WorldWideScience

Sample records for vapor intrusion calculations

  1. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  2. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  3. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  4. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  5. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations.

    Science.gov (United States)

    Guo, Yuanming; Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2015-11-17

    Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.

  6. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  7. Relationship between vapor intrusion and human exposure to trichloroethylene.

    Science.gov (United States)

    Archer, Natalie P; Bradford, Carrie M; Villanacci, John F; Crain, Neil E; Corsi, Richard L; Chambers, David M; Burk, Tonia; Blount, Benjamin C

    2015-01-01

    Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.

  8. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    Science.gov (United States)

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All

  9. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  10. VOC SAMPLING IN THE WATER TABLE/CAPILLARY FRINGE AREA FOR ASSESSING IMPACT ON VAPOR INTRUSION AND INDOOR AIR QUALITY

    Science.gov (United States)

    Vapor intrusion has been determined to be a major pathway for increased indoor air contamination from volatile organic contaminants (VOCs) at certain contaminated sites. In order to properly assess vapor intrusion, it is important to adequately evaluate VOC concentrations in the...

  11. Protocol for Tier 2 Evaluation of Vapor Intrusion at Corrective Action Sites

    Science.gov (United States)

    2012-07-01

    and Evaluation o condition the evalu Contro negati buildi pressu Vapo intrusio “on” Contro positiv buildi pressu Vapo intrusio “off” Figure 2...of Vapor Intrusion 11 Table 3.1: Performance Objectives Performance Objective Data Requirements Success Criteria Results Quantitative ...defined in Appendix D of the demonstration plan. Quantitative objectives for Precision, Accuracy, Completeness, Representativeness, and Comparability

  12. An Excel®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion.

    Science.gov (United States)

    Verginelli, Iason; Yao, Yijun; Suuberg, Eric M

    2016-01-01

    In this study we present a petroleum vapor intrusion tool implemented in Microsoft ® Excel ® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.

  13. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  14. 76 FR 5370 - Potential Addition of Vapor Intrusion Component to the Hazard Ranking System

    Science.gov (United States)

    2011-01-31

    ... Estimated Costs to Remediate Existing Sites Exceed Current Funding Levels, and More Sites are Expected to Be.... Methods for incorporating vapor intrusion into the HRS while, to the extent possible, maintaining the... will also be able to sign up for a mailing list that will be used to distribute logistical information...

  15. UNCERTAINTY AND THE JOHNSON-ETTINGER MODEL FOR VAPOR INTRUSION CALCULATIONS

    Science.gov (United States)

    The Johnson-Ettinger Model is widely used for assessing the impacts of contaminated vapors on residential air quality. Typical use of this model relies on a suite of estimated data, with few site-specific measurements. Software was developed to provide the public with automate...

  16. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.

    Directory of Open Access Journals (Sweden)

    Jordan L Wilson

    Full Text Available Human exposure to volatile organic compounds (VOCs via vapor intrusion (VI is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89. Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree

  17. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matt A; Burken, Joel G

    2018-01-01

    Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman's correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with minimal

  18. Phytoforensics: Trees as bioindicators of potential indoor exposure via vapor intrusion

    Science.gov (United States)

    Wilson, Jordan L.; Samaranayake, V.A.; Limmer, Matthew A.; Burken, Joel G.

    2018-01-01

    Human exposure to volatile organic compounds (VOCs) via vapor intrusion (VI) is an emerging public health concern with notable detrimental impacts on public health. Phytoforensics, plant sampling to semi-quantitatively delineate subsurface contamination, provides a potential non-invasive screening approach to detect VI potential, and plant sampling is effective and also time- and cost-efficient. Existing VI assessment methods are time- and resource-intensive, invasive, and require access into residential and commercial buildings to drill holes through basement slabs to install sampling ports or require substantial equipment to install groundwater or soil vapor sampling outside the home. Tree-core samples collected in 2 days at the PCE Southeast Contamination Site in York, Nebraska were analyzed for tetrachloroethene (PCE) and results demonstrated positive correlations with groundwater, soil, soil-gas, sub-slab, and indoor-air samples collected over a 2-year period. Because tree-core samples were not collocated with other samples, interpolated surfaces of PCE concentrations were estimated so that comparisons could be made between pairs of data. Results indicate moderate to high correlation with average indoor-air and sub-slab PCE concentrations over long periods of time (months to years) to an interpolated tree-core PCE concentration surface, with Spearman’s correlation coefficients (ρ) ranging from 0.31 to 0.53 that are comparable to the pairwise correlation between sub-slab and indoor-air PCE concentrations (ρ = 0.55, n = 89). Strong correlations between soil-gas, sub-slab, and indoor-air PCE concentrations and an interpolated tree-core PCE concentration surface indicate that trees are valid indicators of potential VI and human exposure to subsurface environment pollutants. The rapid and non-invasive nature of tree sampling are notable advantages: even with less than 60 trees in the vicinity of the source area, roughly 12 hours of tree-core sampling with

  19. Contaminant Gradients in Trees: Directional Tree Coring Reveals Boundaries of Soil and Soil-Gas Contamination with Potential Applications in Vapor Intrusion Assessment.

    Science.gov (United States)

    Wilson, Jordan L; Samaranayake, V A; Limmer, Matthew A; Schumacher, John G; Burken, Joel G

    2017-12-19

    Contaminated sites pose ecological and human-health risks through exposure to contaminated soil and groundwater. Whereas we can readily locate, monitor, and track contaminants in groundwater, it is harder to perform these tasks in the vadose zone. In this study, tree-core samples were collected at a Superfund site to determine if the sample-collection location around a particular tree could reveal the subsurface location, or direction, of soil and soil-gas contaminant plumes. Contaminant-centroid vectors were calculated from tree-core data to reveal contaminant distributions in directional tree samples at a higher resolution, and vectors were correlated with soil-gas characterization collected using conventional methods. Results clearly demonstrated that directional tree coring around tree trunks can indicate gradients in soil and soil-gas contaminant plumes, and the strength of the correlations were directly proportionate to the magnitude of tree-core concentration gradients (spearman's coefficient of -0.61 and -0.55 in soil and tree-core gradients, respectively). Linear regression indicates agreement between the concentration-centroid vectors is significantly affected by in planta and soil concentration gradients and when concentration centroids in soil are closer to trees. Given the existing link between soil-gas and vapor intrusion, this study also indicates that directional tree coring might be applicable in vapor intrusion assessment.

  20. Sensitivity analysis on parameters and processes affecting vapor intrusion risk

    KAUST Repository

    Picone, Sara

    2012-03-30

    A one-dimensional numerical model was developed and used to identify the key processes controlling vapor intrusion risks by means of a sensitivity analysis. The model simulates the fate of a dissolved volatile organic compound present below the ventilated crawl space of a house. In contrast to the vast majority of previous studies, this model accounts for vertical variation of soil water saturation and includes aerobic biodegradation. The attenuation factor (ratio between concentration in the crawl space and source concentration) and the characteristic time to approach maximum concentrations were calculated and compared for a variety of scenarios. These concepts allow an understanding of controlling mechanisms and aid in the identification of critical parameters to be collected for field situations. The relative distance of the source to the nearest gas-filled pores of the unsaturated zone is the most critical parameter because diffusive contaminant transport is significantly slower in water-filled pores than in gas-filled pores. Therefore, attenuation factors decrease and characteristic times increase with increasing relative distance of the contaminant dissolved source to the nearest gas diffusion front. Aerobic biodegradation may decrease the attenuation factor by up to three orders of magnitude. Moreover, the occurrence of water table oscillations is of importance. Dynamic processes leading to a retreating water table increase the attenuation factor by two orders of magnitude because of the enhanced gas phase diffusion. © 2012 SETAC.

  1. Final work plan : supplemental upward vapor intrusion investigation at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-12-15

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In 2007, the CCC/USDA conducted near-surface soil sampling at 61 locations and also sampled indoor air at nine residences on or adjacent to its former Hanover facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. The results were submitted to the KDHE in October 2007 (Argonne 2007). On the basis of the results, the KDHE requested sub-slab sampling and/or indoor air sampling (KDHE 2007). This Work Plan describes, in detail, the proposed additional scope of work requested by the KDHE and has been developed as a supplement to the comprehensive site investigation work plan that is pending (Argonne 2008). Indoor air samples collected previously from four homes at Hanover were shown to contain the carbon tetrachloride at low concentrations (Table 2.1). It cannot be concluded from these previous data that the source of the detected carbon tetrachloride is vapor intrusion attributable to former grain storage operations of the CCC/USDA at Hanover. The technical objective of the vapor intrusion investigation described here is to assess the risk to human health due to the potential for upward migration of carbon tetrachloride and

  2. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  3. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  4. An Approach for Developing Site-Specific Lateral and Vertical Inclusion Zones within which Structures Should be Evaluated for Petroleum Vapor Intrusion due to Releases of Motor Fuel from Underground Storage Tanks

    Science.gov (United States)

    Buildings may be at risk from Petroleum Vapor Intrusion (PVI) when they overlie petroleum hydrocarbon contamination in the unsaturated zone or dissolved in groundwater. The U.S. EPA Office of Underground Storage Tanks (OUST) is preparing Guidance for Addressing Petroleum Vapor I...

  5. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  6. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  7. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  8. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  9. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  10. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    International Nuclear Information System (INIS)

    Solomonov, Boris N.; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-01-01

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  11. Additive scheme for calculation of solvation enthalpies of heterocyclic aromatic compounds. Sublimation/vaporization enthalpy at 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, Boris N., E-mail: boris.solomonov@kpfu.ru; Nagrimanov, Ruslan N.; Mukhametzyanov, Timur A.

    2016-06-10

    Highlights: • Additivity scheme for solvation enthalpies estimation of heteroaromatic compounds was proposed. • Method for determination of vaporization/sublimation enthalpies directly at 298.15 K was developed. • Solution enthalpies of 25 heteroaromatic compounds were measured. • Vaporization/sublimation enthalpies of 44 heteroaromatic compounds were determined. • Obtained values are in good agreement with the results of conventional methods. - Abstract: Hereby we propose a method for determination of vaporization and sublimation enthalpies of heterocyclic and carbonyl-containing aromatic compounds at 298.15 K. According to this method vaporization and sublimation enthalpies at 298.15 K are determined based on enthalpies of solvation and solution. Solvation enthalpies of heteroatomatic and carbonyl-containing compounds are calculated using an additive scheme from the solvation enthalpy of closest aromatic hydrocarbon and contributions related to the exchange of CH-groups of hydrocarbon with corresponding substituent atoms or groups. Measured solution enthalpies together with calculated solvation enthalpies allowed to calculate corresponding vaporization and sublimation enthalpies at 298.15 K for a large number of heterocyclic and carbonyl-containing compounds. We have also found that in a number of cases instead of solution enthalpy in benzene at 298.15 K fusion enthalpy at the melting temperature can be used. Comparison between literature data and calculated vaporization and sublimation enthalpies demonstrates satisfactory performance of the proposed method.

  12. Thermodynamic calculations for chemical vapor deposition of silicon carbide

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi

    1985-03-01

    The composition of vapor and condensed phases at equilibrium and CVD phase diagrams were calculated for the CH 3 SiCl 3 -H 2 -Ar system using a computer code SOLGASMIX-PV, which is based on the free energy minimization method. These calculations showed that β-SiC, β-SiC+C(s), β-SiC+Si(s), β-SiC+Si(l), Si(s), Si(l), or C(s) would be deposited depending on deposition parameters. In the CH 3 SiCl 3 -Ar system, condensed phase was found to be β-SiC+C(s) or C(s). Comparing the calculated CVD phase diagrams with the experimental results from the literature, β-SiC+C(s) and β-SiC+Si(s) were deposited in the experiments at the high temperature (more than 2000K) and low temperature (less than 1700K) parts of a resion, respectively, where only β-SiC would be deposited in the calculations. These are remakable results to consider the deposition mechanism of silicon carbide. (author)

  13. An intrusion detection system based on fiber hydrophone

    Science.gov (United States)

    Liu, Junrong; Qiu, Xiufen; Shen, Heping

    2017-10-01

    This paper provides a new intrusion detection system based on fiber hydrophone, focusing beam forming figure positioning according to the near field and high precision sound source location algorithm which can accurately position the intrusion; obtaining its behavior path , obtaining the intrusion events related information such as speed form tracking intrusion trace; And analyze identification the detected intrusion behavior. If the monitor area is larger, the algorithm will take too much time once, and influence the system response time, for reduce the calculating time. This paper provides way that coarse location first, and then scanned for accuracy, so as to realize the intrusion events (such as car, etc.) the remote monitoring of positioning. The system makes up the blank in process capture of the fiber optic intrusion detection technology, and improves the understanding of the invasion. Through the capture of the process of intrusion behavior, and the fusion detection of intrusion behavior itself, thus analysis, judgment, identification of the intrusion information can greatly reduce the rate of false positives, greatly improved the reliability and practicability of the perimeter security system.

  14. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  15. Evaluation of Hanford Single-Shell Waste Tanks Suspected of Water Intrusion

    International Nuclear Information System (INIS)

    Feero, Amie J.; Washenfelder, Dennis J.; Johnson, Jeremy M.; Schofield, John S.

    2013-01-01

    Intrusions evaluations for twelve single-shell tanks were completed in 2013. The evaluations consisted of remote visual inspections, data analysis, and calculations of estimated intrusion rates. The observation of an intrusion or the preponderance of evidence confirmed that six of the twelve tanks evaluated had intrusions. These tanks were tanks 241-A-103, BX-101, BX-103, BX-110, BY-102, and SX-106

  16. Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA

    Science.gov (United States)

    Hartogh, P.; Sonnemann, G. R.; Grygalashvyly, M.; Song, Li; Berger, U.; Lübken, F.-J.

    2010-01-01

    Microwave water vapor measurements between 40 and 80 km altitude over a solar cycle (1996-2006) were carried out in high latitudes at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69.29°N, 16.03°E), Norway. Some smaller gaps and three interruptions of monitoring in the winters 1996/1997 and 2005/2006 and from spring 2001 to spring 2002 occurred during this period. The observations show a distinct year-to-year variability not directly related to solar Lyman-α radiation. In winter the water vapor mixing ratios in the upper domain were anticorrelated to the solar activity, whereas in summer, minima occurred in the years after the solar maximum in 2000/2001. In winter, sudden stratospheric warmings (SSWs) modulated the water vapor mixing ratios. Within the stratopause region a middle atmospheric water vapor maximum was observed, which results from the methane oxidation and is a regular feature there. The altitude of the maximum increased by approximately 5 km as summer approached. The largest mixing ratios were monitored in autumn. During the summer season a secondary water vapor maximum also occurred above 65 km most pronounced in late summer. The solar Lyman-α radiation impacts the water vapor mixing ratio particularly in winter above 65 km. In summer the correlation is positive below 70 km. The correlation is also positive in the lower mesosphere/stratopause region in winter due to the action of sudden stratospheric warmings, which occur more frequently under the condition of high solar activity and the enhancing the humidity. A strong day-to-day variability connected with planetary wave activity was found throughout the entire year. Model calculations by means of Leibniz-Institute Middle Atmosphere model (LIMA) reflect the essential patterns of the water vapor variation, but the results also show differences from the observations, indicating that exchange processes between the troposphere and stratosphere not modeled by LIMA could have

  17. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  18. Orthodontic intrusion : Conventional and mini-implant assisted intrusion mechanics

    Directory of Open Access Journals (Sweden)

    Anup Belludi

    2012-01-01

    intrusion has revolutionized orthodontic anchorage and biomechanics by making anchorage perfectly stable. This article addresses various conventional clinical intrusion mechanics and especially intrusion using mini-implants that have proven effective over the years for intrusion of maxillary anteriors.

  19. Microfabricated gas chromatograph for on-site determinations of TCE in indoor air arising from vapor intrusion. 2. Spatial/temporal monitoring.

    Science.gov (United States)

    Kim, Sun Kyu; Burris, David R; Bryant-Genevier, Jonathan; Gorder, Kyle A; Dettenmaier, Erik M; Zellers, Edward T

    2012-06-05

    We demonstrate the use of two prototype Si-microfabricated gas chromatographs (μGC) for continuous, short-term measurements of indoor trichloroethylene (TCE) vapor concentrations related to the investigation of TCE vapor intrusion (VI) in two houses. In the first house, with documented TCE VI, temporal variations in TCE air concentrations were monitored continuously for up to 48 h near the primary VI entry location under different levels of induced differential pressure (relative to the subslab). Concentrations ranged from 0.23 to 27 ppb by volume (1.2-150 μg/m(3)), and concentration trends agreed closely with those determined from concurrent reference samples. The sensitivity and temporal resolution of the measurements were sufficiently high to detect transient fluctuations in concentration resulting from short-term changes in variables affecting the extent of VI. Spatial monitoring showed a decreasing TCE concentration gradient with increasing distance from the primary VI entry location. In the second house, with no TCE VI, spatial profiles derived from the μGC prototype data revealed an intentionally hidden source of TCE within a closet, demonstrating the capability for locating non-VI sources. Concentrations measured in this house ranged from 0.51 to 56 ppb (2.7-300 μg/m(3)), in good agreement with reference method values. This first field demonstration of μGC technology for automated, near-real-time, selective VOC monitoring at low- or subppb levels augurs well for its use in short- and long-term on-site analysis of indoor air in support of VI assessments.

  20. Calculation of vapor pressures of oxide fuels up to 5,000 K for equilibrium and nonequilibrium evaporation

    International Nuclear Information System (INIS)

    Breitung, W.

    1975-06-01

    In the first part of this work the evaporation kinetics of multicomponent systems is studied with UO 2 as the example. The evaporation, which is generally incongruent, implies that two opposing types of steady-state evaporation must be distinguished: equilibrium evaporation and 'forced congruent' evaporation. The two types of evaporation indicated entail different vapor pressures. In some prompt critical reactor incidents forced congruent evaporation must be anticipated. The second part of this work contains the calculation of the vapor pressures of UOsub(2+-x) and (U,Pu)Osub(2+-x) for both types of evaporation up to temperature of 5,000 K. The calculating procedures are based on the method of Rand and Markin (1967) incorporating the recent thermodynamic data. The agreement between the measured and calculated total pressures is good for the ranges of temperature and stoichiometry for which experimental results are available. This supports the results calculated for higher temperature ranges. (orig./UA) [de

  1. Human intrusion

    International Nuclear Information System (INIS)

    Hora, S.; Neill, R.; Williams, R.; Bauser, M.; Channell, J.

    1993-01-01

    This paper focused on the possible approaches to evaluating the impacts of human intrusion on nuclear waste disposal. Several major issues were reviewed. First, it was noted that human intrusion could be addressed either quantitatively through performance assessments or qualitatively through design requirements. Second, it was decided that it was impossible to construct a complete set of possible future human intrusion scenarios. Third, the question of when the effect of possible human intrusion should be considered, before or after site selection was reviewed. Finally, the time frame over which human intrusion should be considered was discussed

  2. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST and 200 WEST TANK FARMS FROM CY1995 TO CY2004

    International Nuclear Information System (INIS)

    HOCKING, M.J.

    2005-01-01

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log

  3. METEOROLOGICAL INFLUENCES ON VAPOR INCIDENTS IN THE 200 EAST & 200 WEST TANK FARMS FROM CY1995 TO CY2004

    Energy Technology Data Exchange (ETDEWEB)

    HOCKING, M.J.

    2005-01-31

    Revised for a more comprehensive overview of vapor incidents reported at the Hanford Tank Farms. Investigation into the meteorological influences on vapor incidents in the tank farm to determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases. Weather phenomena, specifically barometric pressure, and wind velocity and direction can potentially cause or exacerbate a vapor release within the farm systems. The purpose of this document is to gather and evaluate the meteorological and weather information for the Tank Farms Shift Log Vapor Incident entries and determine what, if any, meteorological influences contribute to the reporting of odors, smells, vapors, and other gases such as propane. A part of the evaluation will be determining which of the incidents are related to actual ''intrusive'' work, and which are ''transient.'' Transient vapor incidents are herein defined as those vapors encountered during walkdowns, surveys, or other activities that did not require working directly with the tanks, pits, transfer lines, etc. Another part of the investigation will involve determining if there are barometric pressures or other weather related phenomena that might cause or contribute vapors being released when there are no ''intrusive'' activities. A final purpose is to evaluate whether there is any correlation between the 242-A Evaporator operations and Vapor Incidents entered on the Shift Log.

  4. Vapor Intrusion Facility Points, South Bay CA, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  5. Assessment of indoor air quality related to potential vapor intrusion: Issues for former manufactured gas plants

    International Nuclear Information System (INIS)

    Rames, Antoine; Guillossou, Gaelle; Ronga-Pezeret, Sylvaine; Hulot, Corinne

    2012-01-01

    The indoor air quality of buildings on sites with soil or groundwater contaminated with volatile or semi-volatile compounds can be degraded by potential vapor intrusion (VI) from these environmental media. For sites of former manufactured gas plants (MGP), the compounds that must be considered are BTEX (benzene, toluene, ethylbenzene, and xylenes), 8 of the 16 polycyclic aromatic hydrocarbons (PAHs) generally studied, and, to a lesser degree, phenol and hydrogen cyanide. Given the plausibility of VI and in accordance with current recommendations of the French Ministry of the Environment, measurements of indoor air quality (and outdoor air, for additional analyses) were conducted on two occasions during the winter and summer of 2010. These measurements simultaneously used multiple air sampling devices (Summa canisters, Gore modules, air pumps coupled to various matrices; such as XAD2, silica gel, etc.). Phenol and hydrogen cyanide have not previously been quantified (limit of quantification between 0.12 and 2.00 μg/m 3 ). BTEX and PAHs were found ubiquitously at concentrations on the order of 1 to 10 μg/m 3 for BTEX and naphthalene and one to ten ng/m 3 for PAHs other than naphthalene) at all 14 MGP and both control sites, regardless of where onsite the air was sampled (office, basement or crawl space, or outdoors). These levels (the maximum considered) do not allow us to conclude that the indoor air is degraded according to the official French guidelines for managing potentially contaminated sites and soils. Thus, no excess health risk is expected for residents of these sites because of exposure to possible VI, which cannot be ruled out in view of the ubiquity of some compounds. (authors)

  6. Corrosion inhibitor development for slightly sour environments with oxygen intrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.; Wang, H.; Li, J. [Clariant Oil Services North America, Calgary, AB (Canada)

    2009-07-01

    This presentation reported on a study that examined the effect of oxygen on the inhibition of carbon steel in slightly sour corrosion, and the initiation and propagation of localized attack. Oxygen can enter sour water injection systems through the vapor space in storage tanks and process system. Oxygen aggravates the corrosion attack by participating in the cathodic reaction under full or partial diffusion control. Laboratory testing results were reported in this presentation along with the development of corrosion inhibitors for such a slightly sour system. Bubble testing cells were used with continuous H{sub 2}/CO{sub 2} mixture gas sparging and occasional oxygen intrusion of 2 to 4 hours during a week long test. Linear polarization resistance (LPR) measurements and weight loss corrosion coupons were used to quantify the corrosion attack. The findings were presented in terms of the magnitude of localized attacks at different oxygen concentrations and intrusion periods, with and without the presence of corrosion inhibitors. tabs., figs.

  7. Number of Waste Package Hit by Igneous Intrusion

    International Nuclear Information System (INIS)

    M. Wallace

    2004-01-01

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios

  8. Tree Sampling as a Method to Assess Vapor Intrusion Potential at a Site Characterized by VOC-Contaminated Groundwater and Soil.

    Science.gov (United States)

    Wilson, Jordan L; Limmer, Matthew A; Samaranayake, V A; Schumacher, John G; Burken, Joel G

    2017-09-19

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the "sampler' and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R 2 values greater than 0.80) and in soil samples (adjusted R 2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700-1600 m 2 , the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  9. Tree sampling as a method to assess vapor intrusion potential at a site characterized by VOC-contaminated groundwater and soil

    Science.gov (United States)

    Wilson, Jordan L.; Limmer, Matthew A.; Samaranayake, V. A.; Schumacher, John G.; Burken, Joel G.

    2017-01-01

    Vapor intrusion (VI) by volatile organic compounds (VOCs) in the built environment presents a threat to human health. Traditional VI assessments are often time-, cost-, and labor-intensive; whereas traditional subsurface methods sample a relatively small volume in the subsurface and are difficult to collect within and near structures. Trees could provide a similar subsurface sample where roots act as the “sampler’ and are already onsite. Regression models were developed to assess the relation between PCE concentrations in over 500 tree-core samples with PCE concentrations in over 50 groundwater and 1000 soil samples collected from a tetrachloroethylene- (PCE-) contaminated Superfund site and analyzed using gas chromatography. Results indicate that in planta concentrations are significantly and positively related to PCE concentrations in groundwater samples collected at depths less than 20 m (adjusted R2 values greater than 0.80) and in soil samples (adjusted R2 values greater than 0.90). Results indicate that a 30 cm diameter tree characterizes soil concentrations at depths less than 6 m over an area of 700–1600 m2, the volume of a typical basement. These findings indicate that tree sampling may be an appropriate method to detect contamination at shallow depths at sites with VI.

  10. Railway clearance intrusion detection method with binocular stereo vision

    Science.gov (United States)

    Zhou, Xingfang; Guo, Baoqing; Wei, Wei

    2018-03-01

    In the stage of railway construction and operation, objects intruding railway clearance greatly threaten the safety of railway operation. Real-time intrusion detection is of great importance. For the shortcomings of depth insensitive and shadow interference of single image method, an intrusion detection method with binocular stereo vision is proposed to reconstruct the 3D scene for locating the objects and judging clearance intrusion. The binocular cameras are calibrated with Zhang Zhengyou's method. In order to improve the 3D reconstruction speed, a suspicious region is firstly determined by background difference method of a single camera's image sequences. The image rectification, stereo matching and 3D reconstruction process are only executed when there is a suspicious region. A transformation matrix from Camera Coordinate System(CCS) to Track Coordinate System(TCS) is computed with gauge constant and used to transfer the 3D point clouds into the TCS, then the 3D point clouds are used to calculate the object position and intrusion in TCS. The experiments in railway scene show that the position precision is better than 10mm. It is an effective way for clearance intrusion detection and can satisfy the requirement of railway application.

  11. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  12. Doses resulting from intrusion into uranium tailings areas

    International Nuclear Information System (INIS)

    Walsh, M.L.

    1986-02-01

    In the future, it is conceivable that institutional controls of uranium tailings areas may cease to exist and individuals may intrude into these areas unaware of the potential radiation hazards. The objective of this study was to estimate the potential doses to the intruders for a comprehensive set of intrusion scenarios. Reference tailings areas in the Elliot Lake region of northern Ontario and in northern Saskatchewan were developed to the extent required to calculate radiation exposures. The intrusion scenarios for which dose calculations were performed, were categorized into the following classes: habitation of the tailings, agricultural activities, construction activities, and recreational activities. Realistic exposure conditions were specified and annual doses were calculated by applying standard dose conversion factors. The exposure estimates demonstrated that the annual doses resulting from recreational activities and from construction activities would be generally small, less than twenty millisieverts, while the habitational and agricultural activities could hypothetically result in doses of several hundred millisieverts. However, the probability of occurrence of these latter classes of scenarios is considered to be much lower than scenarios involving either construction or recreational activities

  13. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  14. Human intrusion: New ideas?

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    Inadvertent human intrusion has been an issue for the disposal of solid radioactive waste for many years. This paper discusses proposals for an approach for evaluating the radiological significance of human intrusion as put forward by ICRP with contribution from work at IAEA. The approach focuses on the consequences of the intrusion. Protective actions could, however, include steps to reduce the probability of human intrusion as well as the consequences. (author)

  15. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  16. Multi-year composite view of ozone enhancements and stratosphere-to-troposphere transport in dry intrusions of northern hemisphere extratropical cyclones

    Science.gov (United States)

    Jaegle, L.; Wood, R.; Wargan, K.

    2017-12-01

    We examine the role of extratropical cyclones in stratosphere-to-troposphere (STT) exchange by using cyclone-centric composites of O3 retrievals from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) onboard the Aura satellite and contrasting them to composites obtained with Modern-Era Retrospective-analysis for Research and Applications (MERRA and MERRA-2) as well as with the GEOS-Chem chemical transport model. MERRA sea level pressure fields are used to identify 15,978 extratropical cyclones in the northern hemisphere (NH) between 2005 and 2012. The lowermost stratosphere (261 hPa) and middle troposphere (424 hPa) composites of these cyclones feature a distinct 1,000 km wide O3 enhancement in the dry intrusion to the southwest of the cyclone center, coinciding with a lowered tropopause, enhanced potential vorticity, and decreased water vapor. In the lowermost stratosphere, MLS composites show that the dry intrusion O3 enhancements reach a 210 ppbv maximum in April. In the middle troposphere, TES composites display dry intrusion maximum O3 enhancements of 27 ppbv in May. The magnitude and seasonality of these enhancements are captured by MERRA and MERRA-2, but GEOS-Chem is a factor of two too low. The MERRA-2 composites show that the O3-rich dry intrusion forms a coherent and vertically aligned structure between 300 and 800 hPa, wrapping cyclonically with the warm conveyor belt. In winter and spring dry intrusions, O3 is enhanced by 100 pbbv or 100-130% relative to background conditions at 300 hPa, with a significant contribution reaching pressure altitudes below 500 hPa (6-20 ppbv or 15-30% enhancement). We calculate that extratropical cyclones result in a STT flux of 119 Tg O3 yr-1, accounting for 42% of the annual NH O3 extratropical STT flux. The STT flux in cyclones is highest in spring and displays a strong dependence on westerly 300 hPa wind speeds.

  17. Calculation of thermodynamic properties of sodium and potassium vapors on the base of semiempirical state equation. Group integrals and virial coefficients

    International Nuclear Information System (INIS)

    Reva, T.D.; Semenov, A.M.

    1984-01-01

    Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty

  18. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  19. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  20. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  1. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    Science.gov (United States)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  2. Intrusion-Aware Alert Validation Algorithm for Cooperative Distributed Intrusion Detection Schemes of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Young-Jae Song

    2009-07-01

    Full Text Available Existing anomaly and intrusion detection schemes of wireless sensor networks have mainly focused on the detection of intrusions. Once the intrusion is detected, an alerts or claims will be generated. However, any unidentified malicious nodes in the network could send faulty anomaly and intrusion claims about the legitimate nodes to the other nodes. Verifying the validity of such claims is a critical and challenging issue that is not considered in the existing cooperative-based distributed anomaly and intrusion detection schemes of wireless sensor networks. In this paper, we propose a validation algorithm that addresses this problem. This algorithm utilizes the concept of intrusion-aware reliability that helps to provide adequate reliability at a modest communication cost. In this paper, we also provide a security resiliency analysis of the proposed intrusion-aware alert validation algorithm.

  3. The assessment of human intrusion into underground repositories for radioactive waste Volume 2: Appendices

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Little, R.H.; Ashton, J.; Staunton, G.M.

    1990-01-01

    This report has been prepared with the primary objective of establishing a methodology for the assessment of human intrusion into deep underground repositories for radioactive wastes. The disposal concepts considered are those studied in the performance assessment studies Pagis and Pacoma, coordinated by the CEC. These comprise four types of host rock, namely: clay, granite, salt and the sub-seabed. Following a review of previous assessments of human intrusion, a list of relevant human activities is derived. This forms the basis for detailed characterization of groundwater abstraction and of exploitation of mineral and other resources. Approaches to assessment of intrusion are reviewed and consideration is given to the estimation of probabilities for specific types of intrusion events. Calculational schemes are derived for specific intrusion events and dosimetric factors are presented. A review is also presented of the capacity for reduction of the risks associated with intrusions. Finally, conclusions from the study are presented

  4. Ionic liquids. Combination of combustion calorimetry with high-level quantum chemical calculations for deriving vaporization enthalpies.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas; Schick, Christoph

    2008-07-10

    In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.

  5. Network Intrusion Forensic Analysis Using Intrusion Detection System

    OpenAIRE

    Manish Kumar; Dr. M. Hanumanthappa; Dr. T.V. Suresh Kumar

    2011-01-01

    The need for computer intrusion forensics arises from the alarming increase in the number of computer crimes that are committed annually. After a computer system has been breached and an intrusion has been detected, there is a need for a computer forensics investigation to follow. Computer forensics is used to bring to justice, those responsible for conducting attacks on computer systems throughout the world. Because of this the law must be follow precisely when conducting a forensics investi...

  6. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  7. Evaluation of the radiological consequences of a human intrusion in a granite formation

    International Nuclear Information System (INIS)

    Mejon-Goula, M.J.; Cernes, A.

    1989-07-01

    The methodology used in France for the evaluation of the radiological consequences associated to a nuclear waste repository in a deep geological formation is the deterministic one. This means that, in addition to the calculations in connection with the ''normal'' scenario, a limited number of ''altered'' scenarios, representing the different families of plausible scenarios and corresponding to the most important consequences resulting from there families, have to be taken into account. Among them, the human intrusion scenario is an important one. In a study performed inside the CEC PAGIS project and also for a french expert group (Goguel group) which carried out a methodologic work for the national site selection procedure, results concerning the quantification of the radiological consequences of a human intrusion have been obtained without attempting at the evaluation of its probability. The intrusion time ranged from 1 000 to 100 000 years and different contamination scenarios were taken into account. It was assumed that the intrusion led to the creation of a 100 cubic meters edge cubic cavity in the immediate vicinity to the repository. Using the description of the Auriat site realized for PAGIS, the calculation was performed in three steps: - calculation of the evolution of the repository until the intrusion time, - computation of the supposed instantaneous new flow distribution after the intrusion, - computation of the dose rate, using the mean volumic activity in the cavity walls and the outgoing flow rate. Three exposure scenarios were considered: - a worker in the mine exposed to by external irradiation and contaminated by inhalation of radioactive materials, -an animal drinking in the vicinity during the mining operation, - gardening after the closure of the mine. With the exception of the worker scenario (the dose rate may reach 10 -2 Sv/year, which is comparable with the normal exposure in a granite mine), the other dose rates were found to be quite low

  8. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  9. Algorithm for the calculation of a steam generator efficiency; Algoritmo para el calculo de la eficiencia de un generador de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Franco, David; Ambriz, Juan Jose; Romero Paredes, Hernando [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1994-12-31

    The efficiency calculation of steam generators is not always simple. The purpose of this paper is to propose an algorithm for the calculation of steam generators efficiency, easy to understand and carry out, in the form of a series of steps to be followed. It takes as starting point that the person in charge of applying these calculations has knowledge of the combustion processes and thermodynamic principles that rule such processes. [Espanol] El calculo de la eficiencia de los generadores de vapor no siempre es sencillo, el presente trabajo tiene como objetivo el de proponer un algoritmo de calculo de eficiencia de generadores de vapor, el cual sea facil de entender y de llevar a cabo, en forma de una serie de pasos a seguir. Se toma como punto de partida, que la persona encargada de aplicar estos calculos tenga el conocimiento de los procesos de combustion y principios termodinamicos que rigen tales procesos.

  10. Numerical modeling of seawater intrusion in Zhoushuizi district of Dalian City, China

    Science.gov (United States)

    Zhao, J.; Lin, J.; Wu, J.

    2013-12-01

    A three-dimensional heterogeneous density-dependent numerical model was constructed to simulate the seawater intrusion process in coastal aquifers in Zhoushuizi Region, Dalian City. Model calibration was achieved through a prediction-correction method by adjusting the zonation and values of hydrogeologic parameters until the calculated heads and concentrations matched the observed values. Model validation results also showed that it was reasonable under current data conditions. Then the calibrated and validated model was applied to predict the dynamics and trend of seawater intrusion according to the current groundwater abstraction conditions in this study area 30 years after 2010. Prediction results showed that overall seawater intrusion in the future would be even more severe. Actually, with the growing of the population and development of the economy, the demand for ground water will be increasing continuously so that the problem of seawater intrusion may be more serious than that predicted by the modelin this study. Better strategies for reasonably governing exploitation of groundwater in the study area can be further developed by using this three-dimensional seawater intrusion model.

  11. Strontium isotopic geochemistry of intrusive rocks, Puerto Rico, Greater Antilles

    International Nuclear Information System (INIS)

    Jones, L.M.; Kesler, S.E.

    1980-01-01

    The strontium isotope geochemistry is given for three Puerto Rican intrusive rocks: the granodioritic Morovis and San Lorenzo plutons and the Rio Blanco stock of quartz dioritic composition. The average calculated initial 87 Sr/ 86 Sr ratios are 0.70370, 0.70355 and 0.70408, respectively. In addition, the San Lorenzo data establish a whole-rock isochron of 71 +- 2 m.y., which agrees with the previously reported K-Ar age of 73 m.y. Similarity of most of the intrusive rocks in the Greater Antilles with respect to their strontium isotopic geochemistry regardless of their major element composition indicates that intrusive magmas with a wide range of composition can be derived from a single source material. The most likely source material, in view of the available isotopic data, is the mantle wedge overlying the subduction zone. (orig.)

  12. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  13. Count out your intrusions: Effects of verbal encoding on intrusive memories

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.

    2009-01-01

    Peri-traumatic information processing is thought to affect the development of intrusive trauma memories. This study aimed to replicate and improve the study by Holmes, Brewin, and Hennessy (2004, Exp. 3) on the role of peri-traumatic verbal processing in analogue traumatic intrusion development.

  14. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  15. The assessment of human intrusion into underground repositories for radioactive waste Volume 1: Main report

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Little, R.H.; Asthon, J.; Staunton, G.M.

    1990-01-01

    This report has been prepared with the primary objective of establishing a methodology for the assessment of human intrusion into deep underground repositories for radioactive wastes. The disposal concepts considered are those studied in the performance assessment studies Pagis and Pacoma, coordinated by the CEC. These comprise four types of host rock, namely: clay, granite, salt and the sub-seabed. Following a review of previous assessments of human intrusion, a list of relevant human activities is derived. This forms the basis for detailed characterization of groundwater abstraction and of exploitation of mineral and other resources. Approaches to assessment of intrusion are reviewed and consideration is given to the estimation of probabilities for specific types of intrusion events. Calculational schemes are derived for specific intrusion events and dosimetric factors are presented. A review is also presented of the capacity for reduction of the risks associated with intrusions. Finally, conclusions from the study are presented

  16. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  17. WIPP performance assessment: impacts of human intrusion

    International Nuclear Information System (INIS)

    Anderson, D.R.; Hunter, R.L.; Bertram-Howery, S.G.; Lappin, A.R.

    1989-01-01

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is a research and development facility that may become the USA's first and only mined geologic repository for transuranic waste. Human intrusion into the WIPP repository after closure has been shown by preliminary sensitivity analyses and calculations of consequences to be an important, and perhaps the most important, factor in long-term repository performance

  18. Rapid deployment intrusion detection system

    International Nuclear Information System (INIS)

    Graham, R.H.

    1997-01-01

    A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs

  19. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  20. How stratospheric are deep stratospheric intrusions? LUAMI 2008

    Directory of Open Access Journals (Sweden)

    T. Trickl

    2016-07-01

    Full Text Available A large-scale comparison of water-vapour vertical-sounding instruments took place over central Europe on 17 October 2008, during a rather homogeneous deep stratospheric intrusion event (LUAMI, Lindenberg Upper-Air Methods Intercomparison. The measurements were carried out at four observational sites: Payerne (Switzerland, Bilthoven (the Netherlands, Lindenberg (north-eastern Germany, and the Zugspitze mountain (Garmisch-Partenkichen, German Alps, and by an airborne water-vapour lidar system creating a transect of humidity profiles between all four stations. A high data quality was verified that strongly underlines the scientific findings. The intrusion layer was very dry with a minimum mixing ratios of 0 to 35 ppm on its lower west side, but did not drop below 120 ppm on the higher-lying east side (Lindenberg. The dryness hardens the findings of a preceding study (“Part 1”, Trickl et al., 2014 that, e.g., 73 % of deep intrusions reaching the German Alps and travelling 6 days or less exhibit minimum mixing ratios of 50 ppm and less. These low values reflect values found in the lowermost stratosphere and indicate very slow mixing with tropospheric air during the downward transport to the lower troposphere. The peak ozone values were around 70 ppb, confirming the idea that intrusion layers depart from the lowermost edge of the stratosphere. The data suggest an increase of ozone from the lower to the higher edge of the intrusion layer. This behaviour is also confirmed by stratospheric aerosol caught in the layer. Both observations are in agreement with the idea that sections of the vertical distributions of these constituents in the source region were transferred to central Europe without major change. LAGRANTO trajectory calculations demonstrated a rather shallow outflow from the stratosphere just above the dynamical tropopause, for the first time confirming the conclusions in “Part 1” from the Zugspitze CO observations. The

  1. Interior intrusion detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.R.; Matter, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Dry, B. (BE, Inc., Barnwell, SC (United States))

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs.

  2. Interior intrusion detection systems

    International Nuclear Information System (INIS)

    Rodriguez, J.R.; Matter, J.C.; Dry, B.

    1991-10-01

    The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing interior intrusion detection systems. Interior intrusion sensors are discussed according to their primary application: boundary-penetration detection, volumetric detection, and point protection. Information necessary for implementation of an effective interior intrusion detection system is presented, including principles of operation, performance characteristics and guidelines for design, procurement, installation, testing, and maintenance. A glossary of sensor data terms is included. 36 figs., 6 tabs

  3. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  4. Efficient Mining and Detection of Sequential Intrusion Patterns for Network Intrusion Detection Systems

    Science.gov (United States)

    Shyu, Mei-Ling; Huang, Zifang; Luo, Hongli

    In recent years, pervasive computing infrastructures have greatly improved the interaction between human and system. As we put more reliance on these computing infrastructures, we also face threats of network intrusion and/or any new forms of undesirable IT-based activities. Hence, network security has become an extremely important issue, which is closely connected with homeland security, business transactions, and people's daily life. Accurate and efficient intrusion detection technologies are required to safeguard the network systems and the critical information transmitted in the network systems. In this chapter, a novel network intrusion detection framework for mining and detecting sequential intrusion patterns is proposed. The proposed framework consists of a Collateral Representative Subspace Projection Modeling (C-RSPM) component for supervised classification, and an inter-transactional association rule mining method based on Layer Divided Modeling (LDM) for temporal pattern analysis. Experiments on the KDD99 data set and the traffic data set generated by a private LAN testbed show promising results with high detection rates, low processing time, and low false alarm rates in mining and detecting sequential intrusion detections.

  5. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin; Jonsson, Sigurjon; Corbi, Fabio; Rivalta, Eleonora

    2016-01-01

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  6. Graben Formation and Dike Arrest during the 2009 Harrat Lunayyir Dike Intrusion in Saudi Arabia: Insights from InSAR, Stress Calculations and Analog Experiments

    KAUST Repository

    Xu, Wenbin

    2016-03-04

    Detailed spatial and temporal accounts of propagating dikes from crustal deformation data, including their interplay with faulting, are rare, leaving many questions about how this interplay affects graben formation and the arrest of dikes unanswered. Here we use InSAR observations, stress calculations and analog experiments to investigate the interaction between an intruding dike and normal faulting during the 2009 Harrat Lunayyir dike intrusion in western Saudi Arabia. We generated five displacement maps from InSAR data to unravel the temporal evolution of deformation covering the majority of the intrusion. We find that the observed surface displacements can be modeled by a ~2-m-thick dike with an upper tip ~2 km below the surface on 16 May 2009, four weeks after the onset of seismic unrest. In the following three days, the dike propagated to within ~1 km of the surface with graben-bounding normal faulting dominating the near-field deformation. The volume of the dike doubled between mid-May and mid-June. We carried out analog experiments that indicate that the wedge-shaped graben grew outwards with the faulting style changing progressively from normal faulting to oblique. Coulomb failure stress change calculations show that the intruding dike caused two zones of shallow horizontal tension on both sides of the dike, producing two zones of fissuring and normal faulting at the surface. In return, the faulting provoked compression around the upper tip of the dike, holding back its vertical propagation.

  7. Intrusion mechanics according to Burstone with the NiTi-SE-steel uprighting spring.

    Science.gov (United States)

    Sander, F G; Wichelhaus, A; Schiemann, C

    1996-08-01

    Intrusion mechanics according to Burstone can be regarded as a practicable method for the intrusion of incisors. 1. By applying the NiTi-SE-steel uprighting spring, relatively constant forces can be exerted over a large range of intrusion on both sides of the anterior tooth archwire. 2. By bending a 150 degrees tip-back bend or a curvature into the steel portion, the uprighting spring presented here is brought into the plastic range of the characteristic curve of force. 3. Application of sliding hooks on the intrusion spring permits readjustment for force transfer onto the anterior archwire. 4. Connecting the anterior archwire with the posterior elements by means of a steel ligature can be recommended only in some cases, because sagittally directed forces may be produced. 5. The adult patients presented showed an average intrusion of 0.6 mm/month, if a linear connection was presupposed. 6. An intrusive effect on the incisors could first be detected clinically after 6 to 8 weeks. 7. Application of a torque-key proves especially useful in controlling the incisor position during intrusion in order to avoid unnecessary radiography. 8. Actual prediction of the centre of resistance with the help of a cephalometric radiograph proved not to be feasible. 9. The calculated maximal intrusion of the mandibular incisors was 7 mm. 10. The torque-segmented archwire with crimped hooks and pseudoelastic springs between the molars and the crimped hooks proved very effective for retrusion and intrusion of maxillary incisors. The maxillary anterior teeth can be retruded by a total of 7 mm without readjustment. 11. Constant moments and forces could be transferred by applying preformed arch wires and segmented arch wires.

  8. Influence of Saharan dust outbreaks and atmospheric stability upon vertical profiles of size-segregated aerosols and water vapor

    Science.gov (United States)

    Giménez, Joaquín; Pastor, Carlos; Castañer, Ramón; Nicolás, José; Crespo, Javier; Carratalá, Adoración

    2010-01-01

    Vertical profiles of aerosols and meteorological parameters were obtained using a hot air balloon and motorized paraglider. They were studied under anticyclonic conditions in four different contexts. Three flights occurred near sunrise, and one took place in the central hours of the day. The effects of North African dust intrusions were analyzed, whose entrance to the study area took place above the Stable Boundary Layer (SBL) in flight 1 and below it in flight 2. These flights have been compared with a non-intrusion situation (flight 3). A fourth flight characterized the profiles in the central hours of the day with a well-formed Convective Boundary Layer (CBL). With respect to the particle number distribution, the results show that not all sizes increase within the presence of an intrusion; during the first flight the smallest particles were not affected. The particle sizes affected in the second flight fell within the 0.35-2.5 μm interval. Under situations of convective dynamics, the reduction percentage of the particle number concentration reduces with increasing altitude, independently of their size, with respect to stability conditions. The negative vertical gradient for aerosols and water vapor, characteristic of a highly stable SBL (flight 3) becomes a constant profile within a CBL (flight 4). There are two situations that seem to alter the negative vertical gradient of the water vapor mixing ratio within the SBL: the presence of an intrusion and the possible stratification of the SBL based on different degrees of stability.

  9. An assessment of the radiological impact of human intrusion at the UK Low Level Waste Repository (LLWR) - 59356

    International Nuclear Information System (INIS)

    Hicks, Tim; Baldwin, Tamara; Cummings, Richard; Sumerling, Trevor

    2012-01-01

    The UK Low Level Waste Repository Ltd submitted an Environmental Safety Case for the disposal of low-level waste (LLW) to the Environment Agency on the 1 May 2011. The Environmental Safety Case (ESC) presents a complete case for the environmental safety of the Low Level Waste Repository (LLWR) both during operations and in the long term (Cummings et al, in these proceedings). This includes an assessment of the long-term radiological safety of the facility, including an assessment of the potential consequences of human intrusion at the site. The human intrusion assessment is based on a cautiously realistic approach in defining intrusion cases and parameter values. A range of possible human intrusion events was considered based on present-day technologies and credible future uses of the site. This process resulted in the identification of geotechnical investigations, a housing development and a smallholding as requiring quantitative assessment. A particular feature of the site is that, because of its proximity to the coast and in view of expected global sea-level rise, it is vulnerable to coastal erosion. During such erosion, wastes and engineered barrier materials will be exposed, and could become targets for investigation or recovery. Therefore, human intrusion events have been included that are associated with such activities. A radiological assessment model has been developed to analyse the impacts of potential human intrusion at the site. A key feature of the model is the representation of the spatial layout of the disposal site, including the engineered cap design and the large-scale spatial heterogeneity of radionuclide concentrations within the repository. The model has been used to calculate the radiation dose to intruders and to others following intrusion at different times and at different locations across the site, for the each of the selected intrusion events, considering all relevant exposure modes. Potential doses due to radon and its daughters in

  10. Intrusion recognition for optic fiber vibration sensor based on the selective attention mechanism

    Science.gov (United States)

    Xu, Haiyan; Xie, Yingjuan; Li, Min; Zhang, Zhuo; Zhang, Xuewu

    2017-11-01

    Distributed fiber-optic vibration sensors receive extensive investigation and play a significant role in the sensor panorama. A fiber optic perimeter detection system based on all-fiber interferometric sensor is proposed, through the back-end analysis, processing and intelligent identification, which can distinguish effects of different intrusion activities. In this paper, an intrusion recognition based on the auditory selective attention mechanism is proposed. Firstly, considering the time-frequency of vibration, the spectrogram is calculated. Secondly, imitating the selective attention mechanism, the color, direction and brightness map of the spectrogram is computed. Based on these maps, the feature matrix is formed after normalization. The system could recognize the intrusion activities occurred along the perimeter sensors. Experiment results show that the proposed method for the perimeter is able to differentiate intrusion signals from ambient noises. What's more, the recognition rate of the system is improved while deduced the false alarm rate, the approach is proved by large practical experiment and project.

  11. 76 FR 14660 - Public Comment on the Development of Final Guidance for Evaluating the Vapor Intrusion to Indoor...

    Science.gov (United States)

    2011-03-17

    ... the RCRA Docket is (202) 566-0270. FOR FURTHER INFORMATION CONTACT: Stiven Foster, Policy Analysis... petroleum hydrocarbons should be addressed; How the guidance applies to Superfund Five-Year reviews; When or... intrusion can occur when there is migration of volatile chemicals from contaminated groundwater or soil into...

  12. Dynamics of trivalent rare earth molecular vapor lasers

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    Radiative transition probabilities in neodymium bearing vapors are reviewed and calculations are extended to visible laser transitions in terbium bearing vapor. Nonradiative relaxation processes in the pure and complexed halides are treated in greater detail. While precise, quantitative relaxation probabilities cannot be calculated on the basis of information presently available, plausibility arguments can be established which indicate the order of magnitude of relevant nonradiative decay probabilities. Reference to solid and liquid state nonradiative relaxation data for rare earth ions is reviewed to support the plausibility arguments for the vapor state. Having established the likelihood of high fluorescence yields in the vapor phase, various methods of laser pumping are discussed: optical pumping via parity allowed 4f-5d transitions; optical pumping via charge transfer bands of the vapor complex; and direct electron beam pumping

  13. Expert judgement on inadvertent human intrusion into the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Hora, S.C.; von Winterfeldt, D.; Trauth, K.M.

    1991-12-01

    Four expert-judgment teams have developed analyses delineating possible future societies in the next 10,000 years in the vicinity of the Waste Isolation Pilot Plant (WIPP). Expert-judgment analysis was used to address the question of future societies because neither experimentation, observation, nor modeling can resolve such uncertainties. Each of the four, four-member teams, comprised of individuals with expertise in the physical, social, or political sciences, developed detailed qualitative assessments of possible future societies. These assessments include detailed discussions of the underlying physical and societal factors that would influence society and the likely modes of human-intrusion at the WIPP, as well as the probabilities of intrusion. Technological development, population growth, economic development, conservation of information, persistence of government control, and mitigation of danger from nuclear waste were the factors the teams believed to be most important. Likely modes of human-intrusion were categorized as excavation, disposal/storage, tunneling, drilling, and offsite activities. Each team also developed quantitative assessments by providing probabilities of various alternative futures, of inadvertent human intrusion, and in some cases, of particular modes of intrusion. The information created throughout this study will be used in conjunction with other types of information, including experimental data, calculations from physical principles and computer models, and perhaps other judgments, as input to ''performance assessment.'' The more qualitative results of this study will be used as input to another expert panel considering markers to deter inadvertent human intrusion at the WIPP

  14. Intrusive luxation of 60 permanent incisors

    DEFF Research Database (Denmark)

    Tsilingaridis, Georgios; Malmgren, Barbro; Andreasen, Jens O

    2012-01-01

    Intrusive luxation in the permanent dentition is an uncommon injury but it is considered one of the most severe types of dental trauma because of the risk for damage to the periodontal ligament, pulp and alveolar bone. Management of intrusive luxation in the permanent dentition is controversial....... The purpose of this study was to evaluate pulp survival and periodontal healing in intrusive luxated permanent teeth in relation to treatment alternatives, degree of intrusion and root development....

  15. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  16. Vapor Intrusion Estimation Tool for Unsaturated Zone Contaminant Sources. User’s Guide

    Science.gov (United States)

    2016-08-30

    estimation process when applying the tool. The tool described here is focused on vapor-phase diffusion from the current vadose zone source , and is not...from the current defined vadose zone source ). The estimated soil gas contaminant concentration obtained from the pre-modeled scenarios for a building...need a full site-specific numerical model to assess the impacts beyond the current vadose zone source . 35 5.0 References Brennan, R.A., N

  17. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xinye [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Huang, Yaji, E-mail: heyyj@seu.edu.cn [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Pan, Zhigang [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); Wang, Yongxing; Liu, Changqi [Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China)

    2015-09-15

    Highlights: • Al surface after dehydroxylation is active while Si surface is inert. • The active sites are the unsaturated Al atoms and O atoms losing H atom. • PbO is the most suitable species for adsorption. • Increasing the activities of Al atoms can enhance the performance of kaolinite. • Produce of amorphous silica is a potential path to enhance the performance of kaolinite. - Abstract: Kaolinite can be used as the in-furnace sorbent/additive to adsorb lead (Pb) vapor at high temperature. In this paper, the adsorptions of Pb atom, PbO molecule and PbCl{sub 2} molecule on kaolinie surfaces were investigated by density functional theory (DFT) calculation. Si surface is inert to Pb vapor adsorption while Al surfaces with dehydroxylation are active for the unsaturated Al atoms and the O atoms losing H atoms. The adsorption energy of PbO is much higher than that of Pb atom and PbCl{sub 2}. Considering the energy barriers, it is easy for PbO and PbCl{sub 2} to adsorb on Al surfaces but difficult to escape. The high energy barriers of de–HCl process cause the difficulties of PbCl{sub 2} to form PbO·Al{sub 2}O{sub 3}·2SiO{sub 2} with kaolinite. Considering the inertia of Si atoms and the activity of Al atoms after dehydroxylation, calcination, acid/alkali treatment and some other treatment aiming at amorphous silica producing and Al activity enhancement can be used as the modification measures to improve the performance of kaolinite as the in-furnace metal capture sorbent.

  18. Relationships between fusion, solution, vaporization and sublimation enthalpies of substituted phenols

    International Nuclear Information System (INIS)

    Yagofarov, Mikhail I.; Nagrimanov, Ruslan N.; Solomonov, Boris N.

    2017-01-01

    Highlights: • Method for determination of sublimation and vaporization enthalpies of phenols was developed. • Vaporization enthalpies of 28 phenols at 298 K were calculated. • Sublimation enthalpies of 26 phenols at 298 K were calculated using fusion enthalpies at melting temperatures. • Obtained values are in good agreement with the results of conventional methods. - Abstract: In this work a method for determination of sublimation and vaporization enthalpies of substituted phenols was developed. This method is a modification of solution calorimetry approach. Modification is based on the novel relations, which bind solution, vaporization and sublimation enthalpies at 298.15 K and fusion enthalpy at the melting temperature. According to novel relations the equations for calculating sublimation and vaporization enthalpies at 298.15 K were offered. Calculated values of sublimation and vaporization enthalpies of phenol derivatives containing alkyls, halogens, –OCH 3 , –NO 2 , –COCH 3 , –COOCH 3 groups, and dihydroxybenzenes were compared with literature data (298.15 K) obtained by conventional methods. In most of the cases divergence does not exceed 2–3%.

  19. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  20. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor

    International Nuclear Information System (INIS)

    Hellmann, Robert

    2009-01-01

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  1. Tank 241-C-111 headspace gas and vapor sample results - August 1993 samples

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1994-01-01

    Tank 241-C-111 is on the ferrocyanide Watch List. Gas and vapor samples were collected to assure safe conditions before planned intrusive work was performed. Sample analyses showed that hydrogen is about ten times higher in the tank headspace than in ambient air. Nitrous oxide is about sixty times higher than ambient levels. The hydrogen cyanide concentration was below 0.04 ppbv, and the average NO x concentration was 8.6 ppmv

  2. [Analysis of intrusion errors in free recall].

    Science.gov (United States)

    Diesfeldt, H F A

    2017-06-01

    Extra-list intrusion errors during five trials of the eight-word list-learning task of the Amsterdam Dementia Screening Test (ADST) were investigated in 823 consecutive psychogeriatric patients (87.1% suffering from major neurocognitive disorder). Almost half of the participants (45.9%) produced one or more intrusion errors on the verbal recall test. Correct responses were lower when subjects made intrusion errors, but learning slopes did not differ between subjects who committed intrusion errors and those who did not so. Bivariate regression analyses revealed that participants who committed intrusion errors were more deficient on measures of eight-word recognition memory, delayed visual recognition and tests of executive control (the Behavioral Dyscontrol Scale and the ADST-Graphical Sequences as measures of response inhibition). Using hierarchical multiple regression, only free recall and delayed visual recognition retained an independent effect in the association with intrusion errors, such that deficient scores on tests of episodic memory were sufficient to explain the occurrence of intrusion errors. Measures of inhibitory control did not add significantly to the explanation of intrusion errors in free recall, which makes insufficient strength of memory traces rather than a primary deficit in inhibition the preferred account for intrusion errors in free recall.

  3. Risks assessment associated with the possibility of intrusion into the low and intermediate level waste disposal facility

    International Nuclear Information System (INIS)

    Didita, L.; Ilie, P.; Pavelescu, M.

    1997-01-01

    In post-closure performance assessment of low and intermediate level waste disposal facilities it is necessary to assess the individual risks associated with the possibility of intrusion into repository. Intruder induced disruptive events can potentially compromise the integrity of the disposal unit and result in exhumation of the waste and radionuclides migration into environment. In this way, the main routes of exposure are: -inhalation of radioactive materials by the intruder; - external gamma irradiation of the intruder, - long-term pathways resulting from the transfer of radioactive materials to the surface of the site. This paper describes the evaluation of conditional and absolute risks associated with each route of exposure as a function of time. To evaluate the risks, it is necessary to calculate the time-dependent activities of each nuclide considered. This is achieved by employing an analytic solution to the Bateman equation at specified times of evaluation. Conditional risks by inhalation, external exposure and long-term pathways and different modes of intrusion are evaluated on the basis of an annual probability of intrusion of unity. Absolute risks are calculated by scaling the user-supplied probabilities of intrusion at various times of evaluation. The evaluation of absolute risks by long-term exposure pathways involves an interpolation procedure in time. The calculations have been performed for the most important radionuclides present in low and intermediate wastes. (authors)

  4. The role of human intrusion in the dutch safety study

    International Nuclear Information System (INIS)

    Prij, J.; Weers, A.W.v.; Glasbergen, P.; Slot, A.F.M.

    1989-01-01

    In the Netherlands the OPLA research program in which a large number of possible disposal concepts for radioactive waste is investigated has been carried out recently. The disposal concepts concern three different waste strategies, two disposal techiques and three different types of salt formations. In the OPLA program the post-closure safety of the disposal concepts has been investigated. The paper reviews the role of the human intrusion in this safety study. The hydrological consequences of human activities in the underground are discussed and it has been demonstrated that these effects could be taken into account during the groundwater transport calculations. Four different scenario's for human intrusion in the repository have been studied to obtain an indication of the radiological effects. The results show that extremely high doses may result if, after several hundred years, human beings come into direct contact with highly active waste. For the final assessment the probability that the doses will be received should be calculated. This should be done in a subsequent research

  5. An international perspective on Facebook intrusion.

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela Magdalena; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-08-30

    Facebook has become one of the most popular social networking websites in the world. The main aim of the study was to present an international comparison of Facebook intrusion and Internet penetration while examining possible gender differences. The study consisted of 2589 participants from eight countries: China, Greece, Israel, Italy, Poland, Romania, Turkey, USA. Facebook intrusion and Internet penetration were taken into consideration. In this study the relationship between Facebook intrusion and Internet penetration was demonstrated. Facebook intrusion was slightly negatively related to Internet penetration in each country. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China

    Science.gov (United States)

    Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei

    2013-03-01

    Panzhihua intrusion is one of the largest layered intrusions that hosts huge stratiform Fe-Ti oxide layers in the central part of the Emeishan large igneous province, SW China. Up to 60 m thick stratiform massive Fe-Ti oxide layers containing 85 modal% of magnetite and ilmenite and overlying magnetite gabbro compose cyclic units of the Lower Zone of the intrusion. The cyclic units of the Middle Zone consist of magnetite gabbro and overlying gabbro. In these cyclic units, contents of Fe2O3(t), TiO2 and Cr and Fe3+/Ti4+ ratio of the rocks decrease upward, Cr content of magnetite and forsterite percentage of olivine decrease as well. The Upper Zone consists of apatite gabbro characterized by enrichment of incompatible elements (e.g., 12-18 ppm La, 20-28 ppm Y) and increasing of Fe3+/Ti4+ ratio (from 1.3 to 2.3) upward. These features indicate that the Panzhihua intrusion was repeatedly recharged by more primitive magma and evolved magmas had been extracted. Calculations using MELTS indicate that extensive fractionation of olivine and clinopyroxene in deep level resulted in increasing Fe and Ti contents in the magma. When these Fe-Ti-enriched magmas were emplaced along the base of the Panzhihua intrusion, Fe-Ti oxides became an early crystallization phase, leading to a residual magma of lower density. We propose that the unusually thick stratiform Fe-Ti oxide layers resulted from coupling of gravity settling and sorting of the crystallized Fe-Ti oxides from Fe-Ti-enriched magmas and frequent magma replenishment along the floor of the magma chamber.

  7. A theoretical study of the growth of large sodium vapor bubbles in liquid sodium, including the effect of noncondensables and of vapor convection

    International Nuclear Information System (INIS)

    Casadei, F.; Donne, M.D.

    1983-01-01

    The study of the dynamics of the expansion of large bubbles of hot sodium vapor in a pool of liquid sodium plays an important role in understanding the effects of a hypothetical core disruptive accident. A model of the growth of the bubble in the pool is described. The equations of the motion of the liquid and of the nonsteady heat diffusion problem are solved together with the continuity and energy equations for the vapor phase. The first set of calculations has been performed with constant evaporation and condensation coefficients. In the second set, however, due account has been taken of the effect on condensation of noncondensable fission gases and vapor convection. Due to the very high calculated vapor velocities, noncondensable gases have little effect on the condensation rate, and the percentage amount of condensed sodium is considerably higher than previously calculated by other authors

  8. Prediction of changes due to mandibular autorotation following miniplate-anchored intrusion of maxillary posterior teeth in open bite cases.

    Science.gov (United States)

    Kassem, Hassan E; Marzouk, Eiman S

    2018-05-14

    Prediction of the treatment outcome of various orthodontic procedures is an essential part of treatment planning. Using skeletal anchorage for intrusion of posterior teeth is a relatively novel procedure for the treatment of anterior open bite in long-faced subjects. Data were analyzed from lateral cephalometric radiographs of a cohort of 28 open bite adult subjects treated with intrusion of the maxillary posterior segment with zygomatic miniplate anchorage. Mean ratios and regression equations were calculated for selected variables before and after intrusion. Relative to molar intrusion, there was approximately 100% vertical change of the hard and soft tissue mention and 80% horizontal change of the hard and soft tissue pogonion. The overbite deepened two folds with 60% increase in overjet. The lower lip moved forward about 80% of the molar intrusion. Hard tissue pogonion and mention showed the strongest correlations with molar intrusion. There was a general agreement between regression equations and mean ratios at 3 mm molar intrusion. This study attempted to provide the clinician with a tool to predict the changes in key treatment variables following skeletally anchored maxillary molar intrusion and autorotation of the mandible.

  9. Model calculation of the characteristic mass for convective and diffusive vapor transport in graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bencs, László, E-mail: bencs.laszlo@wigner.mta.hu [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Laczai, Nikoletta [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary); Ajtony, Zsolt [Institute of Food Science, University of West Hungary, H-9200 Mosonmagyaróvár, Lucsony utca 15–17 (Hungary)

    2015-07-01

    A combination of former convective–diffusive vapor-transport models is described to extend the calculation scheme for sensitivity (characteristic mass — m{sub 0}) in graphite furnace atomic absorption spectrometry (GFAAS). This approach encompasses the influence of forced convection of the internal furnace gas (mini-flow) combined with concentration diffusion of the analyte atoms on the residence time in a spatially isothermal furnace, i.e., the standard design of the transversely heated graphite atomizer (THGA). A couple of relationships for the diffusional and convectional residence times were studied and compared, including in factors accounting for the effects of the sample/platform dimension and the dosing hole. These model approaches were subsequently applied for the particular cases of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Mo, Ni, Pb, Sb, Se, Sn, V and Zn analytes. For the verification of the accuracy of the calculations, the experimental m{sub 0} values were determined with the application of a standard THGA furnace, operating either under stopped, or mini-flow (50 cm{sup 3} min{sup −1}) of the internal sheath gas during atomization. The theoretical and experimental ratios of m{sub 0}(mini-flow)-to-m{sub 0}(stop-flow) were closely similar for each study analyte. Likewise, the calculated m{sub 0} data gave a fairly good agreement with the corresponding experimental m{sub 0} values for stopped and mini-flow conditions, i.e., it ranged between 0.62 and 1.8 with an average of 1.05 ± 0.27. This indicates the usability of the current model calculations for checking the operation of a given GFAAS instrument and the applied methodology. - Highlights: • A calculation scheme for convective–diffusive vapor loss in GFAAS is described. • Residence time (τ) formulas were compared for sensitivity (m{sub 0}) in a THGA furnace. • Effects of the sample/platform dimension and dosing hole on τ were assessed. • Theoretical m{sub 0} of 18 analytes were

  10. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  11. A Frequency-Based Approach to Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Mian Zhou

    2004-06-01

    Full Text Available Research on network security and intrusion detection strategies presents many challenging issues to both theoreticians and practitioners. Hackers apply an array of intrusion and exploit techniques to cause disruption of normal system operations, but on the defense, firewalls and intrusion detection systems (IDS are typically only effective in defending known intrusion types using their signatures, and are far less than mature when faced with novel attacks. In this paper, we adapt the frequency analysis techniques such as the Discrete Fourier Transform (DFT used in signal processing to the design of intrusion detection algorithms. We demonstrate the effectiveness of the frequency-based detection strategy by running synthetic network intrusion data in simulated networks using the OPNET software. The simulation results indicate that the proposed intrusion detection strategy is effective in detecting anomalous traffic data that exhibit patterns over time, which include several types of DOS and probe attacks. The significance of this new strategy is that it does not depend on the prior knowledge of attack signatures, thus it has the potential to be a useful supplement to existing signature-based IDS and firewalls.

  12. Saltwater intrusion monitoring in Florida

    Science.gov (United States)

    Prinos, Scott T.

    2016-01-01

    Florida's communities are largely dependent on freshwater from groundwater aquifers. Existing saltwater in the aquifers, or seawater that intrudes parts of the aquifers that were fresh, can make the water unusable without additional processing. The quality of Florida's saltwater intrusion monitoring networks varies. In Miami-Dade and Broward Counties, for example, there is a well-designed network with recently constructed short open-interval monitoring wells that bracket the saltwater interface in the Biscayne aquifer. Geochemical analyses of water samples from the network help scientists evaluate pathways of saltwater intrusion and movement of the saltwater interface. Geophysical measurements, collected in these counties, aid the mapping of the saltwater interface and the design of monitoring networks. In comparison, deficiencies in the Collier County monitoring network include the positioning of monitoring wells, reliance on wells with long open intervals that when sampled might provide questionable results, and the inability of existing analyses to differentiate between multiple pathways of saltwater intrusion. A state-wide saltwater intrusion monitoring network is being planned; the planned network could improve saltwater intrusion monitoring by adopting the applicable strategies of the networks of Miami-Dade and Broward Counties, and by addressing deficiencies such as those described for the Collier County network.

  13. Acknowledging the dilemmas of intrusive media

    DEFF Research Database (Denmark)

    Mathieu, David; Finger, Juliane; Dias, Patrcia

    2017-01-01

    Part of the stakeholder consultation addressed strategies that media audiences are developing to cope with pressures and intrusions in a changing media environment, characterised by digitalisation and interactive possibilities. We interviewed ten stakeholders representing interests such as content...... production, media literacy, media regulation, and activism. Consulting with these stakeholders left the impression that pressures and intrusions from media lack widespread acknowledgement, and that little is known about audiences’ strategies to cope with media. Even when intrusions are acknowledged, we find...... no consensual motivation, nor any clear avenue for action. Therefore, we have analysed different discursive positions that prevent acknowledging or taking action upon the pressures and intrusions that we presented to these stakeholders. The discursive positions are outlined below....

  14. Saturated vapor pressure of lutetium tris-acetylacetonate

    Energy Technology Data Exchange (ETDEWEB)

    Trembovetskij, G.V.; Berdonosov, S.S.; Murav' eva, I.A.; Martynenko, L.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1983-12-01

    By the statical method using /sup 177/Lu radioactive isotope the saturated vapor pressure of anhydrous lutetium acetylacetonate at 130 to 160 deg is determined. The calculations are carried out assuming the vapor to be monomolecular. The equation of lgP versus 1/T takes the form: lg Psub((mmHg))=(8.7+-1.6)-(4110+-690)/T. The thermodynamical characteristics of LuA/sub 3/ sublimation are calculated to be ..delta..Hsub(subl.)=79+-13 kJ/mol; ..delta..Ssub(subl.)=111+-20 J/kxmol.

  15. Zero Trust Intrusion Containment for Telemedicine

    National Research Council Canada - National Science Library

    Sood, Arun

    2002-01-01

    .... Our objective is the design and analysis of 'zero-trust' Intrusion Tolerant Systems. These are systems built under the extreme assumption that all intrusion detection techniques will eventually fail...

  16. Network Intrusion Dataset Assessment

    Science.gov (United States)

    2013-03-01

    International Conference on Computational Intelligence and Natural Computing, volume 2, pages 413–416, June 2009. • Rung Ching Chen, Kai -Fan Cheng, and...Chia-Fen Hsieh . “Using rough set and support vector machine for network intrusion detection.” International Journal of Network Security & Its...intrusion detection using FP tree rules.” Journal Of Advanced Networking and Applications, 1(1):30–39, 2009. • Ming-Yang Su, Gwo-Jong Yu , and Chun-Yuen

  17. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  18. From intrusive to oscillating thoughts.

    Science.gov (United States)

    Peirce, Anne Griswold

    2007-10-01

    This paper focused on the possibility that intrusive thoughts (ITs) are a form of an evolutionary, adaptive, and complex strategy to prepare for and resolve stressful life events through schema formation. Intrusive thoughts have been studied in relation to individual conditions, such as traumatic stress disorder and obsessive-compulsive disorder. They have also been documented in the average person experiencing everyday stress. In many descriptions of thought intrusion, it is accompanied by thought suppression. Several theories have been put forth to describe ITs, although none provides a satisfactory explanation as to whether ITs are a normal process, a normal process gone astray, or a sign of pathology. There is also no consistent view of the role that thought suppression plays in the process. I propose that thought intrusion and thought suppression may be better understood by examining them together as a complex and adaptive mechanism capable of escalating in times of need. The ability of a biological mechanism to scale up in times of need is one hallmark of a complex and adaptive system. Other hallmarks of complexity, including self-similarity across scales, sensitivity to initial conditions, presence of feedback loops, and system oscillation, are also discussed in this article. Finally, I propose that thought intrusion and thought suppression are better described together as an oscillatory cycle.

  19. Quantification of intrusive/retraction force and moment generated during en-masse retraction of maxillary anterior teeth using mini-implants: A conceptual approach

    Directory of Open Access Journals (Sweden)

    A. Sumathi Felicita

    Full Text Available ABSTRACT Objective: The aim of the present study was to clarify the biomechanics of en-masse retraction of the upper anterior teeth and attempt to quantify the different forces and moments generated using mini-implants and to calculate the amount of applied force optimal for en-masse intrusion and retraction using mini-implants. Methods: The optimum force required for en-masse intrusion and retraction can be calculated by using simple mathematical formulae. Depending on the position of the mini-implant and the relationship of the attachment to the center of resistance of the anterior segment, different clinical outcomes are encountered. Using certain mathematical formulae, accurate measurements of the magnitude of force and moment generated on the teeth can be calculated for each clinical outcome. Results: Optimum force for en-masse intrusion and retraction of maxillary anterior teeth is 212 grams per side. Force applied at an angle of 5o to 16o from the occlusal plane produce intrusive and retraction force components that are within the physiologic limit. Conclusion: Different clinical outcomes are encountered depending on the position of the mini-implant and the length of the attachment. It is possible to calculate the forces and moments generated for any given magnitude of applied force. The orthodontist can apply the basic biomechanical principles mentioned in this study to calculate the forces and moments for different hypothetical clinical scenarios.

  20. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  1. Estimation of long-term probabilities for inadvertent intrusion into radioactive waste management areas

    International Nuclear Information System (INIS)

    Eedy, W.; Hart, D.

    1988-05-01

    The risk to human health from radioactive waste management sites can be calculated as the product of the probability of accidental exposure (intrusion) times the probability of a health effect from such exposure. This report reviews the literature and evaluates methods used to predict the probabilities for unintentional intrusion into radioactive waste management areas in Canada over a 10,000-year period. Methods to predict such probabilities are available. They generally assume a long-term stability in terms of existing resource uses and society in the management area. The major potential for errors results from the unlikeliness of these assumptions holding true over such lengthy periods of prediction

  2. Radiological risks due to intrusion into a deep bedrock repository

    International Nuclear Information System (INIS)

    Nordlinder, S.; Bergstroem, U.; Edlund, O.

    1999-01-01

    the highest dose contribution due to their high initial amount in the waste. Calculated dose rates were multiplied with judged probabilities for the intrusion and the radiation risk factor for fatal cancer, to obtain the overall risk to individuals. At an early intrusion the dose rates showed to be relatively high, but the probability was low, implying that the overall risk will be negligible. The, probability is low because it is most realistic that information about the repository will be available during at least some hundred years after closure

  3. Determination of Chlorinated Solvent Sorption by Porous Material-Application to Trichloroethene Vapor on Cement Mortar.

    Science.gov (United States)

    Musielak, Marion; Brusseau, Mark L; Marcoux, Manuel; Morrison, Candice; Quintard, Michel

    2014-08-01

    Experiments have been performed to investigate the sorption of trichloroethene (TCE) vapor by concrete material or, more specifically, the cement mortar component. Gas-flow experiments were conducted using columns packed with small pieces of cement mortar obtained from the grinding of typical concrete material. Transport and retardation of TCE at high vapor concentrations (500 mg L -1 ) was compared to that of a non-reactive gas tracer (Sulfur Hexafluoride, SF6). The results show a large magnitude of retardation (retardation factor = 23) and sorption (sorption coefficient = 10.6 cm 3 g -1 ) for TCE, compared to negligible sorption for SF6. This magnitude of sorption obtained with pollutant vapor is much bigger than the one obtained for aqueous-flow experiments conducted for water-saturated systems. The considerable sorption exhibited for TCE under vapor-flow conditions is attributed to some combination of accumulation at the air-water interface and vapor-phase adsorption, both of which are anticipated to be significant for this system given the large surface area associated with the cement mortar. Transport of both SF6 and TCE was simulated successfully with a two-region physical non-equilibrium model, consistent with the dual-medium structure of the crushed cement mortar. This work emphasizes the importance of taking into account sorption phenomena when modeling transport of volatile organic compounds through concrete material, especially in regard to assessing vapor intrusion.

  4. Large-scale circulation associated with moisture intrusions into the Arctic during winter

    Science.gov (United States)

    Woods, Cian; Caballero, Rodrigo; Svensson, Gunilla

    2014-05-01

    Observations during recent decades show that there is a greater near surface warming occurring in the Arctic, particularly during winter, than at lower latitudes. Understanding the mechanisms controlling surface temperature in the Arctic is therefore an important priority in climate research. The surface energy budget is a key proximate control on Arctic surface temperature. During winter, insolation is low or absent and the atmospheric boundary layer is typically very stable, limiting turbulent hear exchange, so that the surface energy budget is almost entirely governed by longwave radiation. The net surface longwave radiation (NetLW) at this time has a strikingly bimodal distribution: conditions oscillate between a 'radiatively clear' state with rapid surface heat loss and a "moist cloudy" state with NetLW ˜ 0 W m-2. Each state can persist for days or weeks at a time but transitions between them happen in a matter of hours. This distribution of NetLW has important implications for the Arctic climate, as even a small shift in the frequency of occupancy of each state would be enough to significantly affect the overall surface energy budget and thus winter sea ice thickness. The clear and cloudy states typically occur during periods of relatively high and low surface pressure respectively, suggesting a link with synoptic-scale dynamics. This suggestion is consistent with previous studies indicating that the formation of low-level and mid-level clouds over the Arctic Ocean is typically associated with cyclonic activity and passing frontal systems . More recent work has shown that intense filamentary moisture intrusion events are a common feature in the Arctic and can induce large episodic increases of longwave radiation into the surface. The poleward transport of water vapor across 70N during boreal winter is examined in the ERA-Interim reanalysis product and 16 of the Coupled Model Intercomparison Project Phase 5 (CMIP5) models, focusing on intense moisture

  5. Research on intrusion detection based on Kohonen network and support vector machine

    Science.gov (United States)

    Shuai, Chunyan; Yang, Hengcheng; Gong, Zeweiyi

    2018-05-01

    In view of the problem of low detection accuracy and the long detection time of support vector machine, which directly applied to the network intrusion detection system. Optimization of SVM parameters can greatly improve the detection accuracy, but it can not be applied to high-speed network because of the long detection time. a method based on Kohonen neural network feature selection is proposed to reduce the optimization time of support vector machine parameters. Firstly, this paper is to calculate the weights of the KDD99 network intrusion data by Kohonen network and select feature by weight. Then, after the feature selection is completed, genetic algorithm (GA) and grid search method are used for parameter optimization to find the appropriate parameters and classify them by support vector machines. By comparing experiments, it is concluded that feature selection can reduce the time of parameter optimization, which has little influence on the accuracy of classification. The experiments suggest that the support vector machine can be used in the network intrusion detection system and reduce the missing rate.

  6. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  7. Calibrating a Salt Water Intrusion Model with Time-Domain Electromagnetic Data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Odlum, Nick; Nenna, Vanessa

    2013-01-01

    Salt water intrusion models are commonly used to support groundwater resource management in coastal aquifers. Concentration data used for model calibration are often sparse and limited in spatial extent. With airborne and ground-based electromagnetic surveys, electrical resistivity models can......, we perform a coupled hydrogeophysical inversion (CHI) in which we use a salt water intrusion model to interpret the geophysical data and guide the geophysical inversion. We refer to this methodology as a Coupled Hydrogeophysical Inversion-State (CHI-S), in which simulated salt concentrations...... are transformed to an electrical resistivity model, after which a geophysical forward response is calculated and compared with the measured geophysical data. This approach was applied for a field site in Santa Cruz County, California, where a time-domain electromagnetic (TDEM) dataset was collected...

  8. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  9. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    Science.gov (United States)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  10. Intrusive trauma memory: A review and functional analysis

    NARCIS (Netherlands)

    Krans, J.; Näring, G.W.B.; Becker, E.S.; Holmes, E.A.

    2009-01-01

    Our contribution to this special issue focuses on the phenomenon of intrusive trauma memory. While intrusive trauma memories can undoubtedly cause impairment, we argue that they may exist for a potentially adaptive reason. Theory and experimental research on intrusion development are reviewed and

  11. Computer codes used in the calculation of high-temperature thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1979-12-01

    Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region

  12. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  13. Computational Fluid Dynamics Model for Saltstone Vault 4 Vapor Space

    International Nuclear Information System (INIS)

    Lee, Si Young

    2005-01-01

    Computational fluid dynamics (CFD) methods have been used to estimate the flow patterns for vapor space inside the Saltstone Vault No.4 under different operating scenarios. The purpose of this work is to examine the gas motions inside the vapor space under the current vault configurations. A CFD model took three-dimensional transient momentum-energy coupled approach for the vapor space domain of the vault. The modeling calculations were based on prototypic vault geometry and expected normal operating conditions as defined by Waste Solidification Engineering. The modeling analysis was focused on the air flow patterns near the ventilated corner zones of the vapor space inside the Saltstone vault. The turbulence behavior and natural convection mechanism used in the present model were benchmarked against the literature information and theoretical results. The verified model was applied to the Saltstone vault geometry for the transient assessment of the air flow patterns inside the vapor space of the vault region using the boundary conditions as provided by the customer. The present model considered two cases for the estimations of the flow patterns within the vapor space. One is the reference baseline case. The other is for the negative temperature gradient between the roof inner and top grout surface temperatures intended for the potential bounding condition. The flow patterns of the vapor space calculated by the CFD model demonstrate that the ambient air comes into the vapor space of the vault through the lower-end ventilation hole, and it gets heated up by the Benard-cell type circulation before leaving the vault via the higher-end ventilation hole. The calculated results are consistent with the literature information

  14. Network Intrusion Detection System using Apache Storm

    Directory of Open Access Journals (Sweden)

    Muhammad Asif Manzoor

    2017-06-01

    Full Text Available Network security implements various strategies for the identification and prevention of security breaches. Network intrusion detection is a critical component of network management for security, quality of service and other purposes. These systems allow early detection of network intrusion and malicious activities; so that the Network Security infrastructure can react to mitigate these threats. Various systems are proposed to enhance the network security. We are proposing to use anomaly based network intrusion detection system in this work. Anomaly based intrusion detection system can identify the new network threats. We also propose to use Real-time Big Data Stream Processing Framework, Apache Storm, for the implementation of network intrusion detection system. Apache Storm can help to manage the network traffic which is generated at enormous speed and size and the network traffic speed and size is constantly increasing. We have used Support Vector Machine in this work. We use Knowledge Discovery and Data Mining 1999 (KDD’99 dataset to test and evaluate our proposed solution.

  15. Autonomous Rule Creation for Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-04-01

    Many computational intelligence techniques for anomaly based network intrusion detection can be found in literature. Translating a newly discovered intrusion recognition criteria into a distributable rule can be a human intensive effort. This paper explores a multi-modal genetic algorithm solution for autonomous rule creation. This algorithm focuses on the process of creating rules once an intrusion has been identified, rather than the evolution of rules to provide a solution for intrusion detection. The algorithm was demonstrated on anomalous ICMP network packets (input) and Snort rules (output of the algorithm). Output rules were sorted according to a fitness value and any duplicates were removed. The experimental results on ten test cases demonstrated a 100 percent rule alert rate. Out of 33,804 test packets 3 produced false positives. Each test case produced a minimum of three rule variations that could be used as candidates for a production system.

  16. Sill intrusion in volcanic calderas: implications for vent opening probability

    Science.gov (United States)

    Giudicepietro, Flora; Macedonio, Giovanni; Martini, Marcello; D'Auria, Luca

    2017-04-01

    Calderas show peculiar behaviors with remarkable dynamic processes, which do not often culminate in eruptions. Observations and studies conducted in recent decades have shown that the most common cause of unrest in the calderas is due to magma intrusion; in particular, the intrusion of sills at shallow depths. Monogenic cones, with large areal dispersion, are quite common in the calderas, suggesting that the susceptibility analysis based on geological features, is not strictly suitable for estimating the vent opening probability in calderas. In general, the opening of a new eruptive vent can be regarded as a rock failure process. The stress field in the rocks that surrounds and tops the magmatic reservoirs plays an important role in causing the rock failure and creating the path that magma can follow towards the surface. In this conceptual framework, we approach the problem of getting clues about the probability of vent opening in volcanic calderas through the study of the stress field produced by the intrusion of magma, in particular, by the intrusion of a sill. We simulate the intrusion of a sill free to expand radially, with shape and dimensions which vary with time. The intrusion process is controlled by the elastic response of the rock plate above the sill, which bends because of the intrusion, and by gravity, that drives the magma towards the zones where the thickness of the sill is smaller. We calculated the stress field in the plate rock above the sill. We found that at the bottom of the rock plate above the sill the maximum intensity of tensile stress is concentrated at the front of the sill and spreads radially with it, over time. For this reason, we think that the front of the spreading sill is prone to open for eruptive vents. Even in the central area of the sill the intensity of stress is relatively high, but at the base of the rock plate stress is compressive. Under isothermal conditions, the stress soon reaches its maximum value (time interval

  17. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  18. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  19. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  20. Young women's experiences of intrusive behavior in 12 countries.

    Science.gov (United States)

    Sheridan, Lorraine; Scott, Adrian J; Roberts, Karl

    2016-01-01

    The present study provides international comparisons of young women's (N = 1,734) self-reported experiences of intrusive activities enacted by men. Undergraduate psychology students from 12 countries (Armenia, Australia, England, Egypt, Finland, India, Indonesia, Italy, Japan, Portugal, Scotland, and Trinidad) indicated which of 47 intrusive activities they had personally experienced. Intrusive behavior was not uncommon overall, although large differences were apparent between countries when women's personal experiences of specific intrusive activities were compared. Correlations were carried out between self-reported intrusive experiences, the Gender Empowerment Measure (GEM), and Hofstede's dimensions of national cultures. The primary associations were between women's experiences of intrusive behavior and the level of power they are afforded within the 12 countries. Women from countries with higher GEM scores reported experiencing more intrusive activities relating to courtship and requests for sex, while the experiences of women from countries with lower GEM scores related more to monitoring and ownership. Intrusive activities, many of them constituent of harassment and stalking, would appear to be widespread and universal, and their incidence and particular form reflect national level gender inequalities. © 2015 Wiley Periodicals, Inc.

  1. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  2. Enhancing collaborative intrusion detection networks against insider attacks using supervised intrusion sensitivity-based trust management model

    DEFF Research Database (Denmark)

    Li, Wenjuan; Meng, Weizhi; Kwok, Lam-For

    2017-01-01

    To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which are utili......To defend against complex attacks, collaborative intrusion detection networks (CIDNs) have been developed to enhance the detection accuracy, which enable an IDS to collect information and learn experience from others. However, this kind of networks is vulnerable to malicious nodes which...... are utilized by insider attacks (e.g., betrayal attacks). In our previous research, we developed a notion of intrusion sensitivity and identified that it can help improve the detection of insider attacks, whereas it is still a challenge for these nodes to automatically assign the values. In this article, we...... of intrusion sensitivity based on expert knowledge. In the evaluation, we compare the performance of three different supervised classifiers in assigning sensitivity values and investigate our trust model under different attack scenarios and in a real wireless sensor network. Experimental results indicate...

  3. Intrusion scenarios in fusion waste disposal sites

    International Nuclear Information System (INIS)

    Zucchetti, M.; Zucchetti, M.; Rocco, P.

    1998-01-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  4. Intrusion scenarios in fusion waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Zucchetti, M. [European Commission, JRC, Institute for Advanced Material, Ispra, Vatican City State, Holy See (Italy); Zucchetti, M.; Rocco, P. [Energetics Dept., Polytechnic of Turin (Italy)

    1998-07-01

    Results of analyses on human intrusions into repositories of fusion radioactive waste are presented. The main topics are: duration of the institutional control, occurrence of intrusion, intrusion scenarios, acceptable risk limits and probabilistic data. Application to fusion waste repositories is implemented with a computational model: wells drilling is considered as the possible scenario. Doses and risks to intruder for different SEAFP-2 cases turn out to be very small. No intervention to reduce the hazard is necessary. (authors)

  5. Research on IPv6 intrusion detection system Snort-based

    Science.gov (United States)

    Shen, Zihao; Wang, Hui

    2010-07-01

    This paper introduces the common intrusion detection technologies, discusses the work flow of Snort intrusion detection system, and analyzes IPv6 data packet encapsulation and protocol decoding technology. We propose the expanding Snort architecture to support IPv6 intrusion detection in accordance with CIDF standard combined with protocol analysis technology and pattern matching technology, and present its composition. The research indicates that the expanding Snort system can effectively detect various intrusion attacks; it is high in detection efficiency and detection accuracy and reduces false alarm and omission report, which effectively solves the problem of IPv6 intrusion detection.

  6. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  7. Intrusive Memories of Distressing Information: An fMRI Study.

    Directory of Open Access Journals (Sweden)

    Eva Battaglini

    Full Text Available Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42 viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13 demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13. Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC and dorsolateral prefrontal cortex (dlPFC, inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories.

  8. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  9. Atmospheric water vapor: Distribution and Empirical estimation in the atmosphere of Thailand

    Science.gov (United States)

    Phokate, S.

    2017-09-01

    Atmospheric water vapor is a crucial component of the Earth’s atmosphere, which is shown by precipitable water vapor. It is calculated from the upper air data. In Thailand, the data were collected from four measuring stations located in Chiang Mai, Ubon Ratchathani, Bangkok, and Songkhla during the years 1998-2013. The precipitable water vapor obtained from this investigation were used to define an empirical model associated with the vapor pressure, which is a surface data at the same stations. The result shows that the relationship has a relatively high level of reliability. The precipitable water vapor obtained from the upper air data is nearly equal to the value from the model. The model was used to calculate the precipitable water vapor from the surface data 85 stations across the country. The result shows that seasonal change of the precipitable water vapor was low in the dry season (November-April) and high in the rainy season (May-October). In addition, precipitable water vapor varies along the latitudes of the stations. The high value obtains for low latitudes, but it is low for high latitudes.

  10. The state of the art in intrusion prevention and detection

    CERN Document Server

    Pathan, Al-Sakib Khan

    2013-01-01

    The State of the Art in Intrusion Prevention and Detection analyzes the latest trends and issues surrounding intrusion detection systems in computer networks, especially in communications networks. Its broad scope of coverage includes wired, wireless, and mobile networks; next-generation converged networks; and intrusion in social networks.Presenting cutting-edge research, the book presents novel schemes for intrusion detection and prevention. It discusses tracing back mobile attackers, secure routing with intrusion prevention, anomaly detection, and AI-based techniques. It also includes infor

  11. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  12. Salt water intrusion on Uznam Island - 'Wydrzany' water intake

    International Nuclear Information System (INIS)

    Kochaniec, M.

    1999-01-01

    Aquifers of Uznam Island have high risk of saline water intrusion due to geographical and geological location. Hydrogeological and geophysical researchers were taken up in order to evaluate changes in intrusion of saline water into aquifer of Uznam Island. Water intake named 'Wydrzany' was built in south part of island in 1973. Since 1975 geophysical research has shown intrusion of salt water from reservoirs and bedrock due to withdrawn of water. In 1997 geoelectrical researches evaluated changes which have taken place since 1975 in saline water intrusion into aquifers of Uznam Island. The last research result showed that intrusion front moved 1100 m to the centre of island in comparison with situation in 1975. (author)

  13. Human intrusion: issues concerning its assessment

    International Nuclear Information System (INIS)

    Grimwood, P.D.; Smith, G.M.

    1989-01-01

    The potential significance of human intrusion in the performance assessment of radioactive waste repositories has been increasingly recognized in recent years. It is however an area of assessment in which subjective judgments dominate. This paper identifies some of the issues involved. These include regulatory criteria, scenario development, probability assignment, consequence assessment and measures to mitigate human intrusion

  14. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  15. Intrusion detection in wireless ad-hoc networks

    CERN Document Server

    Chaki, Nabendu

    2014-01-01

    Presenting cutting-edge research, Intrusion Detection in Wireless Ad-Hoc Networks explores the security aspects of the basic categories of wireless ad-hoc networks and related application areas. Focusing on intrusion detection systems (IDSs), it explains how to establish security solutions for the range of wireless networks, including mobile ad-hoc networks, hybrid wireless networks, and sensor networks.This edited volume reviews and analyzes state-of-the-art IDSs for various wireless ad-hoc networks. It includes case studies on honesty-based intrusion detection systems, cluster oriented-based

  16. Magmatic intrusions in the lunar crust

    Science.gov (United States)

    Michaut, C.; Thorey, C.

    2015-10-01

    The lunar highlands are very old, with ages covering a timespan between 4.5 to 4.2 Gyr, and probably formed by flotation of light plagioclase minerals on top of the lunar magma ocean. The lunar crust provides thus an invaluable evidence of the geological and magmatic processes occurring in the first times of the terrestrial planets history. According to the last estimates from the GRAIL mission, the lunar primary crust is particularly light and relatively thick [1] This low-density crust acted as a barrier for the dense primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basin: at least part of the crust must have been removed for the magma to reach the surface. However, the trajectory of the magma from the mantle to the surface is unknown. Using a model of magma emplacement below an elastic overlying layer with a flexural wavelength Λ, we characterize the surface deformations induced by the presence of shallow magmatic intrusions. We demonstrate that, depending on its size, the intrusion can show two different shapes: a bell shape when its radius is smaller than 4 times Λ or a flat top with small bended edges if its radius is larger than 4 times Λ[2]. These characteristic shapes for the intrusion result in characteristic deformations at the surface that also depend on the topography of the layer overlying the intrusion [3].Using this model we provide evidence of the presence of intrusions within the crust of the Moon as surface deformations in the form of low-slope lunar domes and floor-fractured craters. All these geological features have morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. Further more,at floor-fractured craters, the deformation is contained within the crater interior, suggesting that the overpressure at the origin of magma ascent and intrusion was less than the pressure due to the weight of the crust removed by

  17. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  18. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking.

    Science.gov (United States)

    Kalivas, Benjamin C; Kalivas, Peter W

    2016-03-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumbens during a relapse episode. We delineate an accumbens microcircuit that mediates cue-induced drug seeking becoming an intrusive event. This microcircuit harbors many potential therapeutic targets. We focus on preclinical and clinical studies, showing that administering N-acetylcysteine restores uptake of synaptic glutamate by astroglial glutamate transporters and thereby inhibits intrusive thinking. We posit that because intrusive thinking is a shared endophenotype in many disorders, N-acetylcysteine has positive effects in clinical trials for a variety of neuropsychiatric disorders, including drug addiction, gambling, trichotillomania, and depression.

  19. The Yaws handbook of vapor pressure Antoine coefficients

    CERN Document Server

    Yaws, Carl L

    2015-01-01

    Increased to include over 25,000 organic and inorganic compounds, The Yaws Handbook of Vapor Pressure: Antoine Coefficients, 2nd Edition delivers the most comprehensive and practical database source for today's petrochemical. Understanding antoine coefficients for vapor pressure leads to numerous critical engineering applications such as pure components in storage vessels, pressure relief valve design, flammability limits at the refinery, as well as environmental emissions from exposed liquids, making data to efficiently calculate these daily challenges a fundamental need. Written by the world's leading authority on chemical and petrochemical data, The Yaws Handbook of Vapor Pressure simplifies the guesswork for the engineer and reinforces the credibility of the engineer's calculations with a single trust-worthy source. This data book is a must-have for the engineer's library bookshelf. Increase compound coverage from 8,200 to over 25,000 organic and inorganic compounds, including sulfur and hydrocarbons Sol...

  20. Adaptive intrusion data system

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1976-01-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data compression, storage, and formatting system. It also incorporates capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be utilized for the collection of environmental, bi-level, analog and video data. The output of the system is digital tapes formatted for direct data reduction on a CDC 6400 computer, and video tapes containing timed tagged information that can be correlated with the digital data

  1. Network Intrusion Detection through Stacking Dilated Convolutional Autoencoders

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Network intrusion detection is one of the most important parts for cyber security to protect computer systems against malicious attacks. With the emergence of numerous sophisticated and new attacks, however, network intrusion detection techniques are facing several significant challenges. The overall objective of this study is to learn useful feature representations automatically and efficiently from large amounts of unlabeled raw network traffic data by using deep learning approaches. We propose a novel network intrusion model by stacking dilated convolutional autoencoders and evaluate our method on two new intrusion detection datasets. Several experiments were carried out to check the effectiveness of our approach. The comparative experimental results demonstrate that the proposed model can achieve considerably high performance which meets the demand of high accuracy and adaptability of network intrusion detection systems (NIDSs. It is quite potential and promising to apply our model in the large-scale and real-world network environments.

  2. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  3. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    Science.gov (United States)

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  4. Evidential reasoning research on intrusion detection

    Science.gov (United States)

    Wang, Xianpei; Xu, Hua; Zheng, Sheng; Cheng, Anyu

    2003-09-01

    In this paper, we mainly aim at D-S theory of evidence and the network intrusion detection these two fields. It discusses the method how to apply this probable reasoning as an AI technology to the Intrusion Detection System (IDS). This paper establishes the application model, describes the new mechanism of reasoning and decision-making and analyses how to implement the model based on the synscan activities detection on the network. The results suggest that if only rational probability values were assigned at the beginning, the engine can, according to the rules of evidence combination and hierarchical reasoning, compute the values of belief and finally inform the administrators of the qualities of the traced activities -- intrusions, normal activities or abnormal activities.

  5. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  6. The role of human intrusion in a waste repository in rocksalt

    International Nuclear Information System (INIS)

    Prij, J.

    1993-01-01

    Human activities are an important factor for the safety evaluation study of radioactive waste disposal. Four scenarios are presented for salt radioactive waste disposal: reconnaissance drilling, solution mining, leaking storage cavern and conventional mining. Results suggest that the risk is acceptable according to dose combinations limits and probability analysed, doses calculations are given for an intrusion after disposal closure plus 250 years and plus 1.000 years. (A.B.). 12 refs., 5 tabs

  7. Vaporization thermodynamics and enthalpy of formation of aluminum silicon carbide

    International Nuclear Information System (INIS)

    Behrens, R.G.; Rinehart, G.H.

    1984-01-01

    The vaporization thermodynamics of aluminum silicon carbide was investigated using Knudsen effusion mass spectrometry. Vaporization occurred incongruently to give Al(g), SiC(s), and graphite as reaction products. The vapor pressure of aluminum above (Al 4 SiC 4 + SiC + C) was measured using graphite effusion cells with orifice areas between 1.1 X 10 -2 and 3.9 X 10 -4 cm 2 . The vapor pressure of aluminum obtained between 1427 and 1784 K using an effusion cell with the smallest orifice area, 3.9 X 10 -4 cm 2 , is expressed as log p (Pa) = - (18567 + or - 86) (K/T) + (12.143 + or - 0.054) The third-law calculation of the enthalpy change for the reaction Al 4 SiC 4 (s) = 4Al(g) + SiC(hex) + 3C(s) using the present aluminum pressures gives ΔH 0 (298.15 K) = (1455 + or - 79) kJ /SUP ./ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (1456 + or - 47) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from the elements calculated from the present vaporization enthalpy (third-law calculation) and the enthalpies of formation of Al(g) and hexagonal SiC is ΔH 0 /SUB f/ (298.15 K) = -(221 + or - 85) kJ /SUP ./ mol -1 . The standard enthalpy of formation of Al 4 SiC 4 (s) from its constituent carbides Al 4 C 3 (s) and SiC(c, hex) is calculated to be ΔH 0 (298.15 K) = (38 + or - 92) KJ /SUP ./ mol -1

  8. A Survey on Anomaly Based Host Intrusion Detection System

    Science.gov (United States)

    Jose, Shijoe; Malathi, D.; Reddy, Bharath; Jayaseeli, Dorathi

    2018-04-01

    An intrusion detection system (IDS) is hardware, software or a combination of two, for monitoring network or system activities to detect malicious signs. In computer security, designing a robust intrusion detection system is one of the most fundamental and important problems. The primary function of system is detecting intrusion and gives alerts when user tries to intrusion on timely manner. In these techniques when IDS find out intrusion it will send alert massage to the system administrator. Anomaly detection is an important problem that has been researched within diverse research areas and application domains. This survey tries to provide a structured and comprehensive overview of the research on anomaly detection. From the existing anomaly detection techniques, each technique has relative strengths and weaknesses. The current state of the experiment practice in the field of anomaly-based intrusion detection is reviewed and survey recent studies in this. This survey provides a study of existing anomaly detection techniques, and how the techniques used in one area can be applied in another application domain.

  9. Dose and risk assessment for intrusion into mixed waste disposal sites

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Aaberg, R.L.

    1991-10-01

    Sites previously used for disposal of radioactive and hazardous chemical materials have resulted in situations that pose a potential threat to humans from inadvertent intrusion. An example generic scenario analysis was developed to demonstrate the evaluation of potential exposure to either cleanup workers or members of the public who intrude into buried waste containing both radioactive and hazardous chemical contaminants. The example scenarios consist of a collection of exposure routes (or pathways) with specific modeling assumptions for well-drilling and for excavation to construct buildings. These scenarios are used to describe conceptually some potential patterns of activity by non-protected human beings during intrusion into mixed-waste disposal sites. The dose from exposure to radioactive materials is calculated using the GENII software system and converted to risk by using factors from ICRP Publication 60. The hazard assessment for nonradioactive materials is performed using recent guidelines from the US Environmental Protection Agency (EPA). The example results are in the form of cancer risk for carcinogens and radiation exposure

  10. The thermodynamic characteristics of vaporization of praseodymium triiodide

    Science.gov (United States)

    Motalov, V. B.; Kudin, L. S.; Markus, T.

    2009-03-01

    The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI{4/-} and Pr2I{7/-} negative ions were recorded in saturated vapor over the temperature range 842-1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (-373 ± 11, -929 ± 31, -865 ± 25, and -1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI{4/-}, and Pr2I{7/-}, respectively).

  11. Interior intrusion alarm systems

    International Nuclear Information System (INIS)

    Prell, J.A.

    1978-01-01

    In meeting the requirements for the safeguarding of special nuclear material and the physical protection of licensed facilities, the licensee is required to design a physical security system that will meet minimum performance requirements. An integral part of any physical security system is the interior intrusion alarm system. The purpose of this report is to provide the potential user of an interior intrusion alarm system with information on the various types, components, and performance capabilities available so that he can design and install the optimum alarm system for his particular environment. In addition, maintenance and testing procedures are discussed and recommended which, if followed, will help the user obtain the optimum results from his system

  12. Intrusion problematic during water supply systems' operation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Rodriguez, Jesus; Lopez-Jimenez, P. Amparo [Departamento de Ingenieria Hidraulica y Medio Ambiente, Universidad Politecnica de Valencia, Camino de Vera, s/n, 46022, Valencia (Spain); Ramos, Helena M. [Civil Engineering Department and CEHIDRO, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal)

    2011-07-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuses in obtaining up the physical representation on a specific case intrusion in a pipe water system. The combination of two factors is required to generate this kind of intrusion in a water supply system: on one hand the existence of at least a leak in the system; on the other hand, a pressure variation could occur during the operation of the system due to consumption variation, pump start-up or shutdown. The potential of intrusion during a dynamic or transient event is here analyzed. To obtain this objective an experimental case study of pressure transient scenario is analyzed with a small leak located nearby the transient source.

  13. Successive reactive liquid flow episodes in a layered intrusion (Unit 9, Rum Eastern Layered Intrusion, Scotland)

    Science.gov (United States)

    Leuthold, Julien; Blundy, Jon; Holness, Marian

    2014-05-01

    We will present a detailed microstructural and geochemical study of reactive liquid flow in Unit 9 of the Rum Eastern Layered Intrusion. In the study region, Unit 9 comprises an underlying lens-like body of peridotite overlain by a sequence of troctolite and gabbro (termed allivalite), with some local and minor anorthosite. The troctolite is separated from the overlying gabbro by a distinct, sub-horizontal, undulose horizon (the major wavy horizon). Higher in the stratigraphy is another, similar, horizon (the minor wavy horizon) that separates relatively clinopyroxene-poor gabbro from an overlying gabbro. To the north of the peridotite lens, both troctolite and gabbro grade into poikilitic gabbro. Clinopyroxene habit in the allivalite varies from thin rims around olivine in troctolite, to equigranular crystals in gabbro, to oikocrysts in the poikilitic gabbro. The poikilitic gabbros contain multiple generations of clinopyroxene, with Cr-rich (~1.1 wt.% Cr2O3), anhedral cores with moderate REE concentrations (core1) overgrown by an anhedral REE-depleted second generation with moderate Cr (~0.7 wt.% Cr2O3) (core2). These composite cores are rimmed by Cr-poor (~0.2 wt.% Cr2O3) and REE-poor to moderate clinopyroxene. We interpret these microstructures as a consequence of two separate episodes of partial melting triggered by the intrusion of hot olivine-phyric picrite to form the discontinuous lenses that comprise the Unit 9 peridotite. Loss of clinopyroxene-saturated partial melt from the lower part of the allivalite immediately following the early stages of sill intrusion resulted in the formation of clinopyroxene-poor gabbro. The spatial extent of clinopyroxene loss is marked by the minor wavy horizon. A further partial melting event stripped out almost all clinopyroxene from the lowest allivalite, to form a troctolite, with the major wavy horizon marking the extent of melting during this second episode. The poikilitic gabbro formed from clinopyroxene-saturated melt

  14. A new intrusion prevention model using planning knowledge graph

    Science.gov (United States)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  15. Spray Evaporation in Turbulent Flow: Numerical Calculations and Detailed Experiments by Phase-Doppler Anemometry Évaporation de brouillard en flux turbulent : calculs numériques et expériences détaillées par anémometrie de phase-Doppler

    Directory of Open Access Journals (Sweden)

    Sommerfeld M.

    2006-11-01

    Full Text Available The present paper concerns experiments and numerical calculations of an isopropyl-alcohol spray evaporating in a co-flowing turbulent heated air flow. The measurements provided detailed inlet and boundary conditions for the numerical calculations and allowed the validation of the numerical method and models. Phase-Doppler anemometry was used in order to obtain the spatial change of the droplet size distribution and the correlation between droplet size and velocity throughout the flow field. Additionally, a reliable method based on the detection of the signal amplitudes was applied to determine the droplet mass flux. By integration of the droplet mass flux profiles, the global evaporation rates could be determined for different flow conditions. Numerical calculations of the evaporating spray were performed by the Eulerian / Lagrangian approach. The modelling of droplet evaporation is briefly reviewed prior to the description of the applied numerical models and methods. Calculations for a single phase flow showed good agreement with the experiments. Also for all of the droplet phase properties reasonable agreement with the experiments could be achieved and the global evaporation rates agreed well with the measurements. Cet article expose en détail les expériences et les calculs concernant l'évaporation d'isopropanol pulvérisé dans un flux d'air chaud turbulent. Les mesures ont fourni le détail des conditions initiales et des conditions limites pour les calculs numériques ; elles ont également permis de valider la méthode et le modèle. L'anémométrie de phase-Doppler a permis de définir la modification spatiale de la distribution des dimensions de gouttelettes ainsi que la corrélation entre dimension et vitesse des gouttelettes, dans l'ensemble du champ d'écoulement. De plus, une méthode fiable fondée sur la détection des amplitudes de signal a été appliquée afin de déterminer le débit massique des gouttelettes. L

  16. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  17. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  18. Shock melting and vaporization of lunar rocks and minerals.

    Science.gov (United States)

    Ahrens, T. J.; O'Keefe, J. D.

    1972-01-01

    The entropy associated with the thermodynamic states produced by hypervelocity meteoroid impacts at various velocities are calculated for a series of lunar rocks and minerals and compared with the entropy values required for melting and vaporization. Taking into account shock-induced phase changes in the silicates, we calculate that iron meteorites impacting at speeds varying from 4 to 6 km/sec will produce shock melting in quartz, plagioclase, olivine, and pyroxene. Although calculated with less certainty, impact speeds required for incipient vaporization vary from 7 to 11 km/sec for the range of minerals going from quartz to periclase for aluminum (silicate-like) projectiles. The impact velocities, which are required to induce melting in a soil, are calculated to be in the range of 3 to 4 km/sec, provided thermal equilibrium is achieved in the shock state.

  19. Vapor pressures and sublimation enthalpies of novel bicyclic heterocycle derivatives

    International Nuclear Information System (INIS)

    Blokhina, Svetlana V.; Ol’khovich, Marina V.; Sharapova, Angelica V.; Perlovich, German L.; Proshin, Alexey N.

    2014-01-01

    Highlights: • The vapor pressures of novel bicyclo-derivatives of amine were measured. • Thermodynamic functions of sublimation were calculated. • The influence of substituent structure and chemical nature on the vapor pressure was studied. -- Abstract: The vapor pressures of five novel bicyclic heterocycle derivatives were measured over the temperature 341.15 to 396.15 K using the transpiration method by means of an inert gas carrier. From these results the standard enthalpies and Gibbs free energies of sublimation at the temperature 298.15 K were calculated. The effects of alkyl- and chloro-substitutions on changes in the thermodynamic functions have been investigated. Quantitative structure–property relationship on the basis HYBOT physico-chemical descriptors for biologically active compounds have been developed to predict the sublimation enthalpies and Gibbs free energies of the compounds studied

  20. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  1. Perceived illness intrusions among continuous ambulatory peritoneal dialysis patients

    Directory of Open Access Journals (Sweden)

    Usha Bapat

    2012-01-01

    Full Text Available To study the perceived illness intrusion of continuous ambulatory peritoneal dialysis (CAPD patients, to examine their demographics, and to find out the association among demographics, duration of illness as well as illness intrusion, 40 chronic kidney disease stage V patients on CAPD during 2006-2007 were studied. Inclusion criteria were patients′ above 18 years, willing, stable, and completed at least two months of dialysis. Those with psychiatric co-morbidity were excluded. Sociodemographics were collected using a semi-structured interview schedule. A 14-item illness intrusion checklist covering various aspects of life was administered. The subjects had to rate the illness intrusion in their daily life and the extent of intrusion. The data was analyzed using descriptive statistics and chi square test of association. The mean age of the subjects was 56.05 ± 10.05 years. There was near equal distribution of gender. 82.5% were married, 70.0% belonged to Hindu religion, 45.0% were pre-degree, 25.0% were employed, 37.5% were housewives and 30.0% had retired. 77.5% belonged to the upper socioeconomic strata, 95.0% were from an urban background and 65.0% were from nuclear families. The mean duration of dialysis was 19.0 ± 16.49 months. Fifty-eight percent of the respondents were performing the dialysis exchanges by themselves. More than 95.0%were on three or four exchanges per day. All the 40 subjects reported illness intrusion in their daily life. Intrusion was perceived to some extent in the following areas: health 47.5%, work 25.0%, finance 37.5%, diet 40.0%, and psychological 50.0%. Illness had not intruded in the areas of relationship with spouse 52.5%, sexual life 30.0%, with friends 92.5%, with family 85.5%, social functions 52.5%, and religious functions 75.0%. Statistically significant association was not noted between illness intrusion and other variables. CAPD patients perceived illness intrusion to some extent in their daily life

  2. Toxic vapor concentrations in the control room following a postulated accidental release

    International Nuclear Information System (INIS)

    Wing, J.

    1979-05-01

    An acceptable method is presented for calculating the vapor concentrations in a control room as a function of time after a postulated accidental release. Included are the mathematical formulas for computing the rates of vaporization and evaporation of liquid spills, the vapor dispersion in air, and the control room air exchange. A list of toxic chemicals and their physical properties is also given

  3. Biological intrusion barriers for large-volume waste-disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Cline, J.F.; Rickard, W.H.

    1982-01-01

    intrusion of plants and animals into shallow land burial sites with subsequent mobilization of toxic and radiotoxic materials has occured. Based on recent pathway modeling studies, such intrusions can contribute to the dose received by man. This paper describes past work on developing biological intrusion barrier systems for application to large volume waste site stabilization. State-of-the-art concepts employing rock and chemical barriers are discussed relative to long term serviceability and cost of application. The interaction of bio-intrusion barrier systems with other processes affecting trench cover stability are discussed to ensure that trench cover designs minimize the potential dose to man. 3 figures, 6 tables

  4. Corticostriatal circuitry in regulating diseases characterized by intrusive thinking

    OpenAIRE

    Kalivas, Benjamin C.; Kalivas, Peter W.

    2016-01-01

    Intrusive thinking triggers clinical symptoms in many neuropsychiatric disorders. Using drug addiction as an exemplar disorder sustained in part by intrusive thinking, we explore studies demonstrating that impairments in corticostriatal circuitry strongly contribute to intrusive thinking. Neuroimaging studies have long implicated this projection in cue-induced craving to use drugs, and preclinical models show that marked changes are produced at corticostriatal synapses in the nucleus accumben...

  5. Identification of Human Intrusion Types into Radwaste Disposal Facility

    International Nuclear Information System (INIS)

    Budi Setiawan

    2007-01-01

    Human intrusion has long been recognized as a potentially important post-closure safety issue for rad waste disposal facility. It is due to the difficulties in predicting future human activities. For the preliminary study of human intrusion, identification of human intrusion types need to be recognized and investigated also the approaching of problem solving must be known to predict the prevention act and accepted risk. (author)

  6. Perceived illness intrusion among patients on hemodialysis

    International Nuclear Information System (INIS)

    Bapat, Usha; Kedlaya, Prashanth G; Gokulnath

    2009-01-01

    Dialysis therapy is extremely stressful as it interferes with all spheres of daily activities of the patients. This study is aimed at understanding the perceived illness intrusion among patients on hemodialysis (HD) and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD) stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering sociodemographics and a 13 item illness intrusion checklist covering the various aspects of life was carried out. The study patients were asked to rate the illness intrusion and the extent. The data were analyzed statistically. The mean age of the subjects was 50.28 + - 13.69 years, males were predominant (85%), 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear families. The mean duration on dialysis was 24 + - 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%), work (70%) finance (55%), diet (50%) sexual life (38%) and psychological status (25%). Illness had not intruded in areas of relationship with spouse (67%), friends (76%), family (79%), social (40%) and religious functions (72%). Statistically significant association was noted between illness intrusion and occupation (P= 0.02). (author)

  7. Perceived illness intrusion among patients on hemodialysis

    Directory of Open Access Journals (Sweden)

    Bapat Usha

    2009-01-01

    Full Text Available Dialysis therapy is extremely stressful as it interferes with all spheres of daily acti-vities of the patients. This study is aimed at understanding the perceived illness intrusion among pa-tients on hemodialysis (HD and to find the association between illness intrusion and patient demo-graphics as well as duration of dialysis. A cross sectional study involving 90 patients with chronic kidney disease (CKD stage V, on HD was performed during the period from 2005 to 2006. The subjects included were above 18 years of age, willing, stable and on dialysis for at least two months. Patients with psychiatric co-morbidity were excluded. A semi-structured interview schedule covering socio-demographics and a 13 item illness intrusion checklist covering the various aspects of life was ca-rried out. The study patients were asked to rate the illness intrusion and the extent. The data were ana-lyzed statistically. The mean age of the subjects was 50.28 ± 13.69 years, males were predominant (85%, 73% were married, 50% belonged to Hindu religion, 25% had pre-degree education, 25% were employed and 22% were housewives. About 40% and 38% of the study patients belonged to middle and upper socio-economic strata respectively; 86% had urban background and lived in nuclear fami-lies. The mean duration on dialysis was 24 ± 29.6 months. All the subjects reported illness intrusion to a lesser or greater extent in various areas including: health (44%, work (70% finance (55%, diet (50% sexual life (38% and psychological status (25%. Illness had not intruded in areas of rela-tionship with spouse (67%, friends (76%, family (79%, social (40% and religious functions (72%. Statistically significant association was noted between illness intrusion and occupation (P= 0.02.

  8. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations.

    Science.gov (United States)

    Emel'yanenko, Vladimir N; Verevkin, Sergey P; Heintz, Andreas

    2007-04-04

    Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.

  9. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  10. Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Bibian Alonso Hoyos-Madrigal

    2015-01-01

    Full Text Available Existen varios modelos moleculares para el monóxido de carbono desarrollados a partir de diferentes mediciones experimentales. El objetivo de este trabajo es comparar los resultados que varios de estos modelos producen en el cálculo del equilibrio líquido-vapor en busca de recomendar qué modelo debe ser usado de acuerdo la propiedad y la fase que se desea calcular. Los modelos seleccionados corresponden a cuatro modelos no polares, con uno o dos sitios Lennard-Jones, y cuatro modelos polares, con dipolos o cargas parciales para representar la polaridad del monóxido de carbono. Simulaciones Monte Carlo en la versión Gibbs canónica (NVT-GEMC se emplearon para determinar las densidades de las fases en equilibrio, la presión de vapor y la entalpia de vaporización entre 80 y 130 K con cada uno de los modelos seleccionados. Se encontró que los modelos más complejos SVH, ANC y PGB, son los que mejor describen la densidad del líquido saturado (alrededor de 7% de desviación promedio, pero estos modelos generan desviaciones mayores al 40% para las propiedades del vapor y al 20% para la entalpia de vaporización. Por otro lado, el modelo no- polar BLF generó las menores desviaciones para la presión de saturación y la densidad del vapor (6.8 y 21.5%, respectivamente. Este modelo, al igual que el modelo HCB, produce desviaciones aceptables para la densidad del líquido y la entalpia de vaporización (entre 10 y 12%. Los modelos no polares BLF y HCB, que no requieren el cálculo de las interacciones de largo alcance, se pueden considerar como los modelos moleculares que presentan un balance satisfactorio entre desviaciones en los resultados y complejidad de cálculo.

  11. Heart rate, startle response, and intrusive trauma memories

    Science.gov (United States)

    Chou, Chia-Ying; Marca, Roberto La; Steptoe, Andrew; Brewin, Chris R

    2014-01-01

    The current study adopted the trauma film paradigm to examine potential moderators affecting heart rate (HR) as an indicator of peritraumatic psychological states and as a predictor of intrusive memories. We replicated previous findings that perifilm HR decreases predicted the development of intrusive images and further showed this effect to be specific to images rather than thoughts, and to detail rather than gist recognition memory. Moreover, a group of individuals showing both an atypical sudden reduction in HR after a startle stimulus and higher trait dissociation was identified. Only among these individuals was lower perifilm HR found to indicate higher state dissociation, fear, and anxiety, along with reduced vividness of intrusions. The current findings emphasize how peritraumatic physiological responses relate to emotional reactions and intrusive memory. The moderating role of individual difference in stress defense style was highlighted. PMID:24397333

  12. Approach for Assessing Human Intrusion into a Radwaste Repository

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess human intrusion into radwaste repository resulting from future human actions was proposed based on the common principals, requirements, and recommendations from IAEA, ICRP, and OECD/NEA, with the assumption that the intrusion occurs after loss of knowledge of the hazardous nature of the disposal facility. At first, the essential boundary conditions were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The essential premises were derived on the basis of international recommendations, followed by overall approach to deal with inadvertent human intrusion. The procedure to derive protective measures was also explained with four steps regarding how to derive safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be effectively used to reduce the potential for and/or consequence of human intrusion during entire processes of realization of disposal facility.

  13. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  14. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  15. Calculational and experimental approaches to the equation of state of irradiated fuel

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schumacher, G.

    1977-07-01

    The oxygen potential is an important parameter for the estimation of the vapor pressure of mixed oxide fuel and fission products. Dissolved fission products can have great influence on this potential in hypostoichiometric fuel. Therefore an attempt was made to calculate oxygen potentials of uranium-plutonium mixed oxides which contain fission products using models based on the equilibrium of oxygen defects. Vapor pressures have been calculated applying these data. The results of the calculation with various models differ especially at high temperatures above 4,000 K. Experimental work has been done to determine the vapor pressure of oxide fuel material at temperatures between 3,000 K and 5,000 K using laser beam heating. A measuring technique and a detailed evaluation model of laser evaporation measurements have been developed. The evaluation model describes the complex phenomena occurring during surface evaporation of liquid oxide fuel. Vapor pressure measurements with UO 2 have been carried out in the temperature region up to 4,500 K. With thermodynamic calculations the required equilibrium vapor pressures (EOS) can be derived from the vapor pressures measured. The caloric equation-of-state of the liquid-vapor equilibrium of the fuel up to temperatures of 5,000 K has been considered theoretically. (orig.) [de

  16. The appraisal of intrusive thoughts in relation to obsessional-compulsive symptoms.

    Science.gov (United States)

    Barrera, Terri L; Norton, Peter J

    2011-01-01

    Research has shown that although intrusive thoughts occur universally, the majority of individuals do not view intrusive thoughts as being problematic (Freeston, Ladouceur, Thibodeau, & Gagnon, 1991; Rachman & de Silva, 1978; Salkovskis & Harrison, 1984). Thus, it is not the presence of intrusive thoughts that leads to obsessional problems but rather some other factor that plays a role in the development of abnormal obsessions. According to the cognitive model of obsessive-compulsive disorder (OCD) put forth by Salkovskis (1985), the crucial factor that differentiates between individuals with OCD and those without is the individual's appraisal of the naturally occurring intrusive thoughts. This study aimed to test Salkovskis's model by examining the role of cognitive biases (responsibility, thought-action fusion, and thought control) as well as distress in the relationship between intrusive thoughts and obsessive-compulsive symptoms in an undergraduate sample of 326 students. An existing measure of intrusive thoughts (the Revised Obsessional Intrusions Inventory) was modified for this study to include a scale of distress associated with each intrusive thought in addition to the current frequency scale. When the Yale-Brown Obsessive-Compulsive Scale was used as the measure of OCD symptoms, a significant interaction effect of frequency and distress of intrusive thoughts resulted. Additionally, a significant three-way interaction of Frequency × Distress × Responsibility was found when the Obsessive Compulsive Inventory-Revised was used as the measure of OCD symptoms. These results indicate that the appraisal of intrusive thoughts is important in predicting OCD symptoms, thus providing support for Salkovskis's model of OCD.

  17. Metallogenic aspects of Itu intrusive suite

    International Nuclear Information System (INIS)

    Amaral, G.; Pascholati, E.M.

    1990-01-01

    The integrated use of geological, geochemical, geophysical and remote sensing data is providing interesting new information on the metallogenic characteristics of the Itu Intrusive Suite. During World War II, up to 1959, a wolframite deposit was mined near the border of the northernmost body (Itupeva Granite). This deposit is formed by greisen veins associated with cassiterite and topaz, clearly linked with later phases of magmatic differentiation. Generally those veins are related to hydrothermal alteration of the granites and the above mentioned shear zone. U, Th and K determinations by field and laboratory gammaspectrometry were used for regional distribution analysis of those elements and its ratios and calculation of radioactivity heat production. In this aspects, the Itupeva Granite is the hottest and presents several anomalies in the Th/U ratio, indicative of late or post magmatic oxidation processes. (author)

  18. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    Science.gov (United States)

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An evaluation of classification algorithms for intrusion detection ...

    African Journals Online (AJOL)

    An evaluation of classification algorithms for intrusion detection. ... Log in or Register to get access to full text downloads. ... Most of the available IDSs use all the 41 features in the network to evaluate and search for intrusive pattern in which ...

  20. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  1. Vaporization of niobium dioxide by mass-effusion and mass-spectrometric methods

    International Nuclear Information System (INIS)

    Kamegashira, N.; Matsui, T.; Harada, M.; Naito, K.

    1981-01-01

    The congruence of the vaporization process of NbO, NbO 2 , Nb 12 O 29 and Nb 2 O 5 in the niobium-oxygen system was investigated from the phase change of the solid residue after vaporization, and it was observed that only the NbO 2 phase vaporizes congruently. The vapor pressures over NbO 2 (s) were measured by means of a combination of mass-effusion (weight loss measurement) and mass-spectrometric methods in the temperature range 1953-2323 K. By applying the second and the third law treatments of thermodynamics to the partial pressures of the gaseous species NbO 2 (g), NbO(g) and O(g), the enthalpies of vaporization for the reactions NbO 2 (s,1)=NbO 2 (g) and NbO 2 (s,1)=NbO(g)+O(g), were calculated. From these data the enthalpies of formation and the dissociation energies of NbO 2 (g) and NbO(g) were also determined. The uncertainties included in the third law treatment were discussed, and the results calculated by the third law treatment using the most reliable data available at present were presented. (orig.)

  2. Hydrodynamic modeling of the intrusion phenomenon in water distribution systems; Modelacion hidrodinamica del fenomeno de intrusion en tuberia de abastecimiento

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Jimenez, Petra Amparo; Mora-Rodriguez, Jose de Jesus; Perez-Garcia, Rafael; Martinez-Solano, F. Javier [Universidad Politecnica de Valencia (Spain)

    2008-10-15

    This paper describes a strategy for the hydrodynamic modeling of the pathogen intrusion phenomenon in water distribution systems by the combination of a breakage with a depression situation. This scenario will be modeled computationally and experimentally. The phenomenon to be represented by both simulations is the same: the entrance of an external volume into the circulation of a main volume, known as a pathogen intrusion, as long as the main volume is potable water. To this end, a prototype and a computational model based on Computational Fluid Dynamics (CFD) are used, which allow visualizing the fields of speeds and pressures in a simulated form. With the comparison of the results of both models, conclusions will be drawn on the detail of the studied pathogen intrusion phenomenon. [Spanish] En el presente documento se describe una estrategia de modelacion del fenomeno hidrodinamico de la intrusion patogena en redes de distribucion de agua por combinacion de una rotura con una situacion de depresion. Este escenario sera modelado computacional y experimentalmente. El fenomeno que se desea representar con ambas simulaciones es el mismo: la entrada de un caudal externo a una conduccion para la que circula un caudal principal, denominado intrusion patogena, siempre y cuando el caudal principal sea agua potable. Para ello se dispone de un prototipo y un modelo computacional basado en la Dinamica de Fluidos Computacional (DFC de aqui en adelante), que permite visualizar los campos de velocidades y presiones de forma simulada. Con la comparacion de los resultados de ambos modelos se extraeran conclusiones sobre el detalle del fenomeno de la intrusion patogena estudiado.

  3. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    International Nuclear Information System (INIS)

    D.S. Kimball; C.E. Sanders

    2006-01-01

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k eff ) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions

  4. Non-Intrusive Intelligibility Prediction Using a Codebook-Based Approach

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Kavalekalam, Mathew Shaji; Xenaki, Angeliki

    2017-01-01

    It could be beneficial for users of hearing aids if these were able to automatically adjust the processing according to the speech intelligibility in the specific acoustic environment. Most speech intelligibility metrics are intrusive, i.e., they require a clean reference signal, which is rarely...... a high correlation between the proposed non-intrusive codebookbased STOI (NIC-STOI) and the intrusive STOI indicating that NIC-STOI is a suitable metric for automatic classification of speech signals...

  5. Melt and vapor characteristics in an electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C.; Soubbaramayer

    1994-12-31

    Two different approaches have been compared for the calculation of the free surface temperature Ts in cerium or copper evaporation experiments: the first method considers properties of the melt: an empirical law is used to take into account turbulent thermal convection, instabilities and characterization of the free surface. The second method considers the vapor flow expansion and connects Ts to the measured terminal temperature and terminal mean parallel velocity of the vapor jet, by direct simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high characterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that Ts and the Knudsen number at the vapour source reach a threshold when the beam power increases. (author). 12 figs., 1 tab., 21 refs.

  6. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  7. Intrusion of Magmatic Bodies Into the Continental Crust: 3-D Numerical Models

    Science.gov (United States)

    Gorczyk, Weronika; Vogt, Katharina

    2018-03-01

    Magma intrusion is a major material transfer process in the Earth's continental crust. Yet the mechanical behavior of the intruding magma and its host are a matter of debate. In this study we present a series of numerical thermomechanical simulations on magma emplacement in 3-D. Our results demonstrate the response of the continental crust to magma intrusion. We observe change in intrusion geometries between dikes, cone sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions, and injection time. The rheology and temperature of the host are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favors host rock displacement and plutons at the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. Here the passage of magmatic and hydrothermal fluids from the intrusion through the fracture pattern may result in the formation of ore deposits. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle crust. Intrusion of low-density magma may more over result in T-shaped intrusions in cross section with magma sheets at the surface.

  8. Indoor Air Contamination from Hazardous Waste Sites: Improving the Evidence Base for Decision-Making.

    Science.gov (United States)

    Johnston, Jill; MacDonald Gibson, Jacqueline

    2015-11-27

    At hazardous waste sites, volatile chemicals can migrate through groundwater and soil into buildings, a process known as vapor intrusion. Due to increasing recognition of vapor intrusion as a potential indoor air pollution source, in 2015 the U.S. Environmental Protection Agency (EPA) released a new vapor intrusion guidance document. The guidance specifies two conditions for demonstrating that remediation is needed: (1) proof of a vapor intrusion pathway; and (2) evidence that human health risks exceed established thresholds (for example, one excess cancer among 10,000 exposed people). However, the guidance lacks details on methods for demonstrating these conditions. We review current evidence suggesting that monitoring and modeling approaches commonly employed at vapor intrusion sites do not adequately characterize long-term exposure and in many cases may underestimate risks. On the basis of this evidence, we recommend specific approaches to monitoring and modeling to account for these uncertainties. We propose a value of information approach to integrate the lines of evidence at a site and determine if more information is needed before deciding whether the two conditions specified in the vapor intrusion guidance are satisfied. To facilitate data collection and decision-making, we recommend a multi-directional community engagement strategy and consideration of environment justice concerns.

  9. Nuisance alarm suppression techniques for fibre-optic intrusion detection systems

    Science.gov (United States)

    Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim

    2012-02-01

    The suppression of nuisance alarms without degrading sensitivity in fibre-optic intrusion detection systems is important for maintaining acceptable performance. Signal processing algorithms that maintain the POD and minimize nuisance alarms are crucial for achieving this. A level crossings algorithm is presented for suppressing torrential rain-induced nuisance alarms in a fibre-optic fence-based perimeter intrusion detection system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr, and intrusion events can be detected simultaneously during rain periods. The use of a level crossing based detection and novel classification algorithm is also presented demonstrating the suppression of nuisance events and discrimination of nuisance and intrusion events in a buried pipeline fibre-optic intrusion detection system. The sensor employed for both types of systems is a distributed bidirectional fibre-optic Mach Zehnder interferometer.

  10. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  11. Intrusion Detection System In IoT

    OpenAIRE

    Nygaard, Frederik

    2017-01-01

    Intrusion detection detects misbehaving nodes in a network. In Internet of Things(IoT), IPv6 Routing for Low-Power and Lossy Networks (RPL) is the standard routing protocol. In IoT, devices commonly have low energy, storage and memory, which is why the implemented intrusion algorithm in this thesis will try to minimize the usage of these resources. IDS for RPL-networks have been implemented before, but the use of resources or the number of packets sent was too high to be successful when findi...

  12. On-line detection of Escherichia coli intrusion in a pilot-scale drinking water distribution system.

    Science.gov (United States)

    Ikonen, Jenni; Pitkänen, Tarja; Kosse, Pascal; Ciszek, Robert; Kolehmainen, Mikko; Miettinen, Ilkka T

    2017-08-01

    Improvements in microbial drinking water quality monitoring are needed for the better control of drinking water distribution systems and for public health protection. Conventional water quality monitoring programmes are not always able to detect a microbial contamination of drinking water. In the drinking water production chain, in addition to the vulnerability of source waters, the distribution networks are prone to contamination. In this study, a pilot-scale drinking-water distribution network with an on-line monitoring system was utilized for detecting bacterial intrusion. During the experimental Escherichia coli intrusions, the contaminant was measured by applying a set of on-line sensors for electric conductivity (EC), pH, temperature (T), turbidity, UV-absorbance at 254 nm (UVAS SC) and with a device for particle counting. Monitored parameters were compared with the measured E. coli counts using the integral calculations of the detected peaks. EC measurement gave the strongest signal compared with the measured baseline during the E. coli intrusion. Integral calculations showed that the peaks in the EC, pH, T, turbidity and UVAS SC data were detected corresponding to the time predicted. However, the pH and temperature peaks detected were barely above the measured baseline and could easily be mixed with the background noise. The results indicate that on-line monitoring can be utilized for the rapid detection of microbial contaminants in the drinking water distribution system although the peak interpretation has to be performed carefully to avoid being mixed up with normal variations in the measurement data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The tracking of interfaces in an electron-beam vaporizer

    International Nuclear Information System (INIS)

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ''arrow'' matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance

  14. PHYSICOCHEMICAL PROPERTY CALCULATIONS

    Science.gov (United States)

    Computer models have been developed to estimate a wide range of physical-chemical properties from molecular structure. The SPARC modeling system approaches calculations as site specific reactions (pKa, hydrolysis, hydration) and `whole molecule' properties (vapor pressure, boilin...

  15. Mass-spectral investigations of vaporization process of the condensed zinc phosphates

    International Nuclear Information System (INIS)

    Lopatin, S.L; Sinyayev, V.A.; Shugurov, S.M.

    2005-01-01

    There are the data of high temperature mass-spectrum experiment concerning of thermal decomposition of zinc cyclotriphosphate and zinc diphosphate presented in the given article. It is shown the both salts dissociate into phosphorus oxides, oxygen, and atomic zinc. Correlation between partial pressure of vapor components and composition of condensed phase are described. Effects of temperature and duration of the vaporization process on vapor composition are presented as well. Standard enthalpy of ZnPO 3 molecule decomposition into atoms is calculated. [author

  16. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  17. Security Enrichment in Intrusion Detection System Using Classifier Ensemble

    Directory of Open Access Journals (Sweden)

    Uma R. Salunkhe

    2017-01-01

    Full Text Available In the era of Internet and with increasing number of people as its end users, a large number of attack categories are introduced daily. Hence, effective detection of various attacks with the help of Intrusion Detection Systems is an emerging trend in research these days. Existing studies show effectiveness of machine learning approaches in handling Intrusion Detection Systems. In this work, we aim to enhance detection rate of Intrusion Detection System by using machine learning technique. We propose a novel classifier ensemble based IDS that is constructed using hybrid approach which combines data level and feature level approach. Classifier ensembles combine the opinions of different experts and improve the intrusion detection rate. Experimental results show the improved detection rates of our system compared to reference technique.

  18. An ontology-based intrusion patterns classification system | Shonubi ...

    African Journals Online (AJOL)

    Studies have shown that computer intrusions have been on the increase in recent times. Many techniques and patterns are being used by intruders to gain access to data on host computer networks. In this work, intrusion patterns were identified and classified and inherent knowledge were represented using an ontology of ...

  19. Simulation of seawater intrusion in coastal aquifers: Some typical ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Seawater intrusion; coastal aquifers; density-dependent flow and ... The seawater intrusion mechanism in coastal aquifers generally causes the occurrence of ... (4) The dynamic viscosity of the fluid does not change with respect to salinity and.

  20. A Machine Learning Based Intrusion Impact Analysis Scheme for Clouds

    Directory of Open Access Journals (Sweden)

    Junaid Arshad

    2012-01-01

    Full Text Available Clouds represent a major paradigm shift, inspiring the contemporary approach to computing. They present fascinating opportunities to address dynamic user requirements with the provision of on demand expandable computing infrastructures. However, Clouds introduce novel security challenges which need to be addressed to facilitate widespread adoption. This paper is focused on one such challenge - intrusion impact analysis. In particular, we highlight the significance of intrusion impact analysis for the overall security of Clouds. Additionally, we present a machine learning based scheme to address this challenge in accordance with the specific requirements of Clouds for intrusion impact analysis. We also present rigorous evaluation performed to assess the effectiveness and feasibility of the proposed method to address this challenge for Clouds. The evaluation results demonstrate high degree of effectiveness to correctly determine the impact of an intrusion along with significant reduction with respect to the intrusion response time.

  1. Semi-non-intrusive objective intelligibility measure using spatial filtering in hearing aids

    DEFF Research Database (Denmark)

    Sørensen, Charlotte; Boldt, Jesper Bünsow; Gran, Frederik

    2016-01-01

    -intrusive metrics have not been able to achieve acceptable intelligibility predictions. This paper presents a new semi-non-intrusive intelligibility measure based on an existing intrusive measure, STOI, where an estimate of the clean speech is extracted using spatial filtering in the hearing aid. The results......Reliable non-intrusive online assessment of speech intelligibility can play a key role for the functioning of hearing aids, e.g. as guidance for adjusting the hearing aid settings to the environment. While existing intrusive metrics can provide a precise and reliable measure, the current non...

  2. Adaptive Intrusion Data System (AIDS)

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-05-01

    The adaptive intrusion data system (AIDS) was developed to collect data from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique data system which uses computer controlled data systems, video cameras and recorders, analog-to-digital conversion, environmental sensors, and digital recorders to collect sensor data. The data can be viewed either manually or with a special computerized data-reduction system which adds new data to a data base stored on a magnetic disc recorder. This report provides a synoptic account of the AIDS as it presently exists. Modifications to the purchased subsystems are described, and references are made to publications which describe the Sandia-designed subsystems

  3. Numerical simulations of hydrothermal circulation resulting from basalt intrusions in a buried spreading center

    Science.gov (United States)

    Fisher, A.T.; Narasimhan, T.N.

    1991-01-01

    A two-dimensional, one by two-kilometer section through the seafloor was simulated with a numerical model to investigate coupled fluid and heat flow resulting from basalt intrusions in a buried spreading center. Boundary and initial conditions and physical properties of both sediments and basalt were constrained by field surveys and drilling in the Guaymas Basin, central Gulf of California. Parametric variations in these studies included sediment and basalt permeability, anisotropy in sediment permeability, and the size of heat sources. Faults were introduced through new intrusions both before and after cooling.Background heat input caused fluid convection at velocities ≤ 3 cm a−1 through shallow sediments. Eighty to ninety percent of the heat introduced at the base of the simulations exited through the upper, horizontal surface, even when the vertical boundaries were made permeable to fluid flow. The simulated injection of a 25–50 m thick basalt intrusion at a depth of 250 m resulted in about 10 yr of pore-fluid expulsion through the sea-floor in all cases, leaving the sediments above the intrusions strongly underpressured. A longer period of fluid recharge followed, sometimes accompanied by reductions in total seafloor heat output of 10% in comparison to pre-intrusion values. Additional discharge-recharge events were dispersed chaotically through the duration of the cooling period. These cycles in heat and fluid flow resulted from the response of the simulated system to a thermodynamic shock, the sudden emplacement of a large heat source, and not from mechanical displacement of sediments and pore fluids, which was not simulated.Water/rock mass ratios calculated from numerical simulations are in good agreement with geochemical estimates from materials recovered from the Guaymas Basin, assuming a bulk basalt permeability value of at least 10−17 m2/(10−2 mD). The addition of faults through intrusions and sediments in these simulations did not facilitate

  4. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  5. Intrusion problematic during water supply systems’ operation

    OpenAIRE

    Jesus Mora-Rodriguez, P. Amparo López-Jimenez, Helena M. Ramos

    2011-01-01

    Intrusion through leaks occurrence is a phenomenon when external fluid comes into water pipe systems. This phenomenon can cause contamination problems in drinking pipe systems. Hence, this paper focuses on the entry of external fluids across small leaks during normal operation conditions. This situation is especially important in elevated points of the pipe profile. Pressure variations can origin water volume losses and intrusion of contaminants into the drinking water pipes. This work focuse...

  6. Online Adaboost-Based Parameterized Methods for Dynamic Distributed Network Intrusion Detection.

    Science.gov (United States)

    Hu, Weiming; Gao, Jun; Wang, Yanguo; Wu, Ou; Maybank, Stephen

    2014-01-01

    Current network intrusion detection systems lack adaptability to the frequently changing network environments. Furthermore, intrusion detection in the new distributed architectures is now a major requirement. In this paper, we propose two online Adaboost-based intrusion detection algorithms. In the first algorithm, a traditional online Adaboost process is used where decision stumps are used as weak classifiers. In the second algorithm, an improved online Adaboost process is proposed, and online Gaussian mixture models (GMMs) are used as weak classifiers. We further propose a distributed intrusion detection framework, in which a local parameterized detection model is constructed in each node using the online Adaboost algorithm. A global detection model is constructed in each node by combining the local parametric models using a small number of samples in the node. This combination is achieved using an algorithm based on particle swarm optimization (PSO) and support vector machines. The global model in each node is used to detect intrusions. Experimental results show that the improved online Adaboost process with GMMs obtains a higher detection rate and a lower false alarm rate than the traditional online Adaboost process that uses decision stumps. Both the algorithms outperform existing intrusion detection algorithms. It is also shown that our PSO, and SVM-based algorithm effectively combines the local detection models into the global model in each node; the global model in a node can handle the intrusion types that are found in other nodes, without sharing the samples of these intrusion types.

  7. Appraisal and control of sexual and non-sexual intrusive thoughts in university students.

    Science.gov (United States)

    Clark, D A; Purdon, C; Byers, E S

    2000-05-01

    This study examined differences in the appraisal and thought control strategies associated with the perceived control of unwanted sexual and non-sexual intrusive thoughts. Eleven appraisal dimensions, subjective physiological arousal and 10 thought control strategies were measured in 171 university students who were administered the Revised Obsessive Intrusions Inventory-Sex Version, a self-report measure of unwanted intrusive thoughts. Thought-action fusion (TAF) likelihood was a significant unique predictor of the perceived controllability of respondents' most upsetting sexual and non-sexual intrusive thought. Moreover greater subjective physiological arousal was a significant predictor of reduced control over sexual intrusions, whereas worry that one might act on an intrusive thought and greater effort to control the intrusion were significant unique predictors of the control of non-sexual intrusive thoughts. Various thought control strategies were more often used in response to non-sexual than sexual cognitions. The results are discussed in terms of the differential role of various appraisal processes in the control of unwanted sexual and non-sexual thoughts.

  8. Toddler inhibited temperament, maternal cortisol reactivity and embarrassment, and intrusive parenting.

    Science.gov (United States)

    Kiel, Elizabeth J; Buss, Kristin A

    2013-06-01

    The relevance of parenting behavior to toddlers' development necessitates a better understanding of the influences on parents during parent-child interactions. Toddlers' inhibited temperament may relate to parenting behaviors, such as intrusiveness, that predict outcomes later in childhood. The conditions under which inhibited temperament relates to intrusiveness, however, remain understudied. A multimethod approach would acknowledge that several levels of processes determine mothers' experiences during situations in which they witness their toddlers interacting with novelty. As such, the current study examined maternal cortisol reactivity and embarrassment about shyness as moderators of the relation between toddlers' inhibited temperament and maternal intrusive behavior. Participants included 92 24-month-old toddlers and their mothers. Toddlers' inhibited temperament and maternal intrusiveness were measured observationally in the laboratory. Mothers supplied saliva samples at the beginning of the laboratory visit and 20 minutes after observation. Maternal cortisol reactivity interacted with inhibited temperament in relation to intrusive behavior, such that mothers with higher levels of cortisol reactivity were observed to be more intrusive with more highly inhibited toddlers. Embarrassment related to intrusive behavior as a main effect. These results highlight the importance of considering child characteristics and psychobiological processes in relation to parenting behavior. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Source characteristics and tectonic setting of mafic-ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic-ultramafic intrusion

    Science.gov (United States)

    Chen, Bao-Yun; Yu, Jin-Jie; Liu, Shuai-Jie

    2018-05-01

    The newly discovered Lubei sulfide-bearing mafic-ultramafic intrusion forms the western extension of the Huangshan-Jin'erquan mafic-ultramafic intrusion belt in East Tianshan, NW China. The Lubei intrusion comprises hornblende peridotite, lherzolite, and harzburgite in its southern portion, gabbro in its middle portion, and hornblende gabbro in its northern portion. Intrusive relationships indicate that three magma pulses were involved in the formation of the intrusion, and that they were likely evolved from a common primitive magma. Estimated compositions of the Lubei primitive magma are similar to those of island arc calc-alkaline basalt except for the low Na2O and CaO contents of the Lubei primitive magma. This paper reports on the mineral compositions, whole-rock major and trace element contents, and Rb-Sr and Sm-Nd isotopic compositions of the Lubei intrusion, and a zircon LA-MC-ICP-MS U-Pb age for hornblende gabbro. The Lubei intrusion is characterized by enrichment in large-ion lithophile elements, depletion in high-field-strength elements, and marked negative Nb and Ta anomalies, with enrichment in chondrite-normalized light rare earth elements. It exhibits low (87Sr/86Sr)i ratios of 0.70333-0.70636 and low (143Nd/144Nd)i ratios of 0.51214-0.51260, with positive εNd values of +4.01 to +6.33. LA-ICP-MS U-Pb zircon ages yielded a weighted-mean age of 287.9 ± 1.6 Ma for the Lubei intrusion. Contemporaneous mafic-ultramafic intrusions in different tectonic domains in North Xinjiang show similar geological and geochemical signatures to the Lubei intrusion, suggesting a source region of metasomatized mantle previously modified by hydrous fluids from the slab subducted beneath the North Xinjiang region in the early Permian. Metasomatism of the mantle was dominated by hydrous fluids and was related to subduction of the Paleo-Asian oceanic lithosphere during the Paleozoic. Sr-Nd-Pb isotopic compositions suggest that the mantle source was a mixture of depleted mid

  10. Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study.

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela M; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N; Mazzoni, Elvis; Pappas, Ilias O; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M S; Ben-Ezra, Menachem

    2016-01-01

    The increase in the number of users of social networking sites (SNS) has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Inventory, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively) and low context (positively); of the personality variables, conscientiousness, and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of SNS.

  11. Unique Challenges in WiFi Intrusion Detection

    OpenAIRE

    Milliken, Jonny

    2014-01-01

    The Intrusion Detection System (IDS) is a common means of protecting networked systems from attack or malicious misuse. The deployment of an IDS can take many different forms dependent on protocols, usage and cost. This is particularly true of Wireless Intrusion Detection Systems (WIDS) which have many detection challenges associated with data transmission through an open, shared medium, facilitated by fundamental changes at the Physical and MAC layers. WIDS need to be considered in more deta...

  12. Influence of seawater intrusion on microbial communities in groundwater.

    Science.gov (United States)

    Unno, Tatsuya; Kim, Jungman; Kim, Yumi; Nguyen, Son G; Guevarra, Robin B; Kim, Gee Pyo; Lee, Ji-Hoon; Sadowsky, Michael J

    2015-11-01

    Groundwater is the sole source of potable water on Jeju Island in the Republic of (South) Korea. Groundwater is also used for irrigation and industrial purposes, and it is severely impacted by seawater intrusion in coastal areas. Consequently, monitoring the intrusion of seawater into groundwater on Jeju is very important for health and environmental reasons. A number of studies have used hydrological models to predict the deterioration of groundwater quality caused by seawater intrusion. However, there is conflicting evidence of intrusion due to complicated environmental influences on groundwater quality. Here we investigated the use of next generation sequencing (NGS)-based microbial community analysis as a way to monitor groundwater quality and detect seawater intrusion. Pristine groundwater, groundwater from three coastal areas, and seawater were compared. Analysis of the distribution of bacterial species clearly indicated that the high and low salinity groundwater differed significantly with respect to microbial composition. While members of the family Parvularculaceae were only identified in high salinity water samples, a greater percentage of the phylum Actinobacteria was predominantly observed in pristine groundwater. In addition, we identified 48 shared operational taxonomic units (OTUs) with seawater, among which the high salinity groundwater sample shared a greater number of bacterial species with seawater (6.7%). In contrast, other groundwater samples shared less than 0.5%. Our results suggest that NGS-based microbial community analysis of groundwater may be a useful tool for monitoring groundwater quality and detect seawater intrusion. This technology may also provide additional insights in understanding hydrological dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Calculation of tritium release from reactor's stack

    International Nuclear Information System (INIS)

    Akhadi, M.

    1996-01-01

    Method for calculation of tritium release from nuclear to environment has been discussed. Part of gas effluent contain tritium in form of HTO vapor released from reactor's stack was sampled using silica-gel. The silica-gel was put in the water to withdraw HTO vapor absorbed by silica-gel. Tritium concentration in the water was measured by liquid scintillation counter of Aloka LSC-703. Tritium concentration in the gas effluent and total release of tritium from reactor's stack during certain interval time were calculated using simple mathematic formula. This method has examined for calculation of tritium release from JRR-3M's stack of JAERI, Japan. From the calculation it was obtained the value of tritium release as much as 4.63 x 10 11 Bq during one month. (author)

  14. Diabetes Intrusiveness and Wellness among Elders: A Test of the Illness Intrusiveness Model

    Science.gov (United States)

    DeCoster, Vaughn A.; Killian, Tim; Roessler, Richard T.

    2013-01-01

    Using data collected from 147 predominately African American senior citizens in Arkansas, this research examined the Illness Intrusiveness Model (Devins, 1991; Devins & Seland, 1987; Devins & Shnek, 2000) to explain variations in wellness specifically related to participants' adaptation to diabetes. The theoretical model hypothesized that…

  15. Numerical modeling and sensitivity analysis of seawater intrusion in a dual-permeability coastal karst aquifer with conduit networks

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2018-01-01

    Full Text Available Long-distance seawater intrusion has been widely observed through the subsurface conduit system in coastal karst aquifers as a source of groundwater contaminant. In this study, seawater intrusion in a dual-permeability karst aquifer with conduit networks is studied by the two-dimensional density-dependent flow and transport SEAWAT model. Local and global sensitivity analyses are used to evaluate the impacts of boundary conditions and hydrological characteristics on modeling seawater intrusion in a karst aquifer, including hydraulic conductivity, effective porosity, specific storage, and dispersivity of the conduit network and of the porous medium. The local sensitivity analysis evaluates the parameters' sensitivities for modeling seawater intrusion, specifically in the Woodville Karst Plain (WKP. A more comprehensive interpretation of parameter sensitivities, including the nonlinear relationship between simulations and parameters, and/or parameter interactions, is addressed in the global sensitivity analysis. The conduit parameters and boundary conditions are important to the simulations in the porous medium because of the dynamical exchanges between the two systems. The sensitivity study indicates that salinity and head simulations in the karst features, such as the conduit system and submarine springs, are critical for understanding seawater intrusion in a coastal karst aquifer. The evaluation of hydraulic conductivity sensitivity in the continuum SEAWAT model may be biased since the conduit flow velocity is not accurately calculated by Darcy's equation as a function of head difference and hydraulic conductivity. In addition, dispersivity is no longer an important parameter in an advection-dominated karst aquifer with a conduit system, compared to the sensitivity results in a porous medium aquifer. In the end, the extents of seawater intrusion are quantitatively evaluated and measured under different scenarios with the variabilities of

  16. When Intrusion Detection Meets Blockchain Technology: A Review

    DEFF Research Database (Denmark)

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju

    2018-01-01

    developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness of such detection systems. In recent years, blockchain technology has shown its adaptability in many...... fields such as supply chain management, international payment, interbanking and so on. As blockchain can protect the integrity of data storage and ensure process transparency, it has a potential to be applied to intrusion detection domain. Motivated by this, this work provides a review regarding...... the intersection of IDSs and blockchains. In particular, we introduce the background of intrusion detection and blockchain, discuss the applicability of blockchain to intrusion detection, and identify open challenges in this direction....

  17. The vaporization enthalpies and vapor pressures of fatty acid methyl esters C18, C21 to C23, and C25 to C29 by correlation - gas chromatography

    International Nuclear Information System (INIS)

    Chickos, James S.; Zhao Hui; Nichols, Gary

    2004-01-01

    Vapor pressures and vaporization enthalpies for methyl heptadecanoate and methyl heneicosanoate to methyl octacosanoate exclusive of methyl tricosanoate are evaluated as a function of temperature over the temperature range T = 298.15-450 K by correlation gas chromatography. The results are generated by an extrapolative process using literature values for methyl tetradecanoate to methyl eicosanoate as standards. Relationships for calculating vapor pressures of the title compounds from T = 298.15 to 450 K are provided. Experimental fusion enthalpies are also reported for the methyl esters from methyl hexadecanoate to methyl octacosanoate excluding methyl tridecanoate. Vaporization enthalpies and fusion enthalpies adjusted for temperature to T = 298.15 K are combined to provide sublimation enthalpies. The results are compared to available literature values. A rationale for the linear relationship observed between enthalpies of vaporization and enthalpies of transfer from solution to the vapor is also provided

  18. Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study

    Science.gov (United States)

    Błachnio, Agata; Przepiorka, Aneta; Benvenuti, Martina; Cannata, Davide; Ciobanu, Adela M.; Senol-Durak, Emre; Durak, Mithat; Giannakos, Michail N.; Mazzoni, Elvis; Pappas, Ilias O.; Popa, Camelia; Seidman, Gwendolyn; Yu, Shu; Wu, Anise M. S.; Ben-Ezra, Menachem

    2016-01-01

    The increase in the number of users of social networking sites (SNS) has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Inventory, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively) and low context (positively); of the personality variables, conscientiousness, and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of SNS. PMID:27994566

  19. Cultural and Personality Predictors of Facebook Intrusion: A Cross-Cultural Study

    Directory of Open Access Journals (Sweden)

    Agata Błachnio

    2016-12-01

    Full Text Available The increase in the number of users of social networking sites has inspired intense efforts to determine intercultural differences between them. The main aim of the study was to investigate the cultural and personal predictors of Facebook intrusion. A total of 2,628 Facebook users from eight countries took part in the study. The Facebook Intrusion Questionnaire, the Ten-Item Personality Measure, and the Singelis Scale were used. We found that two variables related to Country were significantly related to Facebook intrusion: uniqueness (negatively and low context (positively; of the personality variables, conscientiousness and emotional stability were negatively related to the dependent variable of Facebook intrusion across different countries, which may indicate the universal pattern of Facebook intrusion. The results of the study will contribute to the international debate on the phenomenon of social networking sites (SNS.

  20. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  1. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  2. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  3. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  4. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  5. An Improved Computational Method for the Calculation of Mixture Liquid-Vapor Critical Points

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis; Jia, Wenlong; Li, Changjun

    2014-05-01

    Knowledge of critical points is important to determine the phase behavior of a mixture. This work proposes a reliable and accurate method in order to locate the liquid-vapor critical point of a given mixture. The theoretical model is developed from the rigorous definition of critical points, based on the SRK equation of state (SRK EoS) or alternatively, on the PR EoS. In order to solve the resulting system of nonlinear equations, an improved method is introduced into an existing Newton-Raphson algorithm, which can calculate all the variables simultaneously in each iteration step. The improvements mainly focus on the derivatives of the Jacobian matrix, on the convergence criteria, and on the damping coefficient. As a result, all equations and related conditions required for the computation of the scheme are illustrated in this paper. Finally, experimental data for the critical points of 44 mixtures are adopted in order to validate the method. For the SRK EoS, average absolute errors of the predicted critical-pressure and critical-temperature values are 123.82 kPa and 3.11 K, respectively, whereas the commercial software package Calsep PVTSIM's prediction errors are 131.02 kPa and 3.24 K. For the PR EoS, the two above mentioned average absolute errors are 129.32 kPa and 2.45 K, while the PVTSIM's errors are 137.24 kPa and 2.55 K, respectively.

  6. Non-intrusive refractometer sensor

    Indian Academy of Sciences (India)

    An experimental realization of a simple non-intrusive refractometer sensor .... and after amplification is finally read by a digital multimeter (Fluke make: 179 true ... To study the response of the present FO refractometer, propylene glycol has been ... values of all the samples were initially measured by Abbe's refractometer.

  7. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  8. U–Pb geochronology of the Eocene Kærven intrusive complex, East Greenland

    DEFF Research Database (Denmark)

    Þórarinsson, Sigurjón Böðvar; Holm, Paul Martin; Tappe, Sebatstian

    2016-01-01

    Several major tholeiitic (e.g. the Skaergaard intrusion) and alkaline (e.g. the Kangerlussuaq Syenite) intrusive complexes of the North Atlantic Large Igneous Province are exposed along the Kangerlussuaq Fjord in East Greenland. The Kærven Complex forms a satellite intrusion to the Kangerlussuaq ...

  9. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    Science.gov (United States)

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  10. A survey of intrusion detection techniques in Cloud

    OpenAIRE

    Modi, C.; Patel, D.; Patel, H.; Borisaniya, B.; Patel, A.; Rajarajan, M.

    2013-01-01

    Cloud computing provides scalable, virtualized on-demand services to the end users with greater flexibility and lesser infrastructural investment. These services are provided over the Internet using known networking protocols, standards and formats under the supervision of different managements. Existing bugs and vulnerabilities in underlying technologies and legacy protocols tend to open doors for intrusion. This paper, surveys different intrusions affecting availability, confidentiality and...

  11. Some reflections on human intrusion into a nuclear waste repository

    International Nuclear Information System (INIS)

    Westerlind, M.

    2002-01-01

    This paper summarises some of the Swedish nuclear regulators' requirements and views related to intrusion into a repository for spent nuclear fuel, in the post-closure phase. The focus is however on experiences from the interaction with various stakeholders in the Swedish process for siting a repository. It is recognised that intrusion is not a major concern but that it is regularly raised in the debate, often in connection with issues related to retrievability. It is pointed out that more attention should be paid to the repository performance after an intrusion event, both in safety assessments and in communication with stakeholders, and not only address the immediate impacts to intruders. It is believed that international co-operation would be useful for developing methodologies for defining intrusion scenarios. (author)

  12. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  13. Uranium/water vapor reactions in gaseous atmospheres

    International Nuclear Information System (INIS)

    Jackson, R.L.; Condon, J.B.; Steckel, L.M.

    1977-07-01

    Experiments have been performed to determine the effect of varying humidities, gaseous atmospheres, and temperatures on the uranium/water vapor reaction. A balance, which allowed continuous in-system weighings, was used to determine the rates of the uranium/water vapor reactions at water vapor pressures of 383, 1586, and 2853 Pa and at temperatures of 80, 100, and 150 0 C in atmospheres of hydrogen, argon, or argon/oxygen mixtures. Based on rate data, the reactions were characterized as hydriding or nonhydriding. Hydriding reactions were found to be preferred in moist hydrogen systems at the higher temperatures and the lower humidities. The presence of hydrogen in hydriding systems was found to initially inhibit the reaction, but causes an acceleration of the rate in the final stages. In general, reaction rates of hydriding systems approached the hydriding rates calculated and observed in dry hydrogen. Hydriding and nonhydriding reaction rates showed a positive correlation to temperature and water vapor pressure. Final reaction rates in moist argon/oxygen mixtures of 1.93, 4.57, and 9.08 mole percent oxygen were greater than the rates observed in moist hydrogen or argon. Final reaction rates were negatively correlated to the oxygen concentration

  14. Multicomponent droplet vaporization in a convecting environment

    International Nuclear Information System (INIS)

    Megaridis, C.M.; Sirignano, W.A.

    1990-01-01

    In this paper a parametric study of the fundamental exchange processes for energy, mass and momentum between the liquid and gas phases of multicomponent liquid vaporizing droplets is presented. The model, which examines an isolated, vaporizing, multicomponent droplet in an axisymmetric, convecting environment, considers the different volatilities of the liquid components, the alteration of the liquid-phase properties due to the spatial/temporal variations of the species concentrations and also the effects of multicomponent diffusion. In addition, the model accounts for variable thermophysical properties, surface blowing and droplet surface regression due to vaporization, transient droplet heating with internal liquid circulation, and finally droplet deceleration with respect to the free flow due to drag. The numerical calculation employs finite-difference techniques and an iterative solution procedure that provides time-varying spatially-resolved data for both phases. The effects of initial droplet composition, ambient temperature, initial Reynolds number (based on droplet diameter), and volatility differential between the two liquid components are investigated for a liquid droplet consisting of two components with very different volatilities. It is found that mixtures with higher concentration of the less volatile substance actually vaporize faster on account of intrinsically higher liquid heating rates

  15. Vapor Intrusion from Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment

    Science.gov (United States)

    2014-07-01

    into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of

  16. Association between intrusive negative autobiographical memories and depression: A meta-analytic investigation.

    Science.gov (United States)

    Mihailova, Stella; Jobson, Laura

    2018-02-23

    The study investigated several associations between depression and intrusive negative autobiographical memories. A systematic literature search identified 23 eligible studies (N = 2,582), which provided 59 effect sizes. Separate meta-analyses indicated that depression was moderately, positively associated with intrusive memory frequency, memory distress, maladaptive memory appraisals, memory avoidance, and memory rumination. Intrusive memory vividness was not significantly associated with depression. There were insufficient data to examine the relationship between depression and memory vantage perspective. Between-study heterogeneity was high for intrusive memory frequency and memory avoidance, and the percentage of females in studies significantly moderated the relationship between these variables and depression. An additional exploratory meta-analysis (3 studies; N = 257) indicated that intrusive memories were experienced more frequently by those with posttraumatic stress disorder than those with depression. Overall, the findings suggest that intrusive memories warrant clinical attention as they may contribute to the maintenance of depressive symptomatology. Copyright © 2018 John Wiley & Sons, Ltd.

  17. A Neuro-genetic Based Short-term Forecasting Framework for Network Intrusion Prediction System

    Institute of Scientific and Technical Information of China (English)

    Siva S. Sivatha Sindhu; S. Geetha; M. Marikannan; A. Kannan

    2009-01-01

    Information systems are one of the most rapidly changing and vulnerable systems, where security is a major issue. The number of security-breaking attempts originating inside organizations is increasing steadily. Attacks made in this way, usually done by "authorized" users of the system, cannot be immediately traced. Because the idea of filtering the traffic at the entrance door, by using firewalls and the like, is not completely successful, the use of intrusion detection systems should be considered to increase the defense capacity of an information system. An intrusion detection system (IDS) is usually working in a dynamically changing environment, which forces continuous tuning of the intrusion detection model, in order to maintain sufficient performance. The manual tuning process required by current IDS depends on the system operators in working out the tuning solution and in integrating it into the detection model. Furthermore, an extensive effort is required to tackle the newly evolving attacks and a deep study is necessary to categorize it into the respective classes. To reduce this dependence, an automatically evolving anomaly IDS using neuro-genetic algorithm is presented. The proposed system automatically tunes the detection model on the fly according to the feedback provided by the system operator when false predictions are encountered. The system has been evaluated using the Knowledge Discovery in Databases Conference (KDD 2009) intrusion detection dataset. Genetic paradigm is employed to choose the predominant features, which reveal the occurrence of intrusions. The neuro-genetic IDS (NGIDS) involves calculation of weightage value for each of the categorical attributes so that data of uniform representation can be processed by the neuro-genetic algorithm. In this system unauthorized invasion of a user are identified and newer types of attacks are sensed and classified respectively by the neuro-genetic algorithm. The experimental results obtained in this

  18. Intensively exploited Mediterranean aquifers: resilience and proximity to critical points of seawater intrusion

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2013-11-01

    We investigate here seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta Aquifer, the Israel Coastal Aquifer and the Cyprus Akrotiri Aquifer. Using a generalized analytical sharp-interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future sea intrusion forcings. We identify two different critical limits of sea intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete sea intrusion upto the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that sea intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that the advance of seawater currently seriously threatens the Nile Delta Aquifer and the Israel Coastal Aquifer. The Cyprus Akrotiri Aquifer is currently somewhat less threatened by increased seawater intrusion.

  19. Intensively exploited Mediterranean aquifers: resilience to seawater intrusion and proximity to critical thresholds

    Science.gov (United States)

    Mazi, K.; Koussis, A. D.; Destouni, G.

    2014-05-01

    We investigate seawater intrusion in three prominent Mediterranean aquifers that are subject to intensive exploitation and modified hydrologic regimes by human activities: the Nile Delta, Israel Coastal and Cyprus Akrotiri aquifers. Using a generalized analytical sharp interface model, we review the salinization history and current status of these aquifers, and quantify their resilience/vulnerability to current and future seawater intrusion forcings. We identify two different critical limits of seawater intrusion under groundwater exploitation and/or climatic stress: a limit of well intrusion, at which intruded seawater reaches key locations of groundwater pumping, and a tipping point of complete seawater intrusion up to the prevailing groundwater divide of a coastal aquifer. Either limit can be reached, and ultimately crossed, under intensive aquifer exploitation and/or climate-driven change. We show that seawater intrusion vulnerability for different aquifer cases can be directly compared in terms of normalized intrusion performance curves. The site-specific assessments show that (a) the intruding seawater currently seriously threatens the Nile Delta aquifer, (b) in the Israel Coastal aquifer the sharp interface toe approaches the well location and (c) the Cyprus Akrotiri aquifer is currently somewhat less threatened by increased seawater intrusion.

  20. Hazard Models From Periodic Dike Intrusions at Kı¯lauea Volcano, Hawai`i

    Science.gov (United States)

    Montgomery-Brown, E. K.; Miklius, A.

    2016-12-01

    The persistence and regular recurrence intervals of dike intrusions in the East Rift Zone (ERZ) of Kı¯lauea Volcano lead to the possibility of constructing a time-dependent intrusion hazard model. Dike intrusions are commonly observed in Kı¯lauea Volcano's ERZ and can occur repeatedly in regions that correlate with seismic segments (sections of rift seismicity with persistent definitive lateral boundaries) proposed by Wright and Klein (USGS PP1806, 2014). Five such ERZ intrusions have occurred since 1983 with inferred locations downrift of the bend in Kı¯lauea's ERZ, with the first (1983) being the start of the ongoing ERZ eruption. The ERZ intrusions occur on one of two segments that are spatially coincident with seismic segments: Makaopuhi (1993 and 2007) and Nāpau (1983, 1997, and 2011). During each intrusion, the amount of inferred dike opening was between 2 and 3 meters. The times between ERZ intrusions for same-segment pairs are all close to 14 years: 14.07 (1983-1997), 14.09 (1997-2011), and 13.95 (1993-2007) years, with the Nāpau segment becoming active about 3.5 years after the Makaopuhi segment in each case. Four additional upper ERZ intrusions are also considered here. Dikes in the upper ERZ have much smaller opening ( 10 cm), and have shorter recurrence intervals of 8 years with more variability. The amount of modeled dike opening during each of these events roughly corresponds to the amount of seaward south flank motion and deep rift opening accumulated in the time between events. Additionally, the recurrence interval of 14 years appears to be unaffected by the magma surge of 2003-2007, suggesting that flank motion, rather than magma supply, could be a controlling factor in the timing and periodicity of intrusions. Flank control over the timing of magma intrusions runs counter to the historical research suggesting that dike intrusions at Kı¯lauea are driven by magma overpressure. This relatively free sliding may have resulted from decreased

  1. Automated electronic intruder simulator for evaluation of ultrasonic intrusion detectors

    International Nuclear Information System (INIS)

    1979-01-01

    An automated electronic intruder simulator for testing ultrasonic intrusion detectors is described. This simulator is primarily intended for use in environmental chambers to determine the effects of temperature and humidity on the operation of ultrasonic intrusion detectors

  2. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  3. Resilient Control and Intrusion Detection for SCADA Systems

    Science.gov (United States)

    2014-05-01

    Lowe. The myths and facts behind cyber security risks for industrial control systems . VDE Congress, 2004. [45] I. S. C37.1-1994. Ieee standard...Resilient Control and Intrusion Detection for SCADA Systems Bonnie Xia Zhu Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Resilient Control and Intrusion Detection for SCADA Systems 5a. CONTRACT

  4. Multisensor Fusion for Intrusion Detection and Situational Awareness

    OpenAIRE

    Hallstensen, Christoffer V

    2017-01-01

    Cybercrime damage costs the world several trillion dollars annually. And al-though technical solutions to protect organizations from hackers are being con-tinuously developed, criminals learn fast to circumvent them. The question is,therefore, how to create leverage to protect an organization by improving in-trusion detection and situational awareness? This thesis seeks to contribute tothe prior art in intrusion detection and situational awareness by using a multi-sensor data fusion...

  5. When Intrusion Detection Meets Blockchain Technology: A Review

    OpenAIRE

    Meng, Weizhi; Tischhauser, Elmar Wolfgang; Wang, Qingju; Wang, Yu; Han, Jinguang

    2018-01-01

    With the purpose of identifying cyber threats and possible incidents, intrusion detection systems (IDSs) are widely deployed in various computer networks. In order to enhance the detection capability of a single IDS, collaborative intrusion detection networks (or collaborative IDSs) have been developed, which allow IDS nodes to exchange data with each other. However, data and trust management still remain two challenges for current detection architectures, which may degrade the effectiveness ...

  6. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  7. Dike intrusions during rifting episodes obey scaling relationships similar to earthquakes

    Science.gov (United States)

    L., Passarelli; E., Rivalta; A., Shuler

    2014-01-01

    As continental rifts evolve towards mid-ocean ridges, strain is accommodated by repeated episodes of faulting and magmatism. Discrete rifting episodes have been observed along two subaerial divergent plate boundaries, the Krafla segment of the Northern Volcanic Rift Zone in Iceland and the Manda-Hararo segment of the Red Sea Rift in Ethiopia. In both cases, the initial and largest dike intrusion was followed by a series of smaller intrusions. By performing a statistical analysis of these rifting episodes, we demonstrate that dike intrusions obey scaling relationships similar to earthquakes. We find that the dimensions of dike intrusions obey a power law analogous to the Gutenberg-Richter relation, and the long-term release of geodetic moment is governed by a relationship consistent with the Omori law. Due to the effects of magma supply, the timing of secondary dike intrusions differs from that of the aftershocks. This work provides evidence of self-similarity in the rifting process. PMID:24469260

  8. Molecular composition of vapor in the NaF-ZrF4 system

    International Nuclear Information System (INIS)

    Korenev, Yu.M.; Sidorov, L.N.; Rykov, A.N.; Novoselova, A.V.

    1980-01-01

    The NaF-ZrF 4 system is studied. It is established that Na 2 ZrF 6 , NaZrF 5 , (NaZrF 5 ) 2 , NaZr 2 F 9 complex molecules are present in the saturated vapor alongside with pure components. Partial pressures of all vapor components are determined. The values of partial pressure and evaporation heat have been used to calculate the vapor composition above the system; T-x and P-T projections of the phase diagram of the NaF-ZrF 4 system are plotted

  9. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  10. Petroleum Release Assessment and Impacts of Weather Extremes

    Science.gov (United States)

    Contaminated ground water and vapor intrusion are two major exposure pathways of concern at petroleum release sites. EPA has recently developed a model for petroleum vapor intrusion, called PVIScreen, which incorporates variability and uncertainty in input parameters. This ap...

  11. Data Fusion for Network Intrusion Detection: A Review

    Directory of Open Access Journals (Sweden)

    Guoquan Li

    2018-01-01

    Full Text Available Rapid progress of networking technologies leads to an exponential growth in the number of unauthorized or malicious network actions. As a component of defense-in-depth, Network Intrusion Detection System (NIDS has been expected to detect malicious behaviors. Currently, NIDSs are implemented by various classification techniques, but these techniques are not advanced enough to accurately detect complex or synthetic attacks, especially in the situation of facing massive high-dimensional data. Besides, the inherent defects of NIDSs, namely, high false alarm rate and low detection rate, have not been effectively solved. In order to solve these problems, data fusion (DF has been applied into network intrusion detection and has achieved good results. However, the literature still lacks thorough analysis and evaluation on data fusion techniques in the field of intrusion detection. Therefore, it is necessary to conduct a comprehensive review on them. In this article, we focus on DF techniques for network intrusion detection and propose a specific definition to describe it. We review the recent advances of DF techniques and propose a series of criteria to compare their performance. Finally, based on the results of the literature review, a number of open issues and future research directions are proposed at the end of this work.

  12. Efficient cooling of rocky planets by intrusive magmatism

    Science.gov (United States)

    Lourenço, Diogo L.; Rozel, Antoine B.; Gerya, Taras; Tackley, Paul J.

    2018-05-01

    The Earth is in a plate tectonics regime with high surface heat flow concentrated at constructive plate boundaries. Other terrestrial bodies that lack plate tectonics are thought to lose their internal heat by conduction through their lids and volcanism: hotter planets (Io and Venus) show widespread volcanism whereas colder ones (modern Mars and Mercury) are less volcanically active. However, studies of terrestrial magmatic processes show that less than 20% of melt volcanically erupts, with most melt intruding into the crust. Signatures of large magmatic intrusions are also found on other planets. Yet, the influence of intrusive magmatism on planetary cooling remains unclear. Here we use numerical magmatic-thermo-mechanical models to simulate global mantle convection in a planetary interior. In our simulations, warm intrusive magmatism acts to thin the lithosphere, leading to sustained recycling of overlying crustal material and cooling of the mantle. In contrast, volcanic eruptions lead to a thick lithosphere that insulates the upper mantle and prevents efficient cooling. We find that heat loss due to intrusive magmatism can be particularly efficient compared to volcanic eruptions if the partitioning of heat-producing radioactive elements into the melt phase is weak. We conclude that the mode of magmatism experienced by rocky bodies determines the thermal and compositional evolution of their interior.

  13. Effects of igneous intrusions on the petroleum system: a review

    NARCIS (Netherlands)

    Senger, Kim; Millett, John; Planke, Sverre; Ogata, Kei; Eide, Christian Haug; Festøy, Marte; Galland, Olivier; Jerram, Dougal A.

    2017-01-01

    Igneous intrusions feature in many sedimentary basins where hydrocarbon exploration and production is continuing. Owing to distinct geophysical property contrasts with siliciclastic host rocks (e.g., higher Vp, density and resistivity than host rocks), intrusions can be easily delineated within data

  14. Psychological Intrusion – An Overlooked Aspect of Dental Fear

    Directory of Open Access Journals (Sweden)

    Helen R. Chapman

    2018-04-01

    Full Text Available Dental fear/anxiety is a widely recognised problem affecting a large proportion of the population. It can result in avoidance and/or difficulty accepting dental care. We believe that psychological intrusion may play a role in the aetiology and maintenance of dental fear for at least some individuals. In this narrative review we will take a developmental perspective in order to understand its impact across the lifespan. We will consider the nature of ‘self,’ parenting styles, the details of intrusive parenting or parental psychological control, and briefly touch upon child temperament and parental anxiety. Finally, we draw together the supporting (largely unrecognised evidence available in the dental literature. We illustrate the paper with clinical examples and discuss possibly effective ways of addressing the problem. We conclude that psychological intrusion appears to play an important role in dental fear, for at least some individuals, and we call for detailed research into the extent and exact nature of the problem. A simple means of identifying individuals who are vulnerable to psychological intrusion would be useful for dentists.

  15. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  16. How do organic vapors contribute to new-particle formation?

    CERN Document Server

    Donahue, Neil M; Chuang, Wayne; Riipinen, Ilona; Riccobono, Francesco; Schobesberger, Siegfried; Dommen, Josef; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R; Vehkamaki, Hanna

    2013-01-01

    Highly oxidised organic vapors can effectively stabilize sulphuric acid in heteronuclear clusters and drive new-particle formation. We present quantum chemical calculations of cluster stability, showing that multifunctional species can stabilize sulphuric acid and also present additional polar functional groups for subsequent cluster growth. We also model the multi-generation oxidation of vapors associated with secondary organic aerosol formation using a two-dimensional volatility basis set. The steady-state saturation ratios and absolute concentrations of extremely low volatility products are sufficient to drive new-particle formation with sulphuric acid at atmospherically relevant rates.

  17. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  18. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  19. Effect of Groundwater Pumping on Seawater Intrusion in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    M.M. Sherif

    2002-06-01

    Full Text Available Many aquifers around the globe are located in coastal areas and are thus subjected to the seawater intrusion phenomenon. The growth of population in coastal areas and the conjugate increase in human, agricultural, and industrial activities have imposed an increasing demand for freshwater. This increase in water demand is often covered by extensive pumping of fresh groundwater, causing subsequent lowering of the water table (or piezometric head and upsetting the dynamic balance between freshwater and saline water bodies. The classical result of such a development is seawater intrusion. This paper presents a review for the seawater intrusion phenomenon in coastal aquifers. The effect of pumping activities on the seawater intrusion in the Nile Delta aquifer of Egypt is investigated. It was concluded that any additional pumping should be located in the middle Delta and avoided in the eastern and western sides of the Delta.

  20. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  1. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  2. Conjunctive Management of Multi-Aquifer System for Saltwater Intrusion Mitigation

    Science.gov (United States)

    Tsai, F. T. C.; Pham, H. V.

    2015-12-01

    Due to excessive groundwater withdrawals, many water wells in Baton Rouge, Louisiana experience undesirable chloride concentration because of saltwater intrusion. The study goal is to develop a conjunctive management framework that takes advantage of the Baton Rouge multi-aquifer system to mitigate saltwater intrusion. The conjunctive management framework utilizes several hydraulic control techniques to mitigate saltwater encroachment. These hydraulic control approaches include pumping well relocation, freshwater injection, saltwater scavenging, and their combinations. Specific objectives of the study are: (1) constructing scientific geologic architectures of the "800-foot" sand, the "1,000-foot" sand, the "1,200-foot" sand, the "1,500-foot" sand, the "1,700-foot" sand, and the "2,000-foot" sand, (2) developing scientific saltwater intrusion models for these sands. (3) using connector wells to draw native groundwater from one sand and inject to another sand to create hydraulic barriers to halt saltwater intrusion, (4) using scavenger wells or well couples to impede saltwater intrusion progress and reduce chloride concentration in pumping wells, and (5) reducing cones of depression by relocating and dispersing pumping wells to different sands. The study utilizes optimization techniques and newest LSU high performance computing (HPC) facilities to derive solutions. The conjunctive management framework serves as a scientific tool to assist policy makers to solve the urgent saltwater encroachment issue in the Baton Rouge area. The research results will help water companies as well as industries in East Baton Rouge Parish and neighboring parishes by reducing their saltwater intrusion threats, which in turn would sustain Capital Area economic development.

  3. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  4. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  5. Perimeter intrusion sensors

    International Nuclear Information System (INIS)

    Eaton, M.J.

    1977-01-01

    To obtain an effective perimeter intrusion detection system requires careful sensor selection, procurement, and installation. The selection process involves a thorough understanding of the unique site features and how these features affect the performance of each type of sensor. It is necessary to develop procurement specifications to establish acceptable sensor performance limits. Careful explanation and inspection of critical installation dimensions is required during on-site construction. The implementation of these activities at a particular site is discussed

  6. Water vapor radiative effects on short-wave radiation in Spain

    Science.gov (United States)

    Vaquero-Martínez, Javier; Antón, Manuel; Ortiz de Galisteo, José Pablo; Román, Roberto; Cachorro, Victoria E.

    2018-06-01

    In this work, water vapor radiative effect (WVRE) is studied by means of the Santa Barbara's Disort Radiative Transfer (SBDART) model, fed with integrated water vapor (IWV) data from 20 ground-based GPS stations in Spain. Only IWV data recorded during cloud-free days (selected using daily insolation data) were used in this study. Typically, for SZA = 60.0 ± 0.5° WVRE values are around - 82 and - 66 Wm-2 (first and third quartile), although it can reach up - 100 Wm-2 or decrease to - 39 Wm-2. A power dependence of WVRE on IWV and cosine of solar zenith angle (SZA) was found by an empirical fit. This relation is used to determine the water vapor radiative efficiency (WVEFF = ∂WVRE/∂IWV). Obtained WVEFF values range from - 9 and 0 Wm-2 mm-1 (- 2.2 and 0% mm-1 in relative terms). It is observed that WVEFF decreases as IWV increases, but also as SZA increases. On the other hand, when relative WVEFF is calculated from normalized WVRE, an increase of SZA results in an increase of relative WVEFF. Heating rates were also calculated, ranging from 0.2 Kday-1 to 1.7 Kday-1. WVRE was also calculated at top of atmosphere, where values ranged from 4 Wm-2 to 37 Wm-2.

  7. Forecast, observation and modelling of a deep stratospheric intrusion event over Europe

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2003-01-01

    Full Text Available A wide range of measurements was carried out in central and southeastern Europe within the framework of the EU project STACCATO (Influence of Stratosphere-Troposphere Exchange in a Changing Climate on Atmospheric Transport and Oxidation Capacity with the principle goal to create a comprehensive data set on stratospheric air intrusions into the troposphere along a rather frequently observed pathway over central Europe from the North Sea to the Mediterranean Sea. The measurements were based on predictions by suitable quasi-operational trajectory calculations using ECMWF forecast data. A predicted deep Stratosphere to Troposphere Transport (STT event, encountered during the STACCATO period on 20-21 June 2001, was followed by the measurements network almost from its inception. Observations provide evidence that the intrusion affected large parts of central and southeastern Europe. Especially, the ozone lidar observations on 20-21 June 2001 at Garmisch-Partenkirchen, Germany captured the evolution of two marked tongues of high ozone with the first one descending to nearly 2 km, thus providing an excellent data set for model intercomparisons and validation. In addition, for the first time to our knowledge concurrent surface measurements of the cosmogenic radionuclides 10Be and 7Be and their ratio 10Be/7Be are presented together as stratospheric tracers in a case study of a stratospheric intrusion. The ozone tracer columns calculated with the FLEXPART model were found to be in good agreement with water vapour satellite images, capturing the evolution of the observed dry streamers of stratospheric origin. Furthermore, the time-height cross section of ozone tracer simulated with FLEXPART over Garmisch-Partenkirchen captures many details of the evolution of the two observed high-ozone filaments measured with the IFU lidar, thus demonstrating the considerable progress in model simulations. Finally, the modelled ozone (operationally available since October

  8. Intrusion Detection amp Prevention Systems - Sourcefire Snort

    Directory of Open Access Journals (Sweden)

    Rajesh Vuppala

    2015-08-01

    Full Text Available Information security is a challenging issue for all business organizations today amidst increasing cyber threats. While there are many alternative intrusion detection amp prevention systems available to choose from selecting the best solution to implement to detect amp prevent cyber-attacks is a difficult task. The best solution is of the one that gets the best reviews and suits the organizations needs amp budget. In this review paper we summarize various classes of intrusion detection and prevention systems compare features of alternative solutions and make recommendation for implementation of one as the best solution for business organization in Fiji.

  9. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  10. Intrusive and Non-Intrusive Load Monitoring (A Survey

    Directory of Open Access Journals (Sweden)

    Marco Danilo Burbano Acuña

    2015-05-01

    Full Text Available There is not discussion about the need of energyconservation, it is well known that energy resources are limitedmoreover the global energy demands will double by the end of2030, which certainly will bring implications on theenvironment and hence to all of us.Non-Intrusive load monitoring (NILM is the process ofrecognize electrical devices and its energy consumption basedon whole home electric signals, where this aggregated load datais acquired from a single point of measurement outside thehousehold. The aim of this approach is to get optimal energyconsumption and avoid energy wastage. Intrusive loadmonitoring (ILM is the process of identify and locate singledevices through the use of sensing systems to support control,monitor and intervention of such devices. The aim of thisapproach is to offer a base for the development of importantapplications for remote and automatic intervention of energyconsumption inside buildings and homes as well. For generalpurposes this paper states a general framework of NILM andILM approaches.Appliance discerns can be tackled using approaches fromdata mining and machine learning, finding out the techniquesthat fit the best this requirements, is a key factor for achievingfeasible and suitable appliance load monitoring solutions. Thispaper presents common and interesting methods used.Privacy concerns have been one of the bigger obstacles forimplementing a widespread adoption of these solutions; despitethis fact, developed countries like those inside the EU and theUK have established a deadline for the implementation ofsmart meters in the whole country, whereas USA governmentstill struggles with the acceptance of this solution by itscitizens.The implementation of security over these approachesalong with fine-grained energy monitoring would lead to abetter public agreement of these solutions and hence a fasteradoption of such approaches. This paper reveals a lack ofsecurity over these approaches with a real scenario.

  11. Scoping calculation of nuclides migration in engineering barrier system for effect of volume expansion due to overpack corrosion and intrusion of the buffer material

    International Nuclear Information System (INIS)

    Yoshita, Takashi; Ishihara, Yoshinao; Ishiguro, Katsuhiko; Ohi, Takao; Nakajima, Kunihiko

    1999-11-01

    Corrosion of the carbon steel overpack leads to a volume expansion since the specific gravity of corrosion products is smaller than carbon steel. The buffer material is compressed due to the corrosive swelling, reducing its thickness and porosity. On the other hand, buffer material may be extruded into fractures of the surrounding rock and this may lead to a deterioration of the planned functions of the buffer, including retardation of nuclides migration and colloid filtration. In this study, the sensitivity analyses for the effect of volume expansion and intrusion of the buffer material on nuclide migration in the engineering barrier system are carried out. The sensitivity analyses were performed on the decrease in the thickness of the buffer material in the radial direction caused by the corrosive swelling, and the change in the porosity and dry density of the buffer caused by both compacting due to corrosive swelling and intrusion of buffer material. As results, it was found the maximum release rates of relatively shorter half-life nuclides from the outside of the buffer material decreased for taking into account of a volume expansion due to overpack corrosion. On the other hand, the maximum release rates increased when the intrusion of buffer material was also taking into account. It was, however, the maximum release rates of longer half-life nuclides, such as Cs-137 and Np-237, were insensitive to the change of buffer material thickness, and porosity and dry density of buffer. (author)

  12. Volatilized tritiated water vapor in the vicinity of exposed tritium contaminated groundwater

    International Nuclear Information System (INIS)

    Dunn, D.L.; Carlton, B.; Hunter, C.; McAdams, T.

    1994-01-01

    Water vapor tritium concentrations in air above a known source of tritiated water can be estimated. Estimates should account for the mechanisms of evaporation and condensation at the water surface and water species exchange, and are typically applicable under a broad range of wind, temperature and humidity conditions. An estimate of volatilized tritium water vapor was made for a known outcropping of tritium contaminated groundwater at the Savannah River Site (SRS) old F-Area effluent stream. In order to validate this estimate and the associated dose calculation, sampling equipment was fabricated, tested, and installed at the effluent stream. The estimate and the dose calculation were confirmed using data from samples collected

  13. Review on assessment methodology for human intrusion into a repository for radioactive waste

    International Nuclear Information System (INIS)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon

    2016-01-01

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility

  14. Review on assessment methodology for human intrusion into a repository for radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Dong Keun; Kim, Jung Woo; Jeong, Jong Tae; Baik, Min Hoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-09-15

    An approach to assess inadvertent human intrusion into radwaste repository was proposed with the assumption that the intrusion occurs after a loss of knowledge of the hazardous nature of the disposal facility. The essential boundary conditions were derived on the basis of international recommendations, followed by an overall approach to deal with inadvertent human intrusion. The interrelation between societal factors, human intrusion scenarios, and protective measures is described to provide a concrete explanation of the approach, including the detailed procedures to set up the human intrusion scenario. The procedure for deriving protective measures is also explained with four steps, including how to derive a safety framework, general measures, potential measures, and eventual protective measures on the basis of stylized scenarios. It is expected that the approach proposed in this study will be used effectively to reduce the potential for and/or the consequences of human intrusion during the entire process of realizing a disposal facility.

  15. In-situ trainable intrusion detection system

    Energy Technology Data Exchange (ETDEWEB)

    Symons, Christopher T.; Beaver, Justin M.; Gillen, Rob; Potok, Thomas E.

    2016-11-15

    A computer implemented method detects intrusions using a computer by analyzing network traffic. The method includes a semi-supervised learning module connected to a network node. The learning module uses labeled and unlabeled data to train a semi-supervised machine learning sensor. The method records events that include a feature set made up of unauthorized intrusions and benign computer requests. The method identifies at least some of the benign computer requests that occur during the recording of the events while treating the remainder of the data as unlabeled. The method trains the semi-supervised learning module at the network node in-situ, such that the semi-supervised learning modules may identify malicious traffic without relying on specific rules, signatures, or anomaly detection.

  16. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium-plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric uranium-plutonium dioxide condensed phase (U/sub 1-y/Pu/sub y/)O/sub 2-x/, as functions of T, x, and y, have been calculated for 0.0 less than or equal to x less than or equal to 0.1, 0.0 less than or equal to y less than or equal to 0.3, and for the temperature range 2500 less than or equal to T less than or equal to 6000 K. The range of compositions and temperatures was limited to the region of interest to reactor safety analysis. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen potential model to obtain partial pressures of O, O 2 , Pu, PuO, PuO 2 , U, UO, UO 2 , and UO 3 as functions of T, x, and y

  17. Computational neural network regression model for Host based Intrusion Detection System

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Gautam

    2016-09-01

    Full Text Available The current scenario of information gathering and storing in secure system is a challenging task due to increasing cyber-attacks. There exists computational neural network techniques designed for intrusion detection system, which provide security to single machine and entire network's machine. In this paper, we have used two types of computational neural network models, namely, Generalized Regression Neural Network (GRNN model and Multilayer Perceptron Neural Network (MPNN model for Host based Intrusion Detection System using log files that are generated by a single personal computer. The simulation results show correctly classified percentage of normal and abnormal (intrusion class using confusion matrix. On the basis of results and discussion, we found that the Host based Intrusion Systems Model (HISM significantly improved the detection accuracy while retaining minimum false alarm rate.

  18. Neural Network Based Intrusion Detection System for Critical Infrastructures

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  19. NUMERICAL STUDY ON COOLING EFFECT POTENTIAL FROM VAPORIZER DEVICE OF LPG VEHICLE

    Directory of Open Access Journals (Sweden)

    MUJI SETIYO

    2017-07-01

    Full Text Available Over fuel consumption and increased exhaust gas due to the A/C system have become a serious problem. On the other hand, the LPG-fueled vehicle provides potential cooling from LPG phase changes in the vaporizer. Therefore, this article presents the potential cooling effect calculation from 1998 cm3 spark ignition (SI engine. A numerical study is used to calculate the potential heat absorption of latent and sensible heat transfer during LPG is expanded in the vaporizer. Various LPG compositions are also simulated through the engine speed range from 1000 to 6000 rpm. The result shows that the 1998 cm3 engine capable of generating the potential cooling effect of about 1.0 kW at 1000 rpm and a maximum of up to 1.8 kW at 5600 rpm. The potential cooling effects from the LPG vaporizer contributes about 26% to the A/C system works on eco-driving condition.

  20. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  1. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  2. Analogue modelling on the interaction between shallow magma intrusion and a strike-slip fault: Application on the Middle Triassic Monzoni Intrusive Complex (Dolomites, Italy)

    Science.gov (United States)

    Michail, Maria; Coltorti, Massimo; Gianolla, Piero; Riva, Alberto; Rosenau, Matthias; Bonadiman, Costanza; Galland, Olivier; Guldstrand, Frank; Thordén Haug, Øystein; Rudolf, Michael; Schmiedel, Tobias

    2017-04-01

    The southwestern part of the Dolomites in Northern Italy has undergone a short-lived Ladinian (Middle Triassic) tectono-magmatic event, forming a series of significant magmatic features. These intrusive bodies deformed and metamorphosed the Permo-Triassic carbonate sedimentary framework. In this study we focus on the tectono-magmatic evolution of the shallow shoshonitic Monzoni Intrusive Complex of this Ladinian event (ca 237 Ma), covering an area of 20 km^2. This NW-SE elongated intrusive structure (5 km length) shows an orogenic magmatic affinity which is in contrast to the tectonic regime at the time of intrusion. Strain analysis shows anorogenic transtensional displacement in accordance with the ENE-WSW extensional pattern in the central Dolomites during the Ladinian. Field interpretations led to a detailed description of the regional stratigraphic sequence and the structural features of the study area. However, the geodynamic context of this magmatism and the influence of the inherited strike-slip fault on the intrusion, are still in question. To better understand the specific natural prototype and the general mechanisms of magma emplacement in tectonically active areas, we performed analogue experiments defined by, but not limited to, first order field observations. We have conducted a systematic series of experiments in different tectonic regimes (static conditions, strike-slip, transtension). We varied the ratio of viscous to brittle stresses between magma and country rock, by injecting Newtonian fluids both of high and low viscosity (i.e. silicone oil/vegetable oil) into granular materials of varying cohesion (sand, silica flour, glass beads). The evolving surface and side view of the experiments were monitored by photogrammetric techniques for strain analyses and topographic evolution. In our case, the combination of the results from field and analogue experiments brings new insights regarding the tectonic regime, the geometry of the intrusive body, and

  3. Late Neoproterozoic layered mafic intrusion of arc-affinity in the Arabian-Nubian Shield: A case study from the Shahira layered mafic intrusion, southern Sinai, Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Azer, M.K.; Obeid, M.A.; Gahalan, H.A.

    2016-07-01

    The Shahira Layered Mafic Intrusion (SLMI), which belongs to the late Neoproterozoic plutonic rocks of the Arabian-Nubian Shield, is the largest layered mafic intrusion in southern Sinai. Field relations indicate that it is younger than the surrounding metamorphic rocks and older than the post-orogenic granites. Based on variation in mineral paragenesis and chemical composition, the SLMI is distinguished into pyroxene-hornblende gabbro, hornblende gabbro and diorite lithologies. The outer zone of the mafic intrusion is characterized by fine-grained rocks (chilled margin gabbroic facies), with typical subophitic and/or microgranular textures. Different rock units from the mafic intrusion show gradational boundaries in between. They show some indications of low grade metamorphism, where primary minerals are transformed into secondary ones. Geochemically, the Shahira layered mafic intrusion is characterized by enrichment in LILE relative to HFSE (e.g. Nb, P, Zr, Ti, Y), and LREE relative to HREE [(La/Lu)n= 4.75–8.58], with subalkaline characters. It has geochemical characteristics of pre-collisional arc-type environment. The geochemical signature of the investigated gabbros indicates partial melting of mantle wedge in a volcanic-arc setting, being followed by fractional crystallization and crustal contamination. Fractional crystallization processes played a vital role during emplacement of the Shahira intrusion and evolution of its mafic and intermediate rock units. The initial magma was evolved through crystallization of hornblende which was caused by slight increasing of H2O in the magma after crystallization of liquidus olivine, pyroxene and Ca-rich plagioclase. The gabbroic rocks crystallized at pressures between 4.5 and 6.9kbar (~15–20km depth). Whereas, the diorites yielded the lowest crystallization pressure between 1.0 to 4.4Kbar (<10km depth). Temperature was estimated by several geothermometers, which yielded crystallization temperatures ranging from 835

  4. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt); Modelado del ciclo de vapor de Laguna Verde con el codigo PEPSE a condiciones de potencia termica actualmente licenciada (2027 MWt)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J., E-mail: miguel.castaneda01@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Veracruz (Mexico)

    2011-11-15

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  5. The use of stochastic method for the calculation of liquid-vapor multicomponent equilibrium and the contribution of groups theory for the evaluation of fugacity coefficient; Uso de um metodo estocastico para calculo do equilibrio liquido-vapor de sistemas multicomponentes e avaliacao de uma abordagem por contribuicao de grupos para o calculo do coeficiente de fugacidade

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, Rafaelly L.; Oliveira, Jackson A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. de Engenharia Quimica; Rojas, Leopoldo O.A. [Centro de Tecnologias do Gas (CTGAS), Natal, RN (Brazil)

    2008-07-01

    This work has the main objective of evaluating the mathematical model developed by Jaubert e Mutelet (2004) in terms of the prediction capacity for the calculation of the vapor-liquid equilibrium (VLE). This model is based on Peng-Robinson equation of state (EOS) and it considers the binary interaction parameters (Kij(T)) estimated by a contribution group method and dependent of the temperature. The model proposed by Jaubert e Mutelet (2004), named PPR78 (Predictive Peng-Robinson), was implemented in this work by using the Fortran language. An optimization approach based on the stochastic algorithm of Particle Swarm Optimization (PSO) was used in order to calculate the vapor-liquid equilibrium. Simulations were accomplished for several binary systems and the results were concordant with some experimental data of the investigated systems. However, for some systems different from those presented by Jaubert and Mutelet (2004), the model presented low prediction capacity. In spite of the great demand of computational performance, the algorithm PSO demonstrated robustness during the calculation of VLE and it assured convergence in most of the cases. (author)

  6. User's guide to the repository intrusion risk evaluation code INTRUDE

    International Nuclear Information System (INIS)

    Nancarrow, D.J.; Thorne, M.C.

    1986-05-01

    The report, commissioned by the Department of the Environment as part of its radioactive waste management research programme, constitutes the user's guide to the repository intrusion risk evaluation code INTRUDE. It provides an explanation of the mathematical basis of the code, the database used and the operation of the code. INTRUDE is designed to facilitate the estimation of individual risks arising from the possibility of intrusion into shallow land burial facilities for radioactive wastes. It considers a comprehensive inventory of up to 65 long-lived radionuclides and produces risk estimates for up to 20 modes of intrusion and up to 50 times of evaluation. (author)

  7. Floor-fractured craters on the Moon: an evidence of past intrusive magmatic activity

    Science.gov (United States)

    Thorey, C.; Michaut, C.

    2012-12-01

    Floor-fractured lunar craters (FFC's) are a class of craters modified by post impact mechanisms. They are defined by distinctive shallow, often plate-like or convex floors, wide floor moats and radial, concentric and polygonal floor-fractures, suggesting an endogenous process of modification. Two main mechanisms have been proposed to account for such observations : 1) viscous relaxation and 2) spreading of magmatic intrusions at depth below the crater. Here, we propose to test the case of magmatic intrusions. We develop a model for the dynamics of magma spreading below an elastic crust with a crater-like topography and above a rigid horizontal surface. Results show first that the lithostatic pressure increase at the crater rim prevents the intrusion from spreading horizontally giving rise to intrusion thickening and to an uplift of the crater floor. Second, the deformation of the overlying crust exerts a strong control on the intrusion shape, and hence, on the nature of the crater floor uplift. As the deformation can only occur over a minimum flexural wavelength noted Λ, the intrusion shape shows a bell-shaped geometry for crater radius smaller than 3Λ, or a flat top with smooth edges for crater radius larger than 3Λ. For given crustal elastic properties, the crust flexural wavelength increases with the intrusion depth. Therefore, for a large intrusion depth or small crater size, we observe a convex uplift of the crater floor. On the contrary, for a small intrusion depth or large crater size, the crater floor undergoes a piston-like uplift and a circular moat forms just before the rim. The depth of the moat is controlled by the thickening of the crust at the crater rim. On the contrary to viscous relaxation models, our model is thus able to reproduce most of the features of FFC's, including small-scale features. Spreading of a magmatic intrusion at depth can thus be considered as the main endogenous mechanism at the origin of the deformations observed at FFC

  8. Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension

    Science.gov (United States)

    Magee, Craig; McDermott, Kenneth G.; Stevenson, Carl T. E.; Jackson, Christopher A.-L.

    2014-05-01

    Continental rifting is commonly accommodated by the nucleation of normal faults, slip on pre-existing fault surfaces and/or magmatic intrusion. Because crystallised igneous intrusions are pervasive in many rift basins and are commonly more competent (i.e. higher shear strengths and Young's moduli) than the host rock, it is theoretically plausible that they locally intersect and modify the mechanical properties of pre-existing normal faults. We illustrate the influence that crystallised igneous intrusions may have on fault reactivation using a conceptual model and observations from field and subsurface datasets. Our results show that igneous rocks may initially resist failure, and promote the preferential reactivation of favourably-oriented, pre-existing faults that are not spatially-associated with solidified intrusions. Fault segments situated along strike from laterally restricted fault-intrusion intersections may similarly be reactivated. This spatial and temporal control on strain distribution may generate: (1) supra-intrusion folds in the hanging wall; (2) new dip-slip faults adjacent to the igneous body; or (3) sub-vertical, oblique-slip faults oriented parallel to the extension direction. Importantly, stress accumulation within igneous intrusions may eventually initiate failure and further localise strain. The results of our study have important implications for the structural of sedimentary basins and the subsurface migration of hydrocarbons and mineral-bearing fluids.

  9. Anomaly-based intrusion detection for SCADA systems

    International Nuclear Information System (INIS)

    Yang, D.; Usynin, A.; Hines, J. W.

    2006-01-01

    Most critical infrastructure such as chemical processing plants, electrical generation and distribution networks, and gas distribution is monitored and controlled by Supervisory Control and Data Acquisition Systems (SCADA. These systems have been the focus of increased security and there are concerns that they could be the target of international terrorists. With the constantly growing number of internet related computer attacks, there is evidence that our critical infrastructure may also be vulnerable. Researchers estimate that malicious online actions may cause $75 billion at 2007. One of the interesting countermeasures for enhancing information system security is called intrusion detection. This paper will briefly discuss the history of research in intrusion detection techniques and introduce the two basic detection approaches: signature detection and anomaly detection. Finally, it presents the application of techniques developed for monitoring critical process systems, such as nuclear power plants, to anomaly intrusion detection. The method uses an auto-associative kernel regression (AAKR) model coupled with the statistical probability ratio test (SPRT) and applied to a simulated SCADA system. The results show that these methods can be generally used to detect a variety of common attacks. (authors)

  10. Time, space, and composition relations among northern Nevada intrusive rocks and their metallogenic implications

    Science.gov (United States)

    duBray, E.A.

    2007-01-01

    Northern Nevada contains ∼360 igneous intrusions subequally distributed among three age groups: middle Tertiary, Cretaceous, and Jurassic. These intrusions are dominantly granodiorite and monzogranite, although some are more mafic. Major-oxide and trace-element compositions of intrusion age groups are remarkably similar, forming compositional arrays that are continuous, overlapping, and essentially indistinguishable. Within each age group, compositional diversity is controlled by a combination of fractional crystallization and two-component mixing. Mafic intrusions represent mixing of mantle-derived magma and assimilated continental crust, whereas intermediate to felsic intrusions evolved by fractional crystallization. Several petrologic parameters suggest that the northern Nevada intrusion age groups formed in a variety of subduction-related, magmatic arc settings: Jurassic intrusions were likely formed during backarc, slab-window magmatism related to breakoff of the Mezcalera plate; Cretaceous magmatism was related to rapid, shallow subduction of the Farallon plate and consequent inboard migration of arc magmatism; and Tertiary magmatism initially swept southward into northern Nevada in response to foundering of the Farallon plate and was followed by voluminous Miocene bimodal magmatism associated with backarc continental rifting.

  11. Intrusive fathering, children's self-regulation and social skills: a mediation analysis.

    Science.gov (United States)

    Stevenson, M; Crnic, K

    2013-06-01

    Fathers have unique influences on children's development, and particularly in the development of social skills. Although father-child relationship influences on children's social competence have received increased attention in general, research on fathering in families of children with developmental delays (DD) is scant. This study examined the pathway of influence among paternal intrusive behaviour, child social skills and child self-regulatory ability, testing a model whereby child regulatory behaviour mediates relations between fathering and child social skills. Participants were 97 families of children with early identified DD enrolled in an extensive longitudinal study. Father and mother child-directed intrusiveness was coded live in naturalistic home observations at child age 4.5, child behaviour dysregulation was coded from a video-taped laboratory problem-solving task at child age 5, and child social skills were measured using independent teacher reports at child age 6. Analyses tested for mediation of the relationship between fathers' intrusiveness and child social skills by child behaviour dysregulation. Fathers' intrusiveness, controlling for mothers' intrusiveness and child behaviour problems, was related to later child decreased social skills and this relationship was mediated by child behaviour dysregulation. Intrusive fathering appears to carry unique risk for the development of social skills in children with DD. Findings are discussed as they related to theories of fatherhood and parenting in children with DD, as well as implications for intervention and future research. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 John Wiley & Sons Ltd, MENCAP & IASSID.

  12. Aspects of cold intrusions over Greece during autumn

    Science.gov (United States)

    Mita, Constantina; Marinaki, Aggeliki; Zeini, Konstantina; Konstantara, Metaxia

    2010-05-01

    This study is focused on the description of atmospheric disturbances that caused intense cold intrusions over Greece during autumn for a period of 25 years (1982-2006). The study was based on data analysis from the meteorological station network of the Hellenic National Meteorological Service (HNMS) and the European Centre for Medium Range Weather Forecasts (ECMWF). Initially, the days with temperature at the isobaric surface of 850 hPa less or equal to the mean temperature for the 10-day period the day under investigation belongs to are isolated, composing a new confined data set which was further used. An event of intense cold intrusion is identified based on a subjective set of criteria, considering the temperature decrease at the level of 850 hPa and its duration. In particular, the criteria that were used to identify a cold intrusion were: temperature variation between two successive days at the isobaric level of 850 hPa being equal or greater than 50 C at least once during the event and duration of the event of at least two successive days with continuous temperature decrease. Additionally, the synoptic analysis of the atmospheric disturbances involved using weather charts from ECMWF, revealed that all cases were related to low pressure systems at the level of 500 hPa, accompanied by cold air masses. Moreover, a methodology proposed to classify the cold intrusions based on general circulation characteristics of the atmosphere, resulted in seven major categories. More than half of the events belong in two categories, originated northwest of the greater Greek area (Greece and parts of neighbouring countries), between 400 and 600 N. Further analysis indicated that the frequency of events increases from September to November and the majority of the events lasted two to three days. Additionally, the non-parametric Mann-Kendall test was used for the investigation of the statistical significance of the trends appearing in the results. The tests revealed that over

  13. Three-dimensional computer simulations of bioremediation and vapor extraction

    International Nuclear Information System (INIS)

    Travis, B.; Trent, B.

    1991-01-01

    Numerical simulations of two remediation strategies are presented. These calculations are significant in that they will play a major role in the actual field implementation of two very different techniques. The first set of calculations simulates the actual spill event of nearly 60,000 gallons of No. 2 diesel fuel oil and its subsequent flow toward the water table for 13 years. Hydrogen peroxide saturated water flooding is then performed and bioremediation of the organic material is then calculated. The second set of calculations describes the vacuum extraction of organic vapors subject to various assumed formation properties and boundary conditions

  14. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks.

    Science.gov (United States)

    Amin, Syed Obaid; Siddiqui, Muhammad Shoaib; Hong, Choong Seon; Lee, Sungwon

    2009-01-01

    The IP-based Ubiquitous Sensor Network (IP-USN) is an effort to build the "Internet of things". By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System) called RIDES (Robust Intrusion DEtection System) for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control) technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  15. Trimodal distribution of ozone and water vapor in the UT/LS during boreal summer

    Science.gov (United States)

    Dunkerton, T. J.

    2004-12-01

    The relation of ozone and water vapor in the upper troposphere and lower stratosphere (UT/LS) is strongly influenced by the off-equatorial Asian and North American monsoons in boreal summer. Both regions experience hydration, presumably as a result of deep convection. This behavior contrasts sharply with the apparent dehydrating influence of near-equatorial deep convection in boreal winter. There is also a striking difference in ozone between Asia and North America in boreal summer. Over Asia, ozone concentrations are low, evidently a result of ubiquitous deep convection and the vertical transport of ozone-poor air, while over North America, ozone concentrations are much higher. Since deep convection also occurs in the North American monsoon, it appears that the difference in ozone concentration between Asia and North America in boreal summer reflects a differing influence of the large-scale circulation in the two regions: specifically, (i) isolation of the Tibetan anticyclone versus (ii) the intrusion of filaments of ozone-rich air from the stratosphere over North America. During boreal summer, as in winter, near-equatorial concentrations of ozone and water vapor are low near the equator. The result of these geographical variations is a trimodal distribution of ozone and water-vapor correlation. Our talk reviews the observational evidence of this trimodal distribution and possible dynamical and microphysical causes, focusing primarily on the quality and possible sampling bias of satellite and aircraft measurements. A key issue is the ability of HALOE to sample areas of ubiquitous deep convection. Other issues include the vertical structure of tracer anomalies, isentropic stirring in the UT/LS, horizontal transport of biomass burning products lofted by deep convection, and connections to the moist phase of the tropical `tape recorder' signal in water vapor.

  16. Vaporization study on lanthanum-neodymium alloys by mass-spectrometry

    International Nuclear Information System (INIS)

    Shoji, Y.; Matsui, T.

    1999-01-01

    Partial vapor pressure of Nd(g) over La x Nd 1-x alloys (x = 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80 and 0.90) was measured with a time-of-flight mass-spectrometer equipped with a tungsten Knudsen cell over the temperature range of 1474-1767 K. Thermodynamic activity of neodymium in the liquid alloys was determined by comparing the partial vapor pressure of Nd(g) over the alloys with that over the pure metal. The thermodynamic activity of lanthanum in the alloys was calculated from that of neodymium obtained experimentally in this study by graphic integration using the Gibbs-Duhem equation. Both activities for each element, thus obtained, showed positive deviations from Raoult's law over the entire compositional range. Thermodynamic quantities such as Gibbs free energy of formation, excess enthalpy etc. were also calculated from the thermodynamic activities. (orig.)

  17. The evolution of Interior Intrusion Detection Technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  18. Adaptive intrusion data system (AIDS) software routines

    International Nuclear Information System (INIS)

    Corlis, N.E.

    1980-07-01

    An Adaptive Intrusion Data System (AIDS) was developed to collect information from intrusion alarm sensors as part of an evaluation system to improve sensor performance. AIDS is a unique digital data-compression, storage, and formatting system; it also incorporates a capability for video selection and recording for assessment of the sensors monitored by the system. The system is software reprogrammable to numerous configurations that may be used for the collection of environmental, bilevel, analog, and video data. This report describes the software routines that control the different AIDS data-collection modes, the diagnostic programs to test the operating hardware, and the data format. Sample data printouts are also included

  19. Computationally Efficient Neural Network Intrusion Security Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Todd Vollmer; Milos Manic

    2009-08-01

    An enhanced version of an algorithm to provide anomaly based intrusion detection alerts for cyber security state awareness is detailed. A unique aspect is the training of an error back-propagation neural network with intrusion detection rule features to provide a recognition basis. Network packet details are subsequently provided to the trained network to produce a classification. This leverages rule knowledge sets to produce classifications for anomaly based systems. Several test cases executed on ICMP protocol revealed a 60% identification rate of true positives. This rate matched the previous work, but 70% less memory was used and the run time was reduced to less than 1 second from 37 seconds.

  20. Evaluation of of μ-controller PIR Intrusion Detector | Eludire | West ...

    African Journals Online (AJOL)

    When there is intrusion, a piezo speaker beeps and also a visual indicator with light emitting diode blinks to indicate intrusion. For security, cost effectiveness and access control to certain areas of homes, offices and industries this system is a better replacement to human surveillance needed around our valuable goods and ...

  1. Intrusive thoughts in obsessive-compulsive disorder and eating disorder patients: a differential analysis.

    Science.gov (United States)

    García-Soriano, Gemma; Roncero, Maria; Perpiñá, Conxa; Belloch, Amparo

    2014-05-01

    The present study aims to compare the unwanted intrusions experienced by obsessive-compulsive (OCD) and eating disorder (ED) patients, their appraisals, and their control strategies and analyse which variables predict the intrusions' disruption and emotional disturbance in each group. Seventy-nine OCD and 177 ED patients completed two equivalent self-reports designed to assess OCD-related and ED-related intrusions, their dysfunctional appraisals, and associated control strategies. OCD and ED patients experienced intrusions with comparable frequency and emotional disturbance, but OCD patients experienced greater disruption. Differences appeared between groups on some appraisals and control strategies. Intolerance to uncertainty (OCD group) and thought importance (ED group) predicted their respective emotional disturbance and disruption. Additionally, control importance (OCD group) and thought-action fusion moral (OCD and ED groups) predicted their emotional disturbance. OCD and ED share the presence of intrusions; however, different variables explain why they are disruptive and emotionally disturbing. Cognitive intrusions require further investigation as a transdiagnostic variable. Copyright © 2014 John Wiley & Sons, Ltd and Eating Disorders Association.

  2. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Science.gov (United States)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  3. Cultural differences in the relationship between intrusions and trauma narratives using the trauma film paradigm.

    Science.gov (United States)

    Jobson, Laura; Dalgleish, Tim

    2014-01-01

    Two studies explored the influence of culture on the relationship between British and East Asian adults' autobiographical remembering of trauma film material and associated intrusions. Participants were shown aversive film clips to elicit intrusive images. Then participants provided a post-film narrative of the film content (only Study 1). In both studies, participants reported intrusive images for the film in an intrusion diary during the week after viewing. On returning the diary, participants provided a narrative of the film (delayed). The trauma film narratives were scored for memory-content variables. It was found that for British participants, higher levels of autonomous orientation (i.e. expressions of autonomy and self-determination) and self-focus in the delayed narratives were correlated significantly with fewer intrusions. For the East Asian group, lower levels of autonomous orientation and greater focus on others were correlated significantly with fewer intrusions. Additionally, Study 2 found that by removing the post-film narrative task there was a significant increase in the number of intrusions relative to Study 1, suggesting that the opportunity to develop a narrative resulted in fewer intrusions. These findings suggest that the greater the integration and contextualization of the trauma memory, and the more the trauma memory reflects culturally appropriate remembering, the fewer the intrusions.

  4. Cultural Differences in the Relationship between Intrusions and Trauma Narratives Using the Trauma Film Paradigm

    Science.gov (United States)

    Jobson, Laura; Dalgleish, Tim

    2014-01-01

    Two studies explored the influence of culture on the relationship between British and East Asian adults’ autobiographical remembering of trauma film material and associated intrusions. Participants were shown aversive film clips to elicit intrusive images. Then participants provided a post-film narrative of the film content (only Study 1). In both studies, participants reported intrusive images for the film in an intrusion diary during the week after viewing. On returning the diary, participants provided a narrative of the film (delayed). The trauma film narratives were scored for memory-content variables. It was found that for British participants, higher levels of autonomous orientation (i.e. expressions of autonomy and self-determination) and self-focus in the delayed narratives were correlated significantly with fewer intrusions. For the East Asian group, lower levels of autonomous orientation and greater focus on others were correlated significantly with fewer intrusions. Additionally, Study 2 found that by removing the post-film narrative task there was a significant increase in the number of intrusions relative to Study 1, suggesting that the opportunity to develop a narrative resulted in fewer intrusions. These findings suggest that the greater the integration and contextualization of the trauma memory, and the more the trauma memory reflects culturally appropriate remembering, the fewer the intrusions. PMID:25203300

  5. Transport properties of fission product vapors

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors

  6. Effects of heat-flow and hydrothermal fluids from volcanic intrusions on authigenic mineralization in sandstone formations

    Directory of Open Access Journals (Sweden)

    Wolela Ahmed

    2002-06-01

    Full Text Available Volcanic intrusions and hydrothermal activity have modified the diagenetic minerals. In the Ulster Basin, UK, most of the authigenic mineralization in the Permo-Triassic sandstones pre-dated tertiary volcanic intrusions. The hydrothermal fluids and heat-flow from the volcanic intrusions did not affect quartz and feldspar overgrowths. However, clay mineral-transformation, illite-smectite to illite and chlorite was documented near the volcanic intrusions. Abundant actinolite, illite, chlorite, albite and laumontite cementation of the sand grains were also documented near the volcanic intrusions. The abundance of these cementing minerals decreases away from the volcanic intrusions.In the Hartford Basin, USA, the emplacement of the volcanic intrusions took place simultaneous with sedimentation. The heat-flow from the volcanic intrusions and hydrothermal activity related to the volcanics modified the texture of authigenic minerals. Microcrystalline mosaic albite and quartz developed rather than overgrowths and crystals near the intrusions. Chlorite clumps and masses were also documented with microcrystalline mosaic albite and quartz. These features are localized near the basaltic intrusions. Laumontite is also documented near the volcanic intrusions. The reservoir characteristics of the studied sandstone formations are highly affected by the volcanic and hydrothermal fluids in the Hartford and the Ulster Basin. The porosity dropped from 27.4 to zero percent and permeability from 1350 mD to 1 mD.

  7. Pukala intrusion, its age and connection to hydrothermal alteration in Orivesi, southwestern Finland

    Directory of Open Access Journals (Sweden)

    Matti Talikka

    2005-01-01

    Full Text Available The Pukala intrusion is situated in the Paleoproterozoic Svecofennian domain of the Fennoscandian Shield in the contact region between the Central Finland Granitoid Complex and the Tampere Belt. The acid subvolcanic intrusion, which is in contact or close to severalaltered domains, mainly consists of porphyritic granodiorite and trondhjemite. The Pukala intrusion was emplaced into volcanic sequence in an island-arc or fore-arc setting before or during the early stages of the main regional deformation phase of the Svecofennian orogeny. On the basis of the geochemical data, the Pukala intrusion is a peraluminous volcanic-arc granitoid. After crystallisation at 1896±3 Ma, multiphase deformation and metamorphismcaused alteration, recrystallisation, and orientation of the minerals, and tilted the intrusion steeply towards south. The 1851±5 Ma U-Pb age for titanite is connected to the late stages of the Svecofennian tectonometamorphic evolution of the region. Several hydrothermally altered domains are located in the felsic and intermediate metavolcanic rocks of the Tampere Belt within less than one kilometre south of the Pukala intrusion. Alteration is divided into three basic types: partial silica alteration, chlorite-sericite±silica alteration, and sericite alteration in shear zones. The first two types probably formed during the emplacement and crystallisation of the Pukala intrusion, and the third is linked to late shearing. Intense sericitisation and comb quartz bands in the contact of theintrusion and the altered domain at Kutemajärvi suggest that the hydrothermal system was driven by the Pukala intrusion.

  8. Engineering evaluation of intrusion prevention strategies for single-shell tanks

    International Nuclear Information System (INIS)

    Jenkins, C.E.

    1994-01-01

    In this study, previously implemented actions to prevent liquid intrusion into out-of-service single-shell tanks (SSTs), i.e., interim isolation or partial interim isolation, are investigated and expanded to identify additional cost-effective intrusion prevention techniques that could be reasonably taken until SSTs are ready for waste retrieval. Possible precipitation, groundwater, and condensation pathways and internal tank connections that could provide possible pathways for liquids are examined. Techniques to block identified potential pathways are developed and costed to determine the potential benefit to costed trade-offs for implementing the techniques. (Note: Surveillance data show increased waste surface levels for several SSTs that indicate possible liquid intrusion despite interim isolation activities.)

  9. Cellular Neural Network-Based Methods for Distributed Network Intrusion Detection

    Directory of Open Access Journals (Sweden)

    Kang Xie

    2015-01-01

    Full Text Available According to the problems of current distributed architecture intrusion detection systems (DIDS, a new online distributed intrusion detection model based on cellular neural network (CNN was proposed, in which discrete-time CNN (DTCNN was used as weak classifier in each local node and state-controlled CNN (SCCNN was used as global detection method, respectively. We further proposed a new method for design template parameters of SCCNN via solving Linear Matrix Inequality. Experimental results based on KDD CUP 99 dataset show its feasibility and effectiveness. Emerging evidence has indicated that this new approach is affordable to parallelism and analog very large scale integration (VLSI implementation which allows the distributed intrusion detection to be performed better.

  10. Saline water intrusion toward groundwater: Issues and its control

    Directory of Open Access Journals (Sweden)

    Purnama S

    2012-10-01

    Full Text Available Nowadays, saline water pollution has been gaining its importance as the major issue around the world, especially in the urban coastal area. Saline water pollution has major impact on human life and livelihood. It ́s mainly a result from static fossil water and the dynamics of sea water intrusion. The problem of saline water pollution caused by seawater intrusion has been increasing since the beginning of urban population. The problem of sea water intrusion in the urban coastal area must be anticipated as soon as possible especially in the urban areas developed in coastal zones,. This review article aims to; (i analyze the distribution of saline water pollution on urban coastal area in Indonesia and (ii analyze some methods in controlling saline water pollution, especially due to seawater intrusion in urban coastal area. The strength and weakness of each method have been compared, including (a applying different pumping patterns, (b artificial recharge, (c extraction barrier, (d injection barrier and (e subsurface barrier. The best method has been selected considering its possible development in coastal areas of developing countries. The review is based considering the location of Semarang coastal area, Indonesia. The results have shown that artificial recharge and extraction barrier are the most suitable methods to be applied in the area.

  11. Alerts Visualization and Clustering in Network-based Intrusion Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dr. Li [University of Tennessee; Gasior, Wade C [ORNL; Dasireddy, Swetha [University of Tennessee

    2010-04-01

    Today's Intrusion detection systems when deployed on a busy network overload the network with huge number of alerts. This behavior of producing too much raw information makes it less effective. We propose a system which takes both raw data and Snort alerts to visualize and analyze possible intrusions in a network. Then we present with two models for the visualization of clustered alerts. Our first model gives the network administrator with the logical topology of the network and detailed information of each node that involves its associated alerts and connections. In the second model, flocking model, presents the network administrator with the visual representation of IDS data in which each alert is represented in different color and the alerts with maximum similarity move together. This gives network administrator with the idea of detecting various of intrusions through visualizing the alert patterns.

  12. Sexually intrusive behaviour following brain injury: approaches to assessment and rehabilitation.

    Science.gov (United States)

    Bezeau, Scott C; Bogod, Nicholas M; Mateer, Catherine A

    2004-03-01

    Sexually intrusive behaviour, which may range from inappropriate commentary to rape, is often observed following a traumatic brain injury. It may represent novel behaviour patterns or an exacerbation of pre-injury personality traits, attitudes, and tendencies. Sexually intrusive behaviour poses a risk to staff and residents of residential facilities and to the community at large, and the development of a sound assessment and treatment plan for sexually intrusive behaviour is therefore very important. A comprehensive evaluation is best served by drawing on the fields of neuropsychology, forensic psychology, and cognitive rehabilitation. The paper discusses the types of brain damage that commonly lead to sexually intrusive behaviour, provides guidance for its assessment, and presents a three-stage treatment model. The importance of a multidisciplinary approach to both assessment and treatment is emphasized. Finally, a case example is provided to illustrate the problem and the possibilities for successful management.

  13. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-07-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the US Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). We also discuss new sensors and unique sensor combination developed when commercial sensors were unavailable and the future application of expert systems. 5 refs

  14. The evolution of interior intrusion detection technology at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Graham, R.H.; Workhoven, R.M.

    1987-01-01

    Interior Intrusion Detection Technology began at Sandia National Laboratories (SNL) in 1975 as part of the Fixed Facilities Physical Protection Research and Development program sponsored by the U.S. Department of Energy in connection with their nuclear safeguards effort. This paper describes the evolution of Interior Intrusion Detection Technology at Sandia National Laboratories from the beginning of the Interior Sensor Laboratory to the present. This Laboratory was established in 1976 to evaluate commercial interior intrusion sensors and to assist in site-specific intrusion detection system designs. Examples of special test techniques and new test equipment that were developed at the Lab are presented, including the Sandia Intruder Motion Simulator (SIMS), the Sensor and Environment Monitor (SEM), and the Sandia Interior Robot (SIR). The authors also discuss new sensors and unique sensor combinations developed when commercial sensors were unavailable and the future application of expert systems

  15. Calculation of Steam Volume Fraction in Subcooled Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1967-06-15

    An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.

  16. The design about the intrusion defense system for IHEP

    International Nuclear Information System (INIS)

    Liu Baoxu; Xu Rongsheng; Yu Chuansong; Wu Chunzhen

    2003-01-01

    With the development of network technologies, limitations on traditional methods of network security protection are becoming more and more obvious. An individual network security product or the simple combination of several products can hardly complete the goal of keeping from hackers' intrusion. Therefore, on the basis of the analyses about the security problems of IHEPNET which is an open and scientific research network, the author designs an intrusion defense system especially for IHEPNET

  17. A reference data set for validating vapor pressure measurement techniques: homologous series of polyethylene glycols

    Science.gov (United States)

    Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gøbel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurtén, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David

    2018-01-01

    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H - (O - CH2 - CH2)n - OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10-7 to 5×10-2 Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass

  18. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    International Nuclear Information System (INIS)

    Bernot, P.

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  19. RIDES: Robust Intrusion Detection System for IP-Based Ubiquitous Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sungwon Lee

    2009-05-01

    Full Text Available TheIP-based Ubiquitous Sensor Network (IP-USN is an effort to build the “Internet of things”. By utilizing IP for low power networks, we can benefit from existing well established tools and technologies of IP networks. Along with many other unresolved issues, securing IP-USN is of great concern for researchers so that future market satisfaction and demands can be met. Without proper security measures, both reactive and proactive, it is hard to envisage an IP-USN realm. In this paper we present a design of an IDS (Intrusion Detection System called RIDES (Robust Intrusion DEtection System for IP-USN. RIDES is a hybrid intrusion detection system, which incorporates both Signature and Anomaly based intrusion detection components. For signature based intrusion detection this paper only discusses the implementation of distributed pattern matching algorithm with the help of signature-code, a dynamically created attack-signature identifier. Other aspects, such as creation of rules are not discussed. On the other hand, for anomaly based detection we propose a scoring classifier based on the SPC (Statistical Process Control technique called CUSUM charts. We also investigate the settings and their effects on the performance of related parameters for both of the components.

  20. Effect of winds and waves on salt intrusion in the Pearl River estuary

    Directory of Open Access Journals (Sweden)

    W. Gong

    2018-02-01

    Full Text Available Salt intrusion in the Pearl River estuary (PRE is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  1. Treatment of Intrusive Suicidal Imagery Using Eye Movements

    Directory of Open Access Journals (Sweden)

    Jaël S. van Bentum

    2017-06-01

    Full Text Available Suicide and suicidal behavior are major public health concerns, and affect 3–9% of the population worldwide. Despite increased efforts for national suicide prevention strategies, there are still few effective interventions available for reducing suicide risk. In this article, we describe various theoretical approaches for suicide ideation and behavior, and propose to examine the possible effectiveness of a new and innovative preventive strategy. A model of suicidal intrusion (mental imagery related to suicide, also referred to as suicidal flash-forwards is presented describing one of the assumed mechanisms in the etiology of suicide and the mechanism of therapeutic change. We provide a brief rationale for an Eye Movement Dual Task (EMDT treatment for suicidal intrusions, describing techniques that can be used to target these suicidal mental images and thoughts to reduce overall behavior. Based on the available empirical evidence for the mechanisms of suicidal intrusions, this approach appears to be a promising new treatment to prevent suicidal behavior as it potentially targets one of the linking pins between suicidal ideation and suicidal actions.

  2. Numerical Continuation Methods for Intrusive Uncertainty Quantification Studies

    Energy Technology Data Exchange (ETDEWEB)

    Safta, Cosmin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Najm, Habib N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Phipps, Eric Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Rigorous modeling of engineering systems relies on efficient propagation of uncertainty from input parameters to model outputs. In recent years, there has been substantial development of probabilistic polynomial chaos (PC) Uncertainty Quantification (UQ) methods, enabling studies in expensive computational models. One approach, termed ”intrusive”, involving reformulation of the governing equations, has been found to have superior computational performance compared to non-intrusive sampling-based methods in relevant large-scale problems, particularly in the context of emerging architectures. However, the utility of intrusive methods has been severely limited due to detrimental numerical instabilities associated with strong nonlinear physics. Previous methods for stabilizing these constructions tend to add unacceptably high computational costs, particularly in problems with many uncertain parameters. In order to address these challenges, we propose to adapt and improve numerical continuation methods for the robust time integration of intrusive PC system dynamics. We propose adaptive methods, starting with a small uncertainty for which the model has stable behavior and gradually moving to larger uncertainty where the instabilities are rampant, in a manner that provides a suitable solution.

  3. Atmospheric solar heating rate in the water vapor bands

    Science.gov (United States)

    Chou, Ming-Dah

    1986-01-01

    The total absorption of solar radiation by water vapor in clear atmospheres is parameterized as a simple function of the scaled water vapor amount. For applications to cloudy and hazy atmospheres, the flux-weighted k-distribution functions are computed for individual absorption bands and for the total near-infrared region. The parameterization is based upon monochromatic calculations and follows essentially the scaling approximation of Chou and Arking, but the effect of temperature variation with height is taken into account in order to enhance the accuracy. Furthermore, the spectral range is extended to cover the two weak bands centered at 0.72 and 0.82 micron. Comparisons with monochromatic calculations show that the atmospheric heating rate and the surface radiation can be accurately computed from the parameterization. Comparisons are also made with other parameterizations. It is found that the absorption of solar radiation can be computed reasonably well using the Goody band model and the Curtis-Godson approximation.

  4. Development of an Assessment Procedure for Seawater Intrusion Mitigation

    Science.gov (United States)

    Hsi Ting, F.; Yih Chi, T.

    2017-12-01

    The Pingtung Plain is one of the areas with extremely plentiful groundwater resources in Taiwan. Due to that the application of the water resource is restricted by significant variation of precipitation between wet and dry seasons, groundwater must be used as a recharge source to implement the insufficient surface water resource during dry seasons. In recent years, the coastal aquaculture rises, and the over withdrawn of groundwater by private well results in fast drop of groundwater level. Then it causes imbalance of groundwater supply and leads to serious seawater intrusion in the coastal areas. The purpose of this study is to develop an integrated numerical model of groundwater resources and seawater intrusion. Soil and Water Assessment Tool (SWAT), MODFLOW and MT3D models were applied to analyze the variation of the groundwater levels and salinity concentration to investigate the correlation of parameters, which are used to the model applications in order to disposal saltwater intrusion. The data of groundwater levels, pumping capacity and hydrogeological data to were collected to build an integrated numerical model. Firstly, we will collect the information of layered aquifer and the data of hydrological parameters to build the groundwater numerical model at Pingtung Plain, and identify the amount of the groundwater which flow into the sea. In order to deal with the future climate change conditions or extreme weather conditions, we will consider the recharge with groundwater model to improve the seawater intrusion problem. The integrated numerical model which describes that seawater intrusion to deep confined aquifers and shallow unsaturated aquifers. Secondly, we will use the above model to investigate the weights influenced by different factors to the amount area of seawater intrusion, and predict the salinity concentration distribution of evaluation at coastal area of Pingtung Plain. Finally, we will simulate groundwater recharge/ injection at the coastal

  5. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  6. Prevention and analysis of hacker's intrusion

    International Nuclear Information System (INIS)

    Liu Baoxu; An Dehai; Xu Rongsheng

    2000-01-01

    The author analyzes the behavior characteristics and relevant technologies about the hacker's intrusion, and gives some corresponding solutions pertinently. To the recent events about hackers, the author gives detailed introduction and puts forward the relevant advice and valuable consideration

  7. Applying the Water Vapor Radiometer to Verify the Precipitable Water Vapor Measured by GPS

    Directory of Open Access Journals (Sweden)

    Ta-Kang Yeh

    2014-01-01

    Full Text Available Taiwan is located at the land-sea interface in a subtropical region. Because the climate is warm and moist year round, there is a large and highly variable amount of water vapor in the atmosphere. In this study, we calculated the Zenith Wet Delay (ZWD of the troposphere using the ground-based Global Positioning System (GPS. The ZWD measured by two Water Vapor Radiometers (WVRs was then used to verify the ZWD that had been calculated using GPS. We also analyzed the correlation between the ZWD and the precipitation data of these two types of station. Moreover, we used the observational data from 14 GPS and rainfall stations to evaluate three cases. The offset between the GPS-ZWD and the WVR-ZWD ranged from 1.31 to 2.57 cm. The correlation coefficient ranged from 0.89 to 0.93. The results calculated from GPS and those measured using the WVR were very similar. Moreover, when there was no rain, light rain, moderate rain, or heavy rain, the flatland station ZWD was 0.31, 0.36, 0.38, or 0.40 m, respectively. The mountain station ZWD exhibited the same trend. Therefore, these results have demonstrated that the potential and strength of precipitation in a region can be estimated according to its ZWD values. Now that the precision of GPS-ZWD has been confirmed, this method can eventually be expanded to the more than 400 GPS stations in Taiwan and its surrounding islands. The near real-time ZWD data with improved spatial and temporal resolution can be provided to the city and countryside weather-forecasting system that is currently under development. Such an exchange would fundamentally improve the resources used to generate weather forecasts.

  8. Molecular interpretation of Trouton's and Hildebrand's rules for the entropy of vaporization of a liquid

    International Nuclear Information System (INIS)

    Green, James A.; Irudayam, Sheeba Jem; Henchman, Richard H.

    2011-01-01

    Research highlights: → A method to calculate a liquid's entropy of vaporization is proposed. → The entropy of vaporisation depends on force magnitudes from computer simulation. → Calculated values agree with experiment, Trouton's rule and Hildebrand's rule. → Free volumes decrease for larger molecules or those with stronger interactions. - Abstract: The entropy of vaporization at a liquid's boiling point is well approximated by Trouton's rule and even more accurately by Hildebrand's rule. A cell method is used here to calculate the entropy of vaporization for a range of liquids by subtracting the entropy of the gas from that of the liquid. The liquid's entropy is calculated from the force magnitudes measured in a molecular dynamics simulation based on the harmonic approximation. The change in rotational entropy is not accounted for except in the case of liquid water. The predicted entropies of vaporization agree well with experiment and Trouton's and Hildebrand's rules for most liquids and for water except other liquids with hydrogen bonds. This supports the idea that molecular rotation is close to ideal at a liquid's boiling point if hydrogen bonds are absent; if they are present, then the rotational entropy gain must be included. The method provides a molecular interpretation of those rules by providing an equation in terms of a molecule's free volume in a liquid which depends on the force magnitudes. Free volumes at each liquid's boiling point are calculated to be ∼1 A 3 for liquids lacking hydrogen bonds, lower at ∼0.3 A 3 for those with hydrogen bonds, and they decrease weakly with increasing molecular size.

  9. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  10. The Effects of Saltwater Intrusion to Flood Mitigation Project

    Science.gov (United States)

    Azida Abu Bakar, Azinoor; Khairudin Khalil, Muhammad

    2018-03-01

    The objective of this study is to determine the effects of saltwater intrusion to flood mitigation project located in the flood plains in the district of Muar, Johor. Based on the studies and designs carried out, one of the effective flood mitigation options identified is the Kampung Tanjung Olak bypass and Kampung Belemang bypass at the lower reaches of Sungai Muar. But, the construction of the Kampung Belemang and Tanjung Olak bypass, while speeding up flood discharges, may also increase saltwater intrusion during drought low flows. Establishing the dynamics of flooding, including replicating the existing situation and the performance with prospective flood mitigation interventions, is most effectively accomplished using computer-based modelling tools. The finding of this study shows that to overcome the problem, a barrage should be constructed at Sungai Muar to solve the saltwater intrusion and low yield problem of the river.

  11. Enhancement of the droplet nucleation in a dense supersaturated Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Zhukhovitskii, D. I., E-mail: dmr@ihed.ras.ru [Joint Institute of High Temperatures, Russian Academy of Sciences, Izhorskaya 13, Bd. 2, 125412 Moscow (Russian Federation)

    2016-05-14

    The vapor–liquid nucleation in a dense Lennard-Jones system is studied analytically and numerically. A solution of the nucleation kinetic equations, which includes the elementary processes of condensation/evaporation involving the lightest clusters, is obtained, and the nucleation rate is calculated. Based on the equation of state for the cluster vapor, the pre-exponential factor is obtained. The latter diverges as a spinodal is reached, which results in the nucleation enhancement. The work of critical cluster formation is calculated using the previously developed two-parameter model (TPM) of small clusters. A simple expression for the nucleation rate is deduced and it is shown that the work of cluster formation is reduced for a dense vapor. This results in the nucleation enhancement as well. To verify the TPM, a simulation is performed that mimics a steady-state nucleation experiments in the thermal diffusion cloud chamber. The nucleating vapor with and without a carrier gas is simulated using two different thermostats for the monomers and clusters. The TPM proves to match the simulation results of this work and of other studies.

  12. Capability for intrusion detection at nuclear fuel sites

    International Nuclear Information System (INIS)

    1978-03-01

    A safeguards vulnerability assessment was conducted at three separate licensed nuclear processing facilities. Emphasis was placed on: (1) performance of the total intrusion detection system, and (2) vulnerability of the system to compromise by insiders. The security guards were interviewed to evaluate their effectiveness in executing their duties in accordance with the plant's security plan and to assess their knowledge regarding the operation of the security equipment. A review of the training schedule showed that the guards, along with the other plant employees, are required to periodically attend in-plant training sessions. The vulnerability assessments continued with interviews of the personnel responsible for maintaining the security equipment, with discussions of detector false alarm and maintenance problems. The second part of the vulnerability assessments was to evaluate the effectiveness of the intrusion detection systems including the interior and the perimeter sensors, CCTV surveillance devices and the exterior lighting. Two types of perimeter detectors are used at the sites, a fence disturbance sensor and an infrared barrier type detector. Infrared barrier type detectors have a higher probability of detection, especially in conjunction with dedicated CCTV cameras. The exterior lights satisfy the 0.2 footcandle illumination requirement. The interior intrusion detection systems included ultrasonic motion detectors, microwave motion detectors,balanced magnetic switches, and CCTV cameras. Entrance doors to the materials access areas and vital areas are protected with balanced magnetic switches. The interior intrusion detection systems at the three nuclear processing sites are considered satisfactory with the exception of the areas protected with ultrasonic motion detectors

  13. Magmatic sill intrusions beneath El Hierro Island following the 2011-2012 submarine eruption

    Science.gov (United States)

    Benito-Saz, María Á.; Sigmundsson, Freysteinn; Parks, Michelle M.; García-Cañada, Laura; Domínguez Cerdeña, Itahiza

    2016-04-01

    El Hierro, the most southwestern island of Canary Islands, Spain, is a volcano rising from around 3600 m above the ocean floor and up to of 1500 m above sea level. A submarine eruption occurred off the coast of El Hierro in 2011-2012, which was the only confirmed eruption in the last ~ 600 years. Activity continued after the end of the eruption with six magmatic intrusions occurring between 2012-2014. Each of these intrusions was characterized by hundreds of earthquakes and 3-19 centimeters of observed ground deformation. Ground displacements at ten continuous GPS sites were initially inverted to determine the optimal source parameters (location, geometry, volume/pressure change) that best define these intrusions from a geodetic point of view. Each intrusive period appears to be associated with the formation of a separate sill, with inferred volumes between 0.02 - 0.3 km3. SAR images from the Canadian RADARSAT-2 satellite and the Italian Space Agency COSMO-SkyMed constellation have been used to produce high-resolution detailed maps of line-of-sight displacements for each of these intrusions. These data have been combined with the continuous GPS observations and a joint inversion undertaken to gain further constraints on the optimal source parameters for each of these separate intrusive events. The recorded activity helps to understand how an oceanic intraplate volcanic island grows through repeated sill intrusions; well documented by seismic, GPS and InSAR observations in the case of the El Hierro activity.

  14. Work Zone Intrusion Report Interface Design

    Science.gov (United States)

    2018-02-02

    While necessary for roadways, work zones present a safety risk to crew. Half of road workers deaths between 2005 and 2010 were due to collisions with motorists intruding on the work zone. Therefore, addressing intrusions is an important step for ensu...

  15. Solid vapor pressure for five heavy PAHs via the Knudsen effusion method

    International Nuclear Information System (INIS)

    Fu Jinxia; Suuberg, Eric M.

    2011-01-01

    Highlights: → We report on vapor pressures and enthalpies of fusion and sublimation of five heavy PAHs. → Solid vapor pressures were measured using Knudsen effusion method. → Solid vapor pressures for benzo[b]fluoranthene, and indeno[1,2,3-cd]pyrene have not been published in the open literature. → Reported subcooled liquid state vapor pressures may or may not lend themselves to correction to sublimation vapor pressure. → Subcooled liquid state vapor pressures might sometimes actually be closer to actual solid state sublimation vapor pressures. - Abstract: Polycyclic aromatic hydrocarbons (PAHs) are compounds resulting from incomplete combustion and many fuel processing operations, and they are commonly found as subsurface environmental contaminants at sites of former manufactured gas plants. Knowledge of their vapor pressures is the key to predict their fate and transport in the environment. The present study involves five heavy PAHs, i.e. benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene, which are all as priority pollutants classified by the US EPA. The vapor pressures of these heavy PAHs were measured by using Knudsen effusion method over the temperature range of (364 to 454) K. The corresponding values of the enthalpy of sublimation were calculated from the Clausius-Clapeyron equation. The enthalpy of fusion for the five PAHs was also measured by using differential scanning calorimetry and used to convert earlier published sub-cooled liquid vapor pressure data to solid vapor pressure in order to compare with the present results. These adjusted values do not agree with the present measured actual solid vapor pressure values for these PAHs, but there is good agreement between present results and other earlier published sublimation data.

  16. Exploring machine-learning-based control plane intrusion detection techniques in software defined optical networks

    Science.gov (United States)

    Zhang, Huibin; Wang, Yuqiao; Chen, Haoran; Zhao, Yongli; Zhang, Jie

    2017-12-01

    In software defined optical networks (SDON), the centralized control plane may encounter numerous intrusion threatens which compromise the security level of provisioned services. In this paper, the issue of control plane security is studied and two machine-learning-based control plane intrusion detection techniques are proposed for SDON with properly selected features such as bandwidth, route length, etc. We validate the feasibility and efficiency of the proposed techniques by simulations. Results show an accuracy of 83% for intrusion detection can be achieved with the proposed machine-learning-based control plane intrusion detection techniques.

  17. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  18. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  19. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    International Nuclear Information System (INIS)

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is credible as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required

  20. Typed Linear Chain Conditional Random Fields and Their Application to Intrusion Detection

    Science.gov (United States)

    Elfers, Carsten; Horstmann, Mirko; Sohr, Karsten; Herzog, Otthein

    Intrusion detection in computer networks faces the problem of a large number of both false alarms and unrecognized attacks. To improve the precision of detection, various machine learning techniques have been proposed. However, one critical issue is that the amount of reference data that contains serious intrusions is very sparse. In this paper we present an inference process with linear chain conditional random fields that aims to solve this problem by using domain knowledge about the alerts of different intrusion sensors represented in an ontology.

  1. Physical and mathematical modeling of diesel fuel liquid and vapor movement in porous media

    International Nuclear Information System (INIS)

    Johnson, T.E.; Kreamer, D.K.

    1994-01-01

    Two-dimensional physical modeling of diesel fuel leaks was conducted in sand tanks to determine liquid and vapor migration characteristics. Mathematical modeling provided estimation of vapor concentrations at discrete times and distances from the vapor source and was compared to the physical experiment. The mathematical gaseous diffusion model was analogous to the Theis equation for ground-water flow, accounted for sorptive effects of the media, and was calibrated using measured concentrations from the sand tank. Mathematically different positions of the vapor source were tested to better relate observed liquid flow rates and media configuration to gaseous concentrations. The calculated diffusion parameters were then used to estimate theoretical, three-dimensional vapor transport from a hypothetical liquid leak of 2.0 1/hr for 30 days. The associated three-dimensional vapor plume, which would be reasonably detectable by commercially available vadose zone monitors, was estimated to have a diameter of 8 m with a vapor concentration of 50 ppm at the outside edge of the vapor plume. A careful application of the method and values can be used to give a first approximation to the number of vapor monitors required at a field site as well as the optimal locations for the monitors

  2. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Science.gov (United States)

    Lanz, Christian; Mattsson, Johan; Soydaner, Umut; Brenneisen, Rudolf

    2016-01-01

    Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot) and total CBD (CBDtot) in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3%) and CBD (≥ 94.6%). The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  3. Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms.

    Science.gov (United States)

    James, Ella L; Bonsall, Michael B; Hoppitt, Laura; Tunbridge, Elizabeth M; Geddes, John R; Milton, Amy L; Holmes, Emily A

    2015-08-01

    Memory of a traumatic event becomes consolidated within hours. Intrusive memories can then flash back repeatedly into the mind's eye and cause distress. We investigated whether reconsolidation-the process during which memories become malleable when recalled-can be blocked using a cognitive task and whether such an approach can reduce these unbidden intrusions. We predicted that reconsolidation of a reactivated visual memory of experimental trauma could be disrupted by engaging in a visuospatial task that would compete for visual working memory resources. We showed that intrusive memories were virtually abolished by playing the computer game Tetris following a memory-reactivation task 24 hr after initial exposure to experimental trauma. Furthermore, both memory reactivation and playing Tetris were required to reduce subsequent intrusions (Experiment 2), consistent with reconsolidation-update mechanisms. A simple, noninvasive cognitive-task procedure administered after emotional memory has already consolidated (i.e., > 24 hours after exposure to experimental trauma) may prevent the recurrence of intrusive memories of those emotional events. © The Author(s) 2015.

  4. Intrusion detection system elements

    International Nuclear Information System (INIS)

    Eaton, M.J.; Mangan, D.L.

    1980-09-01

    This report highlights elements required for an intrusion detection system and discusses problems which can be encountered in attempting to make the elements effective. Topics discussed include: sensors, both for exterior detection and interior detection; alarm assessment systems, with the discussion focused on video assessment; and alarm reporting systems, including alarm communication systems and dislay/console considerations. Guidance on careful planning and design of a new or to-be-improved system is presented

  5. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  6. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  7. Mass spectrometric study of vaporization of cesium tellurate and tellurite

    International Nuclear Information System (INIS)

    Semenov, G.A.; Fokina, L.A.; Mouldagalieva, R.A.

    1994-01-01

    The process of vaporization of cesium tellurate and tellurite was studied by the Knudsen effusion method with a mass spectrometric analysis of the vapor composition. The thermal dissociation of Cs 2 TeO 4 to Cs 2 TeO 3 and the congruent vaporization of Cs 2 TeO 3 were established. Thermodynamic functions for gaseous Cs 2 TeO 3 have been calculated. The standard enthalpy of sublimation Δ s H (298.15)=268.1±13.0 kJ mol -1 was determined by the 2nd and 3rd laws of thermodynamics. The enthalpy of formation Δ f H (298.15)=-725.1±13.0 kJ mol -1 for gaseous Cs 2 TeO 3 and the enthalpy of atomization Δ at H (298.15)=1841.3±15.0 kJ mol -1 have been computed. ((orig.))

  8. Magmatic Diversity of the Wehrlitic Intrusions in the Oceanic Lower Crust of the Northern Oman Ophiolite

    Science.gov (United States)

    Kaneko, R.; Adachi, Y.; Miyashita, S.

    2014-12-01

    The Oman ophiolite extends along the east coast of Oman, and is the world's largest and best-preserved slice of obducted oceanic lithosphere. The magmatic history of this ophiolite is complex and is generally regarded as having occurred in three stages (MOR magmatism, subduction magmatism and intraplate magmatism). Wehrlitic intrusions constitute an important element of oceanic lower crust of the ophiolite, and numerous intrusions cut gabbro units in the northern Salahi block of this ophiolite. In this study area, we identified two different types of wehrlitic intrusions. One type of the intrusions mainly consists of dunite, plagioclase (Pl) wehrlite and mela-olivine (Ol) gabbro, in which the crystallization sequence is Ol followed by the contemporaneous crystallization of Pl and clinopyroxene (Cpx). This type is called "ordinary" wehrlitic intrusions and has similar mineral compositions to host gabbros (Adachi and Miyashita 2003; Kaneko et al. 2014). Another type of the intrusions is a single intrusion that crops out in an area 250 m × 150 m along Wadi Salahi. This intrusion consists of Pl-free "true" wehrlite, in which the crystallization sequence is Ol and then Cpx. The forsterite contents (Fo%) of Ol from the "ordinary" wehrlitic intrusions and "true" wehrlitic intrusions have ranges of 90.8-87.0 (NiO = 0.36-0.13 wt%) and 84.7 (NiO = 0.31 wt%), respectively. Cr numbers (Cr#) of Cr-spinel from the "true" wehrlitic intrusions show higher Cr# value of 0.85 than those of the "ordinary" wehrlitic intrusions (0.48-0.64). But the former is characterized by very high Fe3+ values (YFe3+ = 0.49-0.68). Kaneko et al. (2014) showed that the "ordinary" ubiquitous type has similar features to MOR magmatism and the depleted type in the Fizh block (Adachi and Miyashita 2003) links to subduction magmatism. These types are distinguished by their mineral chemistries (TiO2 and Na2O contents of Cpx). The TiO2 and Na2O contents of Cpx from the "true" wehrlitic intrusions have 0

  9. Pyridinium based ionic liquids. N-Butyl-3-methyl-pyridinium dicyanoamide: Thermochemical measurement and first-principles calculations

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Verevkin, Sergey P.; Heintz, Andreas

    2011-01-01

    The standard molar enthalpy of formation Δ f H m o (l) of the ionic liquid N-butyl-3-methylpyridinium dicyanamide has been determined at 298.15 K by means of combustion calorimetry. Vaporization of the ionic liquid into the nitrogen stream in order to obtain vaporization enthalpy has been attempted, but no vaporization was achieved. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. The combination of traditional combustion calorimetry with modern high-level quantum-chemical calculations allows estimation of the molar enthalpy of vaporization of the ionic liquid under study.

  10. Environmental data processor of the adaptive intrusion data system

    International Nuclear Information System (INIS)

    Rogers, M.S.

    1977-06-01

    A data acquisition system oriented specifically toward collection and processing of various meteorological and environmental parameters has been designed around a National Semiconductor IMP-16 microprocessor, This system, called the Environmental Data Processor (EDP), was developed specifically for use with the Adaptive Intrusion Data System (AIDS) in a perimeter intrusion alarm evaluation, although its design is sufficiently general to permit use elsewhere. This report describes in general detail the design of the EDP and its interaction with other AIDS components

  11. Cultural syndromes and age moderate the emotional impact of illness intrusiveness in rheumatoid arthritis.

    Science.gov (United States)

    Devins, Gerald M; Gupta, Anita; Cameron, Jill; Woodend, Kirsten; Mah, Kenneth; Gladman, Dafna

    2009-02-01

    The authors investigated cultural syndromes (multidimensional vectors comprising culturally based attitudes, values, and beliefs) and age as moderators of the emotional impact of illness intrusiveness--illness-induced lifestyle disruptions--in rheumatoid arthritis (RA) and examined illness intrusiveness effects in total and separately for three life domains (relationships and personal development, intimacy, and instrumental). People with RA (n = 105) completed the Illness Intrusiveness Ratings, Individualism-Collectivism, and Center for Epidemiologic Studies--Depression scales in a one-on-one interview. Controlling for disease and background characteristics, the association between illness intrusiveness (total score and the Relationships and Personal Development subscale) and distress was inverse when young adults with RA endorsed high horizontal individualism. Illness intrusiveness into intimacy was associated with increased distress, and this intensified when respondents endorsed high vertical individualism, horizontal collectivism, vertical collectivism, or low horizontal individualism. The negative emotional impact of illness intrusiveness into intimacy diminished with increasing age. Given an aging and increasingly pluralistic society, diversity can no longer be ignored in addressing the psychosocial impact of chronic, disabling disease.

  12. Predicting the enthalpies of melting and vaporization for pure components

    Science.gov (United States)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  13. Intrusion detection techniques for plant-wide network in a nuclear power plant

    International Nuclear Information System (INIS)

    Rajasekhar, P.; Shrikhande, S.V.; Biswas, B.B.; Patil, R.K.

    2012-01-01

    Nuclear power plants have a lot of critical data to be sent to the operator workstations. A plant wide integrated communication network, with high throughput, determinism and redundancy, is required between the workstations and the field. Switched Ethernet network is a promising prospect for such an integrated communication network. But for such an integrated system, intrusion is a major issue. Hence the network should have an intrusion detection system to make the network data secure and enhance the network availability. Intrusion detection is the process of monitoring the events occurring in a network and analyzing them for signs of possible incidents, which are violations or imminent threats of violation of network security policies, acceptable user policies, or standard security practices. This paper states the various intrusion detection techniques and approaches which are applicable for analysis of a plant wide network. (author)

  14. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    Science.gov (United States)

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  15. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  16. The determination of the initial point of net vapor generation in flow subcooled boiling

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2000-01-01

    The experimental results for the initial point of net vapor generation in up-flow subcooled boiling in an internally-heated annulus are given. The characteristics of the initial point of net vapor generation and the problem on gamma ray attenuation measurement are discussed. The comparison between the data and a calculation model is given, it is showed that the data agree well with the model

  17. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  18. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  19. NIST Special Publication on Intrusion Detection Systems

    National Research Council Canada - National Science Library

    Bace, Rebecca Gurley

    2001-01-01

    Intrusion detection systems (IDSs) are software or hardware systems that automate the process of monitoring the events occurring in a computer system or network, analyzing them for signs of security problems...

  20. THE PALEOPROTEROZOIC IMANDRA-VARZUGA RIFTING STRUCTURE (KOLA PENINSULA: INTRUSIVE MAGMATISM AND MINERAGENY

    Directory of Open Access Journals (Sweden)

    V. V. Chashchin

    2014-01-01

    Full Text Available The article provides data on the structure of the Paleoproterozoic intercontinental Imandra-Varzuga rifting structure (IVS and compositions of intrusive formations typical of the early stage of the IVS development and associated mineral resources. IVS is located in the central part of the Kola region. Its length is about 350 km, and its width varies from 10 km at the flanks to 50 km in the central part. IVS contains an association of the sedimentary-volcanic, intrusive and dyke complexes. It is a part of a large igneous Paleoproterozoic province of the Fennoscandian Shield spreading for a huge area (about 1 million km2, which probably reflects the settings of the head part of the mantle plume. Two age groups of layered intrusions were associated with the initial stage of the IVS development. The layered intrusions of the Fedorovo-Pansky and Monchegorsk complexes (about 2.50 Ga are confined to the northern flank and the western closure of IVS, while intrusions of the Imandra complex (about 2.45 Ga are located at the southern flank of IVS. Intrusions of older complexes are composed of rock series from dunite to gabbro and anorthosites (Monchegorsk complex and from orthopyroxenite to gabbro and anorthosites (Fedorovo-Pansky complex. Some intrusions of this complexes reveal features of multiphase ones. The younger Imandra complex intrusions (about 2.45 Ga are stratified from orthopyroxenite to ferrogabbro. Their important feature is comagmatical connection with volcanites. All the intrusive complexes have the boninite-like mantle origin enriched by lithophyle components. Rocks of these two complexеs with different age have specific geochemical characteristics. In the rocks of the Monchegorsk and Fedorovo-Pansky complexes, the accumulation of REE clearly depends on the basicity of the rocks, the spectrum of REE is non-fractionated and ‘flat’, and the Eu positive anomaly is slightly manifested. In the rocks of the Imandra complex, the level of

  1. Facebook intrusion, fear of missing out, narcissism, and life satisfaction: A cross-sectional study.

    Science.gov (United States)

    Błachnio, Agata; Przepiórka, Aneta

    2018-01-01

    Facebook is one of the most popular social networking sites. The present paper examines the relations between fear of missing out, narcissism, Facebook intrusion, and life satisfaction. We hypothesized that the fear of missing out and narcissism would play a significant role in Facebook intrusion. The participants in the study were 360 Polish users of Facebook. We administered the Facebook Intrusion Scale, the Fear of Missing Out Scale, the Narcissistic Personality Inventory, and the Satisfaction with Life Scale. The results showed that a high level of fear of missing out and high narcissism are predictors of Facebook intrusion, while a low level of fear of missing out and high narcissism are related to satisfaction with life. Our findings provide a more comprehensive picture of the predictors of Facebook intrusion and reveal interesting patterns. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Calculations of film boiling heat transfer above the quench front during reflooding

    International Nuclear Information System (INIS)

    Chan, K.C.; Yadigaroglu, G.

    1980-01-01

    An analytical method for calculating inverted-annular film boiling heat transfer above the quench front during the reflooding phase of a LOCA is presented. A two-fluid model comprising a laminar vapor film and a turbulent liquid-vapor mixture core is used. 12 refs

  3. An armored-cable-based fiber Bragg grating sensor array for perimeter fence intrusion detection

    Science.gov (United States)

    Hao, Jianzhong; Dong, Bo; Varghese, Paulose; Phua, Jiliang; Foo, Siang Fook

    2012-01-01

    In this paper, an armored-cable-based optical fiber Bragg grating (FBG) sensor array, for perimeter fence intrusion detection, is demonstrated and some of the field trial results are reported. The field trial was conducted at a critical local installation in Singapore in December 2010. The sensor array was put through a series of both simulated and live intrusion scenarios to test the stability and suitability of operation in the local environmental conditions and to determine its capabilities in detecting and reporting these intrusions accurately to the control station. Such a sensor array can provide perimeter intrusion detection with fine granularity and preset pin-pointing accuracy. The various types of intrusions included aided or unaided climbs, tampering and cutting of the fence, etc. The unique sensor packaging structure provides high sensitivity, crush resistance and protection against rodents. It is also capable of resolving nuisance events such as rain, birds sitting on the fence or seismic vibrations. These sensors are extremely sensitive with a response time of a few seconds. They can be customized for a desired spatial resolution and pre-determined sensitivity. Furthermore, it is easy to cascade a series of such sensors to monitor and detect intrusion events over a long stretch of fence line. Such sensors can be applied to real-time intrusion detection for perimeter security, pipeline security and communications link security.

  4. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    2015-01-01

    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments....

  5. Working group 4B - human intrusion: Design/performance requirements

    International Nuclear Information System (INIS)

    Channell, J.

    1993-01-01

    There is no summary of the progress made by working group 4B (Human Intrusion: Design/performance Requirements) during the Electric Power Research Institute's EPRI Workshop on the technical basis of EPA HLW Disposal Criteria, March 1993. This group was to discuss the waste disposal standard, 40 CFR Part 191, in terms of the design and performance requirements of human intrusion. Instead, because there were so few members, they combined with working group 4A and studied the three-tier approach to evaluating postclosure performance

  6. Data mining approach to web application intrusions detection

    Science.gov (United States)

    Kalicki, Arkadiusz

    2011-10-01

    Web applications became most popular medium in the Internet. Popularity, easiness of web application script languages and frameworks together with careless development results in high number of web application vulnerabilities and high number of attacks performed. There are several types of attacks possible because of improper input validation: SQL injection Cross-site scripting, Cross-Site Request Forgery (CSRF), web spam in blogs and others. In order to secure web applications intrusion detection (IDS) and intrusion prevention systems (IPS) are being used. Intrusion detection systems are divided in two groups: misuse detection (traditional IDS) and anomaly detection. This paper presents data mining based algorithm for anomaly detection. The principle of this method is the comparison of the incoming HTTP traffic with a previously built profile that contains a representation of the "normal" or expected web application usage sequence patterns. The frequent sequence patterns are found with GSP algorithm. Previously presented detection method was rewritten and improved. Some tests show that the software catches malicious requests, especially long attack sequences, results quite good with medium length sequences, for short length sequences must be complemented with other methods.

  7. AdaBoost-based algorithm for network intrusion detection.

    Science.gov (United States)

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  8. Mental Imagery and Posttraumatic Stress Disorder: a neuroimaging and experimental psychopathology approach to intrusive memories of trauma

    Directory of Open Access Journals (Sweden)

    Ian A Clark

    2015-07-01

    Full Text Available This hypothesis and theory paper presents a pragmatic framework to help bridge the clinical presentation and neuroscience of intrusive memories following psychological trauma. Intrusive memories are a hallmark symptom of Posttraumatic Stress Disorder. However, key questions, including those involving aetiology remain. In particular, we know little about the brain mechanisms involved in why only some moments of the trauma return as intrusive memories while others do not. We first present an overview of the patient experience of intrusive memories and the neuroimaging studies that have investigated intrusive memories in PTSD patients. Next, one mechanism of how to model intrusive memories in the laboratory, the trauma film paradigm, is examined. In particular, we focus on studies combining the trauma film paradigm with neuroimaging. Stemming from the clinical presentation and our current understanding of the processes involved in intrusive memories, we propose a framework in which an intrusive memory comprises five component parts; autobiographical (trauma memory, involuntary recall, negative emotions, attention hijacking and mental imagery. Each component part is considered in turn, both behaviourally and from a brain imaging perspective. A mapping of these five components onto our understanding of the brain is described. Unanswered questions that exist in our understanding of intrusive memories are considered using the proposed framework. Overall, we suggest that mental imagery is key to bridging the experience, memory and intrusive recollection of the traumatic event. Further, we suggest that by considering the brain mechanisms involved in the component parts of an intrusive memory, in particular mental imagery, we may be able to aid the development of a firmer bridge between patients’ experiences of intrusive memories and the clinical neuroscience behind them.

  9. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  10. A 5-year follow-up case of multiple intrusive luxative injuries

    Directory of Open Access Journals (Sweden)

    Seema Thakur

    2012-01-01

    Full Text Available Introduction: Traumatic intrusive luxation is one of the most severe forms of dental injuries, usually affecting the maxillary incisors. The consequence of such an occurrence is a high risk of healing complications such as pulp necrosis, external inflammatory resorption, and external replacement resorption (ankylosis. Case Report: This report presents a case of severe intrusive luxation of multiple anterior teeth in an 11-year-old girl. The teeth were repositioned successfully by endodontic and orthodontic management. The case was monitored for 5 years. Discussion: Depending on the severity of the injury, different clinical approaches for treatment of intrusive luxation may be used. Despite the variety of treatment modalities, rehabilitation of intruded teeth is always a challenge and a multidisciplinary approach is important to achieve a successful result. In this case, intruded teeth were endodontically treated with multiple calcium hydroxide dressings and repositioned orthodontically. The follow-up of such cases is very important as the repair process after intrusion is complex. After 5 years, no clinical or radiographic pathology was detected.

  11. Extended UNIQUAC Model for Correlation and Prediction of Vapor-Liquid-Liquid-Solid Equilibria in Aqueous Salt Systems Containing Non-Electrolytes. Part B. Alcohol (Ethanol, Propanols, Butanols) - Water-salt systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Iliuta, Maria Cornelia; Rasmussen, Peter

    2004-01-01

    The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave-Redlich-Kwong......The Extended UNIQUAC model for electrolyte solutions is an excess Gibbs energy function consisting of a Debye-Huckel term and a term corresponding to the UNIQUAC equation. For vapor-liquid equilibrium calculations, the fugacities of gas-phase components are calculated with the Soave...... solid-liquid-vapor equilibrium and thermal property data for strongly non-ideal systems. In this work, the model is extended to aqueous salt systems containing higher alcohols. The calculations are based on an extensive database consisting of salt solubility data, vapor liquid equilibrium data...

  12. A Privacy-Preserving Framework for Collaborative Intrusion Detection Networks Through Fog Computing

    DEFF Research Database (Denmark)

    Wang, Yu; Xie, Lin; Li, Wenjuan

    2017-01-01

    Nowadays, cyber threats (e.g., intrusions) are distributed across various networks with the dispersed networking resources. Intrusion detection systems (IDSs) have already become an essential solution to defend against a large amount of attacks. With the development of cloud computing, a modern IDS...

  13. Geochemical characteristics and tectonic setting of the Tuerkubantao mafic-ultramafic intrusion in West Junggar, Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Yufeng Deng

    2015-03-01

    Full Text Available Mineral chemistry, whole-rock major oxide, and trace element compositions have been determined for the Tuerkubantao mafic-ultramafic intrusion, in order to understand the early Paleozoic tectonic evolution of the West Junggar orogenic belt at the southern margin of the Central Asian orogenic belt. The Tuerkubantao mafic-ultramafic intrusion is a well-differentiated complex comprising peridotite, olivine pyroxenite, gabbro, and diorite. The ultramafic rocks are mostly seen in the central part of the intrusion and surrounded by mafic rocks. The Tuerkubantao intrusive rocks are characterized by enrichment of large ion lithophile elements and depleted high field strength elements relative to N-MORB. In addition, the Tuerkubantao intrusion displays relatively low Th/U and Nb/U (1.13–2.98 and 2.53–7.02, respectively and high La/Nb and Ba/Nb (1.15–4.19 and 37.7–79.82, respectively. These features indicate that the primary magma of the intrusion was derived from partial melting of a previously metasomatized mantle source in a subduction setting. The trace element patterns of peridotites, gabbros, and diorite in the Tuerkubantao intrusion have sub-parallel trends, suggesting that the different rock types are related to each other by differentiation of the same primary magma. The intrusive contact between peridotite and gabbro clearly suggest that the Tuerkubantao is not a fragment of an ophiolite. However, the Tuerkubantao intrusion displays many similarities with Alaskan-type mafic-ultramafic intrusions along major sutures of Phanerozoic orogenic belts. Common features include their geodynamic setting, internal lithological zoning, and geochemistry. The striking similarities indicate that the middle Devonian Tuerkubantao intrusion likely formed in a subduction-related setting similar to that of the Alaskan-type intrusions. In combination with the Devonian magmatism and porphyry mineralization, we propose that subduction of the oceanic slab has

  14. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K.; Heland, J. [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R. [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M. [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G. [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D.H. [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P. [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M. [University of Reading (United Kingdom). Dept. of Physics

    1997-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  15. EU-project AEROJET. Non-intrusive measurements of aircraft engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, K; Heland, J [Fraunhofer-Inst. fuer Atmosphaerische Umweltforschung (IFU), Garmisch-Partenkirchen (Germany); Burrows, R [Rolls-Royce Ltd. (United Kingdom). Engine Support Lab.; Bernard, M [AUXITROL, S.A. (France). Aerospace Equipment Div.; Bishop, G [British Aerospace (United Kingdom). Sowerby Research Centre; Lindermeir, E [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e. V. (DLR), Bonn (Germany). Inst. fuer Optoelektronik; Lister, D H [Defence and Research Agency, Hants (United Kingdom). Propulsion and Development Dept.; Wiesen, P [Bergische Univ. Wuppertal (Gesamthochshule) (Germany); Hilton, M [University of Reading (United Kingdom). Dept. of Physics

    1998-12-31

    The main goal of the AEROJET programme is to demonstrate the equivalence of remote measurement techniques to conventional extractive methods for both gaseous and particulate measurements. The different remote measurement techniques are compared and calibrated. A demonstrator measurement system for exhaust gases, temperature and particulates including data-analysis software is regarded as result of this project. Non-intrusive measurements are the method of choice within the AEROJET project promising to avoid the disadvantages of the gas sampling techniques which are currently used. Different ground based non-intrusive measurement methods are demonstrated during a final evaluation phase. Several non-intrusive techniques are compared with conventional gas sampling and analysis techniques. (R.P.) 3 refs.

  16. Data Mining for Intrusion Detection

    Science.gov (United States)

    Singhal, Anoop; Jajodia, Sushil

    Data Mining Techniques have been successfully applied in many different fields including marketing, manufacturing, fraud detection and network management. Over the past years there is a lot of interest in security technologies such as intrusion detection, cryptography, authentication and firewalls. This chapter discusses the application of Data Mining techniques to computer security. Conclusions are drawn and directions for future research are suggested.

  17. Vaporization study on vanadium-oxygen solid solution by mass spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over vanadium-oxygen solid solution (0.001 ≤ O/V ≤ 0.145) were measured by mass-spectrometric method in the temperature range of 1,855 ∼ 2,117 K. The main vapor species were observed to be V(g) and VO(g). The vapor pressure of V(g) is higher than that of VO(g) over the solid solutions with all O/V ratios except for O/V = 0.145. The vapor pressure of V(g) is nearly independent of O/V ratio. The vapor pressure of VO(g) decreases with decreasing O/V ratio. The oxygen partial pressure was calculated as a function of temperature and O/V ratio from the vapor pressures of V(g) and VO(g), from which the partial molar enthalpy and entropy of oxygen in the solid solution were determined. The partial molar enthalpy of oxygen was observed to be independent of composition, suggesting the presence of very weak interaction between interstitial oxygens. The compositional dependence of the partial molar entropy of oxygen can be explained by assuming the occupation of the octahedral site in bcc vanadium lattice by the interstitial oxygens. The excess partial molar entropy of oxygen was compared with the value derived from the sum of the contributions from the volume expansion, electronic heat capacity and vibrational terms. (author)

  18. Intrusions of autobiographical memories in individuals reporting childhood emotional maltreatment

    Directory of Open Access Journals (Sweden)

    Philip Spinhoven

    2011-09-01

    Full Text Available During childhood emotional maltreatment (CEM negative attitudes are provided to the child (e.g., “you are worthless”. These negative attitudes may result in emotion inhibition strategies in order to avoid thinking of memories of CEM, such as thought suppression. However, thought suppression may paradoxically enhance occurrences (i.e., intrusions of these memories, which may occur immediately or sometime after active suppression of these memories.Until now, studies that examined suppressive coping styles in individuals reporting CEM have utilized self-report questionnaires. Therefore, it is unclear what the consequences will be of emotion inhibition styles on the intrusion of autobiographical memories in individuals reporting CEM.Using a thought suppression task, this study aimed to investigate the experience of intrusions during suppression of, and when no longer instructed to actively suppress, positive and negative autobiographical memories in individuals reporting Low, Moderate, and Severe CEM compared to No Abuse (total N = 83.We found no group differences during active suppression of negative and positive autobiographical memories. However, when individuals reporting Severe CEM were no longer instructed to suppress thinking about the memory, individuals reporting No Abuse, Low CEM, or Moderate CEM reported fewer intrusions of both positive and negative autobiographical memories than individuals reporting Severe CEM. Finally, we found that intrusions of negative memories are strongly related with psychiatric distress.The present study results provide initial insights into the cognitive mechanisms that may underlie the consequences of childhood emotional maltreatment and suggests avenues for successful interventions.For the abstract or full text in other languages, please see Supplementary files under Reading Tools online

  19. Intrusions of a drowsy mind: neural markers of phenomenological unpredictability.

    Science.gov (United States)

    Noreika, Valdas; Canales-Johnson, Andrés; Koh, Justin; Taylor, Mae; Massey, Irving; Bekinschtein, Tristan A

    2015-01-01

    The transition from a relaxed to a drowsy state of mind is often accompanied by hypnagogic experiences: most commonly, perceptual imagery, but also linguistic intrusions, i.e., the sudden emergence of unpredictable anomalies in the stream of inner speech. This study has sought to describe the contents of such intrusions, to verify their association with the progression of sleep onset, and to investigate the electroencephalographic processes associated with linguistic intrusions as opposed to more common hypnagogic perceptual imagery. A single participant attended 10 experimental sessions in the EEG laboratory, where he was allowed to drift into a drowsy state of mind, while maintaining metacognition of his own experiences. Once a linguistic intrusion or a noticeable perceptual image occurred, the participant pressed a button and reported it verbally. An increase in the EEG-defined depth of drowsiness as assessed by the Hori system of sleep onset was observed in the last 20 s before a button press. Likewise, EEG Dimension of Activation values decreased before the button press, indicating that the occurrence of cognitively incongruous experiences coincides with the rapid change of EEG predictability patterns. EEG hemispheric asymmetry analysis showed that linguistic intrusions had a higher alpha and gamma power in the left hemisphere electrodes, whereas perceptual imagery reports were associated with a higher beta power over the right hemisphere. These findings indicate that the modality as well as the incongruence of drowsiness-related hypnagogic experiences is strongly associated with distinct EEG signatures in this participant. Sleep onset may provide a unique possibility to study the neural mechanisms accompanying the fragmentation of the stream of consciousness in healthy individuals.

  20. Intrusions of a drowsy mind: Neural markers of phenomenological unpredictability

    Directory of Open Access Journals (Sweden)

    Valdas eNoreika

    2015-03-01

    Full Text Available The transition from a relaxed to a drowsy state of mind is often accompanied by hypnagogic experiences: most commonly, perceptual imagery, but also linguistic intrusions, i.e. the sudden emergence of unpredictable anomalies in the stream of inner speech. This study has sought to describe the contents of such intrusions, to verify their association with the progression of sleep onset, and to investigate the electroencephalographic processes associated with linguistic intrusions as opposed to more common hypnagogic perceptual imagery. A single participant attended 10 experimental sessions in the EEG laboratory, where he was allowed to drift into a drowsy state of mind, while maintaining metacognition of his own experiences. Once a linguistic intrusion or a noticeable perceptual image occurred, the participant pressed a button and reported it verbally. An increase in the EEG-defined depth of drowsiness as assessed by the Hori system of sleep onset was observed in the last 20 sec before a button press. Likewise, EEG Dimension of Activation values decreased before the button press, indicating that the occurrence of cognitively incongruous experiences coincides with the rapid change of EEG predictability patterns. EEG hemispheric asymmetry analysis showed that linguistic intrusions had a higher alpha and gamma power in the left hemisphere electrodes, whereas perceptual imagery reports were associated with a higher beta power over the right hemisphere. These findings indicate that the modality as well as the incongruence of drowsiness-related hypnagogic experiences is strongly associated with distinct EEG signatures in this participant. Sleep onset may provide a unique possibility to study the neural mechanisms accompanying the fragmentation of the stream of consciousness in healthy individuals.

  1. Illness intrusiveness among survivors of autologous blood and marrow transplantation.

    Science.gov (United States)

    Schimmer, A D; Elliott, M E; Abbey, S E; Raiz, L; Keating, A; Beanlands, H J; McCay, E; Messner, H A; Lipton, J H; Devins, G M

    2001-12-15

    Illness-induced disruptions to lifestyles, activities, and interests (i.e., illness intrusiveness) compromise subjective well-being. The authors measured illness intrusiveness in autologous blood and bone marrow transplantation (ABMT) survivors and compared the results with survivors of solid organ transplants. Forty-four of 64 consecutive ABMT survivors referred to the University of Toronto ABMT long-term follow-up clinic completed the Illness Intrusiveness Ratings Scale (IIRS), the Affect Balance Scale (ABS), the Atkinson Life Happiness Rating (ATKLH), the Beck Hopelessness Scale (BHS), and the Center for Epidemiologic Studies Depression (CES-D) Scale. Mean time from ABMT to evaluation was 4.6 +/- 2.8 years. All patients were in remission or had stable disease at the time of evaluation. Autologous blood and bone marrow transplantation patients' IIRS scores were compared with scores reported by recipients of kidney (n = 357), liver (n = 150), lung (n = 77), and heart (n = 60) transplants. Mean IIRS score for the 44 ABMT patients was 37.2 +/- 17 (maximum possible score, 91; minimum possible score, 13). Higher IIRS scores correlated with lower scores on the ABS (r = -0.54; P work, financial situation, and active recreation. Despite achieving a remission after ABMT, patients continue to experience illness intrusiveness compromising subjective well-being. Copyright 2001 American Cancer Society.

  2. Why seawater intrusion has not yet occurred in the Kaluvelli-Pondicherry basin, Tamil Nadu, India

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2017-09-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is greatest when aquifers are overexploited or when recharge is low due to a semi-arid or arid climate. The Kaluvelli-Pondicherry sedimentary basin in Tamil Nadu (India) presents both these characteristics. Groundwater levels in the Vanur aquifer can reach 50 m below sea level at less than 20 km inland. This groundwater depletion is due to an exponential increase in extraction for irrigation over 35 years. No seawater intrusion has yet been detected, but a sulphate-rich mineralization is observed, the result of upward vertical leakage from the underlying Ramanathapuram aquifer. To characterize the mechanisms involved, and to facilitate effective water management, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been applied to a quasi-3D hydrogeological model, NEWSAM. Recharge had been previously quantified through the inter-comparison of hydrological models, based on climatological and surface-flow field measurements. Sensitivity tests on parameters and boundary conditions associated with the sea were performed. The resulting water balances for each aquifer led to hypotheses of (1) an offshore fresh groundwater stock, and (2) a reversal and increase of the upward leakage from the Ramanathapuram aquifer, thus corroborating the hypothesis proposed to explain geochemical results of the previous study, and denying a seawater intrusion. Palaeo-climate review supports the existence of favourable hydro-climatological conditions to replenish an offshore groundwater stock of the Vanur aquifer in the past. The extent of this fresh groundwater stock was calculated using the Kooi and Groen method.

  3. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Directory of Open Access Journals (Sweden)

    Christian Lanz

    Full Text Available Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot and total CBD (CBDtot in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3% and CBD (≥ 94.6%. The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  4. Power-Aware Intrusion Detection in Mobile Ad Hoc Networks

    Science.gov (United States)

    Şen, Sevil; Clark, John A.; Tapiador, Juan E.

    Mobile ad hoc networks (MANETs) are a highly promising new form of networking. However they are more vulnerable to attacks than wired networks. In addition, conventional intrusion detection systems (IDS) are ineffective and inefficient for highly dynamic and resource-constrained environments. Achieving an effective operational MANET requires tradeoffs to be made between functional and non-functional criteria. In this paper we show how Genetic Programming (GP) together with a Multi-Objective Evolutionary Algorithm (MOEA) can be used to synthesise intrusion detection programs that make optimal tradeoffs between security criteria and the power they consume.

  5. Lower crustal intrusions beneath the southern Baikal Rift Zone

    DEFF Research Database (Denmark)

    Nielsen, Christoffer; Thybo, Hans

    2009-01-01

    centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities....../s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine...

  6. Individual differences in spatial configuration learning predict the occurrence of intrusive memories.

    Science.gov (United States)

    Meyer, Thomas; Smeets, Tom; Giesbrecht, Timo; Quaedflieg, Conny W E M; Girardelli, Marta M; Mackay, Georgina R N; Merckelbach, Harald

    2013-03-01

    The dual-representation model of posttraumatic stress disorder (PTSD; Brewin, Gregory, Lipton, & Burgess, Psychological Review, 117, 210-232 2010) argues that intrusions occur when people fail to construct context-based representations during adverse experiences. The present study tested a specific prediction flowing from this model. In particular, we investigated whether the efficiency of temporal-lobe-based spatial configuration learning would account for individual differences in intrusive experiences and physiological reactivity in the laboratory. Participants (N = 82) completed the contextual cuing paradigm, which assesses spatial configuration learning that is believed to depend on associative encoding in the parahippocampus. They were then shown a trauma film. Afterward, startle responses were quantified during presentation of trauma reminder pictures versus unrelated neutral and emotional pictures. PTSD symptoms were recorded in the week following participation. Better configuration learning performance was associated with fewer perceptual intrusions, r = -.33, p .46) and had no direct effect on intrusion-related distress and overall PTSD symptoms, rs > -.12, ps > .29. However, configuration learning performance tended to be associated with reduced physiological responses to unrelated negative images, r = -.20, p = .07. Thus, while spatial configuration learning appears to be unrelated to affective responding to trauma reminders, our overall findings support the idea that the context-based memory system helps to reduce intrusions.

  7. Charge transfer between hydrogen(deuterium) ions and atoms in metal vapors

    International Nuclear Information System (INIS)

    Alvarez T, I.; Cisneros G, C.

    1981-01-01

    The current state of the experiments on charge transfer between hydrogen (deuterium) ions and atoms in metal vapors are given. Emphasis is given to describing different experimental techniques. The results of calculations if available, are compared with existing experimental data. (author)

  8. Sensitive Data Protection Based on Intrusion Tolerance in Cloud Computing

    OpenAIRE

    Jingyu Wang; xuefeng Zheng; Dengliang Luo

    2011-01-01

    Service integration and supply on-demand coming from cloud computing can significantly improve the utilization of computing resources and reduce power consumption of per service, and effectively avoid the error of computing resources. However, cloud computing is still facing the problem of intrusion tolerance of the cloud computing platform and sensitive data of new enterprise data center. In order to address the problem of intrusion tolerance of cloud computing platform and sensitive data in...

  9. Modeling of the vapor cycle of Laguna Verde with the PEPSE code to conditions of thermal power licensed at present (2027 MWt)

    International Nuclear Information System (INIS)

    Castaneda G, M. A.; Maya G, F.; Medel C, J. E.; Cardenas J, J. B.; Cruz B, H. J.; Mercado V, J. J.

    2011-11-01

    By means of the use of the performance evaluation of power system efficiencies (PEPSE) code was modeled the vapor cycle of the nuclear power station of Laguna Verde to reproduce the nuclear plant behavior to conditions of thermal power, licensed at present (2027 MWt); with the purpose of having a base line before the implementation of the project of extended power increase. The model of the gauged vapor cycle to reproduce the nuclear plant conditions makes use of the PEPSE model, design case of the vapor cycle of nuclear power station of Laguna Verde, which has as main components of the model the great equipment of the vapor cycle of Laguna Verde. The design case model makes use of information about the design requirements of each equipment for theoretically calculating the electric power of exit, besides thermodynamic conditions of the vapor cycle in different points. Starting from the design model and making use of data of the vapor cycle measured in the nuclear plant; the adjustment factors were calculated for the different equipment s of the vapor cycle, to reproduce with the PEPSE model the real vapor cycle of Laguna Verde. Once characterized the model of the vapor cycle of Laguna Verde, we can realize different sensibility studies to determine the effects macros to the vapor cycle by the variation of certain key parameters. (Author)

  10. Intrusive Images in Psychological Disorders

    Science.gov (United States)

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in the medial and lateral parietal cortices, the lateral temporal cortex, and the medial temporal lobe. Evidence from cognitive psychology and neuroscience implies distinct neural bases to abstract, flexible, contextualized representations (C-reps) and to inflexible, sensory-bound representations (S-reps). We revise our previous dual representation theory of posttraumatic stress disorder to place it within a neural systems model of healthy memory and imagery. The revised model is used to explain how the different types of distressing visual intrusions associated with clinical disorders arise, in terms of the need for correct interaction between the neural systems supporting S-reps and C-reps via visuospatial working memory. Finally, we discuss the treatment implications of the new model and relate it to existing forms of psychological therapy. PMID:20063969

  11. Calculation of Precipitable Water for Stratospheric Observatory for Infrared Astronomy Aircraft (SOFIA): Airplane in the Night Sky

    Science.gov (United States)

    Wen, Pey Chun; Busby, Christopher M.

    2011-01-01

    Stratospheric Observatory for Infrared Astronomy, or SOFIA, is the new generation airborne observatory station based at NASA s Dryden Aircraft Operations Facility, Palmdale, CA, to study the universe. Since the observatory detects infrared energy, water vapor is a concern in the atmosphere due to its known capacity to absorb infrared energy emitted by astronomical objects. Although SOFIA is hoping to fly above 99% of water vapor in the atmosphere it is still possible to affect astronomical observation. Water vapor is one of the toughest parameter to measure in the atmosphere, several atmosphere modeling are used to calculate water vapor loading. The water vapor loading, or Precipitable water, is being calculated by Matlab along the planned flight path. Over time, these results will help SOFIA to plan flights to regions of lower water vapor loading and hopefully improve the imagery collection of these astronomical features.

  12. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  13. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    International Nuclear Information System (INIS)

    P. Bernot

    2004-01-01

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  14. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  15. An Adaptive Database Intrusion Detection System

    Science.gov (United States)

    Barrios, Rita M.

    2011-01-01

    Intrusion detection is difficult to accomplish when attempting to employ current methodologies when considering the database and the authorized entity. It is a common understanding that current methodologies focus on the network architecture rather than the database, which is not an adequate solution when considering the insider threat. Recent…

  16. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  17. Fracturing of doleritic intrusions and associated contact zones: Implications for fluid flow in volcanic basins

    Science.gov (United States)

    Senger, Kim; Buckley, Simon J.; Chevallier, Luc; Fagereng, Åke; Galland, Olivier; Kurz, Tobias H.; Ogata, Kei; Planke, Sverre; Tveranger, Jan

    2015-02-01

    Igneous intrusions act as both carriers and barriers to subsurface fluid flow and are therefore expected to significantly influence the distribution and migration of groundwater and hydrocarbons in volcanic basins. Given the low matrix permeability of igneous rocks, the effective permeability in- and around intrusions is intimately linked to the characteristics of their associated fracture networks. Natural fracturing is caused by numerous processes including magma cooling, thermal contraction, magma emplacement and mechanical disturbance of the host rock. Fracturing may be locally enhanced along intrusion-host rock interfaces, at dyke-sill junctions, or at the base of curving sills, thereby potentially enhancing permeability associated with these features. In order to improve our understanding of fractures associated with intrusive bodies emplaced in sedimentary host rocks, we have investigated a series of outcrops from the Karoo Basin of the Eastern Cape province of South Africa, where the siliciclastic Burgersdorp Formation has been intruded by various intrusions (thin dykes, mid-sized sheet intrusions and thick sills) belonging to the Karoo dolerite. We present a quantified analysis of fracturing in- and around these igneous intrusions based on five outcrops at three individual study sites, utilizing a combination of field data, high-resolution lidar virtual outcrop models and image processing. Our results show a significant difference between the three sites in terms of fracture orientation. The observed differences can be attributed to contrasting intrusion geometries, outcrop geometry (for lidar data) and tectonic setting. Two main fracture sets were identified in the dolerite at two of the sites, oriented parallel and perpendicular to the contact respectively. Fracture spacing was consistent between the three sites, and exhibits a higher degree of variation in the dolerites compared to the host rock. At one of the study sites, fracture frequency in the

  18. Why hasn't a seawater intrusion yet happened in the Kaluvelli-Pondicherry basin, Tamil Nadu, India?

    Science.gov (United States)

    Vincent, Aude; Violette, Sophie

    2016-04-01

    Worldwide, coastal aquifers are threatened by seawater intrusion. The threat is even bigger when those aquifers are overexploited, for example for irrigation, or when their recharge is low due to a semi-arid or arid climate. The sedimentary basin studied here presents both this characteristics, and water level records in the main aquifer can be as low as 30m below MSL. Though, no seawater intrusion has been monitored yet. To understand why, and because a good knowledge of a system hydrodynamic is a necessary step to an efficient water management strategy, hydrogeological numerical modelling of this multi-layered system has been conducted. Existing and acquired geological and hydrodynamic data have been implemented into a quasi-3D hydrogeological model performed with NEWSAM code. Recharge had been previously quantified through the intercomparison of hydrological models, based on surface flow field measurements. During the hydrogeological modelling, sensitivity tests on parameters, and on the nature of the boundary condition with the sea, led to the hypothesis of an offshore freshwater stock. Extension of this fresh groundwater stock has been calculated thanks to Groen approximation.

  19. Intrusive Images in Psychological Disorders

    OpenAIRE

    Brewin, Chris R.; Gregory, James D.; Lipton, Michelle; Burgess, Neil

    2010-01-01

    Involuntary images and visual memories are prominent in many types of psychopathology. Patients with posttraumatic stress disorder, other anxiety disorders, depression, eating disorders, and psychosis frequently report repeated visual intrusions corresponding to a small number of real or imaginary events, usually extremely vivid, detailed, and with highly distressing content. Both memory and imagery appear to rely on common networks involving medial prefrontal regions, posterior regions in th...

  20. Environmental assessments on schools located on or near former industrial facilities: Feedback on attenuation factors for the prediction of indoor air quality.

    Science.gov (United States)

    Derycke, Virginie; Coftier, Aline; Zornig, Clément; Léprond, Hubert; Scamps, Mathilde; Gilbert, Dominique

    2018-06-01

    One of the goals of the French national campaign called "Etablissements Sensibles (Sensitive Establishments)" is to evaluate indoor air degradation in schools because of vapor intrusion of volatile compounds from soil gases towards the indoor air, related to the presence of former industrial sites on or near the establishment. During this campaign, as recommended by the United States of Environmental Protection Agency (US EPA), indoor air quality was evaluated from soil gas concentrations using generic attenuation factors, and extra investigations into soil gases and indoor air were performed when the estimated values exceeded target indoor air concentrations. This study exploits matched data on subsurface soil gases and indoor air that came from the "Sensitive Establishments" campaign. It aims to consolidate and refine the use of attenuation factors as a function of environmental variables acquired routinely during environmental assessments. We have been able to select the measured environmental variables that have the most influence on vapor intrusion using Principal Components Analysis and hypotheses tests. Since the collected data are mainly related to weak sources (only 15% schools required risk management measures related to vapor intrusion), halogenated volatile organic compounds (HVOC) were selected as tracer compounds for vapor intrusion for this study. This choice enables the exclusion or minimization of background sources contributions. From the results we have calculated the descriptive statistics of the attenuation factors distribution for the subslab-to-indoor air pathway and refined the attenuation factors for this pathway through an easily obtained parameter, building age. Qualitative comparison of attenuation factors according to the building age shows that attenuation factors observed for building less than 50 years are lower than attenuation factors for buildings 50 years old and above. These results show the utility of creating databases for

  1. Activating attachment representations during memory retrieval modulates intrusive traumatic memories.

    Science.gov (United States)

    Bryant, Richard A; Chan, Iris

    2017-10-01

    Although priming mental representations of attachment security reduces arousal, research has not examined the effect of attachment on the retrieval of emotionally arousing memories. This study investigated the effect of priming attachment security on the retrieval of emotional memories. Seventy-five participants viewed negative and neutral images, and two days later received either an attachment prime or a control prime immediately prior to free recall of the images. Two days later, participants reported how frequently they experienced intrusions of the negative images. The attachment group had less distress, and reported fewer subsequent intrusions than the control group. Attachment style moderated these effects such that individuals with an avoidant attachment style were not impacted by the attachment prime. These findings suggest that priming attachment security decreases distress during memory reactivation, and this may reduce subsequent intrusive memories. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Intrusion detection in Mobile Ad-hoc Networks: Bayesian game formulation

    Directory of Open Access Journals (Sweden)

    Basant Subba

    2016-06-01

    Full Text Available Present Intrusion Detection Systems (IDSs for MANETs require continuous monitoring which leads to rapid depletion of a node's battery life. To address this issue, we propose a new IDS scheme comprising a novel cluster leader election process and a hybrid IDS. The cluster leader election process uses the Vickrey–Clarke–Groves mechanism to elect the cluster leader which provides the intrusion detection service. The hybrid IDS comprises a threshold based lightweight module and a powerful anomaly based heavyweight module. Initially, only the lightweight module is activated. The decision to activate the heavyweight module is taken by modeling the intrusion detection process as an incomplete information non-cooperative game between the elected leader node and the potential malicious node. Simulation results show that the proposed scheme significantly reduces the IDS traffic and overall power consumption in addition to maintaining a high detection rate and accuracy.

  3. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  4. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  5. Effective use of surface-water management to control saltwater intrusion

    Science.gov (United States)

    Hughes, J. D.; White, J.

    2012-12-01

    The Biscayne aquifer in southeast Florida is susceptible to saltwater intrusion and inundation from rising sea-level as a result of high groundwater withdrawal rates and low topographic relief. Groundwater levels in the Biscayne aquifer are managed by an extensive canal system that is designed to control flooding, supply recharge to municipal well fields, and control saltwater intrusion. We present results from an integrated surface-water/groundwater model of a portion of the Biscayne aquifer to evaluate the ability of the existing managed surface-water control network to control saltwater intrusion. Surface-water stage and flow are simulated using a hydrodynamic model that solves the diffusive-wave approximation of the depth-integrated shallow surface-water equations. Variable-density groundwater flow and fluid density are solved using the Oberbeck--Boussinesq approximation of the three-dimensional variable-density groundwater flow equation and a sharp interface approximation, respectively. The surface-water and variable-density groundwater domains are implicitly coupled during each Picard iteration. The Biscayne aquifer is discretized into a multi-layer model having a 500-m square horizontal grid spacing. All primary and secondary surface-water features in the active model domain are discretized into segments using the 500-m square horizontal grid. A 15-year period of time is simulated and the model includes 66 operable surface-water control structures, 127 municipal production wells, and spatially-distributed daily internal and external hydrologic stresses. Numerical results indicate that the existing surface-water system can be effectively used in many locations to control saltwater intrusion in the Biscayne aquifer resulting from increases in groundwater withdrawals or sea-level rise expected to occur over the next 25 years. In other locations, numerical results indicate surface-water control structures and/or operations may need to be modified to control

  6. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring.

    Science.gov (United States)

    Alcalá, José M; Ureña, Jesús; Hernández, Álvaro; Gualda, David

    2017-02-11

    The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN) are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs), which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN) prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM), is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people' demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  7. A Simulation-Optimization Model for Seawater Intrusion Management at Pingtung Coastal Area, Taiwan

    Directory of Open Access Journals (Sweden)

    Po-Syun Huang

    2018-02-01

    Full Text Available The coastal regions of Pingtung Plain in southern Taiwan rely on groundwater as their main source of fresh water for aquaculture, agriculture, domestic, and industrial sectors. The availability of fresh groundwater is threatened by unsustainable groundwater extraction and the over-pumpage leads to the serious problem of seawater intrusion. It is desired to find appropriate management strategies to control groundwater salinity and mitigate seawater intrusion. In this study, a simulation–optimization model has been presented to solve the problem of seawater intrusion along the coastal aquifers in Pingtung Plain and the objective is using injection well barriers and minimizing the total injection rate based on the pre-determined locations of injection barriers. The SEAWAT code is used to simulate the process of seawater intrusion and the surrogate model of artificial neural networks (ANNs is used to approximate the seawater intrusion (SWI numerical model to increase the computational efficiency during the optimization process. The heuristic optimization scheme of differential evolution (DE algorithm is selected to identify the global optimal management solution. Two different management scenarios, one is the injection barriers located along the coast and the other is the injection barrier located at the inland, are considered and the optimized results show that the deployment of injection barriers at the inland is more effective to reduce total dissolved solids (TDS concentrations and mitigate seawater intrusion than that along the coast. The computational time can be reduced by more than 98% when using ANNs to replace the numerical model and the DE algorithm has been confirmed as a robust optimization scheme to solve groundwater management problems. The proposed framework can identify the most reliable management strategies and provide a reference tool for decision making with regard to seawater intrusion remediation.

  8. Periodontal changes following molar intrusion with miniscrews

    Directory of Open Access Journals (Sweden)

    Shahin Bayani

    2015-01-01

    Conclusion: Within the limitations of this study, these results suggest that not only periodontal status was not negatively affected by intrusion, but also there were signs of periodontal improvement including attachment gain and shortening of clinical crown height.

  9. Respon Konsumen pada Mobile Advergames: Intrusiveness dan Irritation

    Directory of Open Access Journals (Sweden)

    Sony Kusumasondjaja

    2016-12-01

    Full Text Available Abstract. Increasing adoption of mobile advergames to deliver marketing messages has not been followed by empirical findings to support its effectiveness. This research attempts to examine the effect of mobile advergames intrusiveness on consumer irritation, attitudes, and purchase intention. This investigation on mobile advergame effectiveness was based on the increasing use of mobile media to deliver marketing messages to consumers from different demographic background. Conceptual framework was developed based on Advertising Avoidance Theory. For data collection, self-administered survey was conducted by adopting purposive sampling involving 213 respondents residing in Surabaya who have had experience in playing mobile game as respondents. Results indicate that intrusiveness positively affects consumer irritation. Consumer irritation negatively affects attitude towards the mobile advergames and attitude towards the advertised product. The better the consumer attitude towards the mobile advergames, the more positive the attitude towards the advertised product. Moreover, the more positive the attitude towards the advertised product, the greater the consumer intention to purchase. Interestingly, consumer attitude toward the mobile advergames has insignificant influence on purchase intention. Findings of the study offer significant contribution to marketing practices using mobile advergames as media placement in their advertising strategy. Keywords: intrusiveness, irritation, mobile advergames, attitude, advertising

  10. Ionic liquids: differential scanning calorimetry as a new indirect method for determination of vaporization enthalpies.

    Science.gov (United States)

    Verevkin, Sergey P; Emel'yanenko, Vladimir N; Zaitsau, Dzmitry H; Ralys, Ricardas V; Schick, Christoph

    2012-04-12

    Differential scanning calorimetry (DSC) has been used to measure enthalpies of synthesis reactions of the 1-alkyl-3-methylimidazolium bromide [C(n)mim][Br] ionic liquids from 1-methylimidazole and n-alkyl bromides (with n = 4, 5, 6, 7, and 8). The optimal experimental conditions have been elaborated. Enthalpies of formation of these ionic liquids in the liquid state have been determined using the DSC results according to the Hess Law. The ideal-gas enthalpies of formation of [C(n)mim][Br] were calculated using the methods of quantum chemistry. They were used together with the DSC results to derive indirectly the enthalpies of vaporization of the ionic liquids under study. In order to validate the indirect determination, the experimental vaporization enthalpy of [C(4)mim][Br] was measured by using a quartz crystal microbalance (QCM). The combination of reaction enthalpy measurements by DSC with modern high-level first-principles calculations opens valuable indirect thermochemical options to obtain values of vaporization enthalpies of ionic liquids.

  11. Liquid-vapor phase transition upon pressure decrease in the lead-bismuth system

    Science.gov (United States)

    Volodin, V. N.

    2009-11-01

    The liquid-vapor phase transitions boundaries were calculated on the basis of the values of vapor pressure of the components in the lead-bismuth system during the stepwise pressure decrease by one order of magnitude from 105 down to 1 Pa. The emergence of azeotropic liquid under pressure lower than 19.3 kPa was ascertained. The emergence of azeotropic mixture near the lead edge of the phase diagram was concluded to be the reason for technological difficulties in the distillation separation of the system into the components in a vacuum.

  12. Ab initio calculation of the interaction potentials of helium, neon, and methane as well as theoretical studies on their thermophysical properties and those of water vapor; Ab initio-Berechnung der Wechselwirkungspotentiale von Helium, Neon und Methan sowie theoretische Untersuchungen zu ihren thermophysikalischen Eigenschaften und denen von Wasserdampf

    Energy Technology Data Exchange (ETDEWEB)

    Hellmann, Robert

    2009-06-16

    Thermophysical properties of the pure gases helium, neon, methane and water vapor were calculated for low densities over wide temperature ranges. Statistical thermodynamics was used for the determination of the pressure virial coefficients. The kinetic theory of gases was utilized for the calculation of the transport and relaxation properties. So far kinetic theory was limited to linear molecules and has now been extended to molecules of arbitrary geometry to enable calculations on methane and water vapor. The interaction potentials, which are needed for all computations, were determined for helium, neon and methane from the supermolecular approach using quantum chemical ab initio methods. For water the interaction potentials were taken from the literature. The calculated values of the thermophysical properties for the four gases show very good agreement with the best experimental data. At very low and very high temperatures the theoretical values are more accurate than experimental data. (orig.)

  13. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    Science.gov (United States)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  14. The effect of destination linked feature selection in real-time network intrusion detection

    CSIR Research Space (South Africa)

    Mzila, P

    2013-07-01

    Full Text Available techniques in the network intrusion detection system (NIDS) is the feature selection technique. The ability of NIDS to accurately identify intrusion from the network traffic relies heavily on feature selection, which describes the pattern of the network...

  15. Photography of a lithium vapor trail during the daytime.

    Science.gov (United States)

    Bedinger, J. F.

    1973-01-01

    Barium and lithium vapors were released from sounding rockets in the thermosphere and observed from aboard a jet aircraft at an altitude of 40,000 ft. The purpose of the releases was to demonstrate the feasibility of an all-weather technique for observing chemical releases and to evaluate methods of observing daytime releases. The selected flight plan of the aircraft allowed a series of observations of the trail from two different straight line paths. Data were recorded photographically. The reduction in sky brightness at the 40,000-ft altitude as compared to the ground allows the use of a filter with a 10-A bandwidth for trail photography in the daytime. These photographs verified the calculation of the usable angular field of the narrow-band filters. Photographs of a 45-min-old trail of lithium vapor were obtained up to 20 min after sunrise at the aircraft. It is concluded that now vapor trail observations may be made during the daytime without regard to weather and logistic restrictions.

  16. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  17. Smart container UWB sensor system for situational awareness of intrusion alarms

    Science.gov (United States)

    Romero, Carlos E.; Haugen, Peter C.; Zumstein, James M.; Leach, Jr., Richard R.; Vigars, Mark L.

    2013-06-11

    An in-container monitoring sensor system is based on an UWB radar intrusion detector positioned in a container and having a range gate set to the farthest wall of the container from the detector. Multipath reflections within the container make every point on or in the container appear to be at the range gate, allowing intrusion detection anywhere in the container. The system also includes other sensors to provide false alarm discrimination, and may include other sensors to monitor other parameters, e.g. radiation. The sensor system also includes a control subsystem for controlling system operation. Communications and information extraction capability may also be included. A method of detecting intrusion into a container uses UWB radar, and may also include false alarm discrimination. A secure container has an UWB based monitoring system

  18. Space-Time Variations in Water Vapor as Observed by the UARS Microwave Limb Sounder

    Science.gov (United States)

    Elson, Lee S.; Read, William G.; Waters, Joe W.; Mote, Philip W.; Kinnersley, Jonathan S.; Harwood, Robert S.

    1996-01-01

    Water vapor in the upper troposphere has a significant impact on the climate system. Difficulties in making accurate global measurements have led to uncertainty in understanding water vapor's coupling to the hydrologic cycle in the lower troposphere and its role in radiative energy balance. The Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite is able to retrieve water vapor concentration in the upper troposphere with good sensitivity and nearly global coverage. An analysis of these preliminary retrievals based on 3 years of observations shows the water vapor distribution to be similar to that measured by other techniques and to model results. The primary MLS water vapor measurements were made in the stratosphere, where this species acts as a conserved tracer under certain conditions. As is the case for the upper troposphere, most of the stratospheric discussion focuses on the time evolution of the zonal mean and zonally varying water vapor. Stratospheric results span a 19-month period and tropospheric results a 36-month period, both beginning in October of 1991. Comparisons with stratospheric model calculations show general agreement, with some differences in the amplitude and phase of long-term variations. At certain times and places, the evolution of water vapor distributions in the lower stratosphere suggests the presence of meridional transport.

  19. Intelligent Agent-Based Intrusion Detection System Using Enhanced Multiclass SVM

    Science.gov (United States)

    Ganapathy, S.; Yogesh, P.; Kannan, A.

    2012-01-01

    Intrusion detection systems were used in the past along with various techniques to detect intrusions in networks effectively. However, most of these systems are able to detect the intruders only with high false alarm rate. In this paper, we propose a new intelligent agent-based intrusion detection model for mobile ad hoc networks using a combination of attribute selection, outlier detection, and enhanced multiclass SVM classification methods. For this purpose, an effective preprocessing technique is proposed that improves the detection accuracy and reduces the processing time. Moreover, two new algorithms, namely, an Intelligent Agent Weighted Distance Outlier Detection algorithm and an Intelligent Agent-based Enhanced Multiclass Support Vector Machine algorithm are proposed for detecting the intruders in a distributed database environment that uses intelligent agents for trust management and coordination in transaction processing. The experimental results of the proposed model show that this system detects anomalies with low false alarm rate and high-detection rate when tested with KDD Cup 99 data set. PMID:23056036

  20. Topographic Beta Spiral and Onshore Intrusion of the Kuroshio Current

    Science.gov (United States)

    Yang, De-Zhou; Huang, Rui Xin; Yin, Bao-shu; Feng, Xing-Ru; Chen, Hai-ying; Qi, Ji-Feng; Xu, Ling-jing; Shi, Yun-long; Cui, Xuan; Gao, Guan-Dong; Benthuysen, Jessica A.

    2018-01-01

    The Kuroshio intrusion plays a vitally important role in carrying nutrients to marginal seas. However, the key mechanism leading to the Kuroshio intrusion remains unclear. In this study we postulate a mechanism: when the Kuroshio runs onto steep topography northeast of Taiwan, the strong inertia gives rise to upwelling over topography, leading to a left-hand spiral in the stratified ocean. This is called the topographic beta spiral, which is a major player regulating the Kuroshio intrusion; this spiral can be inferred from hydrographic surveys. In the world oceans, the topographic beta spirals can be induced by upwelling generated by strong currents running onto steep topography. This is a vital mechanism regulating onshore intruding flow and the cross-shelf transport of energy and nutrients from the Kuroshio Current to the East China Sea. This topographic beta spiral reveals a long-term missing link between the oceanic general circulation theory and shelf dynamic theory.

  1. The Intrinsic Variability in the Water Vapor Saturation Ratio due to Turbulence

    Science.gov (United States)

    Anderson, J. C.; Cantrell, W. H.; Chandrakar, K. K.; Kostinski, A. B.; Niedermeier, D.; Shaw, R. A.

    2017-12-01

    In the atmosphere, the concentration of water vapor plays an important role in Earth's weather and climate. The mean concentration of water vapor is key to its efficiency as a greenhouse gas; the fluctuations about the mean are important for heat fluxes near the surface of earth. In boundary layer clouds, fluctuations in the water vapor concentration are linked to turbulence. Conditions representative of boundary layer clouds are simulated in Michigan Tech's multiphase, turbulent reaction chamber, the ∏ chamber, where the boundary conditions are controlled and repeatable. Measurements for temperature and water vapor concentration were recorded under forced Rayleigh-Bénard convection. As expected, the distributions for temperature and water vapor concentration broaden as the turbulence becomes more vigorous. From these two measurements the saturation ratio can be calculated. The fluctuations in the water vapor concentration are more important to the variability in the saturation ratio than fluctuations in temperature. In a cloud, these fluctuations in the saturation ratio can result in some cloud droplets experiencing much higher supersaturations. Those "lucky" droplets grow by condensation at a faster rate than other cloud droplets. The difference in the droplet growth rate could contribute to a broadened droplet distribution, which leads to the onset of collision-coalescence. With more intense turbulence these effect will become more pronounced as the fluctuations about the mean saturation ratio become more pronounced.

  2. Scoping studies of vapor behavior during a severe accident in a metal-fueled reactor

    International Nuclear Information System (INIS)

    Spencer, B.W.; Marchaterre, J.F.

    1985-01-01

    Scoping calculations have been performed examining the consequences of fuel melting and pin failures for a reactivity-insertion type accident in a sodium-cooled, pool-type reactor fueled with a metal alloy fuel. The principal gas and vapor species released are shown to be Xe, Cs,and bond sodium contained within the fuel porosity. Fuel vapor pressure is insignificant, and there is no energetic fuel-coolant interaction for the conditions considered. Condensation of sodium vapor as it expands into the upper sodium pool in a jet mixing regime may occur as rapidly as the vapor emerges from the disrupted core (although reactor-material experiments are needed to confirm these high condensation rates). If the predictions of rapid direct-contact condensation can be verified experimentally for the sodium system, the implication is that the ability of vapor expansion to perform appreciable work on the system is largely eliminated. Furthermore, the ability of an expanding vapor bubble to transport fuel and fission product species to the cover gas region where they may be released to the containment is also largely eliminated. The radionuclide species except for fission gas are largely retained within the core and sodium pool

  3. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  4. Time to face it! Facebook intrusion and the implications for romantic jealousy and relationship satisfaction.

    Science.gov (United States)

    Elphinston, Rachel A; Noller, Patricia

    2011-11-01

    Young people's exposure to social network sites such as Facebook is increasing, along with the potential for such use to complicate romantic relationships. Yet, little is known about the overlaps between the online and offline worlds. We extended previous research by investigating the links between Facebook intrusion, jealousy in romantic relationships, and relationship outcomes in a sample of undergraduates currently in a romantic relationship. A Facebook Intrusion Questionnaire was developed based on key features of technological (behavioral) addictions. An eight-item Facebook Intrusion Questionnaire with a single-factor structure was supported; internal consistency was high. Facebook intrusion was linked to relationship dissatisfaction, via jealous cognitions and surveillance behaviors. The results highlight the possibility of high levels of Facebook intrusion spilling over into romantic relationships, resulting in problems such as jealousy and dissatisfaction. The results have implications for romantic relationships and for Facebook users in general.

  5. Multi-User Low Intrusive Occupancy Detection.

    Science.gov (United States)

    Pratama, Azkario Rizky; Widyawan, Widyawan; Lazovik, Alexander; Aiello, Marco

    2018-03-06

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers' mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87-90% accuracy, demonstrating the effectiveness of the proposed approach.

  6. Multi-User Low Intrusive Occupancy Detection

    Science.gov (United States)

    Widyawan, Widyawan; Lazovik, Alexander

    2018-01-01

    Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS) of BLE (Bluetooth Low Energy) nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach. PMID:29509693

  7. Maternal intrusiveness, family financial means, and anxiety across childhood in a large multiphase sample of community youth

    Science.gov (United States)

    Cooper-Vince, Christine E.; Pincus, Donna B.; Comer, Jonathan S.

    2013-01-01

    Intrusive parenting has been positively associated with child anxiety, although examinations of this relationship to date have been largely confined to middle to upper middle class families and have rarely used longitudinal designs. With several leading interventions for child anxiety emphasizing the reduction of parental intrusiveness, it is critical to determine whether the links between parental intrusiveness and child anxiety broadly apply to families of all financial means, and whether parental intrusiveness prospectively predicts the development of child anxiety. This study employed latent growth curve analysis to evaluate the interactive effects of maternal intrusiveness and financial means on the developmental trajectory of child anxiety from 1st grade to age 15 in 1,121 children (50.7% male) and their parents from the NICHD SECCYD. The overall model was found to provide good fit, revealing that early maternal intrusiveness and financial means did not impact individual trajectories of change in child anxiety, which were stable from 1st to 5th grade, and then decrease from 5th grade to age 15. Cross-sectional analyses also examined whether family financial means moderated contemporaneous relationships between maternal intrusiveness and child anxiety in 3rd and 5th grades. The relationship between maternal intrusiveness and child anxiety was moderated by family financial means for 1st graders, with stronger links found among children of lower family financial means, but not for 3rd and 5th graders. Neither maternal intrusiveness nor financial means in 1st grade predicted subsequent changes in anxiety across childhood. Findings help elucidate for whom and when maternal intrusiveness has the greatest link with child anxiety and can inform targeted treatment efforts. PMID:23929005

  8. Non intrusive check valve diagnostics at Bruce A

    International Nuclear Information System (INIS)

    Marsch, S.P.

    1997-01-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  9. Non intrusive check valve diagnostics at Bruce A

    Energy Technology Data Exchange (ETDEWEB)

    Marsch, S.P. [Ontario Hydro, Bruce Nuclear Generating Station A, Tiverton, ON (Canada)

    1997-07-01

    Bruce A purchased non intrusive check valve diagnostic equipment in 1995 to ensure operability and availability of critical check valves in the Station. Diagnostics can be used to locate and monitor check valve degradation modes. Bruce A initiated a pilot program targeting check valves with flow through them and ones that completed open or close cycles. Approaches to determine how to confirm operability of passive check valves using non intrusive techniques were explored. A sample population of seventy-three check valves was selected to run the pilot program on prior to complete implementation. The pilot program produced some significant results and some inconclusive results. The program revealed a major finding that check valve performance modeling is required to ensure continuous operability of check valves. (author)

  10. Access Control from an Intrusion Detection Perspective

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.

    Access control and intrusion detection are essential components for securing an organization's information assets. In practice, these components are used in isolation, while their fusion would contribute to increase the range and accuracy of both. One approach to accomplish this fusion is the

  11. On Emulation-Based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Abbasi, Ali; Wetzel, Jos; Bokslag, Wouter; Zambon, Emmanuele; Etalle, Sandro

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an in- strumented environment and checking the execution traces for signs of shellcode activity.

  12. On emulation-based network intrusion detection systems

    NARCIS (Netherlands)

    Abbasi, A.; Wetzels, J.; Bokslag, W.; Zambon, E.; Etalle, S.; Stavrou, A.; Bos, H.; Portokalidis, G.

    2014-01-01

    Emulation-based network intrusion detection systems have been devised to detect the presence of shellcode in network traffic by trying to execute (portions of) the network packet payloads in an instrumented environment and checking the execution traces for signs of shellcode activity.

  13. Pre-Stressor Interference Control and Intrusive Memories

    NARCIS (Netherlands)

    Verwoerd, J.; Wessel, I.; De Jong, P.J.; Nieuwenhuis, Maurice; Huntjens, R.J.C.

    Although intrusive imagery is a common response in the aftermath of a stressful or traumatic event, only a minority of trauma victims show persistent re-experiencing and related psychopathology. Individual differences in pre-trauma executive control possibly play a critical role. Therefore, this

  14. Atmospheric pre-corrected differential absorption techniques to retrieve columnar water vapor: Application to AVIRIS 91/95 data

    Energy Technology Data Exchange (ETDEWEB)

    Schlaepfer, D. [Univ. of Zuerich (Switzerland). Dept. of Geography; Borel, C.C. [Los Alamos National Lab., NM (United States); Keller, J. [Paul Scherrer Institut, Villigen (Switzerland)] [and others

    1996-03-01

    Water vapor is one of the main forces for weather development as well as for mesoscale air transport processes. The monitoring of water vapor is therefore an important aim in remote sensing of the atmosphere. Current operational systems for water vapor detection use primarily the emission in the thermal infrared (AVHRR, GOES, ATSR, Meteosat) or in the microwave radiation bands (DMSP). The disadvantage of current satellite systems is either a coarse spatial (horizontal) resolution ranging from one to tens of kilometers or a limited insight into the lower atmosphere. Imaging spectrometry on the other hand measures total column water vapor contents at a high spatial horizontal resolution and has therefore the potential of filling these gaps. The sensors of the AVIRIS instrument are capable of acquiring hyperspectral data in 224 bands located in the visible and near infrared at 10 run resolution. This data includes information on constituents of the earth`s surface as well as of the atmosphere. The optical measurement of water vapor can be performed using sensor channels located in bands or lines of the absorption spectrum. The AVIRIS sensor has been used to retrieve water vapor and with less accuracy carbon dioxide, oxygen and ozone. To retrieve the water vapor amount, the so called differential absorption technique has been applied. The goal of this technique is to eliminate background factors by taking a ratio between channels within the absorption band and others besides the band. Various rationing methods on the basis of different channels and calculation techniques were developed. The influence of a trace gas of interest on the radiance at the sensor level is usually simulated by using radiative transfer codes. In this study, spectral transmittance and radiance are calculated by MODTRAN3 simulations with the new DISORT option. This work testS the best performing differential absorption techniques for imaging spectrometry of tropospheric water vapor.

  15. How Intrusion Detection Can Improve Software Decoy Applications

    National Research Council Canada - National Science Library

    Monteiro, Valter

    2003-01-01

    This research concerns information security and computer-network defense. It addresses how to handle the information of log files and intrusion-detection systems to recognize when a system is under attack...

  16. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  17. Perceptual processing during trauma, priming and the development of intrusive memories

    Science.gov (United States)

    Sündermann, Oliver; Hauschildt, Marit; Ehlers, Anke

    2013-01-01

    Background Intrusive reexperiencing in posttraumatic stress disorder (PTSD) is commonly triggered by stimuli with perceptual similarity to those present during the trauma. Information processing theories suggest that perceptual processing during the trauma and enhanced perceptual priming contribute to the easy triggering of intrusive memories by these cues. Methods Healthy volunteers (N = 51) watched neutral and trauma picture stories on a computer screen. Neutral objects that were unrelated to the content of the stories briefly appeared in the interval between the pictures. Dissociation and data-driven processing (as indicators of perceptual processing) and state anxiety during the stories were assessed with self-report questionnaires. After filler tasks, participants completed a blurred object identification task to assess priming and a recognition memory task. Intrusive memories were assessed with telephone interviews 2 weeks and 3 months later. Results Neutral objects were more strongly primed if they occurred in the context of trauma stories than if they occurred during neutral stories, although the effect size was only moderate (ηp2=.08) and only significant when trauma stories were presented first. Regardless of story order, enhanced perceptual priming predicted intrusive memories at 2-week follow-up (N = 51), but not at 3 months (n = 40). Data-driven processing, dissociation and anxiety increases during the trauma stories also predicted intrusive memories. Enhanced perceptual priming and data-driven processing were associated with lower verbal intelligence. Limitations It is unclear to what extent these findings generalize to real-life traumatic events and whether they are specific to negative emotional events. Conclusions The results provide some support for the role of perceptual processing and perceptual priming in reexperiencing symptoms. PMID:23207970

  18. Assessing Human Activity in Elderly People Using Non-Intrusive Load Monitoring

    Directory of Open Access Journals (Sweden)

    José M. Alcalá

    2017-02-01

    Full Text Available The ageing of the population, and their increasing wish of living independently, are motivating the development of welfare and healthcare models. Existing approaches based on the direct heath-monitoring using body sensor networks (BSN are precise and accurate. Nonetheless, their intrusiveness causes non-acceptance. New approaches seek the indirect monitoring through monitoring activities of daily living (ADLs, which proves to be a suitable solution. ADL monitoring systems use many heterogeneous sensors, are less intrusive, and are less expensive than BSN, however, the deployment and maintenance of wireless sensor networks (WSN prevent them from a widespread acceptance. In this work, a novel technique to monitor the human activity, based on non-intrusive load monitoring (NILM, is presented. The proposal uses only smart meter data, which leads to minimum intrusiveness and a potential massive deployment at minimal cost. This could be the key to develop sustainable healthcare models for smart homes, capable of complying with the elderly people’ demands. This study also uses the Dempster-Shafer theory to provide a daily score of normality with regard to the regular behavior. This approach has been evaluated using real datasets and, additionally, a benchmarking against a Gaussian mixture model approach is presented.

  19. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  20. Internet use, Facebook intrusion, and depression: Results of a cross-sectional study.

    Science.gov (United States)

    Błachnio, A; Przepiórka, A; Pantic, I

    2015-09-01

    Facebook has become a very popular social networking platform today, particularly among adolescents and young adults, profoundly changing the way they communicate and interact. However, some reports have indicated that excessive Facebook use might have detrimental effects on mental health and be associated with certain psychological problems. Because previous findings on the relationship between Facebook addiction and depression were not unambiguous, further investigation was required. The main objective of our study was to examine the potential associations between Internet use, depression, and Facebook intrusion. A total of 672 Facebook users took part in the cross-sectional study. The Facebook Intrusion Questionnaire and the Center for Epidemiologic Studies Depression Scale were used. For collecting the data, the snowball sampling procedure was used. We showed that depression can be a predictor of Facebook intrusion. Our results provides additional evidence that daily Internet use time in minutes, gender, and age are also predictors of Facebook intrusion: that Facebook intrusion can be predicted by being male, young age, and an extensive number of minutes spent online. On the basis of this study, it is possible to conclude that there are certain demographic - variables, such as age, gender, or time spent online - that may help in outlining the profile of a user who may be in danger of becoming addicted to Facebook. This piece of knowledge may serve for prevention purposes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. A subtractive approach to interior intrusion detection system design

    International Nuclear Information System (INIS)

    Sons, R.J.; Graham, R.H. Jr.

    1986-01-01

    This paper discusses the subtractive approach to interior intrusion detection system design which assumes that all sensors are viable candidates until they are subjected to the constraints imposed by a particular facility. The constraints are determined by a sequence of questions concerning parameters such as threat definition, facility description and operation, environment, assets to be protected, security system capabilities, and cost. As a result of the questioning, some sensors will be eliminated from the candidate list, and the ''best'' set of sensors for the facility will remain. This form of questioning could be incorporated into an expert system aiding future intrusion detection system designs

  2. The Sonju Lake layered intrusion, northeast Minnesota: Internal structure and emplacement history inferred from magnetic fabrics

    Science.gov (United States)

    Maes, S.M.; Tikoff, B.; Ferre, E.C.; Brown, P.E.; Miller, J.D.

    2007-01-01

    The Sonju Lake intrusion (SLI), in northeastern Minnesota, is a layered mafic complex of Keweenawan age (1096.1 ?? 0.8 Ma) related to the Midcontinent rift. The cumulate paragenesis of the intrusion is recognized as broadly similar to the Skaergaard intrusion, a classic example of closed-system differentiation of a tholeiitic mafic magma. The SLI represents nearly closed-system differentiation through bottom-up fractional crystallization. Geochemical studies have identified the presence of a stratabound, 50-100 m thick zone anomalously enriched in Au + PGE. Similar to the PGE reefs of the Skaergaard intrusion, this PGE-enriched zone is hosted within oxide gabbro cumulates, about two-third of the way up from the base of the intrusion. We present a petrofabric study using the anisotropy of magnetic susceptibility (AMS) to investigate the emplacement and flow patterns within the Sonju Lake intrusion. Petrographic and electron microprobe studies, combined with AMS and hysteresis measurements indicate the primary source of the magnetic signal is pseudo-single domain (PSD) magnetite or titanomagnetite. Low field AMS was measured at 32 sites within the Sonju Lake intrusion, which provided information about primary igneous fabrics. The magnetic fabrics in the layered series of the Sonju Lake intrusion are consistent with sub-horizontal to inclined emplacement of the intrusion and show evidence that the cumulate layers were deposited in a dynamic environment. Well-aligned magnetic lineations, consistently plunging shallowly toward the southwest, indicate the source of the magma is a vertical sill-like feeder, presumably located beneath the Finland granite. The Finland granite acted as a density trap for the Sonju Lake magmas, forcing lateral flow of magma to the northeast. The strongly oblate magnetic shape fabrics indicate the shallowly dipping planar fabrics were enhanced by compaction of the crystal mush. ?? 2007 Elsevier B.V. All rights reserved.

  3. Context-aware local Intrusion Detection in SCADA systems : a testbed and two showcases

    NARCIS (Netherlands)

    Chromik, Justyna Joanna; Haverkort, Boudewijn R.H.M.; Remke, Anne Katharina Ingrid; Pilch, Carina; Brackmann, Pascal; Duhme, Christof; Everinghoff, Franziska; Giberlein, Artur; Teodorowicz, Thomas; Wieland, Julian

    2017-01-01

    This paper illustrates the use of a testbed that we have developed for context-aware local intrusion detection. This testbed is based on the co-simulation framework Mosaik and allows for the validation of local intrusion detection mechanisms at field stations in power distribution networks. For two

  4. THE GEOMORPHOLOGIC FEATURES OF INTRUSIVE MAGMATIC STRUCTURES FROM BÂRGĂU MOUNTAINS (EASTERN CARPATHIANS, ROMANIA

    Directory of Open Access Journals (Sweden)

    Ioan Bâca

    2016-08-01

    Full Text Available Igneous intrusive structures from Bârgău Mountains belong to the group of central Neogene volcanic chain of the Eastern Carpathians of Romania. The evolution of the relief developed on these structures are three main stages: the stage of injection of structures (Pannonian, the stage of uncovering of igneous intrusive bodies from Oligo-Miocene sedimentary cover (Pliocene, and the stage of subaerial modeling of magmatic bodies (Pliocene-current.In those circumstances, the geodiversity of intrusive magmatic structures from Bârgău Mountains is represented by several types of landforms such as: polycyclic landforms (erosional levels, structural landforms (the configuration of igneous intrusive structures, petrographic landforms (andesites, lithological contact, fluvial landforms (valleys, slopes, ridges, periglacial landforms (cryogenic and crionival landforms, biogenic and anthropogenic landforms. This study highlights certain features of the landforms modeled on igneous intrusive bodies with the aim of developing some strategy for tourism recovery by local and county authorities.

  5. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  6. Geophysics and geochemistry techniques in seawater intrusion monitoring and mapping at Kerpan, Kedah

    International Nuclear Information System (INIS)

    Bashillah Baharuddin; Nazrul Hizam Yusoff; Abdul Rahim Samsudin

    2002-01-01

    Lately, groundwater contamination has become a public concern. Seawater intrusion is not a new issue, and only it started to magnetize attention from lots of parties since at also a contributor to groundwater contamination. Therefore a study about seawater intrusion is carried out and the selected area is Kerpan, Kedah. This information is useful particularly in agriculture because any contamination that cause by chlorine (seawater) intrusion can affect crops production. For Kerpan Project, two modernized electric resistivity survey instruments, the Terrameter SAS 4000 and SAS 300C are used which provide image profiles. This profiles have the capability to access a comprehensive geological interpretation by examine subsurface electric characteristics such as resistivity, permittivity and chargeability (John, 1997). At Kerpan, Kedah a study about salinity in canals was also carried out to monitor if there is any seawater intrusion that can get through the canals. The study was done since that the canals are directly to the sea. Instrument for this study is STD 12-plus. (Author)

  7. A New Unified Intrusion Anomaly Detection in Identifying Unseen Web Attacks

    Directory of Open Access Journals (Sweden)

    Muhammad Hilmi Kamarudin

    2017-01-01

    Full Text Available The global usage of more sophisticated web-based application systems is obviously growing very rapidly. Major usage includes the storing and transporting of sensitive data over the Internet. The growth has consequently opened up a serious need for more secured network and application security protection devices. Security experts normally equip their databases with a large number of signatures to help in the detection of known web-based threats. In reality, it is almost impossible to keep updating the database with the newly identified web vulnerabilities. As such, new attacks are invisible. This research presents a novel approach of Intrusion Detection System (IDS in detecting unknown attacks on web servers using the Unified Intrusion Anomaly Detection (UIAD approach. The unified approach consists of three components (preprocessing, statistical analysis, and classification. Initially, the process starts with the removal of irrelevant and redundant features using a novel hybrid feature selection method. Thereafter, the process continues with the application of a statistical approach to identifying traffic abnormality. We performed Relative Percentage Ratio (RPR coupled with Euclidean Distance Analysis (EDA and the Chebyshev Inequality Theorem (CIT to calculate the normality score and generate a finest threshold. Finally, Logitboost (LB is employed alongside Random Forest (RF as a weak classifier, with the aim of minimising the final false alarm rate. The experiment has demonstrated that our approach has successfully identified unknown attacks with greater than a 95% detection rate and less than a 1% false alarm rate for both the DARPA 1999 and the ISCX 2012 datasets.

  8. Semantic intrusion detection with multisensor data fusion using ...

    Indian Academy of Sciences (India)

    spatiotemporal relations to form complex events which model the intrusion patterns. ... Wireless sensor networks; complex event processing; event stream; ...... of the 2006 ACM SIGMOD International Conference on Management of Data, 407– ...

  9. Water Vapor Transport Over the Tropical Oceans During ENSO as Diagnosed from TRMM and SSM/I Data

    Science.gov (United States)

    Robertson, Franklin R.; Smith, Eric A.; Sohn, Byung-Ju

    2000-01-01

    Traditionally, large-scale water vapor transport [div Q] has been derived directly from circulation statistics in which transport processes are often depicted by mean and eddy motions. Thus detailed and accurate calculations of moisture transport terms over the globe are required. Notably, the lack of systematically spaced conventional measurements of meteorological variables over oceans has hindered understanding of the distribution and transport of water vapor. This motivates the use of indirect calculation methods in which horizontal divergence of water vapor is balanced by the evaporation minus precipitation, assuming the rate of changes of precipitable water and condensates is small over a sufficiently long time period. In order to obtain the water vapor transport, we need evaporation rate minus precipitation (E-P). Focussing on the differences in water vapor transport between El Nino and La Nina periods and their influences on atmospheric circulations, we study January, February, and March of 1998 and 1999 periods which represent El Nino and La Nina respectively. SSM/I-derived precipitation and evaporation rate from SSM/I wind and total precipitable water, in conjunction with NCEP SST and surface air temperature, are used for the calculation of the transport potential function. For the retrieval of evaporation we use a stability-dependent aerodynamic bulk scheme developed by Chou (1993). It was tested against aircraft covariance fluxes measured during cold air outbreaks over the North Atlantic Ocean. Chou et al. (1997) reported that the SSM/I retrieved latent heat flux over the western Pacific warm pool area were found to be comparable with daily mean fluxes of a ship measurements during TOGA/COARE.

  10. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  11. DFCL: DYNAMIC FUZZY LOGIC CONTROLLER FOR INTRUSION DETECTION

    Directory of Open Access Journals (Sweden)

    Abdulrahim Haroun Ali

    2014-08-01

    Full Text Available Intrusions are a problem with the deployment of Networks which give misuse and abnormal behavior in running reliable network operations and services. In this work, a Dynamic Fuzzy Logic Controller (DFLC is proposed for an anomaly detection problem, with the aim of solving the problem of attack detection rate and faster response process. Data is collected by PingER project. PingER project actively measures the worldwide Internet’s end-to-end performance. It covers over 168 countries around the world. PingER uses simple ubiquitous Internet Ping facility to calculate number of useful performance parameters. From each set of 10 pings between a monitoring host and a remote host, the features being calculated include Minimum Round Trip Time (RTT, Jitter, Packet loss, Mean Opinion Score (MOS, Directness of Connection (Alpha, Throughput, ping unpredictability and ping reachability. A set of 10 pings is being sent from the monitoring node to the remote node every 30 minutes. The received data shows the current characteristic and behavior of the networks. Any changes in the received data signify the existence of potential threat or abnormal behavior. D-FLC uses the combination of parameters as an input to detect the existence of any abnormal behavior of the network. The proposed system is simulated in Matlab Simulink environment. Simulations results show that the system managed to catch 95% of the anomalies with the ability to distinguish normal and abnormal behavior of the network.

  12. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  13. Solución Matricial de Modelos para Cálculo de Equilibrio Líquido-Vapor Matrix Solution of Models to Calculate Liquid-Vapor Equilibrium

    OpenAIRE

    José F Orejel-Pajarito; Raúl González-García

    2008-01-01

    El objetivo de este artículo es demostrar la viabilidad de utilizar modelos termodinámicos de coeficientes de actividad (Wilson, NRTL, UNIQUAC) programados con matrices, en lugar de estar programados con ciclos. Se determina la relación de equilibrio líquido-vapor de las mezclas Metanol-Etanol-Benceno y Acetona-Cloroformo-Metanol representados en mapas de curvas de residuo y en mapas de líneas de destilación. Para obtener resultados más confiables y conclusiones objetivas, el estudio fue apoy...

  14. Biological intrusion of low-level-waste trench covers

    Science.gov (United States)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  15. Hybrid Intrusion Forecasting Framework for Early Warning System

    Science.gov (United States)

    Kim, Sehun; Shin, Seong-Jun; Kim, Hyunwoo; Kwon, Ki Hoon; Han, Younggoo

    Recently, cyber attacks have become a serious hindrance to the stability of Internet. These attacks exploit interconnectivity of networks, propagate in an instant, and have become more sophisticated and evolutionary. Traditional Internet security systems such as firewalls, IDS and IPS are limited in terms of detecting recent cyber attacks in advance as these systems respond to Internet attacks only after the attacks inflict serious damage. In this paper, we propose a hybrid intrusion forecasting system framework for an early warning system. The proposed system utilizes three types of forecasting methods: time-series analysis, probabilistic modeling, and data mining method. By combining these methods, it is possible to take advantage of the forecasting technique of each while overcoming their drawbacks. Experimental results show that the hybrid intrusion forecasting method outperforms each of three forecasting methods.

  16. Wave Induced Saline Intrusion in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Burrows, Richard

    1989-01-01

    Experimental and numerical studies have shown that the influence of wave increases the tendency of saline intrusion in multi-riser sea outfalls. The flow field in the diffusor under such unsteady and inhomogeneous circumstances is in general very complex, but when sufficient wave energy is dissip...

  17. Revisiting Anomaly-based Network Intrusion Detection Systems

    NARCIS (Netherlands)

    Bolzoni, D.

    2009-01-01

    Intrusion detection systems (IDSs) are well-known and widely-deployed security tools to detect cyber-attacks and malicious activities in computer systems and networks. A signature-based IDS works similar to anti-virus software. It employs a signature database of known attacks, and a successful match

  18. A simplified transient three-dimensional model for estimating the thermal performance of the vapor chambers

    International Nuclear Information System (INIS)

    Chen, Y.-S.; Chien, K.-H.; Wang, C.-C.; Hung, T.-C.; Pei, B.-S.

    2006-01-01

    The vapor chambers (flat plate heat pipes) have been applied on the electronic cooling recently. To satisfy the quick-response requirement of the industries, a simplified transient three-dimensional linear model has been developed and tested in this study. In the proposed model, the vapor is assumed as a single interface between the evaporator and condenser wicks, and this assumption enables the vapor chamber to be analyzed by being split into small control volumes. Comparing with the previous available results, the calculated transient responses have shown good agreements with the existing results. For further validation of the proposed model, a water-cooling experiment was conducted. In addition to the vapor chamber, the heating block is also taken into account in the simulation. It is found that the inclusion of the capacitance of heating block shows a better agreement with the measurements

  19. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  20. Full distributed fiber optical sensor for intrusion detection in application to buried pipelines

    Science.gov (United States)

    Gao, Jianzhong; Jiang, Zhuangde; Zhao, Yulong; Zhu, Li; Zhao, Guoxian

    2005-11-01

    Based on the microbend effect of optical fiber, a distributed sensor for real-time continuous monitoring of intrusion in application to buried pipelines is proposed. The sensing element is a long cable with a special structure made up of an elastic polymer wire, an optical fiber, and a metal wire. The damage point is located with an embedded optical time domain reflectometry (OTDR) instrument. The intrusion types can be indicated by the amplitude of output voltage. Experimental results show that the detection system can alarm adequately under abnormal load and can locate the intrusion point within 22.4 m for distance of 3.023 km.

  1. Distributed fiber optic moisture intrusion sensing system

    Science.gov (United States)

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  2. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  3. Medication Adherence using Non-intrusive Wearable Sensors

    Directory of Open Access Journals (Sweden)

    T. H. Lim

    2017-12-01

    Full Text Available Activity recognition approaches have been applied in home ambient systems to monitor the status and well- being of occupant especially for home care systems. With the advancement of embedded wireless sensing devices, various applications have been proposed to monitor user´s activities and maintain a healthy lifestyle. In this paper, we propose and evaluate a Smart Medication Alert and Treatment Electronic Systems (SmartMATES using a non-intrusive wearable activity recognition sensing system to monitor and alert an user for missing medication prescription. Two sensors are used to collect data from the accelerometer and radio transceiver. Based on the data collected, SmartMATES processes the data and generate a model for the various actions including taking medication. We have evaluated the SmartMATES on 9 participants. The results show that the SmartMATES can identify and prevent missing dosage in a less intrusive way than existing mobile application and traditional approaches.

  4. Nuclear waste disposal facility intrusion: an archeologist's perspective

    International Nuclear Information System (INIS)

    Virginia, C.; Christie, L.

    1981-01-01

    A scenario is presented for the intrusion of a shallow land burial site by archeologists from a future generation. A description is given for the potential widespread exposure and contamination of populations by recovered artifacts

  5. A New Intrusion Detection System Based on KNN Classification Algorithm in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2014-01-01

    abnormal nodes from normal nodes by observing their abnormal behaviors, and we analyse parameter selection and error rate of the intrusion detection system. The paper elaborates on the design and implementation of the detection system. This system has achieved efficient, rapid intrusion detection by improving the wireless ad hoc on-demand distance vector routing protocol (Ad hoc On-Demand Distance the Vector Routing, AODV. Finally, the test results show that: the system has high detection accuracy and speed, in accordance with the requirement of wireless sensor network intrusion detection.

  6. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  7. An Automata Based Intrusion Detection Method for Internet of Things

    Directory of Open Access Journals (Sweden)

    Yulong Fu

    2017-01-01

    Full Text Available Internet of Things (IoT transforms network communication to Machine-to-Machine (M2M basis and provides open access and new services to citizens and companies. It extends the border of Internet and will be developed as one part of the future 5G networks. However, as the resources of IoT’s front devices are constrained, many security mechanisms are hard to be implemented to protect the IoT networks. Intrusion detection system (IDS is an efficient technique that can be used to detect the attackers when cryptography is broken, and it can be used to enforce the security of IoT networks. In this article, we analyzed the intrusion detection requirements of IoT networks and then proposed a uniform intrusion detection method for the vast heterogeneous IoT networks based on an automata model. The proposed method can detect and report the possible IoT attacks with three types: jam-attack, false-attack, and reply-attack automatically. We also design an experiment to verify the proposed IDS method and examine the attack of RADIUS application.

  8. Simulation of sea water intrusion in coastal aquifers

    Indian Academy of Sciences (India)

    dependent miscible flow and transport modelling approach for simulation of seawater intrusion in coastal aquifers. A nonlinear optimization-based simulation methodology was used in this study. Various steady state simulations are performed for a ...

  9. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  10. Evaluation of intrusion sensors and video assessment in areas of restricted passage

    International Nuclear Information System (INIS)

    Hoover, C.E.; Ringler, C.E.

    1996-04-01

    This report discusses an evaluation of intrusion sensors and video assessment in areas of restricted passage. The discussion focuses on applications of sensors and video assessment in suspended ceilings and air ducts. It also includes current and proposed requirements for intrusion detection and assessment. Detection and nuisance alarm characteristics of selected sensors as well as assessment capabilities of low-cost board cameras were included in the evaluation

  11. Root resorption after orthodontic intrusion and extrusion:.

    NARCIS (Netherlands)

    Han, G.; Huang, S.; Hoff, J.W. Von den; Zeng, X.; Kuijpers-Jagtman, A.M.

    2005-01-01

    The aim of this investigation was to compare root resorption in the same individual after application of continuous intrusive and extrusive forces. In nine patients (mean age 15.3 years), the maxillary first premolars were randomly intruded or extruded with a continuous force of 100 cN for eight

  12. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  13. Externalizing symptoms, effortful control, and intrusive parenting: A test of bidirectional longitudinal relations during early childhood.

    Science.gov (United States)

    Eisenberg, Nancy; Taylor, Zoe E; Widaman, Keith F; Spinrad, Tracy L

    2015-11-01

    At approximately 30, 42, and 54 months of age (N = 231), the relations among children's externalizing symptoms, intrusive maternal parenting, and children's effortful control (EC) were examined. Both intrusive parenting and low EC have been related to psychopathology, but children's externalizing problems and low EC might affect the quality of parenting and one another. Mothers' intrusive behavior with their children was assessed with observations, children's EC was measured with mothers' and caregivers' reports, and children's externalizing symptoms were assessed with mothers', fathers', and caregivers' reports. In a structural equation panel model, bidirectional relations between intrusive parenting and EC were found: EC at 30 and 42 months predicted low levels of intrusive parenting a year later, controlling for prior levels of parenting and vice versa. Moreover, high levels of children's externalizing problems at both 30 and 42 months negatively predicted EC a year later, controlling for prior levels of EC. Although externalizing problems positively predicted high EC over time, this appeared to be a suppression effect because these variables had a strong negative pattern in the zero-order correlations. Moreover, when controlling for the stability of intrusive parenting, EC, and externalizing (all exhibited significant stability across time) and the aforementioned cross-lagged predictive paths, EC and externalizing problems were still negatively related within the 54-month assessment. The findings are consistent with the view that children's externalizing behavior undermines their EC and contributes to intrusive mothering and that relations between intrusive parenting and EC are bidirectional across time. Thus, interventions that focus on modifying children's externalizing problems (as well as the quality of parenting) might affect the quality of parenting they receive and, hence, subsequent problems with adjustment.

  14. Unsaturated zone moisture and vapor movement induced by temperature variations in asphalt barrier field lysimeters

    International Nuclear Information System (INIS)

    Holford, D.J.; Fayer, M.J.

    1990-08-01

    Protective barriers are being considered for use at the Hanford Site to enhance the isolation of radioactive wastes from water, plant, and animal intrusion. Lysimeters were constructed to evaluate the performance of asphalt barrier formulations under natural environmental conditions. These lysimeters were constructed of 1.7-m lengths of PVC pipe that have a diameter of 30 cm. The lysimeters were filled with layers of gravel, coarse sand, and asphalt. The sand and gravel placed under the asphalt barrier were wet when installed. TOUGH was used to conduct simulations to assess the effect of temperature variations on moisture and vapor movement beneath the asphalt layer in field test lysimeters. All variables in TOUGH were converted to double precision so that simulations could be run on a Sun-4 UNIX workstation. A radially symmetric grid was used to simulate the lysimeter. 8 refs., 9 figs

  15. Multi-User Low Intrusive Occupancy Detection

    Directory of Open Access Journals (Sweden)

    Azkario Rizky Pratama

    2018-03-01

    Full Text Available Smart spaces are those that are aware of their state and can act accordingly. Among the central elements of such a state is the presence of humans and their number. For a smart office building, such information can be used for saving energy and safety purposes. While acquiring presence information is crucial, using sensing techniques that are highly intrusive, such as cameras, is often not acceptable for the building occupants. In this paper, we illustrate a proposal for occupancy detection which is low intrusive; it is based on equipment typically available in modern offices such as room-level power-metering and an app running on workers’ mobile phones. For power metering, we collect the aggregated power consumption and disaggregate the load of each device. For the mobile phone, we use the Received Signal Strength (RSS of BLE (Bluetooth Low Energy nodes deployed around workspaces to localize the phone in a room. We test the system in our offices. The experiments show that sensor fusion of the two sensing modalities gives 87–90% accuracy, demonstrating the effectiveness of the proposed approach.

  16. Ant colony induced decision trees for intrusion detection

    CSIR Research Space (South Africa)

    Botes, FH

    2017-06-01

    Full Text Available platform. Intrusion Detection Systems (IDS) analyse network traffic to identify suspicious patterns with the intention to compromise the system. Practitioners train classifiers to classify the data within different categories e.g. malicious or normal...

  17. Free to love? The role of intrusive parenting for young adult children's romantic relationship quality.

    Science.gov (United States)

    Parise, Miriam; Manzi, Claudia; Donato, Silvia; Iafrate, Raffaella

    2017-01-01

    Intrusive parenting is a form of boundary disturbance in the parent-child relationship which has been consistently associated with children's maladjustment. The present study examines the role of intrusive parenting for young adult children's romantic relationship quality. Relying on data from a two-wave longitudinal study among young couples in transition to marriage in Italy, we investigated the link between young adults' perceived intrusive parenting and change in their romantic relationship quality from 6 months before marriage to 18 months after marriage, as well as the mediating role of change in the capacity to include the partner in the self. Data were analyzed using actor-partner interdependence modeling. Perceived intrusive parenting negatively predicted change in inclusion of the other in the self and change in romantic relationship quality for both partners. For females, change in their capacity of inclusion of the other in the self fully mediated the association between their perceived intrusive parenting and change in their own and partner's relationship quality. Limitations and implications for practice are discussed.

  18. Evolution of Th and U whole-rock contents in the Ilimaussaq intrusion

    International Nuclear Information System (INIS)

    Bailey, J.C.; Rose-Hansen, J.; Soerensen, H.

    1981-01-01

    Thorium and uranium values of a large collction of representative samples taken from all rock types of the Ilimaussaq alkaline intrusion, South Greenland, are presented. The values are largely obtained by laboratory gamma-ray spectrometric (GRS) analysis. The results are discussed in relation to current knowledge and ideas on the petrologic evolution of the Ilimaussaq intrusion. It is concluded that (1) Rocks from the Ilimaussaq alkaline intrusion evolve to extremely high Th and U contents; (2) The evolution is characterised by appearance of low-Th/U cumulates due to the appearance of low-Th/U eudialyte as a liquidus phase; (3) Fractionation of the observed cumulus assemblages fails to explain all features of the Th-U evolution; (4) Losses of mobile fluids, rich in Th/U, occur in the final stages. (BP)

  19. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Rudolf Naef

    2017-06-01

    Full Text Available The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit (Q2 and the standard deviation (σ of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol (N = 3386 test molecules for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol (N = 1791 for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol (N = 373 for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K (N = 2637 for the entropy of fusion and 0.5804 and 32.79 J/mol/K (N = 2643 for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation

  20. Calculation of Five Thermodynamic Molecular Descriptors by Means of a General Computer Algorithm Based on the Group-Additivity Method: Standard Enthalpies of Vaporization, Sublimation and Solvation, and Entropy of Fusion of Ordinary Organic Molecules and Total Phase-Change Entropy of Liquid Crystals.

    Science.gov (United States)

    Naef, Rudolf; Acree, William E

    2017-06-25

    The calculation of the standard enthalpies of vaporization, sublimation and solvation of organic molecules is presented using a common computer algorithm on the basis of a group-additivity method. The same algorithm is also shown to enable the calculation of their entropy of fusion as well as the total phase-change entropy of liquid crystals. The present method is based on the complete breakdown of the molecules into their constituting atoms and their immediate neighbourhood; the respective calculations of the contribution of the atomic groups by means of the Gauss-Seidel fitting method is based on experimental data collected from literature. The feasibility of the calculations for each of the mentioned descriptors was verified by means of a 10-fold cross-validation procedure proving the good to high quality of the predicted values for the three mentioned enthalpies and for the entropy of fusion, whereas the predictive quality for the total phase-change entropy of liquid crystals was poor. The goodness of fit ( Q ²) and the standard deviation (σ) of the cross-validation calculations for the five descriptors was as follows: 0.9641 and 4.56 kJ/mol ( N = 3386 test molecules) for the enthalpy of vaporization, 0.8657 and 11.39 kJ/mol ( N = 1791) for the enthalpy of sublimation, 0.9546 and 4.34 kJ/mol ( N = 373) for the enthalpy of solvation, 0.8727 and 17.93 J/mol/K ( N = 2637) for the entropy of fusion and 0.5804 and 32.79 J/mol/K ( N = 2643) for the total phase-change entropy of liquid crystals. The large discrepancy between the results of the two closely related entropies is discussed in detail. Molecules for which both the standard enthalpies of vaporization and sublimation were calculable, enabled the estimation of their standard enthalpy of fusion by simple subtraction of the former from the latter enthalpy. For 990 of them the experimental enthalpy-of-fusion values are also known, allowing their comparison with predictions, yielding a correlation coefficient R