WorldWideScience

Sample records for vapor intrusion calculations

  1. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  2. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations.

    Science.gov (United States)

    Guo, Yuanming; Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2015-11-17

    Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.

  3. UNCERTAINTY AND THE JOHNSON-ETTINGER MODEL FOR VAPOR INTRUSION CALCULATIONS

    Science.gov (United States)

    The Johnson-Ettinger Model is widely used for assessing the impacts of contaminated vapors on residential air quality. Typical use of this model relies on a suite of estimated data, with few site-specific measurements. Software was developed to provide the public with automate...

  4. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  5. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  6. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  7. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  8. Relationship between vapor intrusion and human exposure to trichloroethylene.

    Science.gov (United States)

    Archer, Natalie P; Bradford, Carrie M; Villanacci, John F; Crain, Neil E; Corsi, Richard L; Chambers, David M; Burk, Tonia; Blount, Benjamin C

    2015-01-01

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.

  9. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  10. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  11. VOC SAMPLING IN THE WATER TABLE/CAPILLARY FRINGE AREA FOR ASSESSING IMPACT ON VAPOR INTRUSION AND INDOOR AIR QUALITY

    Science.gov (United States)

    Vapor intrusion has been determined to be a major pathway for increased indoor air contamination from volatile organic contaminants (VOCs) at certain contaminated sites. In order to properly assess vapor intrusion, it is important to adequately evaluate VOC concentrations in the...

  12. Protocol for Tier 2 Evaluation of Vapor Intrusion at Corrective Action Sites

    Science.gov (United States)

    2012-07-01

    and Evaluation o condition the evalu Contro negati buildi pressu Vapo intrusio “on” Contro positiv buildi pressu Vapo intrusio “off” Figure 2...of Vapor Intrusion 11 Table 3.1: Performance Objectives Performance Objective Data Requirements Success Criteria Results Quantitative ...defined in Appendix D of the demonstration plan. Quantitative objectives for Precision, Accuracy, Completeness, Representativeness, and Comparability

  13. 76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System

    Science.gov (United States)

    2011-01-31

    ... Estimated Costs to Remediate Existing Sites Exceed Current Funding Levels, and More Sites are Expected to Be.... Methods for incorporating vapor intrusion into the HRS while, to the extent possible, maintaining the... will also be able to sign up for a mailing list that will be used to distribute logistical information...

  14. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  15. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  16. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.

    Directory of Open Access Journals (Sweden)

    Jordan L Wilson

    Full Text Available Human exposure to volatile organic compounds (VOCs via vapor intrusion (VI is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89. Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree

  17. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matt A; Burken, Joel G

    2018-01-01

    Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal

  18. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion

    Science.gov (United States)

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Burken, Joel G.

    2018-01-01

    Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman’s correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with

  19. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  20. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  1. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    Science.gov (United States)

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All

  2. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  3. Assessment of indoor air quality related to potential vapor intrusion: Issues for former manufactured gas plants

    International Nuclear Information System (INIS)

    Rames, Antoine; Guillossou, Gaelle; Ronga-Pezeret, Sylvaine; Hulot, Corinne

    2012-01-01

    The indoor air quality of buildings on sites with soil or groundwater contaminated with volatile or semi-volatile compounds can be degraded by potential vapor intrusion (VI) from these environmental media. For sites of former manufactured gas plants (MGP), the compounds that must be considered are BTEX (benzene, toluene, ethylbenzene, and xylenes), 8 of the 16 polycyclic aromatic hydrocarbons (PAHs) generally studied, and, to a lesser degree, phenol and hydrogen cyanide. Given the plausibility of VI and in accordance with current recommendations of the French Ministry of the Environment, measurements of indoor air quality (and outdoor air, for additional analyses) were conducted on two occasions during the winter and summer of 2010. These measurements simultaneously used multiple air sampling devices (Summa canisters, Gore modules, air pumps coupled to various matrices; such as XAD2, silica gel, etc.). Phenol and hydrogen cyanide have not previously been quantified (limit of quantification between 0.12 and 2.00 μg/m 3 ). BTEX and PAHs were found ubiquitously at concentrations on the order of 1 to 10 μg/m 3 for BTEX and naphthalene and one to ten ng/m 3 for PAHs other than naphthalene) at all 14 MGP and both control sites, regardless of where onsite the air was sampled (office, basement or crawl space, or outdoors). These levels (the maximum considered) do not allow us to conclude that the indoor air is degraded according to the official French guidelines for managing potentially contaminated sites and soils. Thus, no excess health risk is expected for residents of these sites because of exposure to possible VI, which cannot be ruled out in view of the ubiquity of some compounds. (authors)

  4. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  5. Final work plan : supplemental upward vapor intrusion investigation at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-12-15

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In 2007, the CCC/USDA conducted near-surface soil sampling at 61 locations and also sampled indoor air at nine residences on or adjacent to its former Hanover facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. The results were submitted to the KDHE in October 2007 (Argonne 2007). On the basis of the results, the KDHE requested sub-slab sampling and/or indoor air sampling (KDHE 2007). This Work Plan describes, in detail, the proposed additional scope of work requested by the KDHE and has been developed as a supplement to the comprehensive site investigation work plan that is pending (Argonne 2008). Indoor air samples collected previously from four homes at Hanover were shown to contain the carbon tetrachloride at low concentrations (Table 2.1). It cannot be concluded from these previous data that the source of the detected carbon tetrachloride is vapor intrusion attributable to former grain storage operations of the CCC/USDA at Hanover. The technical objective of the vapor intrusion investigation described here is to assess the risk to human health due to the potential for upward migration of carbon tetrachloride and

  6. Vapor Intrusion Facility Points, South Bay CA, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  7. Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide

    Science.gov (United States)

    2016-08-30

    estimation process when applying the tool. The tool described here is focused on vapor-phase diffusion from the current vadose zone source , and is not...from the current defined vadose zone source ). The estimated soil gas contaminant concentration obtained from the pre-modeled scenarios for a building...need a full site-specific numerical model to assess the impacts beyond the current vadose zone source . 35 5.0 References Brennan, R.A., N

  8. Thermodynamic calculations for chemical vapor deposition of silicon carbide

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi

    1985-03-01

    The composition of vapor and condensed phases at equilibrium and CVD phase diagrams were calculated for the CH 3 SiCl 3 -H 2 -Ar system using a computer code SOLGASMIX-PV, which is based on the free energy minimization method. These calculations showed that β-SiC, β-SiC+C(s), β-SiC+Si(s), β-SiC+Si(l), Si(s), Si(l), or C(s) would be deposited depending on deposition parameters. In the CH 3 SiCl 3 -Ar system, condensed phase was found to be β-SiC+C(s) or C(s). Comparing the calculated CVD phase diagrams with the experimental results from the literature, β-SiC+C(s) and β-SiC+Si(s) were deposited in the experiments at the high temperature (more than 2000K) and low temperature (less than 1700K) parts of a resion, respectively, where only β-SiC would be deposited in the calculations. These are remakable results to consider the deposition mechanism of silicon carbide. (author)

  9. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  10. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    Science.gov (United States)

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  11. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  12. 76 FR 14660 - Public Comment on the Development of Final Guidance for Evaluating the Vapor Intrusion to Indoor...

    Science.gov (United States)

    2011-03-17

    ... the RCRA Docket is (202) 566-0270. FOR FURTHER INFORMATION CONTACT: Stiven Foster, Policy Analysis... petroleum hydrocarbons should be addressed; How the guidance applies to Superfund Five-Year reviews; When or... intrusion can occur when there is migration of volatile chemicals from contaminated groundwater or soil into...

  13. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  14. Non-Intrusive Computational Method and Uncertainty Quantification Tool for isolator operability calculations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are extensively used by NASA for hypersonic aerothermodynamics calculations. The physical models used in CFD codes and...

  15. Vapor Intrusion from Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment

    Science.gov (United States)

    2014-07-01

    into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of

  16. Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA

    Science.gov (United States)

    Hartogh, P.; Sonnemann, G. R.; Grygalashvyly, M.; Song, Li; Berger, U.; Lübken, F.-J.

    2010-01-01

    Microwave water vapor measurements between 40 and 80 km altitude over a solar cycle (1996-2006) were carried out in high latitudes at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69.29°N, 16.03°E), Norway. Some smaller gaps and three interruptions of monitoring in the winters 1996/1997 and 2005/2006 and from spring 2001 to spring 2002 occurred during this period. The observations show a distinct year-to-year variability not directly related to solar Lyman-α radiation. In winter the water vapor mixing ratios in the upper domain were anticorrelated to the solar activity, whereas in summer, minima occurred in the years after the solar maximum in 2000/2001. In winter, sudden stratospheric warmings (SSWs) modulated the water vapor mixing ratios. Within the stratopause region a middle atmospheric water vapor maximum was observed, which results from the methane oxidation and is a regular feature there. The altitude of the maximum increased by approximately 5 km as summer approached. The largest mixing ratios were monitored in autumn. During the summer season a secondary water vapor maximum also occurred above 65 km most pronounced in late summer. The solar Lyman-α radiation impacts the water vapor mixing ratio particularly in winter above 65 km. In summer the correlation is positive below 70 km. The correlation is also positive in the lower mesosphere/stratopause region in winter due to the action of sudden stratospheric warmings, which occur more frequently under the condition of high solar activity and the enhancing the humidity. A strong day-to-day variability connected with planetary wave activity was found throughout the entire year. Model calculations by means of Leibniz-Institute Middle Atmosphere model (LIMA) reflect the essential patterns of the water vapor variation, but the results also show differences from the observations, indicating that exchange processes between the troposphere and stratosphere not modeled by LIMA could have

  17. Microfabricated gas chromatograph for on-site determinations of TCE in indoor air arising from vapor intrusion. 2. Spatial/temporal monitoring.

    Science.gov (United States)

    Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T

    2012-06-05

    We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.

  18. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.

    Science.gov (United States)

    Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G

    2017-09-19

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  19. Tree sampling as a method to assess vapor intrusion potential at a site characterized by VOC-contaminated groundwater and soil

    Science.gov (United States)

    Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  20. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  1. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    International Nuclear Information System (INIS)

    Solomonov, Boris N.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-01-01

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  2. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-06-10

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  3. Human intrusion

    International Nuclear Information System (INIS)

    Hora, S.; Neill, R.; Williams, R.; Bauser, M.; Channell, J.

    1993-01-01

    This paper focused on the possible approaches to evaluating the impacts of human intrusion on nuclear waste disposal. Several major issues were reviewed. First, it was noted that human intrusion could be addressed either quantitatively through performance assessments or qualitatively through design requirements. Second, it was decided that it was impossible to construct a complete set of possible future human intrusion scenarios. Third, the question of when the effect of possible human intrusion should be considered, before or after site selection was reviewed. Finally, the time frame over which human intrusion should be considered was discussed

  4. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2015-09-15

    Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  5. An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun

    2014-05-01

    Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.

  6. Calculation of vapor pressures of oxide fuels up to 5,000 K for equilibrium and nonequilibrium evaporation

    International Nuclear Information System (INIS)

    Breitung, W.

    1975-06-01

    In the first part of this work the evaporation kinetics of multicomponent systems is studied with UO 2 as the example. The evaporation, which is generally incongruent, implies that two opposing types of steady-state evaporation must be distinguished: equilibrium evaporation and 'forced congruent' evaporation. The two types of evaporation indicated entail different vapor pressures. In some prompt critical reactor incidents forced congruent evaporation must be anticipated. The second part of this work contains the calculation of the vapor pressures of UOsub(2+-x) and (U,Pu)Osub(2+-x) for both types of evaporation up to temperature of 5,000 K. The calculating procedures are based on the method of Rand and Markin (1967) incorporating the recent thermodynamic data. The agreement between the measured and calculated total pressures is good for the ranges of temperature and stoichiometry for which experimental results are available. This supports the results calculated for higher temperature ranges. (orig./UA) [de

  7. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin; Jonsson, Sigurjon; Corbi, Fabio; Rivalta, Eleonora

    2016-01-01

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  8. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin

    2016-03-04

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  9. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  10. Development of More Cost-Effective Methods for Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive-Adsorptive Sampling Techniques

    Science.gov (United States)

    2015-05-01

    ASTM ASTM International ASU Arizona State University ATD automated thermal desorption BENZ Benzene C/Co passive sampler concentration...Protection Agency [USEPA], 1998a, b; California Department of Toxic Substance Control, 2011; ASTM International [ASTM] D7758, 2011). This demonstration... microporous sintered polyethylene, through which the vapors diffuse. Figure 1b. Radiello sampler with regular (white) and low-uptake rate

  11. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  12. Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos-Madrigal

    2015-01-01

    Full Text Available Existen varios modelos moleculares para el monóxido de carbono desarrollados a partir de diferentes mediciones experimentales. El objetivo de este trabajo es comparar los resultados que varios de estos modelos producen en el cálculo del equilibrio líquido-vapor en busca de recomendar qué modelo debe ser usado de acuerdo la propiedad y la fase que se desea calcular. Los modelos seleccionados corresponden a cuatro modelos no polares, con uno o dos sitios Lennard-Jones, y cuatro modelos polares, con dipolos o cargas parciales para representar la polaridad del monóxido de carbono. Simulaciones Monte Carlo en la versión Gibbs canónica (NVT-GEMC se emplearon para determinar las densidades de las fases en equilibrio, la presión de vapor y la entalpia de vaporización entre 80 y 130 K con cada uno de los modelos seleccionados. Se encontró que los modelos más complejos SVH, ANC y PGB, son los que mejor describen la densidad del líquido saturado (alrededor de 7% de desviación promedio, pero estos modelos generan desviaciones mayores al 40% para las propiedades del vapor y al 20% para la entalpia de vaporización. Por otro lado, el modelo no- polar BLF generó las menores desviaciones para la presión de saturación y la densidad del vapor (6.8 y 21.5%, respectivamente. Este modelo, al igual que el modelo HCB, produce desviaciones aceptables para la densidad del líquido y la entalpia de vaporización (entre 10 y 12%. Los modelos no polares BLF y HCB, que no requieren el cálculo de las interacciones de largo alcance, se pueden considerar como los modelos moleculares que presentan un balance satisfactorio entre desviaciones en los resultados y complejidad de cálculo.

  13. On the accuracy of HITEMP-2010 calculated emissivities of Water Vapor and Carbon Dioxide

    DEFF Research Database (Denmark)

    Alberti, M.; Weber, R.; Mancini, M.

    2015-01-01

    Nowadays, spectral Line-by-Line calculations using either HITRAN or HITEMP data bases are frequently used for calculating gas radiation properties like absorption coefficients or emissivities. Such calculations are computationally very expensive because of the vast number of spectral lines and...... of spectral transmissivities which were done for H2O-CO2-N2 mixtures for temperatures up to 1770K. Using these measured data it is possible to compare the Line-by-Line calculation using HITEMP-2010 on the basis of total (spectrally averaged) emissivity. At high pressures, also a proper lineshape treatment...

  14. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    using the TIP4P/ice potential and a united-atom Lennard-Jones potential. respectively. The equilibrium calculation method for this system has three components, (i) thermodynamic integration from a supercritical ideal gas to obtain the fluid-phase chemical potentials. (ii) calculation of the chemical...

  15. Thermodynamic calculations for chemical vapor deposition of silicon carbide using ethyltrichlorosilane

    International Nuclear Information System (INIS)

    Nakano, Junichi; Yamada, Reiji

    1995-06-01

    The computer code SOLGASMIX-PV, which is based on the free energy minimization method, was used to calculate the equilibrium composition of the C 2 H 5 SiCl 3 -H 2 -Ar system. In the C 2 H 5 SiCl 3 -H 2 system, the calculation results showed that β-SiC+C, β-SiC, β-SiC+Si(1), Si(1), β-SiC+Si(s), and Si(s) would be deposited, whereas β-SiC+C and C would be deposited in the C 2 H 5 SiCl 3 -Ar system. By comparing the calculated results with the experimental results from the literature, in the region calculated as β-SiC+C to be deposited, β-SiC+C, β-SiC, or β-SiC+Si(s) was deposited in the experiments. The calculations revealed that the gas mole ratios for CVD were optimum when the (Ar+H 2 )/C 2 H 5 SiCl 3 took a value between 1000 and 10000, and the Ar/H 2 between 0.43 and 1.5. The deposition temperature was optimum between 1100-1500K. In this region, the Si atoms were most effectively used as source materials, and formed a single phase of β-SiC on the substrate. (author)

  16. First vapor explosion calculations performed with MC3D thermal-hydraulic code

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Berthoud, G. [CEA Centre d`Etudes de Grenoble, 38 (France). Direction des Reacteurs Nucleaires

    1998-01-01

    This paper presents the first calculations performed with the `explosion` module of the multiphase computer code MC3D, which is devoted to the fine fragmentation and explosion phase of a fuel coolant interaction. A complete description of the physical laws included in this module is given. The fragmentation models, taking into account two fragmentation mechanisms, a thermal one and an hydrodynamic one, are also developed here. Results to some calculations to test the numerical behavior of MC3D and to test the explosion models in 1D or 2D are also presented. (author)

  17. Calculation of thermodynamic properties of sodium and potassium vapors on the base of semiempirical state equation. Group integrals and virial coefficients

    International Nuclear Information System (INIS)

    Reva, T.D.; Semenov, A.M.

    1984-01-01

    Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty

  18. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  19. Scoping calculation of nuclides migration in engineering barrier system for effect of volume expansion due to overpack corrosion and intrusion of the buffer material

    International Nuclear Information System (INIS)

    Yoshita, Takashi; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Ohi, Takao; Nakajima, Kunihiko

    1999-11-01

    Corrosion of the carbon steel overpack leads to a volume expansion since the specific gravity of corrosion products is smaller than carbon steel. The buffer material is compressed due to the corrosive swelling, reducing its thickness and porosity. On the other hand, buffer material may be extruded into fractures of the surrounding rock and this may lead to a deterioration of the planned functions of the buffer, including retardation of nuclides migration and colloid filtration. In this study, the sensitivity analyses for the effect of volume expansion and intrusion of the buffer material on nuclide migration in the engineering barrier system are carried out. The sensitivity analyses were performed on the decrease in the thickness of the buffer material in the radial direction caused by the corrosive swelling, and the change in the porosity and dry density of the buffer caused by both compacting due to corrosive swelling and intrusion of buffer material. As results, it was found the maximum release rates of relatively shorter half-life nuclides from the outside of the buffer material decreased for taking into account of a volume expansion due to overpack corrosion. On the other hand, the maximum release rates increased when the intrusion of buffer material was also taking into account. It was, however, the maximum release rates of longer half-life nuclides, such as Cs-137 and Np-237, were insensitive to the change of buffer material thickness, and porosity and dry density of buffer. (author)

  20. Detailed Field Investigation of Vapor Intrusion Processes

    Science.gov (United States)

    2008-09-01

    drinks are preferable to caffeinated beverages or soft drinks. Refrain from alcohol the night before field work. • While in the field drink...crude drug made from the plant Cannabis sativa. The main mind-altering (psychoactive) ingredient in marijuana is THC (delta-9-tetrahydrocannobinol... caffeinated beverages or soft drinks. Refrain from alcohol the night before field work. • In the field drink frequently. Numerous small drinks at a tepid

  1. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor

    International Nuclear Information System (INIS)

    Hellmann, Robert

    2009-01-01

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  2. Solución Matricial de Modelos para Cálculo de Equilibrio Líquido-Vapor Matrix Solution of Models to Calculate Liquid-Vapor Equilibrium

    OpenAIRE

    José F Orejel-Pajarito; Raúl González-García

    2008-01-01

    El objetivo de este artículo es demostrar la viabilidad de utilizar modelos termodinámicos de coeficientes de actividad (Wilson, NRTL, UNIQUAC) programados con matrices, en lugar de estar programados con ciclos. Se determina la relación de equilibrio líquido-vapor de las mezclas Metanol-Etanol-Benceno y Acetona-Cloroformo-Metanol representados en mapas de curvas de residuo y en mapas de líneas de destilación. Para obtener resultados más confiables y conclusiones objetivas, el estudio fue apoy...

  3. Algorithm for the calculation of a steam generator efficiency; Algoritmo para el calculo de la eficiencia de un generador de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David; Ambriz, Juan Jose; Romero Paredes, Hernando [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    The efficiency calculation of steam generators is not always simple. The purpose of this paper is to propose an algorithm for the calculation of steam generators efficiency, easy to understand and carry out, in the form of a series of steps to be followed. It takes as starting point that the person in charge of applying these calculations has knowledge of the combustion processes and thermodynamic principles that rule such processes. [Espanol] El calculo de la eficiencia de los generadores de vapor no siempre es sencillo, el presente trabajo tiene como objetivo el de proponer un algoritmo de calculo de eficiencia de generadores de vapor, el cual sea facil de entender y de llevar a cabo, en forma de una serie de pasos a seguir. Se toma como punto de partida, que la persona encargada de aplicar estos calculos tenga el conocimiento de los procesos de combustion y principios termodinamicos que rigen tales procesos.

  4. Orthodontic intrusion : Conventional and mini-implant assisted intrusion mechanics

    Directory of Open Access Journals (Sweden)

    Anup Belludi

    2012-01-01

    intrusion has revolutionized orthodontic anchorage and biomechanics by making anchorage perfectly stable. This article addresses various conventional clinical intrusion mechanics and especially intrusion using mini-implants that have proven effective over the years for intrusion of maxillary anteriors.

  5. Human intrusion: New ideas?

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    Inadvertent human intrusion has been an issue for the disposal of solid radioactive waste for many years. This paper discusses proposals for an approach for evaluating the radiological significance of human intrusion as put forward by ICRP with contribution from work at IAEA. The approach focuses on the consequences of the intrusion. Protective actions could, however, include steps to reduce the probability of human intrusion as well as the consequences. (author)

  6. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  7. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  8. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  9. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  10. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  11. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  12. An elegant access to formation and vaporization enthalpies of ionic liquids by indirect DSC experiment and "in silico" calculations.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Schick, Christoph; Jayaraman, Saivenkataraman; Maginn, Edward J

    2012-07-14

    We used DSC for determination of the reaction enthalpy of the synthesis of the ionic liquid [C(4)mim][Cl]. A combination of DSC and quantum chemical calculations presents a new, indirect way to study thermodynamics of ionic liquids. The new procedure was validated with two direct experimental measurements and MD simulations.

  13. Metodología de cálculo de la eficiencia térmica de generadores de vapor Methodology to calculate thermal efficiency of steam boilers

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2008-07-01

    Full Text Available Se desarrolló un método matemático determinístico de procesamiento de registros experimentales, aplicable a un sistema generador de vapor-precalentador de aire en estado estacionario, que opere con uno o dos combustibles simultáneamente, para determinar la eficiencia térmica del mismo y la eficiencia con la que se oxida el combustible, como así también el rendimiento del intercambiador de calor. La mecánica de procesamiento se basa en la resolución de los balances de materia y energía sobre los diferentes equipos que conforman el sistema. Esta metodología es aplicable a aquellos generadores de vapor que empleen, como combustible, bagazo, gas natural o ambos (caldera mixta. Se ilustran, como ejemplos de aplicación, los resultados del cálculo de la eficiencia térmica de diferentes generadores de vapor para cada tipo de combustible procesado, empleando para ello datos de diversos ensayos experimentales. La resolución de los balances de materia y energía en una caldera que quema bagazo, dio como resultado un rendimiento térmico del 53,2% y un índice de generación de 1,38 kg de vapor/ kg de bagazo. Para una caldera cuyo combustible es gas natural, se obtuvo un rendimiento térmico del 76,7% y un índice de generación de 9,8 kg de vapor/ Nm³ de gas natural. Para una caldera que quema en forma simultánea bagazo y gas natural, se determinó un rendimiento del 68,3% y un índice de generación de 1,87 kg de vapor/ kg de bagazo equivalente. Como validación de esta metodología, se contrastan estos valores de eficiencia con los obtenidos según el código propuesto por la American Society of Mechanical Engineers (ASME.A deterministic mathematical method for processing experimental data, applied to a steam generator-air heater system in stationary state which operates with one or two fuels simultaneously, was developed to determine the thermal of the system, as well as fuel combustion and heat exchanger efficiency. The methodology is

  14. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  15. An intrusion detection system based on fiber hydrophone

    Science.gov (United States)

    Liu, Junrong; Qiu, Xiufen; Shen, Heping

    2017-10-01

    This paper provides a new intrusion detection system based on fiber hydrophone, focusing beam forming figure positioning according to the near field and high precision sound source location algorithm which can accurately position the intrusion; obtaining its behavior path , obtaining the intrusion events related information such as speed form tracking intrusion trace; And analyze identification the detected intrusion behavior. If the monitor area is larger, the algorithm will take too much time once, and influence the system response time, for reduce the calculating time. This paper provides way that coarse location first, and then scanned for accuracy, so as to realize the intrusion events (such as car, etc.) the remote monitoring of positioning. The system makes up the blank in process capture of the fiber optic intrusion detection technology, and improves the understanding of the invasion. Through the capture of the process of intrusion behavior, and the fusion detection of intrusion behavior itself, thus analysis, judgment, identification of the intrusion information can greatly reduce the rate of false positives, greatly improved the reliability and practicability of the perimeter security system.

  16. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  17. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  18. Network Intrusion Dataset Assessment

    Science.gov (United States)

    2013-03-01

    International Conference on Computational Intelligence and Natural Computing, volume 2, pages 413–416, June 2009. • Rung Ching Chen, Kai -Fan Cheng, and...Chia-Fen Hsieh . “Using rough set and support vector machine for network intrusion detection.” International Journal of Network Security & Its...intrusion detection using FP tree rules.” Journal Of Advanced Networking and Applications, 1(1):30–39, 2009. • Ming-Yang Su, Gwo-Jong Yu , and Chun-Yuen

  19. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  20. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    International Nuclear Information System (INIS)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-01-01

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106

  1. Interior intrusion alarm systems

    International Nuclear Information System (INIS)

    Prell, J.A.

    1978-01-01

    In meeting the requirements for the safeguarding of special nuclear material and the physical protection of licensed facilities, the licensee is required to design a physical security system that will meet minimum performance requirements. An integral part of any physical security system is the interior intrusion alarm system. The purpose of this report is to provide the potential user of an interior intrusion alarm system with information on the various types, components, and performance capabilities available so that he can design and install the optimum alarm system for his particular environment. In addition, maintenance and testing procedures are discussed and recommended which, if followed, will help the user obtain the optimum results from his system

  2. Intrusion detection system elements

    International Nuclear Information System (INIS)

    Eaton, M.J.; Mangan, D.L.

    1980-09-01

    This report highlights elements required for an intrusion detection system and discusses problems which can be encountered in attempting to make the elements effective. Topics discussed include: sensors, both for exterior detection and interior detection; alarm assessment systems, with the discussion focused on video assessment; and alarm reporting systems, including alarm communication systems and dislay/console considerations. Guidance on careful planning and design of a new or to-be-improved system is presented

  3. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  4. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  5. WIPP performance assessment: impacts of human intrusion

    International Nuclear Information System (INIS)

    Anderson, D.R.; Hunter, R.L.; Bertram-Howery, S.G.; Lappin, A.R.

    1989-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is a research and development facility that may become the USA's first and only mined geologic repository for transuranic waste. Human intrusion into the WIPP repository after closure has been shown by preliminary sensitivity analyses and calculations of consequences to be an important, and perhaps the most important, factor in long-term repository performance

  6. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  7. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  8. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara; Valstar, Johan; van Gaans, Pauline; Grotenhuis, Tim; Rijnaarts, Huub

    2012-01-01

    the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl

  9. Guide for the Assessment of the Vapor Intrusion Pathway

    National Research Council Canada - National Science Library

    Cox, Douglas N; Howard, W. B; Smith, Melanie A

    2006-01-01

    .... Exposures related to this pathway can result from the volatilization and migration of chemicals from contaminated groundwater and subsurface soil that can leak through cracks and holes in buildings...

  10. Network Intrusion Forensic Analysis Using Intrusion Detection System

    OpenAIRE

    Manish Kumar; Dr. M. Hanumanthappa; Dr. T.V. Suresh Kumar

    2011-01-01

    The need for computer intrusion forensics arises from the alarming increase in the number of computer crimes that are committed annually. After a computer system has been breached and an intrusion has been detected, there is a need for a computer forensics investigation to follow. Computer forensics is used to bring to justice, those responsible for conducting attacks on computer systems throughout the world. Because of this the law must be follow precisely when conducting a forensics investi...

  11. Empirical model for calculating vapor-liquid equilibrium and associated phase enthalpy for the CO2--O2--Kr--Xe system for application to the KALC process

    International Nuclear Information System (INIS)

    Glass, R.W.; Gilliam, T.M.; Fowler, V.L.

    1976-01-01

    An empirical model is presented for vapor-liquid equilibria and enthalpy for the CO 2 -O 2 system. In the model, krypton and xenon in very low concentrations are combined with the CO 2 -O 2 system, thereby representing the total system of primary interest in the High-Temperature Gas-Cooled Reactor program for removing krypton from off-gas generated during the reprocessing of spent fuel. Selected properties of the individual and combined components being considered are presented in the form of tables and empirical equations

  12. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  13. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  14. The use of stochastic method for the calculation of liquid-vapor multicomponent equilibrium and the contribution of groups theory for the evaluation of fugacity coefficient; Uso de um metodo estocastico para calculo do equilibrio liquido-vapor de sistemas multicomponentes e avaliacao de uma abordagem por contribuicao de grupos para o calculo do coeficiente de fugacidade

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rafaelly L.; Oliveira, Jackson A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Rojas, Leopoldo O.A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)

    2008-07-01

    This work has the main objective of evaluating the mathematical model developed by Jaubert e Mutelet (2004) in terms of the prediction capacity for the calculation of the vapor-liquid equilibrium (VLE). This model is based on Peng-Robinson equation of state (EOS) and it considers the binary interaction parameters (Kij(T)) estimated by a contribution group method and dependent of the temperature. The model proposed by Jaubert e Mutelet (2004), named PPR78 (Predictive Peng-Robinson), was implemented in this work by using the Fortran language. An optimization approach based on the stochastic algorithm of Particle Swarm Optimization (PSO) was used in order to calculate the vapor-liquid equilibrium. Simulations were accomplished for several binary systems and the results were concordant with some experimental data of the investigated systems. However, for some systems different from those presented by Jaubert and Mutelet (2004), the model presented low prediction capacity. In spite of the great demand of computational performance, the algorithm PSO demonstrated robustness during the calculation of VLE and it assured convergence in most of the cases. (author)

  15. Corrosion inhibitor development for slightly sour environments with oxygen intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.; Wang, H.; Li, J. [Clariant Oil Services North America, Calgary, AB (Canada)

    2009-07-01

    This presentation reported on a study that examined the effect of oxygen on the inhibition of carbon steel in slightly sour corrosion, and the initiation and propagation of localized attack. Oxygen can enter sour water injection systems through the vapor space in storage tanks and process system. Oxygen aggravates the corrosion attack by participating in the cathodic reaction under full or partial diffusion control. Laboratory testing results were reported in this presentation along with the development of corrosion inhibitors for such a slightly sour system. Bubble testing cells were used with continuous H{sub 2}/CO{sub 2} mixture gas sparging and occasional oxygen intrusion of 2 to 4 hours during a week long test. Linear polarization resistance (LPR) measurements and weight loss corrosion coupons were used to quantify the corrosion attack. The findings were presented in terms of the magnitude of localized attacks at different oxygen concentrations and intrusion periods, with and without the presence of corrosion inhibitors. tabs., figs.

  16. From intrusive to oscillating thoughts.

    Science.gov (United States)

    Peirce, Anne Griswold

    2007-10-01

    This paper focused on the possibility that intrusive thoughts (ITs) are a form of an evolutionary, adaptive, and complex strategy to prepare for and resolve stressful life events through schema formation. Intrusive thoughts have been studied in relation to individual conditions, such as traumatic stress disorder and obsessive-compulsive disorder. They have also been documented in the average person experiencing everyday stress. In many descriptions of thought intrusion, it is accompanied by thought suppression. Several theories have been put forth to describe ITs, although none provides a satisfactory explanation as to whether ITs are a normal process, a normal process gone astray, or a sign of pathology. There is also no consistent view of the role that thought suppression plays in the process. I propose that thought intrusion and thought suppression may be better understood by examining them together as a complex and adaptive mechanism capable of escalating in times of need. The ability of a biological mechanism to scale up in times of need is one hallmark of a complex and adaptive system. Other hallmarks of complexity, including self-similarity across scales, sensitivity to initial conditions, presence of feedback loops, and system oscillation, are also discussed in this article. Finally, I propose that thought intrusion and thought suppression are better described together as an oscillatory cycle.

  17. Saltwater intrusion monitoring in Florida

    Science.gov (United States)

    Prinos, Scott T.

    2016-01-01

    Florida's communities are largely dependent on freshwater from groundwater aquifers. Existing saltwater in the aquifers, or seawater that intrudes parts of the aquifers that were fresh, can make the water unusable without additional processing. The quality of Florida's saltwater intrusion monitoring networks varies. In Miami-Dade and Broward Counties, for example, there is a well-designed network with recently constructed short open-interval monitoring wells that bracket the saltwater interface in the Biscayne aquifer. Geochemical analyses of water samples from the network help scientists evaluate pathways of saltwater intrusion and movement of the saltwater interface. Geophysical measurements, collected in these counties, aid the mapping of the saltwater interface and the design of monitoring networks. In comparison, deficiencies in the Collier County monitoring network include the positioning of monitoring wells, reliance on wells with long open intervals that when sampled might provide questionable results, and the inability of existing analyses to differentiate between multiple pathways of saltwater intrusion. A state-wide saltwater intrusion monitoring network is being planned; the planned network could improve saltwater intrusion monitoring by adopting the applicable strategies of the networks of Miami-Dade and Broward Counties, and by addressing deficiencies such as those described for the Collier County network.

  18. The assessment of human intrusion into underground repositories for radioactive waste Volume 1: Main report

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Little, R.H.; Asthon, J.; Staunton, G.M.

    1990-01-01

    This report has been prepared with the primary objective of establishing a methodology for the assessment of human intrusion into deep underground repositories for radioactive wastes. The disposal concepts considered are those studied in the performance assessment studies Pagis and Pacoma, coordinated by the CEC. These comprise four types of host rock, namely: clay, granite, salt and the sub-seabed. Following a review of previous assessments of human intrusion, a list of relevant human activities is derived. This forms the basis for detailed characterization of groundwater abstraction and of exploitation of mineral and other resources. Approaches to assessment of intrusion are reviewed and consideration is given to the estimation of probabilities for specific types of intrusion events. Calculational schemes are derived for specific intrusion events and dosimetric factors are presented. A review is also presented of the capacity for reduction of the risks associated with intrusions. Finally, conclusions from the study are presented

  19. The assessment of human intrusion into underground repositories for radioactive waste Volume 2: Appendices

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Little, R.H.; Ashton, J.; Staunton, G.M.

    1990-01-01

    This report has been prepared with the primary objective of establishing a methodology for the assessment of human intrusion into deep underground repositories for radioactive wastes. The disposal concepts considered are those studied in the performance assessment studies Pagis and Pacoma, coordinated by the CEC. These comprise four types of host rock, namely: clay, granite, salt and the sub-seabed. Following a review of previous assessments of human intrusion, a list of relevant human activities is derived. This forms the basis for detailed characterization of groundwater abstraction and of exploitation of mineral and other resources. Approaches to assessment of intrusion are reviewed and consideration is given to the estimation of probabilities for specific types of intrusion events. Calculational schemes are derived for specific intrusion events and dosimetric factors are presented. A review is also presented of the capacity for reduction of the risks associated with intrusions. Finally, conclusions from the study are presented

  20. Number of Waste Package Hit by Igneous Intrusion

    International Nuclear Information System (INIS)

    M. Wallace

    2004-01-01

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios

  1. Data Mining for Intrusion Detection

    Science.gov (United States)

    Singhal, Anoop; Jajodia, Sushil

    Data Mining Techniques have been successfully applied in many different fields including marketing, manufacturing, fraud detection and network management. Over the past years there is a lot of interest in security technologies such as intrusion detection, cryptography, authentication and firewalls. This chapter discusses the application of Data Mining techniques to computer security. Conclusions are drawn and directions for future research are suggested.

  2. Non-intrusive refractometer sensor

    Indian Academy of Sciences (India)

    An experimental realization of a simple non-intrusive refractometer sensor .... and after amplification is finally read by a digital multimeter (Fluke make: 179 true ... To study the response of the present FO refractometer, propylene glycol has been ... values of all the samples were initially measured by Abbe's refractometer.

  3. Zero Trust Intrusion Containment for Telemedicine

    National Research Council Canada - National Science Library

    Sood, Arun

    2002-01-01

    .... Our objective is the design and analysis of 'zero-trust' Intrusion Tolerant Systems. These are systems built under the extreme assumption that all intrusion detection techniques will eventually fail...

  4. Strontium isotopic geochemistry of intrusive rocks, Puerto Rico, Greater Antilles

    International Nuclear Information System (INIS)

    Jones, L.M.; Kesler, S.E.

    1980-01-01

    The strontium isotope geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial 87 Sr/ 86 Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of 71 +- 2 m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone. (orig.)

  5. Railway clearance intrusion detection method with binocular stereo vision

    Science.gov (United States)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  6. Intrusive luxation of 60 permanent incisors

    DEFF Research Database (Denmark)

    Tsilingaridis, Georgios; Malmgren, Barbro; Andreasen, Jens O

    2012-01-01

    Intrusive luxation in the permanent dentition is an uncommon injury but it is considered one of the most severe types of dental trauma because of the risk for damage to the periodontal ligament, pulp and alveolar bone. Management of intrusive luxation in the permanent dentition is controversial....... The purpose of this study was to evaluate pulp survival and periodontal healing in intrusive luxated permanent teeth in relation to treatment alternatives, degree of intrusion and root development....

  7. Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

    Science.gov (United States)

    Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.

    2018-04-01

    For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

  8. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  9. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  10. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  11. Intrusive Images in Psychological Disorders

    OpenAIRE

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in th...

  12. Metallogenic aspects of Itu intrusive suite

    International Nuclear Information System (INIS)

    Amaral, G.; Pascholati, E.M.

    1990-01-01

    The integrated use of geological, geochemical, geophysical and remote sensing data is providing interesting new information on the metallogenic characteristics of the Itu Intrusive Suite. During World War II, up to 1959, a wolframite deposit was mined near the border of the northernmost body (Itupeva Granite). This deposit is formed by greisen veins associated with cassiterite and topaz, clearly linked with later phases of magmatic differentiation. Generally those veins are related to hydrothermal alteration of the granites and the above mentioned shear zone. U, Th and K determinations by field and laboratory gammaspectrometry were used for regional distribution analysis of those elements and its ratios and calculation of radioactivity heat production. In this aspects, the Itupeva Granite is the hottest and presents several anomalies in the Th/U ratio, indicative of late or post magmatic oxidation processes. (author)

  13. Prediction methods for the calculation of the flammability properties of gases and vapors: CHETAH and ASTM software. Part 1. Esters and Ethers

    International Nuclear Information System (INIS)

    Gigante, L.; Dellavedova, M.; Pasturenzi, C.; Lunghi, A.; Cardillo, P.

    2008-01-01

    After the law by decree of the 12. June 2003, N 233 (ATEX Directive) and REACH regulation (Regulation EC n. 2907/2006 of the European Parliament), several industrial fields, also not chemical, need the flammability data for the substances used. Perhaps, many of these data, especially for compounds with not common uses, are not easy to collect. It would be helpful to provide prediction methods in order to calculate these data without any experimentation that sometimes results time consuming, expensive and practically impossible for all the commercial compounds. In this research the ASTM software CHETAH (CHEmical Thermodynamic And Hazard evaluation) has been used in order to compute the lower flammability limit (L i ), the limiting oxygen concentration (LOC, using nitrogen as inert gas) as a function of temperature, the adiabatic flame temperature T flame , the fundamental burning velocity (S u ), the quenching distance (Q d ), the minimum ignition energy (MIE) for esters and ethers, substances highly used in industry. [it

  14. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  15. Spray Evaporation in Turbulent Flow: Numerical Calculations and Detailed Experiments by Phase-Doppler Anemometry Évaporation de brouillard en flux turbulent : calculs numériques et expériences détaillées par anémometrie de phase-Doppler

    Directory of Open Access Journals (Sweden)

    Sommerfeld M.

    2006-11-01

    Full Text Available The present paper concerns experiments and numerical calculations of an isopropyl-alcohol spray evaporating in a co-flowing turbulent heated air flow. The measurements provided detailed inlet and boundary conditions for the numerical calculations and allowed the validation of the numerical method and models. Phase-Doppler anemometry was used in order to obtain the spatial change of the droplet size distribution and the correlation between droplet size and velocity throughout the flow field. Additionally, a reliable method based on the detection of the signal amplitudes was applied to determine the droplet mass flux. By integration of the droplet mass flux profiles, the global evaporation rates could be determined for different flow conditions. Numerical calculations of the evaporating spray were performed by the Eulerian / Lagrangian approach. The modelling of droplet evaporation is briefly reviewed prior to the description of the applied numerical models and methods. Calculations for a single phase flow showed good agreement with the experiments. Also for all of the droplet phase properties reasonable agreement with the experiments could be achieved and the global evaporation rates agreed well with the measurements. Cet article expose en détail les expériences et les calculs concernant l'évaporation d'isopropanol pulvérisé dans un flux d'air chaud turbulent. Les mesures ont fourni le détail des conditions initiales et des conditions limites pour les calculs numériques ; elles ont également permis de valider la méthode et le modèle. L'anémométrie de phase-Doppler a permis de définir la modification spatiale de la distribution des dimensions de gouttelettes ainsi que la corrélation entre dimension et vitesse des gouttelettes, dans l'ensemble du champ d'écoulement. De plus, une méthode fiable fondée sur la détection des amplitudes de signal a été appliquée afin de déterminer le débit massique des gouttelettes. L

  16. Intrusion scenarios in fusion waste disposal sites

    International Nuclear Information System (INIS)

    Zucchetti, M.; Zucchetti, M.; Rocco, P.

    1998-01-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  17. Intrusion scenarios in fusion waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Zucchetti, M.; Rocco, P. [Energetics Dept., Polytechnic of Turin (Italy)

    1998-07-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  18. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  19. An international perspective on Facebook intrusion.

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela Magdalena; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-08-30

    Facebook has become one of the most popular social networking websites in the world. The main aim of the study was to present an international comparison of Facebook intrusion and Internet penetration while examining possible gender differences. The study consisted of 2589 participants from eight countries: China, Greece, Israel, Italy, Poland, Romania, Turkey, USA. Facebook intrusion and Internet penetration were taken into consideration. In this study the relationship between Facebook intrusion and Internet penetration was demonstrated. Facebook intrusion was slightly negatively related to Internet penetration in each country. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Intrusive Images in Psychological Disorders

    Science.gov (United States)

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969

  1. Intrusive and Non-Intrusive Load Monitoring (A Survey

    Directory of Open Access Journals (Sweden)

    Marco Danilo Burbano Acuña

    2015-05-01

    Full Text Available There is not discussion about the need of energyconservation, it is well known that energy resources are limitedmoreover the global energy demands will double by the end of2030, which certainly will bring implications on theenvironment and hence to all of us.Non-Intrusive load monitoring (NILM is the process ofrecognize electrical devices and its energy consumption basedon whole home electric signals, where this aggregated load datais acquired from a single point of measurement outside thehousehold. The aim of this approach is to get optimal energyconsumption and avoid energy wastage. Intrusive loadmonitoring (ILM is the process of identify and locate singledevices through the use of sensing systems to support control,monitor and intervention of such devices. The aim of thisapproach is to offer a base for the development of importantapplications for remote and automatic intervention of energyconsumption inside buildings and homes as well. For generalpurposes this paper states a general framework of NILM andILM approaches.Appliance discerns can be tackled using approaches fromdata mining and machine learning, finding out the techniquesthat fit the best this requirements, is a key factor for achievingfeasible and suitable appliance load monitoring solutions. Thispaper presents common and interesting methods used.Privacy concerns have been one of the bigger obstacles forimplementing a widespread adoption of these solutions; despitethis fact, developed countries like those inside the EU and theUK have established a deadline for the implementation ofsmart meters in the whole country, whereas USA governmentstill struggles with the acceptance of this solution by itscitizens.The implementation of security over these approachesalong with fine-grained energy monitoring would lead to abetter public agreement of these solutions and hence a fasteradoption of such approaches. This paper reveals a lack ofsecurity over these approaches with a real scenario.

  2. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor; Ab initio-Berechnung der Wechselwirkungspotentiale von Helium, Neon und Methan sowie theoretische Untersuchungen zu ihren thermophysikalischen Eigenschaften und denen von Wasserdampf

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, Robert

    2009-06-16

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  3. Radiological risks due to intrusion into a deep bedrock repository

    International Nuclear Information System (INIS)

    Nordlinder, S.; Bergstroem, U.; Edlund, O.

    1999-01-01

    the highest dose contribution due to their high initial amount in the waste. Calculated dose rates were multiplied with judged probabilities for the intrusion and the radiation risk factor for fatal cancer, to obtain the overall risk to individuals. At an early intrusion the dose rates showed to be relatively high, but the probability was low, implying that the overall risk will be negligible. The, probability is low because it is most realistic that information about the repository will be available during at least some hundred years after closure

  4. PHYSICOCHEMICAL PROPERTY CALCULATIONS

    Science.gov (United States)

    Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...

  5. Human intrusion: issues concerning its assessment

    International Nuclear Information System (INIS)

    Grimwood, P.D.; Smith, G.M.

    1989-01-01

    The potential significance of human intrusion in the performance assessment of radioactive waste repositories has been increasingly recognized in recent years. It is however an area of assessment in which subjective judgments dominate. This paper identifies some of the issues involved. These include regulatory criteria, scenario development, probability assignment, consequence assessment and measures to mitigate human intrusion

  6. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  7. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Jae Song

    2009-07-01

    Full Text Available Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

  8. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones

    Science.gov (United States)

    Jaegle, L.; Wood, R.; Wargan, K.

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange by using cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite and contrasting them to composites obtained with Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) as well as with the GEOS-Chem chemical transport model. MERRA sea level pressure fields are used to identify 15,978 extratropical cyclones in the northern hemisphere (NH) between 2005 and 2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites of these cyclones feature a distinct 1,000 km wide O3 enhancement in the dry intrusion to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased water vapor. In the lowermost stratosphere, MLS composites show that the dry intrusion O3 enhancements reach a 210 ppbv maximum in April. In the middle troposphere, TES composites display dry intrusion maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich dry intrusion forms a coherent and vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring dry intrusions, O3 is enhanced by 100 pbbv or 100-130% relative to background conditions at 300 hPa, with a significant contribution reaching pressure altitudes below 500 hPa (6-20 ppbv or 15-30% enhancement). We calculate that extratropical cyclones result in a STT flux of 119 Tg O3 yr-1, accounting for 42% of the annual NH O3 extratropical STT flux. The STT flux in cyclones is highest in spring and displays a strong dependence on westerly 300 hPa wind speeds.

  9. Intrusion mechanics according to Burstone with the NiTi-SE-steel uprighting spring.

    Science.gov (United States)

    Sander, F G; Wichelhaus, A; Schiemann, C

    1996-08-01

    Intrusion mechanics according to Burstone can be regarded as a practicable method for the intrusion of incisors. 1. By applying the NiTi-SE-steel uprighting spring, relatively constant forces can be exerted over a large range of intrusion on both sides of the anterior tooth archwire. 2. By bending a 150 degrees tip-back bend or a curvature into the steel portion, the uprighting spring presented here is brought into the plastic range of the characteristic curve of force. 3. Application of sliding hooks on the intrusion spring permits readjustment for force transfer onto the anterior archwire. 4. Connecting the anterior archwire with the posterior elements by means of a steel ligature can be recommended only in some cases, because sagittally directed forces may be produced. 5. The adult patients presented showed an average intrusion of 0.6 mm/month, if a linear connection was presupposed. 6. An intrusive effect on the incisors could first be detected clinically after 6 to 8 weeks. 7. Application of a torque-key proves especially useful in controlling the incisor position during intrusion in order to avoid unnecessary radiography. 8. Actual prediction of the centre of resistance with the help of a cephalometric radiograph proved not to be feasible. 9. The calculated maximal intrusion of the mandibular incisors was 7 mm. 10. The torque-segmented archwire with crimped hooks and pseudoelastic springs between the molars and the crimped hooks proved very effective for retrusion and intrusion of maxillary incisors. The maxillary anterior teeth can be retruded by a total of 7 mm without readjustment. 11. Constant moments and forces could be transferred by applying preformed arch wires and segmented arch wires.

  10. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  11. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  12. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  13. Alpha intrusion on ovenight polysomnogram

    Directory of Open Access Journals (Sweden)

    Nahapetian R

    2014-06-01

    Full Text Available No abstract available. Article truncated after 150 words. A 30 year-old Army veteran with a past medical history significant for chronic lumbar back pain stemming from a fall-from-height injury sustained in 2006 was referred to the sleep laboratory for evaluation of chronic fatigue and excessive daytime hypersomnolence. His Epworth sleepiness scale score was 16. He denied a history of snoring and witnessed apnea. Body Mass Index (BMI was 25.7 kg/m2. His main sleep related complaints were frequent nocturnal arousals, poor sleep quality, un-refreshing sleep, prolonged latency to sleep onset, and nightmares. An In-lab attended diagnostic polysomnogram was performed. Sleep efficiency was reduced (73% and overall arousal index was not significantly elevated (3.2 events/hour. The sleep study showed rapid eye movement (REM related sleep disordered breathing that did not meet diagnostic criteria for sleep apnea. There was no evidence for period limb movement disorder. However, the study was significant for alpha wave intrusion in stage N2 non-REM and stage ...

  14. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  15. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  16. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  17. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  18. Periodontal changes following molar intrusion with miniscrews

    Directory of Open Access Journals (Sweden)

    Shahin Bayani

    2015-01-01

    Conclusion: Within the limitations of this study, these results suggest that not only periodontal status was not negatively affected by intrusion, but also there were signs of periodontal improvement including attachment gain and shortening of clinical crown height.

  19. Autonomous Rule Creation for Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  20. Acknowledging the dilemmas of intrusive media

    DEFF Research Database (Denmark)

    Mathieu, David; Finger, Juliane; Dias, Patrcia

    2017-01-01

    Part of the stakeholder consultation addressed strategies that media audiences are developing to cope with pressures and intrusions in a changing media environment, characterised by digitalisation and interactive possibilities. We interviewed ten stakeholders representing interests such as content...... production, media literacy, media regulation, and activism. Consulting with these stakeholders left the impression that pressures and intrusions from media lack widespread acknowledgement, and that little is known about audiences’ strategies to cope with media. Even when intrusions are acknowledged, we find...... no consensual motivation, nor any clear avenue for action. Therefore, we have analysed different discursive positions that prevent acknowledging or taking action upon the pressures and intrusions that we presented to these stakeholders. The discursive positions are outlined below....

  1. NIST Special Publication on Intrusion Detection Systems

    National Research Council Canada - National Science Library

    Bace, Rebecca Gurley

    2001-01-01

    Intrusion detection systems (IDSs) are software or hardware systems that automate the process of monitoring the events occurring in a computer system or network, analyzing them for signs of security problems...

  2. Prevention and analysis of hacker's intrusion

    International Nuclear Information System (INIS)

    Liu Baoxu; An Dehai; Xu Rongsheng

    2000-01-01

    The author analyzes the behavior characteristics and relevant technologies about the hacker's intrusion, and gives some corresponding solutions pertinently. To the recent events about hackers, the author gives detailed introduction and puts forward the relevant advice and valuable consideration

  3. Intrusion problematic during water supply systems’ operation

    OpenAIRE

    Jesus Mora-Rodriguez, P. Amparo López-Jimenez, Helena M. Ramos

    2011-01-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuse...

  4. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  5. Expert judgement on inadvertent human intrusion into the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hora, S.C.; von Winterfeldt, D.; Trauth, K.M.

    1991-12-01

    Four expert-judgment teams have developed analyses delineating possible future societies in the next 10,000 years in the vicinity of the Waste Isolation Pilot Plant (WIPP). Expert-judgment analysis was used to address the question of future societies because neither experimentation, observation, nor modeling can resolve such uncertainties. Each of the four, four-member teams, comprised of individuals with expertise in the physical, social, or political sciences, developed detailed qualitative assessments of possible future societies. These assessments include detailed discussions of the underlying physical and societal factors that would influence society and the likely modes of human-intrusion at the WIPP, as well as the probabilities of intrusion. Technological development, population growth, economic development, conservation of information, persistence of government control, and mitigation of danger from nuclear waste were the factors the teams believed to be most important. Likely modes of human-intrusion were categorized as excavation, disposal/storage, tunneling, drilling, and offsite activities. Each team also developed quantitative assessments by providing probabilities of various alternative futures, of inadvertent human intrusion, and in some cases, of particular modes of intrusion. The information created throughout this study will be used in conjunction with other types of information, including experimental data, calculations from physical principles and computer models, and perhaps other judgments, as input to ''performance assessment.'' The more qualitative results of this study will be used as input to another expert panel considering markers to deter inadvertent human intrusion at the WIPP

  6. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    Science.gov (United States)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  7. Prediction of changes due to mandibular autorotation following miniplate-anchored intrusion of maxillary posterior teeth in open bite cases.

    Science.gov (United States)

    Kassem, Hassan E; Marzouk, Eiman S

    2018-05-14

    Prediction of the treatment outcome of various orthodontic procedures is an essential part of treatment planning. Using skeletal anchorage for intrusion of posterior teeth is a relatively novel procedure for the treatment of anterior open bite in long-faced subjects. Data were analyzed from lateral cephalometric radiographs of a cohort of 28 open bite adult subjects treated with intrusion of the maxillary posterior segment with zygomatic miniplate anchorage. Mean ratios and regression equations were calculated for selected variables before and after intrusion. Relative to molar intrusion, there was approximately 100% vertical change of the hard and soft tissue mention and 80% horizontal change of the hard and soft tissue pogonion. The overbite deepened two folds with 60% increase in overjet. The lower lip moved forward about 80% of the molar intrusion. Hard tissue pogonion and mention showed the strongest correlations with molar intrusion. There was a general agreement between regression equations and mean ratios at 3 mm molar intrusion. This study attempted to provide the clinician with a tool to predict the changes in key treatment variables following skeletally anchored maxillary molar intrusion and autorotation of the mandible.

  8. Sill intrusion in volcanic calderas: implications for vent opening probability

    Science.gov (United States)

    Giudicepietro, Flora; Macedonio, Giovanni; Martini, Marcello; D'Auria, Luca

    2017-04-01

    Calderas show peculiar behaviors with remarkable dynamic processes, which do not often culminate in eruptions. Observations and studies conducted in recent decades have shown that the most common cause of unrest in the calderas is due to magma intrusion; in particular, the intrusion of sills at shallow depths. Monogenic cones, with large areal dispersion, are quite common in the calderas, suggesting that the susceptibility analysis based on geological features, is not strictly suitable for estimating the vent opening probability in calderas. In general, the opening of a new eruptive vent can be regarded as a rock failure process. The stress field in the rocks that surrounds and tops the magmatic reservoirs plays an important role in causing the rock failure and creating the path that magma can follow towards the surface. In this conceptual framework, we approach the problem of getting clues about the probability of vent opening in volcanic calderas through the study of the stress field produced by the intrusion of magma, in particular, by the intrusion of a sill. We simulate the intrusion of a sill free to expand radially, with shape and dimensions which vary with time. The intrusion process is controlled by the elastic response of the rock plate above the sill, which bends because of the intrusion, and by gravity, that drives the magma towards the zones where the thickness of the sill is smaller. We calculated the stress field in the plate rock above the sill. We found that at the bottom of the rock plate above the sill the maximum intensity of tensile stress is concentrated at the front of the sill and spreads radially with it, over time. For this reason, we think that the front of the spreading sill is prone to open for eruptive vents. Even in the central area of the sill the intensity of stress is relatively high, but at the base of the rock plate stress is compressive. Under isothermal conditions, the stress soon reaches its maximum value (time interval

  9. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  10. Doses resulting from intrusion into uranium tailings areas

    International Nuclear Information System (INIS)

    Walsh, M.L.

    1986-02-01

    In the future, it is conceivable that institutional controls of uranium tailings areas may cease to exist and individuals may intrude into these areas unaware of the potential radiation hazards. The objective of this study was to estimate the potential doses to the intruders for a comprehensive set of intrusion scenarios. Reference tailings areas in the Elliot Lake region of northern Ontario and in northern Saskatchewan were developed to the extent required to calculate radiation exposures. The intrusion scenarios for which dose calculations were performed, were categorized into the following classes: habitation of the tailings, agricultural activities, construction activities, and recreational activities. Realistic exposure conditions were specified and annual doses were calculated by applying standard dose conversion factors. The exposure estimates demonstrated that the annual doses resulting from recreational activities and from construction activities would be generally small, less than twenty millisieverts, while the habitational and agricultural activities could hypothetically result in doses of several hundred millisieverts. However, the probability of occurrence of these latter classes of scenarios is considered to be much lower than scenarios involving either construction or recreational activities

  11. Count out your intrusions: Effects of verbal encoding on intrusive memories

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.

    2009-01-01

    Peri-traumatic information processing is thought to affect the development of intrusive trauma memories. This study aimed to replicate and improve the study by Holmes, Brewin, and Hennessy (2004, Exp. 3) on the role of peri-traumatic verbal processing in analogue traumatic intrusion development.

  12. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  13. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  14. Use of GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs - Standardized Protocol for On-Site Evaluation of Vapor Intrusion

    Science.gov (United States)

    2014-07-01

    Testing a Sealed Crack in a Concrete Floor .................................................................. 14 Figure 5: VOC Responses to...Engineered Fluid Toluene Some paints and adhesives SprayPAK Enamel , Minwax Wood Finish Xylenes Adhesives, paints, gasoline Bonide Tree Sprays and...expansion joints, plumbing penetrations, or cracks . 3 Note that if indoor air concentrations are

  15. Evidential reasoning research on intrusion detection

    Science.gov (United States)

    Wang, Xianpei; Xu, Hua; Zheng, Sheng; Cheng, Anyu

    2003-09-01

    In this paper, we mainly aim at D-S theory of evidence and the network intrusion detection these two fields. It discusses the method how to apply this probable reasoning as an AI technology to the Intrusion Detection System (IDS). This paper establishes the application model, describes the new mechanism of reasoning and decision-making and analyses how to implement the model based on the synscan activities detection on the network. The results suggest that if only rational probability values were assigned at the beginning, the engine can, according to the rules of evidence combination and hierarchical reasoning, compute the values of belief and finally inform the administrators of the qualities of the traced activities -- intrusions, normal activities or abnormal activities.

  16. Perceived illness intrusion among patients on hemodialysis

    International Nuclear Information System (INIS)

    Bapat, Usha; Kedlaya, Prashanth G; Gokulnath

    2009-01-01

    Dialysis therapy is extremely stressful as it interferes with all spheres of daily activities of the patients. This study is aimed at understanding the perceived illness intrusion among patients on hemodialysis (HD) and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD) stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering sociodemographics and a 13 item illness intrusion checklist covering the various aspects of life was carried out. The study patients were asked to rate the illness intrusion and the extent. The data were analyzed statistically. The mean age of the subjects was 50.28 + - 13.69 years, males were predominant (85%), 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear families. The mean duration on dialysis was 24 + - 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%), work (70%) finance (55%), diet (50%) sexual life (38%) and psychological status (25%). Illness had not intruded in areas of relationship with spouse (67%), friends (76%), family (79%), social (40%) and religious functions (72%). Statistically significant association was noted between illness intrusion and occupation (P= 0.02). (author)

  17. Perceived illness intrusion among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Bapat Usha

    2009-01-01

    Full Text Available Dialysis therapy is extremely stressful as it interferes with all spheres of daily acti-vities of the patients. This study is aimed at understanding the perceived illness intrusion among pa-tients on hemodialysis (HD and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering socio-demographics and a 13 item illness intrusion checklist covering the various aspects of life was ca-rried out. The study patients were asked to rate the illness intrusion and the extent. The data were ana-lyzed statistically. The mean age of the subjects was 50.28 ± 13.69 years, males were predominant (85%, 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear fami-lies. The mean duration on dialysis was 24 ± 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%, work (70% finance (55%, diet (50% sexual life (38% and psychological status (25%. Illness had not intruded in areas of rela-tionship with spouse (67%, friends (76%, family (79%, social (40% and religious functions (72%. Statistically significant association was noted between illness intrusion and occupation (P= 0.02.

  18. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  19. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  20. The role of human intrusion in the dutch safety study

    International Nuclear Information System (INIS)

    Prij, J.; Weers, A.W.v.; Glasbergen, P.; Slot, A.F.M.

    1989-01-01

    In the Netherlands the OPLA research program in which a large number of possible disposal concepts for radioactive waste is investigated has been carried out recently. The disposal concepts concern three different waste strategies, two disposal techiques and three different types of salt formations. In the OPLA program the post-closure safety of the disposal concepts has been investigated. The paper reviews the role of the human intrusion in this safety study. The hydrological consequences of human activities in the underground are discussed and it has been demonstrated that these effects could be taken into account during the groundwater transport calculations. Four different scenario's for human intrusion in the repository have been studied to obtain an indication of the radiological effects. The results show that extremely high doses may result if, after several hundred years, human beings come into direct contact with highly active waste. For the final assessment the probability that the doses will be received should be calculated. This should be done in a subsequent research

  1. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  2. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  3. Intrusion Detection amp Prevention Systems - Sourcefire Snort

    Directory of Open Access Journals (Sweden)

    Rajesh Vuppala

    2015-08-01

    Full Text Available Information security is a challenging issue for all business organizations today amidst increasing cyber threats. While there are many alternative intrusion detection amp prevention systems available to choose from selecting the best solution to implement to detect amp prevent cyber-attacks is a difficult task. The best solution is of the one that gets the best reviews and suits the organizations needs amp budget. In this review paper we summarize various classes of intrusion detection and prevention systems compare features of alternative solutions and make recommendation for implementation of one as the best solution for business organization in Fiji.

  4. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  5. Intrusion Detection System In IoT

    OpenAIRE

    Nygaard, Frederik

    2017-01-01

    Intrusion detection detects misbehaving nodes in a network. In Internet of Things(IoT), IPv6 Routing for Low-Power and Lossy Networks (RPL) is the standard routing protocol. In IoT, devices commonly have low energy, storage and memory, which is why the implemented intrusion algorithm in this thesis will try to minimize the usage of these resources. IDS for RPL-networks have been implemented before, but the use of resources or the number of packets sent was too high to be successful when findi...

  6. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  7. Evaluation of the radiological consequences of a human intrusion in a granite formation

    International Nuclear Information System (INIS)

    Mejon-Goula, M.J.; Cernes, A.

    1989-07-01

    The methodology used in France for the evaluation of the radiological consequences associated to a nuclear waste repository in a deep geological formation is the deterministic one. This means that, in addition to the calculations in connection with the ''normal'' scenario, a limited number of ''altered'' scenarios, representing the different families of plausible scenarios and corresponding to the most important consequences resulting from there families, have to be taken into account. Among them, the human intrusion scenario is an important one. In a study performed inside the CEC PAGIS project and also for a french expert group (Goguel group) which carried out a methodologic work for the national site selection procedure, results concerning the quantification of the radiological consequences of a human intrusion have been obtained without attempting at the evaluation of its probability. The intrusion time ranged from 1 000 to 100 000 years and different contamination scenarios were taken into account. It was assumed that the intrusion led to the creation of a 100 cubic meters edge cubic cavity in the immediate vicinity to the repository. Using the description of the Auriat site realized for PAGIS, the calculation was performed in three steps: - calculation of the evolution of the repository until the intrusion time, - computation of the supposed instantaneous new flow distribution after the intrusion, - computation of the dose rate, using the mean volumic activity in the cavity walls and the outgoing flow rate. Three exposure scenarios were considered: - a worker in the mine exposed to by external irradiation and contaminated by inhalation of radioactive materials, -an animal drinking in the vicinity during the mining operation, - gardening after the closure of the mine. With the exception of the worker scenario (the dose rate may reach 10 -2 Sv/year, which is comparable with the normal exposure in a granite mine), the other dose rates were found to be quite low

  8. Estimation of long-term probabilities for inadvertent intrusion into radioactive waste management areas

    International Nuclear Information System (INIS)

    Eedy, W.; Hart, D.

    1988-05-01

    The risk to human health from radioactive waste management sites can be calculated as the product of the probability of accidental exposure (intrusion) times the probability of a health effect from such exposure. This report reviews the literature and evaluates methods used to predict the probabilities for unintentional intrusion into radioactive waste management areas in Canada over a 10,000-year period. Methods to predict such probabilities are available. They generally assume a long-term stability in terms of existing resource uses and society in the management area. The major potential for errors results from the unlikeliness of these assumptions holding true over such lengthy periods of prediction

  9. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  10. Work Zone Intrusion Report Interface Design

    Science.gov (United States)

    2018-02-02

    While necessary for roadways, work zones present a safety risk to crew. Half of road workers deaths between 2005 and 2010 were due to collisions with motorists intruding on the work zone. Therefore, addressing intrusions is an important step for ensu...

  11. Access Control from an Intrusion Detection Perspective

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.

    Access control and intrusion detection are essential components for securing an organization's information assets. In practice, these components are used in isolation, while their fusion would contribute to increase the range and accuracy of both. One approach to accomplish this fusion is the

  12. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  13. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  14. An Adaptive Database Intrusion Detection System

    Science.gov (United States)

    Barrios, Rita M.

    2011-01-01

    Intrusion detection is difficult to accomplish when attempting to employ current methodologies when considering the database and the authorized entity. It is a common understanding that current methodologies focus on the network architecture rather than the database, which is not an adequate solution when considering the insider threat. Recent…

  15. Petrology of the Sutherland commanage melilite intrusives

    International Nuclear Information System (INIS)

    Viljoen, K.S.

    1990-01-01

    The petrology of the Sutherland Commonage olivine melilitite intrusives have been investigated using petrographic and chemical methods. The results of the geochemical study suggest that the Commonage melilites were derived by the melting of a recently metasomatised region of the asthenosphere, probably under the influence of an ocean-island-type hotspot situated in the lower mantle

  16. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  17. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  18. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  19. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City, China

    Science.gov (United States)

    Zhao, J.; Lin, J.; Wu, J.

    2013-12-01

    A three-dimensional heterogeneous density-dependent numerical model was constructed to simulate the seawater intrusion process in coastal aquifers in Zhoushuizi Region, Dalian City. Model calibration was achieved through a prediction-correction method by adjusting the zonation and values of hydrogeologic parameters until the calculated heads and concentrations matched the observed values. Model validation results also showed that it was reasonable under current data conditions. Then the calibrated and validated model was applied to predict the dynamics and trend of seawater intrusion according to the current groundwater abstraction conditions in this study area 30 years after 2010. Prediction results showed that overall seawater intrusion in the future would be even more severe. Actually, with the growing of the population and development of the economy, the demand for ground water will be increasing continuously so that the problem of seawater intrusion may be more serious than that predicted by the modelin this study. Better strategies for reasonably governing exploitation of groundwater in the study area can be further developed by using this three-dimensional seawater intrusion model.

  20. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  1. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  2. Intrusive trauma memory: A review and functional analysis

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.; Holmes, E.A.

    2009-01-01

    Our contribution to this special issue focuses on the phenomenon of intrusive trauma memory. While intrusive trauma memories can undoubtedly cause impairment, we argue that they may exist for a potentially adaptive reason. Theory and experimental research on intrusion development are reviewed and

  3. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  4. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  5. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals.

    Science.gov (United States)

    Naef, Rudolf; Acree, William E

    2017-06-25

    The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R

  6. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Rudolf Naef

    2017-06-01

    Full Text Available The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit (Q2 and the standard deviation (σ of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol (N = 3386 test molecules for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol (N = 1791 for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol (N = 373 for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K (N = 2637 for the entropy of fusion and 0.5804 and 32.79 J/mol/K (N = 2643 for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation

  7. The state of the art in intrusion prevention and detection

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    The State of the Art in Intrusion Prevention and Detection analyzes the latest trends and issues surrounding intrusion detection systems in computer networks, especially in communications networks. Its broad scope of coverage includes wired, wireless, and mobile networks; next-generation converged networks; and intrusion in social networks.Presenting cutting-edge research, the book presents novel schemes for intrusion detection and prevention. It discusses tracing back mobile attackers, secure routing with intrusion prevention, anomaly detection, and AI-based techniques. It also includes infor

  8. Research on IPv6 intrusion detection system Snort-based

    Science.gov (United States)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  9. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  10. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  11. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  12. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  13. AMDIS Case Conference: Intrusive Medication Safety Alerts.

    Science.gov (United States)

    Graham, J; Levick, D; Schreiber, R

    2010-01-01

    Clinical decision support that provides enhanced patient safety at the point of care frequently encounters significant pushback from clinicians who find the process intrusive or time-consuming. We present a hypothetical medical center's dilemma about its allergy alerting system and discuss similar problems faced by real hospitals. We then share some lessons learned and best practices for institutions who wish to implement these tools themselves.

  14. AMDIS Case Conference: Intrusive Medication Safety Alerts

    OpenAIRE

    Graham, J.; Levick, D.; Schreiber, R.

    2010-01-01

    Clinical decision support that provides enhanced patient safety at the point of care frequently encounters significant pushback from clinicians who find the process intrusive or time-consuming. We present a hypothetical medical center’s dilemma about its allergy alerting system and discuss similar problems faced by real hospitals. We then share some lessons learned and best practices for institutions who wish to implement these tools themselves.

  15. INTRUSIVE MARKETING METHODS A CONTEMPORARY CONSUMER PERSPECTIVE

    OpenAIRE

    Owais, Faizan

    2008-01-01

    Is marketing practice destroying the faith of consumers? It may be argued that marketing practice over recent years has taken a more direct approach that appears intrusive and manipulative to consumers. The marketing activities we see today are a desperate attempt to grab consumer attention in any way possible and it is all spelling out bad news for marketing. Marketers have been faced with many challenges, with markets at saturation point, competitiveness is on the rise and marketers are...

  16. Stochastic Tools for Network Intrusion Detection

    OpenAIRE

    Yu, Lu; Brooks, Richard R.

    2017-01-01

    With the rapid development of Internet and the sharp increase of network crime, network security has become very important and received a lot of attention. We model security issues as stochastic systems. This allows us to find weaknesses in existing security systems and propose new solutions. Exploring the vulnerabilities of existing security tools can prevent cyber-attacks from taking advantages of the system weaknesses. We propose a hybrid network security scheme including intrusion detecti...

  17. Perimeter intrusion detection and assessment system

    International Nuclear Information System (INIS)

    Eaton, M.J.; Jacobs, J.; McGovern, D.E.

    1977-11-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  18. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  19. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  20. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    Science.gov (United States)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  1. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  2. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  3. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  4. Dynamics of trivalent rare earth molecular vapor lasers

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    Radiative transition probabilities in neodymium bearing vapors are reviewed and calculations are extended to visible laser transitions in terbium bearing vapor. Nonradiative relaxation processes in the pure and complexed halides are treated in greater detail. While precise, quantitative relaxation probabilities cannot be calculated on the basis of information presently available, plausibility arguments can be established which indicate the order of magnitude of relevant nonradiative decay probabilities. Reference to solid and liquid state nonradiative relaxation data for rare earth ions is reviewed to support the plausibility arguments for the vapor state. Having established the likelihood of high fluorescence yields in the vapor phase, various methods of laser pumping are discussed: optical pumping via parity allowed 4f-5d transitions; optical pumping via charge transfer bands of the vapor complex; and direct electron beam pumping

  5. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  6. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  7. What's the Deal with Methane at LUST Spill Sites? Part 2: Vapor Intrusion

    Science.gov (United States)

    This article is specifically intended to discuss methane produced from releases of ethanol and gasoline-ethanol mixtures. There may be other sources of methane at a site, including leaks of natural gas or methane produced from the natural decay of buried plant tissues or from the...

  8. GRAND PLAZA SITE INVESTIGATION USING THE TRIAD APPROACH AND EVALUATION OF VAPOR INTRUSION - (ITER)

    Science.gov (United States)

    This document provides a detailed report about a field study conducted by EQM/URS on behalf of EPA/NRMRL to characterize the subsurface contamination of volatile organic compounds (VOCs) at a Brownfield commercial site. The TRIAD approach was implemented to characterize the exten...

  9. Improved Assessment Strategies for Vapor Intrusion Passive Samplers and Building Pressure Control

    Science.gov (United States)

    2013-09-01

    contains an adsorbent medium surrounded by a stainless steel mesh. The outer cylinder is made up of microporous -sintered polyethylene through which the...inside the tube. The adsorbent is analyzed by thermal desorption, GC/MS or flame ionization detection (ATD/GC/MS&FID), as appropriate. International ...ambient, and workplace air is described in international standard EN ISO 16017-2 ( International Organization for Standardization, ISO, 2003). This

  10. Application of Advanced Sensor Technology to DoD Soil Vapor Intrusion Problems

    Science.gov (United States)

    2012-10-01

    Technical material contained in this report has been approved for public release. Mention of trade names or commercial products in this...found in a number of common household products (Agency for Toxic Substances and Disease Registry [ATSDR], 1997; Colorado Department of Public Health and...benzene, TCE, tetrachloroethylene (PCE), ethylbenzene and meta (m)-xylene, as well as several of their response patterns. a) b

  11. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  12. Iron isotope systematics of the Skaergaard intrusion

    DEFF Research Database (Denmark)

    Lesher, Charles; Lundstrom, C.C.; Barfod, Gry

    crystallization on non-traditional stable isotope systems, particularly iron. FeTi oxide minerals (titanomagnetite and ilmenite) appear after ~60% of the magma had solidified. This was a significant event affecting the liquid line of descent and potentially accompanied by iron isotope fractionation. Here we...... report the results of a broad study of the iron isotope compositions of gabbros within the layered and upper border series of the Skaergaard intrusion, pegmatite and granophyre associated with these gabbroic rocks, and the sandwich horizon thought to represent the product of extreme differentiation and...

  13. Apriori-based network intrusion detection system

    International Nuclear Information System (INIS)

    Wang Wenjin; Liu Junrong; Liu Baoxu

    2012-01-01

    With the development of network communication technology, more and more social activities run by Internet. In the meantime, the network information security is getting increasingly serious. Intrusion Detection System (IDS) has greatly improved the general security level of whole network. But there are still many problem exists in current IDS, e.g. high leak rate detection/false alarm rates and feature library need frequently upgrade. This paper presents an association-rule based IDS. This system can detect unknown attack by generate rules from training data. Experiment in last chapter proved the system has great accuracy on unknown attack detection. (authors)

  14. Introduction to gravity currents and intrusions

    CERN Document Server

    Ungarish, Marius

    2009-01-01

    The whole book is well written in a clear and pedagogical general style. … the author has, in my opinion, produced the first comprehensive book entirely devoted to the modeling of gravity currents and intrusions. This book will be particularly useful to graduate and PhD students, as well as to academics and research engineers working in this field. It may be used as a self-consistent document to get a detailed idea of the state of knowledge about a given problem or a guide toward more specialized papers. It is rich with ideas regarding the direction in which further research is warranted. This

  15. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  16. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  17. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  18. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    OpenAIRE

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumben...

  19. Identification of Human Intrusion Types into Radwaste Disposal Facility

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    Human intrusion has long been recognized as a potentially important post-closure safety issue for rad waste disposal facility. It is due to the difficulties in predicting future human activities. For the preliminary study of human intrusion, identification of human intrusion types need to be recognized and investigated also the approaching of problem solving must be known to predict the prevention act and accepted risk. (author)

  20. Diabetes Intrusiveness and Wellness among Elders: A Test of the Illness Intrusiveness Model

    Science.gov (United States)

    DeCoster, Vaughn A.; Killian, Tim; Roessler, Richard T.

    2013-01-01

    Using data collected from 147 predominately African American senior citizens in Arkansas, this research examined the Illness Intrusiveness Model (Devins, 1991; Devins & Seland, 1987; Devins & Shnek, 2000) to explain variations in wellness specifically related to participants' adaptation to diabetes. The theoretical model hypothesized that…

  1. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  2. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  3. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    Science.gov (United States)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  4. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  5. A new intrusion prevention model using planning knowledge graph

    Science.gov (United States)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  6. The role of human intrusion in a waste repository in rocksalt

    International Nuclear Information System (INIS)

    Prij, J.

    1993-01-01

    Human activities are an important factor for the safety evaluation study of radioactive waste disposal. Four scenarios are presented for salt radioactive waste disposal: reconnaissance drilling, solution mining, leaking storage cavern and conventional mining. Results suggest that the risk is acceptable according to dose combinations limits and probability analysed, doses calculations are given for an intrusion after disposal closure plus 250 years and plus 1.000 years. (A.B.). 12 refs., 5 tabs

  7. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  8. Multi-User Low Intrusive Occupancy Detection.

    Science.gov (United States)

    Pratama, Azkario Rizky; Widyawan, Widyawan; Lazovik, Alexander; Aiello, Marco

    2018-03-06

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers' mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87-90% accuracy, demonstrating the effectiveness of the proposed approach.

  9. Multi-User Low Intrusive Occupancy Detection

    Science.gov (United States)

    Widyawan, Widyawan; Lazovik, Alexander

    2018-01-01

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach. PMID:29509693

  10. Multi-User Low Intrusive Occupancy Detection

    Directory of Open Access Journals (Sweden)

    Azkario Rizky Pratama

    2018-03-01

    Full Text Available Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS of BLE (Bluetooth Low Energy nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach.

  11. An assessment of the radiological impact of human intrusion at the UK Low Level Waste Repository (LLWR) - 59356

    International Nuclear Information System (INIS)

    Hicks, Tim; Baldwin, Tamara; Cummings, Richard; Sumerling, Trevor

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1 May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in

  12. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  13. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  14. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  15. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  16. Tank 241-C-111 headspace gas and vapor sample results - August 1993 samples

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-01-01

    Tank 241-C-111 is on the ferrocyanide Watch List. Gas and vapor samples were collected to assure safe conditions before planned intrusive work was performed. Sample analyses showed that hydrogen is about ten times higher in the tank headspace than in ambient air. Nitrous oxide is about sixty times higher than ambient levels. The hydrogen cyanide concentration was below 0.04 ppbv, and the average NO x concentration was 8.6 ppmv

  17. Salt Intrusion in the Tweed Estuary

    Science.gov (United States)

    Uncles, R. J.; Stephens, J. A.

    1996-09-01

    Results are presented from a 2-week field programme in the Tweed Estuary, U.K. Maximum values of the empirically based Estuarine Richardson Number, Ri E, occurred during neap tides, and minimum values occurred during spring tides. Estimated values of Ri Evaried between 0·3 and 2·3, suggesting the occurrence of partially mixed to stratified conditions, depending on tidal state and freshwater inflow. These relatively large values of Ri Ewere consistent with both observed strong salinity stratification and large salt fluxes due to vertical shear transport. Low values (0·5) values in the halocline. A velocity maximum occurred within the halocline during the early flood. Wave-like spatial oscillations of the halocline occurred on the ebb. The oscillation troughs were situated above deep holes located just down-estuary of the rail and old road bridges. There was an indication that the constricted flow between the bridges' arches resulted in enhanced mixing of near-surface waters and a thickening of the halocline. It is also possible that these wave-like structures were stationary, near-critical internal lee waves, triggered by the deep holes. Trapping of high-salinity waters occurred on the ebb. Saline pools were isolated within a deep hole or deeper section of bed by the falling halocline. When the salt wedge moved further down-estuary, the ' trapped ' waters were subjected to strongly ebbing, overlying freshwater, and were subsequently entrained and flushed. The salinity intrusion was a strong function of spring-neap tidal state and a weaker function of freshwater inflow. The estimated salinity intrusion varied from about 4·7 to 7·6 km during the fieldwork period. The strong dependence on tidal range followed from the comparable lengths of the tidal excursion and salinity intrusion. Long excursion lengths were also partly responsible for the short residence (or flushing) times and their strong dependence on spring-neap tidal state. For typical summer freshwater

  18. DFCL: DYNAMIC FUZZY LOGIC CONTROLLER FOR INTRUSION DETECTION

    Directory of Open Access Journals (Sweden)

    Abdulrahim Haroun Ali

    2014-08-01

    Full Text Available Intrusions are a problem with the deployment of Networks which give misuse and abnormal behavior in running reliable network operations and services. In this work, a Dynamic Fuzzy Logic Controller (DFLC is proposed for an anomaly detection problem, with the aim of solving the problem of attack detection rate and faster response process. Data is collected by PingER project. PingER project actively measures the worldwide Internet’s end-to-end performance. It covers over 168 countries around the world. PingER uses simple ubiquitous Internet Ping facility to calculate number of useful performance parameters. From each set of 10 pings between a monitoring host and a remote host, the features being calculated include Minimum Round Trip Time (RTT, Jitter, Packet loss, Mean Opinion Score (MOS, Directness of Connection (Alpha, Throughput, ping unpredictability and ping reachability. A set of 10 pings is being sent from the monitoring node to the remote node every 30 minutes. The received data shows the current characteristic and behavior of the networks. Any changes in the received data signify the existence of potential threat or abnormal behavior. D-FLC uses the combination of parameters as an input to detect the existence of any abnormal behavior of the network. The proposed system is simulated in Matlab Simulink environment. Simulations results show that the system managed to catch 95% of the anomalies with the ability to distinguish normal and abnormal behavior of the network.

  19. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  20. Young women's experiences of intrusive behavior in 12 countries.

    Science.gov (United States)

    Sheridan, Lorraine; Scott, Adrian J; Roberts, Karl

    2016-01-01

    The present study provides international comparisons of young women's (N = 1,734) self-reported experiences of intrusive activities enacted by men. Undergraduate psychology students from 12 countries (Armenia, Australia, England, Egypt, Finland, India, Indonesia, Italy, Japan, Portugal, Scotland, and Trinidad) indicated which of 47 intrusive activities they had personally experienced. Intrusive behavior was not uncommon overall, although large differences were apparent between countries when women's personal experiences of specific intrusive activities were compared. Correlations were carried out between self-reported intrusive experiences, the Gender Empowerment Measure (GEM), and Hofstede's dimensions of national cultures. The primary associations were between women's experiences of intrusive behavior and the level of power they are afforded within the 12 countries. Women from countries with higher GEM scores reported experiencing more intrusive activities relating to courtship and requests for sex, while the experiences of women from countries with lower GEM scores related more to monitoring and ownership. Intrusive activities, many of them constituent of harassment and stalking, would appear to be widespread and universal, and their incidence and particular form reflect national level gender inequalities. © 2015 Wiley Periodicals, Inc.

  1. An ontology-based intrusion patterns classification system | Shonubi ...

    African Journals Online (AJOL)

    Studies have shown that computer intrusions have been on the increase in recent times. Many techniques and patterns are being used by intruders to gain access to data on host computer networks. In this work, intrusion patterns were identified and classified and inherent knowledge were represented using an ontology of ...

  2. Effects of igneous intrusions on the petroleum system: a review

    NARCIS (Netherlands)

    Senger, Kim; Millett, John; Planke, Sverre; Ogata, Kei; Eide, Christian Haug; Festøy, Marte; Galland, Olivier; Jerram, Dougal A.

    2017-01-01

    Igneous intrusions feature in many sedimentary basins where hydrocarbon exploration and production is continuing. Owing to distinct geophysical property contrasts with siliciclastic host rocks (e.g., higher Vp, density and resistivity than host rocks), intrusions can be easily delineated within data

  3. An evaluation of classification algorithms for intrusion detection ...

    African Journals Online (AJOL)

    An evaluation of classification algorithms for intrusion detection. ... Log in or Register to get access to full text downloads. ... Most of the available IDSs use all the 41 features in the network to evaluate and search for intrusive pattern in which ...

  4. Intrusive Memories of Distressing Information: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Eva Battaglini

    Full Text Available Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42 viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13 demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13. Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC and dorsolateral prefrontal cortex (dlPFC, inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories.

  5. Thermal History and Crystallinity of Sheet Intrusions

    Science.gov (United States)

    Whittington, A. G.; Nabelek, P. I.; Hofmeister, A.

    2011-12-01

    Magma emplaced in a sheet intrusion has two potential fates: to crystallize, or quench to glass. Rapidly chilled sheet margins are typically glassy or microcrystalline, while interiors are coarser-grained. The actual textures result from a combination of thermal history and crystallization kinetics, which are related by various feedback mechanisms. The thermal history of cooling sheet intrusions is often approximated using the analytical solution for a semi-infinite half-space, which uses constant thermal properties such as heat capacity (CP), thermal diffusivity (D) and thermal conductivity (k = DρCP), where ρ is density. In reality, both CP and D are strongly T-dependent for glasses and crystals, and melts have higher CP and lower D than crystals or glasses. Another first-order feature ignored in the analytical solution is latent heat of crystallization (ΔHxt), which can be implemented numerically as extra heat capacity over the crystallization interval. For rhyolite melts, D is ~0.5 mm2s-1 and k is ~1.5 Wm-1K-1, which are similar to those of major crustal rock types and granitic protoliths at magmatic temperatures, suggesting that changes in thermal properties accompanying partial melting of the crust should be relatively minor. Numerical models of hot (~920°C liquidus for 0.5 wt.% H2O) shallow rhyolite intrusions indicate that the key difference in thermal history between bodies that quench to obsidian, and those that crystallize, results from the release of latent heat of crystallization, which enables bodies that crystallize to remain at high temperatures for much longer times. The time to solidification is similar in both cases, however, because solidification requires cooling through the glass transition (Tg ~620°C) in the first case, and cooling only to the solidus (~770°C) in the second. For basaltic melts, D is ~0.3 mm2s-1 and k is ~1.0 Wm-1K-1, compared to ~0.6 mm2s-1 and 2.5 Wm-1K-1 for crystalline basalt or peridotite at magmatic temperatures

  6. Stress, intrusive imagery, and chronic distress

    International Nuclear Information System (INIS)

    Baum, A.

    1990-01-01

    Discusses the nature of stress in the context of problems with its definition and sources of confusion regarding its usefulness and specificity. Stress can be defined as a negative emotional experience accompanied by predictable biochemical, physiological, and behavioral changes that are directed toward adaptation either by manipulating the situation to alter the stressor or by accommodating its effects. Chronic stress is more complex than most definitions suggest and is clearly not limited to situations in which stressors persist for long periods of time. Responses may habituate before a stressor disappears or may persist long beyond the physical presence of the stressor. This latter case, in which chronic stress and associated biobehavioral changes outlast their original cause, is considered in light of research at Three Mile Island and among Vietnam veterans. The role of intrusive images of the stressor or uncontrollable thoughts about it in maintaining stress is explored

  7. USBcat - Towards an Intrusion Surveillance Toolset

    Directory of Open Access Journals (Sweden)

    Chris Chapman

    2014-10-01

    Full Text Available This paper identifies an intrusion surveillance framework which provides an analyst with the ability to investigate and monitor cyber-attacks in a covert manner. Where cyber-attacks are perpetrated for the purposes of espionage the ability to understand an adversary's techniques and objectives are an important element in network and computer security. With the appropriate toolset, security investigators would be permitted to perform both live and stealthy counter-intelligence operations by observing the behaviour and communications of the intruder. Subsequently a more complete picture of the attacker's identity, objectives, capabilities, and infiltration could be formulated than is possible with present technologies. This research focused on developing an extensible framework to permit the covert investigation of malware. Additionally, a Universal Serial Bus (USB Mass Storage Device (MSD based covert channel was designed to enable remote command and control of the framework. The work was validated through the design, implementation and testing of a toolset.

  8. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  9. Approach for Assessing Human Intrusion into a Radwaste Repository

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess human intrusion into radwaste repository resulting from future human actions was proposed based on the common principals, requirements, and recommendations from IAEA, ICRP, and OECD/NEA, with the assumption that the intrusion occurs after loss of knowledge of the hazardous nature of the disposal facility. At first, the essential boundary conditions were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The essential premises were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The procedure to derive protective measures was also explained with four steps regarding how to derive safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be effectively used to reduce the potential for and/or consequence of human intrusion during entire processes of realization of disposal facility.

  10. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  11. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  12. A Machine Learning Based Intrusion Impact Analysis Scheme for Clouds

    Directory of Open Access Journals (Sweden)

    Junaid Arshad

    2012-01-01

    Full Text Available Clouds represent a major paradigm shift, inspiring the contemporary approach to computing. They present fascinating opportunities to address dynamic user requirements with the provision of on demand expandable computing infrastructures. However, Clouds introduce novel security challenges which need to be addressed to facilitate widespread adoption. This paper is focused on one such challenge - intrusion impact analysis. In particular, we highlight the significance of intrusion impact analysis for the overall security of Clouds. Additionally, we present a machine learning based scheme to address this challenge in accordance with the specific requirements of Clouds for intrusion impact analysis. We also present rigorous evaluation performed to assess the effectiveness and feasibility of the proposed method to address this challenge for Clouds. The evaluation results demonstrate high degree of effectiveness to correctly determine the impact of an intrusion along with significant reduction with respect to the intrusion response time.

  13. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  14. Documentation of the seawater intrusion (SWI2) package for MODFLOW

    Science.gov (United States)

    Bakker, Mark; Schaars, Frans; Hughes, Joseph D.; Langevin, Christian D.; Dausman, Alyssa M.

    2013-01-01

    The SWI2 Package is the latest release of the Seawater Intrusion (SWI) Package for MODFLOW. The SWI2 Package allows three-dimensional vertically integrated variable-density groundwater flow and seawater intrusion in coastal multiaquifer systems to be simulated using MODFLOW-2005. Vertically integrated variable-density groundwater flow is based on the Dupuit approximation in which an aquifer is vertically discretized into zones of differing densities, separated from each other by defined surfaces representing interfaces or density isosurfaces. The numerical approach used in the SWI2 Package does not account for diffusion and dispersion and should not be used where these processes are important. The resulting differential equations are equivalent in form to the groundwater flow equation for uniform-density flow. The approach implemented in the SWI2 Package allows density effects to be incorporated into MODFLOW-2005 through the addition of pseudo-source terms to the groundwater flow equation without the need to solve a separate advective-dispersive transport equation. Vertical and horizontal movement of defined density surfaces is calculated separately using a combination of fluxes calculated through solution of the groundwater flow equation and a simple tip and toe tracking algorithm. Use of the SWI2 Package in MODFLOW-2005 only requires the addition of a single additional input file and modification of boundary heads to freshwater heads referenced to the top of the aquifer. Fluid density within model layers can be represented using zones of constant density (stratified flow) or continuously varying density (piecewise linear in the vertical direction) in the SWI2 Package. The main advantage of using the SWI2 Package instead of variable-density groundwater flow and dispersive solute transport codes, such as SEAWAT and SUTRA, is that fewer model cells are required for simulations using the SWI2 Package because every aquifer can be represented by a single layer of cells

  15. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  16. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...

  17. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  18. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  19. Risks assessment associated with the possibility of intrusion into the low and intermediate level waste disposal facility

    International Nuclear Information System (INIS)

    Didita, L.; Ilie, P.; Pavelescu, M.

    1997-01-01

    In post-closure performance assessment of low and intermediate level waste disposal facilities it is necessary to assess the individual risks associated with the possibility of intrusion into repository. Intruder induced disruptive events can potentially compromise the integrity of the disposal unit and result in exhumation of the waste and radionuclides migration into environment. In this way, the main routes of exposure are: -inhalation of radioactive materials by the intruder; - external gamma irradiation of the intruder, - long-term pathways resulting from the transfer of radioactive materials to the surface of the site. This paper describes the evaluation of conditional and absolute risks associated with each route of exposure as a function of time. To evaluate the risks, it is necessary to calculate the time-dependent activities of each nuclide considered. This is achieved by employing an analytic solution to the Bateman equation at specified times of evaluation. Conditional risks by inhalation, external exposure and long-term pathways and different modes of intrusion are evaluated on the basis of an annual probability of intrusion of unity. Absolute risks are calculated by scaling the user-supplied probabilities of intrusion at various times of evaluation. The evaluation of absolute risks by long-term exposure pathways involves an interpolation procedure in time. The calculations have been performed for the most important radionuclides present in low and intermediate wastes. (authors)

  20. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  1. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  2. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  3. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  4. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  5. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture

  6. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  7. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  8. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  9. User's guide to the repository intrusion risk evaluation code INTRUDE

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Thorne, M.C.

    1986-05-01

    The report, commissioned by the Department of the Environment as part of its radioactive waste management research programme, constitutes the user's guide to the repository intrusion risk evaluation code INTRUDE. It provides an explanation of the mathematical basis of the code, the database used and the operation of the code. INTRUDE is designed to facilitate the estimation of individual risks arising from the possibility of intrusion into shallow land burial facilities for radioactive wastes. It considers a comprehensive inventory of up to 65 long-lived radionuclides and produces risk estimates for up to 20 modes of intrusion and up to 50 times of evaluation. (author)

  10. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    Science.gov (United States)

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  11. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  12. Formation of continental crust by intrusive magmatism

    Science.gov (United States)

    Rozel, A. B.; Golabek, G. J.; Jain, C.; Tackley, P. J.; Gerya, T.

    2017-09-01

    How were the continents formed in the Earth? No global numerical simulation of our planet ever managed to generate continental material self-consistently. In the present study, we show that the latest developments of the convection code StagYY enable to estimate how to produce the early continents, more than 3 billion years ago. In our models, melting of pyrolitic rocks generates a basaltic melt and leaves behind a depleted solid residue (a harzburgite). The melt generated in the mantle is transported to the surface. Only basaltic rocks melting again can generate continental crust. Should the basaltic melt always reach the open air and cool down? Should the melt be intruded warm in the pre-existing crust? The present study shows that both processes have to be considered to produce continents. Indeed, granitoids can only be created in a tight window of pressure-temperature. If all basalt is quickly cooled by surface volcanism, the lithosphere will be too cold. If all basalt is intruded warm below the crust then the lithosphere will be too warm. The key is to have both volcanism and plutonism (intrusive magmatism) to reach the optimal temperature and form massive volumes of continental material.

  13. Salinity intrusion modeling for Sungai Selangor

    International Nuclear Information System (INIS)

    Mohamed Roseli Zainal Abidin; Abd Jalil Hassan; Suriyani Awang; Liew Yuk San; Norbaya Hashim

    2006-01-01

    Salinity intrusion into estuary of the Sungai Selangor has been carried out on a hydrodynamic numerical modeling to access the parameter that governed the amount of salt in the river. Issues such as water pollution and extraction of water from Sungai Selangor system has been said to be the cause of fading fireflies. The berembang trees on the river bank that become the fireflies habitat need some amount of salt for proper growth. Living at the lower reaches of Sungai Selangor, the fireflies are affected not only by the activities in their vicinity, but by activities in the entire river basin. Rapid economic development in the basin and the strong demand for the water resources puts pressure on the ecosystem. This research has been carried out to investigate the effect of water extraction along Sungai Selangor towards altering the amount of salt content in the river. The hydrodynamic modeling with regards to the salt content is expected to support long term assessment that may affect the berembang trees as a result of changes in the flow from upstream because of the water abstraction activity for domestic water supply. (Author)

  14. On the classification of seawater intrusion

    Science.gov (United States)

    Werner, Adrian D.

    2017-08-01

    Seawater intrusion (SWI) arising from aquifer depletion is often classified as ;active; or ;passive;, depending on whether seawater moves in the same direction as groundwater flow or not. However, recent studies have demonstrated that alternative forms of active SWI show distinctly different characteristics, to the degree that the term ;active SWI; may be misleading without additional qualification. In response, this article proposes to modify hydrogeology lexicon by defining and characterizing three classes of SWI, namely passive SWI, passive-active SWI and active SWI. The threshold parameter combinations for the onset of each form of SWI are developed using sharp-interface, steady-state analytical solutions. Numerical simulation is then applied to a hypothetical case study to test the developed theory and to provide additional insights into dispersive SWI behavior. The results indicate that the three classes of SWI are readily predictable, with the exception of active SWI occurring in the presence of distributed recharge. The key characteristics of each SWI class are described to distinguish their most defining features. For example, active SWI occurring in aquifers receiving distributed recharge only creates watertable salinization downstream of the groundwater mound and only where dispersion effects are significant. The revised classification of SWI proposed in this article, along with the analysis of thresholds and SWI characteristics, provides coastal aquifer custodians with an improved basis upon which to expect salinization mechanisms to impact freshwater availability following aquifer depletion.

  15. Abstracting audit data for lightweight intrusion detection

    KAUST Repository

    Wang, Wei

    2010-01-01

    High speed of processing massive audit data is crucial for an anomaly Intrusion Detection System (IDS) to achieve real-time performance during the detection. Abstracting audit data is a potential solution to improve the efficiency of data processing. In this work, we propose two strategies of data abstraction in order to build a lightweight detection model. The first strategy is exemplar extraction and the second is attribute abstraction. Two clustering algorithms, Affinity Propagation (AP) as well as traditional k-means, are employed to extract the exemplars, and Principal Component Analysis (PCA) is employed to abstract important attributes (a.k.a. features) from the audit data. Real HTTP traffic data collected in our institute as well as KDD 1999 data are used to validate the two strategies of data abstraction. The extensive test results show that the process of exemplar extraction significantly improves the detection efficiency and has a better detection performance than PCA in data abstraction. © 2010 Springer-Verlag.

  16. Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Space

    International Nuclear Information System (INIS)

    Lee, Si Young

    2005-01-01

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information

  17. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  18. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    International Nuclear Information System (INIS)

    D.S. Kimball; C.E. Sanders

    2006-01-01

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k eff ) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions

  19. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  20. Some reflections on human intrusion into a nuclear waste repository

    International Nuclear Information System (INIS)

    Westerlind, M.

    2002-01-01

    This paper summarises some of the Swedish nuclear regulators' requirements and views related to intrusion into a repository for spent nuclear fuel, in the post-closure phase. The focus is however on experiences from the interaction with various stakeholders in the Swedish process for siting a repository. It is recognised that intrusion is not a major concern but that it is regularly raised in the debate, often in connection with issues related to retrievability. It is pointed out that more attention should be paid to the repository performance after an intrusion event, both in safety assessments and in communication with stakeholders, and not only address the immediate impacts to intruders. It is believed that international co-operation would be useful for developing methodologies for defining intrusion scenarios. (author)

  1. Effect of Groundwater Pumping on Seawater Intrusion in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    M.M. Sherif

    2002-06-01

    Full Text Available Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta.

  2. QOS and Control-Theoretic Techniques for Intrusion Tolerance

    National Research Council Canada - National Science Library

    Ye, Nong

    2004-01-01

    ...), even in the face of intrusions. This report examines two host-based resources, a router and a web server, and presents simulated models of modifications that can be made to these resources to make them QoS-capable...

  3. Heart rate, startle response, and intrusive trauma memories

    Science.gov (United States)

    Chou, Chia-Ying; Marca, Roberto La; Steptoe, Andrew; Brewin, Chris R

    2014-01-01

    The current study adopted the trauma film paradigm to examine potential moderators affecting heart rate (HR) as an indicator of peritraumatic psychological states and as a predictor of intrusive memories. We replicated previous findings that perifilm HR decreases predicted the development of intrusive images and further showed this effect to be specific to images rather than thoughts, and to detail rather than gist recognition memory. Moreover, a group of individuals showing both an atypical sudden reduction in HR after a startle stimulus and higher trait dissociation was identified. Only among these individuals was lower perifilm HR found to indicate higher state dissociation, fear, and anxiety, along with reduced vividness of intrusions. The current findings emphasize how peritraumatic physiological responses relate to emotional reactions and intrusive memory. The moderating role of individual difference in stress defense style was highlighted. PMID:24397333

  4. Semantic intrusion detection with multisensor data fusion using ...

    Indian Academy of Sciences (India)

    spatiotemporal relations to form complex events which model the intrusion patterns. ... Wireless sensor networks; complex event processing; event stream; ...... of the 2006 ACM SIGMOD International Conference on Management of Data, 407– ...

  5. Ensemble of classifiers based network intrusion detection system performance bound

    CSIR Research Space (South Africa)

    Mkuzangwe, Nenekazi NP

    2017-11-01

    Full Text Available This paper provides a performance bound of a network intrusion detection system (NIDS) that uses an ensemble of classifiers. Currently researchers rely on implementing the ensemble of classifiers based NIDS before they can determine the performance...

  6. Implementing an Intrusion Detection System in the Mysea Architecture

    National Research Council Canada - National Science Library

    Tenhunen, Thomas

    2008-01-01

    .... The objective of this thesis is to design an intrusion detection system (IDS) architecture that permits administrators operating on MYSEA client machines to conveniently view and analyze IDS alerts from the single level networks...

  7. Security Enrichment in Intrusion Detection System Using Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Uma R. Salunkhe

    2017-01-01

    Full Text Available In the era of Internet and with increasing number of people as its end users, a large number of attack categories are introduced daily. Hence, effective detection of various attacks with the help of Intrusion Detection Systems is an emerging trend in research these days. Existing studies show effectiveness of machine learning approaches in handling Intrusion Detection Systems. In this work, we aim to enhance detection rate of Intrusion Detection System by using machine learning technique. We propose a novel classifier ensemble based IDS that is constructed using hybrid approach which combines data level and feature level approach. Classifier ensembles combine the opinions of different experts and improve the intrusion detection rate. Experimental results show the improved detection rates of our system compared to reference technique.

  8. Nuclear waste disposal facility intrusion: an archeologist's perspective

    International Nuclear Information System (INIS)

    Virginia, C.; Christie, L.

    1981-01-01

    A scenario is presented for the intrusion of a shallow land burial site by archeologists from a future generation. A description is given for the potential widespread exposure and contamination of populations by recovered artifacts

  9. How Intrusion Detection Can Improve Software Decoy Applications

    National Research Council Canada - National Science Library

    Monteiro, Valter

    2003-01-01

    This research concerns information security and computer-network defense. It addresses how to handle the information of log files and intrusion-detection systems to recognize when a system is under attack...

  10. Ant colony induced decision trees for intrusion detection

    CSIR Research Space (South Africa)

    Botes, FH

    2017-06-01

    Full Text Available platform. Intrusion Detection Systems (IDS) analyse network traffic to identify suspicious patterns with the intention to compromise the system. Practitioners train classifiers to classify the data within different categories e.g. malicious or normal...

  11. Intrusion resistant underground structure (IRUS) - safety assessment and licensing

    International Nuclear Information System (INIS)

    Lange, B. A.

    1997-01-01

    This paper describes the safety goals, human exposure scenarios and critical groups, the syvac-nsure performance assessment code, groundwater pathway safety results, and inadvertent human intrusion of the IRUS. 2 tabs

  12. Probabilistic risk assessment for six vapour intrusion algorithms

    NARCIS (Netherlands)

    Provoost, J.; Reijnders, L.; Bronders, J.; Van Keer, I.; Govaerts, S.

    2014-01-01

    A probabilistic assessment with sensitivity analysis using Monte Carlo simulation for six vapour intrusion algorithms, used in various regulatory frameworks for contaminated land management, is presented here. In addition a deterministic approach with default parameter sets is evaluated against

  13. Simulation of sea water intrusion in coastal aquifers

    Indian Academy of Sciences (India)

    dependent miscible flow and transport modelling approach for simulation of seawater intrusion in coastal aquifers. A nonlinear optimization-based simulation methodology was used in this study. Various steady state simulations are performed for a ...

  14. A survey of intrusion detection techniques in Cloud

    OpenAIRE

    Modi, C.; Patel, D.; Patel, H.; Borisaniya, B.; Patel, A.; Rajarajan, M.

    2013-01-01

    Cloud computing provides scalable, virtualized on-demand services to the end users with greater flexibility and lesser infrastructural investment. These services are provided over the Internet using known networking protocols, standards and formats under the supervision of different managements. Existing bugs and vulnerabilities in underlying technologies and legacy protocols tend to open doors for intrusion. This paper, surveys different intrusions affecting availability, confidentiality and...

  15. Environmental data processor of the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Rogers, M.S.

    1977-06-01

    A data acquisition system oriented specifically toward collection and processing of various meteorological and environmental parameters has been designed around a National Semiconductor IMP-16 microprocessor, This system, called the Environmental Data Processor (EDP), was developed specifically for use with the Adaptive Intrusion Data System (AIDS) in a perimeter intrusion alarm evaluation, although its design is sufficiently general to permit use elsewhere. This report describes in general detail the design of the EDP and its interaction with other AIDS components

  16. Sensitive Data Protection Based on Intrusion Tolerance in Cloud Computing

    OpenAIRE

    Jingyu Wang; xuefeng Zheng; Dengliang Luo

    2011-01-01

    Service integration and supply on-demand coming from cloud computing can significantly improve the utilization of computing resources and reduce power consumption of per service, and effectively avoid the error of computing resources. However, cloud computing is still facing the problem of intrusion tolerance of the cloud computing platform and sensitive data of new enterprise data center. In order to address the problem of intrusion tolerance of cloud computing platform and sensitive data in...

  17. Resilient Control and Intrusion Detection for SCADA Systems

    Science.gov (United States)

    2014-05-01

    Lowe. The myths and facts behind cyber security risks for industrial control systems . VDE Congress, 2004. [45] I. S. C37.1-1994. Ieee standard...Resilient Control and Intrusion Detection for SCADA Systems Bonnie Xia Zhu Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Resilient Control and Intrusion Detection for SCADA Systems 5a. CONTRACT

  18. The design about the intrusion defense system for IHEP

    International Nuclear Information System (INIS)

    Liu Baoxu; Xu Rongsheng; Yu Chuansong; Wu Chunzhen

    2003-01-01

    With the development of network technologies, limitations on traditional methods of network security protection are becoming more and more obvious. An individual network security product or the simple combination of several products can hardly complete the goal of keeping from hackers' intrusion. Therefore, on the basis of the analyses about the security problems of IHEPNET which is an open and scientific research network, the author designs an intrusion defense system especially for IHEPNET

  19. When Intrusion Detection Meets Blockchain Technology: A Review

    OpenAIRE

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju; Wang, Yu; Han, Jinguang

    2018-01-01

    With the purpose of identifying cyber threats and possible incidents, intrusion detection systems (IDSs) are widely deployed in various computer networks. In order to enhance the detection capability of a single IDS, collaborative intrusion detection networks (or collaborative IDSs) have been developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness ...

  20. Multisensor Fusion for Intrusion Detection and Situational Awareness

    OpenAIRE

    Hallstensen, Christoffer V

    2017-01-01

    Cybercrime damage costs the world several trillion dollars annually. And al-though technical solutions to protect organizations from hackers are being con-tinuously developed, criminals learn fast to circumvent them. The question is,therefore, how to create leverage to protect an organization by improving in-trusion detection and situational awareness? This thesis seeks to contribute tothe prior art in intrusion detection and situational awareness by using a multi-sensor data fusion...

  1. Unique Challenges in WiFi Intrusion Detection

    OpenAIRE

    Milliken, Jonny

    2014-01-01

    The Intrusion Detection System (IDS) is a common means of protecting networked systems from attack or malicious misuse. The deployment of an IDS can take many different forms dependent on protocols, usage and cost. This is particularly true of Wireless Intrusion Detection Systems (WIDS) which have many detection challenges associated with data transmission through an open, shared medium, facilitated by fundamental changes at the Physical and MAC layers. WIDS need to be considered in more deta...

  2. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  3. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  4. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  5. Fusion of arkosic sand by intrusive andesite

    Science.gov (United States)

    Bailey, Roy A.

    1954-01-01

    An andesite dike in the Valles Mountains of northern New Mexico has intruded and partly fused arkosic sediments for a distance of 50 feet from its contacts. The dike is semi-circular in form, has a maximum width of about 100 feet, and is about 500 feet long. Small associated arcuate dikes are arranged in spiral fashion around the main dike, suggesting that they were intruded along shear fractures similar to those described by Burbank (1941). The fused rocks surrounding the andesite dike are of three general types: 1) partly fused arkosic sand, 2) fused clay, and 3) hybrid rocks. The fused arkosic sand consists of relict detrital grains of quartz, orthoclose, and plagioclase, imbedded in colorless glass containing microlites of tridymite, cordierite, and magnetite. The relict quartz grains are corroded and embayed by glass; the orthoclase is sanidinized and partly fused; and the plagioclase is inverted to the high temperature form and is partly fused. The fused clay, which was originally a mixture of montmorillonite and hydromica, consists primarily of cordierite but also contains needle-like crystals of sillimanite (?) or mullite (?). The hybrid rocks originated in part by intermixing of fused arkosic sediments and andesitic liquid and in part by diffusion of mafic constituents through the fused sediments. They are rich in cordierite and magnetite and also contain hypersthene, augite, and plagioclase. The composition of pigeonite in the andesite indicates that the temperature of the andesite at the time of intrusion probably did not exceed 1200?C. Samples of arkosic sand were fused in the presence of water in a Morey bomb at 1050?C. Stability relations of certain minerals in the fused sand suggest that fusion may have taken place at a lower temperature, however, and the fluxing action of volatiles from the andesite are thought to have made this possible.

  6. Non-Intrusive Battery Health Monitoring

    Directory of Open Access Journals (Sweden)

    Gajewski Laurent

    2017-01-01

    Full Text Available The “Non-intrusive battery health monitoring”, developed by Airbus Defence and Space (ADS in cooperation with the CIRIMAT-CNRS laboratory and supported by CNES, aims at providing a diagnosis of the battery ageing in flight, called State of Health (SOH, using only the post-treatment of the battery telemetries. The battery current and voltage telemetries are used by a signal processing tool on ground to characterize and to model the battery at low frequencies which allows monitoring the evolution of its degradation with great accuracy. The frequential behaviour estimation is based on inherent disturbances on the current during the nominal functioning of the battery. For instance, on-board thermal control or equipment consumption generates random disturbances on battery current around an average current. The battery voltage response to these current random disturbances enables to model the low frequency impedance of the battery by a signal processing tool. The re-created impedance is then compared with the evolution model of the low frequencies impedance as a function of the battery ageing to estimate accurately battery degradation. Hence, this method could be applied to satellites which are already in orbit and whose battery telemetries acquisition system fulfils the constraints determined in the study. This innovative method is an improvement of present state-of-the-art and is important to have a more accurate in-flight knowledge of battery ageing which is crucial for mission and operation planning and also for possible satellite mission extension or deorbitation. This method is patented by Airbus Defence and Space and CNES.

  7. Contribution to uranium geochemistry in intrusive granites

    International Nuclear Information System (INIS)

    Coulomb, R.

    1959-01-01

    This work aims to define the position of a certain number of French granitic deposits within the field of the geochemistry of granites in general, and of the geochemistry of uranium in particular. The regions concerned are: - 3 French Hercynian ranges, in the Vendee, in Brittany and in the Morvan, - 1 African range, probably precambrian, of the Hoggar. For each range, the petrochemical framework is first of all determined and then the degree of chemical homogeneity of the rocks is evaluated. In the petrochemical groups thus obtained the geochemical behaviour of the uranium is studied. From a point of view of the geochemistry of the granites under investigation, a comparison of the laws of distribution of the major elements in the 4 ranges shows up a convergence of average composition which was not anticipated by geological and petrographic considerations alone. The statistical and geochemical distribution laws of the total uranium as a function of the petrochemical variations are established. A study of the chemical forms of uranium in the rocks has drawn an attention to the qualitative and quantitative importance of the fraction of this uranium soluble in dilute acids. We have therefore reconsidered on the one hand, the laws of distribution of the insoluble uranium, which represents essentially the uranium fixed in crystalline structures (zircon, allanite...), and we have justified on the other hand the interest presented by the soluble uranium: this, although more complex in character, presents a geochemical unity in post magmatic phenomena which makes possible to find a genetic connection between the uraniferous deposits and the intrusive massifs. Finally we have given a plan of the geochemical cycle of uranium, in which we hope to have provided some more accurate data on the igneous phase. (author) [fr

  8. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  9. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  10. The tracking of interfaces in an electron-beam vaporizer

    International Nuclear Information System (INIS)

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ''arrow'' matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance

  11. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  12. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  13. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  14. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  15. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  16. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  17. Perceived illness intrusions among continuous ambulatory peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Usha Bapat

    2012-01-01

    Full Text Available To study the perceived illness intrusion of continuous ambulatory peritoneal dialysis (CAPD patients, to examine their demographics, and to find out the association among demographics, duration of illness as well as illness intrusion, 40 chronic kidney disease stage V patients on CAPD during 2006-2007 were studied. Inclusion criteria were patients′ above 18 years, willing, stable, and completed at least two months of dialysis. Those with psychiatric co-morbidity were excluded. Sociodemographics were collected using a semi-structured interview schedule. A 14-item illness intrusion checklist covering various aspects of life was administered. The subjects had to rate the illness intrusion in their daily life and the extent of intrusion. The data was analyzed using descriptive statistics and chi square test of association. The mean age of the subjects was 56.05 ± 10.05 years. There was near equal distribution of gender. 82.5% were married, 70.0% belonged to Hindu religion, 45.0% were pre-degree, 25.0% were employed, 37.5% were housewives and 30.0% had retired. 77.5% belonged to the upper socioeconomic strata, 95.0% were from an urban background and 65.0% were from nuclear families. The mean duration of dialysis was 19.0 ± 16.49 months. Fifty-eight percent of the respondents were performing the dialysis exchanges by themselves. More than 95.0%were on three or four exchanges per day. All the 40 subjects reported illness intrusion in their daily life. Intrusion was perceived to some extent in the following areas: health 47.5%, work 25.0%, finance 37.5%, diet 40.0%, and psychological 50.0%. Illness had not intruded in the areas of relationship with spouse 52.5%, sexual life 30.0%, with friends 92.5%, with family 85.5%, social functions 52.5%, and religious functions 75.0%. Statistically significant association was not noted between illness intrusion and other variables. CAPD patients perceived illness intrusion to some extent in their daily life

  18. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  19. The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation - gas chromatography

    International Nuclear Information System (INIS)

    Chickos, James S.; Zhao Hui; Nichols, Gary

    2004-01-01

    Vapor pressures and vaporization enthalpies for methyl heptadecanoate and methyl heneicosanoate to methyl octacosanoate exclusive of methyl tricosanoate are evaluated as a function of temperature over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an extrapolative process using literature values for methyl tetradecanoate to methyl eicosanoate as standards. Relationships for calculating vapor pressures of the title compounds from T = 298.15 to 450 K are provided. Experimental fusion enthalpies are also reported for the methyl esters from methyl hexadecanoate to methyl octacosanoate excluding methyl tridecanoate. Vaporization enthalpies and fusion enthalpies adjusted for temperature to T = 298.15 K are combined to provide sublimation enthalpies. The results are compared to available literature values. A rationale for the linear relationship observed between enthalpies of vaporization and enthalpies of transfer from solution to the vapor is also provided

  20. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  1. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  2. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  3. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  4. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  5. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System

    Institute of Scientific and Technical Information of China (English)

    Siva S. Sivatha Sindhu; S. Geetha; M. Marikannan; A. Kannan

    2009-01-01

    Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attacks made in this way, usually done by "authorized" users of the system, cannot be immediately traced. Because the idea of filtering the traffic at the entrance door, by using firewalls and the like, is not completely successful, the use of intrusion detection systems should be considered to increase the defense capacity of an information system. An intrusion detection system (IDS) is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current IDS depends on the system operators in working out the tuning solution and in integrating it into the detection model. Furthermore, an extensive effort is required to tackle the newly evolving attacks and a deep study is necessary to categorize it into the respective classes. To reduce this dependence, an automatically evolving anomaly IDS using neuro-genetic algorithm is presented. The proposed system automatically tunes the detection model on the fly according to the feedback provided by the system operator when false predictions are encountered. The system has been evaluated using the Knowledge Discovery in Databases Conference (KDD 2009) intrusion detection dataset. Genetic paradigm is employed to choose the predominant features, which reveal the occurrence of intrusions. The neuro-genetic IDS (NGIDS) involves calculation of weightage value for each of the categorical attributes so that data of uniform representation can be processed by the neuro-genetic algorithm. In this system unauthorized invasion of a user are identified and newer types of attacks are sensed and classified respectively by the neuro-genetic algorithm. The experimental results obtained in this

  6. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  7. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  8. Quantification of intrusive/retraction force and moment generated during en-masse retraction of maxillary anterior teeth using mini-implants: A conceptual approach

    Directory of Open Access Journals (Sweden)

    A. Sumathi Felicita

    Full Text Available ABSTRACT Objective: The aim of the present study was to clarify the biomechanics of en-masse retraction of the upper anterior teeth and attempt to quantify the different forces and moments generated using mini-implants and to calculate the amount of applied force optimal for en-masse intrusion and retraction using mini-implants. Methods: The optimum force required for en-masse intrusion and retraction can be calculated by using simple mathematical formulae. Depending on the position of the mini-implant and the relationship of the attachment to the center of resistance of the anterior segment, different clinical outcomes are encountered. Using certain mathematical formulae, accurate measurements of the magnitude of force and moment generated on the teeth can be calculated for each clinical outcome. Results: Optimum force for en-masse intrusion and retraction of maxillary anterior teeth is 212 grams per side. Force applied at an angle of 5o to 16o from the occlusal plane produce intrusive and retraction force components that are within the physiologic limit. Conclusion: Different clinical outcomes are encountered depending on the position of the mini-implant and the length of the attachment. It is possible to calculate the forces and moments generated for any given magnitude of applied force. The orthodontist can apply the basic biomechanical principles mentioned in this study to calculate the forces and moments for different hypothetical clinical scenarios.

  9. Vapor pressures and sublimation enthalpies of novel bicyclic heterocycle derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2014-01-01

    Highlights: • The vapor pressures of novel bicyclo-derivatives of amine were measured. • Thermodynamic functions of sublimation were calculated. • The influence of substituent structure and chemical nature on the vapor pressure was studied. -- Abstract: The vapor pressures of five novel bicyclic heterocycle derivatives were measured over the temperature 341.15 to 396.15 K using the transpiration method by means of an inert gas carrier. From these results the standard enthalpies and Gibbs free energies of sublimation at the temperature 298.15 K were calculated. The effects of alkyl- and chloro-substitutions on changes in the thermodynamic functions have been investigated. Quantitative structure–property relationship on the basis HYBOT physico-chemical descriptors for biologically active compounds have been developed to predict the sublimation enthalpies and Gibbs free energies of the compounds studied

  10. Melt and vapor characteristics in an electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C.; Soubbaramayer

    1994-12-31

    Two different approaches have been compared for the calculation of the free surface temperature Ts in cerium or copper evaporation experiments: the first method considers properties of the melt: an empirical law is used to take into account turbulent thermal convection, instabilities and characterization of the free surface. The second method considers the vapor flow expansion and connects Ts to the measured terminal temperature and terminal mean parallel velocity of the vapor jet, by direct simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high characterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that Ts and the Knudsen number at the vapour source reach a threshold when the beam power increases. (author). 12 figs., 1 tab., 21 refs.

  11. The Yaws handbook of vapor pressure Antoine coefficients

    CERN Document Server

    Yaws, Carl L

    2015-01-01

    Increased to include over 25,000 organic and inorganic compounds, The Yaws Handbook of Vapor Pressure: Antoine Coefficients, 2nd Edition delivers the most comprehensive and practical database source for today's petrochemical. Understanding antoine coefficients for vapor pressure leads to numerous critical engineering applications such as pure components in storage vessels, pressure relief valve design, flammability limits at the refinery, as well as environmental emissions from exposed liquids, making data to efficiently calculate these daily challenges a fundamental need. Written by the world's leading authority on chemical and petrochemical data, The Yaws Handbook of Vapor Pressure simplifies the guesswork for the engineer and reinforces the credibility of the engineer's calculations with a single trust-worthy source. This data book is a must-have for the engineer's library bookshelf. Increase compound coverage from 8,200 to over 25,000 organic and inorganic compounds, including sulfur and hydrocarbons Sol...

  12. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  13. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  14. Activating attachment representations during memory retrieval modulates intrusive traumatic memories.

    Science.gov (United States)

    Bryant, Richard A; Chan, Iris

    2017-10-01

    Although priming mental representations of attachment security reduces arousal, research has not examined the effect of attachment on the retrieval of emotionally arousing memories. This study investigated the effect of priming attachment security on the retrieval of emotional memories. Seventy-five participants viewed negative and neutral images, and two days later received either an attachment prime or a control prime immediately prior to free recall of the images. Two days later, participants reported how frequently they experienced intrusions of the negative images. The attachment group had less distress, and reported fewer subsequent intrusions than the control group. Attachment style moderated these effects such that individuals with an avoidant attachment style were not impacted by the attachment prime. These findings suggest that priming attachment security decreases distress during memory reactivation, and this may reduce subsequent intrusive memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  16. Alerts Visualization and Clustering in Network-based Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee; Gasior, Wade C [ORNL; Dasireddy, Swetha [University of Tennessee

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  17. When Intrusion Detection Meets Blockchain Technology: A Review

    DEFF Research Database (Denmark)

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju

    2018-01-01

    developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness of such detection systems. In recent years, blockchain technology has shown its adaptability in many...... fields such as supply chain management, international payment, interbanking and so on. As blockchain can protect the integrity of data storage and ensure process transparency, it has a potential to be applied to intrusion detection domain. Motivated by this, this work provides a review regarding...... the intersection of IDSs and blockchains. In particular, we introduce the background of intrusion detection and blockchain, discuss the applicability of blockchain to intrusion detection, and identify open challenges in this direction....

  18. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  20. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  1. Working group 4B - human intrusion: Design/performance requirements

    International Nuclear Information System (INIS)

    Channell, J.

    1993-01-01

    There is no summary of the progress made by working group 4B (Human Intrusion: Design/performance Requirements) during the Electric Power Research Institute's EPRI Workshop on the technical basis of EPA HLW Disposal Criteria, March 1993. This group was to discuss the waste disposal standard, 40 CFR Part 191, in terms of the design and performance requirements of human intrusion. Instead, because there were so few members, they combined with working group 4A and studied the three-tier approach to evaluating postclosure performance

  2. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  3. A subtractive approach to interior intrusion detection system design

    International Nuclear Information System (INIS)

    Sons, R.J.; Graham, R.H. Jr.

    1986-01-01

    This paper discusses the subtractive approach to interior intrusion detection system design which assumes that all sensors are viable candidates until they are subjected to the constraints imposed by a particular facility. The constraints are determined by a sequence of questions concerning parameters such as threat definition, facility description and operation, environment, assets to be protected, security system capabilities, and cost. As a result of the questioning, some sensors will be eliminated from the candidate list, and the ''best'' set of sensors for the facility will remain. This form of questioning could be incorporated into an expert system aiding future intrusion detection system designs

  4. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    Science.gov (United States)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  5. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities....../s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine...

  6. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium-plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric uranium-plutonium dioxide condensed phase (U/sub 1-y/Pu/sub y/)O/sub 2-x/, as functions of T, x, and y, have been calculated for 0.0 less than or equal to x less than or equal to 0.1, 0.0 less than or equal to y less than or equal to 0.3, and for the temperature range 2500 less than or equal to T less than or equal to 6000 K. The range of compositions and temperatures was limited to the region of interest to reactor safety analysis. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen potential model to obtain partial pressures of O, O 2 , Pu, PuO, PuO 2 , U, UO, UO 2 , and UO 3 as functions of T, x, and y

  7. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  8. A theoretical study of the growth of large sodium vapor bubbles in liquid sodium, including the effect of noncondensables and of vapor convection

    International Nuclear Information System (INIS)

    Casadei, F.; Donne, M.D.

    1983-01-01

    The study of the dynamics of the expansion of large bubbles of hot sodium vapor in a pool of liquid sodium plays an important role in understanding the effects of a hypothetical core disruptive accident. A model of the growth of the bubble in the pool is described. The equations of the motion of the liquid and of the nonsteady heat diffusion problem are solved together with the continuity and energy equations for the vapor phase. The first set of calculations has been performed with constant evaporation and condensation coefficients. In the second set, however, due account has been taken of the effect on condensation of noncondensable fission gases and vapor convection. Due to the very high calculated vapor velocities, noncondensable gases have little effect on the condensation rate, and the percentage amount of condensed sodium is considerably higher than previously calculated by other authors

  9. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    Science.gov (United States)

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  10. Hydrodynamic modeling of the intrusion phenomenon in water distribution systems; Modelacion hidrodinamica del fenomeno de intrusion en tuberia de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, Petra Amparo; Mora-Rodriguez, Jose de Jesus; Perez-Garcia, Rafael; Martinez-Solano, F. Javier [Universidad Politecnica de Valencia (Spain)

    2008-10-15

    This paper describes a strategy for the hydrodynamic modeling of the pathogen intrusion phenomenon in water distribution systems by the combination of a breakage with a depression situation. This scenario will be modeled computationally and experimentally. The phenomenon to be represented by both simulations is the same: the entrance of an external volume into the circulation of a main volume, known as a pathogen intrusion, as long as the main volume is potable water. To this end, a prototype and a computational model based on Computational Fluid Dynamics (CFD) are used, which allow visualizing the fields of speeds and pressures in a simulated form. With the comparison of the results of both models, conclusions will be drawn on the detail of the studied pathogen intrusion phenomenon. [Spanish] En el presente documento se describe una estrategia de modelacion del fenomeno hidrodinamico de la intrusion patogena en redes de distribucion de agua por combinacion de una rotura con una situacion de depresion. Este escenario sera modelado computacional y experimentalmente. El fenomeno que se desea representar con ambas simulaciones es el mismo: la entrada de un caudal externo a una conduccion para la que circula un caudal principal, denominado intrusion patogena, siempre y cuando el caudal principal sea agua potable. Para ello se dispone de un prototipo y un modelo computacional basado en la Dinamica de Fluidos Computacional (DFC de aqui en adelante), que permite visualizar los campos de velocidades y presiones de forma simulada. Con la comparacion de los resultados de ambos modelos se extraeran conclusiones sobre el detalle del fenomeno de la intrusion patogena estudiado.

  11. Declination Calculator

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...

  12. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  13. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  14. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  15. Capability for intrusion detection at nuclear fuel sites

    International Nuclear Information System (INIS)

    1978-03-01

    A safeguards vulnerability assessment was conducted at three separate licensed nuclear processing facilities. Emphasis was placed on: (1) performance of the total intrusion detection system, and (2) vulnerability of the system to compromise by insiders. The security guards were interviewed to evaluate their effectiveness in executing their duties in accordance with the plant's security plan and to assess their knowledge regarding the operation of the security equipment. A review of the training schedule showed that the guards, along with the other plant employees, are required to periodically attend in-plant training sessions. The vulnerability assessments continued with interviews of the personnel responsible for maintaining the security equipment, with discussions of detector false alarm and maintenance problems. The second part of the vulnerability assessments was to evaluate the effectiveness of the intrusion detection systems including the interior and the perimeter sensors, CCTV surveillance devices and the exterior lighting. Two types of perimeter detectors are used at the sites, a fence disturbance sensor and an infrared barrier type detector. Infrared barrier type detectors have a higher probability of detection, especially in conjunction with dedicated CCTV cameras. The exterior lights satisfy the 0.2 footcandle illumination requirement. The interior intrusion detection systems included ultrasonic motion detectors, microwave motion detectors,balanced magnetic switches, and CCTV cameras. Entrance doors to the materials access areas and vital areas are protected with balanced magnetic switches. The interior intrusion detection systems at the three nuclear processing sites are considered satisfactory with the exception of the areas protected with ultrasonic motion detectors

  16. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  17. Data Fusion for Network Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Guoquan Li

    2018-01-01

    Full Text Available Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS has been expected to detect malicious behaviors. Currently, NIDSs are implemented by various classification techniques, but these techniques are not advanced enough to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been effectively solved. In order to solve these problems, data fusion (DF has been applied into network intrusion detection and has achieved good results. However, the literature still lacks thorough analysis and evaluation on data fusion techniques in the field of intrusion detection. Therefore, it is necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection and propose a specific definition to describe it. We review the recent advances of DF techniques and propose a series of criteria to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research directions are proposed at the end of this work.

  18. A Labeled Data Set For Flow-based Intrusion Detection

    NARCIS (Netherlands)

    Sperotto, Anna; Sadre, R.; van Vliet, Frank; Pras, Aiko; Nunzi, Giorgio; Scoglio, Caterina; Li, Xing

    2009-01-01

    Flow-based intrusion detection has recently become a promising security mechanism in high speed networks (1-10 Gbps). Despite the richness in contributions in this field, benchmarking of flow-based IDS is still an open issue. In this paper, we propose the first publicly available, labeled data set

  19. Intrusion of beach-disposed dredger spoil into the Mhlathuze ...

    African Journals Online (AJOL)

    Sediment intrusion and its impact on the beds of the seagrass Zostera capensis in the estuary were monitored from 1996 to 1999. Fine sediment did enter the estuary from the marine environment and was deposited mainly in its lower reaches, where its settling on the leaves of Zostera resulted in a major die-back. However ...

  20. Psychological Intrusion – An Overlooked Aspect of Dental Fear

    Directory of Open Access Journals (Sweden)

    Helen R. Chapman

    2018-04-01

    Full Text Available Dental fear/anxiety is a widely recognised problem affecting a large proportion of the population. It can result in avoidance and/or difficulty accepting dental care. We believe that psychological intrusion may play a role in the aetiology and maintenance of dental fear for at least some individuals. In this narrative review we will take a developmental perspective in order to understand its impact across the lifespan. We will consider the nature of ‘self,’ parenting styles, the details of intrusive parenting or parental psychological control, and briefly touch upon child temperament and parental anxiety. Finally, we draw together the supporting (largely unrecognised evidence available in the dental literature. We illustrate the paper with clinical examples and discuss possibly effective ways of addressing the problem. We conclude that psychological intrusion appears to play an important role in dental fear, for at least some individuals, and we call for detailed research into the extent and exact nature of the problem. A simple means of identifying individuals who are vulnerable to psychological intrusion would be useful for dentists.

  1. AANtID: an alternative approach to network intrusion detection ...

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... Security has become not just a feature of an information system, but the core and a necessity especially the systems that communicate and transmit data over the Internet for they are more ... Keywords: Intrusion, Genetic Algorithm, detection, Security, DARPA dataset ...

  2. 1420 Ma diabasic intrusives from the Mesoproterozoic Singhora ...

    Indian Academy of Sciences (India)

    the Earth that includes accretion and dispersal of supercontinents, viz., Columbia (Rogers and. Santosh 2002; Zhao et al 2004) and Rodinia. Keywords. Chhattisgarh Supergroup; Singhora Group; diabasic intrusive; geochemistry and age. J. Earth Syst. Sci. 120, No. 2, April 2011, pp. 223–236 c Indian Academy of Sciences.

  3. Approaches in anomaly-based network intrusion detection systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, S.; Di Pietro, R.; Mancini, L.V.

    2008-01-01

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  4. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  5. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  6. Boosting Web Intrusion Detection Systems by Inferring Positive Signatures

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    2008-01-01

    We present a new approach to anomaly-based network intrusion detection for web applications. This approach is based on dividing the input parameters of the monitored web application in two groups: the "regular" and the "irregular" ones, and applying a new method for anomaly detection on the

  7. Approaches in Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    Anomaly-based network intrusion detection systems (NIDSs) can take into consideration packet headers, the payload, or a combination of both. We argue that payload-based approaches are becoming the most effective methods to detect attacks. Nowadays, attacks aim mainly to exploit vulnerabilities at

  8. Petrography of some altered intrusive rocks from the Lower Benue ...

    African Journals Online (AJOL)

    Petrography of some altered intrusive rocks from the Lower Benue Trough, Nigeria. Smart C Obiora, Alphonso C Umeji. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol 41(1): 1-9. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  9. Climate Change and Saltwater Intrusion along the Eastern ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Eastern Mediterranean is highly vulnerable to saltwater intrusion into the freshwater aquifers along its coasts. The degradation of these aquifers would result in serious socioeconomic consequence to people living there. This project will investigate how climate change is affecting the salinity of coastal aquifers at several ...

  10. Revised predictive equations for salt intrusion modelling in estuaries

    NARCIS (Netherlands)

    Gisen, J.I.A.; Savenije, H.H.G.; Nijzink, R.C.

    2015-01-01

    For one-dimensional salt intrusion models to be predictive, we need predictive equations to link model parameters to observable hydraulic and geometric variables. The one-dimensional model of Savenije (1993b) made use of predictive equations for the Van der Burgh coefficient $K$ and the dispersion

  11. Pre-Stressor Interference Control and Intrusive Memories

    NARCIS (Netherlands)

    Verwoerd, J.; Wessel, I.; De Jong, P.J.; Nieuwenhuis, Maurice; Huntjens, R.J.C.

    Although intrusive imagery is a common response in the aftermath of a stressful or traumatic event, only a minority of trauma victims show persistent re-experiencing and related psychopathology. Individual differences in pre-trauma executive control possibly play a critical role. Therefore, this

  12. Salt intrusion study in Cochin estuary - Using empirical models

    Digital Repository Service at National Institute of Oceanography (India)

    Jacob, B.; Revichandran, C.; NaveenKumar, K.R.

    been applied to the Cochin estuary in the present study to identify the most suitable model for predicting the salt intrusion length. Comparison of the obtained results indicate that the model of Van der Burgh (1972) is the most suitable empirical model...

  13. Anomaly-Based Intrusion Detection Systems Utilizing System Call Data

    Science.gov (United States)

    2012-03-01

    52 Table 7. Place Reachability Statistics for Low Level CPN...54 Table 8. Place Reachability Statistics for High Level CPN................................................. 55 Table 9. Password Stealing...the efficiency of traditional anti-virus software tools that are dependent on gigantic , continuously updated databases. Fortunately, Intrusion

  14. State of the Practice of Intrusion Detection Technologies

    Science.gov (United States)

    2000-01-01

    functions, procedures, and scripts, an Oracle database structure, Borne shell scripts, and configuration files which together communicate with ASIM Sensor...34Plugging the Holes in eCommerce Leads to 135% Growth in the Intrusion Detection and Vulnerability Assessment Software Market," PRNewswire. August

  15. Saltwater Intrusion Appraisal of Shallow Aquifer in Burutu Area of ...

    African Journals Online (AJOL)

    ADOWIE PERE

    is not caused by saltwater intrusion rather by iron which cannot be separately distinguished from groundwater by ... The sand and gravels forms the aquifer in the. Formation and are .... K.S; Soulios, G; Pliakas, F; Tsokas, G ( 2016). Seawater ...

  16. Illness intrusiveness among survivors of autologous blood and marrow transplantation.

    Science.gov (United States)

    Schimmer, A D; Elliott, M E; Abbey, S E; Raiz, L; Keating, A; Beanlands, H J; McCay, E; Messner, H A; Lipton, J H; Devins, G M

    2001-12-15

    Illness-induced disruptions to lifestyles, activities, and interests (i.e., illness intrusiveness) compromise subjective well-being. The authors measured illness intrusiveness in autologous blood and bone marrow transplantation (ABMT) survivors and compared the results with survivors of solid organ transplants. Forty-four of 64 consecutive ABMT survivors referred to the University of Toronto ABMT long-term follow-up clinic completed the Illness Intrusiveness Ratings Scale (IIRS), the Affect Balance Scale (ABS), the Atkinson Life Happiness Rating (ATKLH), the Beck Hopelessness Scale (BHS), and the Center for Epidemiologic Studies Depression (CES-D) Scale. Mean time from ABMT to evaluation was 4.6 +/- 2.8 years. All patients were in remission or had stable disease at the time of evaluation. Autologous blood and bone marrow transplantation patients' IIRS scores were compared with scores reported by recipients of kidney (n = 357), liver (n = 150), lung (n = 77), and heart (n = 60) transplants. Mean IIRS score for the 44 ABMT patients was 37.2 +/- 17 (maximum possible score, 91; minimum possible score, 13). Higher IIRS scores correlated with lower scores on the ABS (r = -0.54; P work, financial situation, and active recreation. Despite achieving a remission after ABMT, patients continue to experience illness intrusiveness compromising subjective well-being. Copyright 2001 American Cancer Society.

  17. Efficient cooling of rocky planets by intrusive magmatism

    Science.gov (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  18. Spatial distribution of saline water and possible sources of intrusion ...

    African Journals Online (AJOL)

    The spatial distribution of saline water and possible sources of intrusion into Lekki lagoon and transitional effects on the lacustrine ichthyofaunal characteristics were studied during March, 2006 and February, 2008. The water quality analysis indicated that, salinity has drastically increased recently in the lagoon (0.007 to ...

  19. Trauma Films, Information Processing, and Intrusive Memory Development

    Science.gov (United States)

    Holmes, Emily A.; Brewin, Chris R.; Hennessy, Richard G.

    2004-01-01

    Three experiments indexed the effect of various concurrent tasks, while watching a traumatic film, on intrusive memory development. Hypotheses were based on the dual-representation theory of posttraumatic stress disorder (C. R. Brewin, T. Dalgleish, & S. Joseph, 1996). Nonclinical participants viewed a trauma film under various encoding conditions…

  20. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  1. Why seawater intrusion has not yet occurred in the Kaluvelli-Pondicherry basin, Tamil Nadu, India

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2017-09-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is greatest when aquifers are overexploited or when recharge is low due to a semi-arid or arid climate. The Kaluvelli-Pondicherry sedimentary basin in Tamil Nadu (India) presents both these characteristics. Groundwater levels in the Vanur aquifer can reach 50 m below sea level at less than 20 km inland. This groundwater depletion is due to an exponential increase in extraction for irrigation over 35 years. No seawater intrusion has yet been detected, but a sulphate-rich mineralization is observed, the result of upward vertical leakage from the underlying Ramanathapuram aquifer. To characterize the mechanisms involved, and to facilitate effective water management, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been applied to a quasi-3D hydrogeological model, NEWSAM. Recharge had been previously quantified through the inter-comparison of hydrological models, based on climatological and surface-flow field measurements. Sensitivity tests on parameters and boundary conditions associated with the sea were performed. The resulting water balances for each aquifer led to hypotheses of (1) an offshore fresh groundwater stock, and (2) a reversal and increase of the upward leakage from the Ramanathapuram aquifer, thus corroborating the hypothesis proposed to explain geochemical results of the previous study, and denying a seawater intrusion. Palaeo-climate review supports the existence of favourable hydro-climatological conditions to replenish an offshore groundwater stock of the Vanur aquifer in the past. The extent of this fresh groundwater stock was calculated using the Kooi and Groen method.

  2. Three-dimensional computer simulations of bioremediation and vapor extraction

    International Nuclear Information System (INIS)

    Travis, B.; Trent, B.

    1991-01-01

    Numerical simulations of two remediation strategies are presented. These calculations are significant in that they will play a major role in the actual field implementation of two very different techniques. The first set of calculations simulates the actual spill event of nearly 60,000 gallons of No. 2 diesel fuel oil and its subsequent flow toward the water table for 13 years. Hydrogen peroxide saturated water flooding is then performed and bioremediation of the organic material is then calculated. The second set of calculations describes the vacuum extraction of organic vapors subject to various assumed formation properties and boundary conditions

  3. Predicting the enthalpies of melting and vaporization for pure components

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  4. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  5. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  6. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  7. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  8. Intrusions of autobiographical memories in individuals reporting childhood emotional maltreatment

    Directory of Open Access Journals (Sweden)

    Philip Spinhoven

    2011-09-01

    Full Text Available During childhood emotional maltreatment (CEM negative attitudes are provided to the child (e.g., “you are worthless”. These negative attitudes may result in emotion inhibition strategies in order to avoid thinking of memories of CEM, such as thought suppression. However, thought suppression may paradoxically enhance occurrences (i.e., intrusions of these memories, which may occur immediately or sometime after active suppression of these memories.Until now, studies that examined suppressive coping styles in individuals reporting CEM have utilized self-report questionnaires. Therefore, it is unclear what the consequences will be of emotion inhibition styles on the intrusion of autobiographical memories in individuals reporting CEM.Using a thought suppression task, this study aimed to investigate the experience of intrusions during suppression of, and when no longer instructed to actively suppress, positive and negative autobiographical memories in individuals reporting Low, Moderate, and Severe CEM compared to No Abuse (total N = 83.We found no group differences during active suppression of negative and positive autobiographical memories. However, when individuals reporting Severe CEM were no longer instructed to suppress thinking about the memory, individuals reporting No Abuse, Low CEM, or Moderate CEM reported fewer intrusions of both positive and negative autobiographical memories than individuals reporting Severe CEM. Finally, we found that intrusions of negative memories are strongly related with psychiatric distress.The present study results provide initial insights into the cognitive mechanisms that may underlie the consequences of childhood emotional maltreatment and suggests avenues for successful interventions.For the abstract or full text in other languages, please see Supplementary files under Reading Tools online

  9. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  10. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  11. Intrusions of a drowsy mind: neural markers of phenomenological unpredictability.

    Science.gov (United States)

    Noreika, Valdas; Canales-Johnson, Andrés; Koh, Justin; Taylor, Mae; Massey, Irving; Bekinschtein, Tristan A

    2015-01-01

    The transition from a relaxed to a drowsy state of mind is often accompanied by hypnagogic experiences: most commonly, perceptual imagery, but also linguistic intrusions, i.e., the sudden emergence of unpredictable anomalies in the stream of inner speech. This study has sought to describe the contents of such intrusions, to verify their association with the progression of sleep onset, and to investigate the electroencephalographic processes associated with linguistic intrusions as opposed to more common hypnagogic perceptual imagery. A single participant attended 10 experimental sessions in the EEG laboratory, where he was allowed to drift into a drowsy state of mind, while maintaining metacognition of his own experiences. Once a linguistic intrusion or a noticeable perceptual image occurred, the participant pressed a button and reported it verbally. An increase in the EEG-defined depth of drowsiness as assessed by the Hori system of sleep onset was observed in the last 20 s before a button press. Likewise, EEG Dimension of Activation values decreased before the button press, indicating that the occurrence of cognitively incongruous experiences coincides with the rapid change of EEG predictability patterns. EEG hemispheric asymmetry analysis showed that linguistic intrusions had a higher alpha and gamma power in the left hemisphere electrodes, whereas perceptual imagery reports were associated with a higher beta power over the right hemisphere. These findings indicate that the modality as well as the incongruence of drowsiness-related hypnagogic experiences is strongly associated with distinct EEG signatures in this participant. Sleep onset may provide a unique possibility to study the neural mechanisms accompanying the fragmentation of the stream of consciousness in healthy individuals.

  12. Intrusions of a drowsy mind: Neural markers of phenomenological unpredictability

    Directory of Open Access Journals (Sweden)

    Valdas eNoreika

    2015-03-01

    Full Text Available The transition from a relaxed to a drowsy state of mind is often accompanied by hypnagogic experiences: most commonly, perceptual imagery, but also linguistic intrusions, i.e. the sudden emergence of unpredictable anomalies in the stream of inner speech. This study has sought to describe the contents of such intrusions, to verify their association with the progression of sleep onset, and to investigate the electroencephalographic processes associated with linguistic intrusions as opposed to more common hypnagogic perceptual imagery. A single participant attended 10 experimental sessions in the EEG laboratory, where he was allowed to drift into a drowsy state of mind, while maintaining metacognition of his own experiences. Once a linguistic intrusion or a noticeable perceptual image occurred, the participant pressed a button and reported it verbally. An increase in the EEG-defined depth of drowsiness as assessed by the Hori system of sleep onset was observed in the last 20 sec before a button press. Likewise, EEG Dimension of Activation values decreased before the button press, indicating that the occurrence of cognitively incongruous experiences coincides with the rapid change of EEG predictability patterns. EEG hemispheric asymmetry analysis showed that linguistic intrusions had a higher alpha and gamma power in the left hemisphere electrodes, whereas perceptual imagery reports were associated with a higher beta power over the right hemisphere. These findings indicate that the modality as well as the incongruence of drowsiness-related hypnagogic experiences is strongly associated with distinct EEG signatures in this participant. Sleep onset may provide a unique possibility to study the neural mechanisms accompanying the fragmentation of the stream of consciousness in healthy individuals.

  13. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity

  14. Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utili......To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which...... are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we...... of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate...

  15. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  16. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  17. Mass spectrometric study of vaporization of cesium tellurate and tellurite

    International Nuclear Information System (INIS)

    Semenov, G.A.; Fokina, L.A.; Mouldagalieva, R.A.

    1994-01-01

    The process of vaporization of cesium tellurate and tellurite was studied by the Knudsen effusion method with a mass spectrometric analysis of the vapor composition. The thermal dissociation of Cs 2 TeO 4 to Cs 2 TeO 3 and the congruent vaporization of Cs 2 TeO 3 were established. Thermodynamic functions for gaseous Cs 2 TeO 3 have been calculated. The standard enthalpy of sublimation Δ s H (298.15)=268.1±13.0 kJ mol -1 was determined by the 2nd and 3rd laws of thermodynamics. The enthalpy of formation Δ f H (298.15)=-725.1±13.0 kJ mol -1 for gaseous Cs 2 TeO 3 and the enthalpy of atomization Δ at H (298.15)=1841.3±15.0 kJ mol -1 have been computed. ((orig.))

  18. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  19. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  20. U–Pb geochronology of the Eocene Kærven intrusive complex, East Greenland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Holm, Paul Martin; Tappe, Sebatstian

    2016-01-01

    Several major tholeiitic (e.g. the Skaergaard intrusion) and alkaline (e.g. the Kangerlussuaq Syenite) intrusive complexes of the North Atlantic Large Igneous Province are exposed along the Kangerlussuaq Fjord in East Greenland. The Kærven Complex forms a satellite intrusion to the Kangerlussuaq ...

  1. A New Unified Intrusion Anomaly Detection in Identifying Unseen Web Attacks

    Directory of Open Access Journals (Sweden)

    Muhammad Hilmi Kamarudin

    2017-01-01

    Full Text Available The global usage of more sophisticated web-based application systems is obviously growing very rapidly. Major usage includes the storing and transporting of sensitive data over the Internet. The growth has consequently opened up a serious need for more secured network and application security protection devices. Security experts normally equip their databases with a large number of signatures to help in the detection of known web-based threats. In reality, it is almost impossible to keep updating the database with the newly identified web vulnerabilities. As such, new attacks are invisible. This research presents a novel approach of Intrusion Detection System (IDS in detecting unknown attacks on web servers using the Unified Intrusion Anomaly Detection (UIAD approach. The unified approach consists of three components (preprocessing, statistical analysis, and classification. Initially, the process starts with the removal of irrelevant and redundant features using a novel hybrid feature selection method. Thereafter, the process continues with the application of a statistical approach to identifying traffic abnormality. We performed Relative Percentage Ratio (RPR coupled with Euclidean Distance Analysis (EDA and the Chebyshev Inequality Theorem (CIT to calculate the normality score and generate a finest threshold. Finally, Logitboost (LB is employed alongside Random Forest (RF as a weak classifier, with the aim of minimising the final false alarm rate. The experiment has demonstrated that our approach has successfully identified unknown attacks with greater than a 95% detection rate and less than a 1% false alarm rate for both the DARPA 1999 and the ISCX 2012 datasets.

  2. Trace element modelling of magma evolution in the Fongen-Hyllingen Intrusion, Trondheim region, Norway

    International Nuclear Information System (INIS)

    Mohamed A Abu El-Rus

    2003-01-01

    The trace element evolution of the Fongen-Hyllingen Intrusion has been studied on the basis of ICPMS analyses of 21 whole rocks and 12 plagioclase separates. Emphasis has been placed on Stage IV of the intrusion that crystallized essentially after magma addition had ceased. Whereas the compositions of minerals and rocks in Stage IV exhibit strong normal fractionation trends, crustal contamination is evident in a wide range of incompatible element ratios that should be relatively constant if simple fractional crystallization prevailed. Crustal contamination in Stage IV is confirmed by isotopic studies. The distribution of incompatible elements in Stage IV can be successfully explained by AFC modelling. Olivine compositions and isotopic ratios in the most primitive cumulates together with the slight LREE-enrichment in their coexisting melts suggest that the FHI parental magma was subjected to at least olivine fractionation during ascent to the magma chamber. This resulted in a decrease in the Mg-number of the melt without changing its isotopic ratio and incompatible trace element ratios. The slight enrichment in LREE and relatively low Zr/Y ratios in the melt coexisting with the most primitive cumulates imply that the FHI primary melt was derived from garnet-free mantle. The relative abundance of incompatible elements in the most primitive calculated melts, geochemically similar to low-Ti continental flood basalts, suggest that a subcontinental mantle source was most probable for the parental melt for FHI. (author)

  3. Dose and risk assessment for intrusion into mixed waste disposal sites

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Aaberg, R.L.

    1991-10-01

    Sites previously used for disposal of radioactive and hazardous chemical materials have resulted in situations that pose a potential threat to humans from inadvertent intrusion. An example generic scenario analysis was developed to demonstrate the evaluation of potential exposure to either cleanup workers or members of the public who intrude into buried waste containing both radioactive and hazardous chemical contaminants. The example scenarios consist of a collection of exposure routes (or pathways) with specific modeling assumptions for well-drilling and for excavation to construct buildings. These scenarios are used to describe conceptually some potential patterns of activity by non-protected human beings during intrusion into mixed-waste disposal sites. The dose from exposure to radioactive materials is calculated using the GENII software system and converted to risk by using factors from ICRP Publication 60. The hazard assessment for nonradioactive materials is performed using recent guidelines from the US Environmental Protection Agency (EPA). The example results are in the form of cancer risk for carcinogens and radiation exposure

  4. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  5. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  6. Development of an Assessment Procedure for Seawater Intrusion Mitigation

    Science.gov (United States)

    Hsi Ting, F.; Yih Chi, T.

    2017-12-01

    The Pingtung Plain is one of the areas with extremely plentiful groundwater resources in Taiwan. Due to that the application of the water resource is restricted by significant variation of precipitation between wet and dry seasons, groundwater must be used as a recharge source to implement the insufficient surface water resource during dry seasons. In recent years, the coastal aquaculture rises, and the over withdrawn of groundwater by private well results in fast drop of groundwater level. Then it causes imbalance of groundwater supply and leads to serious seawater intrusion in the coastal areas. The purpose of this study is to develop an integrated numerical model of groundwater resources and seawater intrusion. Soil and Water Assessment Tool (SWAT), MODFLOW and MT3D models were applied to analyze the variation of the groundwater levels and salinity concentration to investigate the correlation of parameters, which are used to the model applications in order to disposal saltwater intrusion. The data of groundwater levels, pumping capacity and hydrogeological data to were collected to build an integrated numerical model. Firstly, we will collect the information of layered aquifer and the data of hydrological parameters to build the groundwater numerical model at Pingtung Plain, and identify the amount of the groundwater which flow into the sea. In order to deal with the future climate change conditions or extreme weather conditions, we will consider the recharge with groundwater model to improve the seawater intrusion problem. The integrated numerical model which describes that seawater intrusion to deep confined aquifers and shallow unsaturated aquifers. Secondly, we will use the above model to investigate the weights influenced by different factors to the amount area of seawater intrusion, and predict the salinity concentration distribution of evaluation at coastal area of Pingtung Plain. Finally, we will simulate groundwater recharge/ injection at the coastal

  7. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  8. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    Science.gov (United States)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  9. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Directory of Open Access Journals (Sweden)

    Christian Lanz

    Full Text Available Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot and total CBD (CBDtot in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3% and CBD (≥ 94.6%. The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  10. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Science.gov (United States)

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  11. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  12. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  13. Computer codes used in the calculation of high-temperature thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1979-12-01

    Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region

  14. Semi-non-intrusive objective intelligibility measure using spatial filtering in hearing aids

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Boldt, Jesper Bünsow; Gran, Frederik

    2016-01-01

    -intrusive metrics have not been able to achieve acceptable intelligibility predictions. This paper presents a new semi-non-intrusive intelligibility measure based on an existing intrusive measure, STOI, where an estimate of the clean speech is extracted using spatial filtering in the hearing aid. The results......Reliable non-intrusive online assessment of speech intelligibility can play a key role for the functioning of hearing aids, e.g. as guidance for adjusting the hearing aid settings to the environment. While existing intrusive metrics can provide a precise and reliable measure, the current non...

  15. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method

    International Nuclear Information System (INIS)

    Fu Jinxia; Suuberg, Eric M.

    2011-01-01

    Highlights: → We report on vapor pressures and enthalpies of fusion and sublimation of five heavy PAHs. → Solid vapor pressures were measured using Knudsen effusion method. → Solid vapor pressures for benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene have not been published in the open literature. → Reported subcooled liquid state vapor pressures may or may not lend themselves to correction to sublimation vapor pressure. → Subcooled liquid state vapor pressures might sometimes actually be closer to actual solid state sublimation vapor pressures. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of (364 to 454) K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the five PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  16. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  17. Biological intrusion of low-level-waste trench covers

    Science.gov (United States)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  18. Securing Cloud Computing from Different Attacks Using Intrusion Detection Systems

    Directory of Open Access Journals (Sweden)

    Omar Achbarou

    2017-03-01

    Full Text Available Cloud computing is a new way of integrating a set of old technologies to implement a new paradigm that creates an avenue for users to have access to shared and configurable resources through internet on-demand. This system has many common characteristics with distributed systems, hence, the cloud computing also uses the features of networking. Thus the security is the biggest issue of this system, because the services of cloud computing is based on the sharing. Thus, a cloud computing environment requires some intrusion detection systems (IDSs for protecting each machine against attacks. The aim of this work is to present a classification of attacks threatening the availability, confidentiality and integrity of cloud resources and services. Furthermore, we provide literature review of attacks related to the identified categories. Additionally, this paper also introduces related intrusion detection models to identify and prevent these types of attacks.

  19. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  20. A Partially Distributed Intrusion Detection System for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Eung Jun Cho

    2013-11-01

    Full Text Available The increasing use of wireless sensor networks, which normally comprise several very small sensor nodes, makes their security an increasingly important issue. They can be practically and efficiently secured using intrusion detection systems. Conventional security mechanisms are not usually applicable due to the sensor nodes having limitations of computational power, memory capacity, and battery power. Therefore, specific security systems should be designed to function under constraints of energy or memory. A partially distributed intrusion detection system with low memory and power demands is proposed here. It employs a Bloom filter, which allows reduced signature code size. Multiple Bloom filters can be combined to reduce the signature code for each Bloom filter array. The mechanism could then cope with potential denial of service attacks, unlike many previous detection systems with Bloom filters. The mechanism was evaluated and validated through analysis and simulation.

  1. Use of behavioral biometrics in intrusion detection and online gaming

    Science.gov (United States)

    Yampolskiy, Roman V.; Govindaraju, Venu

    2006-04-01

    Behavior based intrusion detection is a frequently used approach for insuring network security. We expend behavior based intrusion detection approach to a new domain of game networks. Specifically, our research shows that a unique behavioral biometric can be generated based on the strategy used by an individual to play a game. We wrote software capable of automatically extracting behavioral profiles for each player in a game of Poker. Once a behavioral signature is generated for a player, it is continuously compared against player's current actions. Any significant deviations in behavior are reported to the game server administrator as potential security breaches. Our algorithm addresses a well-known problem of user verification and can be re-applied to the fields beyond game networks, such as operating systems and non-game networks security.

  2. Misuse and intrusion detection at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Neuman, M.C.; Simmonds, D.D.; Stallings, C.A.; Thompson, J.L.; Christoph, G.G.

    1995-04-01

    An effective method for detecting computer misuse is the automatic auditing and analysis of on-line user activity. This activity is reflected in system audit records, in system vulnerability postures, and in other evidence found through active system testing. Since 1989 we have implemented a misuse and intrusion detection system at Los Alamos. This is the Network Anomaly Detection and Intrusion Reporter, or NADIR. NADIR currently audits a Kerberos distributed authentication system, file activity on a mass, storage system, and four Cray supercomputers that run the UNICOS operating system. NADIR summarizes user activity and system configuration in statistical profiles. It compares these profiles to expert rules that define security policy and improper or suspicious behavior. It reports suspicious behavior to security auditors and provides tools to aid in follow-up investigations, As NADIR is constantly evolving, this paper reports its development to date.

  3. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  4. Non intrusive check valve diagnostics at Bruce A

    International Nuclear Information System (INIS)

    Marsch, S.P.

    1997-01-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  5. Non intrusive check valve diagnostics at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, S.P. [Ontario Hydro, Bruce Nuclear Generating Station A, Tiverton, ON (Canada)

    1997-07-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  6. Waste Management Policy Framework to Mitigate Terrorist Intrusion Activities

    International Nuclear Information System (INIS)

    Redus, Kenneth S.

    2003-01-01

    A policy-directed framework is developed to support US Department of Energy (DOE) counterterrorism efforts, specifically terrorist intrusion activities that affect of Environmental Management (EM) programs. The framework is called the Security Effectiveness and Resource Allocation Definition Forecasting and Control System (SERAD-FACS). Use of SERAD-FACS allows trade-offs between resources, technologies, risk, and Research and Development (R and D) efforts to mitigate such intrusion attempts. Core to SERAD-FACS is (1) the understanding the perspectives and time horizons of key decisionmakers and organizations, (2) a determination of site vulnerabilities and accessibilities, and (3) quantifying the measures that describe the risk associated with a compromise of EM assets. The innovative utility of SERAD-FACS is illustrated for three integrated waste management and security strategies. EM program risks, time delays, and security for effectiveness are examined to demonstrate the significant cost and schedule impact terrorist activities can have on cleanup efforts in the DOE complex

  7. Thermodynamics of water intrusion in nanoporous hydrophobic solids.

    Science.gov (United States)

    Cailliez, Fabien; Trzpit, Mickael; Soulard, Michel; Demachy, Isabelle; Boutin, Anne; Patarin, Joël; Fuchs, Alain H

    2008-08-28

    We report a joint experimental and molecular simulation study of water intrusion in silicalite-1 and ferrerite zeolites. The main conclusion of this study is that water condensation takes place through a genuine first-order phase transition, provided that the interconnected pores structure is 3-dimensional. In the extreme confinement situation (ferrierite zeolite), condensation takes place through a continuous transition, which is explained by a shift of both the first-order transition line and the critical point with increasing confinement. The present findings are at odds with the common belief that conventional phase transitions cannot take place in microporous solids such as zeolites. The most important features of the intrusion/extrusion process can be understood in terms of equilibrium thermodynamics considerations. We believe that these findings are very general for hydrophobic solids, i.e. for both nonwetting as well as wetting water-solid interface systems.

  8. Medication Adherence using Non-intrusive Wearable Sensors

    Directory of Open Access Journals (Sweden)

    T. H. Lim

    2017-12-01

    Full Text Available Activity recognition approaches have been applied in home ambient systems to monitor the status and well- being of occupant especially for home care systems. With the advancement of embedded wireless sensing devices, various applications have been proposed to monitor user´s activities and maintain a healthy lifestyle. In this paper, we propose and evaluate a Smart Medication Alert and Treatment Electronic Systems (SmartMATES using a non-intrusive wearable activity recognition sensing system to monitor and alert an user for missing medication prescription. Two sensors are used to collect data from the accelerometer and radio transceiver. Based on the data collected, SmartMATES processes the data and generate a model for the various actions including taking medication. We have evaluated the SmartMATES on 9 participants. The results show that the SmartMATES can identify and prevent missing dosage in a less intrusive way than existing mobile application and traditional approaches.

  9. Manipulating recall vantage perspective of intrusive memories in dysphoria.

    Science.gov (United States)

    Williams, Alishia D; Moulds, Michelle L

    2008-10-01

    The current study attempted to experimentally manipulate mode of recall (field, observer perspective) in a sample of mildly dysphoric participants (N=134) who reported a distressing intrusive memory of negative autobiographical event. Specifically, the current study sought to ascertain whether shifting participants into a converse perspective would have differential effects on the reported experience of their memory. Results indicated that shifting participants from a field to an observer perspective resulted in decreased experiential ratings: specifically, reduced distress and vividness. Also, as anticipated, the converse shift in perspective (from observer to field) did not lead to a corresponding increase in experiential ratings, but did result in reduced ratings of observation and a trend was observed for decreased levels of detachment. The findings support the notion that recall perspective has a functional role in the regulation of intrusion-related distress and represents a cognitive avoidance mechanism.

  10. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  11. An Immune-inspired Adaptive Automated Intrusion Response System Model

    Directory of Open Access Journals (Sweden)

    Ling-xi Peng

    2012-09-01

    Full Text Available An immune-inspired adaptive automated intrusion response system model, named as , is proposed. The descriptions of self, non-self, immunocyte, memory detector, mature detector and immature detector of the network transactions, and the realtime network danger evaluation equations are given. Then, the automated response polices are adaptively performed or adjusted according to the realtime network danger. Thus, not only accurately evaluates the network attacks, but also greatly reduces the response times and response costs.

  12. Assessment of permeation quality of concrete through mercury intrusion porosimetry

    International Nuclear Information System (INIS)

    Kumar, Rakesh; Bhattacharjee, B.

    2004-01-01

    Permeation quality of laboratory cast concrete beams was determined through initial surface absorption test (ISAT). The pore system characteristics of the same concrete beam specimens were determined through mercury intrusion porosimetry (MIP). Data so obtained on the measured initial surface absorption rate of water by concrete and characteristics of pore system of concrete estimated from porosimetry results were used to develop correlations between them. Through these correlations, potential of MIP in assessing the durability quality of concrete in actual structure is demonstrated

  13. A Fusion of Multiagent Functionalities for Effective Intrusion Detection System

    OpenAIRE

    Dhanalakshmi Krishnan Sadhasivan; Kannapiran Balasubramanian

    2017-01-01

    Provision of high security is one of the active research areas in the network applications. The failure in the centralized system based on the attacks provides less protection. Besides, the lack of update of new attacks arrival leads to the minimum accuracy of detection. The major focus of this paper is to improve the detection performance through the adaptive update of attacking information to the database. We propose an Adaptive Rule-Based Multiagent Intrusion Detection System (ARMA-IDS) to...

  14. Mass memory formatter subsystem of the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-09-01

    The Mass Memory Formatter was developed as part of the Adaptive Intrusion Data System (AIDS) to control a 2.4-megabit mass memory. The data from a Memory Controlled Processor is formatted before it is stored in the memory and reformatted during the readout mode. The data is then transmitted to a NOVA 2 minicomputer-controlled magnetic tape recorder for storage. Techniques and circuits are described

  15. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  16. Vapor nucleation paths in lyophobic nanopores.

    Science.gov (United States)

    Tinti, Antonio; Giacomello, Alberto; Casciola, Carlo Massimo

    2018-04-19

    In recent years, technologies revolving around the use of lyophobic nanopores gained considerable attention in both fundamental and applied research. Owing to the enormous internal surface area, heterogeneous lyophobic systems (HLS), constituted by a nanoporous lyophobic material and a non-wetting liquid, are promising candidates for the efficient storage or dissipation of mechanical energy. These diverse applications both rely on the forced intrusion and extrusion of the non-wetting liquid inside the pores; the behavior of HLS for storage or dissipation depends on the hysteresis between these two processes, which, in turn, are determined by the microscopic details of the system. It is easy to understand that molecular simulations provide an unmatched tool for understanding phenomena at these scales. In this contribution we use advanced atomistic simulation techniques in order to study the nucleation of vapor bubbles inside lyophobic mesopores. The use of the string method in collective variables allows us to overcome the computational challenges associated with the activated nature of the phenomenon, rendering a detailed picture of nucleation in confinement. In particular, this rare event method efficiently searches for the most probable nucleation path(s) in otherwise intractable, high-dimensional free-energy landscapes. Results reveal the existence of several independent nucleation paths associated with different free-energy barriers. In particular, there is a family of asymmetric transition paths, in which a bubble forms at one of the walls; the other family involves the formation of axisymmetric bubbles with an annulus shape. The computed free-energy profiles reveal that the asymmetric path is significantly more probable than the symmetric one, while the exact position where the asymmetric bubble forms is less relevant for the free energetics of the process. A comparison of the atomistic results with continuum models is also presented, showing how, for simple

  17. Respon Konsumen pada Mobile Advergames: Intrusiveness dan Irritation

    Directory of Open Access Journals (Sweden)

    Sony Kusumasondjaja

    2016-12-01

    Full Text Available Abstract. Increasing adoption of mobile advergames to deliver marketing messages has not been followed by empirical findings to support its effectiveness. This research attempts to examine the effect of mobile advergames intrusiveness on consumer irritation, attitudes, and purchase intention. This investigation on mobile advergame effectiveness was based on the increasing use of mobile media to deliver marketing messages to consumers from different demographic background. Conceptual framework was developed based on Advertising Avoidance Theory. For data collection, self-administered survey was conducted by adopting purposive sampling involving 213 respondents residing in Surabaya who have had experience in playing mobile game as respondents. Results indicate that intrusiveness positively affects consumer irritation. Consumer irritation negatively affects attitude towards the mobile advergames and attitude towards the advertised product. The better the consumer attitude towards the mobile advergames, the more positive the attitude towards the advertised product. Moreover, the more positive the attitude towards the advertised product, the greater the consumer intention to purchase. Interestingly, consumer attitude toward the mobile advergames has insignificant influence on purchase intention. Findings of the study offer significant contribution to marketing practices using mobile advergames as media placement in their advertising strategy. Keywords: intrusiveness, irritation, mobile advergames, attitude, advertising

  18. Anomaly-based intrusion detection for SCADA systems

    International Nuclear Information System (INIS)

    Yang, D.; Usynin, A.; Hines, J. W.

    2006-01-01

    Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper will briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)

  19. Treatment of Intrusive Suicidal Imagery Using Eye Movements

    Directory of Open Access Journals (Sweden)

    Jaël S. van Bentum

    2017-06-01

    Full Text Available Suicide and suicidal behavior are major public health concerns, and affect 3–9% of the population worldwide. Despite increased efforts for national suicide prevention strategies, there are still few effective interventions available for reducing suicide risk. In this article, we describe various theoretical approaches for suicide ideation and behavior, and propose to examine the possible effectiveness of a new and innovative preventive strategy. A model of suicidal intrusion (mental imagery related to suicide, also referred to as suicidal flash-forwards is presented describing one of the assumed mechanisms in the etiology of suicide and the mechanism of therapeutic change. We provide a brief rationale for an Eye Movement Dual Task (EMDT treatment for suicidal intrusions, describing techniques that can be used to target these suicidal mental images and thoughts to reduce overall behavior. Based on the available empirical evidence for the mechanisms of suicidal intrusions, this approach appears to be a promising new treatment to prevent suicidal behavior as it potentially targets one of the linking pins between suicidal ideation and suicidal actions.

  20. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  1. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  2. A Nuisance Alarm Data System for evaluation of intrusion detectors

    International Nuclear Information System (INIS)

    Ream, W.K.

    1990-01-01

    A Nuisance Alarm Data System (NADS) was developed to gather long-term background alarm data on exterior intrusion detectors as part of their evaluation. Since nuisance alarms play an important part in the selection of intrusion detectors for use at Department of Energy (DOE) facilities, an economical and reliable way to monitor and record these alarms was needed. NADS consists of an IBM personal computer and printer along with other commercial units to communicate with the detectors, to gather weather data, and to record video for assessment. Each alarm, its assessment, and the weather conditions occurring at alarm time are placed into a data base that is used in the evaluation of the detector. The operating software is written in Turbo Pascal for easy maintenance and modification. A portable system, based on the NADS design, has been built and shipped to other DOE locations to do on-site alarm monitoring. This has been valuable for the comparison of different detectors in the on-site environment and for testing new detectors when the appropriate conditions do not exist or cannot be simulated at the Exterior Intrusion Detection Testbed

  3. Biological intrusion of low-level-waste trench covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Gladney, E.S.

    1981-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. Past research on low-level waste shallow land burial methods has emphasized physical (i.e., water infiltration, soil erosion) and chemical (radionuclide leaching) processes that can cause waste site failure and subsequent radionuclide transport. The purpose of this paper is to demonstrate the need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatments. Plants and animals not only can transport radionuclides to the ground surface via root systems and soil excavated from the cover profile by animal burrowing activities, but they modify physical and chemical processes within the cover profile by changing the water infiltration rates, soil erosion rates and chemical composition of the soil. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and soil overburden depth. The rate of biological intrusion through the various barrier materials is being evaluated through the use of activatable stable tracers

  4. Kissing Bug ( spp. Intrusion into Homes: Troublesome Bites and Domiciliation

    Directory of Open Access Journals (Sweden)

    Stephen A. Klotz

    2016-01-01

    Full Text Available Kissing bugs ( Triatoma spp. frequently enter homes and bite human and pet occupants. Bites may lead to severe allergic reactions and, in some cases, death. Kissing bugs are also vectors of Trypanosoma cruzi , the cause of Chagas disease. In general, modern houses in the United States are not conducive to domiciliation of kissing bugs (bugs living out their entire life within the home with the presence of eggs, nymphs, adults, and exuviae. Construction features such as concrete foundations, solid walls and ceilings, window screens, tight thresholds for doors and windows, and other measures impede bug entry into homes, and air conditioning reduces the need for open doors and windows. Where Chagas disease is endemic in Mexico and Central and South America, homes often have thatch roofs, adobe walls, and open doors and windows. We investigated numerous instances of kissing bug intrusions into homes in Southern Arizona, California, and Louisiana and documented the reactions to kissing bug bites. Our work confirms the importance of modern home construction in limiting kissing bug intrusions. Older homes, especially those lacking modern screening, caulking, and weather stripping to reduce air leakage, may be subject to kissing bug intrusions and domiciliation. We describe a community in Southern Arizona where domiciliation of homes by Triatoma recurva is common. We also provide recent data regarding kissing bug bites and allergic reactions to the bites.

  5. Data mining approach to web application intrusions detection

    Science.gov (United States)

    Kalicki, Arkadiusz

    2011-10-01

    Web applications became most popular medium in the Internet. Popularity, easiness of web application script languages and frameworks together with careless development results in high number of web application vulnerabilities and high number of attacks performed. There are several types of attacks possible because of improper input validation: SQL injection Cross-site scripting, Cross-Site Request Forgery (CSRF), web spam in blogs and others. In order to secure web applications intrusion detection (IDS) and intrusion prevention systems (IPS) are being used. Intrusion detection systems are divided in two groups: misuse detection (traditional IDS) and anomaly detection. This paper presents data mining based algorithm for anomaly detection. The principle of this method is the comparison of the incoming HTTP traffic with a previously built profile that contains a representation of the "normal" or expected web application usage sequence patterns. The frequent sequence patterns are found with GSP algorithm. Previously presented detection method was rewritten and improved. Some tests show that the software catches malicious requests, especially long attack sequences, results quite good with medium length sequences, for short length sequences must be complemented with other methods.

  6. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  7. An Automata Based Intrusion Detection Method for Internet of Things

    Directory of Open Access Journals (Sweden)

    Yulong Fu

    2017-01-01

    Full Text Available Internet of Things (IoT transforms network communication to Machine-to-Machine (M2M basis and provides open access and new services to citizens and companies. It extends the border of Internet and will be developed as one part of the future 5G networks. However, as the resources of IoT’s front devices are constrained, many security mechanisms are hard to be implemented to protect the IoT networks. Intrusion detection system (IDS is an efficient technique that can be used to detect the attackers when cryptography is broken, and it can be used to enforce the security of IoT networks. In this article, we analyzed the intrusion detection requirements of IoT networks and then proposed a uniform intrusion detection method for the vast heterogeneous IoT networks based on an automata model. The proposed method can detect and report the possible IoT attacks with three types: jam-attack, false-attack, and reply-attack automatically. We also design an experiment to verify the proposed IDS method and examine the attack of RADIUS application.

  8. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  9. Abstracting massive data for lightweight intrusion detection in computer networks

    KAUST Repository

    Wang, Wei

    2016-10-15

    Anomaly intrusion detection in big data environments calls for lightweight models that are able to achieve real-time performance during detection. Abstracting audit data provides a solution to improve the efficiency of data processing in intrusion detection. Data abstraction refers to abstract or extract the most relevant information from the massive dataset. In this work, we propose three strategies of data abstraction, namely, exemplar extraction, attribute selection and attribute abstraction. We first propose an effective method called exemplar extraction to extract representative subsets from the original massive data prior to building the detection models. Two clustering algorithms, Affinity Propagation (AP) and traditional . k-means, are employed to find the exemplars from the audit data. . k-Nearest Neighbor (k-NN), Principal Component Analysis (PCA) and one-class Support Vector Machine (SVM) are used for the detection. We then employ another two strategies, attribute selection and attribute extraction, to abstract audit data for anomaly intrusion detection. Two http streams collected from a real computing environment as well as the KDD\\'99 benchmark data set are used to validate these three strategies of data abstraction. The comprehensive experimental results show that while all the three strategies improve the detection efficiency, the AP-based exemplar extraction achieves the best performance of data abstraction.

  10. CONTAIN calculations

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  11. Proposed Tier 2 Screening Criteria and Tier 3 Field Procedures for Evaluation of Vapor Intrusion (ESTCP Cost and Performance Report)

    Science.gov (United States)

    2012-08-01

    Security Technology Certification Program ETV Environmental Technology Verification GC gas chromatography HGL HydroGeoLogic, Inc . ITRC... Inc . (HGL) for invaluable project support. This page left blank intentionally. 1 1.0 EXECUTIVE SUMMARY 1.1 OBJECTIVES OF THE... NIKE Battery Site PR-58 N. Kingstown, RI Tier 2 Industrial Site Southeast TX Tier 2 Note: * = Tier 2 demonstration not completed due to the

  12. Use of On-Site GC/MS Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    Petroleum Hydrocarbons (ETPH), MA-EPH, MA- VPH . Microbiology Parameters: Total Coliform – MF mEndo (SM9222B), Total Coliform – MTF (SM9221B), E. Coli...Parameters: PCBs, PCBs in Oil, Organochlorine Pesticides, Technical Chlordane, Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA- VPH ...Organic Parameters: 608, 624, 625, 8081A, 8082, 8330, 8151A, 8260B, 8270C, 3510C, 3630C, 5030B, ME- DRO, ME-GRO, MA-EPH, MA- VPH .) Solid Waste/Soil

  13. Use of Compound-Specific Stable Isotope Analysis to Distinguish Between Vapor Intrusion and Indoor Sources of VOCs

    Science.gov (United States)

    2013-11-01

    Chlorinated Hydrocarbons, Volatile Organics, TPH (HEM/SGT), CT- Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA- VPH . Microbiology Parameters: Total...Toxaphene, CT-Extractable Petroleum Hydrocarbons (ETPH), MA-EPH, MA- VPH , Dicamba, 2,4-D, 2,4,5-T, 2,4,5-TP(Silvex), Dalapon, Volatile Organics (SW 8260...3510C, 3630C, 5030B, ME- DRO, ME-GRO, MA-EPH, MA- VPH .) Solid Waste/Soil (Inorganic Parameters: 9010B, 9012A, 9014A, 9030B, 9040B, 9045C, 6010B

  14. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  15. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  16. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    Science.gov (United States)

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  17. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  18. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  19. SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions

    Directory of Open Access Journals (Sweden)

    K. Iyer

    2018-01-01

    Full Text Available Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene–Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary

  20. SILLi 1.0: a 1-D numerical tool quantifying the thermal effects of sill intrusions

    Science.gov (United States)

    Iyer, Karthik; Svensen, Henrik; Schmid, Daniel W.

    2018-01-01

    Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion are of significant interest to the energy industry. In this paper, we present a user-friendly 1-D finite element method (FEM)-based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin off the shore of Norway. An additional example includes emplacement of a dyke in a cooling pluton which forgoes sedimentation within a basin. Input data for the model are the present-day well log or sedimentary column with an Excel input file and include rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time and

  1. Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2003-01-01

    Full Text Available A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT event, encountered during the STACCATO period on 20-21 June 2001, was followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one descending to nearly 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent surface measurements of the cosmogenic radionuclides 10Be and 7Be and their ratio 10Be/7Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures many details of the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October

  2. Innovative methods to reduce salt water intrusion in harbours

    Science.gov (United States)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  3. Aspects of cold intrusions over Greece during autumn

    Science.gov (United States)

    Mita, Constantina; Marinaki, Aggeliki; Zeini, Konstantina; Konstantara, Metaxia

    2010-05-01

    This study is focused on the description of atmospheric disturbances that caused intense cold intrusions over Greece during autumn for a period of 25 years (1982-2006). The study was based on data analysis from the meteorological station network of the Hellenic National Meteorological Service (HNMS) and the European Centre for Medium Range Weather Forecasts (ECMWF). Initially, the days with temperature at the isobaric surface of 850 hPa less or equal to the mean temperature for the 10-day period the day under investigation belongs to are isolated, composing a new confined data set which was further used. An event of intense cold intrusion is identified based on a subjective set of criteria, considering the temperature decrease at the level of 850 hPa and its duration. In particular, the criteria that were used to identify a cold intrusion were: temperature variation between two successive days at the isobaric level of 850 hPa being equal or greater than 50 C at least once during the event and duration of the event of at least two successive days with continuous temperature decrease. Additionally, the synoptic analysis of the atmospheric disturbances involved using weather charts from ECMWF, revealed that all cases were related to low pressure systems at the level of 500 hPa, accompanied by cold air masses. Moreover, a methodology proposed to classify the cold intrusions based on general circulation characteristics of the atmosphere, resulted in seven major categories. More than half of the events belong in two categories, originated northwest of the greater Greek area (Greece and parts of neighbouring countries), between 400 and 600 N. Further analysis indicated that the frequency of events increases from September to November and the majority of the events lasted two to three days. Additionally, the non-parametric Mann-Kendall test was used for the investigation of the statistical significance of the trends appearing in the results. The tests revealed that over

  4. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  5. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  6. Relationships between fusion, solution, vaporization and sublimation enthalpies of substituted phenols

    International Nuclear Information System (INIS)

    Yagofarov, Mikhail I.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2017-01-01

    Highlights: • Method for determination of sublimation and vaporization enthalpies of phenols was developed. • Vaporization enthalpies of 28 phenols at 298 K were calculated. • Sublimation enthalpies of 26 phenols at 298 K were calculated using fusion enthalpies at melting temperatures. • Obtained values are in good agreement with the results of conventional methods. - Abstract: In this work a method for determination of sublimation and vaporization enthalpies of substituted phenols was developed. This method is a modification of solution calorimetry approach. Modification is based on the novel relations, which bind solution, vaporization and sublimation enthalpies at 298.15 K and fusion enthalpy at the melting temperature. According to novel relations the equations for calculating sublimation and vaporization enthalpies at 298.15 K were offered. Calculated values of sublimation and vaporization enthalpies of phenol derivatives containing alkyls, halogens, –OCH 3 , –NO 2 , –COCH 3 , –COOCH 3 groups, and dihydroxybenzenes were compared with literature data (298.15 K) obtained by conventional methods. In most of the cases divergence does not exceed 2–3%.

  7. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  8. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  9. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  10. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  11. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  12. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  13. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  14. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  15. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  16. Buoyant plume calculations

    International Nuclear Information System (INIS)

    Penner, J.E.; Haselman, L.C.; Edwards, L.L.

    1985-01-01

    Smoke from raging fires produced in the aftermath of a major nuclear exchange has been predicted to cause large decreases in surface temperatures. However, the extent of the decrease and even the sign of the temperature change, depend on how the smoke is distributed with altitude. We present a model capable of evaluating the initial distribution of lofted smoke above a massive fire. Calculations are shown for a two-dimensional slab version of the model and a full three-dimensional version. The model has been evaluated by simulating smoke heights for the Hamburg firestorm of 1943 and a smaller scale oil fire which occurred in Long Beach in 1958. Our plume heights for these fires are compared to those predicted by the classical Morton-Taylor-Turner theory for weakly buoyant plumes. We consider the effect of the added buoyancy caused by condensation of water-laden ground level air being carried to high altitude with the convection column as well as the effects of background wind on the calculated smoke plume heights for several fire intensities. We find that the rise height of the plume depends on the assumed background atmospheric conditions as well as the fire intensity. Little smoke is injected into the stratosphere unless the fire is unusually intense, or atmospheric conditions are more unstable than we have assumed. For intense fires significant amounts of water vapor are condensed raising the possibility of early scavenging of smoke particles by precipitation. 26 references, 11 figures

  17. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  18. Mass-spectral investigations of vaporization process of the condensed zinc phosphates

    International Nuclear Information System (INIS)

    Lopatin, S.L; Sinyayev, V.A.; Shugurov, S.M.

    2005-01-01

    There are the data of high temperature mass-spectrum experiment concerning of thermal decomposition of zinc cyclotriphosphate and zinc diphosphate presented in the given article. It is shown the both salts dissociate into phosphorus oxides, oxygen, and atomic zinc. Correlation between partial pressure of vapor components and composition of condensed phase are described. Effects of temperature and duration of the vaporization process on vapor composition are presented as well. Standard enthalpy of ZnPO 3 molecule decomposition into atoms is calculated. [author

  19. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  20. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  1. Animal intrusion status report for fiscal year 1990

    International Nuclear Information System (INIS)

    Landeen, D.S.

    1991-03-01

    The Protective Barrier and Warning Marker System Development Plan identified tasks that need to be completed to design a final protective barrier to implement in-place disposal of radioactive waste. This report summarizes the animal intrusion work conducted by Westinghouse Hanford Company in fiscal year 1990 regarding small mammals and water infiltration. An animal intrusion lysimeter facility was constructed and installed in fiscal year 1988. The facility consists of two outer boxes buried at grade that serve as receptacles for six animal intrusion lysimeters. Small burrowing mammals common to the Hanford Site environs are introduced over a 3- to 4-month period. Supplemental precipitation is added to three of the lysimeters with a rainulator at a rate equivalent to a 100-year storm. Soil moisture samples are taken before and after each test, and soil moisture measurements are also taken with a hydroprobe during the test period. During fiscal year 1990, tests three and four were completed and test five was initiated. Results of test three (summer treatment), which used Townsend ground squirrels and pocket gophers, indicated that the additional 1.5 inches of precipitation that was added with the rainulator was lost during this test. The plots that did not receive any additional precipitation all lost water (5 to 6 percent). Results from test four (winter treatment), which used pocket gophers and pocket mice, indicated that all of the lysimeters except one gained water. The two control lysimeters (rainulator plots and nonrainulator lysimeters with no animals) gained more water than their corresponding animal burrow lysimeters. 4 refs., 9 figs., 3 tabs

  2. The determination of the initial point of net vapor generation in flow subcooled boiling

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2000-01-01

    The experimental results for the initial point of net vapor generation in up-flow subcooled boiling in an internally-heated annulus are given. The characteristics of the initial point of net vapor generation and the problem on gamma ray attenuation measurement are discussed. The comparison between the data and a calculation model is given, it is showed that the data agree well with the model

  3. Burnout calculation

    International Nuclear Information System (INIS)

    Li, D.

    1980-01-01

    Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended [ru

  4. A Proposal for Non-Intrusive Namespaces in OCaml

    OpenAIRE

    Couderc , Pierrick; Canou , Benjamin; Chambart , Pierre; Le Fessant , Fabrice

    2014-01-01

    International audience; We present a work-in-progress about adding namespaces to OCaml. Inspired by other lan-guages such as Scala or C++, our aim is to de-sign and formalize a simple and non-intrusive namespace mechanism without complexifying the core language. Namespaces in our ap-proach are a simple way to define libraries while avoiding name clashes. They are also meant to simplify the build process, clarify-ing and reducing (to zero whenever possible) the responsibility of external tools.

  5. The role of extrusions and intrusions in fatigue crack initiation

    Czech Academy of Sciences Publication Activity Database

    Polák, Jaroslav; Mazánová, Veronika; Heczko, Milan; Petráš, Roman; Kuběna, Ivo; Casalena, L.; Man, Jiří

    2017-01-01

    Roč. 185, NOV (2017), s. 46-60 ISSN 0013-7944 R&D Projects: GA MŠk(CZ) LQ1601; GA MŠk LM2015069; GA ČR(CZ) GA13-23652S; GA ČR GA15-08826S Institutional support: RVO:68081723 Keywords : Extrusion * Fatigue crack initiation * Intrusion * Persistent slip marking * Stainless steel Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis Impact factor: 2.151, year: 2016

  6. Attack Pattern Analysis Framework for a Multiagent Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Krzysztof Juszczyszyn

    2008-08-01

    Full Text Available The paper proposes the use of attack pattern ontology and formal framework for network traffic anomalies detection within a distributed multi-agent Intrusion Detection System architecture. Our framework assumes ontology-based attack definition and distributed processing scheme with exchange of communicates between agents. The role of traffic anomalies detection was presented then it has been discussed how some specific values characterizing network communication can be used to detect network anomalies caused by security incidents (worm attack, virus spreading. Finally, it has been defined how to use the proposed techniques in distributed IDS using attack pattern ontology.

  7. Neuroscientific Prediction and the Intrusion of Intuitive Metaphysics.

    Science.gov (United States)

    Rose, David; Buckwalter, Wesley; Nichols, Shaun

    2017-03-01

    How might advanced neuroscience-in which perfect neuro-predictions are possible-interact with ordinary judgments of free will? We propose that peoples' intuitive ideas about indeterminist free will are both imported into and intrude into their representation of neuroscientific scenarios and present six experiments demonstrating intrusion and importing effects in the context of scenarios depicting perfect neuro-prediction. In light of our findings, we suggest that the intuitive commitment to indeterminist free will may be resilient in the face of scientific evidence against such free will. Copyright © 2015 Cognitive Science Society, Inc.

  8. Non-intrusive load characterization of an airfoil using PIV

    Energy Technology Data Exchange (ETDEWEB)

    Oudheusden, B.W. van; Scarano, F.; Casimiri, E.W.F. [Dept. of Aerospace Engineering, Delft Univ. of Tech., Delft (Netherlands)

    2006-06-15

    An assessment is made of the feasibility of using PIV velocity data for the non-intrusive aerodynamic force characterization (lift, drag and pitching moment) of an airfoil. The method relies upon the application of control-volume approaches in combination with the deduction of the pressure from the PIV experimental data, by making use of the momentum equation. First, the consistency of the method is verified by means of synthetic data obtained from CFD. Subsequently, the procedure was applied in an experimental investigation, in which the PIV approach is validated against standard pressure-based methods (surface pressure distribution and wake rake). (orig.)

  9. Environnements de tests d’intrusion pour mobiles et tablettes

    OpenAIRE

    Vianin, Jérémie; Bocchi, Yann

    2017-01-01

    L’objectif de ce travail est de réaliser une recherche des possibilités actuelles de tests d’intrusion mobiles. Après avoir recherché les technologies existantes, nous les analysons et les comparons afin de proposer un outil complet. Dans ce travail, nous analysons les possibilités de pentesting mobile avec l’aide d’une tablette de la marque Nexus et un smartphone de la gamme One d’HTC. Nous voyons le pentest mobile sous trois grands angles : OS, package et application.

  10. DUNDRUM Restriction-Intrusion of Liberty Ladders (DRILL) Audit Toolkit

    LENUS (Irish Health Repository)

    Kennedy, Harry G

    2011-09-01

    This series of rating \\'ladders\\' is intended to allow a quantitative and qualitative analysis of the use of restrictive and intrusive interventions as part of the therapeutic management of violence and aggression in psychiatric hospital settings. This is an evolving handbook. The ladders are currently organised to facilitate a behavioural analysis. Context, antecedents, behaviour, interventions, consequences are conceptualised as a series of events organised in temporal sequence so that causes, interactions and effects can be considered. The complexity of analysis possible is limited by the statistical power of the numbers of cases and events available. \\r\

  11. Review on assessment methodology for human intrusion into a repository for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility.

  12. Review on assessment methodology for human intrusion into a repository for radioactive waste

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility

  13. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  14. Water jet intrusion into hot melt concomitant with direct-contact boiling of water

    Energy Technology Data Exchange (ETDEWEB)

    Sibamoto, Yasuteru [Japan Atomic Energy Research Inst., Tokai Research Establishment, Tokai, Ibaraki (Japan)

    2005-08-01

    Boiling of water poured on surface of high-temperature melt (molten metal or metal oxide) provides an efficient means for heat exchange or cooling of melt. The heat transfer surface area can be extended by forcing water into melt. Objectives of the present study are to elucidate key factors of the thermal and hydrodynamic interactions for the water jet injection into melt (Coolant Injection mode). Proposed applications include in in-vessel heat exchangers for liquid metal reactor and emergency measures for cooling of molten core debris in severe accidents of light water reactor. Water penetration into melt may occurs also as a result of fuel-coolant interaction (FCI) in modes other than CI, it is anticipated that the present study contributes to understand the fundamental mechanism of the FCI process. The previous works have been limited on understanding the melt-water interaction phenomena in the water-injection mode because of difficulty in experimental measurement where boiling occurs in opaque invisible hot melt unlike the melt-injection mode. We conducted visualization and measurement of melt-water-vapor multiphase flow phenomena by using a high-frame-rate neutron radiography technique and newly-developed probes. Although limited knowledge, however, has been gained even such an approach, the experimental data were analyzed deeply by comparing with the knowledge obtained from relevant matters. As a result, we succeeded in revealing several key phenomena and validity in the conditions under which stable heat transfer is established. Moreover, a non-intrusive technique for measurement of the velocity and pressure fields adjacent to a moving free surface is developed. The technique is based on the measurement of fluid surface profile, which is useful for elucidation of flow mechanism accompanied by a free surface like the present phenomena. (author)

  15. Non-Intrusive Intelligibility Prediction Using a Codebook-Based Approach

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Kavalekalam, Mathew Shaji; Xenaki, Angeliki

    2017-01-01

    It could be beneficial for users of hearing aids if these were able to automatically adjust the processing according to the speech intelligibility in the specific acoustic environment. Most speech intelligibility metrics are intrusive, i.e., they require a clean reference signal, which is rarely...... a high correlation between the proposed non-intrusive codebookbased STOI (NIC-STOI) and the intrusive STOI indicating that NIC-STOI is a suitable metric for automatic classification of speech signals...

  16. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    Science.gov (United States)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  17. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cultural differences in the relationship between intrusions and trauma narratives using the trauma film paradigm.

    Science.gov (United States)

    Jobson, Laura; Dalgleish, Tim

    2014-01-01

    Two studies explored the influence of culture on the relationship between British and East Asian adults' autobiographical remembering of trauma film material and associated intrusions. Participants were shown aversive film clips to elicit intrusive images. Then participants provided a post-film narrative of the film content (only Study 1). In both studies, participants reported intrusive images for the film in an intrusion diary during the week after viewing. On returning the diary, participants provided a narrative of the film (delayed). The trauma film narratives were scored for memory-content variables. It was found that for British participants, higher levels of autonomous orientation (i.e. expressions of autonomy and self-determination) and self-focus in the delayed narratives were correlated significantly with fewer intrusions. For the East Asian group, lower levels of autonomous orientation and greater focus on others were correlated significantly with fewer intrusions. Additionally, Study 2 found that by removing the post-film narrative task there was a significant increase in the number of intrusions relative to Study 1, suggesting that the opportunity to develop a narrative resulted in fewer intrusions. These findings suggest that the greater the integration and contextualization of the trauma memory, and the more the trauma memory reflects culturally appropriate remembering, the fewer the intrusions.

  19. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  20. Cultural Differences in the Relationship between Intrusions and Trauma Narratives Using the Trauma Film Paradigm

    Science.gov (United States)

    Jobson, Laura; Dalgleish, Tim

    2014-01-01

    Two studies explored the influence of culture on the relationship between British and East Asian adults’ autobiographical remembering of trauma film material and associated intrusions. Participants were shown aversive film clips to elicit intrusive images. Then participants provided a post-film narrative of the film content (only Study 1). In both studies, participants reported intrusive images for the film in an intrusion diary during the week after viewing. On returning the diary, participants provided a narrative of the film (delayed). The trauma film narratives were scored for memory-content variables. It was found that for British participants, higher levels of autonomous orientation (i.e. expressions of autonomy and self-determination) and self-focus in the delayed narratives were correlated significantly with fewer intrusions. For the East Asian group, lower levels of autonomous orientation and greater focus on others were correlated significantly with fewer intrusions. Additionally, Study 2 found that by removing the post-film narrative task there was a significant increase in the number of intrusions relative to Study 1, suggesting that the opportunity to develop a narrative resulted in fewer intrusions. These findings suggest that the greater the integration and contextualization of the trauma memory, and the more the trauma memory reflects culturally appropriate remembering, the fewer the intrusions. PMID:25203300