WorldWideScience

Sample records for vapor analytical laboratory

  1. Analytical Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Analytical Labspecializes in Oil and Hydraulic Fluid Analysis, Identification of Unknown Materials, Engineering Investigations, Qualification Testing (to support...

  2. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  3. ANALYTICAL MICROBIOLOGY LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains equipment that performs a broad array of microbiological analyses for pathogenic and spoilage microorganisms. It performs challenge studies...

  4. Analytical Chemistry Laboratory

    Science.gov (United States)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  5. Road Transportable Analytical Laboratory system

    International Nuclear Information System (INIS)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O'Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE's internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex

  6. Analytical quality, performance indices and laboratory service

    DEFF Research Database (Denmark)

    Hilden, Jørgen; Magid, Erik

    1999-01-01

    analytical error, bias, cost effectiveness, decision-making, laboratory techniques and procedures, mass screening, models, statistical, quality control......analytical error, bias, cost effectiveness, decision-making, laboratory techniques and procedures, mass screening, models, statistical, quality control...

  7. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    Science.gov (United States)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  8. Future analytical provision - Relocation of Sellafield Ltd Analytical Services Laboratory

    International Nuclear Information System (INIS)

    Newell, B.

    2015-01-01

    Sellafield Ltd Analytical Services provide an essential view on the environmental, safety, process and high hazard risk reduction performances by analysis of samples. It is the largest and most complex analytical services laboratory in Europe, with 150 laboratories (55 operational) and 350 staff (including 180 analysts). Sellafield Ltd Analytical Services Main Laboratory is in need of replacement. This is due to the age of the facility and changes to work streams. This relocation is an opportunity to -) design and commission bespoke MA (Medium-Active) cells, -) modify HA (High-Active) cell design to facilitate an in-cell laboratory, -) develop non-destructive techniques, -) open light building for better worker morale. The option chosen was to move the activities to the NNL Central laboratory (NNLCL) that is based at Sellafield and is the UK's flagship nuclear research and development facility. This poster gives a time schedule

  9. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1993-01-01

    The goal of this contractual effort is the development and demonstration of a Road Transportable Analytical Laboratory (RTAL) system to meet the unique needs of the Department of Energy (DOE) for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system will be designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganics, and explosive materials. The planned laboratory system will consist of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  10. The SRS analytical laboratories strategic plan

    International Nuclear Information System (INIS)

    Hiland, D.E.

    1993-01-01

    There is an acute shortage of Savannah River Site (SRS) analytical laboratory capacity to support key Department of Energy (DOE) environmental restoration and waste management (EM) programs while making the transition from traditional defense program (DP) missions as a result of the cessation of the Cold War. This motivated Westinghouse Savannah River Company (WSRC) to develop an open-quotes Analytical Laboratories Strategic Planclose quotes (ALSP) in order to provide appropriate input to SRS operating plans and justification for proposed analytical laboratory projects. The methodology used to develop this plan is applicable to all types of strategic planning

  11. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware

  12. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  13. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    Finger, S.M.

    1995-01-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. Remediation of these sites requires extensive sampling to determine the extent of the contamination, to monitor clean-up and remediation progress, and for post-closure monitoring of facilities. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. Such systems would accelerate and thereby reduce the cost of clean-up and remediation efforts by (1) providing critical analytical data more rapidly, and (2) eliminating the handling, shipping and manpower associated with sample shipments. The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific needs

  14. SALE: Safeguards Analytical Laboratory Evaluation computer code

    International Nuclear Information System (INIS)

    Carroll, D.J.; Bush, W.J.; Dolan, C.A.

    1976-09-01

    The Safeguards Analytical Laboratory Evaluation (SALE) program implements an industry-wide quality control and evaluation system aimed at identifying and reducing analytical chemical measurement errors. Samples of well-characterized materials are distributed to laboratory participants at periodic intervals for determination of uranium or plutonium concentration and isotopic distributions. The results of these determinations are statistically-evaluated, and each participant is informed of the accuracy and precision of his results in a timely manner. The SALE computer code which produces the report is designed to facilitate rapid transmission of this information in order that meaningful quality control will be provided. Various statistical techniques comprise the output of the SALE computer code. Assuming an unbalanced nested design, an analysis of variance is performed in subroutine NEST resulting in a test of significance for time and analyst effects. A trend test is performed in subroutine TREND. Microfilm plots are obtained from subroutine CUMPLT. Within-laboratory standard deviations are calculated in the main program or subroutine VAREST, and between-laboratory standard deviations are calculated in SBLV. Other statistical tests are also performed. Up to 1,500 pieces of data for each nuclear material sampled by 75 (or fewer) laboratories may be analyzed with this code. The input deck necessary to run the program is shown, and input parameters are discussed in detail. Printed output and microfilm plot output are described. Output from a typical SALE run is included as a sample problem

  15. An analytical laboratory to facilitate international safeguards

    International Nuclear Information System (INIS)

    Clark, B.E.; Muellner, P.; Deron, S.

    1976-01-01

    Member States which have concluded safeguards agreements accept safeguards on part or all of their nuclear facilities and nuclear materials. The Agreements enable the Agency to make inspections in order to verify the location, identity, quantity and composition of all safeguarded nuclear material. The independent analysis of samples of safeguards material is an essential part of the verification process. A new analytical laboratory has been made available to the Agency by the Austrian Government. This facility is staffed by the Agency with scientists and technicians from five Member States. Design criteria for the laboratory were defined by the Agency. Construction was carried out under the project management of the Oesterreichische Studiengesellschaft fuer Atomenergie Ges.m.b.H. Scientific equipment was procured by the Agency. Samples of feed and product material from the nuclear fuel cycle will constitute the main work load. Irradiated and unirradiated samples of uranium, plutonium and mixtures of both will be analysed for concentration and isotopic composition. Since highly diluted solutions of spent fuel will be the most active beta-gamma samples, shielded and remote manipulation facilities are not necessary. Ptentiometry, mass spectrometry and coulometry are the main techniques to be employed. Gravimetry, alpha and gamma spectrometry and emission spectroscopy will also be utilized as required. It is not intended that this laboratory, should carry the whole burden of the Agency's safeguards analytical work, but that it should function as a member of a network of international laboratories which has been set up by the Agency for this purpose. (author)

  16. Road Transportable Analytical Laboratory system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  17. Analytical laboratory and mobile sampling platform

    International Nuclear Information System (INIS)

    Stetzenbach, K.; Smiecinski, A.

    1996-01-01

    This is the final report for the Analytical Laboratory and Mobile Sampling Platform project. This report contains only major findings and conclusions resulting from this project. Detailed reports of all activities performed for this project were provided to the Project Office every quarter since the beginning of the project. This report contains water chemistry data for samples collected in the Nevada section of Death Valley National Park (Triangle Area Springs), Nevada Test Site springs, Pahranagat Valley springs, Nevada Test Site wells, Spring Mountain springs and Crater Flat and Amargosa Valley wells

  18. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    Finger, S.M.

    1995-01-01

    U.S. Department of Energy (DOE) facilities around the country have, over the years, become contaminated with radionuclides and a range of organic and inorganic wastes. Many of the DOE sites encompass large land areas and were originally sited in relatively unpopulated regions of the country to minimize risk to surrounding populations. In addition, wastes were sometimes stored underground at the sites in 55-gallon drums, wood boxes or other containers until final disposal methods could be determined. Over the years, these containers have deteriorated, releasing contaminants into the surrounding environment. This contamination has spread, in some cases polluting extensive areas. The DOE would benefit greatly if it had reliable, road transportable, fully independent laboratory systems that could perform on-site the full range of analyses required. The goal of the Road Transportable Analytical Laboratory (RTAL) project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soils, ground water and surface waters. This document describes the requirements for such a laboratory

  19. Vapor-phase biofiltration: Laboratory and field experience

    International Nuclear Information System (INIS)

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-01-01

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB's maximum effective elimination capacity (EC) was determined to be 7.2 g m -3 h -1 ; the larger unit's EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations

  20. Post-Decontamination Vapor Sampling and Analytical Test Methods

    Science.gov (United States)

    2015-08-12

    is decontaminated that could pose an exposure hazard to unprotected personnel. The chemical contaminants may include chemical warfare agents (CWAs... decontamination process. Chemical contaminants can include chemical warfare agents (CWAs) or their simulants, nontraditional agents (NTAs), toxic industrial...a range of test articles from coupons, panels, and small fielded equipment items. 15. SUBJECT TERMS Vapor hazard; vapor sampling; chemical warfare

  1. Clinical laboratory analytics: Challenges and promise for an emerging discipline

    Directory of Open Access Journals (Sweden)

    Brian H Shirts

    2015-01-01

    Full Text Available The clinical laboratory is a major source of health care data. Increasingly these data are being integrated with other data to inform health system-wide actions meant to improve diagnostic test utilization, service efficiency, and "meaningful use." The Academy of Clinical Laboratory Physicians and Scientists hosted a satellite meeting on clinical laboratory analytics in conjunction with their annual meeting on May 29, 2014 in San Francisco. There were 80 registrants for the clinical laboratory analytics meeting. The meeting featured short presentations on current trends in clinical laboratory analytics and several panel discussions on data science in laboratory medicine, laboratory data and its role in the larger healthcare system, integrating laboratory analytics, and data sharing for collaborative analytics. One main goal of meeting was to have an open forum of leaders that work with the "big data" clinical laboratories produce. This article summarizes the proceedings of the meeting and content discussed.

  2. Guide to Savannah River Laboratory Analytical Services Group

    International Nuclear Information System (INIS)

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary

  3. Guide to Savannah River Laboratory Analytical Services Group

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  4. Road Transportable Analytical Laboratory (RTAL) system

    International Nuclear Information System (INIS)

    1994-12-01

    The problem of groundwater contamination at a large number of industrial facilities is well known. Many US Army and Department of Energy (DOE) facilities share this problem of potentially contaminated water as a result of past disposal practices associated with military and energy source development activities. A wide range of contaminants are found at certain installations encompassing industrial pollutants and military-unique materials. The US Army Biomedical Research and Development Laboratory has been conducting research for a number of years on developing better means to determine the hazards associated with exposure to these types of complex mixtures. The methods involve the use of aquatic organisms together with in vitro mutagenicity assays and analytical chemistry in an integrated biological assessment of a specific site. Integrated Biological Assessment is an important development in the Army's continuing efforts to locate, clean and monitor sites contaminated as a result of military operations. This method provides meaningful hazard data regarding whether a test medium contains low levels of industrial or military-unique contaminants. This is an important advance in determining which sites are clean and which require remediation. It provides continuing monitoring of the effectiveness of remediation operations. Engineering Computer Opteconomics (ECO), Inc. was tasked, in a collaborative Army and DOE effort, to develop a transportable Integrated Biological Assessment Laboratory Complex. This multimodular Complex is designed to be taken into remote areas to provide the necessary long-term on-site research for determining hazards from low levels of contamination in the environment. Each module of the Complex is designed to be self-sufficient, to provide a safe environment for the operators, and a controlled environment for the test organisms and related critical chemical and biological analyses

  5. Dry sample storage system for an analytical laboratory supporting plutonium processing

    International Nuclear Information System (INIS)

    Treibs, H.A.; Hartenstein, S.D.; Griebenow, B.L.; Wade, M.A.

    1990-01-01

    The Special Isotope Separation (SIS) plant is designed to provide removal of undesirable isotopes in fuel grade plutonium by the atomic vapor laser isotope separation (AVLIS) process. The AVLIS process involves evaporation of plutonium metal, and passage of an intense beam of light from a laser through the plutonium vapor. The laser beam consists of several discrete wavelengths, tuned to the precise wavelength required to ionize the undesired isotopes. These ions are attracted to charged plates, leaving the bulk of the plutonium vapor enriched in the desired isotopes to be collected on a cold plate. Major portions of the process consist of pyrochemical processes, including direct reduction of the plutonium oxide feed material with calcium metal, and aqueous processes for purification of plutonium in residues. The analytical laboratory for the plant is called the Material and Process Control Laboratory (MPCL), and provides for the analysis of solid and liquid process samples

  6. Innovative technology summary report: Road Transportable Analytical Laboratory (RTAL)

    International Nuclear Information System (INIS)

    1998-10-01

    The Road Transportable Analytical Laboratory (RTAL) has been used in support of US Department of Energy (DOE) site and waste characterization and remediation planning at Fernald Environmental Management Project (FEMP) and is being considered for implementation at other DOE sites, including the Paducah Gaseous Diffusion Plant. The RTAL laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site's specific analysis needs. The prototype RTAL, deployed at FEMP Operable Unit 1 Waste Pits, has been designed to be synergistic with existing analytical laboratory capabilities, thereby reducing the occurrence of unplanned rush samples that are disruptive to efficient laboratory operations

  7. Analytical Chemistry Laboratory: Progress report for FY 1988

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  8. Analytical Chemistry Laboratory: Progress report for FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1988-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  9. Analytical Chemistry Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Boparai, A.S.

    1991-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1991 (October 1990 through September 1991). This is the eighth annual report for the ACL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

  10. Analytical Chemistry Laboratory progress report for FY 1989

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

    1989-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1989 (October 1988 through September 1989). The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques

  11. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics' CO 2 coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics' Model 5011 coulometer, and soxhlet extraction

  12. Analytical Chemistry Laboratory progress report for FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab.

  13. Analytical Chemistry Laboratory progress report for FY 1985

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.

    1985-12-01

    The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques. The purpose of this report is to summarize the technical and administrative activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year 1985 (October 1984 through September 1985). This is the second annual report for the ACL. 4 figs., 1 tab

  14. Valid, legally defensible data from your analytical laboratories

    International Nuclear Information System (INIS)

    Gay, D.D.; Allen, V.C.

    1989-01-01

    This paper discusses the definition of valid, legally defensible data. The authors describe the expectations of project managers and what should be gleaned from the laboratory in regard to analytical data

  15. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 1, Administrative

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    Covered are: analytical laboratory operations (ALO) sample receipt and control, ALO data report/package preparation review and control, single shell tank (PST) project sample tracking system, sample receiving, analytical balances, duties and responsibilities of sample custodian, sample refrigerator temperature monitoring, security, assignment of staff responsibilities, sample storage, data reporting, and general requirements for glassware.

  16. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

    2014-01-01

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  17. Analytical Chemistry Laboratory progress report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Green, D. W.; Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.

    2000-06-15

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1999 (October 1998 through September 1999). This annual progress report, which is the sixteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  18. Analytical Chemistry Laboratory progress report for FY 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-03-29

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  19. Analytical Chemistry Laboratory progress report for FY 1998

    International Nuclear Information System (INIS)

    Boparai, A. S.; Bowers, D. L.; Graczyk, D. G.; Green, D. W.; Lindahl, P. C.

    1999-01-01

    This report summarizes the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1998 (October 1997 through September 1998). This annual progress report, which is the fifteenth in this series for the ACL, describes effort on continuing projects, work on new projects, and contributions of the ACL staff to various programs at ANL

  20. Analytical Chemistry Laboratory. Progress report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L.

    1996-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

  1. Analytical Chemistry Laboratory, progress report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

  2. Analytical chemistry laboratory. Progress report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1997-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1997 (October 1996 through September 1997). This annual progress report is the fourteenth in this series for the ACL, and it describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL.

  3. Analytical Chemistry Laboratory Progress Report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

    1994-12-01

    The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

  4. Analytical estimation show low depth-independent water loss due to vapor flux from deep aquifers

    Science.gov (United States)

    Selker, John S.

    2017-06-01

    Recent articles have provided estimates of evaporative flux from water tables in deserts that span 5 orders of magnitude. In this paper, we present an analytical calculation that indicates aquifer vapor flux to be limited to 0.01 mm/yr for sites where there is negligible recharge and the water table is well over 20 m below the surface. This value arises from the geothermal gradient, and therefore, is nearly independent of the actual depth of the aquifer. The value is in agreement with several numerical studies, but is 500 times lower than recently reported experimental values, and 100 times larger than an earlier analytical estimate.

  5. Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments

    International Nuclear Information System (INIS)

    Kneafsey, T.; Pruess, K.

    1998-01-01

    Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface

  6. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  7. An overview of analytical activities of control laboratory in NFC

    International Nuclear Information System (INIS)

    Balaji Rao, Y.; Subba Rao, Y.; Saibaba, N.

    2015-01-01

    As per the mandate of Department of Atomic Energy (DAE), Nuclear Fuel Complex (NFC) was established in 1971 for manufacturing Fuel Sub-assemblies for both PHWRs and BWRs operating in India on industrial scale. Control Laboratory (C.Lab) was envisaged as a centralized analytical facility to achieve the objectives of NFC on the similar lines of its predecessor, Analytical Chemistry Division at BARC. With highest ever production of 1200 MT of PHWR Fuel and 16 lakhs PHWR Fuel Tubes achieved during production year of 2014-15 and with increase in demand further for fuel requirements, NFC has got demanding situation in next year and accordingly, C. Lab has also geared up to meet the challenging demands of all the production plant. The average annual analytical load comes around 5 Lakhs estimations and to manage such a massive analytical load a proper synergy between good chemistry, process conditions and analytical methods is a necessity and laboratory is able to meet this important requirement consistently

  8. Extra-analytical quality indicators and laboratory performances.

    Science.gov (United States)

    Sciacovelli, Laura; Aita, Ada; Plebani, Mario

    2017-07-01

    In the last few years much progress has been made in raising the awareness of laboratory medicine professionals about the effectiveness of quality indicators (QIs) in monitoring, and improving upon, performances in the extra-analytical phases of the Total Testing Process (TTP). An effective system for management of QIs includes the implementation of an internal assessment system and participation in inter-laboratory comparison. A well-designed internal assessment system allows the identification of critical activities and their systematic monitoring. Active participation in inter-laboratory comparison provides information on the performance level of one laboratory with respect to that of other participating laboratories. In order to guarantee the use of appropriate QIs and facilitate their implementation, many laboratories have adopted the Model of Quality Indicators (MQI) proposed by Working Group "Laboratory Errors and Patient Safety" (WG-LEPS) of IFCC, since 2008, which is the result of international consensus and continuous experimentation, and updating to meet new, constantly emerging needs. Data from participating laboratories are collected monthly and reports describing the statistical results and evaluating laboratory data, utilizing the Six Sigma metric, issued regularly. Although the results demonstrate that the processes need to be improved upon, overall the comparison with data collected in 2014 shows a general stability of quality levels and that an improvement has been achieved over time for some activities. The continuous monitoring of QI data allows identification all possible improvements, thus highlighting the value of participation in the inter-laboratory program proposed by WG-LEPS. The active participation of numerous laboratories will guarantee an ever more significant State-of-the-Art, promote the reduction of errors and improve quality of the TTP, thus guaranteeing patient safety. Copyright © 2017. Published by Elsevier Inc.

  9. Summative Mass Analysis of Algal Biomass - Integration of Analytical Procedures: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Laurens, Lieve M. L.

    2016-01-13

    This procedure guides the integration of laboratory analytical procedures to measure algal biomass constituents in an unambiguous manner and ultimately achieve mass balance closure for algal biomass samples. Many of these methods build on years of research in algal biomass analysis.

  10. Analytical Chemistry Laboratory progress report for FY 1984

    International Nuclear Information System (INIS)

    Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

    1985-03-01

    Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs

  11. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  12. Analytical difficulties facing today's regulatory laboratories: issues in method validation.

    Science.gov (United States)

    MacNeil, James D

    2012-08-01

    The challenges facing analytical laboratories today are not unlike those faced in the past, although both the degree of complexity and the rate of change have increased. Challenges such as development and maintenance of expertise, maintenance and up-dating of equipment, and the introduction of new test methods have always been familiar themes for analytical laboratories, but international guidelines for laboratories involved in the import and export testing of food require management of such changes in a context which includes quality assurance, accreditation, and method validation considerations. Decisions as to when a change in a method requires re-validation of the method or on the design of a validation scheme for a complex multi-residue method require a well-considered strategy, based on a current knowledge of international guidance documents and regulatory requirements, as well the laboratory's quality system requirements. Validation demonstrates that a method is 'fit for purpose', so the requirement for validation should be assessed in terms of the intended use of a method and, in the case of change or modification of a method, whether that change or modification may affect a previously validated performance characteristic. In general, method validation involves method scope, calibration-related parameters, method precision, and recovery. Any method change which may affect method scope or any performance parameters will require re-validation. Some typical situations involving change in methods are discussed and a decision process proposed for selection of appropriate validation measures. © 2012 John Wiley & Sons, Ltd.

  13. Environmental analytical laboratory setup operation and QA/QC

    International Nuclear Information System (INIS)

    Hsu, J.P.; Boyd, J.A.; DeViney, S.

    1991-01-01

    Environmental analysis requires precise and timely measurements. The required precise measurement is ensured with quality control and timeliness through an efficient operation. The efficiency of the operation also ensures cost-competitiveness. Environmental analysis plays a very important role in the environmental protection program. Due to the possible litigation involvement, most environmental analyses follow stringent criteria, such as the U.S. EPA Contract Laboratory Program procedures with analytical results documented in an orderly manner. The documentation demonstrates that all quality control steps are followed and facilitates data evaluation to determine the quality and usefulness of the data. Furthermore, the tedious documents concerning sample checking, chain-of-custody, standard or surrogate preparation, daily refrigerator and oven temperature monitoring, analytical and extraction logbooks, standard operation procedures, etc., also are an important part of the laboratory documentation. Quality control for environmental analysis is becoming more stringent, required documentation is becoming more detailed and turnaround time is shorter. However, the business is becoming more cost-competitive and it appears that this trend will continue. In this paper, we discuss what should be done to deal this high quality, fast-paced and tedious environmental analysis process at a competitive cost. The success of environmental analysis is people. The knowledge and experience of the staff are the key to a successful environmental analysis program. In order to be successful in this new area, the ability to develop new methods is crucial. In addition, the laboratory information system, laboratory automation and quality assurance/quality control (QA/QC) are major factors for laboratory success. This paper concentrates on these areas

  14. Experience of Brazilian safeguards analytical laboratory in DA analysis

    International Nuclear Information System (INIS)

    Bezerra, J.H.B.; Araujo, R.M.S.; Pereira, J.C.A.

    2001-01-01

    Full text: The Brazilian Safeguards Analytical Laboratory, inaugurated in September 1983, performs uranium analysis in samples of nuclear materials taken during national safeguards inspections as well as in samples taken during ABACC's inspections performed in Argentina. The Laboratory analyzes Intercomparison samples provided by IAEA, NBL, ABACC, CEN and EQRAIN. The method used to perform uranium analysis is the Davies and Gray/NBL. All the steps of the analytical procedures, such as chemical kinetics of the reactions and instrumental parameters, are rigorously controlled. An internal Quality Control of the measurements is made by means of analysis of Certified Reference Materials and the performance of the results meets the ESARDA's Target Values for Random and Systematic Components both in Intercomparison Samples and in samples taken during inspections. The typical precision, expressed as relative standard deviation, and accuracy obtained in a routine basis for nuclear grade materials is 0.1% and 0.14% respectively. The performance of the results obtained are comparable to the best international laboratories which perform uranium analysis in nuclear materials for safeguards purposes. (author)

  15. Synthetic salt cake standards for analytical laboratory quality control

    International Nuclear Information System (INIS)

    Schilling, A.E.; Miller, A.G.

    1980-01-01

    The validation of analytical results in the characterization of Hanford Nuclear Defense Waste requires the preparation of synthetic waste for standard reference materials. Two independent synthetic salt cake standards have been prepared to monitor laboratory quality control for the chemical characterization of high-level salt cake and sludge waste in support of Rockwell Hanford Operations' High-Level Waste Management Program. Each synthetic salt cake standard contains 15 characterized chemical species and was subjected to an extensive verification/characterization program in two phases. Phase I consisted of an initial verification of each analyte in salt cake form in order to determine the current analytical capability for chemical analysis. Phase II consisted of a final characterization of those chemical species in solution form where conflicting verification data were observed. The 95 percent confidence interval on the mean for the following analytes within each standard is provided: sodium, nitrate, nitrite, phosphate, carbonate, sulfate, hydroxide, chromate, chloride, fluoride, aluminum, plutonium-239/240, strontium-90, cesium-137, and water

  16. Refurbishment of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Rosenberg, K.; Henslee, S.P.; Michelbacher, J.A.; Coleman, R.M.

    1997-01-01

    An Analytical Laboratory Hot Cell (ALHC) Facility at Argonne National Laboratory-West (ANL-W) was in service for nearly thirty years. In order to comply with DOE regulations governing such facilities and meet ANL-W programmatic requirements, a major refurbishment effort was undertaken. All penetrations within the facility were sealed; the ventilation system was redesigned, upgraded and replaced; the manipulators were replaced; the hot cell windows were removed, refurbished, and reinstalled; all hot cell utilities were replaced; a lead-shielded glovebox housing an Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES) System was interfaced with the hot cells, and a new CO2 fire suppression system and other ALHC support equipment were installed

  17. Decontamination of an Analytical Laboratory Hot Cell Facility

    International Nuclear Information System (INIS)

    Michelbacher, J.A.; Henslee, S.P.; Rosenberg, K.E.; Coleman, R.M.

    1995-11-01

    An Analytical Laboratory Hot Cell Facility at Argonne National Laboratory-West (ANL-W) had been in service for nearly thirty years. In order to comply with current DOE regulations governing such facilities and meet programmatic requirements, a major refurbishment effort was mandated. Due to the high levels of radiation and contamination within the cells, a decontamination effort was necessary to provide an environment that permitted workers to enter the cells to perform refurbishment activities without receiving high doses of radiation and to minimize the potential for the spread of contamination. State-of-the-art decontamination methods, as well as time-proven methods were utilized to minimize personnel exposure as well as maximize results

  18. Laboratory testing of the in-well vapor-stripping system

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy's (DOE's) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE's Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE's Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase

  19. Sustainable in-well vapor stripping: A design, analytical model, and pilot study for groundwater remediation

    Science.gov (United States)

    Sutton, Patrick T.; Ginn, Timothy R.

    2014-12-01

    A sustainable in-well vapor stripping system is designed as a cost-effective alternative for remediation of shallow chlorinated solvent groundwater plumes. A solar-powered air compressor is used to inject air bubbles into a monitoring well to strip volatile organic compounds from a liquid to vapor phase while simultaneously inducing groundwater circulation around the well screen. An analytical model of the remediation process is developed to estimate contaminant mass flow and removal rates. The model was calibrated based on a one-day pilot study conducted in an existing monitoring well at a former dry cleaning site. According to the model, induced groundwater circulation at the study site increased the contaminant mass flow rate into the well by approximately two orders of magnitude relative to ambient conditions. Modeled estimates for 5 h of pulsed air injection per day at the pilot study site indicated that the average effluent concentrations of dissolved tetrachloroethylene and trichloroethylene can be reduced by over 90% relative to the ambient concentrations. The results indicate that the system could be used cost-effectively as either a single- or multi-well point technology to substantially reduce the mass of dissolved chlorinated solvents in groundwater.

  20. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  1. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories.

    Science.gov (United States)

    Magnette, A; Chatelain, M; Chatelain, B; Ten Cate, H; Mullier, F

    2016-01-01

    Ensuring quality has become a daily requirement in laboratories. In haemostasis, even more than in other disciplines of biology, quality is determined by a pre-analytical step that encompasses all procedures, starting with the formulation of the medical question, and includes patient preparation, sample collection, handling, transportation, processing, and storage until time of analysis. This step, based on a variety of manual activities, is the most vulnerable part of the total testing process and is a major component of the reliability and validity of results in haemostasis and constitutes the most important source of erroneous or un-interpretable results. Pre-analytical errors may occur throughout the testing process and arise from unsuitable, inappropriate or wrongly handled procedures. Problems may arise during the collection of blood specimens such as misidentification of the sample, use of inadequate devices or needles, incorrect order of draw, prolonged tourniquet placing, unsuccessful attempts to locate the vein, incorrect use of additive tubes, collection of unsuitable samples for quality or quantity, inappropriate mixing of a sample, etc. Some factors can alter the result of a sample constituent after collection during transportation, preparation and storage. Laboratory errors can often have serious adverse consequences. Lack of standardized procedures for sample collection accounts for most of the errors encountered within the total testing process. They can also have clinical consequences as well as a significant impact on patient care, especially those related to specialized tests as these are often considered as "diagnostic". Controlling pre-analytical variables is critical since this has a direct influence on the quality of results and on their clinical reliability. The accurate standardization of the pre-analytical phase is of pivotal importance for achieving reliable results of coagulation tests and should reduce the side effects of the influence

  2. Thermo Techno Modern Analytical Equipment for Research and Industrial Laboratories

    Directory of Open Access Journals (Sweden)

    Khokhlov, S.V.

    2014-03-01

    Full Text Available A brief overview of some models of Thermo Techno analytical equipment and possible areas of their application is given. Thermo Techno Company was created in 2000 as a part of representative office of international corporation Thermo Fisher Scientific — world leader in manufacturing analytical equipments. Thermo Techno is a unique company in its integrated approach in solving the problems of the user, which includes a series of steps: setting the analytical task, selection of effective analysis methods, sample delivery and preparation as well as data transmitting and archiving.

  3. Considerations of particle vaporization and analyte diffusion in single-particle inductively coupled plasma-mass spectrometry

    International Nuclear Information System (INIS)

    Ho, Koon-Sing; Lui, Kwok-On; Lee, Kin-Ho; Chan, Wing-Tat

    2013-01-01

    The intensity of individual gold nanoparticles with nominal diameters of 80, 100, 150, and 200 nm was measured using single-particle inductively coupled plasma-mass spectrometry (ICP-MS). Since the particles are not perfectly monodisperse, a distribution of ICP-MS intensity was obtained for each nominal diameter. The distribution of particle mass was determined from the transmission electron microscopy (TEM) image of the particles. The distribution of ICP-MS intensity and the distribution of particle mass for each nominal diameter were correlated to give a calibration curve. The calibration curves are linear, but the slope decreases as the nominal diameter increases. The reduced slope is probably due to a smaller degree of vaporization of the large particles. In addition to the degree of particle vaporization, the rate of analyte diffusion in the ICP is an important factor that determines the measured ICP-MS intensity. Simulated ICP-MS intensity versus particle size was calculated using a simple computer program that accounts for the vaporization rate of the gold nanoparticles and the diffusion rate and degree of ionization of the gold atoms. The curvature of the simulated calibration curves changes with sampling depth because the effects of particle vaporization and analyte diffusion on the ICP-MS intensity are dependent on the residence time of the particle in the ICP. Calibration curves of four hypothetical particles representing the four combinations of high and low boiling points (2000 and 4000 K) and high and low analyte diffusion rates (atomic masses of 10 and 200 Da) were calculated to further illustrate the relative effects of particle vaporization and analyte diffusion. The simulated calibration curves show that the sensitivity of single-particle ICP-MS is smaller than that of the ICP-MS measurement of continuous flow of standard solutions by a factor of 2 or more. Calibration using continuous flow of standard solution is semi-quantitative at best. An

  4. ELAN - expert system supported information and management system for analytical laboratories

    International Nuclear Information System (INIS)

    Jaeschke, A.; Orth, H.; Zilly, G.

    1990-08-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.) [de

  5. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Greulich, K.A.; Gray, C.E. (comp.)

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.

  6. Manual of analytical methods for the Industrial Hygiene Chemistry Laboratory

    International Nuclear Information System (INIS)

    Greulich, K.A.; Gray, C.E.

    1991-08-01

    This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned

  7. Evaluation of Analytical Errors in a Clinical Chemistry Laboratory: A ...

    African Journals Online (AJOL)

    Course of action analysis has demonstrated that laboratory ... Data were analyzed with Graph Pad Prism 5(GraphPad Software Inc. CA USA). ... samples with their corresponding request slips and any errors .... Frequent changes of health care.

  8. Pollution prevention in the analytical laboratory--Microscale and other techniques do add up

    International Nuclear Information System (INIS)

    Erickson, M.D.; Alvarado, J.S.; Lu, C.-S.; Peterson, D.P.; Silzer, J.

    1996-01-01

    The principles of pollution prevention in the analytical laboratory have not been addressed sufficiently. Although the amount of reagent used per sample is often only a few milliliters, the aggregate of many routine test each day in thousands of laboratories becomes significant. Current recycling practices are not practical with small streams. Therefore, we have adopted the principles of microscale chemistry, along with other modern analytical approaches, to develop routine analytical methods that significantly curtail waste but still maintain acceptable analytical figures of merit and achieve cost savings through reduced reagent consumption and reduced labor cost

  9. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  10. Analytical capabilities and services of Lawrence Livermore Laboratory's General Chemistry Division

    International Nuclear Information System (INIS)

    Gutmacher, R.; Crawford, R.

    1978-01-01

    This comprehensive guide to the analytical capabilities of Lawrence Livermore Laboratory's General Chemistry Division describes each analytical method in terms of its principle, field of application, and qualitative and quantitative uses. Also described are the state and quantity of sample required for analysis, processing time, available instrumentation, and responsible personnel

  11. Evaluation of analytical errors in a clinical chemistry laboratory: a 3 year experience.

    Science.gov (United States)

    Sakyi, As; Laing, Ef; Ephraim, Rk; Asibey, Of; Sadique, Ok

    2015-01-01

    Proficient laboratory service is the cornerstone of modern healthcare systems and has an impact on over 70% of medical decisions on admission, discharge, and medications. In recent years, there is an increasing awareness of the importance of errors in laboratory practice and their possible negative impact on patient outcomes. We retrospectively analyzed data spanning a period of 3 years on analytical errors observed in our laboratory. The data covered errors over the whole testing cycle including pre-, intra-, and post-analytical phases and discussed strategies pertinent to our settings to minimize their occurrence. We described the occurrence of pre-analytical, analytical and post-analytical errors observed at the Komfo Anokye Teaching Hospital clinical biochemistry laboratory during a 3-year period from January, 2010 to December, 2012. Data were analyzed with Graph Pad Prism 5(GraphPad Software Inc. CA USA). A total of 589,510 tests was performed on 188,503 outpatients and hospitalized patients. The overall error rate for the 3 years was 4.7% (27,520/58,950). Pre-analytical, analytical and post-analytical errors contributed 3.7% (2210/58,950), 0.1% (108/58,950), and 0.9% (512/58,950), respectively. The number of tests reduced significantly over the 3-year period, but this did not correspond with a reduction in the overall error rate (P = 0.90) along with the years. Analytical errors are embedded within our total process setup especially pre-analytical and post-analytical phases. Strategic measures including quality assessment programs for staff involved in pre-analytical processes should be intensified.

  12. Evaluation of the analytic performance of laboratories: inter-laboratorial study of the spectroscopy of atomic absorption

    International Nuclear Information System (INIS)

    Wong Wong, S. M.

    1996-01-01

    The author made an inter-laboratorial study, with the participation of 18 national laboratories, that have spectrophotometer of atomic absorption. To evaluate the methods of analysis of lead, sodium, potasium, calcium, magnesium, zinc, copper, manganese, and iron, in the ambit of mg/l. The samples, distributed in four rounds to the laboratories, were prepared from primary patterns, deionized and distilled water. The study evaluated the homogeneity and stability, and verified its concentration, using as a reference method, the spectrometry method of Inductively Coupled Plasma emission (1CP). To obtain the characteristics of analytic performance, it applied the norm ASTM E 691. To evaluated the analytic performance, it used harmonized protocol of the International Union of Pure and applied chemistry (IUPAC). The study obtained the 29% of the laboratories had a satisfactory analytic performance, 9% had a questionable performance and 62% made an unsatisfactory analytic performance, according to the IUPAC norm. The results of the values of the characteristic performance method, show that there is no intercomparability between the laboratories, which is attributed to the different methodologies of analysis. (S. Grainger)

  13. ASVCP quality assurance guidelines: control of general analytical factors in veterinary laboratories.

    Science.gov (United States)

    Flatland, Bente; Freeman, Kathy P; Friedrichs, Kristen R; Vap, Linda M; Getzy, Karen M; Evans, Ellen W; Harr, Kendal E

    2010-09-01

    Owing to lack of governmental regulation of veterinary laboratory performance, veterinarians ideally should demonstrate a commitment to self-monitoring and regulation of laboratory performance from within the profession. In response to member concerns about quality management in veterinary laboratories, the American Society for Veterinary Clinical Pathology (ASVCP) formed a Quality Assurance and Laboratory Standards (QAS) committee in 1996. This committee recently published updated and peer-reviewed Quality Assurance Guidelines on the ASVCP website. The Quality Assurance Guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports on 1) general analytic factors for veterinary laboratory performance and comparisons, 2) hematology and hemostasis, and 3) clinical chemistry, endocrine assessment, and urinalysis. This report documents recommendations for control of general analytical factors within veterinary clinical laboratories and is based on section 2.1 (Analytical Factors Important In Veterinary Clinical Pathology, General) of the newly revised ASVCP QAS Guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimum guidelines for quality assurance and quality control for veterinary laboratory testing. It is hoped that these guidelines will provide a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. ©2010 American Society for Veterinary Clinical Pathology.

  14. Laboratory Measurements of the 940, 1130, and 1370 nm Water Vapor Absorption Band Profiles

    Science.gov (United States)

    Giver, Lawrence P.; Gore, Warren J.; Pilewskie, P.; Freedman, R. S.; Chackerian, C., Jr.; Varanasi, P.

    2001-01-01

    We have used the solar spectral flux radiometer (SSFR) flight instrument with the Ames 25 meter base-path White cell to obtain about 20 moderate resolution (8 nm) pure water vapor spectra from 650 to 1650 nm, with absorbing paths from 806 to 1506 meters and pressures up to 14 torr. We also obtained a set at 806 meters with several different air-broadening pressures. Model simulations were made for the 940, 1130, and 1370 nm absorption bands for some of these laboratory conditions using the Rothman, et al HITRAN-2000 linelist. This new compilation of HITRAN includes new intensity measurements for the 940 nm region. We compared simulations for our spectra of this band using HITRAN-2000 with simulations using the prior HITRAN-1996. The simulations of the 1130 nm band show about 10% less absorption than we measured. There is some evidence that the total intensity of this band is about 38% stronger than the sum of the HITRAN line intensities in this region. In our laboratory conditions the absorption depends approximately on the square root of the intensity. Thus, our measurements agree that the band is stronger than tabulated in HITRAN, but by about 20%, substantially less than the published value. Significant differences have been shown between Doppler-limited resolution spectra of the 1370 nm band obtained at the Pacific Northwest National Laboratory and HITRAN simulations. Additional new intensity measurements in this region are continuing to be made. We expect the simulations of our SSFR lab data of this band will show the relative importance of improving the HITRAN line intensities of this band for atmospheric measurements.

  15. MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.

    Science.gov (United States)

    Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang

    2005-01-01

    MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.

  16. Closure of an analytical chemistry glove box in alpha laboratory

    International Nuclear Information System (INIS)

    Adelfang, P.; Aparicio, G.; Cassaniti, P.

    1990-01-01

    The works with plutonium are performed in gloves box, operated below atmospheric pressure, to protect the experimenters from this alpha-active material. After 12 years of continual processes, it was necessary the decommissioning of the chemistry glove box in our alpha-laboratory. A great deal of our attention was devoted to the working techniques because of extreme care needed to avoid activity release. The decommissioning includes the following main operations: a) Planning and documentation for the regulatory authority. b) Internal decontamination with surface cleaning and chelating agents. c) Measurement of the remainder internal radioactivity. d) Sealing of the glove ports and nozzles. e) Disconnection of the glove box from the exhaust duct. f) Design and construction of a container for the glove box. g) Transportation of the glove box from alpha-laboratory, to a transitory storage until its final disposal. The above mentioned operations are described in this paper including too: data of personal doses during the operations, characteristics and volumes of radioactive wastes and a description of the instrument used for the measurement of inside glove box activity. (Author) [es

  17. 76 FR 41747 - Protection of Stratospheric Ozone: Extension of Global Laboratory and Analytical Use Exemption...

    Science.gov (United States)

    2011-07-15

    ... these laboratory procedures would be permitted. In the supply chain, ODS distributors would not be able... risks. H. Executive Order 13211: Actions That Significantly Affect Energy Supply, Distribution, or Use... laboratory and analytical uses that have not been already identified by EPA as nonessential. EPA is also...

  18. Good Laboratory Practice. Part 3. Implementing Good Laboratory Practice in the Analytical Lab

    Science.gov (United States)

    Wedlich, Richard C.; Pires, Amanda; Fazzino, Lisa; Fransen, Joseph M.

    2013-01-01

    Laboratories submitting experimental results to the Food and Drug Administration (FDA) or the Environmental Protection Agency (EPA) in support of Good Laboratory Practice (GLP) nonclinical laboratory studies must conduct such work in compliance with the GLP regulations. To consistently meet these requirements, lab managers employ a "divide…

  19. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  20. Research opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.; Brown, D.H.

    1994-01-01

    Although considered by many to be a open-quotes matureclose quotes science, neutron activation analysis (NAA) continues to be a valuable elemental analysis tool. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and materials science to name a few. The major components of neutron activation are sample preparation, irradiation, counting, and data analysis. Each one of these stages provides opportunities to share numerous practical and fundamental scientific principles with high school teachers. This paper presents an overview of these opportunities. In addition, a specific example of the collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot is discussed

  1. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  2. Quality management at the Safeguards Analytical Laboratory of IAEA

    International Nuclear Information System (INIS)

    Aigner, H.; Doherty, P.; Donohue, D.; Kuno, Y.

    2001-01-01

    Full text: In the year 2000, SAL'S quality management system was certified for conforming with the requirements of the international standard ISO-9002: 1994. The certification incurred considerable efforts, both in manpower and capital investments. The expected benefits of a formal quality management system do not directly target the correctness and reliability of analytical results. SAL believes that it was already performing well in this respect, even before re-shaping its quality system according to the reference model. Systematic QA and QC procedures have been applied since the begin of SAL'S operations in the mid-70's. The management framework specified in ISO-9002: 1994 complements these technical measures. Besides its value of being internationally recognised and thus enhancing perhaps the credibility in the quality of SAL'S services, the quality management system in this form provides additional advantages for the customer of the services of SAL, i.e. the Department of Safeguards of the IAEA, but also for the control and management of SAL'S internal 'business' processes. The paper discusses if these expected additional benefits are indeed obtained and whether or not their value is in balance with operational and initial investment costs. (author)

  3. The performance of the remote analytical laboratory during the first fluorinel dissolution process campaign

    International Nuclear Information System (INIS)

    Lewis, L.C.; Henscheid, J.P.

    1989-01-01

    The Remote Analytical Laboratory at the Idaho Chemical Processing Plant was designed to provide analytical chemistry support to the irradiated fuel processing and associated waste processing operations. The facility was put into radioactive operation on July 7, 1986, and operated for more than a year during the first fluorinel fuel dissolution process campaign. The facility incorporated a number of innovative features and was equipped with state-of-the-art analytical instrumentation. The success of the facility is a direct function of how well the remote analytical equipment performed. The performance is discussed in this article

  4. Continuous Analytical Performances Monitoring at the On-Site Laboratory through Proficiency, Inter-Laboratory Testing and Inter-Comparison Analytical Methods

    International Nuclear Information System (INIS)

    Duhamel, G.; Decaillon, J.-G.; Dashdondog, S.; Kim, C.-K.; Toervenyi, A.; Hara, S.; Kato, S.; Kawaguchi, T.; Matsuzawa, K.

    2015-01-01

    Since 2008, as one measure to strengthen its quality management system, the On-Site Laboratory for nuclear safeguards at the Rokkasho Reprocessing Plant, has increased its participation in domestic and international proficiency and inter-laboratory testing for the purpose of determining analytical method accuracy, precision and robustness but also to support method development and improvement. This paper provides a description of the testing and its scheduling. It presents the way the testing was optimized to cover most of the analytical methods at the OSL. The paper presents the methodology used for the evaluation of the obtained results based on Analysis of variance (ANOVA). Results are discussed with respect to random, systematic and long term systematic error. (author)

  5. The Safeguards Analytical Laboratory (SAL) in the Agency's safeguards measurement system activity in 1990

    International Nuclear Information System (INIS)

    Bagliano, G.; Cappis, J.; Deron, S.; Parus, J.L.

    1991-05-01

    The IAEA applies Safeguards at the request of a Member State to whole or part of its nuclear materials. The verification of nuclear material accountability still constitutes the fundamental method of control, although sealing and surveillance procedures play an important complementary and increasing role in Safeguards. A small fraction of samples must still be analyzed at independent analytical laboratories using conventional Destructive Analytical (DA) methods of highest accuracy in order to verify that small potential biases in the declarations of the State are not masking protracted diversions of significant quantities of fissile materials. The Safeguards Analytical Laboratory (SAL) is operated by the Agency's Laboratories at Seibersdorf to provide to the Department of Safeguards and its inspectors such off-site Analytical Services, in collaboration with the Network of Analytical Laboratories (NWAL) of the Agency. In the last years SAL and the Safeguards DA Services have become more directly involved in the qualification and utilization of on-site analytical instrumentation such as K-edge X-Ray absorptiometers and quadrupole mass spectrometers. The nature and the origin of the samples analyzed, the measurements usually requested by the IAEA inspectors, the methods and the analytical techniques available at SAL and at the Network of Analytical Laboratories (NWAL) with the performances achieved during the past years are described and discussed in several documents. This report gives an evaluation compared with 1989 of the volume and the quality of the analyses reported in 1990 by SAL and by the NWAL in reply to requests of IAEA Safeguards inspectors. The reports summarizes also on-site DA developments and support provided by SAL to the Division of Safeguards Operation and special training courses to the IAEA Safeguards inspectors. 55 refs, 7 figs, 15 tabs

  6. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  7. Analytical performances of food microbiology laboratories - critical analysis of 7 years of proficiency testing results.

    Science.gov (United States)

    Abdel Massih, M; Planchon, V; Polet, M; Dierick, K; Mahillon, J

    2016-02-01

    Based on the results of 19 food microbiology proficiency testing (PT) schemes, this study aimed to assess the laboratory performances, to highlight the main sources of unsatisfactory analytical results and to suggest areas of improvement. The 2009-2015 results of REQUASUD and IPH PT, involving a total of 48 laboratories, were analysed. On average, the laboratories failed to detect or enumerate foodborne pathogens in 3·0% of the tests. Thanks to a close collaboration with the PT participants, the causes of outliers could be identified in 74% of the cases. The main causes of erroneous PT results were either pre-analytical (handling of the samples, timing of analysis), analytical (unsuitable methods, confusion of samples, errors in colony counting or confirmation) or postanalytical mistakes (calculation and encoding of results). PT schemes are a privileged observation post to highlight analytical problems, which would otherwise remain unnoticed. In this perspective, this comprehensive study of PT results provides insight into the sources of systematic errors encountered during the analyses. This study draws the attention of the laboratories to the main causes of analytical errors and suggests practical solutions to avoid them, in an educational purpose. The observations support the hypothesis that regular participation to PT, when followed by feed-back and appropriate corrective actions, can play a key role in quality improvement and provide more confidence in the laboratory testing results. © 2015 The Society for Applied Microbiology.

  8. Role of maintenance of analytical instruments in the proceedings of quality control laboratory

    International Nuclear Information System (INIS)

    Haribabu, A.; Sailoo, C.C.; Balaji Rao, Y.; Subba Rao, Y.

    2015-01-01

    Control Laboratory being a centralized analytical facility of Nuclear Fuel Complex (NFC) is engaged in chemical qualification of all nuclear materials processed/produced at NFC. The primary responsibility of control laboratory is to provide timely analytical results of raw materials, intermediates and final products to all the production plants of NFC for downstream processing. Annual analytical load of nearly five lakhs of estimations are being carried out at laboratory. For this purpose a gamut of analytical facilities ranging from classical methods like gravimetry, volumetry etc. to fully automated state-of-art analytical instruments like ICP-AES, Gas Analysers, Flame and Graphite Furnace-AAS, Direct Reading Emission Spectrometer (DRES), RF GD-OES, TIMS, WD-XRFS, ED-XRFS, Laser based PSD Analyser, Laser Fluorimeter, UV-Vis Spectrophotometer, Gamma Ray Spectrometer, Ion-Chromatography, Gas Chromatography are used to acquire analytical data to see the suitability of products for their intended use. Depending on the applications, analysts validate their procedures, calibrate their instruments, and perform additional instrument checks, such as system suitability tests and analysis of in-process quality control check samples. With the increasing sophistication and automation of analytical instruments, an increasing demand has been placed on maintenance engineers to qualify these instruments for the purpose

  9. Performance evaluation of the food and environmental monitoring radio-analytical laboratory in Ghana

    International Nuclear Information System (INIS)

    Agyeman, Lilian Ataa

    2016-06-01

    Since the establishment of the Radiation Protection Institute’s Food and Environmental Laboratory in 1988, there has never been any thorough evaluation of the activities of the facility to provide assurance of the quality of analytical results produced by the laboratory. The objective of this study, therefore, was to assess the performance level of the Food and Environmental monitoring laboratory with respect to the requirements for a standard analytical laboratory (IAEA, 1989) and ISO 17025. The study focused on the performance of the Gamma Spectrometry laboratory of the Radiation Protection Institute, Ghana Atomic Energy Commission which has been involved in monitoring of radionuclides in food and environmental samples. In doing that, data from 1988 to 2015 was reviewed to ascertain whether the Laboratory has being performing as required in providing quality results on food and environmental samples measured. Besides this data (records kept), the evaluation also covered some Technical Quality Control measures, such as Energy and Efficiency Calibration, that need to be put in place for such laboratories. The laboratory meets almost all conditions and equipment requirements of IAEA (1989), however the laboratory falls short of the management requirements of ISO 17025. Based on the results it was recommended, among others, that management of the laboratory should ensure there are procedures for how calibration and testing is performed for different types of equipment and also the competence of all who operate specific equipment, perform tests, evaluate results and sign test reports ensured. (au)

  10. Vapor and gas sampling of single-shell tank 241-B-102 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-B-102. This document presents sampling data resulting from the April 18, 1996 sampling of SST 241-B-102. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media. The team, consisting of Sampling and Mobile Laboratories (SML) and Special Analytical Studies (SAS) personnel, used the vapor sampling system (VSS) to collect representative samples of the air, gases, and vapors from the headspace of SST 241-B-102 with sorbent traps and SUMMA canisters

  11. Environmental Safety and Health Analytical Laboratory, Pantex Plant, Amarillo, Texas. Final Environmental Assessment

    International Nuclear Information System (INIS)

    1995-06-01

    The US Department of Energy (DOE) has prepared an Environmental Assessment (EA) of the construction and operation of an Environmental Safety and Health (ES ampersand H) Analytical Laboratory and subsequent demolition of the existing Analytical Chemistry Laboratory building at Pantex Plant near Amarillo, Texas. In accordance with the Council on Environmental Quality requirements contained in 40 CFR 1500--1508.9, the Environmental Assessment examined the environmental impacts of the Proposed Action and discussed potential alternatives. Based on the analysis of impacts in the EA, conducting the proposed action, construction of an analytical laboratory and demolition of the existing facility, would not significantly effect the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA) and the Council on Environmental Quality regulations in 40 CFR 1508.18 and 1508.27

  12. Comparison of the layer structure of vapor phase and leached SRL glass by use of AEM [analytical electron microscopy

    International Nuclear Information System (INIS)

    Biwer, B.M.; Bates, J.K.; Abrajano, T.A. Jr.; Bradley, J.P.

    1989-01-01

    Test samples of 131 type glass that have been reacted for extended time periods in water vapor atmospheres of different relative humidities and in static leaching solution have been examined to characterize the reaction products. Analytical electron microscopy (AEM) was used to characterize the leached samples, and a complicated layer structure was revealed, consisting of phases that precipitate from solution and also form within the residual glass layer. The precipitated phases include birnes-site, saponite, and an iron species, while the intralayer phases include the U-Ti containing phase brannerite distributed within a matrix consisting of bands of an Fe rich montmorillonite clay. Comparison is made between samples leached at 40 degrees C for 4 years with those leached at 90 degrees C for 3-1/2 years. The samples reacted in water vapor were examined with scanning electron microscopy and show increasing reaction as both the relative humidity and time of reaction increases. These samples also contain a layered structure with reaction products on the glass surface. 15 refs., 5 figs

  13. Laboratory robotics projects in the Analytical Development Division at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Lien, O.G.; Steele, A.W.

    1986-01-01

    To encourage the application of robotics technology for routine radiobench applications, a laboratory dedicated to the research and development of contained robotic systems is being constructed. The facility will have several robots located in laminar flow hoods, and the hoods are being designed to allow the possibility for multiple robots to work together. This paper presents both the design features of the hoods and the general layout of the laboratory, and also discusses an application of a robotic system for the routine nuclear counting of gamma tube samples. The gamma tube system is presently operating in one of the routine analysis laboratories. 5 figs

  14. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  15. Importance of implementing an analytical quality control system in a core laboratory.

    Science.gov (United States)

    Marques-Garcia, F; Garcia-Codesal, M F; Caro-Narros, M R; Contreras-SanFeliciano, T

    2015-01-01

    The aim of the clinical laboratory is to provide useful information for screening, diagnosis and monitoring of disease. The laboratory should ensure the quality of extra-analytical and analytical process, based on set criteria. To do this, it develops and implements a system of internal quality control, designed to detect errors, and compare its data with other laboratories, through external quality control. In this way it has a tool to detect the fulfillment of the objectives set, and in case of errors, allowing corrective actions to be made, and ensure the reliability of the results. This article sets out to describe the design and implementation of an internal quality control protocol, as well as its periodical assessment intervals (6 months) to determine compliance with pre-determined specifications (Stockholm Consensus(1)). A total of 40 biochemical and 15 immunochemical methods were evaluated using three different control materials. Next, a standard operation procedure was planned to develop a system of internal quality control that included calculating the error of the analytical process, setting quality specifications, and verifying compliance. The quality control data were then statistically depicted as means, standard deviations, and coefficients of variation, as well as systematic, random, and total errors. The quality specifications were then fixed and the operational rules to apply in the analytical process were calculated. Finally, our data were compared with those of other laboratories through an external quality assurance program. The development of an analytical quality control system is a highly structured process. This should be designed to detect errors that compromise the stability of the analytical process. The laboratory should review its quality indicators, systematic, random and total error at regular intervals, in order to ensure that they are meeting pre-determined specifications, and if not, apply the appropriate corrective actions

  16. Minimum Analytical Chemistry Requirements for Pit Manufacturing at Los Alamos National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Moy, Ming M.; Leasure, Craig S.

    1998-01-01

    Analytical chemistry is one of several capabilities necessary for executing the Stockpile Stewardship and Management Program at Los Alamos National Laboratory (LANL). Analytical chemistry capabilities reside in the Chemistry Metallurgy Research (CMR) Facility and Plutonium Facility (TA-55). These analytical capabilities support plutonium recovery operations, plutonium metallurgy, and waste management. Analytical chemistry capabilities at both nuclear facilities are currently being configured to support pit manufacturing. This document summarizes the minimum analytical chemistry capabilities required to sustain pit manufacturing at LANL. By the year 2004, approximately$16 million will be required to procure analytical instrumentation to support pit manufacturing. In addition,$8.5 million will be required to procure glovebox enclosures. An estimated 50% increase in costs has been included for installation of analytical instruments and glovebox enclosures. However, no general and administrative (G and A) taxes have been included. If an additional 42.5/0 G and A tax were to be incurred, approximately$35 million would be required over the next five years to prepare analytical chemistry to support a 50-pit-per-year manufacturing capability by the year 2004

  17. Integrating Bio-Inorganic and Analytical Chemistry into an Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Erasmus, Daniel J.; Brewer, Sharon E.; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by…

  18. Implementation of a communication and control network for the instruments of a nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Cunya, Eduardo; Baltuano, Oscar; Bedregal, Patricia

    2013-01-01

    This paper describes the implementation of a communication network and control for a conventional laboratory instruments and nuclear analytical processes based on CAN open field bus to control devices and machines. Hardware components and software developed as well as installation and configuration tools for incorporating new instruments to the network re presented. (authors).

  19. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone

    NARCIS (Netherlands)

    Verginelli, Iason; Capobianco, Oriana; Hartog, Niels; Baciocchi, Renato

    In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a

  20. Principles of Single-Laboratory Validation of Analytical Methods for Testing the Chemical Composition of Pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Ambrus, A. [Hungarian Food Safety Office, Budapest (Hungary)

    2009-07-15

    Underlying theoretical and practical approaches towards pesticide formulation analysis are discussed, i.e. general principles, performance characteristics, applicability of validation data, verification of method performance, and adaptation of validated methods by other laboratories. The principles of single laboratory validation of analytical methods for testing the chemical composition of pesticides are outlined. Also the theoretical background is described for performing pesticide formulation analysis as outlined in ISO, CIPAC/AOAC and IUPAC guidelines, including methodological characteristics such as specificity, selectivity, linearity, accuracy, trueness, precision and bias. Appendices I–III hereof give practical and elaborated examples on how to use the Horwitz approach and formulae for estimating the target standard deviation towards acceptable analytical repeatability. The estimation of trueness and the establishment of typical within-laboratory reproducibility are treated in greater detail by means of worked-out examples. (author)

  1. An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain From Spinal Cord Injury and Disease.

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas D; Deutsch, Reena; Zhao, Holly; Prasad, Hannah; Phan, Amy

    2016-09-01

    Using 8-hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, most of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta 9-THC on 3 separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was used to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model showed a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (eg, good drug effect, feeling high, etc) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all P analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. A crossover, randomized, placebo-controlled human laboratory experiment involving administration of vaporized cannabis was performed in patients with neuropathic pain related to spinal cord injury and disease. This study supports consideration of future research that would include longer duration studies over weeks to months to evaluate the efficacy of medicinal cannabis in patients with central neuropathic pain. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. A prequalifying program for evaluating the analytical performance of commercial laboratories

    International Nuclear Information System (INIS)

    Reith, C.C.; Bishop, C.T.

    1987-01-01

    Soil and water samples were spiked with known activities of radionuclides and sent to seven commercial laboratories that had expressed an interest in analyzing environmental samples for the Waste Isolation Pilot Plant (WIPP). This Prequalifying Program was part of the selection process for an analytical subcontractor for a three-year program of baseline radiological surveillance around the WIPP site. Both media were spiked at three different activity levels with several transuranic radionuclides, as well as tritium, fission products, and activation products. Laboratory performance was evaluated by calculating relative error for each radionuclide in each sample, assigning grade values, and compiling grades into report cards for each candidate. Results for the five laboratories completing the Prequalifying Program were pooled to reveal differing degrees of difficulty among the treatments and radionuclides. Interlaboratory comparisons revealed systematic errors in the performance of one candidate. The final report cards contained clear differences among overall grades for the five laboratories, enabling analytical performance to be used as a quantitative criterion in the selection of an analytical subcontractor. (author)

  3. Automating the Analytical Laboratories Section, Lewis Research Center, National Aeronautics and Space Administration: a feasibility study

    International Nuclear Information System (INIS)

    Boyle, W.G.; Barton, G.W.

    1979-01-01

    We studied the feasibility of computerized automation of the Analytical Laboratories Section at NASA's Lewis Research Center. Since that laboratory's duties are not routine, we set our automation goals with that in mind. We selected four instruments as the most likely automation candidates: an atomic absorption spectrophotometer, an emission spectrometer, an x-ray fluorescence spectrometer, and an x-ray diffraction unit. Our study describes two options for computer automation: a time-shared central computer and a system with microcomputers for each instrument connected to a central computer. A third option, presented for future planning, expands the microcomputer version. We determine costs and benefits for each option. We conclude that the microcomputer version best fits the goals and duties of the laboratory and that such an automated system is needed to meet the laboratory's future requirements

  4. Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study

    Energy Technology Data Exchange (ETDEWEB)

    Qiang Lu [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Zhi-Fei Zhang [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Chang-Qing Dong [National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing (China); Xi-Feng Zhu [Key Laboratory for Biomass Clean Energy of Anhui Province, University of Science and Technology of China, Hefei (China)

    2010-10-15

    Fast pyrolysis of poplar wood followed with catalytic cracking of the pyrolysis vapors was performed using analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The catalysts applied in this study were nano MgO, CaO, TiO2, Fe2O3, NiO and ZnO. These catalysts displayed different catalytic capabilities towards the pyrolytic products. The catalysis by CaO significantly reduced the levels of phenols and anhydrosugars, and eliminated the acids, while it increased the formation of cyclopentanones, hydrocarbons and several light compounds. ZnO was a mild catalyst, as it only slightly altered the pyrolytic products. The other four catalysts all decreased the linear aldehydes dramatically, while the increased the ketones and cyclopentanones. They also reduced the anhydrosugars, except for NiO. Moreover, the catalysis by Fe2O3 resulted in the formation of various hydrocarbons. However, none of these catalysts except CaO were able to greatly reduce the acids.

  5. Novel cellulose-based halochromic test strips for naked-eye detection of alkaline vapors and analytes.

    Science.gov (United States)

    Abou-Yousef, Hussein; Khattab, Tawfik A; Youssef, Yehia A; Al-Balakocy, Naser; Kamel, Samir

    2017-08-01

    A simple, portable and highly sensitive naked-eye test strip is successfully prepared for optical detection of gaseous and aqueous alkaline analytes. Novel pH-sensory tricyanofuran-hydrazone (TCFH) disperse colorant containing a hydrazone recognition functional moiety is successfully synthesized via azo-coupling reaction between active methyl-containing tricyanofuran (TCF) heterocycle and diazonium salt of 4-aminobenzaldehyde followed by Knoevenagel condensation with malononitrile. UV-vis absorption spectra display solvatochromism and reversible color changes of the TCFH solution in dimethyl sulfoxide in response to pH variations. We investigate the preparation of hydrophobic cellulose/polyethylene terephthalate composites characterized by their high affinity for disperse dyes. Composite films made from CA, Cell/CA, PET/CA, and Cell/PET-CA are produced via solvent-casting procedure using 10-30% modified cellulose or modified polyethylene terephthalate. The mechanical properties and morphologies of these composite films are investigated. The prepared pH-sensory hydrazone-based disperse dye is then applied to dye the produced cellulose-based composite films employing the high temperature pressure dyeing procedure. The produced halochromic PET-CA-TCFH test strip provide an instant visible signal from orange to purple upon exposure to alkaline conditions as proved by the coloration measurements. The sensor strip exhibits high sensitivity and quick detection toward ammonia in both of aqueous and vapor phases by naked-eye observations at room temperature and atmospheric pressure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    International Nuclear Information System (INIS)

    1994-01-01

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report

  7. An Exploratory Human Laboratory Experiment Evaluating Vaporized Cannabis in the Treatment of Neuropathic Pain from Spinal Cord Injury and Disease

    Science.gov (United States)

    Wilsey, Barth; Marcotte, Thomas D.; Deutsch, Reena; Zhao, Holly; Prasad, Hannah; Phan, Amy

    2016-01-01

    Using eight hour human laboratory experiments, we evaluated the analgesic efficacy of vaporized cannabis in patients with neuropathic pain related to injury or disease of the spinal cord, the majority of whom were experiencing pain despite traditional treatment. After obtaining baseline data, 42 participants underwent a standardized procedure for inhaling 4 puffs of vaporized cannabis containing either placebo, 2.9%, or 6.7% delta-9-tetrahydrocannabinol on three separate occasions. A second dosing occurred 3 hours later; participants chose to inhale 4 to 8 puffs. This flexible dosing was utilized to attempt to reduce the placebo effect. Using an 11-point numerical pain intensity rating scale as the primary outcome, a mixed effects linear regression model demonstrated a significant analgesic response for vaporized cannabis. When subjective and psychoactive side effects (e.g., good drug effect, feeling high, etc.) were added as covariates to the model, the reduction in pain intensity remained significant above and beyond any effect of these measures (all p<0.0004). Psychoactive and subjective effects were dose dependent. Measurement of neuropsychological performance proved challenging because of various disabilities in the population studied. As the two active doses did not significantly differ from each other in terms of analgesic potency, the lower dose appears to offer the best risk-benefit ratio in patients with neuropathic pain associated with injury or disease of the spinal cord. PMID:27286745

  8. Analytical progresses of the International Olympic Committee and World Anti-Doping Agency Olympic laboratories.

    Science.gov (United States)

    Georgakopoulos, Costas; Saugy, Martial; Giraud, Sylvain; Robinson, Neil; Alsayrafi, Mohammed

    2012-07-01

    The Summer Olympic Games constitute the biggest concentration of human sports and activities in a particular place and time since 776 BCE, when the written history of the Olympic Games in Olympia began. Summer and Winter Olympic anti-doping laboratories, accredited by the International Olympic Committee in the past and the World Anti-Doping Agency in the present times, acquire worldwide interest to apply all new analytical advancements in the fight against doping in sports, hoping that this major human event will not become dirty by association with this negative phenomenon. This article summarizes the new analytical progresses, technologies and knowledge used by the Olympic laboratories, which for the vast majority of them are, eventually, incorporated into routine anti-doping analysis.

  9. Comparability between NQA-1 and the QA programs for analytical laboratories within the nuclear industry and EPA hazardous waste laboratories

    International Nuclear Information System (INIS)

    English, S.L.; Dahl, D.R.

    1989-01-01

    There is increasing cooperation between the Department of Energy (DOE), Department of Defense (DOD), and the Environmental Protection Agency (EPA) in the activities associated with monitoring and clean-up of hazardous wastes. Pacific Northwest Laboratory (PNL) examined the quality assurance/quality control programs that the EPA requires of the private sector when performing routine analyses of hazardous wastes to confirm how or if the requirements correspond with PNL's QA program based upon NQA-1. This paper presents the similarities and differences between NQA-1 and the QA program identified in ASTM-C1009-83, Establishing a QA Program for Analytical Chemistry Laboratories within the Nuclear Industry; EPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, which is referenced in Statements of Work for CERCLA analytical activities; and Chapter 1 of SW-846, which is used in analyses of RCRA samples. The EPA QA programs for hazardous waste analyses are easily encompassed within an already established NQA-1 QA program. A few new terms are introduced and there is an increased emphasis upon the QC/verification, but there are many of the same basic concepts in all the programs

  10. NASA Glenn Research Center, Propulsion Systems Laboratory: Plan to Measure Engine Core Flow Water Vapor Content

    Science.gov (United States)

    Oliver, Michael

    2014-01-01

    This presentation will be made at the 92nd AIAA Turbine Engine Testing Working Group (TETWoG), a semi-annual technical meeting of turbine engine testing professionals. The objective is to describe an effort by NASA to measure the water vapor content on the core airflow in a full scale turbine engine ice crystal icing test and to open a discussion with colleagues how to accurately conduct the measurement based on any previous collective experience with the procedure, instruments and nature of engine icing testing within the group. The presentation lays out the schematics of the location in the flow path from which the sample will be drawn, the plumbing to get it from the engine flow path to the sensor and several different water vapor measurement technologies that will be used: Tunable diode laser and infrared spectroscopy.

  11. Comparison between laboratory measurements, simulations, and analytical predictions of the transverse wall impedance at low frequencies

    CERN Document Server

    Roncarolo, F; Kroyer, T; Metral, E; Mounet, N; Salvant, B; Zotter, B

    2009-01-01

    The prediction of the transverse wall beam impedance at the first unstable betatron line (8 kHz) of the CERN Large Hadron Collider (LHC) is of paramount importance for understanding and controlling the related coupled-bunch instabilities. Until now only novel analytical formulas were available at this frequency. Recently, laboratory measurements and numerical simulations were performed to cross-check the analytical predictions. The experimental results based on the measurement of the variation of a probe coil inductance in the presence of (i) sample graphite plates, (ii) stand-alone LHC collimator jaws, and (iii) a full LHC collimator assembly are presented in detail. The measurement results are compared to both analytical theories and simulations. In addition, the consequences for the understanding of the LHC impedance are discussed.

  12. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.H. (ed.)

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique.

  13. Mass and emission spectrometry in the Analytical Chemistry Division of Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Smith, D.H.

    1978-11-01

    The capabilities of the Mass and Emission Spectrometry Section of the Analytical Chemistry Division of Oak Ridge National Laboratory are described. Many different areas of mass spectrometric expertise are represented in the section: gas analysis, high abundance sensitivity measurements, high- and low-resolution organic analyses, spark source trace constituent analysis, and ion microprobe analysis of surfaces. These capabilities are complemented by emission spectrometry. The instruments are described along with a few applications, some of which are unique

  14. Analytical activity of the laboratory for detection of irradiated food in 2005

    International Nuclear Information System (INIS)

    Stachowicz, W.; Malec-Czechowska, K.; Lehner, K.; Guzik, G.P.; Laubsztejn, M.

    2006-01-01

    In the paper activity of the Laboratory for Detection of Irradiated Foods, Institute of Nuclear Chemistry and Technology in 2005 is presented. In the presented period two new detection methods have been implemented: one is based on EPR (electron paramagnetic resonance) spectrometry, while the other employs photostimulated luminescence released from a sample proving its radiation treatment. Statistics of the analyzed sample types and and the analytical methods applied is presented

  15. Tank vapor characterization project - headspace vapor characterization of Hanford Waste Tank 241-C-107: Second comparison study results from samples collected on 3/26/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-C-107 (Tank C-107) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  16. Tank vapor characterization project. Headspace vapor characterization of Hanford waste tank 241-BY-108: Second comparison study results from samples collected on 3/28/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Pool, K.H.; Evans, J.C.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of waste storage tank 241-BY-108 (Tank BY-108) at the Hanford Site in Washington State. The results described in this report is the second in a series comparing vapor sampling of the tank headspace using the Vapor Sampling System (VSS) and In Situ Vapor Sampling (ISVS) system without high efficiency particulate air (HEPA) prefiltration. The results include air concentrations of water (H 2 O) and ammonia (NH 3 ), permanent gases, total non-methane organic compounds (TO-12), and individual organic analytes collected in SUMMA trademark canisters and on triple sorbent traps (TSTs). Samples were collected by Westinghouse Hanford Company (WHC) and analyzed by Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volume measurements provided by WHC

  17. Guided-inquiry laboratory experiments to improve students' analytical thinking skills

    Science.gov (United States)

    Wahyuni, Tutik S.; Analita, Rizki N.

    2017-12-01

    This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.

  18. Impact of Educational Activities in Reducing Pre-Analytical Laboratory Errors: A quality initiative.

    Science.gov (United States)

    Al-Ghaithi, Hamed; Pathare, Anil; Al-Mamari, Sahimah; Villacrucis, Rodrigo; Fawaz, Naglaa; Alkindi, Salam

    2017-08-01

    Pre-analytic errors during diagnostic laboratory investigations can lead to increased patient morbidity and mortality. This study aimed to ascertain the effect of educational nursing activities on the incidence of pre-analytical errors resulting in non-conforming blood samples. This study was conducted between January 2008 and December 2015. All specimens received at the Haematology Laboratory of the Sultan Qaboos University Hospital, Muscat, Oman, during this period were prospectively collected and analysed. Similar data from 2007 were collected retrospectively and used as a baseline for comparison. Non-conforming samples were defined as either clotted samples, haemolysed samples, use of the wrong anticoagulant, insufficient quantities of blood collected, incorrect/lack of labelling on a sample or lack of delivery of a sample in spite of a sample request. From 2008 onwards, multiple educational training activities directed at the hospital nursing staff and nursing students primarily responsible for blood collection were implemented on a regular basis. After initiating corrective measures in 2008, a progressive reduction in the percentage of non-conforming samples was observed from 2009 onwards. Despite a 127.84% increase in the total number of specimens received, there was a significant reduction in non-conforming samples from 0.29% in 2007 to 0.07% in 2015, resulting in an improvement of 75.86% ( P educational activities directed primarily towards hospital nursing staff had a positive impact on the quality of laboratory specimens by significantly reducing pre-analytical errors.

  19. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    Science.gov (United States)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  20. [Quality Management and Quality Specifications of Laboratory Tests in Clinical Studies--Challenges in Pre-Analytical Processes in Clinical Laboratories].

    Science.gov (United States)

    Ishibashi, Midori

    2015-01-01

    The cost, speed, and quality are the three important factors recently indicated by the Ministry of Health, Labour and Welfare (MHLW) for the purpose of accelerating clinical studies. Based on this background, the importance of laboratory tests is increasing, especially in the evaluation of clinical study participants' entry and safety, and drug efficacy. To assure the quality of laboratory tests, providing high-quality laboratory tests is mandatory. For providing adequate quality assurance in laboratory tests, quality control in the three fields of pre-analytical, analytical, and post-analytical processes is extremely important. There are, however, no detailed written requirements concerning specimen collection, handling, preparation, storage, and shipping. Most laboratory tests for clinical studies are performed onsite in a local laboratory; however, a part of laboratory tests is done in offsite central laboratories after specimen shipping. As factors affecting laboratory tests, individual and inter-individual variations are well-known. Besides these factors, standardizing the factors of specimen collection, handling, preparation, storage, and shipping, may improve and maintain the high quality of clinical studies in general. Furthermore, the analytical method, units, and reference interval are also important factors. It is concluded that, to overcome the problems derived from pre-analytical processes, it is necessary to standardize specimen handling in a broad sense.

  1. Performance specifications for the extra-analytical phases of laboratory testing: Why and how.

    Science.gov (United States)

    Plebani, Mario

    2017-07-01

    An important priority in the current healthcare scenario should be to address errors in laboratory testing, which account for a significant proportion of diagnostic errors. Efforts made in laboratory medicine to enhance the diagnostic process have been directed toward improving technology, greater volumes and more accurate laboratory tests being achieved, but data collected in the last few years highlight the need to re-evaluate the total testing process (TTP) as the unique framework for improving quality and patient safety. Valuable quality indicators (QIs) and extra-analytical performance specifications are required for guidance in improving all TTP steps. Yet in literature no data are available on extra-analytical performance specifications based on outcomes, and nor is it possible to set any specification using calculations involving biological variability. The collection of data representing the state-of-the-art based on quality indicators is, therefore, underway. The adoption of a harmonized set of QIs, a common data collection and standardised reporting method is mandatory as it will not only allow the accreditation of clinical laboratories according to the International Standard, but also assure guidance for promoting improvement processes and guaranteeing quality care to patients. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Vapor and gas sampling of single-shell tank 241-S-106 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-106. This document presents In Situ vapor Sampling System (ISVS) data resulting from the June 13, 1996 sampling of SST 241-S-106. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which'supplied and analyzed the sample media

  3. Vapor and gas sampling of single-shell tank 241-U-104 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue.Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-U-104. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the July 16, 1996 sampling of SST 241-U-104. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  4. Vapor and gas sampling of single-shell tank 241-S-103 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-103. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 12, 1996 sampling of SST 241-S-103. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  5. ELAN - expert system supported information and management system for analytical laboratories. ELAN - Expertengestuetztes Informationssystem fuer die Laboranalytik

    Energy Technology Data Exchange (ETDEWEB)

    Orth, H.; Zilly, G.

    1990-05-01

    The demand for high efficiency and short response time calls for the use of computer support in chemico-analytical laboratories. This is usually achieved by laboratory information and management systems covering the three levels of analytical instrument automation, laboratory operation support and laboratory management. The management component of the systems implemented up to now suffers from a lack of flexibility as far as unforeseen analytical investigations outside the laboratory routine work are concerned. Another drawback is the lack of adaptability with respect to structural changes in laboratory organization. It can be eliminated by the application of expert system structures and methods for the implementation of this system level. The ELAN laboratory information and management system has been developed on the basis of this concept. (orig.).

  6. Tank Vapor Characterization Project: Vapor space characterization of waste Tank A-101, Results from samples collected on June 8, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; McVeety, B.D.; Evans, J.C.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-A-101 (Tank A-101) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed in Table 1. Detailed descriptions of the analytical results appear in the text

  7. Efficient handling of high-level radioactive cell waste in a vitrification facility analytical laboratory

    International Nuclear Information System (INIS)

    Roberts, D.W.; Collins, K.J.

    1998-01-01

    The Savannah River Site''s (SRS) Defense Waste Processing Facility (DWPF) near Aiken, South Carolina, is the world''s largest and the United State''s first high level waste vitrification facility. For the past 1.5 years, DWPF has been vitrifying high level radioactive liquid waste left over from the Cold War. The vitrification process involves the stabilization of high level radioactive liquid waste into borosilicate glass. The glass is contained in stainless steel canisters. DWPF has filled more than 200 canisters 3.05 meters (10 feet) long and 0.61 meters (2 foot) diameter. Since operations began at DWPF in March of 1996, high level radioactive solid waste continues to be generated due to operating the facility''s analytical laboratory. The waste is referred to as cell waste and is routinely removed from the analytical laboratories. Through facility design, engineering controls, and administrative controls, DWPF has established efficient methods of handling the high level waste generated in its laboratory facility. These methods have resulted in the prevention of undue radiation exposure, wasted man-hours, expenses due to waste disposal, and the spread of contamination. This level of efficiency was not reached overnight, but it involved the collaboration of Radiological Control Operations and Laboratory personnel working together to devise methods that best benefited the facility. This paper discusses the methods that have been incorporated at DWPF for the handling of cell waste. The objective of this paper is to provide insight to good radiological and safety practices that were incorporated to handle high level radioactive waste in a laboratory setting

  8. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Science.gov (United States)

    Parrado, G.; Cañón, Y.; Peña, M.; Sierra, O.; Porras, A.; Alonso, D.; Herrera, D. C.; Orozco, J.

    2016-07-01

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  9. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements

    Directory of Open Access Journals (Sweden)

    Miguel A. Franesqui

    2017-08-01

    Full Text Available This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA. The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled “Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves” (Franesqui et al., 2017 [1].

  10. Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements.

    Science.gov (United States)

    Franesqui, Miguel A; Yepes, Jorge; García-González, Cándida

    2017-08-01

    This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].

  11. Improvement of analytical capabilities of neutron activation analysis laboratory at the Colombian Geological Survey

    Energy Technology Data Exchange (ETDEWEB)

    Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.; Peña, M., E-mail: mlpena@sgc.gov.co; Sierra, O., E-mail: osierra@sgc.gov.co; Porras, A.; Alonso, D.; Herrera, D. C., E-mail: dherrera@sgc.gov.co; Orozco, J. [Colombian Geological Survey, Nuclear Affairs Technical Division, Neutron Activation Analysis Laboratory, Bogota D. C. (Colombia)

    2016-07-07

    The Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey has developed a technique for multi-elemental analysis of soil and plant matrices, based on Instrumental Neutron Activation Analysis (INAA) using the comparator method. In order to evaluate the analytical capabilities of the technique, the laboratory has been participating in inter-comparison tests organized by Wepal (Wageningen Evaluating Programs for Analytical Laboratories). In this work, the experimental procedure and results for the multi-elemental analysis of four soil and four plant samples during participation in the first round on 2015 of Wepal proficiency test are presented. Only elements with radioactive isotopes with medium and long half-lives have been evaluated, 15 elements for soils (As, Ce, Co, Cr, Cs, Fe, K, La, Na, Rb, Sb, Sc, Th, U and Zn) and 7 elements for plants (Br, Co, Cr, Fe, K, Na and Zn). The performance assessment by Wepal based on Z-score distributions showed that most results obtained |Z-scores| ≤ 3.

  12. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  13. An analytical chemistry laboratory's experiences under Department of Energy Order 5633.3 - a status report

    International Nuclear Information System (INIS)

    Bingham, C.D.

    1989-01-01

    The U.S. Department of Energy (DOE) order 5633.3, Control and Accountability of Nuclear Materials, initiated substantial changes to the requirements for operations involving nuclear materials. In the opinion of this author, the two most significant changes are the clarification of and the increased emphasis on the concept of graded safeguards and the implementation of performance requirements. Graded safeguards recognizes that some materials are more attractive than others to potential adversary actions and, thus, should be afforded a higher level of integrated safeguards effort. An analytical chemistry laboratory, such as the New Brunswick Laboratory (NBL), typically has a small total inventory of special nuclear materials compared to, for example, a production or manufacturing facility. The NBL has a laboratory information management system (LIMS) that not only provides the sample identification and tracking but also incorporates the essential features of MC ampersand A required of NBL operations. As a consequence of order 5633.3, NBL had to modify LIMS to accommodate material attractiveness information for the logging process, to reflect changes in the attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness as the material was processed through the laboratory, and to enable inventory information to be accumulated by material attractiveness codes

  14. Analytical quality control concept in the Euratom on-site laboratories

    International Nuclear Information System (INIS)

    Mayer, K.; Duinslaeger, L.; Cromboom, O.; Ottmar, H.; Wojnowski, D.; Vegt, H. van der

    2001-01-01

    Full text: Two on-site laboratories have been developed, installed, commissioned and put into routine operation by the Euratom safeguards office (ESO), jointly with the Institute for Transuranium Elements (ITU). These laboratories are operated by ITU staff and provide verification measurement results on samples taken by Euratom inspectors. The analysts work in weekly changing shift teams, manage the laboratories and operate the various analytical techniques. Operating such a laboratory at a remote location, without a senior scientist immediately available in case of problems, The existing boundary conditions challenge the robustness of the entire laboratory, i.e. comprising staff and instrumentation. In order to continuously ensure a high degree of reliability of the measurement results, a stringent quality control system was implemented. The quality control concept for the two on-site laboratories was developed at a very early stage and implemented in the pre-OSL training facility at ITU. This enabled to thoroughly test and develop further the concept. At the same time the analysts get acquainted with the quality control procedures in place and they are instilled with the principles. The quality control concept makes use of a fully computerized data management and data acquisition system. All measurement devices, including balances, density meters, mass spectrometers, passive neutron counter, hybrid K-edge instrument, gamma spectrometers and alpha spectrometers are networked and data exchange is performed on electronic basis. A specifically developed laboratory information management system collects individual measurement data, calculates intermediate and final result and shares the information with a quality control module. In order to ensure the reliability of the results, which are reported to the ESO inspectorate, five levels of quality control were implemented. The present paper describes in detail the different levels of quality control, which check the

  15. Laboratory studies on the uptake of aromatic hydrocarbons by ice crystals during vapor depositional crystal growth

    Science.gov (United States)

    Fries, Elke; Starokozhev, Elena; Haunold, Werner; Jaeschke, Wolfgang; Mitra, Subir K.; Borrmann, Stephan; Schmidt, Martin U.

    Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C 6H 6), toluene (methylbenzene, C 7H 8), the C 8H 10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C 9H 12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C 10H 14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3-20.8 μg m -3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS). Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m -3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10 -3 g s -1 m -2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher. Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg g ice-1 (toluene, ethylbenzene, xylenes) and 125 pg g ice-1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg g ice-1 at gas concentrations of 10.3-10.7 μg m -3 calculated at 295 K. Uptake coefficients ( K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of

  16. Analytical quality assurance in laboratories using tracers for biological and environmental studies

    International Nuclear Information System (INIS)

    Melaj, Mariana; Martin, Olga; Lopez, Silvia; Rojas de Tramontini, Susana

    1999-01-01

    This work describe the way we are organizing a quality assurance system to apply in the analytical measurements of the relation 14 N/ 15 N in biological and soil material. The relation 14 / 15 is measured with a optic emission spectrometer (NOI6PC), which distinguish the differences in wave length of electromagnetic radiation emitted by N-28, N-29 and N-30. The major problem is the 'cross contamination' of samples with different enrichments. The elements that are been considered to reach satisfactory analytical results are: 1) A proper working area; 2) The samples must be homogeneous and the samples must represent the whole sampled system; 3) The use of reference materials. In each digestion, a known reference sample must be added; 4) Adequate equipment operation; 5) Standard operating procedures; 6) Control charts, laboratory and equipment books. All operations using the equipment is registered in a book; 7) Training of the operators. (author)

  17. Commissioning of the laboratory of Atucha II NPP. Implementation and optimization of analytical techniques, quality aspects

    International Nuclear Information System (INIS)

    Schoenbrod, Betina; Quispe, Benjamin; Cattaneo, Alberto; Rodriguez, Ivanna; Chocron, Mauricio; Farias, Silvia

    2012-09-01

    Atucha II NPP is a Pressurized Vessel Heavy Water Reactor (PVHWR) of 740 MWe designed by SIEMENSKWU. After some years of delay, this NPP is in advanced construction state, being the beginning of commercial operation expected for 2013. Nucleoelectrica Argentina (N.A.S.A.) is the company in charge of the finalization of this project and the future operation of the plant. The Comision Nacional de Energia Atomica (C.N.E.A.) is the R and D nuclear institution in the country that, among many other topics, provides technical support to the stations. The Commissioning Chemistry Division of CNAII is in charge of the commissioning of the demineralization water plant and the organization of the chemical laboratory. The water plant started operating successfully in July 2010 and is providing the plant with nuclear grade purity water. Currently, in the conventional ('cold') laboratory several activities are taking place. On one hand, analytical techniques for the future operation of the plant are being tested and optimized. On the other hand, the laboratory is participating in the cleaning and conservation of the different components of the plant, providing technical support and the necessary analysis. To define the analytical techniques for the normal operation of the plant, the parameters to be measured and their range were established in the Chemistry Manual. The necessary equipment and reagents were bought. In this work, a summary of the analytical techniques that are being implemented and optimized is presented. Common anions (chloride, sulfate, fluoride, bromide and nitrate) are analyzed by ion chromatography. Cations, mainly sodium, are determined by absorption spectrometry. A UV-Vis spectrometer is used to determine silicates, iron, ammonia, DQO, total solids, true color and turbidity. TOC measurements are performed with a TOC analyzer. To optimize the methods, several parameters are evaluated: linearity, detection and quantification limits, precision and

  18. SRC-I demonstration plant analytical laboratory methods manual. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Klusaritz, M.L.; Tewari, K.C.; Tiedge, W.F.; Skinner, R.W.; Znaimer, S.

    1983-03-01

    This manual is a compilation of analytical procedures required for operation of a Solvent-Refined Coal (SRC-I) demonstration or commercial plant. Each method reproduced in full includes a detailed procedure, a list of equipment and reagents, safety precautions, and, where possible, a precision statement. Procedures for the laboratory's environmental and industrial hygiene modules are not included. Required American Society for Testing and Materials (ASTM) methods are cited, and ICRC's suggested modifications to these methods for handling coal-derived products are provided.

  19. Wireless network development for the automatic registration of parameters in laboratories of nuclear analytical techniques

    International Nuclear Information System (INIS)

    Tincopa, Jean Pierre; Baltuano, Oscar; Bedregal, Patricia

    2015-01-01

    This paper presents in detail the development of a low-cost wireless network for automatic recording of temperature and relative humidity parameters in the laboratory of nuclear analytical techniques. This prototype has a DHT22 sensor which gives us both parameters with high precision and are automatically read and displayed by a ATmega328P microcontroller. This data is then transmitted through transceivers Xbee Pro S2B forming a mesh network for real time storage using an RTC (Real Time Clock). We present the experimental results obtained in its implementation. (author)

  20. Integrating bio-inorganic and analytical chemistry into an undergraduate biochemistry laboratory.

    Science.gov (United States)

    Erasmus, Daniel J; Brewer, Sharon E; Cinel, Bruno

    2015-01-01

    Undergraduate laboratories expose students to a wide variety of topics and techniques in a limited amount of time. This can be a challenge and lead to less exposure to concepts and activities in bio-inorganic chemistry and analytical chemistry that are closely-related to biochemistry. To address this, we incorporated a new iron determination by atomic absorption spectroscopy exercise as part of a five-week long laboratory-based project on the purification of myoglobin from beef. Students were required to prepare samples for chemical analysis, operate an atomic absorption spectrophotometer, critically evaluate their iron data, and integrate these data into a study of myoglobin. © 2015 The International Union of Biochemistry and Molecular Biology.

  1. Second-law-based analysis of vapor-compression refrigeration cycles: Analytical equations for COP and new insights into features of refrigerants

    International Nuclear Information System (INIS)

    Ma, Weiwu; Fang, Song; Su, Bo; Xue, Xinpei; Li, Min

    2017-01-01

    Highlights: • Second-law analysis leads to analytical COP formulas for refrigeration cycles. • Relative errors of the analytical equations are smaller than ±5.0%. • The analytical expressions characterize the influence of refrigerants. • Global entropy analysis elucidates the impact of cycle processes on COP. - Abstract: This article reports a second-law-based analysis of the vapor-compression refrigeration cycle, which leads to a set of explicit theoretical formulas for the coefficient of performance (COP). These analytical expressions provide a fast and accurate approach to computer simulations of the vapor-compression cycle without recourse to thermodynamic diagrams or equations of state. The second-law-based analysis yields specific expressions for the entropy generations of irreversible processes, enabling us to evaluate the thermodynamic features of the refrigerant and to elucidate the thermodynamic mechanisms behind the effects of the cycle processes, including superheat, subcooling, and throttling processes. In particular, these processes can interact, therefore this paper presents a global entropy generation analysis for evaluating the impact of the interacted processes on COP.

  2. A model for the statistical description of analytical errors occurring in clinical chemical laboratories with time.

    Science.gov (United States)

    Hyvärinen, A

    1985-01-01

    The main purpose of the present study was to describe the statistical behaviour of daily analytical errors in the dimensions of place and time, providing a statistical basis for realistic estimates of the analytical error, and hence allowing the importance of the error and the relative contributions of its different sources to be re-evaluated. The observation material consists of creatinine and glucose results for control sera measured in daily routine quality control in five laboratories for a period of one year. The observation data were processed and computed by means of an automated data processing system. Graphic representations of time series of daily observations, as well as their means and dispersion limits when grouped over various time intervals, were investigated. For partition of the total variation several two-way analyses of variance were done with laboratory and various time classifications as factors. Pooled sets of observations were tested for normality of distribution and for consistency of variances, and the distribution characteristics of error variation in different categories of place and time were compared. Errors were found from the time series to vary typically between days. Due to irregular fluctuations in general and particular seasonal effects in creatinine, stable estimates of means or of dispersions for errors in individual laboratories could not be easily obtained over short periods of time but only from data sets pooled over long intervals (preferably at least one year). Pooled estimates of proportions of intralaboratory variation were relatively low (less than 33%) when the variation was pooled within days. However, when the variation was pooled over longer intervals this proportion increased considerably, even to a maximum of 89-98% (95-98% in each method category) when an outlying laboratory in glucose was omitted, with a concomitant decrease in the interaction component (representing laboratory-dependent variation with time

  3. Minimum analytical quality specifications of inter-laboratory comparisons: agreement among Spanish EQAP organizers.

    Science.gov (United States)

    Ricós, Carmen; Ramón, Francisco; Salas, Angel; Buño, Antonio; Calafell, Rafael; Morancho, Jorge; Gutiérrez-Bassini, Gabriella; Jou, Josep M

    2011-11-18

    Four Spanish scientific societies organizing external quality assessment programs (EQAP) formed a working group to promote the use of common minimum quality specifications for clinical tests. Laboratories that do not meet the minimum specifications are encouraged to make immediate review of the analytical procedure affected and to implement corrective actions if necessary. The philosophy was to use the 95th percentile of results sent to EQAP (expressed in terms of percentage deviation from the target value) obtained for all results (except the outliers) during a cycle of 1 year. The target value for a number of analytes of the basic biochemistry program was established as the overall mean. However, because of the substantial discrepancies between routine methods for basic hematology, hormones, proteins, therapeutic drugs and tumor markers, the target in these cases was the peer group mean. The resulting specifications were quite similar to those established in the US (CLIA), and Germany (Richtlinie). The proposed specifications stand for the minimum level of quality to be attained for laboratories, to assure harmonized service performance. They have nothing to do with satisfying clinical requirements, which are the final level of quality to be reached, and that is strongly recommended in our organizations by means of documents, courses, symposiums and all types of educational activities.

  4. Expressing analytical performance from multi-sample evaluation in laboratory EQA.

    Science.gov (United States)

    Thelen, Marc H M; Jansen, Rob T P; Weykamp, Cas W; Steigstra, Herman; Meijer, Ron; Cobbaert, Christa M

    2017-08-28

    To provide its participants with an external quality assessment system (EQAS) that can be used to check trueness, the Dutch EQAS organizer, Organization for Quality Assessment of Laboratory Diagnostics (SKML), has innovated its general chemistry scheme over the last decade by introducing fresh frozen commutable samples whose values were assigned by Joint Committee for Traceability in Laboratory Medicine (JCTLM)-listed reference laboratories using reference methods where possible. Here we present some important innovations in our feedback reports that allow participants to judge whether their trueness and imprecision meet predefined analytical performance specifications. Sigma metrics are used to calculate performance indicators named 'sigma values'. Tolerance intervals are based on both Total Error allowable (TEa) according to biological variation data and state of the art (SA) in line with the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Milan consensus. The existing SKML feedback reports that express trueness as the agreement between the regression line through the results of the last 12 months and the values obtained from reference laboratories and calculate imprecision from the residuals of the regression line are now enriched with sigma values calculated from the degree to which the combination of trueness and imprecision are within tolerance limits. The information and its conclusion to a simple two-point scoring system are also graphically represented in addition to the existing difference plot. By adding sigma metrics-based performance evaluation in relation to both TEa and SA tolerance intervals to its EQAS schemes, SKML provides its participants with a powerful and actionable check on accuracy.

  5. [Comparability study of analytical results between a group of clinical laboratories].

    Science.gov (United States)

    Alsius-Serra, A; Ballbé-Anglada, M; López-Yeste, M L; Buxeda-Figuerola, M; Guillén-Campuzano, E; Juan-Pereira, L; Colomé-Mallolas, C; Caballé-Martín, I

    2015-01-01

    To describe the study of the comparability of the measurements levels of biological tests processed in biochemistry in Catlab's 4 laboratories. Quality requirements, coefficients of variation and total error (CV% and TE %) were established. Controls were verified with the precision requirements (CV%) in each test and each individual laboratory analyser. Fresh serum samples were used for the comparability study. The differences were analysed using a Microsoft Access® application that produces modified Bland-Altman plots. The comparison of 32 biological parameters that are performed in more than one laboratory and/or analyser generated 306 Bland-Altman graphs. Of these, 101 (33.1%) fell within the accepted range of values based on biological variability, and 205 (66.9%) required revision. Data were re-analysed based on consensus minimum specifications for analytical quality (consensus of the Asociación Española de Farmacéuticos Analistas (AEFA), the Sociedad Española de Bioquímica Clínica y Patología Molecular (SEQC), the Asociación Española de Biopatología Médica (AEBM) and the Sociedad Española de Hematología y Hemoterapia (SEHH), October 2013). With the new specifications, 170 comparisons (56%) fitted the requirements and 136 (44%) required additional review. Taking into account the number of points that exceeded the requirement, random errors, range of results in which discrepancies were detected, and range of clinical decision, it was shown that the 44% that required review were acceptable, and the 32 tests were comparable in all laboratories and analysers. The analysis of the results showed that the consensus requirements of the 4 scientific societies were met. However, each laboratory should aim to meet stricter criteria for total error. Copyright © 2015 SECA. Published by Elsevier Espana. All rights reserved.

  6. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-S-107: Results from samples collected on 06/18/96

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-107 (Tank S-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National. Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  7. 40 CFR Appendix G to Subpart A of... - UNEP Recommendations for Conditions Applied to Exemption for Essential Laboratory and Analytical...

    Science.gov (United States)

    2010-07-01

    ... calibration; use as extraction solvents, diluents, or carriers for chemical analysis; biochemical research; inert solvents for chemical reactions, as a carrier or laboratory chemical and other critical analytical... global laboratory exemption: a. Testing of oil and grease and total petroleum hydrocarbons in water; b...

  8. Expanding Clinical Laboratory Tobacco Product Evaluation Methods to Loose-leaf Tobacco Vaporizers

    Science.gov (United States)

    Lopez, Alexa A.; Hiler, Marzena; Maloney, Sarah; Eissenberg, Thomas; Breland, Alison

    2016-01-01

    Background Novel tobacco products entering the US market include electronic cigarettes (ECIGs) and products advertised to “heat, not burn” tobacco. There is a growing literature regarding the acute effects of ECIGs. Less is known about “heat, not burn” products. This study’s purpose was to expand existing clinical laboratory methods to examine, in cigarette smokers, the acute effects of a “heat, not burn” “loose-leaf tobacco vaporizer” (LLTV). Methods Plasma nicotine and breath carbon monoxide (CO) concentration and tobacco abstinence symptom severity were measured before and after two 10-puff (30-sec interpuff interval) product use bouts separated by 60 minutes. LLTV effects were compared to participants’ own brand (OB) cigarettes and an ECIG (3.3 V; 1.5 Ohm; 18 mg/ml nicotine). Results Relative to OB, LLTV increased plasma nicotine concentration to a lesser degree, did not increase CO, and appeared to not reduce abstinence symptoms as effectively. Relative to ECIG, LLTV nicotine and CO delivery and abstinence symptom suppression did not differ. Participants reported that both the LLTV and ECIG were significantly less satisfying than OB. Conclusions Results demonstrate that LLTVs are capable of delivering nicotine and suppressing tobacco abstinence symptoms partially; acute effects of these products can be evaluated using existing clinical laboratory methods. Results can inform tobacco product regulation and may be predictive of the extent that these products have the potential to benefit or harm overall public health. PMID:27768968

  9. European specialist porphyria laboratories: diagnostic strategies, analytical quality, clinical interpretation, and reporting as assessed by an external quality assurance program.

    Science.gov (United States)

    Aarsand, Aasne K; Villanger, Jørild H; Støle, Egil; Deybach, Jean-Charles; Marsden, Joanne; To-Figueras, Jordi; Badminton, Mike; Elder, George H; Sandberg, Sverre

    2011-11-01

    The porphyrias are a group of rare metabolic disorders whose diagnosis depends on identification of specific patterns of porphyrin precursor and porphyrin accumulation in urine, blood, and feces. Diagnostic tests for porphyria are performed by specialized laboratories in many countries. Data regarding the analytical and diagnostic performance of these laboratories are scarce. We distributed 5 sets of multispecimen samples from different porphyria patients accompanied by clinical case histories to 18-21 European specialist porphyria laboratories/centers as part of a European Porphyria Network organized external analytical and postanalytical quality assessment (EQA) program. The laboratories stated which analyses they would normally have performed given the case histories and reported results of all porphyria-related analyses available, interpretative comments, and diagnoses. Reported diagnostic strategies initially showed considerable diversity, but the number of laboratories applying adequate diagnostic strategies increased during the study period. We found an average interlaboratory CV of 50% (range 12%-152%) for analytes in absolute concentrations. Result normalization by forming ratios to the upper reference limits did not reduce this variation. Sixty-five percent of reported results were within biological variation-based analytical quality specifications. Clinical interpretation of the obtained analytical results was accurate, and most laboratories established the correct diagnosis in all distributions. Based on a case-based EQA scheme, variations were apparent in analytical and diagnostic performance between European specialist porphyria laboratories. Our findings reinforce the use of EQA schemes as an essential tool to assess both analytical and diagnostic processes and thereby to improve patient care in rare diseases.

  10. Two low-level gamma spectrometry systems of the IAEA Safeguards Analytical Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Parus, J L [IAEA, SAL, Vienna (Austria); Raab, W [IAEA, SAL, Vienna (Austria); Donohue, D [IAEA, SAL, Vienna (Austria); Jansta, V [IAEA, SAL, Vienna (Austria); Kierzek, J [IAEA, SAL, Vienna (Austria)

    1997-03-01

    A gamma spectrometry system designed for the measurement of samples with low and medium radioactivity (activity from a few to about 10{sup 4} Bq in the energy range from 25 to 2700 keV) has been installed at the IAEA Safeguards Analytical Laboratory in Seibersdorf. The system consists of 3 low level detectors: (1) n-type coaxial Ge with 42.4% relative efficiency, 1.85 keV FWHM at 1.33 MeV (2) planar Ge with 2000 mm{sup 2} area and 20 mm thickness, 562 eV FWHM at 122 keV (3) NaI(Tl) annulus of 25.4 cm diameter and 25.4 cm height, hole diameter 90 mm. (orig./DG)

  11. Laboratory analytical methods for the determination of the hydrocarbon status of soils (a review)

    Science.gov (United States)

    Pikovskii, Yu. I.; Korotkov, L. A.; Smirnova, M. A.; Kovach, R. G.

    2017-10-01

    Laboratory analytical methods suitable for the determination of the hydrocarbon status of soils (a specific soil characteristic involving information on the total content and qualitative features of soluble (bitumoid) carbonaceous substances and individual hydrocarbons (polycyclic aromatic hydrocarbons, alkanes, etc.) in bitumoid, as well as the composition and content of hydrocarbon gases) have been considered. Among different physicochemical methods of study, attention is focused on the methods suitable for the wide use. Luminescence-bituminological analysis, low-temperature spectrofluorimetry (Shpolskii spectroscopy), infrared (IR) spectroscopy, gas chromatography, chromatography-mass spectrometry, and some other methods have been characterized, as well as sample preparation features. Advantages and limitations of each of these methods are described; their efficiency, instrumental complexity, analysis duration, and accuracy are assessed.

  12. Analytic of tritium-containing gaseous species at the Tritium Laboratory Karlsruhe

    International Nuclear Information System (INIS)

    Laesser, R.; Caldwell-Nichols, C.; Doerr, L.; Glugla, M.; Gruenhagen, S.; Guenther, K.; Penzhorn, R.-D.

    2001-01-01

    At the Tritium Laboratory Karlsruhe (TLK) laser Raman spectroscopy, gas chromatography, mass spectroscopy, calorimetry and ionisation chambers are used to determine the composition of tritium gas mixtures. For the first time a laser Raman experiment was assembled with an actively controlled resonator which yields a 50 times higher Raman signal and with all components (laser, optics, Raman cell and spectrometer) installed inside a glove box. Three gas chromatographs, each with up to six detectors, can determine the gases and their tritiated fractions expected in fusion devices down to the sub-ppm range. Tritium in solids, liquids and gases is determined by means of three calorimeters with a dynamic ranges of up to five orders of magnitude and a lower detection limit of 1 GBq. Since any of these techniques has its shortcomings the best analytical approach is to analyse a sample by more than one method

  13. Large-scale automation of the Lawrence Livermore Laboratory x-ray analytical facilities

    International Nuclear Information System (INIS)

    Wallace, P.L.; Shimamoto, F.Y.; Quick, T.M.

    1980-01-01

    Lawrence Livermore Laboratory (LLL) has undertaken an ambitious plan to automate its x-ray analytical equipment. This project ultimately will automate 15 x-ray diffraction and 3 x-ray spectrometric systems. All automation is being done by retrofitting existing equipment and combining it with minicomputers to produce smart instruments. Two types of smart instruments have been developed: one that controls an experiment and acquires data and another that analyzes data and communicates with LLL's large computer center. Three of the former type have been built and are operating; seven more will soon be put into service. Only two of the later type are needed, and both are currently in service. We describe the details of our overall plan, the smart instruments, the retrofitting, our current status, and our software

  14. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-01-01

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  15. New, small, fast acting blood glucose meters--an analytical laboratory evaluation.

    Science.gov (United States)

    Weitgasser, Raimund; Hofmann, Manuela; Gappmayer, Brigitta; Garstenauer, Christa

    2007-09-22

    Patients and medical personnel are eager to use blood glucose meters that are easy to handle and fast acting. We questioned whether accuracy and precision of these new, small and light weight devices would meet analytical laboratory standards and tested four meters with the above mentioned conditions. Approximately 300 capillary blood samples were collected and tested using two devices of each brand and two different types of glucose test strips. Blood from the same samples was used for comparison. Results were evaluated using maximum deviation of 5% and 10% from the comparative method, the error grid analysis, the overall deviation of the devices, the linear regression analysis as well as the CVs for measurement in series. Of all 1196 measurements a deviation of less than 5% resp. 10% from the reference method was found for the FreeStyle (FS) meter in 69.5% and 96%, the Glucocard X Meter (GX) in 44% and 75%, the One Touch Ultra (OT) in 29% and 60%, the Wellion True Track (WT) in 28.5% and 58%. The error grid analysis gave 99.7% for FS, 99% for GX, 98% for OT and 97% for WT in zone A. The remainder of the values lay within zone B. Linear regression analysis resembled these results. CVs for measurement in series showed higher deviations for OT and WT compared to FS and GX. The four new, small and fast acting glucose meters fulfil clinically relevant analytical laboratory requirements making them appropriate for use by medical personnel. However, with regard to the tight and restrictive limits of the ADA recommendations, the devices are still in need of improvement. This should be taken into account when the devices are used by primarily inexperienced persons and is relevant for further industrial development of such devices.

  16. Reengineering of Analytical Data Management for the Environmental Restoration Project at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, S.; Dorries, A.; Nasser, K.; Scherma, S.

    2003-02-27

    The Environmental Restoration (ER) Project at Los Alamos National Laboratory (LANL) is responsible for the characterization, clean up, and monitoring of over 2,124 identified potential release sites (PRS). These PRSs have resulted from operations associated with weapons and energy related research which has been conducted at LANL since 1942. To accomplish mission goals, the ER Project conducts field sampling to determine possible types and levels of chemical contamination as well as their geographic extent. Last fiscal year, approximately 4000 samples were collected during ER Project field sampling campaigns. In the past, activities associated with field sampling such as sample campaign planning, paperwork, shipping and analytical laboratory tracking; verification and order fulfillment; validation and data quality assurance were performed by multiple groups working with a variety of software applications, databases and hard copy reports. This resulted in significant management and communication difficulties, data delivery delays, and inconsistent processes; it also represented a potential threat to overall data integrity. Creation of an organization, software applications and a data process that could provide for cost-effective management of the activities and data mentioned above became a management priority, resulting in a development of a reengineering task. This reengineering effort--currently nearing completion--has resulted in personnel reorganization, the development of a centralized data repository, and a powerful web-based sample management system that allows for an appreciably streamlined and more efficient data process. These changes have collectively cut data delivery times, allowed for larger volumes of samples and data to be handled with fewer personnel, and resulted in significant cost savings. This paper will provide a case study of the reengineering effort undertaken by the ER Project of its analytical data management process. It includes

  17. Headspace vapor characterization of Hanford Waste Tank 241-S-112: Results from samples collected on July 11, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage Tank 241-S-112 (Tank S-112) at the Hanford. Pacific Northwest National Laboratory (PNNL) is contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5044. Samples were collected by WHC on July 11, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  18. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  19. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  20. Headspace vapor characterization of Hanford Waste Tank 241-TX-111: Results from samples collected on October 12, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-06-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-TX-111 (Tank TX-111) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5069. Samples were collected by WHC on October 12, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  1. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  2. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  3. Headspace vapor characterization of Hanford Waste Tank 241-SX-109: Results from samples collected on August 1, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-109 (Tank SX-109) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5048. Samples were collected by WHC on August 1, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  4. Headspace vapor characterization of Hanford Waste Tank 241-SX-104: Results from samples collected on July 25, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-104 (Tank SX-104) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5049. Samples were collected by WHC on July 25, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  5. Headspace vapor characterization of Hanford Waste Tank 241-SX-105: Results from samples collected on July 26, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-105 (Tank SX-105) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5047. Samples were collected by WHC on July 26, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  6. Ensuring comparability of data generated by multiple analytical laboratories for environmental decision making at the Fernald Environmental Management Project

    International Nuclear Information System (INIS)

    Sutton, C.; Campbell, B.A.; Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.

    1994-01-01

    The Fernald Environmental Management Project is a US Department of Energy (DOE)-owned facility located 17 miles northwest of Cincinnati, Ohio. From 1952 until 1989, the Fernald site provided high-purity uranium metal products to support US defense programs. In 1989 the mission of Fernald changed from one of uranium production to one of environmental restoration. At Fernald, multiple functional programs require analytical data. Inorganic and organic data for these programs are currently generated by seven laboratories, while radiochemical data are being obtained from six laboratories. Quality Assurance (QA) and Quality Control (QC) programs have been established to help ensure comparability of data generated by multiple laboratories at different times. The quality assurance program for organic and inorganic measurements specifies which analytical methodologies and sample preparation procedures are to be used based on analyte class, sample matrix, and data quality requirements. In contrast, performance specifications have been established for radiochemical analyses. A blind performance evaluation program for all laboratories, both on-site and subcontracted commercial laboratories, provides continuous feedback on data quality. The necessity for subcontractor laboratories to participate in the performance evaluation program is a contractual requirement. Similarly, subcontract laboratories are contractually required to generate data which meet radiochemical performance specifications. The Fernald on-site laboratory must also fulfill these requirements

  7. A clean laboratory for ultratrace analysis: the ultratrace analytical facility (UTAF)

    International Nuclear Information System (INIS)

    Jadhav, S.G.; Sounderajan, Suvarna; Kumar, Sanjukta A.; Udas, A.C.; Ramanathan, M.; Palrecha, M.M.; Sudersanan, M.

    2003-06-01

    Thare has been an increasing demand for the quantification of various elements at extremely low concentrations in a variety of samples such as high purity materials, environmental and biological samples. The need for a controlled environment to obtain reliable and reproducible data necessitates the use of strategies and practices to minimize contamination during the analytical procedure. This report describes the protocol observed in our clean laboratory to eliminate contamination and ensure low laboratory blanks and some of the methodologies developed to carry out the analysis. The analysis is carried out by Graphite Furnace Atomic Absorption Spectrometry and electrochemical techniques such as Anodic/ Cathodic / Adsorptive Stripping Voltammetry. Characterisation of 5N (total impurities 10 ppm) arsenic is routinely carried out. Al in serum of patients suffering from end stage renal failure are also analyzed. Pine leaves, spinach, carrot puree and milk powder have been characterized for Al and Hg content and bovine serum has been characterized for Cu, Zn, Na, K in samples as part of intercomparison exercises. (author)

  8. Use of artificial intelligence in analytical systems for the clinical laboratory.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1995-01-01

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.

  9. Internet-based reporting system for the US Department of Energy extended network of analytical laboratories

    International Nuclear Information System (INIS)

    Hembree, D.M. Jr.; Hanzelka, C.C.; Rose, L.J.; Price, A.; Holdren, G.R.

    1999-01-01

    The official implementation of environmental sampling under Programme 93+2 as a means to enhance nuclear safeguards for the International Atomic Energy Agency (IAEA) has led the U.S. Department of Energy (DOE) Extended Network of Analytical Laboratories (ENWAL) to reevaluate the effectiveness and efficiency of its support program in this area. One area of particular concern deals with the methods used for information transfer between the various DOE laboratories, the DOE coordination center in Oak Ridge, and IAEA headquarters in Vienna. This reevaluation has also been extended to included the type and structure of the database used to manage environmental sampling data generated within the DOE ENWAL. Efforts are currently underway to migrate to the same database used by the IAEA to manage environmental sampling data, and to develop a new database structure that allows easier use by the IAEA. The most important part of this upgrade program is the move to the internet to allow secure worldwide, dynamic access by all authorized users of the DOE system. As currently envisioned, a secure web browser and appropriate access privileges are all that will required to use the DOE data reporting and communication system. All transactions involving IAEA environmental samples, such as analysis requests, shipping notification, status information, and data reporting will be conducted over the internet under dynamic conditions. (author)

  10. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-203, Results from samples collected on August 8, 1995

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-203 (Tank U-203) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text

  11. Tank Vapor Characterization Project. Headspace vapor characterization of Hanford Waste Tank AX-102: Results from samples collected on June 27, 1995

    International Nuclear Information System (INIS)

    Clauss, T.W.; Pool, K.H.; Evans, J.C.; McVeety, B.D.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-AX-102 (Tank AX-102) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. Detailed descriptions of the analytical results appear in the text

  12. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank U-204, Results from samples collected on August 8, 1995

    International Nuclear Information System (INIS)

    Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1995-11-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-204 (Tank U-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the results is listed. Detailed descriptions of the analytical results appear in the text

  13. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    International Nuclear Information System (INIS)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John

    2013-01-01

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes

  14. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  15. Final report on the proficiency test of the Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA) network

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Radecki, Z.; Trinkl, A.; Sansone, U.; Benesch, T.

    2005-08-01

    This report presents the statistical evaluation of results from the analysis of 12 radionuclides in 8 samples within the frame of the First Proficiency Test of Analytical Laboratories for the Measurement Environmental RAdioactivity (ALMERA) organized in 2001-2002 by the Chemistry Unit, Agency's Laboratory in Seibersdorf. The results were evaluated by using appropriate statistical means to assess laboratory analytical performance and to estimate the overall performance for the determination of each radionuclide. Evaluation of the analytical data for gamma emitting radionuclides showed that 68% of data obtained a 'Passed' final score for both the trueness and precision criteria applied to this exercise. However, transuranic radionuclides obtained only 58% for the same criteria. (author)

  16. Tank Vapor Characterization Project: Annual status report for FY 1996

    International Nuclear Information System (INIS)

    Silvers, K.L.; Fruchter, J.S.; Huckaby, J.L.; Almeida, T.L.; Evans, J.C. Jr.; Pool, K.H.; Simonen, C.A.; Thornton, B.M.

    1997-01-01

    In Fiscal Year 1996, staff at the Vapor Analytical Laboratory at Pacific Northwest National Laboratory performed work in support of characterizing the vapor composition of the headspaces of radioactive waste tanks at the Hanford Site. Work performed included support for technical issues and sampling methodologies, upgrades for analytical equipment, analytical method development, preparation of unexposed samples, analyses of tank headspaces samples, preparation of data reports, and operation of the tank vapor database. Progress made in FY 1996 included completion and issuance of 50 analytical data reports. A sampling system comparison study was initiated and completed during the fiscal year. The comparison study involved the vapor sampling system (VSS), a truck-based system, and the in situ vapor sampling system (ISVS), a cart-based system. Samples collected during the study were characterized for inorganic, permanent gases, total non-methane organic compounds and organic speciation by SUMMA trademark and TST methods. The study showed comparable sampling results between the systems resulting in the program switching from the VSS to the less expensive ISVS methodology in late May 1996. A temporal study was initiated in January 1996 in order to understand the influences seasonal temperatures changes have on the vapors in the headspace of Hanford waste tanks. A holding time study was initiated in the fourth quarter of FY 1996. Samples were collected from tank S-102 and rushed to the laboratory for time zero analysis. Additional samples will be analyzed at 1, 2, 4, 8, 16, and 32 weeks

  17. Summarizing documentation of the laboratory automation system RADAR for the analytical services of a nuclear fuel reprocessing facility

    International Nuclear Information System (INIS)

    Brandenburg, G.; Brocke, W.; Brodda, B.G.; Buerger, K.; Halling, H.; Heer, H.; Puetz, K.; Schaedlich, W.; Watzlawik, K.H.

    1981-12-01

    The essential tasks of the system are on-line open-loop process control based on in-line measurements and automation of the off-line analytical laboratory. The in-line measurements (at 55 tanks of the chemical process area) provide density-, liquid-, level-, and temperature values. The concentration value of a single component may easily be determined, if the solution consists of no more than two phases. The automation of the off-line analytical laboratory contains laboratory organization including sample management and data organization and computer-aided sample transportation control, data acquisition and data processing at chemical and nuclear analytical devices. The computer system consists of two computer-subsystems: a front end system for sample central registration and in-line process control and a central size system for the off-line analytical tasks. The organization of the application oriented system uses a centralized data base. Similar data processing functions concerning different analytical management tasks are structured into the following subsystem: man machine interface, interrupt- and data acquisition system, data base, protocol service and data processing. The procedures for the laboratory management (organization and experiment sequences) are defined by application data bases. Following the project phases, engineering requirements-, design-, assembly-, start up- and test run phase are described. In addition figures on expenditure and experiences are given and the system concept is discussed. (orig./HP) [de

  18. Implementation of quality assurance and quality control in the Nuclear Analytical Laboratory of the Estonian Radiation Protection Centre

    International Nuclear Information System (INIS)

    Koeoep, T.; Jakobson, E.

    2002-01-01

    The Analytical Laboratory of the Estonian Radiation Protection Centre is in the process of implementing the system of Quality Assurance (QA) and Quality Control (QC) in the framework of the IAEA TC Project RER/2/004/ 'QA/QC of Nuclear Analytical Techniques'. The draft Quality Manual with annexes has been prepared accordingly to the ISO 17025 Guide, documents and other printed material delivered on the seminars of the project. The laboratory supply has been supplemented with necessary equipment for guaranteeing of quality. Proficiency testing included in the project has been performed successfully. (author)

  19. Participation in BCR - certifications by the Laboratory of Analytical Chemistry, Institute for Nuclear Sciences, University of Gent, Belgium

    International Nuclear Information System (INIS)

    Cornelis, R.; Dyg, S.; Dams, R.; Griepink, B.

    1990-01-01

    During the last decade the Laboratory of Analytical Chemistry assisted in the certification of 31 environmental and food reference materials issued by the BCR (Bureau of Reference Materials of the European Communities). The efforts spent can be translated into the following statistics: the 10 most frequently certified elements assisted by the Gent Laboratory are As, Cd, Co, Cu, Fe, Hg, Mn, Pb, Se and Zn. They cover 70% of the certification work. The Gent Laboratory cooperated in 74% of the latter. There are 21 more major and trace elements certified, some in a single product only. Activation analysis was the main analytical technique applied by the Gent Laboratory. In many instances radiochemical separations were involved. (orig.)

  20. ASVCP quality assurance guidelines: control of preanalytical, analytical, and postanalytical factors for urinalysis, cytology, and clinical chemistry in veterinary laboratories.

    Science.gov (United States)

    Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  1. Quality specifications for the extra-analytical phase of laboratory testing: Reference intervals and decision limits.

    Science.gov (United States)

    Ceriotti, Ferruccio

    2017-07-01

    Reference intervals and decision limits are a critical part of the clinical laboratory report. The evaluation of their correct use represents a tool to verify the post analytical quality. Four elements are identified as indicators. 1. The use of decision limits for lipids and glycated hemoglobin. 2. The use, whenever possible, of common reference values. 3. The presence of gender-related reference intervals for at least the following common serum measurands (besides obviously the fertility relate hormones): alkaline phosphatase (ALP), alanine aminotransferase (ALT), creatine kinase (CK), creatinine, gamma-glutamyl transferase (GGT), IgM, ferritin, iron, transferrin, urate, red blood cells (RBC), hemoglobin (Hb) and hematocrit (Hct). 4. The presence of age-related reference intervals. The problem of specific reference intervals for elderly people is discussed, but their use is not recommended; on the contrary it is necessary the presence of pediatric age-related reference intervals at least for the following common serum measurands: ALP, amylase, creatinine, inorganic phosphate, lactate dehydrogenase, aspartate aminotransferase, urate, insulin like growth factor 1, white blood cells, RBC, Hb, Hct, alfa-fetoprotein and fertility related hormones. The lack of such reference intervals may imply significant risks for the patients. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  3. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  4. Quality management and accreditation in a mixed research and clinical hair testing analytical laboratory setting-a review.

    Science.gov (United States)

    Fulga, Netta

    2013-06-01

    Quality management and accreditation in the analytical laboratory setting are developing rapidly and becoming the standard worldwide. Quality management refers to all the activities used by organizations to ensure product or service consistency. Accreditation is a formal recognition by an authoritative regulatory body that a laboratory is competent to perform examinations and report results. The Motherisk Drug Testing Laboratory is licensed to operate at the Hospital for Sick Children in Toronto, Ontario. The laboratory performs toxicology tests of hair and meconium samples for research and clinical purposes. Most of the samples are involved in a chain of custody cases. Establishing a quality management system and achieving accreditation became mandatory by legislation for all Ontario clinical laboratories since 2003. The Ontario Laboratory Accreditation program is based on International Organization for Standardization 15189-Medical laboratories-Particular requirements for quality and competence, an international standard that has been adopted as a national standard in Canada. The implementation of a quality management system involves management commitment, planning and staff education, documentation of the system, validation of processes, and assessment against the requirements. The maintenance of a quality management system requires control and monitoring of the entire laboratory path of workflow. The process of transformation of a research/clinical laboratory into an accredited laboratory, and the benefits of maintaining an effective quality management system, are presented in this article.

  5. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  6. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  7. Vapor and gas sampling of single-shell tank 241-BX-110 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-BX-110. This document presents sampling data resulting from the April 30, 1996 sampling of SST 241-BX-110. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media

  8. Application of the Taguchi analytical method for optimization of effective parameters of the chemical vapor deposition process controlling the production of nanotubes/nanobeads.

    Science.gov (United States)

    Sharon, Maheshwar; Apte, P R; Purandare, S C; Zacharia, Renju

    2005-02-01

    Seven variable parameters of the chemical vapor deposition system have been optimized with the help of the Taguchi analytical method for getting a desired product, e.g., carbon nanotubes or carbon nanobeads. It is observed that almost all selected parameters influence the growth of carbon nanotubes. However, among them, the nature of precursor (racemic, R or Technical grade camphor) and the carrier gas (hydrogen, argon and mixture of argon/hydrogen) seem to be more important parameters affecting the growth of carbon nanotubes. Whereas, for the growth of nanobeads, out of seven parameters, only two, i.e., catalyst (powder of iron, cobalt, and nickel) and temperature (1023 K, 1123 K, and 1273 K), are the most influential parameters. Systematic defects or islands on the substrate surface enhance nucleation of novel carbon materials. Quantitative contributions of process parameters as well as optimum factor levels are obtained by performing analysis of variance (ANOVA) and analysis of mean (ANOM), respectively.

  9. Headspace vapor characterization of Hanford waste Tank 241-C-201: Results from samples collected on 06/19/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-201 (Tank C-201) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, on sample volumes provided by WHC. A summary, of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. Detailed descriptions of the analytical results appear in the appendices

  10. Analytical performance evaluation of a high-volume hematology laboratory utilizing sigma metrics as standard of excellence.

    Science.gov (United States)

    Shaikh, M S; Moiz, B

    2016-04-01

    Around two-thirds of important clinical decisions about the management of patients are based on laboratory test results. Clinical laboratories are required to adopt quality control (QC) measures to ensure provision of accurate and precise results. Six sigma is a statistical tool, which provides opportunity to assess performance at the highest level of excellence. The purpose of this study was to assess performance of our hematological parameters on sigma scale in order to identify gaps and hence areas of improvement in patient care. Twelve analytes included in the study were hemoglobin (Hb), hematocrit (Hct), red blood cell count (RBC), mean corpuscular volume (MCV), red cell distribution width (RDW), total leukocyte count (TLC) with percentages of neutrophils (Neutr%) and lymphocytes (Lymph %), platelet count (Plt), mean platelet volume (MPV), prothrombin time (PT), and fibrinogen (Fbg). Internal quality control data and external quality assurance survey results were utilized for the calculation of sigma metrics for each analyte. Acceptable sigma value of ≥3 was obtained for the majority of the analytes included in the analysis. MCV, Plt, and Fbg achieved value of performed poorly on both level 1 and 2 controls with sigma value of <3. Despite acceptable conventional QC tools, application of sigma metrics can identify analytical deficits and hence prospects for the improvement in clinical laboratories. © 2016 John Wiley & Sons Ltd.

  11. Appendices to report on DOE analytical laboratory capacity available to meet EM environmental sampling and analysis needs for FY 93-99

    International Nuclear Information System (INIS)

    1994-01-01

    The DOE Analytical Laboratory Capacity Study was conducted to give EM-263 current information about existing and future analytical capacities and capabilities of site laboratories within the DOE Complex. Each DOE site may have one or more analytical laboratories in operation. These facilities were established to support site missions such as production, research and development, and personnel and environmental monitoring. With changing site missions and the DOE directives for environmental monitoring and cleanup, these laboratories are either devoting or planning to devote resources to support EM activities. The DOE site laboratories represent a considerable amount of capital investment and analytical capability, capacity, and expertise that can be applied to support the EM mission. They not only provide cost-effective high-volume analytical laboratory services, but are also highly recognized analytical research and development centers. Several sites have already transferred their analytical capability from traditional production support to environmental monitoring and waste management support. A model was developed to determine the analytical capacity of all laboratories in the DOE Complex. The model was applied at nearly all the major laboratories and the results collected from these studies are summarized in this report

  12. Feasibility study for automating the analytical laboratories of the Chemistry Branch, National Enforcement Investigation Center, Environmental Protection Agency

    International Nuclear Information System (INIS)

    Morris, W.F.; Fisher, E.R.; Barton, G.W. Jr.

    1978-01-01

    The feasibility of automating the analytical laboratories of the Chemistry Branch of the National Enforcement Investigation Center, Environmental Protection Agency, Denver, Colorado, is explored. The goals of the chemistry laboratory are defined, and instrumental methods and other tasks to be automated are described. Five optional automation systems are proposed to meet these goals and the options are evaluated in terms of cost effectiveness and other specified criteria. The instruments to be automated include (1) a Perkin-Elmer AA spectrophotometer 403, (2) Perkin-Elmer AA spectrophotometer 306, (3) Technicon AutoAnalyzer II, (4) Mettler electronic balance, and a (5) Jarrell-Ash ICP emission spectrometer

  13. Comparison of passive soil vapor survey techniques at a Tijeras Arroyo site, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Eberle, C.S.; Wade, W.M.; Tharp, T.; Brinkman, J.

    1996-01-01

    Soil vapor surveys were performed to characterize the approximate location of soil contaminants at a hazardous waste site. The samplers were from two separate companies and a comparison was made between the results of the two techniques. These results will be used to design further investigations at the site

  14. Analytic Validation of Immunohistochemistry Assays: New Benchmark Data From a Survey of 1085 Laboratories.

    Science.gov (United States)

    Stuart, Lauren N; Volmar, Keith E; Nowak, Jan A; Fatheree, Lisa A; Souers, Rhona J; Fitzgibbons, Patrick L; Goldsmith, Jeffrey D; Astles, J Rex; Nakhleh, Raouf E

    2017-09-01

    - A cooperative agreement between the College of American Pathologists (CAP) and the United States Centers for Disease Control and Prevention was undertaken to measure laboratories' awareness and implementation of an evidence-based laboratory practice guideline (LPG) on immunohistochemical (IHC) validation practices published in 2014. - To establish new benchmark data on IHC laboratory practices. - A 2015 survey on IHC assay validation practices was sent to laboratories subscribed to specific CAP proficiency testing programs and to additional nonsubscribing laboratories that perform IHC testing. Specific questions were designed to capture laboratory practices not addressed in a 2010 survey. - The analysis was based on responses from 1085 laboratories that perform IHC staining. Ninety-six percent (809 of 844) always documented validation of IHC assays. Sixty percent (648 of 1078) had separate procedures for predictive and nonpredictive markers, 42.7% (220 of 515) had procedures for laboratory-developed tests, 50% (349 of 697) had procedures for testing cytologic specimens, and 46.2% (363 of 785) had procedures for testing decalcified specimens. Minimum case numbers were specified by 85.9% (720 of 838) of laboratories for nonpredictive markers and 76% (584 of 768) for predictive markers. Median concordance requirements were 95% for both types. For initial validation, 75.4% (538 of 714) of laboratories adopted the 20-case minimum for nonpredictive markers and 45.9% (266 of 579) adopted the 40-case minimum for predictive markers as outlined in the 2014 LPG. The most common method for validation was correlation with morphology and expected results. Laboratories also reported which assay changes necessitated revalidation and their minimum case requirements. - Benchmark data on current IHC validation practices and procedures may help laboratories understand the issues and influence further refinement of LPG recommendations.

  15. [The analytical reliability of clinical laboratory information and role of the standards in its support].

    Science.gov (United States)

    Men'shikov, V V

    2012-12-01

    The article deals with the factors impacting the reliability of clinical laboratory information. The differences of qualities of laboratory analysis tools produced by various manufacturers are discussed. These characteristics are the causes of discrepancy of the results of laboratory analyses of the same analite. The role of the reference system in supporting the comparability of laboratory analysis results is demonstrated. The project of national standard is presented to regulate the requirements to standards and calibrators for analysis of qualitative and non-metrical characteristics of components of biomaterials.

  16. Business analytics of specialized medical biochemistry laboratory using profit and loss acount

    Directory of Open Access Journals (Sweden)

    Vikica Buljanović

    2011-07-01

    Full Text Available Introduction. By measuring the actual effectiveness of a medical biochemistry laboratory’s business operations, we can determine the accounting measure of laboratory’s profitability, where operating expenses of the laboratory are covered by the income generated from the services. A laboratory’s financial report can be based on a profit and loss account, which shows whether or not a business entity, i.e., the laboratory, is making a profit during a particular business period. Methods. Profitability of the Specialized Medical Biochemical Laboratory (Laboratory of the General County Hospital in Našice, Croatia, was determined using the profit and loss account for 2007. Business success was expressed using the accounting measures of marginal contribution, gross income, and operating income, which could show whether or not the laboratory was operating profitably. This procedure allowed us to identify indicators of successful or unsuccessful business operations of the Laboratory. Results. According to the profit and loss account, the operating profit was 719,926 HRK, i.e., the operating margin was 11.7%, indicating that the Laboratory was operating positively. After subtracting all operating expenses per 100 income units, 11.7 units profit remained from the Laboratory’s core business. Conclusion. The Specialized Medical Biochemical Laboratory of the General County Hospital in Našice generated income, i.e., it operated at a profit. The purpose of profit and loss account was to determine the Laboratory operations that had impact on its business effectiveness and could increase the actual profitability. If the laboratory operates at a loss, and no activities are undertaken that would reverse the business toward positive, the analysis may provide information on the cost for the society as a whole of the studied laboratory within the existing healthcare system.

  17. Effect of Virtual Analytical Chemistry Laboratory on Enhancing Student Research Skills and Practices

    Science.gov (United States)

    Bortnik, Boris; Stozhko, Natalia; Pervukhina, Irina; Tchernysheva, Albina; Belysheva, Galina

    2017-01-01

    This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory…

  18. Evaluation of analytical errors in a clinical chemistry laboratory: a 3 ...

    African Journals Online (AJOL)

    Background: Proficient laboratory service is the cornerstone of modern healthcare systems and has an impact on over 70% of medical decisions on admission, discharge, and medications. In recent years, there is an increasing awareness of the importance of errors in laboratory practice and their possible negative impact ...

  19. Clinical evaluation of analytical variations in serum creatinine measurements : why laboratories should abandon Jaffe techniques

    NARCIS (Netherlands)

    Drion, Iefke; Cobbaert, Christa; Groenier, Klaas H.; Weykamp, Cas; Bilo, Henk J. G.; Wetzels, Jack F. M.; Kleefstra, Nanne

    2012-01-01

    Background: Non-equivalence in serum creatinine (SCr) measurements across Dutch laboratories and the consequences hereof on chronic kidney disease (CKD) staging were examined. Methods: National data from the Dutch annual external quality organization of 2009 were used. 144 participating laboratories

  20. Evaluation of the health effects of occupational exposure of analytic laboratory workers processing illicit drug investigation files.

    Science.gov (United States)

    Bentur, Y; Bentur, L; Rotenberg, M; Tepperberg, M; Leiba, R; Wolf, E Udi

    2013-05-01

    The Analytic Laboratory of Israel Police processes illicit drug files. In recent years, workers of this laboratory have complained of health problems. Limited information exists on the effect of occupational exposure to illicit drugs; biomonitoring was never done. To assess health effects and systemic absorption of illicit drugs in workers of the Analytic Laboratory occupationally exposed to illicit drugs. A prospective cohort study using health and occupational questionnaires, clinical assessments, and monitoring of urinary excretion of illicit drugs was conducted. The study included three blocks of one week each. At each week workers were assessed at the beginning (baseline), and the assessments were repeated at the end of the three working days. Urine specimens were analyzed for illicit drugs in an independent laboratory. Demographic, clinical, occupational, and laboratory data were subjected to descriptive analysis, and paired Student's t-test, chi-square analysis, and repeated measures model. Twenty-seven workers (age, 39.2 ± 8.3 years; 77.8% females) were included, yielding 122 paired samples. The following parameters were reduced at the end of shift compared with baseline: diastolic blood pressure (71.2 ± 11.2 and 77.2 ± 13.6 mmHg, respectively, p health complaints included headache, fatigue, and dry eyes. No illicit drug was detected in the urine specimens. It is suggested that the health concerns of the laboratory workers were not related to the absorption of illicit drugs; environmental conditions (e.g. inadequate ventilation and respirable dust) can contribute to these concerns.

  1. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    International Nuclear Information System (INIS)

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here)

  2. Analytical and pre-analytical performance characteristics of a novel cartridge-type blood gas analyzer for point-of-care and laboratory testing.

    Science.gov (United States)

    Oyaert, Matthijs; Van Maerken, Tom; Bridts, Silke; Van Loon, Silvi; Laverge, Heleen; Stove, Veronique

    2018-03-01

    Point-of-care blood gas test results may benefit therapeutic decision making by their immediate impact on patient care. We evaluated the (pre-)analytical performance of a novel cartridge-type blood gas analyzer, the GEM Premier 5000 (Werfen), for the determination of pH, partial carbon dioxide pressure (pCO 2 ), partial oxygen pressure (pO 2 ), sodium (Na + ), potassium (K + ), chloride (Cl - ), ionized calcium ( i Ca 2+ ), glucose, lactate, and total hemoglobin (tHb). Total imprecision was estimated according to the CLSI EP5-A2 protocol. The estimated total error was calculated based on the mean of the range claimed by the manufacturer. Based on the CLSI EP9-A2 evaluation protocol, a method comparison with the Siemens RapidPoint 500 and Abbott i-STAT CG8+ was performed. Obtained data were compared against preset quality specifications. Interference of potential pre-analytical confounders on co-oximetry and electrolyte concentrations were studied. The analytical performance was acceptable for all parameters tested. Method comparison demonstrated good agreement to the RapidPoint 500 and i-STAT CG8+, except for some parameters (RapidPoint 500: pCO 2 , K + , lactate and tHb; i-STAT CG8+: pO 2 , Na + , i Ca 2+ and tHb) for which significant differences between analyzers were recorded. No interference of lipemia or methylene blue on CO-oximetry results was found. On the contrary, significant interference for benzalkonium and hemolysis on electrolyte measurements were found, for which the user is notified by an interferent specific flag. Identification of sample errors from pre-analytical sources, such as interferences and automatic corrective actions, along with the analytical performance, ease of use and low maintenance time of the instrument, makes the evaluated instrument a suitable blood gas analyzer for both POCT and laboratory use. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Assessment of Analytic Morphograph CF-1 manufactured by Kent Laboratory Services Ltd

    International Nuclear Information System (INIS)

    1983-10-01

    An addendum is presented covering the assessment of an Analytic Morphograph CF-1 which incorporates the design modifications which arose out of the initial assessment in the main DHSS report. The assessment, made at Booth Hall Children's Hospital, evaluated modifications including X-ray field size adjustment, improved patient supports, operator's protective screen, film screens and grid and film marking. (U.K.)

  4. International Federation of Clinical Chemistry. Use of artificial intelligence in analytical systems for the clinical laboratory. IFCC Committee on Analytical Systems.

    Science.gov (United States)

    Place, J F; Truchaud, A; Ozawa, K; Pardue, H; Schnipelsky, P

    1994-12-16

    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI) both as expert systems and as neural networks. This paper considers the role of software in system operation, control and automation and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel-processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system. In the second part of this paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories. It is concluded that AI constitutes a collective form of intellectual property and that there is a need for better documentation, evaluation and regulation of the systems already being used widely in clinical laboratories.

  5. Use of the Multi-Agency Radiological Laboratory Analytical Protocols Manual (MARLAP) for site cleanup activities

    International Nuclear Information System (INIS)

    Griggs, J.

    1999-01-01

    MARLAP is being developed as a multi-agency guidance manual for project managers and radioanalytical laboratories. The document uses a performance based approach and will provide guidance and a framework to assure that laboratory radioanalytical data meets the specific project or program needs and requirements. MARLAP supports a wide range of data collection activities including site characterization and compliance demonstration activities. Current participants include: US Environmental Protection Agency (EPA), US Department of Energy (DOE), US Nuclear Regulatory Commission (NRC), US Department of Defense (DoD), US National Institutes of Standards and Technology (NIST), US Geologic Survey (USGS), US Food and Drug Administration (FDA), Commonwealth of Kentucky, and the State of California. MARLAP is the radioanalytical laboratory counterpart to the Multi-Agency Radiological Survey and Site Investigation Manual (MARSSIM). MARLAP is currently in a preliminary draft stage. (author)

  6. Assessment of Analytic Morphograph CF-1 manufactured by Kent Laboratory Services Ltd

    International Nuclear Information System (INIS)

    1982-10-01

    DHSS assessment reports, prepared by St Lawrence Hospital, Chepstow and the Hospital for Sick Children, Great Ormond Street are presented for the Analytic Morphograph CF-1. This machine converts the central principle of morphanalysis - the Fixed Relations Theory - into clinical practice by producing radiographs and photographs of the human head which are universally related in three dimensions. Both technical and clinical aspects of the equipment's performance are examined. (U.K.)

  7. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS)

    International Nuclear Information System (INIS)

    Guilhen, Sabine Neusatz

    2009-01-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L -1 with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L -1 . The obtained results fall into a

  8. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  9. Incorporating Course-Based Undergraduate Research Experiences into Analytical Chemistry Laboratory Curricula

    Science.gov (United States)

    Kerr, Melissa A.; Yan, Fei

    2016-01-01

    A continuous effort within an undergraduate university setting is to improve students' learning outcomes and thus improve students' attitudes about a particular field of study. This is undoubtedly relevant within a chemistry laboratory. This paper reports the results of an effort to introduce a problem-based learning strategy into the analytical…

  10. Determination of Calcium in Dietary Supplements: Statistical Comparison of Methods in the Analytical Laboratory

    Science.gov (United States)

    Garvey, Sarah L.; Shahmohammadi, Golbon; McLain, Derek R.; Dietz, Mark L.

    2015-01-01

    A laboratory experiment is described in which students compare two methods for the determination of the calcium content of commercial dietary supplement tablets. In a two-week sequence, the sample tablets are first analyzed via complexometric titration with ethylenediaminetetraacetic acid and then, following ion exchange of the calcium ion present…

  11. Pre-Analytical Components of Risk in Four Branches of Clinical Laboratory in Romania--Prospective Study.

    Science.gov (United States)

    David, Remona E; Dobreanu, Minodora

    2016-01-01

    Development of quality measurement principles is a strategic point for each clinical laboratory. Preexamination process is the most critical and the most difficult to be managed. The aim of this study is to identify, quantify, and monitor the nonconformities of the pre-analytical process using quality indicators that can affect the patient's health safety in four different locations of a Romanian private clinical laboratory. The study group consisted of all the analysis requests received by the departments of biochemistry, hematology, and coagulation from January through March 2015. In order to collect the pre-analytical nonconformities, we created a "Risk Budget", using the entries from the "Evidence notebook--non-conform samples" from the above mentioned departments. The laboratory established the quality indicators by means of the risk management technique in order to identify and control the sources of errors, FMEA (Failure Modes and Effects Analyses), which had been implemented and monitored for its purposes and special needs. For the assessment of the control level over the processes, the results were transformed on the Six Sigma scale, using the Westgard calculation method and being obtained in this way the frequency with which an error may occur. (https://www.westgard. com/six-sigma-calculators.htm). The obtained results prove that the quantification and monitoring of the indicators can be a control instrument for the pre-analytic activities. The calculation of the Six Sigma value adds extra information to the study because it allows the detection of the processes which need improvement (Sigma value higher than 4 represents a well controlled process). The highest rates were observed for the hemolyzed and the lipemic samples, in the department of biochemistry and hemolyzed, insufficient sample volume, or clotted samples for the department of hematology and coagulation. Significant statistical differences between laboratories participating in the study have

  12. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  13. Analytic laboratory performance of a point of care urine culture kit for diagnosis and antibiotic susceptibility testing.

    Science.gov (United States)

    Bongard, E; Frimodt-Møller, N; Gal, M; Wootton, M; Howe, R; Francis, N; Goossens, H; Butler, C C

    2015-10-01

    Currently available point-of-care (POC) diagnostic tests for managing urinary tract infections (UTIs) in general practice are limited by poor performance characteristics, and laboratory culture generally provides results only after a few days. This laboratory evaluation compared the analytic performance of the POC UK Flexicult(™) (Statens Serum Institut) (SSI) urinary kit for quantification, identification and antibiotic susceptibility testing and routine UK National Health Service (NHS) urine processing to an advanced urine culture method. Two hundred urine samples routinely submitted to the Public Health Wales Microbiology Laboratory were divided and: (1) analysed by routine NHS microbiological tests as per local laboratory standard operating procedures, (2) inoculated onto the UK Flexicult(™) SSI urinary kit and (3) spiral plated onto Colorex Orientation UTI medium (E&O Laboratories Ltd). The results were evaluated between the NHS and Flexicult(™ )methods, and discordant results were compared to the spiral plating method. The UK Flexicult(™) SSI urinary kit was compared to routine NHS culture for identification of a pure or predominant uropathogen at ≥ 10(5) cfu/mL, with a positive discordancy rate of 13.5% and a negative discordancy rate of 3%. The sensitivity and specificity were 86.7% [95% confidence interval (CI) 73.8-93.7] and 82.6% (95% CI 75.8-87.7), respectively. The UK Flexicult(™) SSI urinary kit was comparable to routine NHS urine processing in identifying microbiologically positive UTIs in this laboratory evaluation. However, the number of false-positive samples could lead to over-prescribing of antibiotics in clinical practice. The Flexicult(™) SSI kit could be useful as a POC test for UTIs in primary care but further pragmatic evaluations are necessary.

  14. [The Hypo Ionic Protein Profile (HIPP). Laboratory analytical evaluation in Complementary and Alternative Medicine].

    Science.gov (United States)

    Berth, M; Stalpaert, M; Bosmans, E

    2008-01-01

    The hypo ionic protein profile (HIPP) is a test based on the reticulo-endothelial index of Sandor. We evaluated the analytical performance of this test by comparing the obtained data in the HIPP to the concentration of some frequently measured specific serum proteins. The alfa euglobulin zone mainly comprises of ceruloplasmin, complement factor 3, apolipoprotein B and haptoglobin. The beta and gamma euglobulin zone reflect the concentration of the immunoglobulins. Since these proteins cannot be distinguished from each other, the diagnostic value of the HIPP will be limited. The HIPP is an outdated and aspecific assay for protein measurements.

  15. Tank 103, 219-S Facility at 222-S Laboratory, analytical results for the final report

    International Nuclear Information System (INIS)

    Fuller, R.K.

    1998-01-01

    This is the final report for the polychlorinated biphenyls analysis of Tank-103 (TK-103) in the 219-S Facility at 222-S Laboratory. Twenty 1-liter bottles (Sample numbers S98SO00074 through S98SO00093) were received from TK-103 during two sampling events, on May 5 and May 7, 1998. The samples were centrifuged to separate the solids and liquids. The centrifuged sludge was analyzed for PCBs as Aroclor mixtures. The results are discussed on page 6. The sample breakdown diagram (Page 114) provides a cross-reference of sample identification of the bulk samples to the laboratory identification number for the solids. The request for sample analysis (RSA) form is provided as Page 117. The raw data is presented on Page 43. Sample Description, Handling, and Preparation Twenty samples were received in the laboratory in 1-Liter bottles. The first 8 samples were received on May 5, 1998. There were insufficient solids to perform the requested PCB analysis and 12 additional samples were collected and received on May 7, 1998. Breakdown and sub sampling was performed on May 8, 1998. Sample number S98SO00084 was lost due to a broken bottle. Nineteen samples were centrifuged and the solids were collected in 8 centrifuge cones. After the last sample was processed, the solids were consolidated into 2 centrifuge cones. The first cone contained 9.7 grams of solid and 13.0 grams was collected in the second cone. The wet sludge from the first centrifuge cone was submitted to the laboratory for PCB analysis (sample number S98SO00102). The other sample portion (S98SO00103) was retained for possible additional analyses

  16. Application of Statistics to Evaluate Iranian Analytical Laboratories Proficiency: Case of Aflatoxins in Pistachio

    Directory of Open Access Journals (Sweden)

    Leila Fotouhi

    2015-12-01

    Full Text Available The aim of this study was to evaluate the utility of a proficiency testing program among limited number of local laboratories as an alternative to the IUPAC/CITAC guide on proficiency testing with a limited number of participants, specially where international schemes are not accessible. As a sample scheme we planned to determine aflatoxins (B1, G1, B2, G2, total in Iranian pistachio matrix. A part of naturally contaminated pistachio sample was tested for sufficient homogeneity by a competent laboratory and then homogenized sub-samples were distributed among participants all across the country. The median of participants’ results was selected as assigned value. Student t-test was applied to show there is no significant difference between assigned and mean values of homogeneity test results obtained by the competent laboratory. Calculated z-scores showed that 6 out of 8 results in aflatoxin B1, 7 out of 8 results in aflatoxin B2, 5 out of 8 results in aflatoxin G1, 7 out of 8 results in aflatoxin G2 and 6 out of 9 results in aflatoxin total were in satisfactory range. Together our studies indicate that the approach described here is highly cost efficient and applicable for quality assurance of test results when there is no access to international proficiency testing providers.

  17. The Efficacy of Problem-based Learning in an Analytical Laboratory Course for Pre-service Chemistry Teachers

    Science.gov (United States)

    Yoon, Heojeong; Woo, Ae Ja; Treagust, David; Chandrasegaran, AL

    2014-01-01

    The efficacy of problem-based learning (PBL) in an analytical chemistry laboratory course was studied using a programme that was designed and implemented with 20 students in a treatment group over 10 weeks. Data from 26 students in a traditional analytical chemistry laboratory course were used for comparison. Differences in the creative thinking ability of students in both the treatment and control groups were evaluated before and at the end of the implementation of the programme, using the Torrance Tests of Creative Thinking. In addition, changes in students' self-regulated learning skills using the Self-Regulated Learning Interview Schedule (SRLIS) and their self-evaluation proficiency were evaluated. Analysis of covariance showed that the creative thinking ability of the treatment group had improved statistically significantly after the PBL course (p effect on creative thinking ability. The SRLIS test showed that students in the treatment group used self-regulated learning strategies more frequently than students in the comparison group. According to the results of the self-evaluation, students became more positive and confident in problem-solving and group work as the semester progressed. Overall, PBL was shown to be an effective pedagogical instructional strategy for enhancing chemistry students' creative thinking ability, self-regulated learning skills and self-evaluation.

  18. Towards a green analytical laboratory: microextraction techniques as a useful tool for the monitoring of polluted soils

    Science.gov (United States)

    Lopez-Garcia, Ignacio; Viñas, Pilar; Campillo, Natalia; Hernandez Cordoba, Manuel; Perez Sirvent, Carmen

    2016-04-01

    Microextraction techniques are a valuable tool at the analytical laboratory since they allow sensitive measurements of pollutants to be carried out by means of easily available instrumentation. There is a large number of such procedures involving miniaturized liquid-liquid or liquid-solid extractions with the common denominator of using very low amounts (only a few microliters) or even none of organic solvents. Since minimal amounts of reagents are involved, and the generation of residues is consequently minimized, the approach falls within the concept of Green Analytical Chemistry. This general methodology is useful both for inorganic and organic pollutants. Thus, low amounts of metallic ions can be measured without the need of using ICP-MS since this instrument can be replaced by a simple AAS spectrometer which is commonly present in any laboratory and involves low acquisition and maintenance costs. When dealing with organic pollutants, the microextracts obtained can be introduced into liquid or gas chromatographs equipped with common detectors and there is no need for the most sophisticated and expensive mass spectrometers. This communication reports an overview of the advantages of such a methodology, and gives examples for the determination of some particular contaminants in soil and water samples The authors are grateful to the Comunidad Autonóma de la Región de Murcia , Spain (Fundación Séneca, 19888/GERM/15) for financial support

  19. Headspace vapor characterization of Hanford waste tank 241-U-108: Results from samples collected on 8/29/95

    International Nuclear Information System (INIS)

    Thomas, B.L.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.; Pool, K.H.; Olsten, K.B.; Fruchter, J.S.; Ligotke, M.W.

    1996-05-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-108 (Tank U-108) at the Hanford Site in Washington State. The results described in the report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC

  20. Analytical validation of a reference laboratory ELISA for the detection of feline leukemia virus p27 antigen.

    Science.gov (United States)

    Buch, Jesse S; Clark, Genevieve H; Cahill, Roberta; Thatcher, Brendon; Smith, Peter; Chandrashekar, Ramaswamy; Leutenegger, Christian M; O'Connor, Thomas P; Beall, Melissa J

    2017-09-01

    Feline leukemia virus (FeLV) is an oncogenic retrovirus of cats. Immunoassays for the p27 core protein of FeLV aid in the detection of FeLV infections. Commercial microtiter-plate ELISAs have rapid protocols and visual result interpretation, limiting their usefulness in high-throughput situations. The purpose of our study was to validate the PetChek FeLV 15 ELISA, which is designed for the reference laboratory, and incorporates sequential, orthogonal screening and confirmatory protocols. A cutoff for the screening assay was established with 100% accuracy using 309 feline samples (244 negative, 65 positive) defined by the combined results of FeLV PCR and an independent reference p27 antigen ELISA. Precision of the screening assay was measured using a panel of 3 samples (negative, low-positive, and high-positive). The intra-assay coefficient of variation (CV) was 3.9-7.9%; the inter-assay CV was 6.0-8.6%. For the confirmatory assay, the intra-assay CV was 3.0-4.7%, and the inter-assay CV was 7.4-9.7%. The analytical sensitivity for p27 antigen was 3.7 ng/mL for inactivated whole FeLV and 1.2 ng/mL for purified recombinant FeLV p27. Analytical specificity was demonstrated based on the absence of cross-reactivity to related retroviruses. No interference was observed for samples containing added bilirubin, hemoglobin, or lipids. Based on these results, the new high-throughput design of the PetChek FeLV 15 ELISA makes it suitable for use in reference laboratory settings and maintains overall analytical performance.

  1. Research and learning opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.

    1994-01-01

    Although considered by many to be a mature science, neutron activation analysis (NAA) continues to be a valuable tool in trace-element research applications. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and material science to name a few. Each stage of NAA provides opportunities to share numerous practical and fundamental scientific principles with high school teachers and students. This paper will present an overview of these opportunities and give a specific example from collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot

  2. Doubling immunochemistry laboratory testing efficiency with the cobas e 801 module while maintaining consistency in analytical performance.

    Science.gov (United States)

    Findeisen, P; Zahn, I; Fiedler, G M; Leichtle, A B; Wang, S; Soria, G; Johnson, P; Henzell, J; Hegel, J K; Bendavid, C; Collet, N; McGovern, M; Klopprogge, K

    2018-06-04

    The new immunochemistry cobas e 801 module (Roche Diagnostics) was developed to meet increasing demands on routine laboratories to further improve testing efficiency, while maintaining high quality and reliable data. During a non-interventional multicenter evaluation study, the overall performance, functionality and reliability of the new module was investigated under routine-like conditions. It was tested as a dedicated immunochemistry system at four sites and as a consolidator combined with clinical chemistry at three sites. We report on testing efficiency and analytical performance of the new module. Evaluation of sample workloads with site-specific routine request patterns demonstrated increased speed and almost doubled throughput (maximal 300 tests per h), thus revealing that one cobas e 801 module can replace two cobas e 602 modules while saving up to 44% floor space. Result stability was demonstrated by QC analysis per assay throughout the study. Precision testing over 21 days yielded excellent results within and between labs, and, method comparison performed versus the cobas e 602 module routine results showed high consistency of results for all assays under study. In a practicability assessment related to performance and handling, 99% of graded features met (44%) or even exceeded (55%) laboratory expectations, with enhanced reagent management and loading during operation being highlighted. By nearly doubling immunochemistry testing efficiency on the same footprint as a cobas e 602 module, the new module has a great potential to further consolidate and enhance laboratory testing while maintaining high quality analytical performance with Roche platforms. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. A high intensity Stern-Gerlach polarized hydrogen source for the Munich MP-Tandem laboratory using ECR ionization and charge exchange in cesium vapor

    International Nuclear Information System (INIS)

    Hertenberger, R.; Eisermann, Y.; Metz, A.; Schiemenz, P.; Graw, G.

    2001-01-01

    The 14 year old Lamb-Shift hydrogen source of the Munich Tandem laboratory is presently replaced by a newly developed Stern-Gerlach type atomic beam source (ABS) with electron-cyclotron-resonance (ECR) ionization and subsequent double charge exchange in a supersonic cesium vapor jet target. The atomic beam source provides an intensity of 6.4*10 16 atoms/sec of polarized hydrogen and of about 5*10 16 atoms/sec of polarized deuterium. Beam intensities larger than 100 μA were observed for positive H-vector + and D-vector + ion beams after ECR ionization and intensities larger than 10 μA for negative D-vector - ion beams in three magnetic substates

  4. A comparison of the costs of treating wastes from a radio analytical laboratory

    International Nuclear Information System (INIS)

    Moore, R.

    1996-01-01

    The Radiological and Environmental Sciences Laboratory (RESL) is a government-owned, government-operated facility at the Idaho National Engineering Laboratory (INEL). RESL's traditional strengths are in precise radionuclide analysis and dosimetry measurements. RESL generates small quantities of various types of waste. This study identified potential waste management options for a solvent extraction process waste stream and the cost differences resulting from either process changes, improved technology usage, or material substitutions or changes at RESL. Where possible, this report identifies changes that have resulted or may result in waste reduction and cost savings. DOE P2 directs the lab to review processes, evaluate waste practices, and estimate potential reductions in waste volumes and waste management costs. This study focused on selected processes, but the processes are illustrative of potential waste volume reductions and cost minimizations that may be achieved elsewhere at the INEL and throughout the DOE complex. In analyzing a waste disposal process, the authors allocated component costs to functional categories. These categories included the following: (1) operational costs, included waste generation and collection into a storage area; (2) administrative costs, including worker training, routine inspections, and reporting; and (3) disposal costs, including preparing the waste for shipment and disposing of it

  5. A real-time data acquisition and processing system for the analytical laboratory automation of a HTR spent fuel reprocessing facility

    International Nuclear Information System (INIS)

    Watzlawik, K.H.

    1979-12-01

    A real-time data acquisition and processing system for the analytical laboratory of an experimental HTR spent fuel reprocessing facility is presented. The on-line open-loop system combines in-line and off-line analytical measurement procedures including data acquisition and evaluation as well as analytical laboratory organisation under the control of a computer-supported laboratory automation system. In-line measurements are performed for density, volume and temperature in process tanks and registration of samples for off-line measurements. Off-line computer-coupled experiments are potentiometric titration, gas chromatography and X-ray fluorescence analysis. Organisational sections like sample registration, magazining, distribution and identification, multiple data assignment and especially calibrations of analytical devices are performed by the data processing system. (orig.) [de

  6. Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges.

    Science.gov (United States)

    Pfeiffer, Christine M; Looker, Anne C

    2017-12-01

    Biochemical assessment of iron status relies on serum-based indicators, such as serum ferritin (SF), transferrin saturation, and soluble transferrin receptor (sTfR), as well as erythrocyte protoporphyrin. These indicators present challenges for clinical practice and national nutrition surveys, and often iron status interpretation is based on the combination of several indicators. The diagnosis of iron deficiency (ID) through SF concentration, the most commonly used indicator, is complicated by concomitant inflammation. sTfR concentration is an indicator of functional ID that is not an acute-phase reactant, but challenges in its interpretation arise because of the lack of assay standardization, common reference ranges, and common cutoffs. It is unclear which indicators are best suited to assess excess iron status. The value of hepcidin, non-transferrin-bound iron, and reticulocyte indexes is being explored in research settings. Serum-based indicators are generally measured on fully automated clinical analyzers available in most hospitals. Although international reference materials have been available for years, the standardization of immunoassays is complicated by the heterogeneity of antibodies used and the absence of physicochemical reference methods to establish "true" concentrations. From 1988 to 2006, the assessment of iron status in NHANES was based on the multi-indicator ferritin model. However, the model did not indicate the severity of ID and produced categorical estimates. More recently, iron status assessment in NHANES has used the total body iron stores (TBI) model, in which the log ratio of sTfR to SF is assessed. Together, sTfR and SF concentrations cover the full range of iron status. The TBI model better predicts the absence of bone marrow iron than SF concentration alone, and TBI can be analyzed as a continuous variable. Additional consideration of methodologies, interpretation of indicators, and analytic standardization is important for further

  7. A comparison of analytical laboratory and optical in situ methods for the measurement of nitrate in north Florida water bodies

    Science.gov (United States)

    Rozin, A. G.; Clark, M. W.

    2013-12-01

    Assessing the impact of nutrient concentrations on aquatic ecosystems requires an in depth understanding of dynamic biogeochemical cycles that are often a challenge to monitor at the high spatial and temporal resolution necessary to understand these complex processes. Traditional sampling approaches involving discrete samples and laboratory analyses can be constrained by analytical costs, field time, and logistical details that can fail to accurately capture both spatial and temporal changes. Optical in situ instruments may provide the opportunity to continuously monitor a variety of water quality parameters at a high spatial or temporal resolution. This work explores the suitability of a Submersible Ultraviolet Nitrate Analyzer (SUNA), produced by Satlantic, to accurately assess in situ nitrate concentration in several freshwater systems in north Florida. The SUNA was deployed to measure nitrate at five different water bodies selected to represent a range of watershed land uses and water chemistry in the region. In situ nitrate measurements were compared to standard laboratory methods to evaluate the effectiveness of the SUNA's operation. Other optical sensors were used to measure the spectral properties of absorbance, fluorescence, and turbidity (scatter) in the same Florida water bodies. Data from these additional sensors were collected to quantify possible interferences that may affect SUNA performance. In addition, data from the SUNA and other sensors are being used to infer information about the quality and quantity of aqueous constituents besides nitrate. A better understanding of the capabilities and possible limitations of these relatively new analytical instruments will allow researchers to more effectively investigate biogeochemical processes and nutrient transport and enhance decision-making to protect our water bodies.

  8. Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    2016-08-01

    An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, continuous vaporing of nitric acid and water leads to increase Ru volatilization in liquid waste temperature over 120degC at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor flowing from waste tank are expected to condense at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out for the proposed model being feasible to formulate the activity coefficients and to review the thermodynamic properties of nitric acid solution. Practicability of the proposed analytical model has been shown successfully through the feasibility study with simulation of an experiment result. (author)

  9. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-TY-102: Results from samples collected on 04/12/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-TY-102 (Tank TY-102) at the Hanford Site in Washington State. The results described in this report were obtained to'characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes, and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  10. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Tank 241-B-105: Results from samples collected on 07/30/96

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-105 (Tank B-105) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  11. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-S-103: Results from samples collected on 06/12/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-103 (Tank S-103) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  12. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford Waste Tank 241-C-204: Results from samples collected on 07/02/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-C-204 (Tank C-204) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in Table S.1. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in Table S.1. Detailed descriptions of the analytical results appear in the appendices

  13. Stability of purgeable VOCs in water samples during pre-analytical holding. Part 2: Analyses by an EPA regional laboratory

    Energy Technology Data Exchange (ETDEWEB)

    West, O.R.; Bayne, C.K.; Siegrist, R.L.; Holden, W.L. [Oak Ridge National Lab., TN (United States); Bottrell, D.W. [Dept. of Energy, Germantown, MD (United States)

    1997-03-01

    This study was undertaken to examine the hypothesis that prevalent and priority purgeable VOCs in properly preserved water samples are stable for at least 28 days. For the purposes of this study, VOCs were considered functionally stable if concentrations measured after 28 days did not change by more than 10% from the initial values. An extensive stability experiment was performed on freshly-collected surface water spiked with a suite of 44 purgeable VOCs. The spiked water was then distributed into multiple 40-mL VOC vials with 0.010-in Teflon-lined silicone septum caps prefilled with 250 mg of NaHSO{sub 4} (resulting pH of the water {approximately}2). The samples were sent to a commercial [Analytical Resources, Inc. (ARI)] and EPA (Region IV) laboratory where they were stored at 4 C. On 1, 8, 15, 22, 29, 36, and 71 days after sample preparation, analysts from ARI took 4 replicate samples out of storage and analyzed these samples for purgeable VOCs following EPA/SW846 8260A. A similar analysis schedule was followed by analysts at the EPA laboratory. This document contains the results from the EPA analyses; the ARI results are described in a separate report.

  14. Analytical Plans Supporting The Sludge Batch 8 Glass Variability Study Being Conducted By Energysolutions And CUA's Vitreous State Laboratory

    International Nuclear Information System (INIS)

    Edwards, T. B.; Peeler, D. K.

    2012-01-01

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested via a statement of work that ES/VSL conduct a glass variability study (VS) for Sludge Batch 8. SRR issued a technical task request (TTR) asking that the Savannah River National Laboratory (SRNL) provide planning and data reduction support for the ES/VSL effort. This document provides two analytical plans for use by ES/VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses. The measurements generated by ES/VSL are to be provided to SRNL for data reduction and evaluation. SRNL is to review the results of its evaluation with ES/VSL and SRR. The results will subsequently be incorporated into a joint report with ES/VSL as a deliverable to SRR to support the processing of SB8 at DWPF

  15. Analysis of environmental contamination resulting from catastrophic incidents: part 2. Building laboratory capability by selecting and developing analytical methodologies.

    Science.gov (United States)

    Magnuson, Matthew; Campisano, Romy; Griggs, John; Fitz-James, Schatzi; Hall, Kathy; Mapp, Latisha; Mullins, Marissa; Nichols, Tonya; Shah, Sanjiv; Silvestri, Erin; Smith, Terry; Willison, Stuart; Ernst, Hiba

    2014-11-01

    Catastrophic incidents can generate a large number of samples of analytically diverse types, including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface residue. Such samples may arise not only from contamination from the incident but also from the multitude of activities surrounding the response to the incident, including decontamination. This document summarizes a range of activities to help build laboratory capability in preparation for sample analysis following a catastrophic incident, including selection and development of fit-for-purpose analytical methods for chemical, biological, and radiological contaminants. Fit-for-purpose methods are those which have been selected to meet project specific data quality objectives. For example, methods could be fit for screening contamination in the early phases of investigation of contamination incidents because they are rapid and easily implemented, but those same methods may not be fit for the purpose of remediating the environment to acceptable levels when a more sensitive method is required. While the exact data quality objectives defining fitness-for-purpose can vary with each incident, a governing principle of the method selection and development process for environmental remediation and recovery is based on achieving high throughput while maintaining high quality analytical results. This paper illustrates the result of applying this principle, in the form of a compendium of analytical methods for contaminants of interest. The compendium is based on experience with actual incidents, where appropriate and available. This paper also discusses efforts aimed at adaptation of existing methods to increase fitness-for-purpose and development of innovative methods when necessary. The contaminants of interest are primarily those potentially released through catastrophes resulting from malicious activity

  16. Can current analytical quality performance of UK clinical laboratories support evidence-based guidelines for diabetes and ischaemic heart disease?--A pilot study and a proposal.

    Science.gov (United States)

    Jassam, Nuthar; Yundt-Pacheco, John; Jansen, Rob; Thomas, Annette; Barth, Julian H

    2013-08-01

    The implementation of national and international guidelines is beginning to standardise clinical practice. However, since many guidelines have decision limits based on laboratory tests, there is an urgent need to ensure that different laboratories obtain the same analytical result on any sample. A scientifically-based quality control process will be a pre-requisite to provide this level of analytical performance which will support evidence-based guidelines and movement of patients across boundaries while maintaining standardised outcomes. We discuss the finding of a pilot study performed to assess UK clinical laboratories readiness to work to a higher grade quality specifications such as biological variation-based quality specifications. Internal quality control (IQC) data for HbA1c, glucose, creatinine, cholesterol and high density lipoprotein (HDL)-cholesterol were collected from UK laboratories participating in the Bio-Rad Unity QC programme. The median of the coefficient of variation (CV%) of the participating laboratories was evaluated against the CV% based on biological variation. Except creatinine, the other four analytes had a variable degree of compliance with the biological variation-based quality specifications. More than 75% of the laboratories met the biological variation-based quality specifications for glucose, cholesterol and HDL-cholesterol. Slightly over 50% of the laboratories met the analytical goal for HBA1c. Only one analyte (cholesterol) had a performance achieving the higher quality specifications consistent with 5σ. Our data from IQC do not consistently demonstrate that the results from clinical laboratories meet evidence-based quality specifications. Therefore, we propose that a graded scale of quality specifications may be needed at this stage.

  17. Self-Reliance and Sustainability of Nuclear Analytical Laboratories in Small States of Central Europe: The Slovenian Case

    International Nuclear Information System (INIS)

    Korun, M.

    2013-01-01

    The Jožef Stefan Institute is the largest research institution in Slovenia devoted to research in many fields of science and technology. Within the Institute several nuclear analytical laboratories operate, making it the largest nuclear research institution in Slovenia. The Laboratory for Radiation Measuring Systems and Radioactivity Measurements belongs to the Department for Medium and Low Energy Physics, which is engaged mainly in nuclear physics, interactions of radiation with matter and its applications, and in providing a service in radiation measurements and dosimetry. The laboratory was founded almost thirty years ago, when the three accelerators, which formed the basis of the research infrastructure of the department, came to the end of their working lives. The personnel took the opportunity to participate in the programme of radioactivity monitoring of the Krško Nuclear Power Plant, which at that time went into operation. The equipment, i.e., the detectors, electronics and computers, was available, but the expertise was limited to the techniques of measurement and analysis in gamma-ray spectrometry. The absence of the expertise in radiochemistry was a serious drawback, therefore new methods in detector calibration had to be developed. In the following years the laboratory participated not only in the monitoring programme of the nuclear power plant but also in other radioactivity monitoring programmes in Slovenia. Since its foundation the laboratory did not receive any financial support either from the state or from the department. Support in equipment and expertise was received from the International Atomic Energy Agency, the Government of the United States and the United Nations Development Programme. The laboratory is engaged mainly in gamma-ray spectrometric measurements of samples from the natural, living and working environments. The main customers are the Krško Nuclear Power Plant and governmental organizations and agencies. The work for these

  18. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  19. Special study for the manual transfer of process samples from CPP [Chemical Processing Plant] 601 to RAL [Remote Analytical Laboratory

    International Nuclear Information System (INIS)

    Marts, D.J.

    1987-05-01

    A study of alternate methods to manually transport radioactive samples from their glove boxes to the Remote Analytical Laboratory (RAL) was conducted at the Idaho National Engineering Laboratory. The study was performed to mitigate the effects of a potential loss of sampling capabilities that could take place if a malfunction in the Pneumatic Transfer System (PTS) occurred. Samples are required to be taken from the cell glove boxes and analyzed at the RAL regardless of the operational status of the PTS. This paper documents the conclusions of the study and how a decision was reached that determined the best handling scenarios for manually transporting 15 mL vials of liquid process samples from the K, W, U, WG, or WH cell glove boxes in the Chemical Processing Plant (CPP) 601 to the RAL. This study of methods to manually remove the samples from the glove boxes, package them for safe shipment, transport them by the safest route, receive them at the RAL, and safely unload them was conducted by EG and G Idaho, Inc., for Westinghouse Idaho Nuclear Company as part of the Glove Box Sampling and Transfer System Project for the Fuel Processing Facilities Upgrade, Task 10, Subtask 2. The study focused on the safest and most reliable scenarios that could be implemented using existing equipment. Hardware modifications and new hardware proposals were identified, and their impact on the handling scenario has been evaluated. A conclusion was reached that by utilizing the existing facility hardware, these samples can be safely transported manually from the sample stations in CPP 601 to the RAL, and that additional hardware could facilitate the transportation process even further

  20. Safety in analytical laboratories

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A discussion is presented on the revised (United Kingdom) Ionising Radiations Regulations, which are proposed to come into force in 1984. The new regulations, which will be applicable to all workplaces, are supported by detailed 'Approved Codes of Practice', covering (1) general matters, (2) medical applications, (3) radiography and radiation processing, and (4) X-ray optics and gauges containing radioactive sources. In addition Guidance Notes will provide more practical detail. The present paper provides a brief overview of the proposed legislation, its history, underlying philosophy, major shifts in emphasis and advisory services that are being offered. (U.K.)

  1. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  2. Developing and Implementing Inquiry-Based, Water Quality Laboratory Experiments for High School Students to Explore Real Environmental Issues Using Analytical Chemistry

    Science.gov (United States)

    Mandler, Daphna; Blonder, Ron; Yayon, Malka; Mamlok-Naaman, Rachel; Hofstein, Avi

    2014-01-01

    This paper describes the rationale and the implementation of five laboratory experiments; four of them, intended for high-school students, are inquiry-based activities that explore the quality of water. The context of water provides students with an opportunity to study the importance of analytical methods and how they influence our everyday…

  3. Determination of the Acid Dissociation Constant of a Phenolic Acid by High Performance Liquid Chromatography: An Experiment for the Upper Level Analytical Chemistry Laboratory

    Science.gov (United States)

    Raboh, Ghada

    2018-01-01

    A high performance liquid chromatography (HPLC) experiment for the upper level analytical chemistry laboratory is described. The students consider the effect of mobile-phase composition and pH on the retention times of ionizable compounds in order to determine the acid dissociation constant, K[subscript a], of a phenolic acid. Results are analyzed…

  4. ASVCP quality assurance guidelines: control of preanalytical and analytical factors for hematology for mammalian and nonmammalian species, hemostasis, and crossmatching in veterinary laboratories.

    Science.gov (United States)

    Vap, Linda M; Harr, Kendal E; Arnold, Jill E; Freeman, Kathleen P; Getzy, Karen; Lester, Sally; Friedrichs, Kristen R

    2012-03-01

    In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and provides recommendations for control of preanalytical and analytical factors related to hematology for mammalian and nonmammalian species, hemostasis testing, and crossmatching and is adapted from sections 1.1 and 2.3 (mammalian hematology), 1.2 and 2.4 (nonmammalian hematology), 1.5 and 2.7 (hemostasis testing), and 1.6 and 2.8 (crossmatching) of the complete guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.

  5. Determining 'age at death' for forensic purposes using human bone by a laboratory-based biomechanical analytical method.

    Science.gov (United States)

    Zioupos, P; Williams, A; Christodoulou, G; Giles, R

    2014-05-01

    Determination of age-at-death (AAD) is an important and frequent requirement in contemporary forensic science and in the reconstruction of past populations and societies from their remains. Its estimation is relatively straightforward and accurate (±3yr) for immature skeletons by using morphological features and reference tables within the context of forensic anthropology. However, after skeletal maturity (>35yr) estimates become inaccurate, particularly in the legal context. In line with the general migration of all the forensic sciences from reliance upon empirical criteria to those which are more evidence-based, AAD determination should rely more-and-more upon more quantitative methods. We explore here whether well-known changes in the biomechanical properties of bone and the properties of bone matrix, which have been seen to change with age even after skeletal maturity in a traceable manner, can be used to provide a reliable estimate of AAD. This method charts a combination of physical characteristics some of which are measured at a macroscopic level (wet & dry apparent density, porosity, organic/mineral/water fractions, collagen thermal degradation properties, ash content) and others at the microscopic level (Ca/P ratios, osteonal and matrix microhardness, image analysis of sections). This method produced successful age estimates on a cohort of 12 donors of age 53-85yr (7 male, 5 female), where the age of the individual could be approximated within less than ±1yr. This represents a vastly improved level of accuracy than currently extant age estimation techniques. It also presents: (1) a greater level of reliability and objectivity as the results are not dependent on the experience and expertise of the observer, as is so often the case in forensic skeletal age estimation methods; (2) it is purely laboratory-based analytical technique which can be carried out by someone with technical skills and not the specialised forensic anthropology experience; (3) it can

  6. Defining a roadmap for harmonizing quality indicators in Laboratory Medicine: a consensus statement on behalf of the IFCC Working Group "Laboratory Error and Patient Safety" and EFLM Task and Finish Group "Performance specifications for the extra-analytical phases".

    Science.gov (United States)

    Sciacovelli, Laura; Panteghini, Mauro; Lippi, Giuseppe; Sumarac, Zorica; Cadamuro, Janne; Galoro, César Alex De Olivera; Pino Castro, Isabel Garcia Del; Shcolnik, Wilson; Plebani, Mario

    2017-08-28

    The improving quality of laboratory testing requires a deep understanding of the many vulnerable steps involved in the total examination process (TEP), along with the identification of a hierarchy of risks and challenges that need to be addressed. From this perspective, the Working Group "Laboratory Errors and Patient Safety" (WG-LEPS) of International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) is focusing its activity on implementation of an efficient tool for obtaining meaningful information on the risk of errors developing throughout the TEP, and for establishing reliable information about error frequencies and their distribution. More recently, the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) has created the Task and Finish Group "Performance specifications for the extra-analytical phases" (TFG-PSEP) for defining performance specifications for extra-analytical phases. Both the IFCC and EFLM groups are working to provide laboratories with a system to evaluate their performances and recognize the critical aspects where improvement actions are needed. A Consensus Conference was organized in Padova, Italy, in 2016 in order to bring together all the experts and interested parties to achieve a consensus for effective harmonization of quality indicators (QIs). A general agreement was achieved and the main outcomes have been the release of a new version of model of quality indicators (MQI), the approval of a criterion for establishing performance specifications and the definition of the type of information that should be provided within the report to the clinical laboratories participating to the QIs project.

  7. Bias from two analytical laboratories involved in a long-term air monitoring program measuring organic pollutants in the Arctic: a quality assurance/quality control assessment.

    Science.gov (United States)

    Su, Yushan; Hung, Hayley; Stern, Gary; Sverko, Ed; Lao, Randy; Barresi, Enzo; Rosenberg, Bruno; Fellin, Phil; Li, Henrik; Xiao, Hang

    2011-11-01

    Initiated in 1992, air monitoring of organic pollutants in the Canadian Arctic provided spatial and temporal trends in support of Canada's participation in the Stockholm Convention of Persistent Organic Pollutants. The specific analytical laboratory charged with this task was changed in 2002 while field sampling protocols remained unchanged. Three rounds of intensive comparison studies were conducted in 2004, 2005, and 2008 to assess data comparability between the two laboratories. Analysis was compared for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in standards, blind samples of mixed standards and extracts of real air samples. Good measurement accuracy was achieved for both laboratories when standards were analyzed. Variation of measurement accuracy over time was found for some OCPs and PCBs in standards on a random and non-systematic manner. Relatively low accuracy in analyzing blind samples was likely related to the process of sample purification. Inter-laboratory measurement differences for standards (<30%) and samples (<70%) were generally less than or comparable to those reported in a previous inter-laboratory study with 21 participating laboratories. Regression analysis showed inconsistent data comparability between the two laboratories during the initial stages of the study. These inter-laboratory differences can complicate abilities to discern long-term trends of pollutants in a given sampling site. It is advisable to maintain long-term measurements with minimal changes in sample analysis.

  8. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  9. Memory effects on adsorption tubes for mercury vapor measurement in ambient air: elucidation, quantification, and strategies for mitigation of analytical bias.

    Science.gov (United States)

    Brown, Richard J C; Kumar, Yarshini; Brown, Andrew S; Kim, Ki-Hyun

    2011-09-15

    The short- and long-term memory effects associated with measurements of mercury vapor in air using gold-coated silica adsorption tubes have been described. Data are presented to quantify these effects and to determine their dependence on certain relevant measurement parameters, such as number of heating cycles used for each analysis, age of adsorption tube, mass of mercury on adsorption tube, and the length of time between analyses. The results suggest that the long-term memory effect is due to absorption of mercury within the bulk gold in the adsorption tube, which may only be fully liberated by allowing enough time for this mercury to diffuse to the gold surface. The implications of these effects for air quality networks making these measurements routinely has been discussed, and recommendations have been made to ensure any measurement bias is minimized.

  10. Analytical electron microscopy study of surface layers formed on the French SON68 nuclear waste glass during vapor hydration at 200 C

    International Nuclear Information System (INIS)

    Gong, W.L.; Wang, L.M.; Ewing, R.C.; Bates, J.K.; Ebert, W.L.

    1998-01-01

    Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six SON68 (inactive R7T7) waste glasses which were altered in the presence of saturated water vapor (200 C) for 22, 91, 241, 908, 1000, 1013, and 1021 days. The samples were examined by AEM in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered by a thin altered rind, and the surface layer thickness increased with increasing time of reaction, ranging from 0.5 to 30 μm in thickness. Six distinctive zones, based on phase chemistry and microstructure, were distinguished within the well-developed surface layers. Numerous crystalline phases such as analcime, gyrolite, tobermorite, apatite, and weeksite were identified on the surfaces of the reacted glasses as precipitates. The majority of the surface layer volume was composed of two basic structures that are morphologically and chemically distinct: The A-domain consisted of well-crystallized fibrous smectite aggregates; and the B-domain consisted of poorly-crystallized regions containing smectite, possibly montmorillonite, crystallites and a ZrO 2 -rich amorphous silica matrix. The retention of the rare-earth elements, Mo, and Zr mostly occurred within the B-domain; while transition metal elements, such as Zn, Cr, Ni, Mn, and Fe, were retained in the A-domain. The element partitioning among A-domains and B-domains and recrystallization of the earlier-formed B-domains into the A-domain smectites were the basic processes which have controlled the chemical and structural evolution of the surface layer. The mechanism of surface layer formation during vapor hydration are discussed based on these cross-sectional AEM results. (orig.)

  11. Tank 241-U-104 headspace gas and vapor characterization results from samples collected on July 16, 1996

    International Nuclear Information System (INIS)

    Pool, K.H.; Evans, J.C.; Hayes, J.C.; Mitroshkov, A.V.; Edwards, J.A.; Julya, J.L.; Thornton, B.M.; Fruchter, J.S.; Silvers, K.L.

    1997-08-01

    This report presents the results from analyses of samples taken from the headspace of waste storage tank 241-U-104 (Tank U-104) at the Hanford Site in Washington State. Tank headspace samples collected by Westinghouse Hanford Company (WHC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based on measured sample volumes provided by WHC. No analytes were determined to be above the immediate notification limits specified by the sampling and analysis plan. None of the flammable constituents were present at concentrations above the analytical instrument detection limits. Total headspace flammability was estimated to be <0.108% of the lower flammability limit. Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in a table. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of the analytical results are provided in Section 3.0

  12. Tank 241-C-101 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories

  13. The Integration of a Small Thermal Desorption (TD) System for Air Monitoring into a Mobile Analytical Laboratory in France Used by the NRBC Emergency First Responder Police Organization

    International Nuclear Information System (INIS)

    Roberts, G. M.

    2007-01-01

    A mobile analytical laboratory has been developed in France by Thales Security Systems in conjunction with the French department of defense (DGA) to rapidly identify the composition of toxic substances released accidentally or by terrorist activity at a location of high civilian population density. Accurate and fast identification of toxic material is critical for first responder teams that attend an incident site. Based on this analysis defined decontamination protocols for contaminated people can be implemented, and specific medical treatment can be administered to those worst affected. Analysing samples with high technology instrumentation close to the point of release is therefore highly advantageous and is only possible with mobile analytical platforms. Transporting samples back to a central laboratory for analysis is not realistic due to time limitations. This paper looks at one particular aspect of analysis performed in this mobile multi-technique laboratory namely air monitoring for CW or TIC compounds. Air sampling and pre concentration is achieved using a small, innovative Thermal Desorption system (Unitytm) in combination with a gas chromatograph-mass spectroscopy system for the detection and identification of specific analytes. Implementation of the Unity TD system in the confines of this small mobile environment will be reviewed in this paper. (author)

  14. Desempenho analítico de laboratórios prestadores de serviço na determinação de metais em águas Analytical performance of contractor laboratories in the determination of metals in water

    Directory of Open Access Journals (Sweden)

    Wilson F. Jardim

    2009-01-01

    Full Text Available Analytical laboratories are expected to produce reliable results. Decision makers are guided in their actions (financial, legal and environmental using analytical data provided by numerous laboratories. This work aimed to evaluate the analytical performance of Brazilian laboratories on producing trustworthy results. Nineteen laboratories, accredited and non-accredited ones, were contracted to analyze a USGS (United States Geological Survey certified water sample for 17 chemical elements (mostly metals without knowing the origin of the sample. Considering all the results produced, only 35% of them were valid. Three laboratories present satisfactory performances, whereas the majority showed a very poor overall performance. The outcomes of this work show the need for a more effective analytical quality program to Brazilian laboratories.

  15. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  16. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  17. Headspace vapor characterization of Hanford waste tank 241-U-109: Results from samples collected on 8/10/95

    International Nuclear Information System (INIS)

    Evans, J.C.; Thomas, B.L.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-05-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-109 (Tank U-109) At the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. This tank is on the Hydrogen Waste List. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases and total non-methane hydrocarbons is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples is also listed in the table. Detailed descriptions of the analytical results appear in the text

  18. Headspace vapor characterization of Hanford waste Tank 241-BX-110: Results from samples collected on 04/30/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-BX-110 (Tank BX-110) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Analyte concentrations were based on analytical results and, where appropriate, sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the table. Detailed descriptions of the analytical results appear in the appendices

  19. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  20. Authentic Learning Enviroment in Analytical Chemistry Using Cooperative Methods and Open-Ended Laboratories in Large Lecture Courses

    Science.gov (United States)

    Wright, John C.

    1996-09-01

    It is recognized that a need exists to move from the passive learning styles that have characterized chemistry courses to an active style in which students participate and assume responsibility for their learning (1 - 5). In addition, it is argued that course reform should be linked to authentic student achievement, so that students can actively experience the feelings of practicing professionals (6). Course experiments where such changes have been introduced have proven successful but the number of examples of such changes is limited in the higher level courses or courses with large enrollments (7 - 11). In this paper, a one-semester introductory analytical chemistry course is described that accomplishes this goal by the use of open-ended laboratories, cooperative learning, and spreadsheet programs. The course uses many of the ideas described by Walters (7). It is offered at the upperclass level to nonmajors and at the freshman level to students with solid chemistry backgrounds from high school. Typically there are 90 students, who are divided into 5 sections. A teaching assistant is assigned to each section. The course has two 4-hour laboratories and two or three lectures each week (depending on whether it is the upperclass or freshman course). The heart of the course changes is the use of open-ended laboratory experiments in the last half of the course. A sample group project is to have the students develop a mixture of acid-base indicators that can serve as a spectroscopic pH meter. These projects are enhanced by dividing the students into teams of four who take charge of all aspects of accomplishing the projects' goals. Since there are many skills required to make these projects work, the first half of the course is spent developing the individual conceptual, computational, laboratory, problem solving, and group skills so students are prepared for the last half. These changes have markedly improved the student attitudes towards each other and towards learning

  1. Headspace vapor characterization of Hanford waste tank 241-B-107: Results from samples collected on 7/23/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-B-107 (Tank B-107) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwestern National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  2. Headspace vapor characterization of Hanford waste tank 241-S-106: Results from samples collected on 06/13/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-106 (Tank S-106) at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company (WHC) and provided for analysis to Pacific Northwest National Laboratory (PNNL). A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed in a table. The three highest concentration analytes detected in SUMMA trademark canister and triple sorbent trap samples are also listed in the same table. Detailed descriptions of the analytical results appear in the appendices

  3. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  4. Toxicologic evaluation of analytes from Tank 241-C-103

    International Nuclear Information System (INIS)

    Mahlum, D.D.; Young, J.Y.; Weller, R.E.

    1994-11-01

    Westinghouse Hanford Company requested PNL to assemble a toxicology review panel (TRP) to evaluate analytical data compiled by WHC, and provide advice concerning potential health effects associated with exposure to tank-vapor constituents. The team's objectives would be to (1) review procedures used for sampling vapors from tanks, (2) identify constituents in tank-vapor samples that could be related to symptoms reported by workers, (3) evaluate the toxicological implications of those constituents by comparison to establish toxicological databases, (4) provide advice for additional analytical efforts, and (5) support other activities as requested by WHC. The TRP represents a wide range of expertise, including toxicology, industrial hygiene, and occupational medicine. The TRP prepared a list of target analytes that chemists at the Oregon Graduate Institute/Sandia (OGI), Oak Ridge National Laboratory (ORNL), and PNL used to establish validated methods for quantitative analysis of head-space vapors from Tank 241-C-103. this list was used by the analytical laboratories to develop appropriate analytical methods for samples from Tank 241-C-103. Target compounds on the list included acetone, acetonitrile, ammonia, benzene, 1, 3-butadiene, butanal, n-butanol, hexane, 2-hexanone, methylene chloride, nitric oxide, nitrogen dioxide, nitrous oxide, dodecane, tridecane, propane nitrile, sulfur oxide, tributyl phosphate, and vinylidene chloride. The TRP considered constituent concentrations, current exposure limits, reliability of data relative to toxicity, consistency of the analytical data, and whether the material was carcinogenic or teratogenic. A final consideration in the analyte selection process was to include representative chemicals for each class of compounds found

  5. A report on recent progress of Central Analytical Laboratory (NRI Rez plc.) for upgrading capabilities for identification of illicit nuclear materials

    International Nuclear Information System (INIS)

    Malek, Z.; Sus, F.

    2002-01-01

    Full text: In the first half of the 90's, the State Office for Nuclear Safety (SONS) -- in close co-operation with other state organizations and following the IAEA's extended safeguards system - strengthened its attention to the development of procedures for the characterization of unknown nuclear materials. This problem become important in the context of increasing danger of illicit trafficking of nuclear material which emerged with the political changes in former 'Comecon' countries during late 80's and 90's. Particular attention has been drawn to the upgrade of the counter-potential in possible transit countries situated in Central Europe. The Central Analytical Laboratory as the main Czech institution working in the field of nuclear material analytical chemistry participated in the development and upgrading of analytical procedures for detailed identification and characterization of nuclear material samples. The special methods for the determination of uranium content, isotopic composition, swipe sample analysis, determination of age and long-lived radioisotopes were developed. In second half of the 90's within the IAEA Project entitled 'Special Analytical Methods for Determination of Traces Radioactivity and Detection of Undeclared Nuclear Activities' basic procedures were prepared for the determination of: - selected isotopes of the natural disintegration series in the samples of water, sediments and technological waste solutions after termination of the uranium ores mining, - age of uranium and plutonium materials based on the 230 Th/ 234 Th, 226 Ra/ 234 U and 241 Am/ 241 Pu pairs, studies on the application of the 231 Pa/ 235 U pair were started. In 1998 PHARE PH5.01/95 project, 'Assistance in setting up special analytical services including a data bank for analysis of radioactive substances and nuclear materials of unknown origin' was started. The project was funded from the European Commission's PHARE Programme. The activities were performed at the

  6. Stability of purgeable VOCs in water samples during pre-analytical holding: Part 1, Analysis by a commercial laboratory

    Energy Technology Data Exchange (ETDEWEB)

    West, O.R.; Bayne, C.K.; Siegrist, R.L.; Holden, W.L.; Scarborough, S.S. [Oak Ridge National Lab., TN (United States); Bottrell, D.W. [USDOE, Washington, DC (United States)

    1996-10-01

    This study was undertaken to examine the hypothesis that prevalent and priority purgeable VOCs in properly preserved water samples are stable for at least 28 days. (VOCs are considered stable if concentrations do not change by more than 10%.) Surface water was spiked with 44 purgeable VOCs. Results showed that the measurement of 35 out of 44 purgeable VOCs in properly preserved water samples (4 C, 250 mg NaHSO{sub 4}, no headspace in 40 mL VOC vials with 0.010-in. Teflon-lined silicone septum caps) will not be affected by sample storage for 28 days. Larger changes (>10%) and low practical reporting times were observed for a few analytes, e.g. acrolein, CS{sub 2}, vinyl acetate, etc.; these also involve other analytical problems. Advantages of a 28-day (compared to 14-day) holding time are pointed out.

  7. Enzymatic Spectrophotometric Reaction Rate Determination of Glucose in Fruit Drinks and Carbonated Beverages. An Analytical Chemistry Laboratory Experiment for Food Science-Oriented Students

    Science.gov (United States)

    Vasilarou, Argyro-Maria G.; Georgiou, Constantinos A.

    2000-10-01

    The glucose oxidase-horseradish peroxidase coupled reaction using phenol and 4-aminoantipyrine is used for the kinetic determination of glucose in drinks and beverages. This laboratory experiment demonstrates the implementation of reaction rate kinetic methods of analysis, the use of enzymes as selective analytical reagents for the determination of substrates, the kinetic masking of ascorbic acid interference, and the analysis of glucose in drinks and beverages. The method is optimized for student use in the temperature range of 18-28 °C and can be used in low-budget laboratories equipped with an inexpensive visible photometer. The mixed enzyme-chromogen solution that is used is stable for two months. Precision ranged from 5.1 to 12% RSD for analyses conducted during a period of two months by 48 students.

  8. National Survey on Internal Quality Control for HbA(1c) Analytical Instruments in 331 Hospital Laboratories of China.

    Science.gov (United States)

    Zeng, Rong; Wang, Wei; Zhao, Haijian; Fei, Yang; Wang, Zhiguo

    2015-01-01

    The narrow gap of HbA1 value of mass fraction between "normal" (control of inter-assay standardization, assay precision, and trueness. This survey was initiated to obtain knowledge of the current situation of internal quality control (IQC) practice for HbA(1c) in China and find out the most appropriate quality specifications. Data of IQC for HbA(1c) in 331 institutions participating in the national proficiency testing (PT) programs in China were evaluated using four levels of quality specifications, and the percentages of laboratories meeting the quality requirement were calculated to find out the most appropriate quality specifications for control materials of HbA(1c) in China. The IQC data varied vastly among 331 clinical laboratories in China. The measurement of control materials covered a wide range from 4.52% to 12.24% (inter-quartile range) and there were significant differences among the CVs of different methods, including LPLC, CE-HPLC, AC-HPLC, immunoturbidimetry, and others. Among the four main methods, CE-HPLC and AC-HPLC achieved a better precision. As we can see, the performance of laboratories for HbA(1c) has yet to be improved. Clinical laboratories in China should improve their performance with a stricter imprecision criteria.

  9. A Multi-State Factor-Analytic and Psychometric Meta-Analysis of Agricultural Mechanics Laboratory Management Competencies

    Science.gov (United States)

    McKim, Billy R.; Saucier, P. Ryan

    2012-01-01

    For more than 20 years, the 50 agricultural mechanics laboratory management competencies identified by Johnson and Schumacher in 1989 have served as the basis for numerous needs assessments of secondary agriculture teachers. This study reevaluated Johnson and Schumacher's instrument, as modified by Saucier, Schumacher, Funkenbusch, Terry, and…

  10. Creating and Evaluating a Hypertext System of Documenting Analytical Test Methods in a Chemical Plant Quality Assurance Laboratory.

    Science.gov (United States)

    White, Charles E., Jr.

    The purpose of this study was to develop and implement a hypertext documentation system in an industrial laboratory and to evaluate its usefulness by participative observation and a questionnaire. Existing word-processing test method documentation was converted directly into a hypertext format or "hyperdocument." The hyperdocument was designed and…

  11. Assembly of a Modular Fluorimeter and Associated Software: Using LabVIEW in an Advanced Undergraduate Analytical Chemistry Laboratory

    Science.gov (United States)

    Algar, W. Russ; Massey, Melissa; Krull, Ulrich J.

    2009-01-01

    A laboratory activity for an upper-level undergraduate course in instrumental analysis has been created around LabVIEW. Students learn rudimentary programming and interfacing skills during the construction of a fluorimeter assembled from common modular components. The fluorimeter consists of an inexpensive data acquisition module, LED light…

  12. GLYCOHEMOGLOBIN - COMPARISON OF 12 ANALYTICAL METHODS, APPLIED TO LYOPHILIZED HEMOLYSATES BY 101 LABORATORIES IN AN EXTERNAL QUALITY ASSURANCE PROGRAM

    NARCIS (Netherlands)

    WEYKAMP, CW; PENDERS, TJ; MUSKIET, FAJ; VANDERSLIK, W

    Stable lyophilized ethylenediaminetetra-acetic acid (EDTA)-blood haemolysates were applied in an external quality assurance programme (SKZL, The Netherlands) for glycohaemoglobin assays in 101 laboratories using 12 methods. The mean intralaboratory day-to-day coefficient of variation (CV),

  13. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  14. Colombia Individual Report for Participation In Intercomparison IPE and ISE Ringtest Wageningen Evaluating Programmes for Analytical Laboratories-WEPAL

    International Nuclear Information System (INIS)

    Peña, M.L.; Cañón, Y.; Guzmán, M.; Gómez, L.M.; Acero, N.; Sierra, O.; Muñoz, J.; Sandoval, J.; Parrado, G.A.

    2017-01-01

    The main conclusions of the results achieved by the Activation Analysis Laboratory of the Colombian Geological Survey in the intercomparison exercise are presented in this article. The laboratory is introduced in the global context through a description of both its facilities and the available places for Activation assay, emphasizing the technological and organizational resources, which allowed the actual state of development. The interests of the facility are briefly exposed and are related with the mining exploration needs and also with the investigation of the Colombian subsoil, as could be expected for a National Institute for Science and Technology. Finally the main efforts taken in order to improve the quality of the results are exposed as well as the action plan and the done activities with the purpose of achieve this objective. (author)

  15. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  16. Headspace gas and vapor characterization summary for the 43 vapor program suspect tanks

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    During the time period between February 1994 and September 1995, Westinghouse Hanford Company (WHC) sampled the waste tank headspace of 43 single-shell tanks for a variety of gaseous and/or volatile and semi-volatile compounds. This report summarizes the results of analyses of those sampling activities with respect to both the Priority 1 Safety Issues and relative to the detection in the headspace of significant concentrations of target analytes relating to worker breathing space consideration as recommended by the Pacific Northwest Laboratory (PNL) Toxicology Review Panel. The information contained in the data tables was abstracted from the vapor sampling and analysis tank characterization reports. Selected results are tabulated and summarized. Sampling equipment and methods, as well as sample analyses, are briefly described. Vapor sampling of passively ventilated single-shell tanks (tanks C-105, C-106, and SX-106 were sampled and are actively ventilated) has served to highlight or confirm tank headspace conditions associated with both priority 1 safety issues and supports source term analysis associated with protecting worker health and safety from noxious vapors

  17. Analysis of Reference Cigarette Smoke Yield Data From 21 Laboratories for 28 Selected Analytes as a Guide to Selection of New Coresta Recommended Methods

    Directory of Open Access Journals (Sweden)

    Purkis Steve

    2014-07-01

    Full Text Available Since 1999, the CORESTA Special Analytes Sub Group (SPA SG has been working on the development of CORESTA Recommended Methods (CRMs for the analysis of cigarette smoke components. All CRMs have been posted on the CORESTA website and several associated papers published. In this study, 21 laboratories shared data and in-house methodologies for 28 additional smoke components of regulatory interest to prioritise the development of further CRMs. Laboratories provided data, where available, from CORESTA monitor test pieces (CM6 and CM7 and Kentucky Reference Cigarettes (1R5F / 3R4F covering the period 2010-2012 obtained under both the ISO 3308 and Health Canada Intense regimes. Scant data were available on the CORESTA monitor test pieces and the Kentucky 1R5F reference. The greatest amount of data was obtained on the Kentucky 3R4F and this was used in the analyses described in this paper. SPA SG discussions provided invaluable insight into identifying causes and ways of reducing inter-laboratory variability which will be investigated in joint experiments before embarking on final collaborative studies using draft CRMs to obtain mean yields, repeatability and reproducibility values. Phenolic compounds (phenol, 3 cresol isomers, hydroquinone, catechol and resorcinol gave consistent results by liquid chromatography (LC separation and fluorescence detection after extracting collected “tar” on a Cambridge filter pad (CFP. Yields were similar to those obtained by a derivatisation method followed by gas chromatography - mass spectrometry (GC-MS analysis. Similar ratios of phenols were also obtained from each method. Of the 28 studied analytes, the between-laboratory variability was lowest for the phenols. Hydrogen cyanide was derivatised using various reagents and the colour development measured after continuous flow analysis (CFA by ultra-violet absorbance. Although, methodologies gave reasonably consistent results, investigations on the trapping system

  18. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  19. Analytical Electron Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...

  20. Evaluation of instrumental parameters for obtaining acceptable analytical results of the Dosimetry Laboratory of Chemistry of the Regional Center of Nuclear Sciences, CNEN-NE, Recife, Brazil

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Figueiredo, M.D.C.; Cunha, M.S.

    2008-01-01

    Instrumental parameters need to be evaluated for obtaining acceptable analytical results for a specific instrument. The performance of the UV-VIS spectrophotometer can be verified for wavelengths and absorbances with appropriate materials (solutions of different concentrations of K 2 CrO 4 , for example). The aim of this work was to demonstrate the results of the procedures to control the quality of the measurements carried out in the laboratory in the last four years. The samples were analyzed in the spectrophotometer and control graphics were obtained for K 2 CrO 4 and Fe 3+ absorbance values. The variation in the results obtained for the stability of the spectrophotometer and for the control of its calibration did not exceed 2%. (author)

  1. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  2. Determination of Mercury in Fish: A Low-Cost Implementation of Cold-Vapor Atomic Absorbance for the Undergraduate Environmental Chemistry Laboratory

    Science.gov (United States)

    Niece, Brian K.; Hauri, James F.

    2013-01-01

    Mercury is a known neurotoxin that is particularly harmful to children and unborn fetuses. Consumption of contaminated fish is one major route of mercury exposure. This laboratory experiment gives students an opportunity to measure mercury concentrations in store-bought seafood and compare the results to suggested exposure limits. The U.S.…

  3. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The obtained results fall

  4. Product and market study for Los Alamos National Laboratory. Building resources for technology commercialization: The SciBus Analytical, Inc. paradigm

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The study project was undertaken to investigate how entrepreneurial small businesses with technology licenses can develop product and market strategies sufficiently persuasive to attract resources and exploit commercialization opportunities. The study attempts to answer two primary questions: (1) What key business development strategies are likely to make technology transfers successful, and (2) How should the plan best be presented in order to attract resources (e.g., personnel, funding, channels of distribution)? In the opinion of the investigator, Calidex Corporation, if the business strategies later prove to be successful, then the plan model has relevance for any technology licensee attempting to accumulate resources and bridge from technology resident in government laboratories to the commercial marketplace. The study utilized SciBus Analytical, Inc. (SciBus), a Los Alamos National Laboratory CRADA participant, as the paradigm small business technology licensee. The investigator concluded that the optimum value of the study lay in the preparation of an actual business development plan for SciBus that might then have, hopefully, broader relevance and merit for other private sector technology transfer licensees working with various Government agencies.

  5. Wind Structural Testing Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides office space for industry researchers, experimental laboratories, computer facilities for analytical work, and space for assembling components...

  6. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  7. Method for Hot Real-Time Sampling of Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.

  8. Prioritizing factors affecting the hospital employees' productivity from the hospital managers' viewpoint using integrated decision-making trial and evaluation laboratory and analytic network process

    Directory of Open Access Journals (Sweden)

    Ardalan Feili

    2018-01-01

    Full Text Available Objectives: This study aimed to identify and prioritize factors affecting the hospital employees' productivity from the viewpoint of hospital managers working in the teaching hospitals affiliated to Iran, Shiraz University of Medical Sciences, in 2017. Materials and Methods: This was an applied, cross-sectional, and descriptive-analytical study conducted in 2017 in all teaching hospitals affiliated to Iran, Shiraz University of Medical Sciences. After identifying factors affecting hospital employees' productivity using the results of previous studies, all hospital managers (56 managers were selected as the study population using census method to prioritize the factors. The decision-making trial and evaluation laboratory (DEMATEL and analytic network process (ANP techniques were used for analyzing the collected data through Excel 2010 and Super Decision 2.8. Results: Fifteen factors affecting employees' productivity were determined using the results of previous studies which were classified into four clusters. The results of DEMATEL technique showed that “employees' attitude toward the organization” was the most affecting factor (r = 11.928 and also the most affected factor (c = 12.120, as well as the most important factor affecting the employees' productivity (r + c = 24.048. In addition, the results of ANP showed that the cluster of “leadership and management styles” (relative weight [RW] = 0.274 and its factors, especially “involving employees in the decision-making processes” (L1 (RW = 0.102 and “delegation of authority to the employees” (L2 (RW = 0.100 were the most important factors affecting the employees' productivity. Conclusion: According to the results, adopting an appropriate leadership style and providing participatory management, involving the employees in the hospital decision-making processes, etc., had significant effects on the increases in the employees' motivation and productivity.

  9. Dual-domain mass-transfer parameters from electrical hysteresis: theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

    Science.gov (United States)

    Briggs, Martin A.; Day-Lewis, Frederick D.; Ong, John B.; Harvey, Judson W.; Lane, John W.

    2014-01-01

    Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.

  10. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina por espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method’s performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 ± 11,70)μg.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L{sup −1}. The obtained

  11. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS); Validacao de metodologia analitica para determinacao de mercurio total em amostras de urina para espectrometria de absorcao atomica com geracao de vapor frio (CV-AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Guilhen, Sabine Neusatz

    2009-07-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L{sup -1} with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10{mu}g.L{sup -1}. The

  12. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  13. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S ampersand M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S ampersand M effort would be required to maintain the building safety envelope. Other than the minimal S ampersand M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S ampersand M until decommissioning activities begin

  14. Waste management and technologies analytical database project for Los Alamos National Laboratory/Department of Energy. Final report, June 7, 1993--June 15, 1994

    International Nuclear Information System (INIS)

    1995-01-01

    The Waste Management and Technologies Analytical Database System (WMTADS) supported by the Department of Energy's (DOE) Office of Environmental Management (EM), Office of Technology Development (EM-50), was developed and based at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, to collect, identify, organize, track, update, and maintain information related to existing/available/developing and planned technologies to characterize, treat, and handle mixed, hazardous and radioactive waste for storage and disposal in support of EM strategies and goals and to focus area projects. WMTADS was developed as a centralized source of on-line information regarding technologies for environmental management processes that can be accessed by a computer, modem, phone line, and communications software through a Local Area Network (LAN), and server connectivity on the Internet, the world's largest computer network, and with file transfer protocol (FTP) can also be used to globally transfer files from the server to the user's computer through Internet and World Wide Web (WWW) using Mosaic

  15. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  16. Tank vapor characterization project - Tank 241-U-112 headspace gas and vapor characterization: Results for homogeneity samples collected on December 6, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Sklarew, D.S.; Pool, K.H.; Evans, J.C.; Hayes, J.C. [and others

    1997-09-01

    This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-U-112 (Tank U-112) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constitutents. Two risers (Riser 3 and Riser 6) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL. Ammonia was determined to be above the immediate notification limit specified by the sampling and analysis plan.

  17. Denver District Laboratory (DEN)

    Data.gov (United States)

    Federal Laboratory Consortium — Program CapabilitiesDEN-DO Laboratory is a multi-functional laboratory capable of analyzing most chemical analytes and pathogenic/non-pathogenic microorganisms found...

  18. Tank 241-B-103 headspace gas and vapor characterization results for samples collected in February 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  19. Tank 241-BX-104 headspace gas and vapor characterization results for samples collected in December 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  20. Tank 241-U-203 headspace gas and vapor characterization results for samples collected in August 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  1. Tank 241-C-106 headspace gas and vapor characterization results for samples collected in February 1994

    International Nuclear Information System (INIS)

    Hackaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  2. Tank 241-S-111 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  3. Tank 241-U-103 headspace gas and vapor characterization results for samples collected in February 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  4. Tank 241-SX-106 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  5. Tank 241-TX-105 headspace gas and vapor characterization results for samples collected in December 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  6. Tank 241-C-102 headspace gas and vapor characterization results for samples collected in August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  7. Tank 241-BY-112 headspace gas and vapor characterization results for samples collected in November 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  8. Tank 241-T-111 headspace gas and vapor characterization results for samples collected in January 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  9. Tank 241-SX-103 headspace gas and vapor characterization results for samples collected in March 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  10. Tank 241-TY-104 headspace gas and vapor characterization results for samples collected in April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  11. Tank 241-C-110 headspace gas and vapor characterization results for samples collected in August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  12. Tank 241-C-101 headspace gas and vapor characterization results for samples collected in September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  13. Tank 241-C-107 headspace gas and vapor characterization results for samples collected in September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  14. Tank 241-C-104 headspace gas and vapor characterization results for samples collected in March 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  15. Tank 241-BY-105 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories

  16. Food and Environmental Protection Laboratory, Seibersdorf: Discrimination of honey of different floral origins by a combination of various chemical parameters; Stable Isotopes Applied to Authenticating Honey; The use of analyte protectants in pesticide residue analytical work

    International Nuclear Information System (INIS)

    Zora Jandrić, Zora; Frew, Russell; Abrahim, Aiman; Maestroni, Britt; Ochoa, Victoria

    2014-01-01

    honey valued for its non-peroxide antimicrobial activity (NPA).The NPA is thought to be due to high levels of methyl glyoxal (MGO) and it is the manuka honey with high levels of MGO that fail the C4 sugar adulteration test. Work by FEPL indicates that this is partly due to the beekeeping practice of feeding sugar to bees during the winter. However, that does not explain the late season failures, or that the extent of failure increases as manuka honey ages. The MGO levels in manuka increase with age and it has been shown that high MGO is correlated with high apparent C4 sugar content. Current research in this field in FEPL is focused on modifying the AOAC method to overcome these false positives in the C4 sugar adulteration. A method has been developed for the removal of MGO prior to the purification of the protein that is measured as internal standard. It is hoped that the removal of the MGO will eliminate the interference in the isotope test. Tests are now underway to establish the optimum conditions for the removal of MGO and to show that the additional procedure does not affect the isotopic composition of the purified protein. Once those tasks are completed the work will move to the validation stage and involve other laboratories to test the procedure. The FEPL is currently carrying out a study on method validation for the detection of several pesticides in potato samples. The extraction and clean-up method used is known as the Quick, Easy, Cheap, Effective Rugged and Safe (QuEchERS) for pesticide residue determination, and uses a gas chromatograph coupled to a mass selective detector (GC-MSD) for analyte separation and detection. According to the SANCO document (SANCO/12571/2013), matrix effects should be assessed at the initial method validation stage. Therefore as part of the calibration strategies for our method both matrix-matched and solvent calibrators were prepared

  17. Analytical Tem Comparisons of Stress-Corrosion-Crack Microstructures in Alloy 600 under Steam-Generator Service and Laboratory Test Conditions

    International Nuclear Information System (INIS)

    Thomas, L.E.; Bruemmer, S.M.; Scott, P.M.

    2002-01-01

    High-resolution analytical transmission electron microscopy (ATEM) has been used to characterize stress-corrosion cracks (SCC) in Alloy 600 steam-generator (SG) tubing from tests with caustic and acid-sulfate solutions. The aim of this work was to identify the microstructural and microchemical signatures of intergranular attack and cracking produced under well-controlled test conditions in order to determine the local environments promoting degradation in service. Cross-sectioned cracks and crack tips were examined in samples of mill-annealed alloy 600 tested in concentrated caustic and acid-sulfate solutions at 320 C. Characteristic microstructures observed in the caustic (10% NaOH) test sample included deeply penetrative attack along crack-intersected grain boundaries, with Cr-rich spinel and NiO structure oxides ranging from random nanocrystalline to oriented epitaxial films filling cracks up to the tips. Sodium was readily detectable in the oxides (up to 5 wt.% in the spinel corrosion product) along with S and Cu enrichment at crack-wall metal/oxide interfaces and local attack of the metal matrix around IG carbide particles. In the sulfate (Na 2 SO 4 + FeSO 4 ) test sample, the grain boundaries were also deeply attacked/cracked. Epitaxial NiO-structure oxide formed on the crack walls and S, sometimes with Cu, was concentrated between the oriented oxide layers rather than along the metal/oxide interfaces. Carbides were attacked and partially converted to fine-grained oxide containing up to several percent S. Observations of crack tips in the acid sulfate sample also revealed nm-wide cracks preceding the oxide along grain boundaries. The SCC structures produced in the laboratory tests differed in most details from the secondary-side SCC structures observed in pulled SG tubes. Important differences included the oxide morphologies, the presence of easily detectable Na and absence of sulfides in the test samples, different types of attack on IG carbide particles

  18. Analytical mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  19. Analytical mass spectrometry. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  20. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Williams, C.H.; Eberhart, C.F.

    1992-01-01

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  1. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  2. Virtual Reality Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research in interactive 3D computer graphics, including visual analytics, virtual environments, and augmented reality (AR). The...

  3. Web Analytics

    Science.gov (United States)

    EPA’s Web Analytics Program collects, analyzes, and provides reports on traffic, quality assurance, and customer satisfaction metrics for EPA’s website. The program uses a variety of analytics tools, including Google Analytics and CrazyEgg.

  4. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  5. Low-Cost Method for Quantifying Sodium in Coconut Water and Seawater for the Undergraduate Analytical Chemistry Laboratory: Flame Test, a Mobile Phone Camera, and Image Processing

    Science.gov (United States)

    Moraes, Edgar P.; da Silva, Nilbert S. A.; de Morais, Camilo de L. M.; das Neves, Luiz S.; de Lima, Kassio M. G.

    2014-01-01

    The flame test is a classical analytical method that is often used to teach students how to identify specific metals. However, some universities in developing countries have difficulties acquiring the sophisticated instrumentation needed to demonstrate how to identify and quantify metals. In this context, a method was developed based on the flame…

  6. Tank 241-BY-108 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  7. Tank 241-BY-110 vapor sampling and analysis tank characterization report

    International Nuclear Information System (INIS)

    Huckaby, J.L.

    1995-01-01

    Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples

  8. Long story short: an introduction to the short-term and long-term Six Sigma quality and its importance in the laboratory medicine for the management of extra-analytical processes.

    Science.gov (United States)

    Ialongo, Cristiano; Bernardini, Sergio

    2018-06-18

    There is a compelling need for quality tools that enable effective control of the extra-analytical phase. In this regard, Six Sigma seems to offer a valid methodological and conceptual opportunity, and in recent times, the International Federation of Clinical Chemistry and Laboratory Medicine has adopted it for indicating the performance requirements for non-analytical laboratory processes. However, the Six Sigma implies a distinction between short-term and long-term quality that is based on the dynamics of the processes. These concepts are still not widespread and applied in the field of laboratory medicine although they are of fundamental importance to exploit the full potential of this methodology. This paper reviews the Six Sigma quality concepts and shows how they originated from Shewhart's control charts, in respect of which they are not an alternative but a completion. It also discusses the dynamic nature of process and how it arises, concerning particularly the long-term dynamic mean variation, and explains why this leads to the fundamental distinction of quality we previously mentioned.

  9. Tank 241-TY-103 headspace gas and vapor characterization results for samples collected in August 1994 and April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  10. Tank 241-TX-118 headspace gas and vapor characterization results for samples collected in September 1994 and December 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  11. Tank 241-C-108 headspace gas and vapor characterization results for samples collected in July 1993 and August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  12. Tank 241-BY-107 headspace gas and vapor characterization results for samples collected in March 1994 and October 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  13. Tank 241-BY-104 headspace gas and vapor characterization results for samples collected in April 1994 and June 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  14. Tank 241-BY-106 headspace gas and vapor characterization results for samples collected in May 1994 and July 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  15. Tank 241-C-112 headspace gas and vapor characterization results for samples collected in June 1994 and August 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  16. Tank 241-BY-103 headspace gas and vapor characterization results for samples collected in May 1994 and November 1994

    International Nuclear Information System (INIS)

    Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  17. Tank 241-C-109 headspace gas and vapor characterization results for samples collected in August 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  18. Tank 241-C-111 headspace gas and vapor characterization results for samples collected in August 1993 and September 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  19. Tank 241-BY-108 headspace gas and vapor characterization results for samples collected in March 1994 and October 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  20. Tank 241-BY-110 Headspace Gas and Vapor Characterization Results for Samples Collected in November 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  1. Tank 241-C-105 headspace gas and vapor characterization results for samples collected in February 1994. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  2. Tank 241-BY-111 headspace gas and vapor characterization results for samples collected in May 1994 and November 1994

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  3. Tank 241-TY-101 headspace gas and vapor characterization results for samples collected in August 1994 and April 1995

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  4. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  5. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  6. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  7. COMPARISON OF THE OCTANOL-AIR PARTITION COEFFICIENT AND LIQUID-PHASE VAPOR PRESSURE AS DESCRIPTORS FOR PARTICLE/GAS PARTITIONING USING LABORATORY AND FIELD DATA FOR PCBS AND PCNS

    Science.gov (United States)

    The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...

  8. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  9. Determining the Antifungal Agent Clioquinol by HPLC, the Not so Pure Preparation: A Laboratory-Based Case Study for an Instrumental Analytical Chemistry Course

    Science.gov (United States)

    Schaber, Peter M.; Hobika, Geoffrey

    2018-01-01

    The case study approach provides students with a better appreciation of how scientists solve problems and conduct themselves in the "real world". When applied to the undergraduate chemistry laboratory, this approach also challenges critical thinking skills and creativity in ways "cook book" experiments very often do not. This…

  10. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  11. A STUDY ON THE EFFECT OF CASE BASED LEARNING FOR PRE-SERVICE SCIENCE TEACHERS’ ATTITUDES TOWARDS AN ANALYTICAL CHEMISTRY LABORATORY EXPERIMENT

    OpenAIRE

    Alpat, Sibel Kılınç; Uyulgan, Melis Arzu; Özbayrak, Özge; Alpat, Şenol

    2011-01-01

    It is aimed to analyze the change of the pre-service science teachers‘ attitudes towards chemistry laboratories using case-based learning, an active learning method, in this research. This research is an semiexperimental study with a control group. The sample of this research was originated by the second-year students (N=61) of the department of science education in Dokuz Eylul University, Faculty of Buca Education. In the first stage of the research, a case about the experiment of determinin...

  12. SRL online Analytical Development

    International Nuclear Information System (INIS)

    Jenkins, C.W.

    1991-01-01

    The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R ampersand D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R ampersand D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control ampersand Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications

  13. Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96

    International Nuclear Information System (INIS)

    Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed

  14. A gasoline vapor monitoring program for a major underground long-term leak

    International Nuclear Information System (INIS)

    Boehler, W.F.; Huttie, R.L.; Hill, K.M.; Ames, P.R.

    1991-01-01

    In January of 1988, a large petroleum distributor located in Long Island, New York, reported that a gasoline leak had occurred, and unfortunately, had gone undetected for a number of years. Since the initial discovery of the greater than 1 million gallon gasoline spill, approximately 110 Vapor Monitoring Wells and more than 120 Water Monitoring Wells have been installed in and around an impacted residential community. This paper will focus on the air monitoring aspects of the gasoline spill project including: (1) air sampling methodology - discussion of strategies, techniques, problems and solutions; (2) analytical methodology - development of a Non-Cryogenic Automated Thermal Desorption GC/MS System for the analysis of Air Toxics; (3) work load requirements for the governmental laboratory; (4) establishment of quality assurance program for participating commercial laboratories; (5) establishment of a computerized quality assured project data base; (6) and interactions with the petroleum distributor, consultants and the residential community

  15. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  16. A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: moderation by method and mental health.

    Science.gov (United States)

    Cardoso, Christopher; Kingdon, Danielle; Ellenbogen, Mark A

    2014-11-01

    A large body of research has examined the acute effects of intranasal oxytocin administration on social cognition and stress-regulation. While progress has been made with respect to understanding the effect of oxytocin administration on social cognition in clinical populations (e.g. autism, schizophrenia), less is known about its impact on the functioning of the hypothalamic-pituitary-adrenal (HPA) axis among individuals with a mental disorder. We conducted a meta-analysis on the acute effect of intranasal oxytocin administration on the cortisol response to laboratory tasks. The search yielded eighteen studies employing a randomized, placebo-controlled design (k=18, N=675). Random-effects models and moderator analyses were performed using the metafor package for the statistical program R. The overall effect size estimate was modest and not statistically significant (Hedges g=-0.151, p=0.11) with moderate heterogeneity in this effect across studies (I(2)=31%). Controlling for baseline differences in cortisol concentrations, moderation analyses revealed that this effect was larger in response to challenging laboratory tasks that produced a robust stimulation of the HPA-axis (Hedges g=-0.433, 95% CI[-0.841, -0.025]), and in clinical populations relative to healthy controls (Hedges g=-0.742, 95% CI[-1.405, -0.078]). Overall, oxytocin administration showed greater attenuation of the cortisol response to laboratory tasks that strongly activated the HPA-axis, relative to tasks that did not. The effect was more robust among clinical populations, suggesting possible increased sensitivity to oxytocin among those with a clinical diagnosis and concomitant social difficulties. These data support the view that oxytocin may play an important role in HPA dysfunction associated with psychopathology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  18. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  19. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  20. Tank Vapor Sampling and Analysis Data Package for Tank 241-Z-361 Sampled 09/22/1999 and 09/27/1999, During Sludge Core Removal

    International Nuclear Information System (INIS)

    VISWANATH, R.S.

    1999-01-01

    This data package presents sampling data and analytical results from the September 22 and 27, 1999, headspace vapor sampling of Hanford Site Tank 241-2-361 during sludge core removal. The Lockheed Martin Hanford Corporation (LMHC) sampling team collected the samples and Waste Management Laboratory (WML) analyzed the samples in accordance with the requirements specified in the 241-2361 Sludge Characterization Sampling and Analysis Plan, (SAP), HNF-4371/Rev. 1, (Babcock and Wilcox Hanford Corporation, 1999). Six SUMMA(trademark) canister samples were collected on each day (1 ambient field blank and 5 tank vapor samples collected when each core segment was removed). The samples were radiologically released on September 28 and October 4, 1999, and received at the laboratory on September 29 and October 6, 1999. Target analytes were not detected at concentrations greater than their notification limits as specified in the SAP. Analytical results for the target analytes and tentatively identified compounds (TICs) are presented in Section 2.2.2 starting on page 2B-7. Three compounds identified for analysis in the SAP were analyzed as TICs. The discussion of this modification is presented in Section 2.2.1.2

  1. Double-Shell Tank (DST) Ventilation System Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples from the primary ventilation systems of the AN, AP, AW, and AY/AZ tank farms. Sampling will be performed in accordance with Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Air DQO) (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications. Vapor samples will be obtained from tank farm ventilation systems, downstream from the tanks and upstream of any filtration. Samples taken in support of the DQO will consist of SUMMA(trademark) canisters, triple sorbent traps (TSTs), sorbent tube trains (STTs), polyurethane foam (PUF) samples. Particulate filter samples and tritium traps will be taken for radiation screening to allow the release of the samples for analysis. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from the vapor samples

  2. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  3. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  4. Analytic trigonometry

    CERN Document Server

    Bruce, William J; Maxwell, E A; Sneddon, I N

    1963-01-01

    Analytic Trigonometry details the fundamental concepts and underlying principle of analytic geometry. The title aims to address the shortcomings in the instruction of trigonometry by considering basic theories of learning and pedagogy. The text first covers the essential elements from elementary algebra, plane geometry, and analytic geometry. Next, the selection tackles the trigonometric functions of angles in general, basic identities, and solutions of equations. The text also deals with the trigonometric functions of real numbers. The fifth chapter details the inverse trigonometric functions

  5. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  6. Tank 241-BY-105 Headspace Gas and Vapor Characterization Results for Samples Collected in May 1994 and July 1994. Revision 2

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-09-01

    Significant changes have been made to all of the original vapor characterization reports. This report documents specific headspace gas and vapor characterization results for all vapor sampling events to date. In addition, changes have been made to the original vapor reports to qualify the data based on quality assurance issues associated with the performing laboratories

  7. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  8. Waste retrieval sluicing system vapor sampling and analysis plan for evaluation of organic emissions, process test phase III

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    1999-01-01

    This sampling and analysis plan identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained to address vapor issues related to the sluicing of tank 241-C-106. Sampling will be performed in accordance with Waste Retrieval Sluicing System Emissions Collection Phase III (Jones 1999) and Process Test Plan Phase III, Waste Retrieval Sluicing System Emissions Collection (Powers 1999). Analytical requirements include those specified in Request for Ecology Concurrence on Draft Strategy/Path Forward to Address Concerns Regarding Organic Emissions from C-106 Sluicing Activities (Peterson 1998). The Waste Retrieval Sluicing System was installed to retrieve and transfer high-heat sludge from tank 241-C-106 to tank 241-AY-102, which is designed for high-heat waste storage. During initial sluicing of tank 241-C-106 in November 1998, operations were halted due to detection of unexpected high volatile organic compounds in emissions that exceeded regulatory permit limits. Several workers also reported smelling sharp odors and throat irritation. Vapor grab samples from the 296-C-006 ventilation system were taken as soon as possible after detection; the analyses indicated that volatile and semi-volatile organic compounds were present. In December 1998, a process test (phase I) was conducted in which the pumps in tanks 241-C-106 and 241-AY-102 were operated and vapor samples obtained to determine constituents that may be present during active sluicing of tank 241-C-106. The process test was suspended when a jumper leak was detected. On March 7, 1999, phase I1 of the process test was performed; the sluicing system was operated for approximately 7 hours and was ended using the controlled shutdown method when the allowable amount of solids were transferred to 241-AY-102. The phase II test was successful, however, further testing is required to obtain vapor samples at higher emission levels

  9. The Marine Sciences Laboratory (MSL)

    Data.gov (United States)

    Federal Laboratory Consortium — The�Marine Sciences Laboratory sits on 140 acres of tidelands and uplands located on Sequim Bay, Washington. Key capabilities include 6,000 sq ft of analytical and...

  10. MIT Lincoln Laboratory Facts 2015

    Science.gov (United States)

    2015-01-01

    Positions filled by engineers and scientists at Lincoln Laboratory require problem-solving ability, analytical skills, and creativity ...balance, as well as offer- ing flexible work schedules, part-time employment, and telecommuting opportunities. Child Care The Lincoln Laboratory

  11. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  12. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  13. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  14. Comparison of vapor sampling system (VSS) and in situ vapor sampling (ISVS) methods on Tanks C-107, BY-108, and S-102. Revision 1

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Edwards, J.A.; Evans, J.C.

    1996-08-01

    This report discusses comparison tests for two methods of collecting vapor samples from the Hanford Site high-level radioactive waste tank headspaces. The two sampling methods compared are the truck-mounted vapor sampling system (VSS) and the cart-mounted in-situ vapor sampling (ISVS). Three tanks were sampled by both the VSS and ISVS methods from the same access risers within the same 8-hour period. These tanks have diverse headspace compositions and they represent the highest known level of several key vapor analytes

  15. Analytic geometry

    CERN Document Server

    Burdette, A C

    1971-01-01

    Analytic Geometry covers several fundamental aspects of analytic geometry needed for advanced subjects, including calculus.This book is composed of 12 chapters that review the principles, concepts, and analytic proofs of geometric theorems, families of lines, the normal equation of the line, and related matters. Other chapters highlight the application of graphing, foci, directrices, eccentricity, and conic-related topics. The remaining chapters deal with the concept polar and rectangular coordinates, surfaces and curves, and planes.This book will prove useful to undergraduate trigonometric st

  16. Analytical methods for toxic gases from thermal degradation of polymers

    Science.gov (United States)

    Hsu, M.-T. S.

    1977-01-01

    Toxic gases evolved from the thermal oxidative degradation of synthetic or natural polymers in small laboratory chambers or in large scale fire tests are measured by several different analytical methods. Gas detector tubes are used for fast on-site detection of suspect toxic gases. The infrared spectroscopic method is an excellent qualitative and quantitative analysis for some toxic gases. Permanent gases such as carbon monoxide, carbon dioxide, methane and ethylene, can be quantitatively determined by gas chromatography. Highly toxic and corrosive gases such as nitrogen oxides, hydrogen cyanide, hydrogen fluoride, hydrogen chloride and sulfur dioxide should be passed into a scrubbing solution for subsequent analysis by either specific ion electrodes or spectrophotometric methods. Low-concentration toxic organic vapors can be concentrated in a cold trap and then analyzed by gas chromatography and mass spectrometry. The limitations of different methods are discussed.

  17. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  18. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-15

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  19. Analytical chemistry

    International Nuclear Information System (INIS)

    Chae, Myeong Hu; Lee, Hu Jun; Kim, Ha Seok

    1989-02-01

    This book give explanations on analytical chemistry with ten chapters, which deal with development of analytical chemistry, the theory of error with definition and classification, sample and treatment gravimetry on general process of gravimetry in aqueous solution and non-aqueous solution, precipitation titration about precipitation reaction and types, complexometry with summary and complex compound, oxidation-reduction equilibrium on electrode potential and potentiometric titration, solvent extraction and chromatograph and experiment with basic operation for chemical experiment.

  20. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  1. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  2. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  3. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  4. Vaporization of low-volatile fission products under severe CANDU reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Corse, B.J.; Thompson, W.T.; Kaye, M.H.; Iglesias, F.C.; Elder, P.; Dickson, R.; Liu, Z.

    1997-01-01

    An analytical model has been developed to describe the release behaviour of low-volatile fission products from uranium dioxide fuel under severe reactor accident conditions. The effect of the oxygen potential on the chemical form and volatility of fission products is determined by Gibbs-energy minimization. The release kinetics are calculated according to the rate-controlling step of diffusional transport in the fuel matrix or fission product vaporization from the fuel surface. The effect of fuel volatilization (i.e., matrix stripping) on the release behaviour is also considered. The model has been compared to data from an out-of-pile annealing experiment performed in steam at the Chalk River Laboratories. (author)

  5. Analytic chemistry of molybdenum

    International Nuclear Information System (INIS)

    Parker, G.A.

    1983-01-01

    Electrochemical, colorimetric, gravimetric, spectroscopic, and radiochemical methods for the determination of molybdenum are summarized in this book. Some laboratory procedures are described in detail while literature citations are given for others. The reader is also referred to older comprehensive reviews of the analytical chemistry of molybdenum. Contents, abridged: Gravimetric methods. Titrimetric methods. Colorimetric methods. X-ray fluorescence. Voltammetry. Catalytic methods. Molybdenum in non-ferrous alloys. Molydbenum compounds

  6. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  7. Dark Field Microscopy for Analytical Laboratory Courses

    Science.gov (United States)

    Augspurger, Ashley E.; Stender, Anthony S.; Marchuk, Kyle; Greenbowe, Thomas J.; Fang, Ning

    2014-01-01

    An innovative and inexpensive optical microscopy experiment for a quantitative analysis or an instrumental analysis chemistry course is described. The students have hands-on experience with a dark field microscope and investigate the wavelength dependence of localized surface plasmon resonance in gold and silver nanoparticles. Students also…

  8. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOC and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program

  9. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    The methods cover: C in solutions, F (electrode), elements by atomic emission spectrometry, inorganic anions by ion chromatography, Hg in water/solids/sludges, As, Se, Bi, Pb, data calculations for SST (single shell tank?) samples, Sb, Tl, Ag, Pu, O/M ratio, ignition weight loss, pH value, ammonia (N), Cr(VI), alkalinity, U, C sepn. from soil/sediment/sludge, Pu purif., total N, water, C and S, surface Cl/F, leachable Cl/F, outgassing of Ge detector dewars, gas mixing, gas isotopic analysis, XRF of metals/alloys/compounds, H in Zircaloy, H/O in metals, inpurity extraction, reduced/total Fe in glass, free acid in U/Pu solns, density of solns, Kr/Xe isotopes in FFTF cover gas, H by combustion, MS of Li and Cs isotopes, MS of lanthanide isotopes, GC operation, total Na on filters, XRF spectroscopy QC, multichannel analyzer operation, total cyanide in water/solid/sludge, free cyanide in water/leachate, hydrazine conc., ICP-MS, 99 Tc, U conc./isotopes, microprobe analysis of solids, gas analysis, total cyanide, H/N 2 O in air, and pH in soil

  10. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids

  11. Expert Systems for the Analytical Laboratory.

    Science.gov (United States)

    de Monchy, Allan R.; And Others

    1988-01-01

    Discusses two computer problem solving programs: rule-based expert systems and decision analysis expert systems. Explores the application of expert systems to automated chemical analyses. Presents six factors to consider before using expert systems. (MVL)

  12. Analytical Chemistry Laboratory (ACL) procedure compendium

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules

  13. Biomass Compositional Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov (United States)

    Biomass Compositional Analysis Laboratory Procedures Biomass Compositional Analysis Laboratory Procedures NREL develops laboratory analytical procedures (LAPs) for standard biomass analysis. These procedures help scientists and analysts understand more about the chemical composition of raw biomass

  14. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  15. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  16. Vaporization of structural materials in severe accidents

    International Nuclear Information System (INIS)

    Lorenz, R.A.

    1982-01-01

    Vaporized structural materials form the bulk of aerosol particles that can transport fission products in severe LWR accidents. As part of the Severe Accident Sequence Analysis (SASA) program at Oak Ridge National Laboratory, a model has been developed based on a mass transport coefficient to describe the transport of materials from the surface of a molten pool. In many accident scenarios, the coefficient can be calculated from existing correlations for mass transfer by natural convection. Data from SASCHA fuel melting tests (Karlsruhe, Germany) show that the partial pressures of many of the melt components (Fe, Cr, Co, Mn, Sn) required for the model can be calculated from the vapor pressures of the pure species and Raoult's law. These calculations indicate much lower aerosol concentrations than reported in previous studies

  17. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  18. Analytical mechanics

    CERN Document Server

    Lemos, Nivaldo A

    2018-01-01

    Analytical mechanics is the foundation of many areas of theoretical physics including quantum theory and statistical mechanics, and has wide-ranging applications in engineering and celestial mechanics. This introduction to the basic principles and methods of analytical mechanics covers Lagrangian and Hamiltonian dynamics, rigid bodies, small oscillations, canonical transformations and Hamilton–Jacobi theory. This fully up-to-date textbook includes detailed mathematical appendices and addresses a number of advanced topics, some of them of a geometric or topological character. These include Bertrand's theorem, proof that action is least, spontaneous symmetry breakdown, constrained Hamiltonian systems, non-integrability criteria, KAM theory, classical field theory, Lyapunov functions, geometric phases and Poisson manifolds. Providing worked examples, end-of-chapter problems, and discussion of ongoing research in the field, it is suitable for advanced undergraduate students and graduate students studying analyt...

  19. 7 CFR 94.103 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.103 Section 94.103 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.103 Analytical methods. The analytical methods used by the Science and Technology Division laboratories to perform voluntary analyses for egg...

  20. 7 CFR 98.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 98.4 Section 98.4 Agriculture....4 Analytical methods. (a) The majority of analytical methods used by the USDA laboratories to perform analyses of meat, meat food products and MRE's are listed as follows: (1) Official Methods of...

  1. 7 CFR 94.4 - Analytical methods.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analytical methods. 94.4 Section 94.4 Agriculture... POULTRY AND EGG PRODUCTS Mandatory Analyses of Egg Products § 94.4 Analytical methods. The majority of analytical methods used by the USDA laboratories to perform mandatory analyses for egg products are listed as...

  2. Analytical quadrics

    CERN Document Server

    Spain, Barry; Ulam, S; Stark, M

    1960-01-01

    Analytical Quadrics focuses on the analytical geometry of three dimensions. The book first discusses the theory of the plane, sphere, cone, cylinder, straight line, and central quadrics in their standard forms. The idea of the plane at infinity is introduced through the homogenous Cartesian coordinates and applied to the nature of the intersection of three planes and to the circular sections of quadrics. The text also focuses on paraboloid, including polar properties, center of a section, axes of plane section, and generators of hyperbolic paraboloid. The book also touches on homogenous coordi

  3. Croatian Analytical Terminology

    Directory of Open Access Journals (Sweden)

    Kastelan-Macan; M.

    2008-04-01

    Full Text Available Results of analytical research are necessary in all human activities. They are inevitable in making decisions in the environmental chemistry, agriculture, forestry, veterinary medicine, pharmaceutical industry, and biochemistry. Without analytical measurements the quality of materials and products cannot be assessed, so that analytical chemistry is an essential part of technical sciences and disciplines.The language of Croatian science, and analytical chemistry within it, was one of the goals of our predecessors. Due to the political situation, they did not succeed entirely, but for the scientists in independent Croatia this is a duty, because language is one of the most important features of the Croatian identity. The awareness of the need to introduce Croatian terminology was systematically developed in the second half of the 19th century, along with the founding of scientific societies and the wish of scientists to write their scientific works in Croatian, so that the results of their research may be applied in economy. Many authors of textbooks from the 19th and the first half of the 20th century contributed to Croatian analytical terminology (F. Rački, B. Šulek, P. Žulić, G. Pexidr, J. Domac, G. Janeček , F. Bubanović, V. Njegovan and others. M. DeŢelić published the first systematic chemical terminology in 1940, adjusted to the IUPAC recommendations. In the second half of 20th century textbooks in classic analytical chemistry were written by V. Marjanović-Krajovan, M. Gyiketta-Ogrizek, S. Žilić and others. I. Filipović wrote the General and Inorganic Chemistry textbook and the Laboratory Handbook (in collaboration with P. Sabioncello and contributed greatly to establishing the terminology in instrumental analytical methods.The source of Croatian nomenclature in modern analytical chemistry today are translated textbooks by Skoog, West and Holler, as well as by Günnzler i Gremlich, and original textbooks by S. Turina, Z.

  4. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  5. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  6. Lab-scale tests on ISV vapor transport phenomena

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Gardner, B.M.

    1996-01-01

    In situ vitrification (ISV) is a promising technology for remediating buried waste sites and contaminated soil sites. However, concerns exist that low soil permeabilities may limit vapor transport away from the advancing melt front and cause a melt expulsion that breaches ISV containment. As a result, two ISV lab tests were conducted at the Idaho National Engineering Laboratory (INEL) using INEL soil (permeability: 10 -6 cm/s) and a low permeability (10 -10 cm/s) clay material. The clay test also had a ceramic tube inserted vertically through the center of the area being melted to provide one-dimensional data on vapor transport. Results confirm that low soil permeabilities can limit vapor transport away from the advancing ISV melt front. In addition, peak pressures inside the ceramic tube were significantly greater than those outside the tube, indicating the importance of horizontal vapor transport around the advancing ISV melt front

  7. Schedule Analytics

    Science.gov (United States)

    2016-04-30

    Warfare, Naval Sea Systems Command Acquisition Cycle Time : Defining the Problem David Tate, Institute for Defense Analyses Schedule Analytics Jennifer...research was comprised of the following high- level steps :  Identify and review primary data sources 1...research. However, detailed reviews of the OMB IT Dashboard data revealed that schedule data is highly aggregated. Program start date and program end date

  8. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  9. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    . These discrepancies are very unfortunate because erroneous conclusions may arise from an otherwise meticulous and dedicated effort of research staff. This may eventually lead to unreliable conclusions thus jeopardizing investigations of environmental monitoring, climate changes, food safety, clinical chemistry......It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...

  10. DESEMPEÑO ANALÍTICO EN LA DETERMINACIÓN DE COLESTEROL Y TRIGLICÉRIDOS EN LABORATORIOS CLÍNICOS DE LA CIUDAD DE MARACAIBO, VENEZUELA I ANALYTICAL PERFORMANCE IN THE DETERMINATION OF CHOLESTEROL AND TRIGLICERIDES IN CLINICAL LABORATORIES FROM MARACAIBO CITY, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Solbellys Cruz

    2018-04-01

    Full Text Available In order to evaluate the analytical performance in the determination of total cholesterol (CT and triglycerides (TG in clinical laboratories in the city of Maracaibo, Venezuela , applying an external quality assessment ( EQA, six comercial controls sera normal (CN and six abnormal (CA were distributed to thirteen laboratories using automated equipment for these measurements. To assess the performance inter-and intralaboratory, the precision was determined through the coefficient of variation (CV and accuracy by calculating the relative percent deviation (DRP. The analytical goal for the interlaboratory evaluation was following Aspen ́s criteria, (CV for CT up to 8.3 % and for TG up to 12.5 % and for intralaboratory using six sigma criteria: 2.8 % for CT and 4.2 % for TG. In interlaboratory precision, the CV obtained was 7.88% and 9.35% for CT and TG, respectively; and for intralaboratory, CV for CT was 4.87% and 5.84% for TG. From the laboratories evaluated, only 15.38% for CT and 46.15% for TG reached the the intralaboratory precision. The percentage of laboratories with acceptable DRP to CT was 73.08% and 92.11% for TG. Most laboratories did not reach the analytical goal in relation to intralaboratory precision and the accuracy was satisfactory for both determinations and both controls. It was concluded that the transferability of results between laboratories in the region is possible for CT and TG, getting the best analytical performance for TG. It was also shown internal quality control failures, requiring the implementation of EQA programs in the region

  11. Preparation, Delivery, and Evaluation of Picomole Vapor Standards

    Science.gov (United States)

    2013-07-10

    trace vapor standards is consistent production and a reliable means to transport and deliver the vapor to the analytical system being evaluated...8 32.6 8.92 Ethylbenzene 100-41-4 9.21 8.31x10-9 32.8 8.41 1,7-Octadiene 3710-30-3 22.5 4.74x10-9 31.8 10.7 Styrene 100-42-5 6.21 2.77x10-9 31.9

  12. Techniques for the generation and monitoring of vapors

    International Nuclear Information System (INIS)

    Nelson, G.O.

    1981-01-01

    Controlled test atmospheres can be produced using a variety of techniques. Gases are usually generated by using flow dilution methods while vapors are produced by using solvent injection and vaporization, saturation, permeation and diffusion techniques. The resulting gas mixtures can be monitored and measured using flame ionization, photoionization, electrochemical and infrared analytical systems. An ideal system for the production of controlled test atmospheres would not only be able to generate controlled test atmospheres, but also monitor all pertinent environmental parameters, such as temperature, humidity, and air flow

  13. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  14. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  15. Analytical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Seong

    1993-02-15

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  16. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  17. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  18. Characterization of a Compact Water Vapor Radiometer

    Science.gov (United States)

    Gill, Ajay; Selina, Rob

    2018-01-01

    We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in perceptible water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. The design is intended to support empirical radiometric phase corrections for each baseline in the array.The dynamic range, channel isolation, and gain stability of the device were characterized. The device has a useful dynamic range of order 18 dB after calibration, and the CWVR channel isolation requirement of test, the diode detectors were operated in the square-law region, and a K-band noise diode was used as the broadband input power source to the CWVR over a period of 64 hours. Results indicate that the fluctuations in output counts are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1° C change in temperature.A correction for the CWVR ambient temperature makes a considerable improvement in stability for τ > 102.6 sec. With temperature corrections, the single channel and channel difference gain stability per channel is test results indicate that the CWVR meets required specifications for dynamic range, channel isolation, and gain stability in order to proceed with testing on a pair of VLA antennas.

  19. A critical review of vapor generation laws used for the analysis of two-phase flows in pipes

    International Nuclear Information System (INIS)

    Berne, P.

    1983-05-01

    Some vapor generation laws are reviewed and discussed. They are divided into empirical and analytical laws. Analytical laws are first examined. These laws result from analytical solutions of the local instantaneous equations applied to elementary cases. Empirical laws, i.e. laws that are determined by correlations with experimental data, are then discussed [fr

  20. The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques

    Science.gov (United States)

    Fahey, D. W.; Gao, R.-S.; Möhler, O.; Saathoff, H.; Schiller, C.; Ebert, V.; Krämer, M.; Peter, T.; Amarouche, N.; Avallone, L. M.; Bauer, R.; Bozóki, Z.; Christensen, L. E.; Davis, S. M.; Durry, G.; Dyroff, C.; Herman, R. L.; Hunsmann, S.; Khaykin, S. M.; Mackrodt, P.; Meyer, J.; Smith, J. B.; Spelten, N.; Troy, R. F.; Vömel, H.; Wagner, S.; Wienhold, F. G.

    2014-09-01

    substantially larger differences observed during in-flight intercomparisons stem from other factors associated with the moving platforms or the non-laboratory environment. The success of AquaVIT-1 provides a template for future intercomparison efforts with water vapor or other species that are focused on improving the analytical quality of atmospheric measurements on moving platforms.

  1. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  2. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  3. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  4. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  5. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  6. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  7. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  8. HYDROMECHANICS LABORATORY

    Data.gov (United States)

    Federal Laboratory Consortium — Naval Academy Hydromechanics LaboratoryThe Naval Academy Hydromechanics Laboratory (NAHL) began operations in Rickover Hall in September 1976. The primary purpose of...

  9. Design/installation and structural integrity assessment under the Federal Facility Agreement for Bethel Valley Low-Level Waste Collection and Transfer System upgrade for Building 2026 (High Radiation Level Analytical Laboratory) and Building 2099 (Monitoring and Control Station) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document presents a Design/Installation and Structural Integrity Assessment for a replacement tank system for portions of the Bethel Valley Low Level Waste (LLW) System, located at the Oak Ridge Reservation, Oak Ridge, Tennessee. This issue of the assessment covers the design aspects of the replacement tank system, and certifies that the design has sufficient structural integrity and is acceptable for the storing or treating of hazardous and/or radioactive substances. The present issue identifies specific activities that must be completed during the fabrication, installation, and testing of the replacement tank system in order to provide assurance that the final installation complies with governing requirements. Portions of the LLW system are several decades old, or older, and do not comply with current environmental protection regulations. Several subsystems of the LLW system have been designated to receive a state-of-the-art replacement and refurbishment. One such subsystem serves Building 2026, the High Radiation Level Analytical Laboratory. This assessment focuses on the scope of work for the Building 2026 replacement LLW Collection and Transfer System, including the provision of a new Monitoring and Control Station (Building 2099) to receive, store, and treat (adjust pH) low level radioactive waste

  10. Analysis and Evaluation of a Vapor-Chamber Fin-Tube Radiator for High-Power Rankine Cycles

    National Research Council Canada - National Science Library

    Haller, Henry

    1965-01-01

    An analytical investigation of a flat, direct- condensing fin-tube radiator employing segmented vapor-chamber fins as a means of improving heat rejection was performed A for illustrative high-power...

  11. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  12. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  13. Analytical mechanics

    CERN Document Server

    Helrich, Carl S

    2017-01-01

    This advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment...

  14. Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96

    International Nuclear Information System (INIS)

    Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1997-01-01

    This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company

  15. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  16. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  17. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  18. Analytical and Radiochemistry for Nuclear Forensics

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert Ernest [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dry, Donald E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kinman, William Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Podlesak, David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tandon, Lav [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    Information about nonproliferation nuclear forensics, activities in forensics at Los Alamos National Laboratory, radio analytical work at LANL, radiochemical characterization capabilities, bulk chemical and materials analysis capabilities, and future interests in forensics interactions.

  19. Procedures For Microbial-Ecology Laboratory

    Science.gov (United States)

    Huff, Timothy L.

    1993-01-01

    Microbial Ecology Laboratory Procedures Manual provides concise and well-defined instructions on routine technical procedures to be followed in microbiological laboratory to ensure safety, analytical control, and validity of results.

  20. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  1. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  2. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  3. The radiological services laboratory

    International Nuclear Information System (INIS)

    Hardt, T.L.; Schutt, S.M.; Doran, K.S.; Dihel, D.L.; Lucas, R.O. II; Eifert, T.K.

    1992-01-01

    A new state of the art radiochemistry laboratory incorporating advanced design and environmental control elements has been constructed in Atlanta, Georgia. The design of the facility is oriented to the efficient production of analytical sample results which meet regulatory requirements while at the same time provides an atmosphere that is pleasurable for analysts and visitors alike. The laboratory building contains two separate and distinct laboratories under one roof. This allows the facility to handle samples with low levels of radioactivity on one side of the lab without fear of contamination of environmental work on the other side. Unlike most laboratories, this facility utilizes a scrubber system and liquid waste holdup system to prevent accidental releases to the environment. The potential spread of radioactive contamination is controlled through the use of negative pressure ventillation zones. Construction techniques, laboratory systems, instrumentation and ergonomic considerations will also be discussed. (author) 1 fig

  4. Analytical applications of ion exchangers

    CERN Document Server

    Inczédy, J

    1966-01-01

    Analytical Applications of Ion Exchangers presents the laboratory use of ion-exchange resins. This book discusses the development in the analytical application of ion exchangers. Organized into 10 chapters, this book begins with an overview of the history and significance of ion exchangers for technical purposes. This text then describes the properties of ion exchangers, which are large molecular water-insoluble polyelectrolytes having a cross-linked structure that contains ionic groups. Other chapters consider the theories concerning the operation of ion-exchange resins and investigate th

  5. Vapor space characterization of waste tank 241-C-101: Results from samples collected on 9/1/94

    International Nuclear Information System (INIS)

    Lucke, R.B.; Clauss, T.W.; Ligotke, M.W.

    1995-11-01

    This report describes results of the analyses of tank-headspace samples taken from the Hanford waste Tank 241-C-101 (referred to as Tank C-101) and the ambient air collected - 30 ft upwind near the tank and through the VSS near the tank. Pacific Northwest Laboratory (PNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and to analyze inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The sample job was designated S4056, and samples were collected by WHC on September 1, 1994, using the vapor sampling system (VSS). The samples were inspected upon delivery to the 326/23B laboratory and logged into PNL record book 55408 before implementation of PNL Technical Procedure PNL-TVP-07. Custody of the sorbent traps was transferred to PNL personnel performing the inorganic analysis and stored at refrigerated (≤ 10 degrees C) temperature until the time of analysis. The canisters were stored in the 326/23B laboratory at ambient (25 degrees C) temperature until the time of the analysis. Access to the 326/23B laboratory is limited to PNL personnel working on the waste-tank safety program. Analyses described in this report were performed at PNL in the 300 area of the Hanford Reservation. Analytical methods that were used are described in the text. In summary, sorbent traps for inorganic analyses containing sample materials were either weighed (for water analysis) or desorbed with the appropriate aqueous solutions (for NH 3 , NO 2 , and NO analyses). The aqueous extracts were analyzed either by selective electrode or by ion chromatography (IC). Organic analyses were performed using cryogenic preconcentration followed by gas chromatography/mass spectrometry (GC/MS)

  6. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  7. Blackroom Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables evaluation and characterization of materials ranging from the ultraviolet to the longwave infrared (LWIR).DESCRIPTION: The Blackroom Laboratory is...

  8. Field tests of a chemiresistor sensor for in-situ monitoring of vapor-phase contaminants

    Science.gov (United States)

    Ho, C.; McGrath, L.; Wright, J.

    2003-04-01

    An in-situ chemiresistor sensor has been developed that can detect volatile organic compounds in subsurface environmental applications. Several field tests were conducted in 2001 and 2002 to test the reliability, operation, and performance of the in-situ chemiresistor sensor system. The chemiresistor consists of a carbon-loaded polymer deposited onto a microfabricated circuit. The polymer swells reversibly in the presence of volatile organic compounds as vapor-phase molecules absorb into the polymer, causing a change in the electrical resistance of the circuit. The change in resistance can be calibrated to known concentrations of analytes, and arrays of chemiresistors can be used on a single chip to aid in discrimination. A waterproof housing was constructed to allow the chemiresistor to be used in a variety of media including air, soil, and water. The integrated unit, which can be buried in soils or emplaced in wells, is connected via cable to a surface-based solar-powered data logger. A cell-phone modem is used to automatically download the data from the data logger on a periodic basis. The field tests were performed at three locations: (1) Edwards Air Force Base, CA; (2) Nevada Test Site; and (3) Sandia's Chemical Waste Landfill near Albuquerque, NM. The objectives of the tests were to evaluate the ruggedness, longevity, operation, performance, and engineering requirements of these sensors in actual field settings. Results showed that the sensors could be operated continuously for long periods of time (greater than a year) using remote solar-powered data-logging stations with wireless telemetry. The sensor housing, which was constructed of 304 stainless steel, showed some signs of corrosion when placed in contaminated water for several months, but the overall integrity was maintained. The detection limits of the chemiresistors were generally found to be near 0.1% of the saturated vapor pressure of the target analyte in controlled laboratory conditions (e

  9. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  10. Customer exposure to gasoline vapors during refueling at service stations.

    Science.gov (United States)

    Hakkola, M A; Saarinen, L H

    2000-09-01

    Gasoline is a volatile complex mixture of hydrocarbon compounds that is easily vaporized during handling under normal conditions. Modern reformulated gasoline also contains oxygenates to enhance octane number and reduce ambient pollution. This study measured the difference in the exposure of customers to gasoline and oxygenate vapors during refueling in service stations with and without vapor recovery systems. Field measurements were carried out at two self-service stations. One was equipped with Stage I and the other with Stage II vapor recovery systems. At Stage I stations there is vapor recovery only during delivery from road tanker, and at Stage II stations additional vapor recovery during refueling. The exposure of 20 customers was measured at both stations by collecting air samples from their breathing zone into charcoal tubes during refueling with 95-octane reformulated gasoline. Each sample represented two consecutive refuelings. The samples were analyzed in the laboratory by gas chromatography using mass-selective detection for vapor components. The Raid vapor pressure of gasoline was 70 kPa and an oxygen content 2 wt%. Oxygenated gasoline contained 7 percent methyl tert-butyl ether (MtBE) and 5 percent methyl tert-amyl ether (MtAE). The geometric mean concentrations of hydrocarbons (C3-C11) in the customers' breathing zone was 85 mg/m3 (range 2.5-531 mg/m3) at the Stage I service station and 18 mg/m3 (range service station. The geometric mean of the exposure of customers to MtBE during refueling at the Stage I service station was 15.3 mg/m3 (range 1.8-74 mg/m3), and at the Stage II service station 3.4 mg/m3 (range 0.2-16 mg/m3). The differences in exposure were statistically significant (p station. The measurements were done on consecutive days at the various service stations. The temperature ranged from 10 to 17 degrees C, and wind velocity was 2-4 m/s. The climatic conditions were very similar on the measurement days. Based on this study it was found

  11. A semiempirical correlation between enthalpy of vaporization and saturation concentration for organic aerosol.

    Science.gov (United States)

    Epstein, Scott A; Riipinen, Ilona; Donahue, Neil M

    2010-01-15

    To model the temperature-induced partitioning of semivolatile organics in laboratory experiments or atmospheric models, one must know the appropriate heats of vaporization. Current treatments typically assume a constant value of the heat of vaporization or else use specific values from a small set of surrogate compounds. With published experimental vapor-pressure data from over 800 organic compounds, we have developed a semiempirical correlation between the saturation concentration (C*, microg m(-3)) and the heat of vaporization (deltaH(VAP), kJ mol(-1)) for organics in the volatility basis set. Near room temperature, deltaH(VAP) = -11 log(10)C(300)(*) + 129. Knowledge of the relationship between C* and deltaH(VAP) constrains a free parameter in thermodenuder data analysis. A thermodenuder model using our deltaH(VAP) values agrees well with thermal behavior observed in laboratory experiments.

  12. Tank 241-AZ-101 and tank 241-AZ-102, airlift circulator operation vapor sampling and analysis plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    1999-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of the tank 241-AZ-101 and 241-AZ-102 airlift circulators (ALCs). The purpose of the ALC operation is to support portions of the operational test procedure (OTP) for Project W-030 (OTP-W030-001) and to perform functional test in support of Project W-151. Project W-030 is the 241-A-702 ventilation upgrade project (241-AZ-702) and Project W-151 is the 241-AZ-101 Mixer Pump Test. The functional tests will check the operability of the tank 241-AZ-101 ALCs. Process Memo's No.2E98-082 and No.2E99-001 (LMHC 1999a, LMHC 1999b) direct the operation of the ALCs and the Industrial Hygiene monitoring respectively. A series of tests will be conducted in which the ALCs in tanks 241-AZ-101 and 241-AZ-102 will be operated at different air flow rates. Vapor samples will be obtained to determine constituents that may be present in the tank headspace during ALC operation at tanks 241-AZ-101 and 241-AZ-102 as the waste is disturbed. During the testing, vapor samples will be obtained from the headspace of tanks 241-AZ-101 and 241-AZ-102 via the unused port on the standard hydrogen monitoring system (SHMS). Results will be used to provide the waste feed delivery program with environmental air permitting data for tank waste disturbing activities. Because of radiological concerns, the samples will be filtered for particulates. It is recognized that this may remove some organic compounds

  13. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1966-01-01

    The second panel on the Analytical Chemistry of Nuclear Materials was organized for two purposes: first, to advise the Seibersdorf Laboratory of the Agency on its future programme, and second, to review the results of the Second International Comparison of routine analysis of trace impurities in uranium and also the action taken as a result of the recommendations of the first panel in 1962. Refs, figs and tabs

  14. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40{degrees}C temperature range with removal being completely inhibited at 54{degrees}C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  15. Removal of gasoline vapors from air streams by biofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Kant, W.D.; Colwell, F.S.; Singleton, B.; Lee, B.D.; Andrews, G.F.; Espinosa, A.M.; Johnson, E.G.

    1993-03-01

    Research was performed to develop a biofilter for the biodegradation of gasoline vapors. The overall goal of this effort was to provide information necessary for the design, construction, and operation of a commercial gasoline vapor biofilter. Experimental results indicated that relatively high amounts of gasoline vapor adsorption occur during initial exposure of the biofilter bed medium to gasoline vapors. Biological removal occurs over a 22 to 40[degrees]C temperature range with removal being completely inhibited at 54[degrees]C. The addition of fertilizer to the relatively fresh bed medium used did not increase the rates of gasoline removal in short term experiments. Microbiological analyses indicated that high levels of gasoline degrading microbes are naturally present in the bed medium and that additional inoculation with hydrocarbon degrading cultures does not appreciably increase gasoline removal rates. At lower gasoline concentrations, the vapor removal rates were considerably lower than those at higher gasoline concentrations. This implies that system designs facilitating gasoline transport to the micro-organisms could substantially increase gasoline removal rates at lower gasoline vapor concentrations. Test results from a field scale prototype biofiltration system showed volumetric productivity (i.e., average rate of gasoline degradation per unit bed volume) values that were consistent with those obtained with laboratory column biofilters at similar inlet gasoline concentrations. In addition, total benzene, toluene, ethyl-benzene, and xylene (BTEX) removal over the operating conditions employed was 50 to 55%. Removal of benzene was approximately 10 to 15% and removal of the other members of the BTEX group was much higher, typically >80%.

  16. Carbonyl Compounds Produced by Vaporizing Cannabis Oil Thinning Agents.

    Science.gov (United States)

    Troutt, William D; DiDonato, Matthew D

    2017-11-01

    Cannabis use has increased in the United States, particularly the use of vaporized cannabis oil, which is often mixed with thinning agents for use in vaporizing devices. E-cigarette research shows that heated thinning agents produce potentially harmful carbonyls; however, similar studies have not been conducted (1) with agents that are commonly used in the cannabis industry and (2) at temperatures that are appropriate for cannabis oil vaporization. The goal of this study was to determine whether thinning agents used in the cannabis industry produce potentially harmful carbonyls when heated to a temperature that is appropriate for cannabis oil vaporization. Four thinning agents (propylene glycol [PG], vegetable glycerin [VG], polyethylene glycol 400 [PEG 400], and medium chain triglycerides [MCT]) were heated to 230°C and the resulting vapors were tested for acetaldehyde, acrolein, and formaldehyde. Each agent was tested three times. Testing was conducted in a smoking laboratory. Carbonyl levels were measured in micrograms per puff block. Analyses showed that PEG 400 produced significantly higher levels of acetaldehyde and formaldehyde than PG, MCT, and VG. Formaldehyde production was also significantly greater in PG compared with MCT and VG. Acrolein production did not differ significantly across the agents. PG and PEG 400 produced high levels of acetaldehyde and formaldehyde when heated to 230°C. Formaldehyde production from PEG 400 isolate was particularly high, with one inhalation accounting for 1.12% of the daily exposure limit, nearly the same exposure as smoking one cigarette. Because PG and PEG 400 are often mixed with cannabis oil, individuals who vaporize cannabis oil products may risk exposure to harmful formaldehyde levels. Although more research is needed, consumers and policy makers should consider these potential health effects before use and when drafting cannabis-related legislation.

  17. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  18. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  19. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    decomposition of metal oxide, is the most probable source of chemical energy, which facilitates the vaporization. Intensity of the process depends on chemical properties of the sample and substrate and efficiency of mass and heat transfer by the protective gas. The discussed mechanism of chemically assisted vapor release signifies the energy exchange between all participants of the vaporization process in ET AAS including the matrix, modifier, purge gas and analyte. The finding contributes in the ET AAS theory regarding the mechanisms of vaporization and mass transfer in the presence of matrix and modifiers

  20. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  1. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  2. Optimization of a Laboratory-Developed Test Utilizing Roche Analyte-Specific Reagents for Detection of Staphylococcus aureus, Methicillin-Resistant S. aureus, and Vancomycin-Resistant Enterococcus Species▿

    OpenAIRE

    Mehta, Maitry S.; Paule, Suzanne M.; Hacek, Donna M.; Thomson, Richard B.; Kaul, Karen L.; Peterson, Lance R.

    2008-01-01

    Nasal and perianal swab specimens were tested for detection of Staphylococcus aureus and vancomycin-resistant Enterococcus species (VRE) using a laboratory-developed real-time PCR test and microbiological cultures. The real-time PCR and culture results for S. aureus were similar. PCR had adequate sensitivity, but culture was more specific for the detection of VRE.

  3. Analytical Chemistry and Measurement Science: (What Has DOE Done for Analytical Chemistry?)

    Science.gov (United States)

    Shults, W. D.

    1989-04-01

    Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or were brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business.

  4. Tank vapor characterization project. Headspace vapor characterization of Hanford waste Tank SX-101: Results from samples collected on 07/21/95

    International Nuclear Information System (INIS)

    Evans, J.C.; Clauss, T.W.; McVeety, B.D.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

    1996-05-01

    Results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank-farm operations. They include air concentrations of inorganic and organic analytes and grouped compounds from samples. The vapor concentrations are based either on whole-volume samples or on sorbent traps exposed to sample flow. No immediate notifications were needed because analytical results indicated no specific analytes exceeded notification levels. Summary of results: NH3, 3.8 ppmv; NO2, 0.10 ppmv; NO, 0.13 ppm; H2O, 11.8 mg/L; CO2, 338 ppmv; CO, 3 ; methanol, 0.060 ppmv; acetone, 0.033 ppmv; trichlorofluoromethane, 0.023 ppmv; and acetone, 0.034 ppmv

  5. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  6. Reid Vapor Pressure (RVP) of Gasoline Spreadsheet Example Key for Requirements at 40 CFR 80.47(g) and 80.47(l)

    Science.gov (United States)

    This guidance deals with the self-qualification of analytical test methods at a testing facility for measuring Reid Vapor Pressure (RVP) of gasoline to meet precision requirements codified in regulations.

  7. Microplasmas for chemical analysis: analytical tools or research toys?

    International Nuclear Information System (INIS)

    Karanassios, Vassili

    2004-01-01

    An overview of the activities of the research groups that have been involved in fabrication, development and characterization of microplasmas for chemical analysis over the last few years is presented. Microplasmas covered include: miniature inductively coupled plasmas (ICPs); capacitively coupled plasmas (CCPs); microwave-induced plasmas (MIPs); a dielectric barrier discharge (DBD); microhollow cathode discharge (MCHD) or microstructure electrode (MSE) discharges, other microglow discharges (such as those formed between 'liquid' electrodes); microplasmas formed in micrometer-diameter capillary tubes for gas chromatography (GC) or high-performance liquid chromatography (HPLC) applications, and a stabilized capacitive plasma (SCP) for GC applications. Sample introduction into microplasmas, in particular, into a microplasma device (MPD), battery operation of a MPD and of a mini- in-torch vaporization (ITV) microsample introduction system for MPDs, and questions of microplasma portability for use on site (e.g., in the field) are also briefly addressed using examples of current research. To emphasize the significance of sample introduction into microplasmas, some previously unpublished results from the author's laboratory have also been included. And an overall assessment of the state-of-the-art of analytical microplasma research is provided

  8. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  9. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  10. Analytical quality control [An IAEA service

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-07-01

    In analytical chemistry the determination of small or trace amounts of elements or compounds in different types of materials is increasingly important. The results of these findings have a great influence on different fields of science, and on human life. Their reliability, precision and accuracy must, therefore, be checked by analytical quality control measures. The International Atomic Energy Agency (IAEA) set up an Analytical Quality Control Service (AQCS) in 1962 to assist laboratories in Member States in the assessment of their reliability in radionuclide analysis, and in other branches of applied analysis in which radionuclides may be used as analytical implements. For practical reasons, most analytical laboratories are not in a position to check accuracy internally, as frequently resources are available for only one method; standardized sample material, particularly in the case of trace analysis, is not available and can be prepared by the institutes themselves only in exceptional cases; intercomparisons are organized rather seldom and many important types of analysis are so far not covered. AQCS assistance is provided by the shipment to laboratories of standard reference materials containing known quantities of different trace elements or radionuclides, as well as by the organization of analytical intercomparisons in which the participating laboratories are provided with aliquots of homogenized material of unknown composition for analysis. In the latter case the laboratories report their data to the Agency's laboratory, which calculates averages and distributions of results and advises each laboratory of its performance relative to all the others. Throughout the years several dozens of intercomparisons have been organized and many thousands of samples provided. The service offered, as a consequence, has grown enormously. The programme for 1973 and 1974, which is currently being distributed to Member States, will contain 31 different types of materials.

  11. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  12. Computational Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains a number of commercial off-the-shelf and in-house software packages allowing for both statistical analysis as well as mathematical modeling...

  13. National laboratories

    International Nuclear Information System (INIS)

    Moscati, G.

    1983-01-01

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.) [pt

  14. Geomechanics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Geomechanics Laboratory allows its users to measure rock properties under a wide range of simulated service conditions up to very high pressures and complex load...

  15. Gaseous analytes of concern at Hanford Tank Farms. Topical report

    International Nuclear Information System (INIS)

    1996-01-01

    Large amounts of toxic and radioactive waste materials are stored in underground tanks at DOE sites. When the vapors in the tank headspaces vent to the open atmosphere a potentially dangerous situation can occur for personnel in the area. An open-path atmospheric pollution monitor is being developed for DOE to monitor the open air space above these tanks. In developing this monitor it is important to know what hazardous gases are most likely to be found in dangerous concentrations. These gases are called the Analytes of Concern. At the present time, measurements in eight tanks have detected thirty-one analytes in at least two tanks and fifteen analytes in only one tank. In addition to these gases, Carbon tetrachloride is considered to be an Analyte of Concern because it permeates the ground around the tanks. These Analytes are described and ranked according to a Hazard Index which combines their vapor pressure, density, and approximate danger level. The top sixteen ranked analytes which have been detected in at least two tanks comprise an open-quotes Analytes of Concern Test Listclose quotes for determining the system performance of the atmospheric pollution monitor under development. A preliminary examination of the infrared spectra, barring atmospheric interferences, indicates that: The pollution monitor will detect all forty-seven Analytes exclamation point

  16. Let's Talk... Analytics

    Science.gov (United States)

    Oblinger, Diana G.

    2012-01-01

    Talk about analytics seems to be everywhere. Everyone is talking about analytics. Yet even with all the talk, many in higher education have questions about--and objections to--using analytics in colleges and universities. In this article, the author explores the use of analytics in, and all around, higher education. (Contains 1 note.)

  17. Analytics for Education

    Science.gov (United States)

    MacNeill, Sheila; Campbell, Lorna M.; Hawksey, Martin

    2014-01-01

    This article presents an overview of the development and use of analytics in the context of education. Using Buckingham Shum's three levels of analytics, the authors present a critical analysis of current developments in the domain of learning analytics, and contrast the potential value of analytics research and development with real world…

  18. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  19. Toward high value sensing: monolayer-protected metal nanoparticles in multivariable gas and vapor sensors.

    Science.gov (United States)

    Potyrailo, Radislav A

    2017-08-29

    For detection of gases and vapors in complex backgrounds, "classic" analytical instruments are an unavoidable alternative to existing sensors. Recently a new generation of sensors, known as multivariable sensors, emerged with a fundamentally different perspective for sensing to eliminate limitations of existing sensors. In multivariable sensors, a sensing material is designed to have diverse responses to different gases and vapors and is coupled to a multivariable transducer that provides independent outputs to recognize these diverse responses. Data analytics tools provide rejection of interferences and multi-analyte quantitation. This review critically analyses advances of multivariable sensors based on ligand-functionalized metal nanoparticles also known as monolayer-protected nanoparticles (MPNs). These MPN sensing materials distinctively stand out from other sensing materials for multivariable sensors due to their diversity of gas- and vapor-response mechanisms as provided by organic and biological ligands, applicability of these sensing materials for broad classes of gas-phase compounds such as condensable vapors and non-condensable gases, and for several principles of signal transduction in multivariable sensors that result in non-resonant and resonant electrical sensors as well as material- and structure-based photonic sensors. Such features should allow MPN multivariable sensors to be an attractive high value addition to existing analytical instrumentation.

  20. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    Carvalho Vidal, M. de F. de.

    1984-01-01

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author) [pt

  1. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  2. The International Atomic Energy Agency's Laboratories at Seibersdorf and in Vienna

    International Nuclear Information System (INIS)

    1988-12-01

    The report briefly describes the main research activities performed during 1988 at the IAEA Laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory as well as the training activities

  3. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  4. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  5. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  6. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  7. Protein Laboratories in Single Location | Poster

    Science.gov (United States)

    By Andrew Stephen, Timothy Veenstra, and Gordon Whiteley, Guest Writers, and Ken Michaels, Staff Writer The Laboratory of Proteomics and Analytical Technologies (LPAT), Antibody Characterization Laboratory (ACL), and Protein Chemistry Laboratory (PCL), previously located on different floors or in different buildings, are now together on the first floor of C wing in the ATRF.

  8. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  9. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  10. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  11. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  12. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  13. Teaching and learning distillation in chemistry laboratory courses

    Science.gov (United States)

    van Keulen, Hanno; Mulder, Theo H. M.; Goedhart, Martin J.; Verdonk, Adri H.

    This study investigates the problems chemistry majors have with learning distillation in traditional chemistry laboratory courses. Using an interpretive cyclic research design, we collected and interpreted data, mainly in the form of observation notes and transcriptions of the discourse that takes place during laboratory courses. It was found that students experience numerous problems; these are described and interpreted. We summarize students' problems in four categories: (a) students use an independent component conception; (b) they have insufficient understanding of the properties of vapor; (c) they regard distillation from a physical point of view; and (d) they do not have a practical understanding of thermodynamics. The main origin of these problems was found to lie with the traditional curriculum structure. Lecture courses and textbooks treat distillation in a generalized and decontextualized way, whereas decisions in actual distillations are always based on contextual features. It was found that textbooks and teachers often do not discriminate carefully and explicitly among five different contexts for distillation: organic synthesis, chemical analysis, analytical chemistry, physical chemistry, and preparation of products. Students take the generalized concepts at face value and apply them to all distillations regardless of context. They cannot interpret their observations or make reasoned decisions based on the theoretical framework of a specific context.Received: 2 May 1994; Revised: 14 December 1994;

  14. Hanford transuranic analytical capability

    International Nuclear Information System (INIS)

    McVey, C.B.

    1995-01-01

    With the current DOE focus on ER/WM programs, an increase in the quantity of waste samples that requires detailed analysis is forecasted. One of the prime areas of growth is the demand for DOE environmental protocol analyses of TRU waste samples. Currently there is no laboratory capacity to support analysis of TRU waste samples in excess of 200 nCi/gm. This study recommends that an interim solution be undertaken to provide these services. By adding two glove boxes in room 11A of 222S the interim waste analytical needs can be met for a period of four to five years or until a front end facility is erected at or near the 222-S facility. The yearly average of samples is projected to be approximately 600 samples. The figure has changed significantly due to budget changes and has been downgraded from 10,000 samples to the 600 level. Until these budget and sample projection changes become firmer, a long term option is not recommended at this time. A revision to this document is recommended by March 1996 to review the long term option and sample projections

  15. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    based instrument is achievable via overdriven current pulses to the TSOA gain medium while maintaining a 1μs and 10 kHz pulse width and PRF, respectively. The increase in the laser transmitter pulse energy will allow for nighttime and daytime water vapor profile retrievals from an airborne platform operating at an 8 km altitude with 2-5 minute integration periods. Results from a numerical model demonstrating the performance of an airborne DIAL system with the mentioned transmitter enhancements will be presented and compared against the existing ground based instrument performance. Furthermore, results from laboratory experiments demonstrating the laser transmitter performance including maximum extractable energy, energy stability, and spectral purity will also be presented.

  16. Quality assurance in medical laboratories

    International Nuclear Information System (INIS)

    Boroviczeny, K.G. von; Merten, R.; Merten, U.P.

    1987-01-01

    The book presents a comprehensive and specified survey of the quality assurance measures and methods applied in medical laboratories in the pre-analytical phase and in the analytical and post-analytical phases. It also gives information on computer-aided procedures, cost-benefit analyses in this field, and on official requirements and standards in the fields of clinical chemistry, hematology, immunology and microbiology, and equipment testing and inspection. One chapter of the book particularly deals with quality assurance for radioimmunological in-vitro analyses. With 112 figs., 337 tabs [de

  17. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  18. Analytical chemistry of nuclear materials

    International Nuclear Information System (INIS)

    1963-01-01

    The last two decades have witnessed an enormous development in chemical analysis. The rapid progress of nuclear energy, of solid-state physics and of other fields of modern industry has extended the concept of purity to limits previously unthought of, and to reach the new dimensions of these extreme demands, entirely new techniques have been invented and applied and old ones have been refined. Recognizing these facts, the International Atomic Energy Agency convened a Panel on Analytical Chemistry of Nuclear Materials to discuss the general problems facing the analytical chemist engaged in nuclear energy development, particularly in newly developing centre and countries, to analyse the represent situation and to advise as to the directions in which research and development appear to be most necessary. The Panel also discussed the analytical programme of the Agency's laboratory at Seibersdorf, where the Agency has already started a programme of international comparison of analytical methods which may lead to the establishment of international standards for many materials of interest. Refs and tabs

  19. Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: To conduct fundamental studies of highway materials aimed at understanding both failure mechanisms and superior performance. New standard test methods are...

  20. Montlake Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The NWFSC conducts critical fisheries science research at its headquarters in Seattle, WA and at five research stations throughout Washington and Oregon. The unique...