate mine through the implementation of metaheuristic optimization methods such as simulated annealing and particle swarm optimization. Comparison of results from the proposed objective function and conventional methods indicates that the new changes imposed on the objective function has caused the algorithm output to be sensitive to the variations of grade, domain's boundaries and the thickness of mineralization domain. The comparison between the results of different optimization algorithms proved that for the presented case the application of particle swarm optimization is more appropriate than simulated annealing.

  2. A comparison between temporal and subband minimum variance adaptive beamforming

    Science.gov (United States)

    Diamantis, Konstantinos; Voxen, Iben H.; Greenaway, Alan H.; Anderson, Tom; Jensen, Jørgen A.; Sboros, Vassilis

    2014-03-01

    This paper compares the performance between temporal and subband Minimum Variance (MV) beamformers for medical ultrasound imaging. Both adaptive methods provide an optimized set of apodization weights but are implemented in the time and frequency domains respectively. Their performance is evaluated with simulated synthetic aperture data obtained from Field II and is quantified by the Full-Width-Half-Maximum (FWHM), the Peak-Side-Lobe level (PSL) and the contrast level. From a point phantom, a full sequence of 128 emissions with one transducer element transmitting and all 128 elements receiving each time, provides a FWHM of 0.03 mm (0.14λ) for both implementations at a depth of 40 mm. This value is more than 20 times lower than the one achieved by conventional beamforming. The corresponding values of PSL are -58 dB and -63 dB for time and frequency domain MV beamformers, while a value no lower than -50 dB can be obtained from either Boxcar or Hanning weights. Interestingly, a single emission with central element #64 as the transmitting aperture provides results comparable to the full sequence. The values of FWHM are 0.04 mm and 0.03 mm and those of PSL are -42 dB and -46 dB for temporal and subband approaches. From a cyst phantom and for 128 emissions, the contrast level is calculated at -54 dB and -63 dB respectively at the same depth, with the initial shape of the cyst being preserved in contrast to conventional beamforming. The difference between the two adaptive beamformers is less significant in the case of a single emission, with the contrast level being estimated at -42 dB for the time domain and -43 dB for the frequency domain implementation. For the estimation of a single MV weight of a low resolution image formed by a single emission, 0.44 * 109 calculations per second are required for the temporal approach. The same numbers for the subband approach are 0.62 * 109 for the point and 1.33 * 109 for the cyst phantom. The comparison demonstrates similar

  3. Genetic Gain Increases by Applying the Usefulness Criterion with Improved Variance Prediction in Selection of Crosses.

    Science.gov (United States)

    Lehermeier, Christina; Teyssèdre, Simon; Schön, Chris-Carolin

    2017-12-01

    A crucial step in plant breeding is the selection and combination of parents to form new crosses. Genome-based prediction guides the selection of high-performing parental lines in many crop breeding programs which ensures a high mean performance of progeny. To warrant maximum selection progress, a new cross should also provide a large progeny variance. The usefulness concept as measure of the gain that can be obtained from a specific cross accounts for variation in progeny variance. Here, it is shown that genetic gain can be considerably increased when crosses are selected based on their genomic usefulness criterion compared to selection based on mean genomic estimated breeding values. An efficient and improved method to predict the genetic variance of a cross based on Markov chain Monte Carlo samples of marker effects from a whole-genome regression model is suggested. In simulations representing selection procedures in crop breeding programs, the performance of this novel approach is compared with existing methods, like selection based on mean genomic estimated breeding values and optimal haploid values. In all cases, higher genetic gain was obtained compared with previously suggested methods. When 1% of progenies per cross were selected, the genetic gain based on the estimated usefulness criterion increased by 0.14 genetic standard deviation compared to a selection based on mean genomic estimated breeding values. Analytical derivations of the progeny genotypic variance-covariance matrix based on parental genotypes and genetic map information make simulations of progeny dispensable, and allow fast implementation in large-scale breeding programs. Copyright © 2017 by the Genetics Society of America.

  4. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    Science.gov (United States)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  5. Adaptation to Variance of Stimuli in Drosophila Larva Navigation

    Science.gov (United States)

    Wolk, Jason; Gepner, Ruben; Gershow, Marc

    In order to respond to stimuli that vary over orders of magnitude while also being capable of sensing very small changes, neural systems must be capable of rapidly adapting to the variance of stimuli. We study this adaptation in Drosophila larvae responding to varying visual signals and optogenetically induced fictitious odors using an infrared illuminated arena and custom computer vision software. Larval navigational decisions (when to turn) are modeled as the output a linear-nonlinear Poisson process. The development of the nonlinear turn rate in response to changes in variance is tracked using an adaptive point process filter determining the rate of adaptation to different stimulus profiles. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  6. PORTFOLIO COMPOSITION WITH MINIMUM VARIANCE: COMPARISON WITH MARKET BENCHMARKS

    Directory of Open Access Journals (Sweden)

    Daniel Menezes Cavalcante

    2016-07-01

    Full Text Available Portfolio optimization strategies are advocated as being able to allow the composition of stocks portfolios that provide returns above market benchmarks. This study aims to determine whether, in fact, portfolios based on the minimum variance strategy, optimized by the Modern Portfolio Theory, are able to achieve earnings above market benchmarks in Brazil. Time series of 36 securities traded on the BM&FBOVESPA have been analyzed in a long period of time (1999-2012, with sample windows of 12, 36, 60 and 120 monthly observations. The results indicated that the minimum variance portfolio performance is superior to market benchmarks (CDI and IBOVESPA in terms of return and risk-adjusted return, especially in medium and long-term investment horizons.

  7. Compounding approach for univariate time series with nonstationary variances

    Science.gov (United States)

    Schäfer, Rudi; Barkhofen, Sonja; Guhr, Thomas; Stöckmann, Hans-Jürgen; Kuhl, Ulrich

    2015-12-01

    A defining feature of nonstationary systems is the time dependence of their statistical parameters. Measured time series may exhibit Gaussian statistics on short time horizons, due to the central limit theorem. The sample statistics for long time horizons, however, averages over the time-dependent variances. To model the long-term statistical behavior, we compound the local distribution with the distribution of its parameters. Here, we consider two concrete, but diverse, examples of such nonstationary systems: the turbulent air flow of a fan and a time series of foreign exchange rates. Our main focus is to empirically determine the appropriate parameter distribution for the compounding approach. To this end, we extract the relevant time scales by decomposing the time signals into windows and determine the distribution function of the thus obtained local variances.

  8. Variance inflation in high dimensional Support Vector Machines

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2013-01-01

    Many important machine learning models, supervised and unsupervised, are based on simple Euclidean distance or orthogonal projection in a high dimensional feature space. When estimating such models from small training sets we face the problem that the span of the training data set input vectors...... the case of Support Vector Machines (SVMS) and we propose a non-parametric scheme to restore proper generalizability. We illustrate the algorithm and its ability to restore performance on a wide range of benchmark data sets....... follow a different probability law with less variance. While the problem and basic means to reconstruct and deflate are well understood in unsupervised learning, the case of supervised learning is less well understood. We here investigate the effect of variance inflation in supervised learning including...

  9. Response variance in functional maps: neural darwinism revisited.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  10. Response variance in functional maps: neural darwinism revisited.

    Science.gov (United States)

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  11. A mean-variance frontier in discrete and continuous time

    OpenAIRE

    Bekker, Paul A.

    2004-01-01

    The paper presents a mean-variance frontier based on dynamic frictionless investment strategies in continuous time. The result applies to a finite number of risky assets whose price process is given by multivariate geometric Brownian motion with deterministically varying coefficients. The derivation is based on the solution for the frontier in discrete time. Using the same multiperiod framework as Li and Ng (2000), I provide an alternative derivation and an alternative formulation of the solu...

  12. Efficient Scores, Variance Decompositions and Monte Carlo Swindles.

    Science.gov (United States)

    1984-08-28

    to ;r Then a version .of Pythagoras ’ theorem gives the variance decomposition (6.1) varT var S var o(T-S) P P0 0 0 One way to see this is to note...complete sufficient statistics for (B, a) , and that the standard- ized residuals a(y - XB) 6 are ancillary. Basu’s sufficiency- ancillarity theorem

  13. The mean and variance of phylogenetic diversity under rarefaction

    OpenAIRE

    Nipperess, David A.; Matsen, Frederick A.

    2013-01-01

    Phylogenetic diversity (PD) depends on sampling intensity, which complicates the comparison of PD between samples of different depth. One approach to dealing with differing sample depth for a given diversity statistic is to rarefy, which means to take a random subset of a given size of the original sample. Exact analytical formulae for the mean and variance of species richness under rarefaction have existed for some time but no such solution exists for PD. We have derived exact formulae for t...

  14. On mean reward variance in semi-Markov processes

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2005-01-01

    Roč. 62, č. 3 (2005), s. 387-397 ISSN 1432-2994 R&D Projects: GA ČR(CZ) GA402/05/0115; GA ČR(CZ) GA402/04/1294 Institutional research plan: CEZ:AV0Z10750506 Keywords : Markov and semi-Markov processes with rewards * variance of cumulative reward * asymptotic behaviour Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.259, year: 2005

  15. Mean-Variance Analysis in a Multiperiod Setting

    OpenAIRE

    Frauendorfer, Karl; Siede, Heiko

    1997-01-01

    Similar to the classical Markowitz approach it is possible to apply a mean-variance criterion to a multiperiod setting to obtain efficient portfolios. To represent the stochastic dynamic characteristics necessary for modelling returns a process of asset returns is discretized with respect to time and space and summarized in a scenario tree. The resulting optimization problem is solved by means of stochastic multistage programming. The optimal solutions show equivalent structural properties as...

  16. Automated variance reduction of Monte Carlo shielding calculations using the discrete ordinates adjoint function

    International Nuclear Information System (INIS)

    Wagner, J.C.; Haghighat, A.

    1998-01-01

    Although the Monte Carlo method is considered to be the most accurate method available for solving radiation transport problems, its applicability is limited by its computational expense. Thus, biasing techniques, which require intuition, guesswork, and iterations involving manual adjustments, are employed to make reactor shielding calculations feasible. To overcome this difficulty, the authors have developed a method for using the S N adjoint function for automated variance reduction of Monte Carlo calculations through source biasing and consistent transport biasing with the weight window technique. They describe the implementation of this method into the standard production Monte Carlo code MCNP and its application to a realistic calculation, namely, the reactor cavity dosimetry calculation. The computational effectiveness of the method, as demonstrated through the increase in calculational efficiency, is demonstrated and quantified. Important issues associated with this method and its efficient use are addressed and analyzed. Additional benefits in terms of the reduction in time and effort required of the user are difficult to quantify but are possibly as important as the computational efficiency. In general, the automated variance reduction method presented is capable of increases in computational performance on the order of thousands, while at the same time significantly reducing the current requirements for user experience, time, and effort. Therefore, this method can substantially increase the applicability and reliability of Monte Carlo for large, real-world shielding applications

  17. Estimating Predictive Variance for Statistical Gas Distribution Modelling

    International Nuclear Information System (INIS)

    Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo

    2009-01-01

    Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.

  18. Improved estimation of the variance in Monte Carlo criticality calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard

    2008-01-01

    Results for the effective multiplication factor in a Monte Carlo criticality calculations are often obtained from averages over a number of cycles or batches after convergence of the fission source distribution to the fundamental mode. Then the standard deviation of the effective multiplication factor is also obtained from the k eff results over these cycles. As the number of cycles will be rather small, the estimate of the variance or standard deviation in k eff will not be very reliable, certainly not for the first few cycles after source convergence. In this paper the statistics for k eff are based on the generation of new fission neutron weights during each history in a cycle. It is shown that this gives much more reliable results for the standard deviation even after a small number of cycles. Also attention is paid to the variance of the variance (VoV) and the standard deviation of the standard deviation. A derivation is given how to obtain an unbiased estimate for the VoV, even for a small number of samples. (authors)

  19. Improved estimation of the variance in Monte Carlo criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard [Delft University of Technology, Delft (Netherlands)

    2008-07-01

    Results for the effective multiplication factor in a Monte Carlo criticality calculations are often obtained from averages over a number of cycles or batches after convergence of the fission source distribution to the fundamental mode. Then the standard deviation of the effective multiplication factor is also obtained from the k{sub eff} results over these cycles. As the number of cycles will be rather small, the estimate of the variance or standard deviation in k{sub eff} will not be very reliable, certainly not for the first few cycles after source convergence. In this paper the statistics for k{sub eff} are based on the generation of new fission neutron weights during each history in a cycle. It is shown that this gives much more reliable results for the standard deviation even after a small number of cycles. Also attention is paid to the variance of the variance (VoV) and the standard deviation of the standard deviation. A derivation is given how to obtain an unbiased estimate for the VoV, even for a small number of samples. (authors)

  20. Autonomous estimation of Allan variance coefficients of onboard fiber optic gyro

    Energy Technology Data Exchange (ETDEWEB)

    Song Ningfang; Yuan Rui; Jin Jing, E-mail: rayleing@139.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China)

    2011-09-15

    Satellite motion included in gyro output disturbs the estimation of Allan variance coefficients of fiber optic gyro on board. Moreover, as a standard method for noise analysis of fiber optic gyro, Allan variance has too large offline computational effort and data storages to be applied to online estimation. In addition, with the development of deep space exploration, it is urged that satellite requires more autonomy including autonomous fault diagnosis and reconfiguration. To overcome the barriers and meet satellite autonomy, we present a new autonomous method for estimation of Allan variance coefficients including rate ramp, rate random walk, bias instability, angular random walk and quantization noise coefficients. In the method, we calculate differences between angle increments of star sensor and gyro to remove satellite motion from gyro output, and propose a state-space model using nonlinear adaptive filter technique for quantities previously measured from offline data techniques such as the Allan variance method. Simulations show the method correctly estimates Allan variance coefficients, R = 2.7965exp-4 {sup 0}/h{sup 2}, K = 1.1714exp-3 {sup 0}/h{sup 1.5}, B = 1.3185exp-3 {sup 0}/h, N = 5.982exp-4 {sup 0}/h{sup 0.5} and Q = 5.197exp-7 {sup 0} in real time, and tracks degradation of gyro performance from initail values, R = 0.651 {sup 0}/h{sup 2}, K = 0.801 {sup 0}/h{sup 1.5}, B = 0.385 {sup 0}/h, N = 0.0874 {sup 0}/h{sup 0.5} and Q = 8.085exp-5 {sup 0}, to final estimations, R = 9.548 {sup 0}/h{sup 2}, K = 9.524 {sup 0}/h{sup 1.5}, B = 2.234 {sup 0}/h, N = 0.5594 {sup 0}/h{sup 0.5} and Q = 5.113exp-4 {sup 0}, due to gamma radiation in space. The technique proposed here effectively isolates satellite motion, and requires no data storage and any supports from the ground.

  1. A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Louis A; Mason, John J.

    2018-04-01

    We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, the problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.

  2. Automatic treatment of the variance estimation bias in TRIPOLI-4 criticality calculations

    International Nuclear Information System (INIS)

    Dumonteil, E.; Malvagi, F.

    2012-01-01

    The central limit (CLT) theorem States conditions under which the mean of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. The use of Monte Carlo transport codes, such as Tripoli4, relies on those conditions. While these are verified in protection applications (the cycles provide independent measurements of fluxes and related quantities), the hypothesis of independent estimates/cycles is broken in criticality mode. Indeed the power iteration technique used in this mode couples a generation to its progeny. Often, after what is called 'source convergence' this coupling almost disappears (the solution is closed to equilibrium) but for loosely coupled systems, such as for PWR or large nuclear cores, the equilibrium is never found, or at least may take time to reach, and the variance estimation such as allowed by the CLT is under-evaluated. In this paper we first propose, by the mean of two different methods, to evaluate the typical correlation length, as measured in cycles number, and then use this information to diagnose correlation problems and to provide an improved variance estimation. Those two methods are based on Fourier spectral decomposition and on the lag k autocorrelation calculation. A theoretical modeling of the autocorrelation function, based on Gauss-Markov stochastic processes, will also be presented. Tests will be performed with Tripoli4 on a PWR pin cell. (authors)

  3. Automatic treatment of the variance estimation bias in TRIPOLI-4 criticality calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dumonteil, E.; Malvagi, F. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA SACLAY DEN, Laboratoire de Transport Stochastique et Deterministe, 91191 Gif-sur-Yvette (France)

    2012-07-01

    The central limit (CLT) theorem States conditions under which the mean of a sufficiently large number of independent random variables, each with finite mean and variance, will be approximately normally distributed. The use of Monte Carlo transport codes, such as Tripoli4, relies on those conditions. While these are verified in protection applications (the cycles provide independent measurements of fluxes and related quantities), the hypothesis of independent estimates/cycles is broken in criticality mode. Indeed the power iteration technique used in this mode couples a generation to its progeny. Often, after what is called 'source convergence' this coupling almost disappears (the solution is closed to equilibrium) but for loosely coupled systems, such as for PWR or large nuclear cores, the equilibrium is never found, or at least may take time to reach, and the variance estimation such as allowed by the CLT is under-evaluated. In this paper we first propose, by the mean of two different methods, to evaluate the typical correlation length, as measured in cycles number, and then use this information to diagnose correlation problems and to provide an improved variance estimation. Those two methods are based on Fourier spectral decomposition and on the lag k autocorrelation calculation. A theoretical modeling of the autocorrelation function, based on Gauss-Markov stochastic processes, will also be presented. Tests will be performed with Tripoli4 on a PWR pin cell. (authors)

  4. Variance of discharge estimates sampled using acoustic Doppler current profilers from moving boats

    Science.gov (United States)

    Garcia, Carlos M.; Tarrab, Leticia; Oberg, Kevin; Szupiany, Ricardo; Cantero, Mariano I.

    2012-01-01

    This paper presents a model for quantifying the random errors (i.e., variance) of acoustic Doppler current profiler (ADCP) discharge measurements from moving boats for different sampling times. The model focuses on the random processes in the sampled flow field and has been developed using statistical methods currently available for uncertainty analysis of velocity time series. Analysis of field data collected using ADCP from moving boats from three natural rivers of varying sizes and flow conditions shows that, even though the estimate of the integral time scale of the actual turbulent flow field is larger than the sampling interval, the integral time scale of the sampled flow field is on the order of the sampling interval. Thus, an equation for computing the variance error in discharge measurements associated with different sampling times, assuming uncorrelated flow fields is appropriate. The approach is used to help define optimal sampling strategies by choosing the exposure time required for ADCPs to accurately measure flow discharge.

  5. Multilevel variance estimators in MLMC and application for random obstacle problems

    KAUST Repository

    Chernov, Alexey

    2014-01-06

    The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.

  6. Sex Estimation From Modern American Humeri and Femora, Accounting for Sample Variance Structure

    DEFF Research Database (Denmark)

    Boldsen, J. L.; Milner, G. R.; Boldsen, S. K.

    2015-01-01

    several decades. Results: For measurements individually and collectively, the probabilities of being one sex or the other were generated for samples with an equal distribution of males and females, taking into account the variance structure of the original measurements. The combination providing the best......Objectives: A new procedure for skeletal sex estimation based on humeral and femoral dimensions is presented, based on skeletons from the United States. The approach specifically addresses the problem that arises from a lack of variance homogeneity between the sexes, taking into account prior...... information about the sample's sex ratio, if known. Material and methods: Three measurements useful for estimating the sex of adult skeletons, the humeral and femoral head diameters and the humeral epicondylar breadth, were collected from 258 Americans born between 1893 and 1980 who died within the past...

  7. Multilevel variance estimators in MLMC and application for random obstacle problems

    KAUST Repository

    Chernov, Alexey; Bierig, Claudio

    2014-01-01

    The Multilevel Monte Carlo Method (MLMC) is a recently established sampling approach for uncertainty propagation for problems with random parameters. In this talk we present new convergence theorems for the multilevel variance estimators. As a result, we prove that under certain assumptions on the parameters, the variance can be estimated at essentially the same cost as the mean, and consequently as the cost required for solution of one forward problem for a fixed deterministic set of parameters. We comment on fast and stable evaluation of the estimators suitable for parallel large scale computations. The suggested approach is applied to a class of scalar random obstacle problems, a prototype of contact between deformable bodies. In particular, we are interested in rough random obstacles modelling contact between car tires and variable road surfaces. Numerical experiments support and complete the theoretical analysis.

  8. Increasing the genetic variance of rice protein through mutation breeding techniques

    International Nuclear Information System (INIS)

    Ismachin, M.

    1975-01-01

    Recommended rice variety in Indonesia, Pelita I/1 was treated with gamma rays at the doses of 20 krad, 30 krad, and 40 krad. The seeds were also treated with EMS 1%. In M 2 generation, the protein content of seeds from the visible mutants and from the normal looking plants were analyzed by DBC method. No significant increase in the genetic variance was found on the samples treated with 20 krad gamma, and on the normal looking plants treated by EMS 1%. The mean value of the treated samples were mostly significant decrease compared with the mean value of the protein distribution in untreated samples (control). Since significant increase in genetic variance was also found in M 2 normal looking plants - treated with gamma at the doses of 30 krad and 40 krad -selection of protein among these materials could be more valuable. (author)

  9. Optimization of cooling tower performance analysis using Taguchi method

    Directory of Open Access Journals (Sweden)

    Ramkumar Ramakrishnan

    2013-01-01

    Full Text Available This study discuss the application of Taguchi method in assessing maximum cooling tower effectiveness for the counter flow cooling tower using expanded wire mesh packing. The experiments were planned based on Taguchi’s L27 orthogonal array .The trail was performed under different inlet conditions of flow rate of water, air and water temperature. Signal-to-noise ratio (S/N analysis, analysis of variance (ANOVA and regression were carried out in order to determine the effects of process parameters on cooling tower effectiveness and to identity optimal factor settings. Finally confirmation tests verified this reliability of Taguchi method for optimization of counter flow cooling tower performance with sufficient accuracy.

  10. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    Science.gov (United States)

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  11. Improved Test Planning and Analysis Through the Use of Advanced Statistical Methods

    Science.gov (United States)

    Green, Lawrence L.; Maxwell, Katherine A.; Glass, David E.; Vaughn, Wallace L.; Barger, Weston; Cook, Mylan

    2016-01-01

    The goal of this work is, through computational simulations, to provide statistically-based evidence to convince the testing community that a distributed testing approach is superior to a clustered testing approach for most situations. For clustered testing, numerous, repeated test points are acquired at a limited number of test conditions. For distributed testing, only one or a few test points are requested at many different conditions. The statistical techniques of Analysis of Variance (ANOVA), Design of Experiments (DOE) and Response Surface Methods (RSM) are applied to enable distributed test planning, data analysis and test augmentation. The D-Optimal class of DOE is used to plan an optimally efficient single- and multi-factor test. The resulting simulated test data are analyzed via ANOVA and a parametric model is constructed using RSM. Finally, ANOVA can be used to plan a second round of testing to augment the existing data set with new data points. The use of these techniques is demonstrated through several illustrative examples. To date, many thousands of comparisons have been performed and the results strongly support the conclusion that the distributed testing approach outperforms the clustered testing approach.

  12. On the noise variance of a digital mammography system

    International Nuclear Information System (INIS)

    Burgess, Arthur

    2004-01-01

    A recent paper by Cooper et al. [Med. Phys. 30, 2614-2621 (2003)] contains some apparently anomalous results concerning the relationship between pixel variance and x-ray exposure for a digital mammography system. They found an unexpected peak in a display domain pixel variance plot as a function of 1/mAs (their Fig. 5) with a decrease in the range corresponding to high display data values, corresponding to low x-ray exposures. As they pointed out, if the detector response is linear in exposure and the transformation from raw to display data scales is logarithmic, then pixel variance should be a monotonically increasing function in the figure. They concluded that the total system transfer curve, between input exposure and display image data values, is not logarithmic over the full exposure range. They separated data analysis into two regions and plotted the logarithm of display image pixel variance as a function of the logarithm of the mAs used to produce the phantom images. They found a slope of minus one for high mAs values and concluded that the transfer function is logarithmic in this region. They found a slope of 0.6 for the low mAs region and concluded that the transfer curve was neither linear nor logarithmic for low exposure values. It is known that the digital mammography system investigated by Cooper et al. has a linear relationship between exposure and raw data values [Vedantham et al., Med. Phys. 27, 558-567 (2000)]. The purpose of this paper is to show that the variance effect found by Cooper et al. (their Fig. 5) arises because the transformation from the raw data scale (14 bits) to the display scale (12 bits), for the digital mammography system they investigated, is not logarithmic for raw data values less than about 300 (display data values greater than about 3300). At low raw data values the transformation is linear and prevents over-ranging of the display data scale. Parametric models for the two transformations will be presented. Results of pixel

  13. Statistical methods for detecting and comparing periodic data and their application to the nycthemeral rhythm of bodily harm: A population based study

    LENUS (Irish Health Repository)

    Stroebel, Armin M

    2010-11-08

    Abstract Background Animals, including humans, exhibit a variety of biological rhythms. This article describes a method for the detection and simultaneous comparison of multiple nycthemeral rhythms. Methods A statistical method for detecting periodic patterns in time-related data via harmonic regression is described. The method is particularly capable of detecting nycthemeral rhythms in medical data. Additionally a method for simultaneously comparing two or more periodic patterns is described, which derives from the analysis of variance (ANOVA). This method statistically confirms or rejects equality of periodic patterns. Mathematical descriptions of the detecting method and the comparing method are displayed. Results Nycthemeral rhythms of incidents of bodily harm in Middle Franconia are analyzed in order to demonstrate both methods. Every day of the week showed a significant nycthemeral rhythm of bodily harm. These seven patterns of the week were compared to each other revealing only two different nycthemeral rhythms, one for Friday and Saturday and one for the other weekdays.

  14. Reduction of treatment delivery variances with a computer-controlled treatment delivery system

    International Nuclear Information System (INIS)

    Fraass, B.A.; Lash, K.L.; Matrone, G.M.; Lichter, A.S.

    1997-01-01

    Purpose: To analyze treatment delivery variances for 3-D conformal therapy performed at various levels of treatment delivery automation, ranging from manual field setup to virtually complete computer-controlled treatment delivery using a computer-controlled conformal radiotherapy system. Materials and Methods: All external beam treatments performed in our department during six months of 1996 were analyzed to study treatment delivery variances versus treatment complexity. Treatments for 505 patients (40,641 individual treatment ports) on four treatment machines were studied. All treatment variances noted by treatment therapists or quality assurance reviews (39 in all) were analyzed. Machines 'M1' (CLinac (6(100))) and 'M2' (CLinac 1800) were operated in a standard manual setup mode, with no record and verify system (R/V). Machines 'M3' (CLinac 2100CD/MLC) and ''M4'' (MM50 racetrack microtron system with MLC) treated patients under the control of a computer-controlled conformal radiotherapy system (CCRS) which 1) downloads the treatment delivery plan from the planning system, 2) performs some (or all) of the machine set-up and treatment delivery for each field, 3) monitors treatment delivery, 4) records all treatment parameters, and 5) notes exceptions to the electronically-prescribed plan. Complete external computer control is not available on M3, so it uses as many CCRS features as possible, while M4 operates completely under CCRS control and performs semi-automated and automated multi-segment intensity modulated treatments. Analysis of treatment complexity was based on numbers of fields, individual segments (ports), non-axial and non-coplanar plans, multi-segment intensity modulation, and pseudo-isocentric treatments (and other plans with computer-controlled table motions). Treatment delivery time was obtained from the computerized scheduling system (for manual treatments) or from CCRS system logs. Treatment therapists rotate among the machines, so this analysis

  15. Experimental performance assessment of the sub-band minimum variance beamformer for ultrasound imaging

    DEFF Research Database (Denmark)

    Diamantis, Konstantinos; Greenaway, Alan H.; Anderson, Tom

    2017-01-01

    Recent progress in adaptive beamforming techniques for medical ultrasound has shown that current resolution limits can be surpassed. One method of obtaining improved lateral resolution is the Minimum Variance (MV) beamformer. The frequency domain implementation of this method effectively divides...... the broadband ultrasound signals into sub-bands (MVS) to conform with the narrow-band assumption of the original MV theory. This approach is investigated here using experimental Synthetic Aperture (SA) data from wire and cyst phantoms. A 7 MHz linear array transducer is used with the SARUS experimental...

  16. A benchmark for statistical microarray data analysis that preserves actual biological and technical variance.

    Science.gov (United States)

    De Hertogh, Benoît; De Meulder, Bertrand; Berger, Fabrice; Pierre, Michael; Bareke, Eric; Gaigneaux, Anthoula; Depiereux, Eric

    2010-01-11

    Recent reanalysis of spike-in datasets underscored the need for new and more accurate benchmark datasets for statistical microarray analysis. We present here a fresh method using biologically-relevant data to evaluate the performance of statistical methods. Our novel method ranks the probesets from a dataset composed of publicly-available biological microarray data and extracts subset matrices with precise information/noise ratios. Our method can be used to determine the capability of different methods to better estimate variance for a given number of replicates. The mean-variance and mean-fold change relationships of the matrices revealed a closer approximation of biological reality. Performance analysis refined the results from benchmarks published previously.We show that the Shrinkage t test (close to Limma) was the best of the methods tested, except when two replicates were examined, where the Regularized t test and the Window t test performed slightly better. The R scripts used for the analysis are available at http://urbm-cluster.urbm.fundp.ac.be/~bdemeulder/.

  17. The summation of the matrix elements of Hamiltonian and transition operators. The variance of the emission spectrum

    International Nuclear Information System (INIS)

    Karaziya, R.I.; Rudzikajte, L.S.

    1988-01-01

    The general method to obtain the explicit expressions for sums of the matrix elements of Hamiltonian and transition operators has been extended. It can be used for determining the main characteristics of atomic spectra, such as the mean energy, the variance, the asymmetry coefficient, etc., as well as for the average quantities which describe the configuration mixing. By mean of this method the formula for the variance of the emission spectrum has been derived. It has been shown that this quantity of the emission spectrum can be expressed by the variances of the energy spectra of the initial and final configurations and by additional terms, caused by the distribution of the intensity in spectrum

  18. Variance-reduction technique for Coulomb-nuclear thermalization of energetic fusion products in hot plasmas

    International Nuclear Information System (INIS)

    DeVeaux, J.C.; Miley, G.H.

    1982-01-01

    A variance-reduction technique involving use of exponential transform and angular-biasing methods has been developed. Its purpose is to minimize the variance and computer time involved in estimating the mean fusion product (fp) energy deposited in a hot, multi-region plasma under the influence of small-energy transfer Coulomb collisions and large-energy transfer nuclear elastic scattering (NES) events. This technique is applicable to high-temperature D- 3 He, Cat. D and D-T plasmas which have highly energetic fps capable of undergoing NES. A first application of this technique is made to a D- 3 He Field Reversed Mirror (FRM) where the Larmor radius of the 14.7 MeV protons are typically comparable to the plasma radius (plasma radius approx. 2 fp gyroradii) and the optimistic fp confinement (approx. 45% of 14.7 MeV protons) previously predicted is vulnerable to large orbit perturbations induced by NES. In the FRM problem, this variance reduction technique is used to estimate the fractional difference in the average fp energy deposited in the closed-field region, E/sub cf/, with and without NES collisions

  19. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    Science.gov (United States)

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  20. A random variance model for detection of differential gene expression in small microarray experiments.

    Science.gov (United States)

    Wright, George W; Simon, Richard M

    2003-12-12

    Microarray techniques provide a valuable way of characterizing the molecular nature of disease. Unfortunately expense and limited specimen availability often lead to studies with small sample sizes. This makes accurate estimation of variability difficult, since variance estimates made on a gene by gene basis will have few degrees of freedom, and the assumption that all genes share equal variance is unlikely to be true. We propose a model by which the within gene variances are drawn from an inverse gamma distribution, whose parameters are estimated across all genes. This results in a test statistic that is a minor variation of those used in standard linear models. We demonstrate that the model assumptions are valid on experimental data, and that the model has more power than standard tests to pick up large changes in expression, while not increasing the rate of false positives. This method is incorporated into BRB-ArrayTools version 3.0 (http://linus.nci.nih.gov/BRB-ArrayTools.html). ftp://linus.nci.nih.gov/pub/techreport/RVM_supplement.pdf

  1. Determinations of dose mean of specific energy for conventional x-rays by variance-measurements

    International Nuclear Information System (INIS)

    Forsberg, B.; Jensen, M.; Lindborg, L.; Samuelson, G.

    1978-05-01

    The dose mean value (zeta) of specific energy of a single event distribution is related to the variance of a multiple event distribution in a simple way. It is thus possible to determine zeta from measurements in high dose rates through observations of the variations in the ionization current from for instance an ionization chamber, if other parameters contribute negligibly to the total variance. With this method is has earlier been possible to obtain results down to about 10 nm in a beam of Co60-γ rays, which is one order of magnitude smaller than the sizes obtainable with the traditional technique. This advantage together with the suggestion that zeta could be an important parameter in radiobiology make further studies of the applications of the technique motivated. So far only data from measurements in beams of a radioactive nuclide has been reported. This paper contains results from measurements in a highly stabilized X-ray beam. The preliminary analysis shows that the variance technique has given reasonable results for object sizes in the region of 0.08 μm to 20 μm (100 kV, 1.6 Al, HVL 0.14 mm Cu). The results were obtained with a proportional counter except for the larger object sizes, where an ionization chamber was used. The measurements were performed at dose rates between 1 Gy/h and 40 Gy/h. (author)

  2. Analysis of the effectiveness of the variance and Downside Risk measures for formation of investment portfolios

    Directory of Open Access Journals (Sweden)

    Mariúcha Nóbrega Bezerra

    2016-09-01

    Full Text Available This paper aims to analyze the efficacy of variance and measures of downside risk for of formation of investment portfolios in the Brazilian stock market. Using the methodologies of Ang (1975, Markowitz et al. (1993, Ballestero (2005, Estrada (2008 and Cumova and Nawrocki (2011, sought to find what the best method to solve the problem of asymmetric and endogenous matrix and, inspired by the work of Markowitz (1952 and Lohre, Neumann and Winterfeldt (2010, intended to be seen which risk metric is most suitable for the realization of more efficient allocation of resources in the stock market in Brazil. The sample was composed of stocks of IBrX 50, from 2000 to 2013. The results indicated that when the semivariance was used as a measure of asymmetric risk, if the investor can use more refined models for solving the problem of asymmetric semivariance-cosemivariance matrix, the model of Cumova and Nawrocki (2011 will be more effective. Furthermore, from the Brazilian data, VaR had become more effective than variance and other measures of downside risk with respect to minimizing the risk of loss. Thus, taken the assumption that the investor has asymmetric preferences regarding risk, forming portfolios of stocks in the Brazilian market is more efficient when using criteria of minimizing downside risk than the traditional mean-variance approach.

  3. Mean and variance evolutions of the hot and cold temperatures in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Parey, Sylvie [EDF/R and D, Chatou Cedex (France); Dacunha-Castelle, D. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); Hoang, T.T.H. [Universite Paris 11, Laboratoire de Mathematiques, Orsay (France); EDF/R and D, Chatou Cedex (France)

    2010-02-15

    In this paper, we examine the trends of temperature series in Europe, for the mean as well as for the variance in hot and cold seasons. To do so, we use as long and homogenous series as possible, provided by the European Climate Assessment and Dataset project for different locations in Europe, as well as the European ENSEMBLES project gridded dataset and the ERA40 reanalysis. We provide a definition of trends that we keep as intrinsic as possible and apply non-parametric statistical methods to analyse them. Obtained results show a clear link between trends in mean and variance of the whole series of hot or cold temperatures: in general, variance increases when the absolute value of temperature increases, i.e. with increasing summer temperature and decreasing winter temperature. This link is reinforced in locations where winter and summer climate has more variability. In very cold or very warm climates, the variability is lower and the link between the trends is weaker. We performed the same analysis on outputs of six climate models proposed by European teams for the 1961-2000 period (1950-2000 for one model), available through the PCMDI portal for the IPCC fourth assessment climate model simulations. The models generally perform poorly and have difficulties in capturing the relation between the two trends, especially in summer. (orig.)

  4. Estimation of breeding values for mean and dispersion, their variance and correlation using double hierarchical generalized linear models.

    Science.gov (United States)

    Felleki, M; Lee, D; Lee, Y; Gilmour, A R; Rönnegård, L

    2012-12-01

    The possibility of breeding for uniform individuals by selecting animals expressing a small response to environment has been studied extensively in animal breeding. Bayesian methods for fitting models with genetic components in the residual variance have been developed for this purpose, but have limitations due to the computational demands. We use the hierarchical (h)-likelihood from the theory of double hierarchical generalized linear models (DHGLM) to derive an estimation algorithm that is computationally feasible for large datasets. Random effects for both the mean and residual variance parts of the model are estimated together with their variance/covariance components. An important feature of the algorithm is that it can fit a correlation between the random effects for mean and variance. An h-likelihood estimator is implemented in the R software and an iterative reweighted least square (IRWLS) approximation of the h-likelihood is implemented using ASReml. The difference in variance component estimates between the two implementations is investigated, as well as the potential bias of the methods, using simulations. IRWLS gives the same results as h-likelihood in simple cases with no severe indication of bias. For more complex cases, only IRWLS could be used, and bias did appear. The IRWLS is applied on the pig litter size data previously analysed by Sorensen & Waagepetersen (2003) using Bayesian methodology. The estimates we obtained by using IRWLS are similar to theirs, with the estimated correlation between the random genetic effects being -0·52 for IRWLS and -0·62 in Sorensen & Waagepetersen (2003).

  5. Fringe biasing: A variance reduction technique for optically thick meshes

    Energy Technology Data Exchange (ETDEWEB)

    Smedley-Stevenson, R. P. [AWE PLC, Aldermaston Reading, Berkshire, RG7 4PR (United Kingdom)

    2013-07-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  6. Fringe biasing: A variance reduction technique for optically thick meshes

    International Nuclear Information System (INIS)

    Smedley-Stevenson, R. P.

    2013-01-01

    Fringe biasing is a stratified sampling scheme applicable to Monte Carlo thermal radiation transport codes. The thermal emission source in optically thick cells is partitioned into separate contributions from the cell interiors (where the likelihood of the particles escaping the cells is virtually zero) and the 'fringe' regions close to the cell boundaries. Thermal emission in the cell interiors can now be modelled with fewer particles, the remaining particles being concentrated in the fringes so that they are more likely to contribute to the energy exchange between cells. Unlike other techniques for improving the efficiency in optically thick regions (such as random walk and discrete diffusion treatments), fringe biasing has the benefit of simplicity, as the associated changes are restricted to the sourcing routines with the particle tracking routines being unaffected. This paper presents an analysis of the potential for variance reduction achieved from employing the fringe biasing technique. The aim of this analysis is to guide the implementation of this technique in Monte Carlo thermal radiation codes, specifically in order to aid the choice of the fringe width and the proportion of particles allocated to the fringe (which are interrelated) in multi-dimensional simulations, and to confirm that the significant levels of variance reduction achieved in simulations can be understood by studying the behaviour for simple test cases. The variance reduction properties are studied for a single cell in a slab geometry purely absorbing medium, investigating the accuracy of the scalar flux and current tallies on one of the interfaces with the surrounding medium. (authors)

  7. A Note on the Kinks at the Mean Variance Frontier

    OpenAIRE

    Vörös, J.; Kriens, J.; Strijbosch, L.W.G.

    1997-01-01

    In this paper the standard portfolio case with short sales restrictions is analyzed.Dybvig pointed out that if there is a kink at a risky portfolio on the efficient frontier, then the securities in this portfolio have equal expected return and the converse of this statement is false.For the existence of kinks at the efficient frontier the sufficient condition is given here and a new procedure is used to derive the efficient frontier, i.e. the characteristics of the mean variance frontier.

  8. Variance reduction techniques in the simulation of Markov processes

    International Nuclear Information System (INIS)

    Lessi, O.

    1987-01-01

    We study a functional r of the stationary distribution of a homogeneous Markov chain. It is often difficult or impossible to perform the analytical calculation of r and so it is reasonable to estimate r by a simulation process. A consistent estimator r(n) of r is obtained with respect to a chain with a countable state space. Suitably modifying the estimator r(n) of r one obtains a new consistent estimator which has a smaller variance than r(n). The same is obtained in the case of finite state space

  9. A guide to SPSS for analysis of variance

    CERN Document Server

    Levine, Gustav

    2013-01-01

    This book offers examples of programs designed for analysis of variance and related statistical tests of significance that can be run with SPSS. The reader may copy these programs directly, changing only the names or numbers of levels of factors according to individual needs. Ways of altering command specifications to fit situations with larger numbers of factors are discussed and illustrated, as are ways of combining program statements to request a variety of analyses in the same program. The first two chapters provide an introduction to the use of SPSS, Versions 3 and 4. General rules conce

  10. Diffusion-Based Trajectory Observers with Variance Constraints

    DEFF Research Database (Denmark)

    Alcocer, Alex; Jouffroy, Jerome; Oliveira, Paulo

    Diffusion-based trajectory observers have been recently proposed as a simple and efficient framework to solve diverse smoothing problems in underwater navigation. For instance, to obtain estimates of the trajectories of an underwater vehicle given position fixes from an acoustic positioning system...... of smoothing and is determined by resorting to trial and error. This paper presents a methodology to choose the observer gain by taking into account a priori information on the variance of the position measurement errors. Experimental results with data from an acoustic positioning system are presented...

  11. A Fay-Herriot Model with Different Random Effect Variances

    Czech Academy of Sciences Publication Activity Database

    Hobza, Tomáš; Morales, D.; Herrador, M.; Esteban, M.D.

    2011-01-01

    Roč. 40, č. 5 (2011), s. 785-797 ISSN 0361-0926 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : small area estimation * Fay-Herriot model * Linear mixed model * Labor Force Survey Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.274, year: 2011 http://library.utia.cas.cz/separaty/2011/SI/hobza-a%20fay-herriot%20model%20with%20different%20random%20effect%20variances.pdf

  12. Use of variance techniques to measure dry air-surface exchange rates

    Science.gov (United States)

    Wesely, M. L.

    1988-07-01

    The variances of fluctuations of scalar quantities can be measured and interpreted to yield indirect estimates of their vertical fluxes in the atmospheric surface layer. Strong correlations among scalar fluctuations indicate a similarity of transfer mechanisms, which is utilized in some of the variance techniques. The ratios of the standard deviations of two scalar quantities, for example, can be used to estimate the flux of one if the flux of the other is measured, without knowledge of atmospheric stability. This is akin to a modified Bowen ratio approach. Other methods such as the normalized standard-deviation technique and the correlation-coefficient technique can be utilized effectively if atmospheric stability is evaluated and certain semi-empirical functions are known. In these cases, iterative calculations involving measured variances of fluctuations of temperature and vertical wind velocity can be used in place of direct flux measurements. For a chemical sensor whose output is contaminated by non-atmospheric noise, covariances with fluctuations of scalar quantities measured with a very good signal-to-noise ratio can be used to extract the needed standard deviation. Field measurements have shown that many of these approaches are successful for gases such as ozone and sulfur dioxide, as well as for temperature and water vapor, and could be extended to other trace substances. In humid areas, it appears that water vapor fluctuations often have a higher degree of correlation to fluctuations of other trace gases than do temperature fluctuations; this makes water vapor a more reliable companion or “reference” scalar. These techniques provide some reliable research approaches but, for routine or operational measurement, they are limited by the need for fast-response sensors. Also, all variance approaches require some independent means to estimate the direction of the flux.

  13. Variance of indoor radon concentration: Major influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Yarmoshenko, I., E-mail: ivy@ecko.uran.ru [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Vasilyev, A.; Malinovsky, G. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation); Bossew, P. [German Federal Office for Radiation Protection (BfS), Berlin (Germany); Žunić, Z.S. [Institute of Nuclear Sciences “Vinca”, University of Belgrade (Serbia); Onischenko, A.; Zhukovsky, M. [Institute of Industrial Ecology UB RAS, Sophy Kovalevskoy, 20, Ekaterinburg (Russian Federation)

    2016-01-15

    Variance of radon concentration in dwelling atmosphere is analysed with regard to geogenic and anthropogenic influencing factors. Analysis includes review of 81 national and regional indoor radon surveys with varying sampling pattern, sample size and duration of measurements and detailed consideration of two regional surveys (Sverdlovsk oblast, Russia and Niška Banja, Serbia). The analysis of the geometric standard deviation revealed that main factors influencing the dispersion of indoor radon concentration over the territory are as follows: area of territory, sample size, characteristics of measurements technique, the radon geogenic potential, building construction characteristics and living habits. As shown for Sverdlovsk oblast and Niška Banja town the dispersion as quantified by GSD is reduced by restricting to certain levels of control factors. Application of the developed approach to characterization of the world population radon exposure is discussed. - Highlights: • Influence of lithosphere and anthroposphere on variance of indoor radon is found. • Level-by-level analysis reduces GSD by a factor of 1.9. • Worldwide GSD is underestimated.

  14. Waste Isolation Pilot Plant no-migration variance petition

    International Nuclear Information System (INIS)

    1990-01-01

    Section 3004 of RCRA allows EPA to grant a variance from the land disposal restrictions when a demonstration can be made that, to a reasonable degree of certainty, there will be no migration of hazardous constituents from the disposal unit for as long as the waste remains hazardous. Specific requirements for making this demonstration are found in 40 CFR 268.6, and EPA has published a draft guidance document to assist petitioners in preparing a variance request. Throughout the course of preparing this petition, technical staff from DOE, EPA, and their contractors have met frequently to discuss and attempt to resolve issues specific to radioactive mixed waste and the WIPP facility. The DOE believes it meets or exceeds all requirements set forth for making a successful ''no-migration'' demonstration. The petition presents information under five general headings: (1) waste information; (2) site characterization; (3) facility information; (4) assessment of environmental impacts, including the results of waste mobility modeling; and (5) analysis of uncertainties. Additional background and supporting documentation is contained in the 15 appendices to the petition, as well as in an extensive addendum published in October 1989

  15. Deterministic mean-variance-optimal consumption and investment

    DEFF Research Database (Denmark)

    Christiansen, Marcus; Steffensen, Mogens

    2013-01-01

    In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature that the consum......In dynamic optimal consumption–investment problems one typically aims to find an optimal control from the set of adapted processes. This is also the natural starting point in case of a mean-variance objective. In contrast, we solve the optimization problem with the special feature...... that the consumption rate and the investment proportion are constrained to be deterministic processes. As a result we get rid of a series of unwanted features of the stochastic solution including diffusive consumption, satisfaction points and consistency problems. Deterministic strategies typically appear in unit......-linked life insurance contracts, where the life-cycle investment strategy is age dependent but wealth independent. We explain how optimal deterministic strategies can be found numerically and present an example from life insurance where we compare the optimal solution with suboptimal deterministic strategies...

  16. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  17. A comparison of two follow-up analyses after multiple analysis of variance, analysis of variance, and descriptive discriminant analysis: A case study of the program effects on education-abroad programs

    Science.gov (United States)

    Alvin H. Yu; Garry. Chick

    2010-01-01

    This study compared the utility of two different post-hoc tests after detecting significant differences within factors on multiple dependent variables using multivariate analysis of variance (MANOVA). We compared the univariate F test (the Scheffé method) to descriptive discriminant analysis (DDA) using an educational-tour survey of university study-...

  18. Application of texture analysis method for mammogram density classification

    Science.gov (United States)

    Nithya, R.; Santhi, B.

    2017-07-01

    Mammographic density is considered a major risk factor for developing breast cancer. This paper proposes an automated approach to classify breast tissue types in digital mammogram. The main objective of the proposed Computer-Aided Diagnosis (CAD) system is to investigate various feature extraction methods and classifiers to improve the diagnostic accuracy in mammogram density classification. Texture analysis methods are used to extract the features from the mammogram. Texture features are extracted by using histogram, Gray Level Co-Occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Difference Matrix (GLDM), Local Binary Pattern (LBP), Entropy, Discrete Wavelet Transform (DWT), Wavelet Packet Transform (WPT), Gabor transform and trace transform. These extracted features are selected using Analysis of Variance (ANOVA). The features selected by ANOVA are fed into the classifiers to characterize the mammogram into two-class (fatty/dense) and three-class (fatty/glandular/dense) breast density classification. This work has been carried out by using the mini-Mammographic Image Analysis Society (MIAS) database. Five classifiers are employed namely, Artificial Neural Network (ANN), Linear Discriminant Analysis (LDA), Naive Bayes (NB), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). Experimental results show that ANN provides better performance than LDA, NB, KNN and SVM classifiers. The proposed methodology has achieved 97.5% accuracy for three-class and 99.37% for two-class density classification.

  19. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    Science.gov (United States)

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  20. Heteroscedastic Tests Statistics for One-Way Analysis of Variance: The Trimmed Means and Hall's Transformation Conjunction

    Science.gov (United States)

    Luh, Wei-Ming; Guo, Jiin-Huarng

    2005-01-01

    To deal with nonnormal and heterogeneous data for the one-way fixed effect analysis of variance model, the authors adopted a trimmed means method in conjunction with Hall's invertible transformation into a heteroscedastic test statistic (Alexander-Govern test or Welch test). The results of simulation experiments showed that the proposed technique…