WorldWideScience

Sample records for valley ground-water basin

  1. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley ground-water basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, ground water provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most ground-water pumping in the valley occurs in the Antelope Valley ground-water basin, which includes the rapidly growing cities of Lancaster and Palmdale. Ground-water-level declines of more than 200 feet in some parts of the ground-water basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may continue to increase reliance on ground water. To better understand the ground-water flow system and to develop a tool to aid in effectively managing the water resources, a numerical model of ground-water flow and land subsidence in the Antelope Valley ground-water basin was developed using old and new geohydrologic information. The ground-water flow system consists of three aquifers: the upper, middle, and lower aquifers. The aquifers, which were identified on the basis of the hydrologic properties, age, and depth of the unconsolidated deposits, consist of gravel, sand, silt, and clay alluvial deposits and clay and silty clay lacustrine deposits. Prior to ground-water development in the valley, recharge was primarily the infiltration of runoff from the surrounding mountains. Ground water flowed from the recharge areas to discharge areas around the playas where it discharged either from the aquifer system as evapotranspiration or from springs. Partial barriers to horizontal ground-water flow, such as faults, have been identified in the ground-water basin. Water-level declines owing to

  2. Analog model study of the ground-water basin of the Upper Coachella Valley, California

    Science.gov (United States)

    Tyley, Stephen J.

    1974-01-01

    An analog model of the ground-water basin of the upper Coachella Valley was constructed to determine the effects of imported water on ground-water levels. The model was considered verified when the ground-water levels generated by the model approximated the historical change in water levels of the ground-water basin caused by man's activities for the period 1986-67. The ground-water basin was almost unaffected by man's activities until about 1945 when ground-water development caused the water levels to begin to decline. The Palm Springs area has had the largest water-level decline, 75 feet since 1986, because of large pumpage, reduced natural inflow from the San Gorgonio Pass area, and diversions of natural inflows at Snow and Falls Creeks and Chino Canyon starting in 1945. The San Gorgonio Pass inflow had been reduced from about 18,000 acre-feet in 1986 to about 9,000 acre-feet by 1967 because of increased ground-water pumpage in the San Gorgonio Pass area, dewatering of the San Gorgonio Pass area that took place when the tunnel for the Metropolitan Water District of Southern California was drilled, and diversions of surface inflow at Snow and Falls Creeks. In addition, 1944-64 was a period of below-normal precipitation which, in part, contributed to the declines in water levels in the Coachella Valley. The Desert Hot Springs, Garnet Hill, and Mission Creek subbasins have had relatively little development; consequently, the water-level declines have been small, ranging from 5 to 15 feet since 1986. In the Point Happy area a decline of about 2 feet per year continued until 1949 when delivery of Colorado River water to the lower valley through the Coachella Canal was initiated. Since 1949 the water levels in the Point Happy area have been rising and by 1967 were above their 1986 levels. The Whitewater River subbasin includes the largest aquifer in the basin, having sustained ground-water pumpage of about 740,000 acre-feet from 1986 to 1967, and will probably

  3. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    Science.gov (United States)

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  4. Analysis of the Carmel Valley alluvial ground-water basin, Monterey County, California

    Science.gov (United States)

    Kapple, Glenn W.; Mitten, Hugh T.; Durbin, Timothy J.; Johnson, Michael J.

    1984-01-01

    A two-dimensional, finite-element, digital model was developed for the Carmel Valley alluvial ground-water basin using measured, computed, and estimated discharge and recharge data for the basin. Discharge data included evapotranspiration by phreatophytes and agricultural, municipal, and domestic pumpage. Recharge data included river leakage, tributary runoff, and pumping return flow. Recharge from subsurface boundary flow and rainfall infiltration was assumed to be insignificant. From 1974 through 1978, the annual pumping rate ranged from 5,900 to 9,100 acre-feet per year with 55 percent allotted to municipal use principally exported out of the valley, 44 percent to agricultural use, and 1 percent to domestic use. The pumpage return flow within the valley ranged from 900 to 1,500 acre-feet per year. The aquifer properties of transmissivity (about 5,900 feet squared per day) and of the storage coefficient (0.19) were estimated from an average alluvial thickness of 75 feet and from less well-defined data on specific capacity and grain-size distribution. During calibration the values estimated for hydraulic conductivity and storage coefficient for the lower valley were reduced because of the smaller grain size there. The river characteristics were based on field and laboratory analyses of hydraulic conductivity and on altitude survey data. The model is intended principally for simulation of flow conditions using monthly time steps. Time variations in transmissivity and short-term, highrecharge potential are included in the model. The years 1974 through 1978 (including "pre-" and "post-" drought) were selected because of the extreme fluctuation in water levels between the low levels measured during dry years and the above-normal water levels measured during the preceding and following wet years. Also, during this time more hydrologic information was available. Significantly, computed water levels were generally within a few feet of the measured levels, and computed

  5. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    Science.gov (United States)

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  6. Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada

    Science.gov (United States)

    Prudic, David E.; Herman, M.E.

    1996-01-01

    A computer model was used to characterize ground-water flow in Paradise Valley, Nevada, and to evaluate probable long-term effects of five hypothetical development scenarios. One finding of the study is that concentrating pumping at the south end of Paradise Valley may increase underflow from the adjacent Humboldt River valley, and might affect flow in the river.

  7. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    Science.gov (United States)

    Belcher, Wayne R.

    2004-01-01

    provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  8. Ground-Water Quality Data in the Monterey Bay and Salinas Valley Basins, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,000-square-mile Monterey Bay and Salinas Valley study unit was investigated from July through October 2005 as part of the California Ground-Water Ambient Monitoring and Assessment (GAMA) program. The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 94 public-supply wells and 3 monitoring wells in Monterey, Santa Cruz, and San Luis Obispo Counties. Ninety-one of the public-supply wells sampled were selected to provide a spatially distributed, randomized monitoring network for statistical representation of the study area. Six wells were sampled to evaluate changes in water chemistry: three wells along a ground-water flow path were sampled to evaluate lateral changes, and three wells at discrete depths from land surface were sampled to evaluate changes in water chemistry with depth from land surface. The ground-water samples were analyzed for volatile organic compounds (VOCs), pesticides, pesticide degradates, nutrients, major and minor ions, trace elements, radioactivity, microbial indicators, and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory). Naturally occurring isotopes (tritium, carbon-14, helium-4, and the isotopic composition of oxygen and hydrogen) also were measured to help identify the source and age of the sampled ground water. In total, 270 constituents and water-quality indicators were investigated for this study. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, and (or) blended with other waters to maintain water quality. In addition, regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. In this study, only six constituents, alpha radioactivity, N

  9. Facies Analysis of Tertiary Basin-Filling Rocks of the Death Valley Regional Ground-Water System and Surrounding Areas, Nevada and California; TOPICAL

    International Nuclear Information System (INIS)

    Sweetkind, D.S.; Fridrich, C.J.; Taylor, Emily

    2002-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and cl ay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories

  10. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  11. Basin scale management of surface and ground water

    International Nuclear Information System (INIS)

    Tracy, J.C.; Al-Sharif, M.

    1993-01-01

    An important element in the economic development of many regions of the Great Plains is the availability of a reliable water supply. Due to the highly variable nature of the climate through out much of the Great Plains region, non-controlled stream flow rates tend to be highly variable from year to year. Thus, the primary water supply has tended towards developing ground water aquifers. However, in regions where shallow ground water is extracted for use, there exists the potential for over drafting aquifers to the point of depleting hydraulically connected stream flows, which could adversely affect the water supply of downstream users. To prevent the potential conflict that can arise when a basin's water supply is being developed or to control the water extractions within a developed basin requires the ability to predict the effect that water extractions in one region will have on water extractions from either surface or ground water supplies else where in the basin. This requires the ability to simulate ground water levels and stream flows on a basin scale as affected by changes in water use, land use practices and climatic changes within the basin. The outline for such a basin scale surface water-ground water model has been presented in Tracy (1991) and Tracy and Koelliker (1992), and the outline for the mathematical programming statement to aid in determining the optimal allocation of water on a basin scale has been presented in Tracy and Al-Sharif (1992). This previous work has been combined into a computer based model with graphical output referred to as the LINOSA model and was developed as a decision support system for basin managers. This paper will present the application of the LINOSA surface-ground water management model to the Rattlesnake watershed basin that resides within Ground Water Management District Number 5 in south central Kansas

  12. Effect of faulting on ground-water movement in the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Faunt, C.C.

    1997-01-01

    This study characterizes the hydrogeologic system of the Death Valley region, an area covering approximately 100,000 square kilometers. The study also characterizes the effects of faults on ground-water movement in the Death Valley region by synthesizing crustal stress, fracture mechanics,a nd structural geologic data. The geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. Faulting and associated fracturing is pervasive and greatly affects ground-water flow patterns. Faults may become preferred conduits or barriers to flow depending on whether they are in relative tension, compression, or shear and other factors such as the degree of dislocations of geologic units caused by faulting, the rock types involved, the fault zone materials, and the depth below the surface. The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional ground-water flow regime. Numerous examples of fault-controlled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths. 97 refs., 20 figs., 5 tabs

  13. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    Science.gov (United States)

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    The Douglas basin is part of a large northwest-trending intermontane valley, known as the Sulphur Spring Valley, which lies in southeastern Arizona, and extends into northeastern Sonora, Mexico. Maturely dissected mountains rise abruptly from long alluvial slopes and culminate in peaks 3,000 to 4,000 feet above the valley floor, Bedrock in the mountain areas confines drainage on the east and west, and an arc of low hills to the north separates the basin from the Willcox basin of the Sulphur Spring Valley. Drainage of the 1,200 square miles in the Douglas basin is southward into Mexico through Whitewater Draw. The mountains include igneous, metamorphic, and sedimentary rocks ranging in age from pre-Cambrian to Tertiary, including Paleozoic and Mesozoic sedimentary rocks that total about 10,000 feet in thickness. The older rocks have been metamorphosed, and all the bedrock has been affected by igneous intrusion, largely in Mesozoic time, and by structural movements, largely in Cenozoic time and extending into the Quaternary period. By the early part of Cenozoic time the major structural features were formed, and mountain ranges had been uplifted above the valley trough along northwest-trending fault zones. Since that time the physiographic features have resulted through erosion of the mountain blocks and the deposition, in places, of more than 2,800 feet of unconsolidated rock debris in the valley. Ground-water supplies of the Douglas basin are developed largely in the saturated zone of the valley-fill sediments. The ground water in the valley fill occurs in thin lenses and strata of sand and gravel, which are interbedded with large thicknesses of silt and day. Scattered gypsum beds and extensive caliche deposits appear at the surface and occur within the valley fill at various depths. Although the valley-fill sediments are as much as 2,800 feet thick, the uppermost 300 feet or so are the most permeable. Ground water originates as precipitation in the mountain areas

  14. Evaluation of ground-water quality in the Santa Maria Valley, California

    Science.gov (United States)

    Hughes, Jerry L.

    1977-01-01

    The quality and quantity of recharge to the Santa Maria Valley, Calif., ground-water basin from natural sources, point sources, and agriculture are expressed in terms of a hydrologic budget, a solute balance, and maps showing the distribution of select chemical constituents. Point sources includes a sugar-beet refinery, oil refineries, stockyards, golf courses, poultry farms, solid-waste landfills, and municipal and industrial wastewater-treatment facilities. Pumpage has exceeded recharge by about 10,000 acre-feet per year. The result is a declining potentiometric surface with an accumulation of solutes and an increase in nitrogen in ground water. Nitrogen concentrations have reached as much as 50 milligrams per liter. In comparison to the solutes from irrigation return, natural recharge, and rain, discharge of wastewater from municipal and industrial wastewater-treatment facilities contributes less than 10 percent. The quality of treated wastewater is often lower in select chemical constituents than the receiving water. (Woodard-USGS)

  15. Appraisal of ground-water resources in the San Antonio Creek Valley, Santa Barbara County, California

    Science.gov (United States)

    Hutchinson, C.B.

    1980-01-01

    A nearly threefold increase in demand for water in the 154-square-mile San Antonio Creek valley in California during the period 1958-77 has increased the potential for overdraft on the ground-water basin. The hydrologic budget for this period showed a perennial yield of about 9,800 acre-feet per year and an annual ground-water discharge of about 11,400 acre-feet per year, comprising net pumpage of 7,100 acre-feet, phreatophyte evapotranspiration of 3,000 acre-feet, and base streamflow of 1 ,300 acre-feet. The base flow in San Antonio Creek could diminish to zero when net pumpage reaches 13,500 acre-feet per year. The environmentally sensitive marshland area of Barka Slough may then become stressed as water normally lost through evapotranspiration is captured by pumpage. The aquifer consists of alluvial valley fill that ranges in thickness from 0 to 3,500 feet. Ground water moves seaward from recharge areas along mountain fronts to a consolidated rock barrier about 5 miles east of the Pacific coast. Upwelling of ground water just east of the barrier has resulted in the 550-acre Barka Slough. Transmissivity of the aquifer ranges from 2,600 to 34,000 feet squared per day, with the lowest values occurring in the central part of the valley where the aquifer is thickest but probably finer grained. The salinity problems are increasing in the agricultural parts of the valley, which is east of the barrier. West of the barrier, stream and ground-water quality is poor, owing to seepage of saline water from the marine shale that underlies the area at shallow depths. A proposed basinwide monitoring program includes 17 water-level sites, 12 water-quality sampling sites, 3 streamflow measuring sites, and periodic infrared aerial photography of Barka Slough. A computer model of the ground-water flow system could be developed to assess the impact of various water-management alternatives. (USGS)

  16. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  17. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    Science.gov (United States)

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  18. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  19. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    Science.gov (United States)

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  20. Characteristics and chemical composition of ground water in Bara basin

    International Nuclear Information System (INIS)

    Gibla, O.A.M.

    2007-01-01

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO 3 ''-''-), nitrite (No 2 ''-), ammonia-nitrogen (NH 3 -N), fluoride(F), sulphide(S''-''-) and sulphate(SO 4 ''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO 3 ''-''-,HCO 3 ''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from physical and chemical

  1. Characteristics and chemical composition of ground water in Bara basin

    Energy Technology Data Exchange (ETDEWEB)

    Gibla, O A.M. [Sudan University of Science and Technology, College of Graduate Studies, Khartoum (Sudan)

    2007-01-15

    In this study analysis was carried for forty five ground water samples from different areas within Bara basin, fifteen solid samples, three locally produced salt samples and one mixed rocks sample. The rocks were brought from the underground during hand digging of wells. The study include areas Um-Galgie, Bara, Saatah Shambool, Um-Sadoun El-Shareef, EI-Dair, EI-Murra, Taybah, Um-sadoun EI-Nazir, EI-Hodied Shareef, Um-Nabeg, Um-Gazira, Magror, Ma'afa, El-Kheiran, Dameerat Abdu, Sharshar East, Sharshar West, El-Gaa'a Um-Safari, and El-Gaa'a Um EL-Gora. Physical characteristics of ground water samples were determined including pH, electrical conductivity, turbidity, and total dissolved solids, using pH-meter, conductivity-meter, and ultra- meter. Many other analytical techniques were used. Spectrophotometric analysis was used for determination of nitrate(NO{sub 3}''-''-), nitrite (No{sub 2}''-), ammonia-nitrogen (NH{sub 3}-N), fluoride(F), sulphide(S''-''-) and sulphate(SO{sub 4}''-''-) ions. Chloride (Cl''-) and total alkalinity(OH''-,CO{sub 3}''-''-,HCO{sub 3}''-) were determined titrametrically. X-ray diffraction technique was used for determination of chemical composition of solid samples (soils,salts and rocks). X-ray fluorescence technique was used to measure the concentration of some metals in the solid samples. Radioactivity was measured using gamma-spectrometry. Atomic absorption spectrometry was used for the measurement of cations concentration in ground water samples as well as soil samples, this include macro-cations: sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and micro cations (trace): Iron (Fe), manganese (Mn), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), silver (Ag), lead (Pb) and barium (Ba). The results obtained were statistically treated, using SPSS program, discussed and further future research was suggested. The analysis show general suitability of fresh ground water at section A and C samples from

  2. Ground water in selected areas in the Klamath Basin, Oregon

    Science.gov (United States)

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  3. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  4. Availability of ground water in the middle Merrimack River basin, central and southern New Hampshire

    Science.gov (United States)

    Cotton, J.E.

    1976-01-01

    Sufficient amounts of water to supply single family homes are available from the bedrock aquifer nearly everywhere in the middle Merrimack River basin in central and southern New Hampshire. Relatively this and narrow, unconsolidated aquifers of sand or sand and gravel commonly capable of yielding more than 200 gallons per minute to properly located and constructed wells are found only in major stream valleys. The map provides a preliminary assessment of the availability of ground water in the basin, as determined by estimating the capability of the aquifers to store and transmit water. On the map, aquifers are rated as having high, medium, or low potential to yield water. Ground water in the middle Merrimack River basin is generally of good chemical quality. Most of it is clear and colorless, contains no suspended matter and practically no bacteria, water may be affected by land-use practices. Degradation of water quality may occur in unsewered residential and village areas, near solid-waste-disposal sites, agricultural land, and major highways. (Woodard-USGS)

  5. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  6. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  7. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  8. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  9. Ground-Water Quality Data in the Coachella Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Goldrath, Dara A.; Wright, Michael T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 820 square-mile Coachella Valley Study Unit (COA) was investigated during February and March 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground water used for public-water supplies within the Coachella Valley, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from 35 wells in Riverside County. Nineteen of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Sixteen additional wells were sampled to evaluate changes in water chemistry along selected ground-water flow paths, examine land use effects on ground-water quality, and to collect water-quality data in areas where little exists. These wells were referred to as 'understanding wells'. The ground-water samples were analyzed for a large number of organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (uranium, tritium, carbon-14, and stable isotopes of hydrogen, oxygen, and boron), and dissolved noble gases (the last in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled

  10. Ground-Water Quality Data in the Santa Clara River Valley Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Montrella, Joseph; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 460-square-mile Santa Clara River Valley study unit (SCRV) was investigated from April to June 2007 as part of the statewide Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for public water supplies within SCRV, and to facilitate a statistically consistent basis for comparing water quality throughout California. Fifty-seven ground-water samples were collected from 53 wells in Ventura and Los Angeles Counties. Forty-two wells were selected using a randomized grid-based method to provide statistical representation of the study area (grid wells). Eleven wells (understanding wells) were selected to further evaluate water chemistry in particular parts of the study area, and four depth-dependent ground-water samples were collected from one of the eleven understanding wells to help understand the relation between water chemistry and depth. The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, potential wastewater-indicator compounds, and pharmaceutical compounds), a constituent of special interest (perchlorate), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial constituents. Naturally occurring isotopes (tritium, carbon-13, carbon-14 [abundance], stable isotopes of hydrogen and oxygen in water, stable isotopes of nitrogen and oxygen in nitrate, chlorine-37, and bromine-81), and dissolved noble gases also were measured to help identify the source

  11. Ground-water availability from surficial aquifers in the Red River of the North Basin, Minnesota

    Science.gov (United States)

    Reppe, Thomas H.C.

    2005-01-01

    Population growth and commercial and industrial development in the Red River of the North Basin in Minnesota, North Dakota, and South Dakota have prompted the Bureau of Reclamation, U.S. Department of the Interior, to evaluate sources of water to sustain this growth. Nine surficial-glacial (surficial) aquifers (Buffalo, Middle River, Two Rivers, Beach Ridges, Pelican River, Otter Tail, Wadena, Pineland Sands, and Bemidji-Bagley) within the Minnesota part of the basin were identified and evaluated for their ground-water resources. Information was compiled and summarized from published studies to evaluate the availability of ground water. Published information reviewed for each of the aquifers included location and extent, physical characteristics, hydraulic properties, ground-water and surface-water interactions, estimates of water budgets (sources of recharge and discharge) and aquifer storage, theoretical well yields and actual ground-water pumping data, recent (2003) ground-water use data, and baseline ground-water-quality data.

  12. Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blanks

  13. Radionuclides in ground water of the Carson River Basin, western Nevada and eastern California, U.S.A.

    Science.gov (United States)

    Thomas, J.M.; Welch, A.H.; Lico, M.S.; Hughes, J.L.; Whitney, R.

    1993-01-01

    Ground water is the main source of domestic and public supply in the Carson River Basin. Ground water originates as precipitation primarily in the Sierra Nevada in the western part of Carson and Eagle Valleys, and flows down gradient in the direction of the Carson River through Dayton and Churchill Valleys to a terminal sink in the Carson Desert. Because radionuclides dissolved in ground water can pose a threat to human health, the distribution and sources of several naturally occurring radionuclides that contribute to gross-alpha and gross-beta activities in the study area were investigated. Generally, alpha and beta activities and U concentration increase from the up-gradient to down-gradient hydrographic areas of the Carson River Basin, whereas 222Rn concentration decreases. Both 226Ra and 228Ra concentrations are similar throughout the study area. Alpha and beta activities and U concentration commonly exceed 100 pCi/l in the Carson Desert at the distal end of the flow system. Radon-222 commonly exceeds 2,000 pCi/l in the western part of Carson and Eagle Valleys adjacent to the Sierra Nevada. Radium-226 and 228Ra concentrations are processes. Thus, U is transported as dissolved and adsorbed species. A rise in the water table in the Carson Desert because of irrigation has resulted in the oxidation of U-rich organic matter and dissolution of U-bearing coatings on sediments, producing unusually high U concentration in the ground water. Alpha activity in the ground water is almost entirely from the decay of U dissolved in the water. Beta activity in ground water samples is primarily from the decay of 40K dissolved in the water and ingrowth of 238U progeny in the sample before analysis. Approximately one-half of the measured beta activity may not be present in ground water in the aquifer, but instead is produced in the sample after collection and before analysis. Potassium-40 is primarily from the dissolution of K-containing minerals, probably K-feldspar and biotite

  14. Ground-Water Quality Data in the Southeast San Joaquin Valley, 2005-2006 - Results from the California GAMA Program

    Science.gov (United States)

    Burton, Carmen A.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,800 square-mile Southeast San Joaquin Valley study unit (SESJ) was investigated from October 2005 through February 2006 as part of the Priority Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The SESJ study was designed to provide a spatially unbiased assessment of raw ground-water quality within SESJ, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 99 wells in Fresno, Tulare, and Kings Counties, 83 of which were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 16 of which were sampled to evaluate changes in water chemistry along ground-water flow paths or across alluvial fans (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine, and 1,2,3-trichloropropane), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected at approximately 10 percent of the wells, and the results

  15. Ground-Water Quality Data in the Southern Sacramento Valley, California, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Milby Dawson, Barbara J.; Bennett, George L.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 2,100 square-mile Southern Sacramento Valley study unit (SSACV) was investigated from March to June 2005 as part of the Statewide Basin Assessment Project of Ground-Water Ambient Monitoring and Assessment (GAMA) Program. This study was designed to provide a spatially unbiased assessment of raw ground-water quality within SSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 83 wells in Placer, Sacramento, Solano, Sutter, and Yolo Counties. Sixty-seven of the wells were selected using a randomized grid-based method to provide statistical representation of the study area. Sixteen of the wells were sampled to evaluate changes in water chemistry along ground-water flow paths. Four additional samples were collected at one of the wells to evaluate water-quality changes with depth. The GAMA Statewide Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator constituents), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, and carbon), and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, matrix spikes

  16. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 25. Summary of Results and Baseline and Pre-Mining Ground-Water Geochemistry, Red River Valley, Taos County, New Mexico, 2001-2005

    Science.gov (United States)

    Nordstrom, D. Kirk

    2008-01-01

    Active and inactive mine sites are challenging to remediate because of their complexity and scale. Regulations meant to achieve environmental restoration at mine sites are equally challenging to apply for the same reasons. The goal of environmental restoration should be to restore contaminated mine sites, as closely as possible, to pre-mining conditions. Metalliferous mine sites in the Western United States are commonly located in hydrothermally altered and mineralized terrain in which pre-mining concentrations of metals were already anomalously high. Typically, those pre-mining concentrations were not measured, but sometimes they can be reconstructed using scientific inference. Molycorp?s Questa molybdenum mine in the Red River Valley, northern New Mexico, is located near the margin of the Questa caldera in a highly mineralized region. The State of New Mexico requires that ground-water quality standards be met on closure unless it can be shown that potential contaminant concentrations were higher than the standards before mining. No ground water at the mine site had been chemically analyzed before mining. The aim of this investigation, in cooperation with the New Mexico Environment Department (NMED), is to infer the pre-mining ground-water quality by an examination of the geologic, hydrologic, and geochemical controls on ground-water quality in a nearby, or proximal, analog site in the Straight Creek drainage basin. Twenty-seven reports contain details of investigations on the geological, hydrological, and geochemical characteristics of the Red River Valley that are summarized in this report. These studies include mapping of surface mineralogy by Airborne Visible-Infrared Imaging Spectrometry (AVIRIS); compilations of historical surface- and ground- water quality data; synoptic/tracer studies with mass loading and temporal water-quality trends of the Red River; reaction-transport modeling of the Red River; environmental geology of the Red River Valley; lake

  17. Long-Term Ground-Water Levels and Transmissivity in the Blackstone River Basin, Northern Rhode Island

    Science.gov (United States)

    Eggleston, Jack R.; Church, Peter E.; Barbaro, Jeffrey R.

    2007-01-01

    Ground water provides about 7.7 million gallons per day, or 28 percent of total water use in the Rhode Island part of the Blackstone River Basin. Primary aquifers in the basin are stratified glacial deposits, composed mostly of sand and gravel along valley bottoms. The ground-water and surface-water system in the Blackstone River Basin is under stress due to population growth, out-of-basin water transfers, industrialization, and changing land-use patterns. Streamflow periodically drops below the Aquatic Base Flow standard, and ground-water withdrawals add to stress on aquatic habitat during low-flow periods. Existing hydrogeologic data were reviewed to examine historical water-level trends and to generate contour maps of water-table altitudes and transmissivity of the sand and gravel aquifer in the Blackstone River Basin in Rhode Island. On the basis of data from four long-term observation wells, water levels appear to have risen slightly in the study area during the past 55 years. Analysis of available data indicates that increased rainfall during the same period is a likely contributor to the water-level rise. Spatial patterns of transmissivity are shown over larger areas and have been refined on the basis of more detailed data coverage as compared to previous mapping studies.

  18. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    Science.gov (United States)

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  19. Revised ground-water monitoring compliance plan for the 183-H Solar Evaporation Basins

    International Nuclear Information System (INIS)

    1986-09-01

    This document contains ground-water monitoring plans for a mixed waste storage facility located on the Hanford Site in southeastern Washington State. This facility has been used since 1973 for storage of mixed wastes, which contain both chemicals and radionuclides. The ground-water monitoring plans presented here represent revision and expansion of an effort in June 1985. At that time, a facility-specific monitoring program was implemented at the 183-H Basins as part of the regulatory compliance effort being conducted on the Hanford Site. This monitoring program was based on the ground-water monitoring requirements for interimstatus facilities, which are those facilities that do not yet have final permits, but are authorized to continue interim operations while engaged in the permitting process. The program initially implemented for the 183-H Basins was designed to be an alternate program, which is required instead of the standard detection program when a facility is known or suspected to have contaminated the ground water in the uppermost aquifer. This effort, named the RCRA Compliance Ground-Water Monitoring Project for the 183-H Basins, was implemented. A supporting project involving ground-water flow modeling for the area surrounding the 183-H Basins was also initiated during 1985. Those efforts and the results obtained are described in subsequent chapters of this document. 26 refs., 55 figs., 14 tabs

  20. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  1. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, East-Central Illinois: indicators of recharge and ground-water flow

    Science.gov (United States)

    Panno, S.V.; Hackley, Keith C.; Cartwright, K.; Liu, Chao-Li

    1994-01-01

    A conceptual model of the ground-water flow and recharge to the Mahomet Bedrock Valley Aquifer (MVA), east-central Illinois, was developed using major ion chemistry and isotope geochemistry. The MVA is a 'basal' fill in the east-west trending buried bedrock valley composed of clean, permeable sand and gravel to thicknesses of up to 61 m. It is covered by a thick sequence of glacial till containing thinner bodies of interbedded sand and gravel. Ground water from the MVA was found to be characterized by clearly defined geochemical regions with three distinct ground-water types. A fourth ground-water type was found at the confluence of the MVA and the Mackinaw Bedrock Valley Aquifer (MAK) to the west. Ground water in the Onarga Valley, a northeastern tributary of the MVA, is of two types, a mixed cation-SO42- type and a mixed cation-HCO3- type. The ground water is enriched in Na+, Ca2+, Mg2+, and SO42- which appears to be the result of an upward hydraulic gradient and interaction of deeper ground water with oxidized pyritic coals and shale. We suggest that recharge to the Onarga Valley and overlying aquifers is 100% from bedrock (leakage) and lateral flow from the MVA to the south. The central MVA (south of the Onarga Valley) is composed of relatively dilute ground water of a mixed cation-HCO3- type, with low total dissolved solids, and very low concentrations of Cl- and SO42-. Stratigraphic relationships of overlying aquifers and ground-water chemistry of these and the MVA suggest recharge to this region of the MVA (predominantly in Champaign County) is relatively rapid and primarily from the surface. Midway along the westerly flow path of the MVA (western MVA), ground water is a mixed cation-HCO3- type with relatively high Cl-, where Cl- increases abruptly by one to ??? two orders of magnitude. Data suggest that the increase in Cl- is the result of leakage of saline ground water from bedrock into the MVA. Mass-balance calculations indicate that approximately 9.5% of

  2. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    Science.gov (United States)

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the

  3. Geologic framework of the regional ground-water flow system in the Upper Deschutes Basin, Oregon

    Science.gov (United States)

    Lite, Kenneth E.; Gannett, Marshall W.

    2002-12-10

    Ground water is increasingly relied upon to satisfy the needs of a growing population in the upper Deschutes Basin, Oregon. Hydrogeologic studies are being undertaken to aid in management of the ground-water resource. An understanding of the geologic factors influencing ground-water flow is basic to those investigations. The geology of the area has a direct effect on the occurrence and movement of ground water. The permeability and storage properties of rock material are influenced by the proportion, size, and degree of interconnection of open spaces the rocks contain. These properties are the result of primary geologic processes such as volcanism and sedimentation, as well as subsequent processes such as faulting, weathering, or hydrothermal alteration. The geologic landscape in the study area evolved during about 30 million years of volcanic activity related to a north-south trending volcanic arc, the current manifestation of which are today’s Cascade Range volcanoes.

  4. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    Science.gov (United States)

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  5. Potential ground water resources of Hat Yai Basin in Peninsular Thailand by gravity study

    Directory of Open Access Journals (Sweden)

    Warawutti Lohawijarn

    2005-05-01

    Full Text Available Residual gravity anomaly with a minimum of about -140 mm s-2 with approximately NS trend and a limited axial length was observed over Hat Yai Basin in Peninsular Thailand. The modeled Hat Yai basin is about 1 km deep at its deepest, 60 km long and 20 km wide. The porosity of basin sediment and the amount of potential ground water reserves within the basin are estimated to be 39% and 121.7±0.8 km3 respectively, assuming full saturation. Within the topmost 80 m of ground where the present extraction is concentrated, the estimated ground water reserve is 12.5±0.5 km3.

  6. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    approximately 326 square miles. For the most part, the model extent coincides with the 2005 revised extent of the Spokane Valley-Rathdrum Prairie aquifer as defined in a previous report. However, the model excludes Spirit and Hoodoo Valleys because of uncertainties about the ground-water flow directions in those valleys and the degree of hydraulic connection between the valleys and northern Rathdrum Prairie. The SVRP aquifer is considered to be a single hydrogeologic unit except in Hillyard Trough and the Little Spokane River Arm. In those areas, a continuous clay layer divides the aquifer into an upper, unconfined unit and a lower, confined unit. The model includes all known components of inflows to and outflows from the aquifer. Inflows to the SVRP aquifer include (1) recharge from precipitation, (2) inflows from tributary basins and adjacent uplands, (3) subsurface seepage and surface overflows from lakes that border the aquifer, (4) flow from losing segments of the Spokane River to the aquifer, (5) return percolation from irrigation, and (6) effluent from septic systems. Outflows from the SVRP aquifer include (1) ground-water withdrawals from wells, (2) flow from the aquifer to gaining segments of the Spokane River, (3) aquifer discharge to the Little Spokane River, and (4) subsurface outflow from the lower unit at the western limit of the model area near Long Lake. These inflow and outflow components are represented in the model by using MODFLOW-2000 packages. The parameter-estimation program PEST was used to calibrate the SVRP aquifer model. PEST implements a nonlinear least-squares regression method to estimate model parameters so that the differences between measured and simulated quantities are minimized with respect to an optimal criterion. Calibration data include 1,573 measurements of water levels and 313 measurements of streamflow gains and losses along segments of the Spokane and Little Spokane Rivers. Model parameters estimated during calib

  7. Ground water heat pumps and cooling with ground water basins as seasonal storage; Grundvandsvarmepumper og -koeling med grundvandsmagasiner som saesonlager

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    Ground water temperature is constant all the year round, in Denmark approximately 9 deg. C, which is ideal for a number of cooling purposes including cooling of buildings. The structures in which the ground water flows (sand, gravel and chalk) are efficient for storing coldness and heat over longer periods. By using seasonal storage of low-temperature heat and coldness in ground water layers close to the terrain it is feasible to reach profitable energy savings of up to 90% for cooling and heating of e.g. hotels, airports, shopping malls, office buildings and other larger buildings. At the same time the large energy savings means major reduction of CO{sub 2} emissions. (BA)

  8. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  9. Ground water in Fountain and Jimmy Camp Valleys, El Paso County, Colorado with a section on Computations of drawdowns caused by the pumping of wells in Fountain Valley

    Science.gov (United States)

    Jenkins, Edward D.; Glover, Robert E.

    1964-01-01

    The part of Fountain Valley considered in this report extends from Colorado Springs to the Pueblo County line. It is 23 miles long and has an area of 26 square miles. The part of Jimmy Camp Valley discussed is 11 miles long and has an area of 9 square miles. The topography is characterized by level flood plains and alluvial terraces that parallel the valley and by rather steep hills along the valley sides. The climate is semiarid, average annual precipitation being about 13 inches. Farming and stock raising are the principal occupations in the valleys; however, some of the agricultural land near Colorado Springs is being used for housing developments. The Pierre Shale and alluvium underlie most of the area, and mesa gravel caps the shale hills adjacent to Fountain Valley. The alluvium yields water to domestic, stock, irrigation, and public-supply wells and is capable of yielding large quantities of water for intermittent periods. Several springs issue along the sides of the valley at the contact of the mesa gravel and the underlying Pierre Shale. The water table ranges in depth from less than 10 feet along the bottom lands to about 80 feet along the sides of the valleys; the saturated thickness ranges from less than a foot to about 50 feet. The ground-water reservoir in Fountain Valley is recharged by precipitation that falls within the area, by percolation from Fountain Creek, which originates in the Pikes Peak, Monument Valley, and Rampart Range areas, and by seepage from irrigation water. This reservoir contains about 70,000 acre-feet of ground water in storage. The ground-water reservoir in Jimmy Camp Valley is recharged from precipitation that falls within the area, by percolation from Jimmy Camp Creek during periods of streamflow, and by seepage from irrigation water. The Jimmy Camp ground-water reservoir contains about 25,000 acre-feet of water in storage. Ground water is discharged from the area by movement to the south, by evaporation and transpiration in

  10. Estimates of ground-water recharge rates for two small basins in central Nevada

    International Nuclear Information System (INIS)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  11. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    Science.gov (United States)

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  12. Simulation of Ground-Water Flow and Effects of Ground-Water Irrigation on Base Flow in the Elkhorn and Loup River Basins, Nebraska

    Science.gov (United States)

    Peterson, Steven M.; Stanton, Jennifer S.; Saunders, Amanda T.; Bradley, Jesse R.

    2008-01-01

    Irrigated agriculture is vital to the livelihood of communities in the Elkhorn and Loup River Basins in Nebraska, and ground water is used to irrigate most of the cropland. Concerns about the sustainability of ground-water and surface-water resources have prompted State and regional agencies to evaluate the cumulative effects of ground-water irrigation in this area. To facilitate understanding of the effects of ground-water irrigation, a numerical computer model was developed to simulate ground-water flow and assess the effects of ground-water irrigation (including ground-water withdrawals, hereinafter referred to as pumpage, and enhanced recharge) on stream base flow. The study area covers approximately 30,800 square miles, and includes the Elkhorn River Basin upstream from Norfolk, Nebraska, and the Loup River Basin upstream from Columbus, Nebraska. The water-table aquifer consists of Quaternary-age sands and gravels and Tertiary-age silts, sands, and gravels. The simulation was constructed using one layer with 2-mile by 2-mile cell size. Simulations were constructed to represent the ground-water system before 1940 and from 1940 through 2005, and to simulate hypothetical conditions from 2006 through 2045 or 2055. The first simulation represents steady-state conditions of the system before anthropogenic effects, and then simulates the effects of early surface-water development activities and recharge of water leaking from canals during 1895 to 1940. The first simulation ends at 1940 because before that time, very little pumpage for irrigation occurred, but after that time it became increasingly commonplace. The pre-1940 simulation was calibrated against measured water levels and estimated long-term base flow, and the 1940 through 2005 simulation was calibrated against measured water-level changes and estimated long-term base flow. The calibrated 1940 through 2005 simulation was used as the basis for analyzing hypothetical scenarios to evaluate the effects of

  13. Geochemistry of uranium in ground waters of the Conlara river Valley, San Luis and Cordoba provinces (Argentina)

    International Nuclear Information System (INIS)

    Nicolli, H.B.; Gamba, M.A.

    1979-01-01

    Geochemical characteristics of ground waters related with lixiviation, transport and precipitation of uranium in the Conlara river valley (provinces of San Luis and Cordoba (Argentina)) are studied. Anions and cations' distributions, together with hardness, specific conductivity, pH, Eh, and uranium and vanadium contents, have been studied. Those parameters characterize four hidrogeochemical facies along an E-W profile: a calcic strong bicarbonate facies, an alkaline-calcic bicarbonate facies, an alkaline sulfate facies, and a strong alkaline sulfate facies. An ''Interphase zone'' (transition from bicarbonate water to sulfate water), where changes in composition may define a geochemical environment capable of UO2 precipitation, has been determined. The chemical-Thermodynamic studies give a dominance of UDC and UTC complexs ions (even in sulfate waters), so they represent the 99% of present ions. Besides, the calculated values required for equilibrium with uraninite or carnotite resulted much greater than those obtained in the performed experiments. It means that the precipitation of those minerals requires either the presence of greate amounts of uranium or vanadium, or a reducing environment with Eh values smaller than the observed ones. Finally, the steps to be taken in future investigations are suggested in view to a drilling plan where: 1) Priority to the ''Interphase zone'' areas is given. 2) The deepest aquifers in Tertiary sediments of the basin have to be reached in order to get the convenient environmental conditions (i.e. smallest Eh values) for uranium or uranium-vanadium precipitation. (author) [es

  14. Second status report on regional ground-water flow modeling for the Palo Duro Basin, Texas

    International Nuclear Information System (INIS)

    1986-07-01

    Regional ground-water flow within the principal geohydrologic units of the Palo Duro Basin is evaluated by developing a conceptual model of the flow regime and testing the model using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. Of particular interest are the impacts of salt permeability and potential climatic changes on the system response. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities within specified finite-difference blocks. The reported work is the second stage of an ongoing evaluation of the Palo Duro Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to particular parameters and, to a lesser extent, the uncertainties in the present conceptualization. 28 refs., 44 figs., 13 tabs

  15. Use of ground-water reservoirs for storage of surface water in the San Joaquin Valley, California

    Science.gov (United States)

    Davis, G.H.; Lofgren, B.E.; Mack, Seymour

    1964-01-01

    The San Joaquin Valley includes roughly the southern two-thirds of the Central Valley of California, extending 250 miles from Stockton on the north to Grapevine at the foot of the Tehachapi Mountains. The valley floor ranges in width from 25 miles near Bakersfield to about 55 miles near Visalia; it has a surface area of about 10,000 square miles. More than one-quarter of all the ground water pumped for irrigation in the United States is used in this highly productive valley. Withdrawal of ground water from storage by heavy pumping not only provides a needed irrigation water supply, but it also lowers the ground-water level and makes storage space available in which to conserve excess water during periods of heavy runoff. A storage capacity estimated to be 93 million acre-feet to a depth of 200 feet is available in this ground-water reservoir. This is about nine times the combined capacity of the existing and proposed surface-water reservoirs in the San Joaquin Valley under the California Water Plan. The landforms of the San Joaquin Valley include dissected uplands, low plains and fans, river flood plains and channels, and overflow lands and lake bottoms. Below the land surface, unconsolidated sediments derived from the surrounding mountain highlands extend downward for hundreds of feet. These unconsolidated deposits, consisting chiefly of alluvial deposits, but including some widespread lacustrine sediments, are the principal source of ground water in the valley. Ground water occurs under confined and unconfined conditions in the San Joaquin Valley. In much of the western, central, and southeastern parts of the valley, three distinct ground-water reservoirs are present. In downward succession these are 1) a body of unconfined and semiconfined fresh water in alluvial deposits of Recent, Pleistocene, and possibly later Pliocene age, overlying the Corcoran clay member of the Tulare formation; 2) a body of fresh water confined beneath the Corcoran clay member, which

  16. Air-Surface-Ground Water Cycling in an Agricultural Desert Valley of Southern Colorado

    Science.gov (United States)

    Lanzoni, M.

    2017-12-01

    In dryland areas around the world, vegetation plays an important role in stabilizing soil and encouraging recharge. In the Colorado high desert of the San Luis Valley, windstorms strip away topsoil and deposit dust on the surrounding mountain snowpack. Dust-on-snow lowers albedo and hastens melting, which in turn lowers infiltration and aquifer recharge. Since the 1990s, the San Luis Valley has experienced a sharp decline in aquifer levels due to over-development of its water resources. Where agricultural abstraction is significant, the unconfined aquifer has experienced a 9 m (30 ft) drop. Over the course of three years, this dryland hydrology study analyzed rain, snow, surface and ground water across a 20,000 km2 high desert area to establish a baseline of water inputs. δ18O and δ2H were analyzed to develop a LMWL specific to this region of the southern Rockies and isotopic differences were examined in relation to chemistry to understand environmental influences on meteoric waters. This work identifies a repeating pattern of acid rainfall with trace element contaminants, including actinides.To better understand how the area's dominant vegetation responds to a lowered water table, 76 stem water samples were collected from the facultative phreatophyte shrubs E. nauseosa and S. vermiculatus over the summer, fall, spring, and summer of 2015 and 2016 from study plots chosen for increasing depths to groundwater. This research shows distinct patterns of water capture strategy and seasonal shifts among the E. nauseosa and S. vermiculatus shrubs. These differences are most apparent where groundwater is most accessible. However, where the water table has dropped 6 m (20 feet) over the last decade, both E. nauseosa and S. vermiculatus survive only on near-surface snowmelt and rain.

  17. Ground-water resources of the Acu Valley, Rio Grande Norte, Brazil

    Science.gov (United States)

    Rodis, Harry G.; de Castro Araujo, Jonas Maria.

    1968-01-01

    The Acu Valley is the lower part of the Rio Piranhas valley in the northwestern part of the State of Rio Grande do Norte, Brazil. It begins where the Rio Piranhas leaves the crystalline Precambrian rocks to flow across the outcrop of sedimentary rocks. The area considered in this report extends northward for about 45 kilometers; it is terminated arbitrarily where encroachment by sea water has contaminated the aquifer and imparted a disagreeable saline taste to the water in it. The boundary was not determined in the field, however, for lack of special equipment. Part of the extensive uplands on either side of the valley are included. This makes the total area approximately 2,500 square kilometers. The largest town, Acu, had a population of about 8,000 in 1960. The area is considered to be part of the Drought Polygon of northeast Brazil because the precipitation, although averaging 448 millimeters annually at Acu, varies widely from year to year and often is deficient for many months. The precipitation has been supplemented by use of irrigation wells, but irrigated agriculture is not yet far advanced, and the quantities of water used in irrigation are small. Geologically, the area consists of basement crystalline rocks (Precambrian), a wedge of sedimentary rocks thickening northward (Cretaceous), and alluvial sediments constituting a narrow band in the bottom of the valley (Alluvium and terrace deposits). The crystalline rocks contain water mainly in fractures and, in general, are impermeable. The sedimentary rocks of Cretaceous age comprise two units: a thick but fine-grained sandstone grading upward into siltstone and shale (Acu Sandstone), and limestone and dolomite with an included shale zone (Jandaira Limestone). The sandstone especially and the limestone to a lesser degree are ground-water reservoirs of large capacity. The limestone has been tapped at several places, but the sandstone and its contained water are practically untested and, hence, imperfectly

  18. Regional ground-water flow modeling for the Paradox Basin, Utah: Second status report

    International Nuclear Information System (INIS)

    1986-09-01

    Regional ground-water flow within the principal geohydrologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime between the shallow aquifers, the Paradox salt and the deep-basin brine aquifers. This model is tested using a three-dimensional, finite-difference flow code. Sensitivity analyses (a limited parametric study) are conducted to define the system responses to changes in the conceptual model. The conceptual model is described in terms of its areal and vertical discretization, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated results are described with potentiometric surfaces, tables summarizing the areal and vertical volumetric flows through the principal units, and Darcy velocities at specified points. The reported work is the second stage of an ongoing evaluation of the Gisbon Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to the hydrologic parameters and, to a lesser extent, the uncertainties of the present conceptualization. 20 refs., 17 figs., 9 tabs

  19. Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics

    International Nuclear Information System (INIS)

    Modis, K.

    2010-01-01

    An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.

  20. Spatiotemporal mapping of ground water pollution in a Greek lignite basin, using geostatistics

    Energy Technology Data Exchange (ETDEWEB)

    Modis, K. [National Technical Univ. of Athens, Athens (Greece)

    2010-07-01

    An issue of significant interest in the mining industry in Greece is the occurrence of chemical pollutants in ground water. Ammonium, nitrites and nitrates concentrations have been monitored through an extensive sampling network in the Ptolemais lignite opencast mining area in Greece. Due to intensive mining efforts in the area, the surface topology is continuously altered, affecting the life span of the water boreholes and resulting in messy spatiotemporal distribution of data. This paper discussed the spatiotemporal mapping of ground water pollution in the Ptolemais lignite basin, using geostatistics. More specifically, the spatiotemporal distribution of ground water contamination was examined by the application of the bayesian maximum entropy theory which allows merging spatial and temporal estimations in a single model. The paper provided a description of the site and discussed the materials and methods, including samples and statistics; variography; and spatiotemporal mapping. It was concluded that in the case of the Ptolemais mining area, results revealed an underlying average yearly variation pattern of pollutant concentrations. Inspection of the produced spatiotemporal maps demonstrated a continuous increase in the risk of ammonium contamination, while risk for the other two pollutants appeared in hot spots. 18 refs., 1 tab., 7 figs.

  1. Estimates of ground-water recharge rates for two small basins in central Nevada

    Science.gov (United States)

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  2. Simulated effects of climate change on the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; O'Brien, G.M.; Faunt, C.C.; San Juan, C.A.

    1999-01-01

    The US Geological Survey, in cooperation with the US Department of Energy, is evaluating the geologic and hydrologic characteristics of the Death Valley regional flow system as part of the Yucca Mountain Project. As part of the hydrologic investigation, regional, three-dimensional conceptual and numerical ground-water-flow models have been developed to assess the potential effects of past and future climates on the regional flow system. A simulation that is based on climatic conditions 21,000 years ago was evaluated by comparing the simulated results to observation of paleodischarge sites. Following acceptable simulation of a past climate, a possible future ground-water-flow system, with climatic conditions that represent a doubling of atmospheric carbon dioxide, was simulated. The steady-state simulations were based on the present-day, steady-state, regional ground-water-flow model. The finite-difference model consisted of 163 rows, 153 columns, and 3 layers and was simulated using MODFLOWP. Climate changes were implemented in the regional ground-water-flow model by changing the distribution of ground-water recharge. Global-scale, average-annual, simulated precipitation for both past- and future-climate conditions developed elsewhere were resampled to the model-grid resolution. A polynomial function that represents the Maxey-Eakin method for estimating recharge from precipitation was used to develop recharge distributions for simulation

  3. Hydrogeologic evaluation and numerical simulation of the Death Valley regional ground-water flow system, Nevada and California

    International Nuclear Information System (INIS)

    D'Agnese, F.A.; Faunt, C.C.; Turner, A.K.; Hill, M.C.

    1997-01-01

    Yucca Mountain is being studied as a potential site for a high-level radioactive waste repository. In cooperation with the U.S. Department of Energy, the U.S. Geological Survey is evaluating the geologic and hydrologic characteristics of the ground-water system. The study area covers approximately 100,000 square kilometers between lat 35 degrees N., long 115 degrees W and lat 38 degrees N., long 118 degrees W and encompasses the Death Valley regional ground-water flow system. Hydrology in the region is a result of both the and climatic conditions and the complex described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the regional flow system, ground-water flow is probably controlled by extensive and prevalent structural features that result from regional faulting and fracturing. Hydrogeologic investigations over a large and hydrogeologically complex area impose severe demands on data management. This study utilized geographic information systems and geoscientific information systems to develop, store, manipulate, and analyze regional hydrogeologic data sets describing various components of the ground-water flow system

  4. Ground-water resources of the Lambayeque Valley, Department of Lambayeque, northern Peru

    Science.gov (United States)

    Schoff, Stuart L.; Sayan, M. Juan Luis

    1969-01-01

    Ground water in the Lambayeque Valley has been developed mainly for irrigation of sugarcane and rice. The locality is on the coastal plain of northern Peru, about 650 km (kilometers) northwest of Lima, the national capital. The area considered in this study is about 1,670 sq km (square kilometers) and is mainly on the alluvial fan of Rio Chancay and entirely in the Department of Lambayeque. Chiclayo, the departmental capital and largest city, has a population, of about 46,000. The climate is hot and virtually rainless. Agriculture is dependent on irrigation. The available water, whether in stream s or underground, is introduced from the Andean highlands by Rio Chancay. Rocks in the area range in age from Cretaceous, or possibly Jurassic, to Quaternary and in lithology from dense and hard igneous, sedimentary, and metamorphic rocks to unconsolidated sediments. The bedrock contains and yields water only in small quantities, if at all. The principal water-bearing strata are in the alluvium comprising the fan of Rio Chancay. Where ground water in the alluvium has been most intensively developed, the productive zone is within 20 m (meters) of the land surface and is composed approximately as follows: (1) relatively impermeable soil, clay, and clayey sand, 5 to 10 m thick, (2) permeable sand and gravel, 6 to 10 m thick, at places including one or more layers of clay, so that several water-bearing beds are distinguishable, and (3) relatively impermeable mixtures of clay, sand, and gravel extending below the bottom of wells. Unit 3 in the deepest test continued to 102 m. Unit 2 is the principal source of water tapped by irrigation wells. In the northern part of the area wells locally yield water rather freely from strata as deep as 73 m, but elsewhere in the area the strata deeper than 20 m are not very productive. Wells at and near Chiclayo yield only small amounts, and the deepest well disclosed, in 100 m of material, only 5.5 m of material that can be considered as

  5. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    Science.gov (United States)

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  6. Age and quality of ground water and sources of nitrogen in the aquifers in Pumpkin Creek Valley, western Nebraska, 2000

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.; Sibray, S.S.; McGuire, V.L.

    2005-01-01

    Ground water is the source of drinking water for the residents of Pumpkin Creek Valley, western Nebraska. In this largely agricultural area, shallow aquifers potentially are susceptible to nitrate contamination. During the last 10 years, ground-water levels in the North Platte Natural Resources District have declined and contamination has become a major problem for the district. In 2000, the U.S. Geological Survey and the North Platte Natural Resources District began a cooperative study to determine the age and quality of the ground water and the sources of nitrogen in the aquifers in Pumpkin Creek Valley. Water samples were collected from 8 surface-water sites, 2 springs, and 88 ground-water sites during May, July, and August 2000. These samples were analyzed for physical properties, nutrients or nitrate, and hydrogen and oxygen isotopes. In addition, a subset of samples was analyzed for any combination of chlorofluorocarbons, tritium, tritium/helium, sulfur-hexafluoride, carbon-14, and nitrogen-15. The apparent age of ground water in the alluvial aquifer typically varied from about 1980 to modern, whereas ground water in the fractured Brule Formation had a median value in the 1970s. The Brule Formation typically contained ground water that ranged from the 1940s to the 1990s, but low-yield wells had apparent ages of 5,000 to 10,000 years before present. Data for oxygen-18 and deuterium indicated that lake-water samples showed the greatest effects from evaporation. Ground-water data showed no substantial evaporative effects and some ground water became isotopically heavier as the water moved downgradient. In addition, the physical and chemical ground-water data indicate that Pumpkin Creek is a gaining stream because little, if any, of its water is lost to the ground-water system. The water-quality type changed from a sodium calcium bicarbonate type near Pumpkin Creek's headwaters to a calcium sodium bicarbonate type near its mouth. Nitrate concentrations were

  7. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    Science.gov (United States)

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  8. Ground-Water Quality Data in the Owens and Indian Wells Valleys Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Densmore, Jill N.; Fram, Miranda S.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 1,630 square-mile Owens and Indian Wells Valleys study unit (OWENS) was investigated in September-December 2006 as part of the Priority Basin Project of Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board (SWRCB). The Owens and Indian Wells Valleys study was designed to provide a spatially unbiased assessment of raw ground-water quality within OWENS study unit, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 74 wells in Inyo, Kern, Mono, and San Bernardino Counties. Fifty-three of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and 21 wells were selected to evaluate changes in water chemistry in areas of interest (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater- indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3- trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. This study evaluated the quality of raw ground water in the aquifer in the OWENS study unit and did not attempt to evaluate the quality of treated water

  9. First status report on regional ground-water flow modeling for the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Andrews, R.W.

    1984-05-01

    Regional ground-water flow within the principal hydrogeologic units of the Paradox Basin is evaluated by developing a conceptual model of the flow regime in the shallow aquifers and the deep-basin brine aquifers and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analysis (a limited parametric study) is conducted to define the system response to changes in hydrologic properties or boundary conditions. A direct method for sensitivity analysis using an adjoint form of the flow equation is applied to the conceptualized flow regime in the Leadville limestone aquifer. All steps leading to the final results and conclusions are incorporated in this report. The available data utilized in this study is summarized. The specific conceptual models, defining the areal and vertical averaging of litho-logic units, aquifer properties, fluid properties, and hydrologic boundary conditions, are described in detail. Two models were evaluated in this study: a regional model encompassing the hydrogeologic units above and below the Paradox Formation/Hermosa Group and a refined scale model which incorporated only the post Paradox strata. The results are delineated by the simulated potentiometric surfaces and tables summarizing areal and vertical boundary fluxes, Darcy velocities at specific points, and ground-water travel paths. Results from the adjoint sensitivity analysis include importance functions and sensitivity coefficients, using heads or the average Darcy velocities to represent system response. The reported work is the first stage of an ongoing evaluation of the Gibson Dome area within the Paradox Basin as a potential repository for high-level radioactive wastes

  10. Hydrology of the coastal springs ground-water basin and adjacent parts of Pasco, Hernando, and Citrus Counties, Florida

    Science.gov (United States)

    Knochenmus, Lari A.; Yobbi, Dann K.

    2001-01-01

    The coastal springs in Pasco, Hernando, and Citrus Counties, Florida consist of three first-order magnitude springs and numerous smaller springs, which are points of substantial ground-water discharge from the Upper Floridan aquifer. Spring flow is proportional to the water-level altitude in the aquifer and is affected primarily by the magnitude and timing of rainfall. Ground-water levels in 206 Upper Floridan aquifer wells, and surface-water stage, flow, and specific conductance of water from springs at 10 gaging stations were measured to define the hydrologic variability (temporally and spatially) in the Coastal Springs Ground-Water Basin and adjacent parts of Pasco, Hernando, and Citrus Counties. Rainfall at 46 stations and ground-water withdrawals for three counties, were used to calculate water budgets, to evaluate long-term changes in hydrologic conditions, and to evaluate relations among the hydrologic components. Predictive equations to estimate daily spring flow were developed for eight gaging stations using regression techniques. Regression techniques included ordinary least squares and multiple linear regression techniques. The predictive equations indicate that ground-water levels in the Upper Floridan aquifer are directly related to spring flow. At tidally affected gaging stations, spring flow is inversely related to spring-pool altitude. The springs have similar seasonal flow patterns throughout the area. Water-budget analysis provided insight into the relative importance of the hydrologic components expected to influence spring flow. Four water budgets were constructed for small ground-water basins that form the Coastal Springs Ground-Water Basin. Rainfall averaged 55 inches per year and was the only source of inflow to the Basin. The pathways for outflow were evapotranspiration (34 inches per year), runoff by spring flow (8 inches per year), ground-water outflow from upward leakage (11 inches per year), and ground-water withdrawal (2 inches per year

  11. Chemistry of ground water in the Silver Springs basin, Florida, with an emphasis on nitrate

    Science.gov (United States)

    Phelps, G.G.

    2004-01-01

    The Silver Springs group, in central Marion County, Florida, has a combined average discharge rate of 796 cubic feet per second and forms the headwaters of the Silver River. The springs support a diverse ecosystem and are an important cultural and economic resource. Concentrations of nitrite-plus-nitrate (nitrate-N) in water from the Main Spring increased from less than 0.5 milligrams per liter (mg/L) in the 1960s to about 1.0 mg/L in 2003. The Upper Floridan aquifer supplies the ground water to support spring discharge. This aquifer is at or near land surface in much of the ground-water basin; nutrients leached at land surface can easily percolate downward into the aquifer. Sources of nitrogen in ground water in the Silver Springs basin include atmospheric deposition, fertilizers used by agricultural and urban activities, and human and animal wastes. During 2000-2001, 56 wells in the area contributing recharge to Silver Springs were sampled for major ions, nutrients, and some trace constituents. Selected wells also were sampled for a suite of organic constituents commonly found in domestic and industrial wastewater and for the ratio of nitrogen isotopes (15N/14N) to better understand the sources of nitrate. Wells were selected to be representative of both confined and unconfined conditions of the Upper Floridan aquifer, as well as a variety of land-use types. Data from this study were compared to data collected from 25 wells in 1989-90. Concentrations of nitrate-N in ground water during this study ranged from less than the detection limit of 0.02 to 12 mg/L, with a median of 1.2 mg/L. For data from 1989-90, the range was from less than 0.02 to 3.6 mg/L, with a median of 1.04 mg/L. Water from wells in agricultural land-use areas had the highest median nitrate-N concentration (1.7 mg/L), although it is uncertain if the 12 mg/L maximum concentration was influenced by land-use activities or proximity to a septic tank. The median value for all urban land-use areas was

  12. Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

    Science.gov (United States)

    Umari, A.M.; Martin, P.M.; Schroeder, R.A.; Duell, L.F.; Fay, R.G.

    1993-01-01

    Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the

  13. Organic geochemistry of deep ground waters from the Palo Duro Basin, Texas: implications for radionuclide complexation, ground-water origin, and petroleum exploration

    International Nuclear Information System (INIS)

    Means, J.L.; Hubbard, N.J.

    1985-05-01

    This report describes the organic geochemistry of 11 ground-water samples from the Palo Duro Basin, Texas and discusses the implications of their organic geochemical compositions in terms of radionuclide complexation, ground-water origin, and the petroleum potential of two candidate repository sites in Deaf Smith and Swisher Counties. Short-chain aliphatic acid anions are the principal organic constituents present. Stability constant data and simple chemical equilibria calculations suggest that short-chain aliphatic acids are relatively weak complexing agents. The extent of complexation of a typical actinide by selected inorganic ligands present in these brines is expected to far outweigh actinide complexation by the aliphatic acid anions. Various lines of evidence suggest that some portion of the bromide concentrations in the brines is derived from the same source as the short-chain aliphatic acid anions. When the postulated organic components are subtracted from total bromide concentrations, the origins of the Palo Duro brines, based on chloride versus bromide relationships, appear largely consistent with origins based on isotopic evidence. The short-chain aliphatic acid anion content of the Palo Duro brines is postulated to have been much greater in the geologic past. Aliphatic acid anions are but one of numerous petroleum proximity indicators, which consistently suggest a greater petroleum exploration potential for the area surrounding the Swisher County site than the region encompassing the candidate site in Deaf Smith County. Short-chain aliphatic acid anions appear to provide a useful petroleum exploration tool as long as the complex reactions that may dimish their concentrations in ground water are recognized. 71 refs., 10 figs., 10 tabs

  14. Geohydrology and numerical simulation of ground-water flow in the central Virgin River basin of Iron and Washington Countries, Utah

    Science.gov (United States)

    Heilweil, V.M.; Freethey, G.W.; Wilkowske, C.D.; Stolp, B.J.; Wilberg, D.E.

    2000-01-01

    Because rapid growth of communities in Washington and Iron Counties, Utah, is expected to cause an increase in the future demand for water resources, a hydrologic investigation was done to better understand ground-water resources within the central Virgin River basin. This study focused on two of the principal ground-water reservoirs within the basin: the upper Ash Creek basin ground-water system and the Navajo and Kayenta aquifer system. The ground-water system of the upper Ash Creek drainage basin consists of three aquifers: the uppermost Quaternary basin-fill aquifer, the Tertiary alluvial-fan aquifer, and the Tertiary Pine Valley monzonite aquifer. These aquifers are naturally bounded by the Hurricane Fault and by drainage divides. On the basis of measurements, estimates, and numerical simulations of reasonable values for all inflow and outflow components, total water moving through the upper Ash Creek drainage basin ground-water system is estimated to be about 14,000 acre-feet per year. Recharge to the upper Ash Creek drainage basin ground-water system is mostly from infiltration of precipitation and seepage from ephemeral and perennial streams. The primary source of discharge is assumed to be evapotranspiration; however, subsurface discharge near Ash Creek Reservoir also may be important. The character of two of the hydrologic boundaries of the upper Ash Creek drainage basin ground-water system is speculative. The eastern boundary provided by the Hurricane Fault is assumed to be a no-flow boundary, and a substantial part of the ground-water discharge from the system is assumed to be subsurface outflow beneath Ash Creek Reservoir along the southern boundary. However, these assumptions might be incorrect because alternative numerical simulations that used different boundary conditions also proved to be feasible. The hydrogeologic character of the aquifers is uncertain because of limited data. Difference in well yield indicate that there is considerable

  15. Questa baseline and pre-mining ground-water quality investigation. 14. Interpretation of ground-water geochemistry in catchments other than the Straight Creek catchment, Red River Valley, Taos County, New Mexico, 2002-2003

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Hunt, Andrew G.; Naus, Cheryl A.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site but proximal analog. The Straight Creek catchment, chosen for this purpose, consists of the same Tertiary-age quartz-sericite-pyrite altered andesite and rhyolitic volcanics as the mine site. Straight Creek is about 5 kilometers east of the eastern boundary of the mine site. Both Straight Creek and the mine site are at approximately the same altitude, face south, and have the same climatic conditions. Thirteen wells in the proximal analog drainage catchment were sampled for ground-water chemistry. Eleven wells were installed for this study and two existing wells at the Advanced Waste-Water Treatment (AWWT) facility were included in this study. Eight wells were sampled outside the Straight Creek catchment: one each in the Hansen, Hottentot, and La Bobita debris fans, four in a well cluster in upper Capulin Canyon (three in alluvial deposits and one in bedrock), and an existing well at the U.S. Forest Service Questa Ranger Station in Red River alluvial deposits. Two surface waters from the Hansen Creek catchment and two from the Hottentot drainage catchment also were sampled for comparison to ground-water compositions. In this report, these samples are evaluated to determine if the geochemical interpretations from the Straight Creek ground-water geochemistry could be extended to other ground waters in the Red River Valley , including the mine site. Total-recoverable major cations and trace metals and dissolved major cations, selected trace metals, anions, alkalinity; and iron-redox species were determined for all surface- and ground-water samples. Rare-earth elements and low-level As, Bi, Mo, Rb, Re, Sb, Se, Te, Th, U, Tl, V, W, Y, and Zr were

  16. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  17. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003

    Science.gov (United States)

    Schaefer, Donald H.; Thiros, Susan A.; Rosen, Michael R.

    2005-01-01

    The carbonate-rock aquifer of the Great Basin is named for the thick sequence of Paleozoic limestone and dolomite with lesser amounts of shale, sandstone, and quartzite. It lies primarily in the eastern half of the Great Basin and includes areas of eastern Nevada and western Utah as well as the Death Valley area of California and small parts of Arizona and Idaho. The carbonate-rock aquifer is contained within the Basin and Range Principal Aquifer, one of 16 principal aquifers selected for study by the U.S. Geological Survey’s National Water- Quality Assessment Program.Water samples from 30 ground-water sites (20 in Nevada and 10 in Utah) were collected in the summer of 2003 and analyzed for major anions and cations, nutrients, trace elements, dissolved organic carbon, volatile organic compounds (VOCs), pesticides, radon, and microbiology. Water samples from selected sites also were analyzed for the isotopes oxygen-18, deuterium, and tritium to determine recharge sources and the occurrence of water recharged since the early 1950s.Primary drinking-water standards were exceeded for several inorganic constituents in 30 water samples from the carbonate-rock aquifer. The maximum contaminant level was exceeded for concentrations of dissolved antimony (6 μg/L) in one sample, arsenic (10 μg/L) in eleven samples, and thallium (2 μg/L) in one sample. Secondary drinking-water regulations were exceeded for several inorganic constituents in water samples: chloride (250 mg/L) in five samples, fluoride (2 mg/L) in two samples, iron (0.3 mg/L) in four samples, manganese (0.05 mg/L) in one sample, sulfate (250 mg/L) in three samples, and total dissolved solids (500 mg/L) in seven samples.Six different pesticides or metabolites were detected at very low concentrations in the 30 water samples. The lack of VOC detections in water sampled from most of the sites is evidence thatVOCs are not common in the carbonate-rock aquifer. Arsenic values for water range from 0.7 to 45.7

  18. Ground-Water Quality Data in the Coastal Los Angeles Basin Study Unit, 2006: Results from the California GAMA Program

    Science.gov (United States)

    Mathany, Timothy M.; Land, Michael; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 860 square-mile Coastal Los Angeles Basin study unit (CLAB) was investigated from June to November of 2006 as part of the Statewide Basin Assessment Project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Coastal Los Angeles Basin study was designed to provide a spatially unbiased assessment of raw ground-water quality within CLAB, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 69 wells in Los Angeles and Orange Counties. Fifty-five of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (?grid wells?). Fourteen additional wells were selected to evaluate changes in ground-water chemistry or to gain a greater understanding of the ground-water quality within a specific portion of the Coastal Los Angeles Basin study unit ('understanding wells'). Ground-water samples were analyzed for: a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides, polar pesticides, and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicators]; constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), 1,4-dioxane, and 1,2,3-trichloropropane (1,2,3-TCP)]; inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements]; radioactive constituents [gross-alpha and gross-beta radiation, radium isotopes, and radon-222]; and microbial indicators. Naturally occurring isotopes [stable isotopic ratios of hydrogen and oxygen, and activities of tritium and carbon-14

  19. Surface- and ground-water relations on the Portneuf river, and temporal changes in ground-water levels in the Portneuf Valley, Caribou and Bannock Counties, Idaho, 2001-02

    Science.gov (United States)

    Barton, Gary J.

    2004-01-01

    The State of Idaho and local water users are concerned that streamflow depletion in the Portneuf River in Caribou and Bannock Counties is linked to ground-water withdrawals for irrigated agriculture. A year-long field study during 2001 02 that focused on monitoring surface- and ground-water relations was conducted, in cooperation with the Idaho Department of Water Resources, to address some of the water-user concerns. The study area comprised a 10.2-mile reach of the Portneuf River downstream from the Chesterfield Reservoir in the broad Portneuf Valley (Portneuf River Valley reach) and a 20-mile reach of the Portneuf River in a narrow valley downstream from the Portneuf Valley (Pebble-Topaz reach). During the field study, the surface- and ground-water relations were dynamic. A losing river reach was delineated in the middle of the Portneuf River Valley reach, centered approximately 7.2 miles downstream from Chesterfield Reservoir. Two seepage studies conducted in the Portneuf Valley during regulated high flows showed that the length of the losing river reach increased from 2.6 to nearly 6 miles as the irrigation season progressed.Surface- and ground-water relations in the Portneuf Valley also were characterized from an analysis of specific conductance and temperature measurements. In a gaining reach, stratification of specific conductance and temperature across the channel of the Portneuf River was an indicator of ground water seeping into the river.An evolving method of using heat as a tracer to monitor surface- and ground-water relations was successfully conducted with thermistor arrays at four locations. Heat tracing monitored a gaining reach, where ground water was seeping into the river, and monitored a losing reach, where surface water was seeping down through the riverbed (also referred to as a conveyance loss), at two locations.Conveyance losses in the Portneuf River Valley reach were greatest, about 20 cubic feet per second, during the mid-summer regulated

  20. Tectonic Setting of the Gravity Fault and Implications for Ground-Water Resources in the Death Valley Region, Nevada and California

    Science.gov (United States)

    Blakely, R. J.; Sweetkind, D. S.; Faunt, C. C.; Jansen, J. R.; McPhee, D. K.; Morin, R. L.

    2007-12-01

    The Amargosa trough, extending south from Crater Flat basin to the California-Nevada state line, is believed to be a transtensional basin accommodated in part by strike-slip displacement on the northwest-striking State Line fault and normal displacement on the north-striking Gravity fault. The Gravity fault, lying along the eastern margin of the Amargosa trough, was first recognized in the 1970s on the basis of correlations between gravity anomalies and a prominent spring line in Amargosa Valley. The Gravity fault causes an inflection in water-table levels, similar to other (but not all) normal faults in the area. Pools along the spring line, some of which lie within Death Valley National Park and Ash Meadows Wildlife Refuge, include endemic species potentially threatened by increasing agricultural activities in Amargosa Valley immediately to the west, where water tables are declining. Most of the springs and pools lie east of the Gravity fault, however, and it is important to understand the role that the Gravity fault plays in controlling ground-water flow. We have conducted a variety of geophysical investigations at various scales to better understand the tectonic framework of the Amargosa Desert and support new ground-water-flow models. Much of our focus has been on the tectonic interplay of the State Line, Gravity, and other faults in the area using gravity, ground-magnetic, audiomagnetotelluric (AMT), and time-domain electromagnetic (TEM) surveys. With 1250 new gravity measurements from Ash Meadows and Stewart Valley, we have developed a revised three-dimensional crustal model of the Amargosa trough constrained by well information and geologic mapping. The model predicts approximately 2 km of vertical offset on the Gravity fault but also suggests a complex structural framework. The fault is conventionally seen as a simple, down-to-the-west normal fault juxtaposing permeable pre-Tertiary carbonate rocks to the east against less permeable Tertiary sediments to

  1. Hydrogeology, Ground-Water-Age Dating, Water Quality, and Vulnerability of Ground Water to Contamination in a Part of the Whitewater Valley Aquifer System near Richmond, Indiana, 2002-2003

    Science.gov (United States)

    Buszka, Paul M.; Watson, Lee R.; Greeman, Theodore K.

    2007-01-01

    Assessments of the vulnerability to contamination of ground-water sources used by public-water systems, as mandated by the Federal Safe Drinking Water Act Amendments of 1996, commonly have involved qualitative evaluations based on existing information on the geologic and hydrologic setting. The U.S. Geological Survey National Water-Quality Assessment Program has identified ground-water-age dating; detailed water-quality analyses of nitrate, pesticides, trace elements, and wastewater-related organic compounds; and assessed natural processes that affect those constituents as potential, unique improvements to existing methods of qualitative vulnerability assessment. To evaluate the improvement from use of these methods, in 2002 and 2003, the U.S. Geological Survey, in cooperation with the City of Richmond, Indiana, compiled and interpreted hydrogeologic data and chemical analyses of water samples from seven wells in a part of the Whitewater Valley aquifer system in a former glacial valley near Richmond. This study investigated the application of ground-water-age dating, dissolved-gas analyses, and detailed water-quality analyses to quantitatively evaluate the vulnerability of ground water to contamination and to identify processes that affect the vulnerability to specific contaminants in an area of post-1972 greenfield development.

  2. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west. Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18

  3. A study on uranium metallogenetic prospects of ground water oxidation zone type in the lower cretaceous, north Shanganning basin

    International Nuclear Information System (INIS)

    Wang Jinping

    2000-01-01

    Lower Cretaceous is developed well in the north part of Shanganning basin. The area was widely uplifting vertically after their deposited. Based on the features of lithology, lithophase and Neotectonic forms, two main periods of oxidation-erosion of K2-E1 and N1-present can be distinguished. During these two periods, large scale horizontal oxidation were occurred. It is significant that the ground water oxidation related to the uranium mineralization and has been proved by the field investigation and the data of γ-logging in drill hole for oil. Meanwhile, according to the hydrodynamic features of present Shanganning plateau type artesian basin, it seems that uranium mineralization main related to the ground water oxidation the upper parts of the Lower Cretaceous

  4. Preliminary appraisal of ground water in and near the ancestral Missouri River Valley, northeastern Montana

    Science.gov (United States)

    Levings, G.W.

    1986-01-01

    A preliminary appraisal was conducted in and near the ancestral Missouri River valley in northeastern Montana to describe the groundwater resources and to establish a data base for the area. The data base then could be used for future evaluation of possible changes in water levels or water quality. In this area, consolidated aquifers are the Upper Cretaceous Fox Hills-lower Hell Creek aquifer and the overlying Paleocene Fort Union Formation. Unconsolidated aquifers are Pleistocene terrace gravel and glacial deposits and Holocene alluvial deposits. Aquifers are recharged by precipitation, infiltration of streamflow, and possibly leakage from lakes and potholes. Groundwater moves from topographically higher areas to the ancestral valley, then along the ancestral valley to the southwest. Water is discharged from aquifers by evapotranspiration, springs and seeps, movement directly into streams and lakes, and from pumping wells. Average well yields are greatest for irrigation wells completed in outwash gravel (886 gallons/min). Eighteen wells were completed in various aquifers to monitor potential long-term changes in water levels and water quality. Measured water levels declined about 2 ft. or less during the study (1982-85). Chemical analysis of groundwater samples indicated that concentrations of some dissolved constituents exceeded U.S. Environmental Protection Agency standards for drinking water. (USGS)

  5. Geology and ground water in the Platte-Republican Rivers watershed and the Little Blue River basin above Angus, Nebraska, with a section on chemical quality of the ground water

    Science.gov (United States)

    Johnson, C.R.; Brennan, Robert

    1960-01-01

    saturation because the ground water, as it percolates southeastward beneath the area, moves out of the Tertiary and into the Quaternary deposits without apparent hindrance. The water that enters the area as underflow from the west is augmented within the area by water that infiltrates from the land surface. The principal sources of irrigating water are precipitation, seepage from canals and reservoirs, and applied irrigation water. Except for the water withdrawn through wells or discharged by natural processes where valleys have been cut into the zone of saturation, ground water leaves the area as underflow into the Platte River valley on the north, the Blue River drainage basin on the east, or the Republican River valley on the south. Part of the water used for irrigation and watering livestock and all the water used in rural and urban homes, in public buildings, and for industrial purposes is obtained from wells, To date (1952) there is no indication that the supply of ground water is being depleted faster than it is being replenished; instead, studies indicate that greater quantities can be withdrawn without causing an excessive decline of the water table. An increase of ground-water withdrawals to a sustainable maximum, however, will be possible only if the points of withdrawal are scattered fairly uniformly. It is estimated that annual withdrawals per township should not exceed 2,100 acre-feet where infiltrating precipitation is the only source of recharge, or 3,000 acre-feet where other sources of recharge are significant. Although perennial withdrawals of this amount could be sustained indefinitely, they would cause some lowering of the water table and eventually a decrease in the amount of water discharged from the area by natural means. The ground water is of the calcium bicarbonate type. In much of the area it is hard or very hard, and in places it contains excessive amounts of iron. In all other respects the water is chemically suitable for domesti

  6. Evaluation of baseline ground-water conditions in the Mosteiros, Ribeira Paul, and Ribeira Fajã Basins, Republic of Cape Verde, West Africa, 2005-06

    Science.gov (United States)

    Heilweil, Victor M.; Earle, John D.; Cederberg, Jay R.; Messer, Mickey M.; Jorgensen, Brent E.; Verstraeten, Ingrid M.; Moura, Miguel A.; Querido, Arrigo; Spencer,; Osorio, Tatiana

    2006-01-01

    This report documents current (2005-06) baseline ground-water conditions in three basins within the West African Republic of Cape Verde (Mosteiros on Fogo, Ribeira Paul on Santo Antão, and Ribeira Fajã on São Nicolau) based on existing data and additional data collected during this study. Ground-water conditions (indicators) include ground-water levels, ground-water recharge altitude, ground-water discharge amounts, ground-water age (residence time), and ground-water quality. These indicators are needed to evaluate (1) long-term changes in ground-water resources or water quality caused by planned ground-water development associated with agricultural projects in these basins, and (2) the feasibility of artificial recharge as a mitigation strategy to offset the potentially declining water levels associated with increased ground-water development.Ground-water levels in all three basins vary from less than a few meters to more than 170 meters below land surface. Continuous recorder and electric tape measurements at three monitoring wells (one per basin) showed variations between August 2005 and June 2006 of as much as 1.8 meters. Few historical water-level data were available for the Mosteiros or Ribeira Paul Basins. Historical records from Ribeira Fajã indicate very large ground-water declines during the 1980s and early 1990s, associated with dewatering of the Galleria Fajã tunnel. More-recent data indicate that ground-water levels in Ribeira Fajã have reached a new equilibrium, remaining fairly constant since the late 1990s.Because of the scarcity of observation wells within each basin, water-level data were combined with other techniques to evaluate ground-water conditions. These techniques include the quantification of ground-water discharge (well withdrawals, spring discharge, seepage to springs, and gallery drainage), field water-quality measurements, and the use of environmental tracers to evaluate sources of aquifer recharge, flow paths, and ground-water

  7. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    Science.gov (United States)

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  8. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  9. Ground-Water Quality Data in the Central Eastside San Joaquin Basin 2006: Results from the California GAMA Program

    Science.gov (United States)

    Landon, Matthew K.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 1,695-square-mile Central Eastside study unit (CESJO) was investigated from March through June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The study was designed to provide a spatially unbiased assessment of raw ground-water quality within CESJO, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 78 wells in Merced and Stanislaus Counties. Fifty-eight of the 78 wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells). Twenty of the wells were selected to evaluate changes in water chemistry along selected lateral or vertical ground-water flow paths in the aquifer (flow-path wells). The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), gasoline oxygenates and their degradates, pesticides and pesticide degradates], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], inorganic constituents that can occur naturally [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, carbon-14, and uranium isotopes and stable isotopes of hydrogen, oxygen, nitrogen, sulfur, and carbon], and dissolved noble and other gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, samples for matrix spikes) were collected

  10. Preliminary simulation model to determine ground-water flow and ages within the Palo Duro Basin hydrogeologic province

    International Nuclear Information System (INIS)

    Atwood, H.; Picking, L.

    1986-01-01

    Ground-water flow through the Palo Duro and Tucumcari Basins is simulated by developing a hydrogeolgic profile and applying a cross-sectional, finite-element, numerical model to the profile. The profile is 350 miles long and 2 miles deep and extends from east-central New Mexico to the Texas-Oklahoma border. It is comprised of hydrogeologic units that are identified from geophysical well logs, sample logs, and core descriptions. A hydrogeologic unit as used in this profile is a physically continuous rock sequence with hydrologic properties that are relatively consistent throughout and distinct from surrounding units. The resulting hydrogeologic profile, with the exception of the Ogallala Formation and the Dockum Group, is discretized into a 6000-element mesh and a 22,000-element mesh. Permeability values assigned to hydrogeologic units were, in part, calculated from drill stem tests conducted throughout the Palo Duro Basin. Ground-water age and travel paths are determined by applying Darcy's equation to selected flow lines. The 170 million-year age determined from ground-water at points within the Wolfcamp Series compares favorably with the geochemical data for this region. An age of 188 million years is determined for the Pennsylvanian granite wash

  11. Status report: numerical modeling of ground-water flow in the Paleozoic formations, western Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Dunbar, D.B.; Thackston, J.W.

    1985-10-01

    A three-dimensional finite-difference numerical model was applied to simulate the ground-water flow pattern in Paleozoic strata within the western Paradox Basin region. The primary purpose of the modeling was to test the present conceptual hydrogeologic model and evaluate data deficiencies. All available data on ground-water hydrology, although sparse in this area, were utilized as input to the model. Permeability and potentiometric levels were estimated from petroleum company drill-stem tests and water-supply wells; formation thicknesses were obtained from geologic correlation of borehole geophysical logs. Hydrogeologic judgment weighed heavily in the assignment of hydrologic values to geologic features for this preliminary modeling study. Calibration of the model was accomplished through trial-and-error matching of simulated potentiometric contours with available head data. Hypothetical flow patterns, flux rates, recharge amounts, and surface discharge amounts were produced by the model. 34 refs., 17 figs., 3 tabs

  12. Estimates of ground-water pumpage from the Yakima River Basin aquifer system, Washington, 1960-2000

    Science.gov (United States)

    Vaccaro, J.J.; Sumioka, S.S.

    2006-01-01

    Ground-water pumpage in the Yakima River Basin, Washington, was estimated for eight categories of use for 1960-2000 as part of an investigation to assess groundwater availability in the basin. Methods used, pumpage estimates, reliability of the estimates, and a comparison with appropriated quantities are described. The eight categories of pumpage were public water supply, self-supplied domestic (exempt wells), irrigation, frost protection, livestock and dairy operations, industrial and commercial, fish and wildlife propagation, and ground-water claims. Pumpage estimates were based on methods that varied by the category and primarily represent pumpage for groundwater rights. Washington State Department of Ecology’s digital database has 2,874 active ground-water rights in the basin that can withdraw an annual quantity of about 529,231 acre-feet during dry years. Irrigation rights are for irrigation of about 129,570 acres. All but 220 of the rights were associated with well drillers’ logs, allowing for a spatial representation of the pumpage. Five-hundred and sixty of the irrigation rights were estimated to be standby/reserve rights. During this study, another 30 rights were identified that were not in the digital database. These rights can withdraw an annual quantity of about 20,969 acre-feet; about 6,700 acre-feet of these rights are near but outside the basin. In 1960, total annual pumpage in the basin, excluding standby/reserve pumpage, was about 115,776 acre-feet. By 2000, total annual pumpage was estimated to be 395,096 acre-feet, and excluding the standby/reserve rights, the total was 312,284 acre-feet. Irrigation accounts for about 60 percent of the pumpage, followed by public water supply at about 12 percent. The smallest category of pumpage was for livestock use with pumpage estimated to be 6,726 acre-feet. Total annual pumpage in 2000 was about 430 cubic feet per second, which is about 11 percent of the surface-water demand. Maximum pumpage is in July

  13. Simulations of Ground-Water Flow and Particle Pathline Analysis in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Burow, Karen R.; Jurgens, Bryant C.; Kauffman, Leon J.; Phillips, Steven P.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Shallow ground water in the eastern San Joaquin Valley is affected by high nitrate and uranium concentrations and frequent detections of pesticides and volatile organic compounds (VOC), as a result of ground-water development and intensive agricultural and urban land use. A single public-supply well was selected for intensive study to evaluate the dominant processes affecting the vulnerability of public-supply wells in the Modesto area. A network of 23 monitoring wells was installed, and water and sediment samples were collected within the approximate zone of contribution of the public-supply well, to support a detailed analysis of physical and chemical conditions and processes affecting the water chemistry in the well. A three-dimensional, steady-state local ground-water-flow and transport model was developed to evaluate the age of ground water reaching the well and to evaluate the vulnerability of the well to nonpoint source input of nitrate and uranium. Particle tracking was used to compute pathlines and advective travel times in the ground-water flow model. The simulated ages of particles reaching the public-supply well ranged from 9 to 30,000 years, with a median of 54 years. The age of the ground water contributed to the public-supply well increased with depth below the water table. Measured nitrate concentrations, derived primarily from agricultural fertilizer, were highest (17 milligrams per liter) in shallow ground water and decreased with depth to background concentrations of less than 2 milligrams per liter in the deepest wells. Because the movement of water is predominantly downward as a result of ground-water development, and because geochemical conditions are generally oxic, high nitrate concentrations in shallow ground water are expected to continue moving downward without significant attenuation. Simulated long-term nitrate concentrations indicate that concentrations have peaked and will decrease in the public-supply well during the next 100 years

  14. Ground-Water System in the Chimacum Creek Basin and Surface Water/Ground Water Interaction in Chimacum and Tarboo Creeks and the Big and Little Quilcene Rivers, Eastern Jefferson County, Washington

    Science.gov (United States)

    Simonds, F. William; Longpre, Claire I.; Justin, Greg B.

    2004-01-01

    A detailed study of the ground-water system in the unconsolidated glacial deposits in the Chimacum Creek Basin and the interactions between surface water and ground water in four main drainage basins was conducted in eastern Jefferson County, Washington. The study will assist local watershed planners in assessing the status of the water resources and the potential effects of ground-water development on surface-water systems. A new surficial geologic map of the Chimacum Creek Basin and a series of hydrogeologic sections were developed by incorporating LIDAR imagery, existing map sources, and drillers' logs from 110 inventoried wells. The hydrogeologic framework outlined in the study will help characterize the occurrence of ground water in the unconsolidated glacial deposits and how it interacts with the surface-water system. Water levels measured throughout the study show that the altitude of the water table parallels the surface topography and ranges from 0 to 400 feet above the North American Vertical Datum of 1988 across the basin, and seasonal variations in precipitation due to natural cycles generally are on the order of 2 to 3 feet. Synoptic stream-discharge measurements and instream mini-piezometers and piezometers with nested temperature sensors provided additional data to refine the positions of gaining and losing reaches and delineate seasonal variations. Chimacum Creek generally gains water from the shallow ground-water system, except near the community of Chimacum where localized losses occur. In the lower portions of Chimacum Creek, gaining conditions dominate in the summer when creek stages are low and ground-water levels are high, and losing conditions dominate in the winter when creek stages are high relative to ground-water levels. In the Quilcene Bay area, three drainage basins were studied specifically to assess surface water/ground water interactions. The upper reaches of Tarboo Creek generally gain water from the shallow ground-water system

  15. Description and comparison of selected models for hydrologic analysis of ground-water flow, St Joseph River basin, Indiana

    Science.gov (United States)

    Peters, J.G.

    1987-01-01

    The Indiana Department of Natural Resources (IDNR) is developing water-management policies designed to assess the effects of irrigation and other water uses on water supply in the basin. In support of this effort, the USGS, in cooperation with IDNR, began a study to evaluate appropriate methods for analyzing the effects of pumping on ground-water levels and streamflow in the basin 's glacial aquifer systems. Four analytical models describe drawdown for a nonleaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and fully penetrating well; a leaky, confined aquifer and partially penetrating well; and an unconfined aquifer and partially penetrating well. Analytical equations, simplifying assumptions, and methods of application are described for each model. In addition to these four models, several other analytical models were used to predict the effects of ground-water pumping on water levels in the aquifer and on streamflow in local areas with up to two pumping wells. Analytical models for a variety of other hydrogeologic conditions are cited. A digital ground-water flow model was used to describe how a numerical model can be applied to a glacial aquifer system. The numerical model was used to predict the effects of six pumping plans in 46.5 sq mi area with as many as 150 wells. Water budgets for the six pumping plans were used to estimate the effect of pumping on streamflow reduction. Results of the analytical and numerical models indicate that, in general, the glacial aquifers in the basin are highly permeable. Radial hydraulic conductivity calculated by the analytical models ranged from 280 to 600 ft/day, compared to 210 and 360 ft/day used in the numerical model. Maximum seasonal pumping for irrigation produced maximum calculated drawdown of only one-fourth of available drawdown and reduced streamflow by as much as 21%. Analytical models are useful in estimating aquifer properties and predicting local effects of pumping in areas with

  16. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    Science.gov (United States)

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  17. Heat flow and subsurface temperature as evidence for basin-scale ground-water flow, North Slope of Alaska

    Science.gov (United States)

    Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.

    1992-01-01

    Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors

  18. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  19. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer in Southeastern Arkansas, 1918, with simulations of hydraulic heads caused by projected ground-water withdrawals through 2049

    Science.gov (United States)

    Stanton, Gregory P.; Clark, Brian R.

    2003-01-01

    The Mississippi River Valley alluvial aquifer, encompassing parts of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee supplies an average of 5 billion gallons of water per day. However, withdrawals from the aquifer in recent years have caused considerable drawdown in the hydraulic heads in southeastern Arkansas and other areas. The effects of current ground-water withdrawals and potential future withdrawals on water availability are major concerns of water managers and users as well as the general public. A full understanding of the behavior of the aquifer under various water-use scenarios is critical for the development of viable water-management and alternative source plans. To address these concerns, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Vicksburg District, and the Arkansas Soil and Water Conservation Commission developed and calibrated a ground-water flow model for the Mississippi River valley alluvial aquifer in southeastern Arkansas to simulate hydraulic heads caused by projected ground-water withdrawals. A previously published ground-water flow model for the alluvial aquifer in southeastern Arkansas was updated and recalibrated to reflect more current pumping stresses with additional stress periods added to bring the model forward from 1982 to 1998. The updated model was developed and calibrated with MODFLOW-2000 finite difference numerical modeling and parameter estimation software. The model was calibrated using hydraulic-head data collected during 1972 and 1982 and hydraulic-head measurements made during spring (February to April) of 1992 and 1998. The residuals for 1992 and 1998 have a mean absolute value of 4.74 and 5.45 feet, respectively, and a root mean square error of 5.9 and 6.72 feet, respectively. The effects of projected ground-water withdrawals were simulated through 2049 in three predictive scenarios by adding five additional stress periods of 10 years each. In the three scenarios

  20. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    Science.gov (United States)

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  1. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast

  2. Relation between ground water and surface water in the Hillsborough River basin, west-central Florida

    Science.gov (United States)

    Wolansky, R.M.; Thompson, T.H.

    1987-01-01

    The relation between groundwater and surface water in the Hillsborough River basin was defined through the use of: seismic-reflection profiling along selected reaches of the Hillsborough River, and evaluation of streamflow, rainfall, groundwater levels, water quality, and geologic data. Major municipal well fields in the basin are Morris Bridge and Cypress Creek where an averages of 15.3 and 30.0 million gal/day (mgd), respectively, were pumped in 1980. Mean annual rainfall for the study area is 53.7 inches. Average rainfall for 1980, determined from eight rainfall stations, was 49.7 inches. Evapotranspiration, corrected for the 5% of the basin that is standing water, was 35.7 in/year. The principal geohydrologic units in the basin are the surficial aquifer, the intermediate aquifer and confining beds, the Upper Floridan aquifer, the middle confining unit, and the Lower Floridan aquifer. Total pumpage of groundwater in 1980 was 98.18 mgd. The surficial aquifer and the intermediate aquifer are not used for major groundwater supply in the basin. Continuous marine seismic-reflection data collected along selected reaches of the Hillsborough River were interpreted to define the riverbed profile, the thickness of surficial deposits, and the top of persistent limestone. Major areas of groundwater discharge near the Hillsborough River and its tributaries are the wetlands adjacent to the river between the Zephyrhills gaging stations and Fletcher Avenue and the wetlands adjacent to Cypress Creek. An estimated 20 mgd seeps upward from the Upper Floridan aquifer within those wetland areas. The runoff/sq mi is greater at the Zephyrhills station than at Morris Bridge. However, results of groundwater flow models and potentiometric-surface maps indicate that groundwater is flowing upward along the Hillsborough River between the Zephyrhills gage and the Morris Bridge gage. This upward leakage is lost to evapotranspiration. An aquifer test conducted in 1978 at the Morris Bridge well

  3. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1982-01-01

    The subject is discussed under the headings: background and theory (introduction; fractionation in the hydrosphere; mobility factors; radioisotope evolution and aquifer classification; aquifer disequilibria and geochemical fronts); case studies (introduction; (a) conservative, and (b) non-conservative, behaviour); ground water dating applications (general requirements; radon and helium; radium isotopes; uranium isotopes). (U.K.)

  4. Ground water

    International Nuclear Information System (INIS)

    Osmond, J.K.; Cowart, J.B.

    1992-01-01

    The great variations in concentrations and activity ratios of 234 U/ 238 U in ground waters and the features causing elemental and isotopic mobility in the hydrosphere are discussed. Fractionation processes and their application to hydrology and other environmental problems such as earthquake, groundwater and aquifer dating are described. (UK)

  5. Ground-water availability in the eastern part of the Lake Ontario Basin, New York

    Science.gov (United States)

    Miller, Todd S.

    1986-01-01

    A set of three maps show surficial geology, significant unconsolidated aquifers and well yield, and selected well locations for the Lake Ontario basin, New York. In the low areas , glaciers and wave action of former high-level lakes deposited permeable sand and gravel to form aquifers that yield more than 10 gal/min of water to wells. Small quantities of water (less than 2 gal/min) can be pumped from dug wells that top till and fine lake-sediment deposits. (USGS)

  6. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    Science.gov (United States)

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge

  7. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    Science.gov (United States)

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  8. Ground-water availability in the central part of Lake Ontario basin, New York

    Science.gov (United States)

    Miller, Todd S.; Krebs, Martha M.

    1988-01-01

    A set of three maps showing surficial geology, distribution of glacial aquifers, and potential well yield in the 708 sq mi central part of the Lake Ontario basin are presented at a scale of 1:125,000. The basin is parallel to Lake Ontario and extends from Rochester in the west to Oswego in the east. Aquifers consisting primarily of sand and gravel formed where meltwaters from glaciers deposited kame and outwash sand and gravel and where wave action along shores of glacial lakes eroded, reworked , and deposited beaches. Thick deposits of well-sorted sand and gravel yield relatively large quantities of water - typically more than 100 gal/min. Aquifers consisting of thin beds of sand and (or) gravel or thick gravel that contain a large proportion of silt and fine sand yield moderate amounts of water, 10 to 100 gal/min. Dug and driven wells that tap fine to medium sand deposits typically yield 1 to 10 gal/min. (USGS)

  9. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  10. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    International Nuclear Information System (INIS)

    Belcher, W.R.; Faunt, C.C.; D'Agnese, F.A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers and area of about 100,000 square kilometers from latitude 35 degrees to 38 degrees 15 minutes North to longitude 115 degrees to 118 degrees West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydro geologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross

  11. Monitoring the hydrologic system for potential effects of geothermal and ground-water development in the Long Valley Caldera, Mono County, California, USA

    International Nuclear Information System (INIS)

    Farrar, C.D.; Lyster, D.L.

    1990-01-01

    In the early 1980's, renewed interest in the geothermal potential of the Long valley caldera, California, highlighted the need to balance the benefits of energy development with the established recreational activities of the area. The Long Valley Hydrologic Advisory Committee, formed in 1987, instituted a monitoring program to collect data during the early stages of resource utilization to evaluate potential effects on the hydrologic system. This paper reports that early data show declines in streamflow, spring flow, and ground-water levels caused by 6 years of below-average precipitation. Springs in the Hot Creek State Fish Hatchery area discharge water that is a mixture of nonthermal and hydrothermal components. Possible sources of nonthermal water have been identified by comparing deuterium concentrations in streams and springs. The equivalent amount of undiluted thermal water discharged from the springs was calculated on the basis of boron and chloride concentrations. Quantifying the thermal and nonthermal fractions of the total flow may allow researchers to assess changes in flow volume or temperature of the springs caused by ground-water or geothermal development

  12. Geohydrology and simulation of ground-water flow in the Red Clay Creek Basin, Chester County, Pennsylvania, and New Castle County, Delaware

    Science.gov (United States)

    Vogel, Karen L.; Reif, Andrew G.

    1993-01-01

    The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per

  13. Teale Ground Water Basins

    Data.gov (United States)

    California Natural Resource Agency — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  14. Hydrogeology and ground-water/surface water interactions in the Des Moines River valley, southwestern Minnesota, 1997-2001

    Science.gov (United States)

    Cowdery, Timothy K.

    2005-01-01

    Increased water demand in and around Windom led the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, local water suppliers, and Cottonwood County, to study the hydrology of aquifers in the Des Moines River Valley near Windom. The study area is the watershed of a 30-kilometer (19-mile) reach of the Des Moines River upstream from Windom.

  15. Hydrogeology and water quality of the Pepacton Reservoir Watershed in southeastern New York. Part 4. Quantity and quality of ground-water and tributary contributions to stream base flow in selected main-valley reaches

    Science.gov (United States)

    Heisig, Paul M.

    2004-01-01

    Estimates of the quantity and quality of ground-water discharge from valley-fill deposits were calculated for nine valley reaches within the Pepacton watershed in southeastern New York in July and August of 2001. Streamflow and water quality at the upstream and downstream end of each reach and at intervening tributaries were measured under base-flow conditions and used in mass-balance equations to determine quantity and quality of ground-water discharge. These measurements and estimates define the relative magnitudes of upland (tributary inflow) and valley-fill (ground-water discharge) contributions to the main-valley streams and provide a basis for understanding the effects of hydrogeologic setting on these contributions. Estimates of the water-quality of ground-water discharge also provide an indication of the effects of road salt, manure, and human wastewater from villages on the water quality of streams that feed the Pepacton Reservoir. The most common contaminant in ground-water discharge was chloride from road salt; concentrations were less than 15 mg/L.Investigation of ground-water quality within a large watershed by measurement of stream base-flow quantity and quality followed by mass-balance calculations has benefits and drawbacks in comparison to direct ground-water sampling from wells. First, sampling streams is far less expensive than siting, installing, and sampling a watershed-wide network of wells. Second, base-flow samples represent composite samples of ground-water discharge from the most active part of the ground-water flow system across a drainage area, whereas a well network would only be representative of discrete points within local ground-water flow systems. Drawbacks to this method include limited reach selection because of unfavorable or unrepresentative hydrologic conditions, potential errors associated with a large number of streamflow and water-quality measurements, and limited ability to estimate concentrations of nonconservative

  16. Determination of hydrologic properties needed to calculate average linear velocity and travel time of ground water in the principal aquifer underlying the southeastern part of Salt Lake Valley, Utah

    Science.gov (United States)

    Freethey, G.W.; Spangler, L.E.; Monheiser, W.J.

    1994-01-01

    A 48-square-mile area in the southeastern part of the Salt Lake Valley, Utah, was studied to determine if generalized information obtained from geologic maps, water-level maps, and drillers' logs could be used to estimate hydraulic conduc- tivity, porosity, and slope of the potentiometric surface: the three properties needed to calculate average linear velocity of ground water. Estimated values of these properties could be used by water- management and regulatory agencies to compute values of average linear velocity, which could be further used to estimate travel time of ground water along selected flow lines, and thus to determine wellhead protection areas around public- supply wells. The methods used to estimate the three properties are based on assumptions about the drillers' descriptions, the depositional history of the sediments, and the boundary con- ditions of the hydrologic system. These assump- tions were based on geologic and hydrologic infor- mation determined from previous investigations. The reliability of the estimated values for hydro- logic properties and average linear velocity depends on the accuracy of these assumptions. Hydraulic conductivity of the principal aquifer was estimated by calculating the thickness- weighted average of values assigned to different drillers' descriptions of material penetrated during the construction of 98 wells. Using these 98 control points, the study area was divided into zones representing approximate hydraulic- conductivity values of 20, 60, 100, 140, 180, 220, and 250 feet per day. This range of values is about the same range of values used in developing a ground-water flow model of the principal aquifer in the early 1980s. Porosity of the principal aquifer was estimated by compiling the range of porosity values determined or estimated during previous investigations of basin-fill sediments, and then using five different values ranging from 15 to 35 percent to delineate zones in the study area that were assumed to

  17. Radioactive carbon-14 dating of ground waters in IPEN for evaluation of water resources in Rio Grande do Norte and Parana basin

    International Nuclear Information System (INIS)

    Chandra, U.; Pereira, M.C.

    1986-01-01

    14 C dating of deep ground waters from Potiguar basin and Parana basin was carried out to identify zones of recharge. In all 28 samples, five from Potiguar basin and 23 from Parana basin were analyzed for 14 C. The methods of sample collection and analysis are described. The analysis consists of transforming carbon of the sample to benzene, by synthesis process involving four steps i.e. production of carbon dioxide, production of lithium carbide, hydrolysis to acetylene and catalytic polymerization to bezene. The specific activity of the synthertized benzene is measured by liquid scintillation counting. The corrections for initial 14 C content have been made by using the model of Vogel. (Author) [pt

  18. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  19. Isotopic investigation of ground water resources in the Ojo Alamo sandstone, Nacimiento, and San Jose Formations, San Juan Basin, New Mexico. Technical completion report

    International Nuclear Information System (INIS)

    Phillips, F.M.; Peeters, L.A.; Tansey, M.K.

    1984-06-01

    The San Juan Basin, in northwest New Mexico, has vast reserves of strippable, low-sulfur coal. Development of the resource will require large quantities of water, from an area where water resources are not abundant. Since surface-water supplies are fully allocated, increased future water demands will have to be met through ground-water development. The study concentrates on the Ojo Alamo, Nacimiento, and San Jose Formations, the aquifers directly above the principal coal unit. Carbon-14 and tritium methods were used to date the ground water in these units. Initial radiocarbon activities were calculated using the models of Vogel, Tamers, Pearson, Mook and Fontes. The observation lends support to the hypothesis of isotopically lighter Pleistocene precipitation. Such lighter recharge was most likely due to a colder mean annual temperature and perhaps increased winter precipitation. A similar change is obtained from noble-gas paleothermometry

  20. Ground-water flow and transport modeling of the NRC-licensed waste disposal facility, West Valley, New York

    International Nuclear Information System (INIS)

    Kool, J.B.; Wu, Y.S.

    1991-10-01

    This report describes a simulation study of groundwater flow and radionuclide transport from disposal at the NRC licensed waste disposal facility in West Valley, New York. A transient, precipitation driven, flow model of the near-surface fractured till layer and underlying unweathered till was developed and calibrated against observed inflow data into a recently constructed interceptor trench for the period March--May 1990. The results suggest that lateral flow through the upper, fractured till layer may be more significant than indicated by previous, steady state flow modeling studies. A conclusive assessment of the actual magnitude of lateral flow through the fractured till could however not be made. A primary factor contributing to this uncertainty is the unknown contribution of vertical infiltration through the interceptor trench cap to the total trench inflow. The second part of the investigation involved simulation of the migration of Sr-90, Cs-137 and Pu-239 from the one of the fuel hull disposal pits. A first-order radionuclide leach rate with rate coefficient of 10 -6 /day was assumed to describe radionuclide release into the disposal pit. The simulations indicated that for wastes buried below the fractured till zone, no significant migration would occur. However, under the assumed conditions, significant lateral migration could occur for radionuclides present in the upper, fractured till zone. 23 refs., 68 figs., 12 tabs

  1. Use of Microgravity to Assess the Effects of El Nino on Ground-Water Storage in Southern Arizona

    Science.gov (United States)

    Parker, John T.C.; Pool, Donald R.

    1998-01-01

    The availability of ground water is of extreme importance in areas, such as southern Arizona, where it is the main supply for agricultural, industrial, or domestic purposes. Where ground-water use exceeds recharge, monitoring is critical for managing water supplies. Typically, monitoring has been done by measuring water levels in wells; however, this technique only partially describes ground-water conditions in a basin. A new application of geophysical technology is enabling U.S. Geological Survey (USGS) scientists to measure changes in the amount of water in an aquifer using a network of microgravity stations. This technique enables a direct measurement of ground-water depletion and recharge. In Tucson, Arizona, residents have relied solely upon ground water for most of their needs since the 19th century. Water levels in some wells in the Tucson area have declined more than 200 ft in the past 50 years. Similar drops in water levels have occurred elsewhere in Arizona. In response to the overdrafting of ground water, the State of Arizona passed legislation designed to attain 'safe yield,' which is defined as a balance between ground-water withdrawals and annual recharge of aquifers. To monitor progress in complying with the legislation, ground-water withdrawals are measured and estimated, and annual recharge is estimated. The Tucson Basin and Avra Valley are two ground-water basins that form the Tucson Active Management Area (TAMA), which by State statute must attain 'safe yield' by the year 2025.

  2. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    Science.gov (United States)

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  3. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    Science.gov (United States)

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  4. Ground-water quality and its relation to hydrogeology, land use, and surface-water quality in the Red Clay Creek basin, Piedmont Physiographic Province, Pennsylvania and Delaware

    Science.gov (United States)

    Senior, Lisa A.

    1996-01-01

    The Red Clay Creek Basin in the Piedmont Physiographic Province of Pennsylvania and Delaware is a 54-square-mile area underlain by a structurally complex assemblage of fractured metamorphosed sedimentary and igneous rocks that form a water-table aquifer. Ground-water-flow systems generally are local, and ground water discharges to streams. Both ground water and surface water in the basin are used for drinking-water supply.Ground-water quality and the relation between ground-water quality and hydrogeologic and land-use factors were assessed in 1993 in bedrock aquifers of the basin. A total of 82 wells were sampled from July to November 1993 using a stratified random sampling scheme that included 8 hydrogeologic and 4 land-use categories to distribute the samples evenly over the area of the basin. The eight hydrogeologic units were determined by formation or lithology. The land-use categories were (1) forested, open, and undeveloped; (2) agricultural; (3) residential; and (4) industrial and commercial. Well-water samples were analyzed for major and minor ions, nutrients, volatile organic compounds (VOC's), pesticides, polychlorinated biphenyl compounds (PCB's), and radon-222.Concentrations of some constituents exceeded maximum contaminant levels (MCL) or secondary maximum contaminant levels (SMCL) established by the U.S. Environmental Protection Agency for drinking water. Concentrations of nitrate were greater than the MCL of 10 mg/L (milligrams per liter) as nitrogen (N) in water from 11 (13 percent) of 82 wells sampled; the maximum concentration was 38 mg/L as N. Water from only 1 of 82 wells sampled contained VOC's or pesticides that exceeded a MCL; water from that well contained 3 mg/L chlordane and 1 mg/L of PCB's. Constituents or properties of well-water samples that exceeded SMCL's included iron, manganese, dissolved solids, pH, and corrosivity. Water from 70 (85 percent) of the 82 wells sampled contained radon-222 activities greater than the proposed MCL of

  5. Ground water '89

    International Nuclear Information System (INIS)

    1989-01-01

    The proceedings of the 5th biennial symposium of the Ground Water Division of the Geological Society of South Africa are presented. The theme of the symposium was ground water and mining. Papers were presented on the following topics: ground water resources; ground water contamination; chemical analyses of ground water and mining and its influece on ground water. Separate abstracts were prepared for 5 of the papers presented. The remaining papers were considered outside the subject scope of INIS

  6. Ground-water reconnaissance of American Samoa

    Science.gov (United States)

    Davis, Daniel Arthur

    1963-01-01

    The principal islands of American Samoa are Tutuila, Aunuu, Ofu, Olosega, and Ta'u, which have a total area of about 72 square miles and a population of about 20,000. The mean annual rainfall is 150 to 200 inches. The islands are volcanic in origin and are composed of lava flows, dikes, tuff. and breccia, and minor amounts of talus, alluvium, and calcareous sand and gravel. Tutuila is a complex island formed of rocks erupted from five volcanoes. Aunuu is a tuff cone. Ofu, Olosega, and Ta'u are composed largely of thin-bedded lava flows. Much of the rock of Tutuila has low permeability, and most of the ground water is in high-level reservoirs that discharge at numerous small springs and seeps. The flow from a few springs and seeps is collected in short tunnels or in basins for village supply, but most villages obtain their water from streams. A large supply of basal ground water may underlie the Tafuna-Leone plain at about sea level in permeable lava flows. Small basal supplies may be in alluvial fill at the mouths of large valleys. Aunuu has small quantities of basal water in beach deposits of calcareous sand and gravel. Minor amounts of high-level ground-water flow from springs and seeps on Ofu, Olosega, and Ta'u. The generally permeable lava flows in the three islands contain substantial amounts of basal ground water that can be developed in coastal areas in wells dug to about sea level.

  7. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    Science.gov (United States)

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  8. Ground water and energy

    Energy Technology Data Exchange (ETDEWEB)

    1980-11-01

    This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

  9. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Burillo Montúfar, Juan Carlos; Reyes Cortés, Manuel; Reyes Cortés, Ignacio Alfonso; Espino Valdez, Ma. Socorro; Hinojosa de la Garza, Octavio Raúl; Nevárez Ronquillo, Diana Pamela; Herrera Peraza, Eduardo; Rentería Villalobos, Marusia; Montero Cabrera, María Elena

    2012-01-01

    In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238 U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are R f238 ≈ 250–14,000 for the unsaturated zone and ≈110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

  10. Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts

    Science.gov (United States)

    DeSimone, Leslie A.; Walter, Donald A.; Eggleston, John R.; Nimiroski, Mark T.

    2002-01-01

    Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per day in 1989?98 and are likely to increase in response to rapid growth. These withdrawals deplete streamflow and lower pond levels. A study was conducted to develop tools for evaluating water-management alternatives at the regional scale in the basin. Geologic and hydrologic data were compiled and collected to characterize the ground- and surface-water systems. Numerical flow modeling techniques were applied to evaluate the effects of increased withdrawals and altered recharge on ground-water levels, pond levels, and stream base flow. Simulation-optimization methods also were applied to test their efficacy for management of multiple water-supply and water-resource needs. Steady-state and transient ground-water-flow models were developed using the numerical modeling code MODFLOW-2000. The models were calibrated to 1989?98 average annual conditions of water withdrawals, water levels, and stream base flow. Model recharge rates were varied spatially, by land use, surficial geology, and septic-tank return flow. Recharge was changed during model calibration by means of parameter-estimation techniques to better match the estimated average annual base flow; area-weighted rates averaged 22.5 inches per year for the basin. Water withdrawals accounted for about 7 percent of total simulated flows through the stream-aquifer system and were about equal in magnitude to model-calculated rates of ground-water evapotranspiration from wetlands and ponds in aquifer areas. Water withdrawals as percentages of total flow varied spatially and temporally within an average year; maximum values were

  11. Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin, New Mexico - Implications for Ground-Water Flow

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.

    2006-01-01

    Motivated by the need to document and evaluate the types and variability of fault zone properties that potentially affect aquifer systems in basins of the middle Rio Grande rift, we systematically characterized structural and cementation properties of exposed fault zones at 176 sites in the northern Albuquerque Basin. A statistical analysis of measurements and observations evaluated four aspects of the fault zones: (1) attitude and displacement, (2) cement, (3) lithology of the host rock or sediment, and (4) character and width of distinctive structural architectural components at the outcrop scale. Three structural architectural components of the fault zones were observed: (1) outer damage zones related to fault growth; these zones typically contain deformation bands, shear fractures, and open extensional fractures, which strike subparallel to the fault and may promote ground-water flow along the fault zone; (2) inner mixed zones composed of variably entrained, disrupted, and dismembered blocks of host sediment; and (3) central fault cores that accommodate most shear strain and in which persistent low- permeability clay-rich rocks likely impede the flow of water across the fault. The lithology of the host rock or sediment influences the structure of the fault zone and the width of its components. Different grain-size distributions and degrees of induration of the host materials produce differences in material strength that lead to variations in width, degree, and style of fracturing and other fault-related deformation. In addition, lithology of the host sediment appears to strongly control the distribution of cement in fault zones. Most faults strike north to north-northeast and dip 55? - 77? east or west, toward the basin center. Most faults exhibit normal slip, and many of these faults have been reactivated by normal-oblique and strike slip. Although measured fault displacements have a broad range, from 0.9 to 4,000 m, most are internal structure of, and cement

  12. Hydrogeology, water quality, and potential for contamination of the Upper Floridan aquifer in the Silver Springs ground-water basin, central Marion County, Florida

    Science.gov (United States)

    Phelps, G.G.

    1994-01-01

    The Upper Floridan aquifer, composed of a thick sequence of very porous limestone and dolomite, is the principal source of water supply in the Silver Springs ground-water basin of central Marion County, Florida. The karstic nature of the local geology makes the aquifer susceptible to contaminants from the land surface. Contaminants can enter the aquifer by seepage through surficial deposits and through sinkholes and drainage wells. Potential contaminants include agricultural chemicals, landfill leachates and petroleum products from leaking storage tanks and accidental spills. More than 560 sites of potential contamination sources were identified in the basin in 1990. Detailed investigation of four sites were used to define hydrologic conditions at representative sites. Ground-water flow velocities determined from dye trace studies ranged from about 1 foot per hour under natural flow conditions to about 10 feet per hour under pumping conditions, which is considerably higher than velocities estimated using Darcy's equation for steady-state flow in a porous medium. Water entering the aquifer through drainage wells contained bacteria, elevated concentrations of nutrients, manganese and zinc, and in places, low concentrations of organic compounds. On the basis of results from the sampling of 34 wells in 1989 and 1990, and from the sampling of water entering the Upper Floridan aquifer through drainage wells, there has been no widespread degradation of water quality in the study area. In an area of karst, particularly one in which fracture flow is significant, evaluating the effects from contaminants is difficult and special care is required when interpolating hydrogeologic data from regional studies to a specific. (USGS)

  13. Report of the panel on evaluation of ground-water flow in fractures at the Palo Duro Basin, Texas: Unanalyzed data: Technical report

    International Nuclear Information System (INIS)

    1988-01-01

    A peer review group of hydrologists assessed the importance and availability of data on fracture-controlled ground-water flow at the Palo Duro Basin sites in the Permian Basin in Texas. After hearing presentations by US Department of Energy staff and consultants, and reviewing existing literature, they formed a conceptual model of basin flow that is downward across the salt facies and downdip in permeable formation in the lower hydrostratigraphic unit. Flow volumes and rates are very low. The panel examined several possible fracture-flow scenarios and concluded that flow within the salt section is probably porous-media-dominated with some fracture-flow influence in brittle zones. Fracture flow in the salt itself is rejected as a possibility based on current evidence. However, the panel recommended that fracture flow in the system should be included as a low-probability variable in any hydrogeologic modeling. They also concluded that many more data on lineament features and subsurface structures are needed to accurately characterize the system and to refine the modeling effort. 9 refs., 2 figs

  14. Hydrochemical and isotopic studies of ground water from Botucatu Aquifer - Partial results for North region of Parana Basin

    International Nuclear Information System (INIS)

    Silva, R.B.G. da; Kimmelmann, A.A.; Cunha Reboucas, A. da

    1985-01-01

    The first results of an investigation, to study the flow path, the processes controlling the chemical composition, the recharge, as well as, the origin, apparent ages and dynamic of the groundwater of the Botucatu Aquifer in the Brazilian part of the Parana Basin (818.000 Km 2 ), using hydrochemical and environmental isotope technics ( 2 H, 18 O, 13 C, 3 H, 14 C), are presented. Samples of 20 deep wells, located in the northern part of the Basin (states of Sao Paulo, Mato Grosso do Sul and Goias), were analysed. (Author) [pt

  15. Use of brackish ground water resources for regional energy center development, Tularosa Basin, New Mexico: preliminary evaluation. Executive summary

    International Nuclear Information System (INIS)

    1977-03-01

    The objective of this study was to develop an impact and suitability profile for the use of the Tularosa Basin in south-central New Mexico as the potential location of an energy center. Underyling the Tularosa Basin is an aquifer system containing perhaps 40 million acre-feet of fresh and slightly saline (1-3 g/l) water that is theoretically recoverable and could be used for cooling and other energy-related or industrial purposes, particularly if energy development projects in other areas of the state and region are delayed, impeded, or cancelled because of uncertain availability or accessibility of water. This preliminary investigation of the Tularosa Basin reveals no outstanding features that would discourage further detailed analysis and planning for an energy complex. A major program of exploratory drilling, well logging, and testing is needed to determine aquifer characteristics and factors affecting well design. Since industrial development in the basin will necessarily involve Federal, state, and private lands, any serious plan will require collaboration of Federal, state, and local authorities

  16. Ground-water quality in the Red River of the North Basin, Minnesota and North Dakota, 1991-95

    Science.gov (United States)

    Cowdery, T.K.

    1998-01-01

    Surveys of water quality in surficial, buried glacial, and Cretaceous aquifers in the Red River of the North Basin during 1991-95 showed that some major-ion, nutrient, pesticide, and radioactive-element concentrations differed by physiographic area and differed among these aquifer types. Waters in surficial aquifers in the Drift Prairie (west) and Lake Plain (central) physiographic areas were similar to each other but significantly higher than those in the Moraine (east) area in dissolved solids, sodium, potassium, sulfate, fluoride, silica, and uranium concentrations. Radium, iron, nitrate, and nitrite concentrations were also significantly different among these areas. Pesticides were detected in 12 percent of waters in surficial aquifers in the Drift Prairie area, 20 percent of those in the Lake Plain area, and 52 percent of those in the Moraine area. Triazines and bentazon accounted for 98 percent of summed pesticide concentrations in waters in surficial aquifers. Waters in buried glacial aquifers in the central one-third of the basin had significantly higher concentrations of dissolved solids, sodium, potassium, chloride, fluoride, and iron than did waters in surficial aquifers. No pesticides were detected in five samples from buried glacial aquifers or six samples from Cretaceous aquifers. Waters in all sampled aquifers had a calcium-magnesium ratio of about 1.75 ± 0.75 across the basin regardless of anionic composition.

  17. Yield and quality of ground water from stratified-drift aquifers, Taunton River basin, Massachusetts : executive summary

    Science.gov (United States)

    Lapham, Wayne W.; Olimpio, Julio C.

    1989-01-01

    Water shortages are a chronic problem in parts of the Taunton River basin and are caused by a combination of factors. Water use in this part of the Boston metropolitan area is likely to increase during the next decade. The Massachusetts Division of Water Resources projects that about 50% of the cities and towns within and on the perimeter of the basin may have water supply deficits by 1990 if water management projects are not pursued throughout the 1980s. Estimates of the long-term yield of the 26 regional aquifers indicate that the yields of the two most productive aquifers equal or exceed 11.9 and 11.3 cu ft/sec, 90% of the time, respectively, if minimum stream discharge is maintained at 99.5% flow duration. Eighteen of the 26 aquifers were pumped for public water supply during 1983. Further analysis of the yield characteristics of these 18 aquifers indicates that the 1983 pumping rate of each of these 18 aquifers can be sustained at least 70% of the time. Selected physical properties and concentrations of major chemical constituents in groundwater from the stratified-drift aquifers at 80 sampling sites were used to characterize general water quality in aquifers throughout the basin. The pH of the groundwater ranged from 5.4 to 7.0. Natural elevated concentrations of Fe and Mn in water in the stratified-drift aquifers are present locally in the basin. Natural concentrations of these two metals commonly exceed the limits of 0.3 mg/L for Fe and 0.05 mg/L for Mn recommended for drinking water. Fifty-one analyses of selected trace metals in groundwater samples from stratified-drift aquifers throughout the basin were used to characterize trace metal concentrations in the groundwater. Of the 10 constituents sampled that have US EPA limits recommended for drinking water, only the Pb concentration in water at one site (60 micrograms/L) exceeded the recommended limit of 50 micrograms/L. Analyses of selected organic compounds in water in the stratified-drift aquifers at 74

  18. A Study of the Connection Among Basin-Fill Aquifers, Carbonate-Rock Aquifers, and Surface-Water Resources in Southern Snake Valley, Nevada

    Science.gov (United States)

    ,

    2008-01-01

    The Secretary of the Interior through the Southern Nevada Public Lands Management Act approved funding for research to improve understanding of hydrologic systems that sustain numerous water-dependent ecosystems on Federal lands in Snake Valley, Nevada. Some of the streams and spring-discharge areas in and adjacent to Great Basin National Park have been identified as susceptible to ground-water withdrawals (Elliott and others, 2006) and research has shown a high potential for ground-water flow from southern Spring Valley into southern Snake Valley through carbonate rocks that outcrop along a low topographic divide known as the Limestone Hills (Welch and others, 2007). Comprehensive geologic, hydrologic, and chemical information will be collected and analyzed to assess the hydraulic connection between basin-fill aquifers and surface-water resources, water-dependent ecological features, and the regional carbonate-rock aquifer, the known source of many high-discharge springs. Understanding these connections is important because proposed projects to pump and export ground water from Spring and Snake Valleys in Nevada may result in unintended capture of water currently supplying springs, streams, wetlands, limestone caves, and other biologically sensitive areas (fig. 1). The methods that will be used in this study may be transferable to other areas in the Great Basin. The National Park Service, Bureau of Land Management, U.S. Fish and Wildlife Service, and U.S. Forest Service submitted the proposal for funding this research to facilitate science-based land management. Scientists from the U.S. Geological Survey (USGS) Water Resources and Geologic Disciplines, and the University of Nevada, Reno, will accomplish four research elements through comprehensive data collection and analysis that are concentrated in two distinct areas on the eastern and southern flanks of the Snake Range (fig. 2). The projected time line for this research is from July 2008 through September 2011.

  19. Pesticides in Ground Water

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup

    1996-01-01

    Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588.......Review af: Jack E. Barbash & Elizabeth A. Resek (1996). Pesticides in Ground Water. Distribution trends and governing factors. Ann Arbor Press, Inc. Chelsea, Michigan. pp 588....

  20. Geophysical Surveys of the Hydrologic Basin Underlying Yosemite Valley, California.

    Science.gov (United States)

    Maher, E. L.; Shaw, K. A.; Carey, C.; Dunn, M. E.; Whitman, S.; Bourdeau, J.; Eckert, E.; Louie, J. N.; Stock, G. M.

    2017-12-01

    UNR students in an Applied Geophysics course conducted geophysical investigations in Yosemite Valley during the months of March and August 2017. The goal of the study is to understand better the depth to bedrock, the geometry of the bedrock basin, and the properties of stratigraphy- below the valley floor. Gutenberg and others published the only prior geophysical investigation in 1956, to constrain the depth to bedrock. We employed gravity, resistivity, and refraction microtremor(ReMi) methods to investigate the interface between valley fill and bedrock, as well as shallow contrasts. Resistivity and ReMi arrays along three north-south transects investigated the top 50-60m of the basin fill. Gravity results constrained by shallow measurements suggest a maximum depth of 1000 m to bedrock. ReMi and resistivity techniques identified shallow contrasts in shear velocity and electrical resistivity that yielded information about the location of the unconfined water table, the thickness of the soil zone, and spatial variation in shallow sediment composition. The upper several meters of sediment commonly showed shear velocities below 200 m/s, while biomass-rich areas and sandy river banks could be below 150 m/s. Vs30 values consistently increased towards the edge of the basin. The general pattern for resistivity profiles was a zone of relatively high resistivity, >100 ohm-m, in the top 4 meters, followed by one or more layers with decreased resistivity. According to gravity measurements, assuming either -0.5 g/cc or -0.7 g/cc density contrast between bedrock and basin sediments, a maximum depth to bedrock is found south of El Capitan at respectively, 1145 ± 215 m or 818 ± 150 m. Longitudinal basin geometry coincides with the basin depth geometry discussed by Gutenberg in 1956. Their results describe a "double camel" shape where the deepest points are near El Capitan and the Ahwahnee Hotel and is shallowest near Yosemite Falls, in a wider part of the valley. An August Deep

  1. Ground-water quality in the Santa Rita, Buellton, and Los Olivos hydrologic subareas of the Santa Ynez River basin, Santa Barbara County, California

    Science.gov (United States)

    Hamlin, S.N.

    1985-01-01

    Groundwater quality in the upper Santa Ynez River Valley in Santa Barbara County has degraded due to both natural and anthropogenic causes. The semiarid climate and uneven distribution of rainfall has limited freshwater recharge and caused salt buildup in water supplies. Tertiary rocks supply mineralized water. Agricultural activities (irrigation return flow containing fertilizers and pesticides, cultivation, feedlot waste disposal) are a primary cause of water quality degradation. Urban development, which also causes water quality degradation (introduced contaminants, wastewater disposal, septic system discharge, and land fill disposal of waste), has imposed stricter requirements on water supply quality. A well network was designed to monitor changes in groundwater quality related to anthropogenic activities. Information from this network may aid in efficient management of the groundwater basins as public water supplies, centered around three basic goals. First is to increase freshwater recharge to the basins by conjunctive surface/groundwater use and surface-spreading techniques. Second is to optimize groundwater discharge by efficient timing and spacing of pumping. Third is to control and reduce sources of groundwater contamination by regulating wastewater quality and distribution and, preferably, by exporting wastewaters from the basin. (USGS)

  2. Ground-Water Occurrence and Contribution to Streamflow, Northeast Maui, Hawaii

    Science.gov (United States)

    Gingerich, Stephen B.

    1999-01-01

    The study area lies on the northern flank of the East Maui Volcano (Haleakala) and covers about 129 square miles between the drainage basins of Maliko Gulch to the west and Makapipi Stream to the east. About 989 million gallons per day of rainfall and 176 million gallons per day of fog drip reaches the study area and about 529 million gallons per day enters the ground-water system as recharge. Average annual ground-water withdrawal from wells totals only about 3 million gallons per day; proposed (as of 1998) additional withdrawals total about 18 million gallons per day. Additionally, tunnels and ditches of an extensive irrigation network directly intercept at least 10 million gallons per day of ground water. The total amount of average annual streamflow in gaged stream subbasins upstream of 1,300 feet altitude is about 255 million gallons per day and the total amount of average annual base flow is about 62 million gallons per day. Six major surface-water diversion systems in the study area have diverted an average of 163 million gallons per day of streamflow (including nearly all base flow of diverted streams) for irrigation and domestic supply in central Maui during 1925-97. Fresh ground water is found in two main forms. West of Keanae Valley, ground-water flow appears to be dominated by a variably saturated system. A saturated zone in the uppermost rock unit, the Kula Volcanics, is separated from a freshwater lens near sea level by an unsaturated zone in the underlying Honomanu Basalt. East of Keanae Valley, the ground-water system appears to be fully saturated above sea level to altitudes greater than 2,000 feet. The total average annual streamflow of gaged streams west of Keanae Valley is about 140 million gallons per day at 1,200 feet to 1,300 feet altitude. It is not possible to estimate the total average annual streamflow at the coast. All of the base flow measured in the study area west of Keanae Valley represents ground-water discharge from the high

  3. Evaluation of volatile organic compounds in two Mojave Desert basins-Mojave River and Antelope Valley-in San Bernardino, Los Angeles, and Kern Counties, California, June-October 2002

    Science.gov (United States)

    Densmore, Jill N.; Belitz, Kenneth; Wright, Michael T.; Dawson, Barbara J.; Johnson, Tyler D.

    2005-01-01

    The California Aquifer Susceptibility Assessment of the Ground-Water Ambient Monitoring and Assessment Program was developed to assess water quality and susceptibility of ground-water resources to contamination from surficial sources. This study focuses on the Mojave River and the Antelope Valley ground-water basins in southern California. Volatile organic compound (VOC) data were evaluated in conjunction with tritium data to determine a potential correlation with aquifer type, depth to top of perforations, and land use to VOC distribution and occurrence in the Mojave River and the Antelope Valley Basins. Detection frequencies for VOCs were compiled and compared to assess the distribution in each area. Explanatory variables were evaluated by comparing detection frequencies for VOCs and tritium and the number of compounds detected. Thirty-three wells were sampled in the Mojave River Basin (9 in the floodplain aquifer, 15 in the regional aquifer, and 9 in the sewered subset of the regional aquifer). Thirty-two wells were sampled in the Antelope Valley Basin. Quality-control samples also were collected to identify, quantify, and document bias and variability in the data. Results show that VOCs generally were detected slightly more often in the Antelope Valley Basin samples than in the Mojave River Basin samples. VOCs were detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Tritium was detected more frequently in the Mojave River Basin samples than in the Antelope Valley Basin samples, and it was detected more frequently in the floodplain aquifer than in the regional aquifer and the sewered subset. Most of the samples collected in both basins for this study contained old water (water recharged prior to 1952). In general, in these desert basins, tritium need not be present for VOCs to be present. When VOCs were detected, young water (water recharge after 1952) was slightly more likely to be contaminated than old water

  4. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  5. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  6. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    Salinity Control Unit was 10,700 tons/year. This accounts for approximately 27 percent of the decrease observed downstream from the Grand Valley Salinity Control Unit. Salinity loads were decreasing at the fastest rate (6,950 tons/year) in Region 4, which drains an area between the Colorado River at Cameo, Colorado (station CAMEO) and Colorado River above Glenwood Springs, Colorado (station GLEN) streamflow-gaging stations. Trends in salinity concentration and streamflow were tested at station CAMEO to determine if salinity concentration, streamflow, or both are controlling salinity loads upstream from the Grand Valley Salinity Control Unit. Trend tests of individual ion concentrations were included as potential indicators of what sources (based on mineral composition) may be controlling trends in the upper Colorado. No significant trend was detected for streamflow from 1986 to 2003 at station CAMEO; however, a significant downward trend was detected for salinity concentration. The trend slope indicates that salinity concentration is decreasing at a median rate of about 3.54 milligrams per liter per year. Five major ions (calcium, magnesium, sodium, sulfate, and chloride) were tested for trends. The results indicate that processes within source areas with rock and soil types (or other unidentified sources) bearing calcium, sodium, and sulfate had the largest effect on the downward trend in salinity load upstream from station CAMEO. Downward trends in salinity load resulting from ground-water sources and/or land-use change were thought to be possible reasons for the observed decreases in salinity loads; however, the cause or causes of the decreasing salinity loads are not fully understood. A reduction in the amount of ground-water percolation from Region 4 (resulting from work done through Federal irrigation system improvement programs as well as privately funded irrigation system improvements) has helped reduce annual salinity load from Region 4 by approxima

  7. Ground water and earthquakes

    Energy Technology Data Exchange (ETDEWEB)

    Ts' ai, T H

    1977-11-01

    Chinese folk wisdom has long seen a relationship between ground water and earthquakes. Before an earthquake there is often an unusual change in the ground water level and volume of flow. Changes in the amount of particulate matter in ground water as well as changes in color, bubbling, gas emission, and noises and geysers are also often observed before earthquakes. Analysis of these features can help predict earthquakes. Other factors unrelated to earthquakes can cause some of these changes, too. As a first step it is necessary to find sites which are sensitive to changes in ground stress to be used as sensor points for predicting earthquakes. The necessary features are described. Recording of seismic waves of earthquake aftershocks is also an important part of earthquake predictions.

  8. Induced infiltration from the Rockaway River and water chemistry in a stratified-drift aquifer at Dover, New Jersey, with a section on modeling ground-water flow in the Rockaway River Valley

    Science.gov (United States)

    Dysart, Joel E.; Rheaume, Stephen J.; Kontis, Angelo L.

    1999-01-01

    The vertical hydraulic conductivity per unit thickness (streambed leakance) of unconsolidated sediment immediately beneath the channel of the Rockaway River near a municipal well field at Dover, N.J., is between 0.2 and 0.6 feet per day per foot and is probably near the low end of this range. This estimate is based on evaluation of three lines of evidence: (1) Streamflow measurements, which indicated that induced infiltration of river water near the well field averaged 0.67 cubic feet per second; (2) measurements of the rate of downward propagation of diurnal fluctuations in dissolved oxygen and water temperature at three piezometers, which indicated vertical Darcian flow velocities of 0.6 and 1.5 feet per day, respectively; and (3) chemical mixing models based on stable isotopes of oxygen and hydrogen, which indicated that 30 percent of the water reaching a well near the center of the well field was derived from the river. The estimated streambed-leakance values are compatible with other aquifer properties and with hydraulic stresses observed over a 2-year period, as demonstrated by a set of six alternative groundwater flow models of the Rockaway River valley. Simulated water levels rose 0.5 to 1.7 feet near the well field when simulated streambed leakance was changed from 0.2 to 0.6 feet per day per foot, or when a former reach of the Rockaway River valley that is now blocked by glacial drift was simulated as containing a continuous sand aquifer (rather than impermeable till). Model recalibration to observed water levels could accommodate either of these changes, however, by plausible adjustments in hydraulic conductivity of 35 percent or less.The ground-water flow models incorporate a new procedure for simulating areal recharge, in which water available for recharge in any time interval is accepted as recharge only where the water level in the uppermost model layer is below land surface. Water rejected as recharge on upland hillsides is allowed to recharge

  9. Effects of streambank fencing of pasture land on benthic macroinvertebrates and the quality of surface water and shallow ground water in the Big Spring Run basin of Mill Creek watershed, Lancaster County, Pennsylvania, 1993-2001

    Science.gov (United States)

    Galeone, Daniel G.; Brightbill, Robin A.; Low, Dennis J.; O'Brien, David L.

    2006-01-01

    Streambank fencing along stream channels in pastured areas and the exclusion of pasture animals from the channel are best-management practices designed to reduce nutrient and suspended-sediment yields from drainage basins. Establishment of vegetation in the fenced area helps to stabilize streambanks and provides better habitat for wildlife in and near the stream. This study documented the effectiveness of a 5- to 12-foot-wide buffer strip on the quality of surface water and near-stream ground water in a 1.42-mi2 treatment basin in Lancaster County, Pa. Two miles of stream were fenced in the basin in 1997 following a 3- to 4-year pre-treatment period of monitoring surface- and ground-water variables in the treatment and control basins. Changes in surface- and ground-water quality were monitored for about 4 years after fence installation. To alleviate problems in result interpretation associated with climatic and hydrologic variation over the study period, a nested experimental design including paired-basin and upstream/downstream components was used to study the effects of fencing on surface-water quality and benthic-macroinvertebrate communities. Five surface-water sites, one at the outlet of a 1.77-mi2 control basin (C-1), two sites in the treatment basin (T-3 and T-4) that were above any fence installation, and two sites (one at an upstream tributary site (T-2) and one at the outlet (T-1)) that were treated, were sampled intensively. Low-flow samples were collected at each site (approximately 25-30 per year at each site), and stormflow was sampled with automatic samplers at all sites except T-3. For each site where stormflow was sampled, from 35 to 60 percent of the storm events were sampled over the entire study period. Surface-water sites were sampled for analyses of nutrients, suspended sediment, and fecal streptococcus (only low-flow samples), with field parameters (only low-flow samples) measured during sample collection. Benthic-macroinvertebrate samples

  10. Maps of the Bonsall area of the San Luis Rey River valley, San Diego County, California, showing geology, hydrology, and ground-water quality

    Science.gov (United States)

    Izbicki, John A.

    1985-01-01

    In November 1984, 84 wells and 1 spring in the Bonsall area of the San Luis Rey River valley were inventoried by U.S. Geological Survey personnel. Depth to water in 38 wells ranged from 1.3 to 38 ft and 23 wells had depths to water less than 10 feet. Dissolved solids concentration of water from 29 wells and 1 spring sampled in autumn 1983 and spring 1984 ranged from 574 to 2,370 mgs/L. Groundwater with a dissolved solids concentration less than 1,000 mgs/L was generally restricted to the eastern part of the aquifer. The total volume of alluvial fill in the Bonsall area is 113,000 acre-feet; the amount of groundwater storage available in the alluvial aquifer is 18,000 acre-feet. The alluvial aquifer is, in part, surrounded and underlain by colluvium and weathered crystalline rock that add some additional groundwater storage capacity to the system. Data in this report are presented on five maps showing well locations , thickness of alluvial fill, water level contours in November 1983 and hydrographs of selected wells, groundwater quality in spring 1960 and graphs showing changes in dissolved solids concentrations of water from selected wells with time, and groundwater quality in spring 1984. This report is part of a larger cooperative project between the Rainbow Municipal Irrigation District and the U.S. Geological Survey. The purpose of the larger project is to develop an appropriate groundwater management plan for the Bonsall area of the San Luis Rey River valley. (USGS)

  11. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1979-01-01

    Burial trenches for disposal of solid radioactive waste at West Valley, NY, are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and/or reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  12. Ground-water hydrology and subsurface migration of radioisotopes at a low-level solid radioactive-waste disposal site, West Valley, New York

    International Nuclear Information System (INIS)

    Prudic, D.E.; Randall, A.D.

    1977-07-01

    Burial trenches for disposal of solid radioactive waste at West Valley, N.Y. are excavated in till that has very low hydraulic conductivity (about 5 x 10 -8 centimeters per second). Fractures and root tubes with chemically oxidized and(or) reduced soil in their walls extend 3 to 4.5 meters below natural land surface. Preliminary simulations of pressure heads with a digital model suggest that hydraulic conductivity is an order of magnitude greater in the fractured till near land surface than at greater depth. Hydraulic gradients are predominantly downward, even beneath small valleys. The upper part of a body of underlying lacustrine silt is unsaturated; in the lower, saturated part, slow lateral flow may occur. In the older trenches, water began to build up in 1971, overflowed briefly in 1975, and was pumped out in 1975--76. Water levels rose abruptly during major rainstorms in mid-1975, indicating rapid infiltration through cracks in the cover material. The new trenches have maintained low, stable water levels, perhaps because of thicker, more compact cover and less waste settlement; pressure heads near these trenches are low, locally approaching zero, perhaps because of slight infiltration and limited near-surface storage. Peak tritium concentrations in test-hole cores (generally 10 -5 to 10 -3 microcuries per milliliter) were found within 3 meters of land surface and are attributed to surface contamination. Concentrations declined rapidly with depth within the fractured till; secondary peaks found at about 9 meters in three holes are attributed to lateral migration from trenches. Other radioisotopes were detected only near land surface. Samples from the walls of shallow fractures revealed no accumulation of radioisotopes

  13. Move of ground water

    International Nuclear Information System (INIS)

    Kimura, Shigehiko

    1983-01-01

    As a ground water flow which is difficult to explain by Darcy's theory, there is stagnant water in strata, which moves by pumping and leads to land subsidence. This is now a major problem in Japan. Such move on an extensive scale has been investigated in detail by means of 3 H such as from rainfall in addition to ordinary measurement. The move of ground water is divided broadly into that in an unsaturated stratum from ground surface to water-table and that in a saturated stratum below the water-table. The course of the analyses made so far by 3 H contained in water, and the future trend of its usage are described. A flow model of regarding water as plastic fluid and its flow as channel assembly may be available for some flow mechanism which is not possible to explain with Darcy's theory. (Mori, K.)

  14. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    Science.gov (United States)

    Welch, A.H.; Lico, M.S.

    1998-01-01

    Unusually high As and U concentrations (> 100 ??g/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 ??g/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge. Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination. Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert. Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and

  15. Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada

    International Nuclear Information System (INIS)

    Lico, M.S.; Welch, A.H.

    1998-01-01

    100 μg/L) are widespread in shallow ground water beneath the southern Carson Desert. The high concentrations, which locally exceed 1000 μg/L, are of concern from a human health standpoint because the shallow ground water is used for domestic supply. Possible affects on wildlife are also of concern because the ground water flows into shallow lakes and marshes within wildlife refuges. Arsenic and U concentrations in ground water of the southern Carson Desert appear to be affected by evaporative concentration, redox reactions, and adsorption. The relation of these elements with Cl suggest that most of the high concentrations can be attributed to evaporative concentration of Carson River water, the primary source of recharge.Some ground water contains higher As and U concentrations that cannot be explained by evaporative concentration alone. Oxidation-reduction reactions, involving metal oxides and sedimentary-organic matter, appear to contribute As, U, inorganic C, Fe and Mn to the ground water. Arsenic in Fe-oxide was confirmed by chemical extraction and is consistent with laboratory adsorption studies. Uranium in both sedimentary-organic C and Fe-oxide coatings has been confirmed by fission tracks and petrographic examination.Arsenic concentrations in the ground water and chemical extracts of aquifer sediments are broadly consistent with adsorption as a control on some dissolved As concentrations. An apparent loss of As from some ground water as evaporative concentration proceeds is consistent with adsorption as a control on As. However, evidence for adsorption should be viewed with caution, because the adsorption model used values for the adsorbent that have not been shown to be valid for the aquifer sediments throughout the southern Carson Desert.Hydrologic and geochemical conditions in the Carson Desert are similar to other areas with high As and U concentrations in ground water, including the Salton Sea basin and southern San Joaquin Valley of California

  16. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  17. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  18. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  19. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    Science.gov (United States)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  20. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    Science.gov (United States)

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated

  1. Ground-water travel time

    International Nuclear Information System (INIS)

    Bentley, H.; Grisak, G.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Travel Time Subgroup are presented

  2. Regional ground-water system

    International Nuclear Information System (INIS)

    Long, J.

    1985-01-01

    The Containment and Isolation Working Group considered issues related to the postclosure behavior of repositories in crystalline rock. This working group was further divided into subgroups to consider the progress since the 1978 GAIN Symposium and identify research needs in the individual areas of regional ground-water flow, ground-water travel time, fractional release, and cumulative release. The analysis and findings of the Ground-Water Regime Subgroup are presented

  3. Simulated Effects of Seasonal Ground-Water Pumpage for Irrigation on Hydrologic Conditions in the Lower Apalachicola-Chattahoochee-Flint River Basin, Southwestern Georgia and Parts of Alabama and Florida, 1999-2002

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2006-01-01

    To determine the effects of seasonal ground-water pumpage for irrigation, a finite-element ground-water flow model was developed for the Upper Floridan aquifer in the lower Flint River Basin area, including adjacent parts of the Chattahoochee and Apalachicola River Basins. The model simulates withdrawal from the aquifer at 3,280 irrigation, municipal, and industrial wells; stream-aquifer flow between the aquifer and 36 area streams; leakage to and from the overlying upper semiconfining unit; regional ground-water flow at the lateral boundaries of the model; and water-table recharge in areas where the aquifer is at or near land surface. Steady-state calibration to drought conditions of October 1999 indicated that the model could adequately simulate measured groundwater levels at 275 well locations and streamflow gains and losses along 53 reaches of area streams. A transient simulation having 12 monthly stress periods from March 2001 to February 2002 incorporated time-varying stress from irrigation pumpage, stream and lake stage, head in the overlying upper semiconfining unit, and infiltration rates. Analysis of simulated water budgets of the Upper Floridan aquifer provides estimates of the source of water pumped for irrigation. During October 1999, an estimated 127 million gallons per day (Mgal/d) of irrigation pumpage from the Upper Floridan aquifer in the model area were simulated to be derived from changes in: stream-aquifer flux (about 56 Mgal/d, or 44 percent); leakage to or from the upper semiconfining unit (about 49 Mgal/d, or 39 percent); regional flow (about 18 Mgal/d, or 14 percent); leakage to or from Lakes Seminole and Blackshear (about 2.7 Mgal/d, or 2 percent); and flux at the Upper Floridan aquifer updip boundary (about 1.8 Mgal/d, or 1 percent). During the 2001 growing season (May-August), estimated irrigation pumpage ranged from about 310 to 830 Mgal/ d, about 79 percent of the 12-month total. During the growing season, irrigation pumpage was

  4. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6. Salt Valley

    International Nuclear Information System (INIS)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox Formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the Area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker Trail Formation. The current data base is insufficient to estimate ground-water flow rates and directions in this unit. The middle unit includes the evaporites in the Paradox Formation and no laterally extensive flow systems are apparent. The lower unit consists of the rocks below the Paradox Formation where permeabilities vary widely, and the apparent flow direction is toward the west. 108 refs., 39 figs., 9 tabs

  5. Strategies for protecting ground water used for human consumption in the Guadalquivir basin; Estrategias de proteccion del agua subterranea destinada al consumo humano en la cuenca del Guadalquivir

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Madrid, A.; Martinez, C.; Luque, J. a.; Rubio-Campos, J. C.; Carrasco, F.

    2013-02-01

    We propose a way of defining safeguard zones for groundwater protection according to the requirements of the Water Framework Directive (WFD). Taking into account the peculiarities of the groundwater bodies in the region of the Mediterranean arch, we chose to conduct our study in the Guadalquivir basin in southern Spain, an area of special interest because it combines the influence of rain fronts and the mixed characteristics of both Mediterranean and Atlantic climates, together with the fact that a large percentage of water for human consumption is provided by groundwater, especially at the head of the basin, where this percentage may account for up to 80%. Safeguard zones are defined by an initial delimitation of quality-protection perimeters using the Reduced DRASTIC and COP methods, designed specifically for detrital and karstic aquifers respectively, to assess the potential impact of the existing pressures upon them and study their intrinsic vulnerability. An analysis of all this spatial information using a geographical information system allowed us to test and validate the method used and to obtain an initial definition of safeguard zones in the basin in question. (Author) 37 refs.

  6. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    Science.gov (United States)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  7. Ground-Water Hydrology and Projected Effects of Ground-Water Withdrawals in the Sevier Desert, Utah

    OpenAIRE

    United States Geological Survey

    1983-01-01

    The principal ground-water reservoir in the Sevier Desert is the unconsolidated basin fill. The fill has been divided generally into aquifers and confining beds, although there are no clearcut boundaries between these units--the primary aquifers are the shallow and deep artesian aquifers. Recharge to the ground-water reservoir is by infiltration of precipitation; seepage from streams, canals, reservoirs, and unconsumed irrigation water; and subsurface inflow from consolidated rocks in mount...

  8. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    OpenAIRE

    Bhesh Raj Thapa; Hiroshi Ishidaira; Vishnu Prasad Pandey; Tilak Mohan Bhandari; Narendra Man Shakya

    2018-01-01

    Kathmandu Upatyaka Khanepani Limited (KUKL) has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area) of the Kathmandu Valley (KV). The project, called the “Melamchi Water Supply Project (MWSP)”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day) through the first phase and an additional 34...

  9. Ground-water hydrology of the Chad Basin in Bornu and Dikwa Emirates, northeastern Nigeria, with special emphasis on the flow life of the artesian system

    Science.gov (United States)

    Miller, Raymond E.; Johnston, R.H.; Olowu, J.A.I.; Uzoma, J.U.

    1968-01-01

    Bornu and Dikwa Emirates lie in the Nigerian sector of the Chad Basin, a vast region of interior drainage encompassing about 600,000 square miles of north-central Africa. The report area includes about 25,000 square miles of the basin that lie in Nigeria. Most of the area is a featureless plain that slopes gently northeast and east from the uplands of central Nigeria towards Lake Chad. On its eastern side the lake has one surface outlet which overflows only during exceptionally high stages of the lake. This outlet spills into the channel of Bahr al Ghazal, which in turn drains into the Bod616 depression. Because the lake is shallow, the shoreline fluctuates markedly with high and low stages corresponding to the wet and dry seasons. The semiarid climate of Bornu and Dikwa Emirates is characterized by a long dry season and a short wet season that correspond to seasonal winds. Annual rainfall ranges from 15 inches in the northern part of the area to 32 inches in the southern. The Chad Basin in Dikwa and Bornu Emirates is underlain by interbedded sand and clay, collectively termed the Chad Formation. These alluvial and lactustrine sediments were deposited in or near Lake Chad whet it occupied a much greater area during Pliocene and Pleistocene time. The Chad Formation has a very slight primary dip in the direction of Lake Chad and conforms to the gentle slope of land surface. The known thickness of the formation ranges from a few feet where it overlies bedrock on the periphery of the basin to at least 1,800 feet at Maiduguri; however, its total thickness probably exceeds 2,000 feet in the central part of the basin. Three water-bearing units termed upper, middle, and lower zones occur within the Chad Formation. The upper zone yields water to numerous dug wells throughout the rural areas and also is .the major source of the Maiduguri municipal water .supply. The middle zone yields water from flowing artesian boreholes that have heads ranging from a few feet to 70 feet

  10. Alternatives for ground water cleanup

    National Research Council Canada - National Science Library

    National Research Council Staff; Commission on Geosciences, Environment and Resources; Division on Earth and Life Studies; National Research Council; National Academy of Sciences

    .... Yet recent studies question whether existing technologies can restore contaminated ground water to drinking water standards, which is the goal for most sites and the result expected by the public...

  11. Humic substances in ground waters

    International Nuclear Information System (INIS)

    Paxeus, N.; Allard, B.; Olofsson, U.; Bengtsson, M.

    1986-01-01

    The presence of naturally occurring complexing agents that may enhance the migration of disposed radionuclikes and thus facilitate their uptake by plantsis a problem associated with the underground disposal of radioactive wastes in bedrock. The main purpose of this work is to characterized humic substances from ground water and compare them with humic substances from surface water. The humic materials isolated from ground waters of a borehole in Fjaellveden (Sweden) were characterized by elemental and functional group analyses. Spectroscopic properties, molecular weight distributions as well as acid-base properties of the fulvic and humic fractions were also studied. The ground water humic substances were found to be quite similar in many respects (but not identical) to the Swedish surface water humics concentrated from the Goeta River but appeared to be quite different from the American ground water humics from Biscayne Florida Aquifer or Laramie Fox-Hills in Colorado. The physico-chemical properties of the isolated humic materials are discussed

  12. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; hide

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  13. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    Science.gov (United States)

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    similar pattern: younger water discharges to small order streams in headwater basins and older water discharges to larger streams near the basin outlet.Factors affecting nitrogen transport in ground water include spatial and temporal variation in input sources, ground-water age, and aquifer processes that lead to denitrification. Spatial and temporal variations in nitrogen sources affect all the watersheds. Tributaries with higher inputs of nitrogen have higher concentrations in stream base flow. Areas where nitrogen application rates have increased over time show an age-nitrate relation in ground-water samples. The age-nitrate relation can be affected by denitrification, which occurs in Pocomoke and East Mahantango Creeks but is not evident in Polecat and Muddy Creeks. In East Mahantango Creek, the level of denitrification is significant in water with residence times greater than 20 years, but because this is a small component of overall ground-water discharge to a stream, it may not remove a significant quantity of nitrogen from the system. Denitrification in Pocomoke Creek is significant and appears to affect mostly older water discharging to streams. Therefore, if most of the nitrogen entering these two streams is associated with the discharge of younger ground water, denitrification may not greatly affect the overall nitrogen delivery to these streams.Other findings of this study show that nitrate in ground water discharging along preferential flow paths may not be affected by natural processes, such as denitrification or uptake by riparian vegetation. Seeps to swales and ditches beneath the north uplands at Polecat Creek indicate a shallow water table and discharge of young ground water whereas the absence of such seeps on the south side indicates a deep water table and a lack of young ground water. Similarly, discharge at the base of the slope and to the valley wetland south of the creek but not north of the creek indicates a different role for the

  14. Annual report of 1991 groundwater monitoring data for the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin at the Y-12 Plant: Ground water surface elevations

    International Nuclear Information System (INIS)

    Shevenell, L.; Switek, J.

    1992-02-01

    The purpose of this document is to provide a summary and interpretation of hydraulic head measurements obtained from wells surrounding the Kerr Hollow Quarry and Chestnut Ridge Sediment Disposal Basin sites at the US Department of Energy Y-12 Plant in Oak Ridge, Tennessee. Periodic water level observations are presented using hydrographs and water table contour maps based on data obtained from quarterly sampling during calendar year 1991. Generalized, preliminary interpretation of results are presented. The two sites covered by this report have interim status under the provisions of the Resource Conservation and Recovery Act (RCRA). A subset of the wells at each rate are used for groundwater monitoring purposes under the requirements of RCRA. A discussion of the up-gradient and down-gradient directions for each of the sites is included

  15. Delineation of ground water potential zones using GIS and remote sensing - A case study from midland region of Vamanapuram river basin, Kerala, India

    Science.gov (United States)

    Prasad, Geena; Vinod P., G.; John, Shaleena Elizabeth

    2018-04-01

    In a highly rugged terrain, shielded by hard crystalline rocks like that of Kerala, locating potential zones of groundwater is found to be an unenviable task. Remote sensing and Geographical information system technologies have been attempted widely to delineate the potential regions in such terrain. Geographical information system tool has been used for delineation of groundwater prospect zones in midland physiographic zone (30-200m) of Vamanapuram river basin. The terrain variables are generated using satellite imageries, SRTM DEM data of 30m resolution and SOI toposheets. The groundwater prospect zones were delineated through the integration of the reclassified raster map layers of geomorphology, slope percent, geology, land use / land cover and soil texture using the weighted overlay analysis in the GIS platform. The groundwater prospects in the study area were grouped into five classes and their distribution are; `very high/high' (8.79%), `moderate' (39.08%), and `very low / low' (52.01%). The study result of the area has been validated with water level data of dug wells and bore wells of the area. The spatial distribution map of the water level of the region is overlaid on groundwater prospect map and shows a positive correlation i.e., the water level at shallow depth in higher prospect zones and at deeper depth in poor to very poor zones. The Groundwater prospect map of midland region of Vamanapuram river basin can be used as base level information which can be further investigated with geophysical methods to locate potential well sites for the execution of water supply schemes.

  16. Ground-Water Resources of the Lower Apalachicola-Chattahoochee-Flint River Basin in Parts of Alabama, Florida, and Georgia-Subarea 4 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River Basins

    Science.gov (United States)

    1995-01-01

    Counties, Ga . Evaluation of ground- water-development potential in the virtually untapped Intermediate system has questionable reliability due to the...Alabama, Florida, and Georgia into 4 districts: Fall Line Hills, Dougherty Plain, Tifton Upland, and Gulf Coastal Lowlands. Physiographic descriptions...approximately with the boundary between the Tifton Uplands and the Dough- erty Plain districts and the Gulf Coastal Lowlands district occupies the

  17. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  18. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  19. Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells - Studies Begun in 2001

    Science.gov (United States)

    Paschke, Suzanne S.

    2007-01-01

    This study of the Transport of Anthropogenic and Natural Contaminants to public-supply wells (TANC study) is being conducted as part of the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program and was designed to increase understanding of the most important factors to consider in ground-water vulnerability assessments. The seven TANC studies that began in 2001 used retrospective data and ground-water flow models to evaluate hydrogeologic variables that affect aquifer susceptibility and vulnerability at a regional scale. Ground-water flow characteristics, regional water budgets, pumping-well information, and water-quality data were compiled from existing data and used to develop conceptual models of ground-water conditions for each study area. Steady-state regional ground-water flow models were used to represent the conceptual models, and advective particle-tracking simulations were used to compute areas contributing recharge and traveltimes from recharge to selected public-supply wells. Retrospective data and modeling results were tabulated into a relational database for future analysis. Seven study areas were selected to evaluate a range of hydrogeologic settings and management practices across the Nation: the Salt Lake Valley, Utah; the Eagle Valley and Spanish Springs Valley, Nevada; the San Joaquin Valley, California; the Northern Tampa Bay region, Florida; the Pomperaug River Basin, Connecticut; the Great Miami River Basin, Ohio; and the Eastern High Plains, Nebraska. This Professional Paper Chapter presents the hydrogeologic settings and documents the ground-water flow models for each of the NAWQA TANC regional study areas that began work in 2001. Methods used to compile retrospective data, determine contributing areas of public-supply wells, and characterize oxidation-reduction (redox) conditions also are presented. This Professional Paper Chapter provides the foundation for future susceptibility and vulnerability analyses in the TANC

  20. Modeled ground water age distributions

    Science.gov (United States)

    Woolfenden, Linda R.; Ginn, Timothy R.

    2009-01-01

    The age of ground water in any given sample is a distributed quantity representing distributed provenance (in space and time) of the water. Conventional analysis of tracers such as unstable isotopes or anthropogenic chemical species gives discrete or binary measures of the presence of water of a given age. Modeled ground water age distributions provide a continuous measure of contributions from different recharge sources to aquifers. A numerical solution of the ground water age equation of Ginn (1999) was tested both on a hypothetical simplified one-dimensional flow system and under real world conditions. Results from these simulations yield the first continuous distributions of ground water age using this model. Complete age distributions as a function of one and two space dimensions were obtained from both numerical experiments. Simulations in the test problem produced mean ages that were consistent with the expected value at the end of the model domain for all dispersivity values tested, although the mean ages for the two highest dispersivity values deviated slightly from the expected value. Mean ages in the dispersionless case also were consistent with the expected mean ages throughout the physical model domain. Simulations under real world conditions for three dispersivity values resulted in decreasing mean age with increasing dispersivity. This likely is a consequence of an edge effect. However, simulations for all three dispersivity values tested were mass balanced and stable demonstrating that the solution of the ground water age equation can provide estimates of water mass density distributions over age under real world conditions.

  1. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  2. Quality of the ground water in basalt of the Columbia River group, Washington, Oregon, and Idaho

    Science.gov (United States)

    Newcomb, Reuben Clair

    1972-01-01

    The ground water within the 50,000-square-mile area of the layered basalt of the Columbia River Group is a generally uniform bicarbonate water having calcium and sodium in nearly equal amounts as the principal cations. water contains a relatively large amount of silica. The 525 chemical analyses indicate that the prevalent ground water is of two related kinds--a calcium and a sodium water. The sodium water is more common beneath the floors of the main synclinal valleys; the calcium water, elsewhere. In addition to the prevalent type, five special types form a small part of the ground water; four of these are natural and one is artificial. The four natural special types are: (1) calcium sodium chloride waters that rise from underlying sedimentary rocks west of the Cascade Range, (2) mineralized water at or near warm or hot springs, (3) water having unusual ion concentrations, especially of chloride, near sedimentary rocks intercalated at the edges of the basalt, and (4) more mineralized water near one locality of excess carbon dioxide. The one artificial kind of special ground water has resulted from unintentional artificial recharge incidental to irrigation in parts of central Washington. The solids dissolved in the ground water have been picked up on the surface, within the overburden, and from minerals and glasses within the basalt. Evidence for the removal of ions from solution is confined to calcium and magnesium, only small amounts of which are present in some of the sodium-rich water. Minor constituents, such as the heavy metals, alkali metals, and alkali earths, occur in the ground water in trace, or small, amounts. The natural radioactivity of the ground waters is very low. Except for a few of the saline calcium sodium chloride waters and a few occurrences of excessive nitrate, the ground water generally meets the common standards of water good for most ordinary uses, but some of it can be improved by treatment. The water is clear and colorless and has a

  3. Geographic information system datasets of regolith-thickness data, regolith-thickness contours, raster-based regolith thickness, and aquifer-test and specific-capacity data for the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    Science.gov (United States)

    Arnold, L. Rick

    2010-01-01

    These datasets were compiled in support of U.S. Geological Survey Scientific-Investigations Report 2010-5082-Hydrogeology and Steady-State Numerical Simulation of Groundwater Flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. The datasets were developed by the U.S. Geological Survey in cooperation with the Lost Creek Ground Water Management District and the Colorado Geological Survey. The four datasets are described as follows and methods used to develop the datasets are further described in Scientific-Investigations Report 2010-5082: (1) ds507_regolith_data: This point dataset contains geologic information concerning regolith (unconsolidated sediment) thickness and top-of-bedrock altitude at selected well and test-hole locations in and near the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Data were compiled from published reports, consultant reports, and from lithologic logs of wells and test holes on file with the U.S. Geological Survey Colorado Water Science Center and the Colorado Division of Water Resources. (2) ds507_regthick_contours: This dataset consists of contours showing generalized lines of equal regolith thickness overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness was contoured manually on the basis of information provided in the dataset ds507_regolith_data. (3) ds507_regthick_grid: This dataset consists of raster-based generalized thickness of regolith overlying bedrock in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado. Regolith thickness in this dataset was derived from contours presented in the dataset ds507_regthick_contours. (4) ds507_welltest_data: This point dataset contains estimates of aquifer transmissivity and hydraulic conductivity at selected well locations in the Lost Creek Designated Ground Water Basin, Weld, Adams, and

  4. Analysis of the influence of tectonics on the evolution of valley networks based on SRTM DEM, Jemma River basin, Ethiopia

    Czech Academy of Sciences Publication Activity Database

    Kusák, Michal; Kropáček, J.; Vilímek, V.; Schillaci, C.

    2016-01-01

    Roč. 39, č. 1 (2016), 37-50 ISSN 1724-4757 Institutional support: RVO:67985891 Keywords : valley network * tectonic lineaments * Jemma River basin * Ethiopian Highlands Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  5. Quaternary tectonics and basin history of Pahrump and Stewart Valleys, Nevada and California

    International Nuclear Information System (INIS)

    Hoffard, J.L.

    1991-05-01

    The Pahrump fault system is an active fault system located in Pahrump and Stewart Valleys, Nevada and California, in the southern part of the Basin and Range Province. This system is 50 km long by 30 km wide and is comprised of three fault zones: the right-lateral East Nopah fault zone, the right-oblique Pahrump Valley fault zone, and the normal West Spring Mountains fault zone. All three zones have geomorphic evidence for late Quaternary activity. Analysis of active fault patterns and seismic reflection lines suggests that the Pahrump basin has had a two-stage genesis, an early history associated with a period of low angle detachment faulting probably active 10-15 Ma, and a more recent history related to the present dextral shear system, probably active post-4 Ma

  6. Ground-Water Resources of the Lower Apalachicola-Chattahoochee-Flint River Basin in Parts of Alabama, Florida, and Georgia-Subarea 4 of the Apalachicola-Chattahoochee-Flint and Alabama-Coosa-Tallapoosa River Basins

    National Research Council Canada - National Science Library

    Torak, Lynn J; McDowell, Robin J

    1995-01-01

    .... The Intermediate system consists of the Intracoastal, Chipola, and Jackson Bluff Formations, is limited in areal extent to the southern part of the basin in Florida, and constitutes an aquifer of low yield...

  7. Radon determination in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Segovia A, N.; Bulbulian G, S

    1991-08-15

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and {sup 226} Ra- supported {sup 222} Rn. Some of them were also studied for {sup 234} U/ {sup 238} U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  8. Radon determination in ground water

    International Nuclear Information System (INIS)

    Segovia A, N.; Bulbulian G, S.

    1991-08-01

    Studies on natural radioactivity in ground water were started in Mexico in San Luis Potosi state followed by samplings from deep wells and springs in the states of Mexico and Michoacan. The samples were analyzed for solubilized and 226 Ra- supported 222 Rn. Some of them were also studied for 234 U/ 238 U activity ratio. In this paper we discuss the activities obtained and their relationship with the geologic characteristics of the studied zones. (Author)

  9. Ground-Water Quality Data in the Kern County Subbasin Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Shelton, Jennifer L.; Pimentel, Isabel; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 3,000 square-mile Kern County Subbasin study unit (KERN) was investigated from January to March, 2006, as part of the Priority Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the California State Water Resources Control Board (SWRCB) in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory (LLNL). The Kern County Subbasin study was designed to provide a spatially unbiased assessment of raw (untreated) ground-water quality within KERN, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 50 wells within the San Joaquin Valley portion of Kern County. Forty-seven of the wells were selected using a randomized grid-based method to provide a statistical representation of the ground-water resources within the study unit. Three additional wells were sampled to aid in the evaluation of changes in water chemistry along regional ground-water flow paths. The ground-water samples were analyzed for a large number of man-made organic constituents (volatile organic compounds [VOCs], pesticides, and pesticide degradates), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), naturally occurring inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon) and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and laboratory matrix spikes) were collected and analyzed at approximately 10 percent of

  10. Ground Water movement in crystalline rock aquifers

    International Nuclear Information System (INIS)

    Serejo, A.N.C.; Freire, C.; Siqueira, H.B. de; Frischkorn, H.; Torquato, J.R.F.; Santiago, M.M.F.; Barbosa, P.C.

    1984-01-01

    Ground water movement studies were performed in crystalline rock aquifers from the upper Acarau River hydrographic basin, state of Ceara, Brazil. The studies included carbon-14, 18 O/ 16 O and tritium measurements as well as chemical analysis. A total of 35 wells were surveyed during drought seasons. Carbon-14 values displayed little variation which implied that the water use was adequate despite of the slower recharge conditions. Fairly constant isotopic 18 O/ 16 O ratio values in the wells and their similarity with rainwater values indicated that the recharge is done exclusively by pluvial waters. A decreasing tendency within the tritium concentration values were interpreted as a periodic rainwater renewal for these aquifers. The chemical analysis demonstrated that there is in fact no correlation between salinity and the time the water remains in the aquifer itself. (D.J.M.) [pt

  11. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    Science.gov (United States)

    Girault, Frédéric; Gajurel, Ananta Prasad; Perrier, Frédéric; Upreti, Bishal Nath; Richon, Patrick

    2011-01-01

    Effective radium-226 concentration ( EC Ra) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples ( n = 177) are placed in air-tight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1, with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1. The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  12. Radon emanation of heterogeneous basin deposits in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Girault, F.; Perrier, F.; Ananta Prasad Gajurel; Bishal Nath Upreti; Richon, P.

    2011-01-01

    Effective radium-226 concentration (EC Ra ) has been measured in soil samples from seven horizontal and vertical profiles of terrace scarps in the northern part of Kathmandu Valley, Nepal. The samples belong to the Thimi, Gokarna, and Tokha Formations, dated from 50 to 14 ky BP, and represent a diverse fluvio-deltaic sedimentary facies mainly consisting of gravelly to coarse sands, black, orange and brown clays. EC Ra was measured in the laboratory by radon-222 emanation. The samples (n = 177) are placed in airtight glass containers, from which, after an accumulation time varying from 3 to 18 days, the concentration of radon-222, radioactive decay product of radium-226 and radioactive gas with a half-life of 3.8 days, is measured using scintillation flasks. The EC Ra values from the seven different profiles of the terrace deposits vary from 0.4 to 43 Bq kg -1 , with profile averages ranging from 12 ± 1 to 27 ± 2 Bq kg -1 . The values have a remarkable consistency along a particular horizon of sediment layers, clearly demonstrating that these values can be used for long distance correlations of the sediment horizons. Widely separated sediment profiles, representing similar stratigraphic positions, exhibit consistent EC Ra values in corresponding stratigraphic sediment layers. EC Ra measurements therefore appear particularly useful for lithologic and stratigraphic discriminations. For comparison, EC Ra values of soils from different localities having various sources of origin were also obtained: 9.2 ± 0.4 Bq kg -1 in soils of Syabru-Bensi (Central Nepal), 23 ± 1 Bq kg -1 in red residual soils of the Bhattar-Trisuli Bazar terrace (North of Kathmandu), 17.1 ± 0.3 Bq kg -1 in red residual soils of terrace of Kalikasthan (North of Trisuli Bazar) and 10 ± 1 Bq kg -1 in red residual soils of a site near Nagarkot (East of Kathmandu). The knowledge of EC Ra values for these various soils is important for modelling radon exhalation at the ground surface, in particular

  13. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...

  14. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    Science.gov (United States)

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  15. Geology and ground water of the Luke area, Maricopa County, Arizona

    Science.gov (United States)

    Stulik, Ronald S.; Twenter, F.R.

    1964-01-01

    Luke Air Force Base, in the Salt River Valley in central Arizona. is within an intermontane basin--the Phoenix basin--in the Basin and Range lowlands province. The Luke area, the subject of this study, extends beyond the limits of the base. Ground-water resources of the Luke area were studied to determine the possibility of developing a water supply of optimum quantity and quality to supplement the base supply. Several wells drilled for this purpose, prior to the study, either produced an inadequate supply of water or produced ware-that had a high dissolved-solids content. The Phoenix basin is filled with unconsolidated to semiconsolidated Tertiary and Quaternary sedimentary rocks that are referred to as valley fill. Although its total thickness is unknown, 2,784 feet of valley fill--primarily consisting of clay, silt, sand, and gravel--has been penetrated. Percentage-distribution maps of fine-grained materials indicate a gross-facies pattern and a selective depositional area of the valley-fill materials. The maps also indicate that the areal distribution of fine-grained materials increases with depth. In general, the better producing wells, regardless of depth, are in areas where tee valley fill is composed of less than 60 percent fine-grained materials. The water table in the area is declining because large quantities of water are withdrawn and recharge is negligible. The decline near Luke Air Force Base during the period 1941-61 was about 150 feet. Ground water was moving generally southwest in the spring of 1961. Locally, changes in the direction of movement indicate diversion toward two major depressions. The dissolved-solids content of the ground water ranged from about 190 to 6,300 ppm. The highest concentration of dissolved solids is in water from the southern part of the area and seems to come from relatively shallow depths; wells in the northern part generally yield water of good quality. After a reconnaissance of the area, the U.S. Geological Survey

  16. Evaluation of Ground Water Near Sidney, Western Nebraska, 2004-05

    Science.gov (United States)

    Steele, G.V.; Sibray, S.S.; Quandt, K.A.

    2007-01-01

    During times of drought, ground water in the Lodgepole Creek area around Sidney, western Nebraska, may be insufficient to yield adequate supplies to private and municipal wells. Alternate sources of water exist in the Cheyenne Tablelands north of the city, but these sources are limited in extent. In 2003, the U.S. Geological Survey and the South Platte Natural Resources District began a cooperative study to evaluate the ground water near Sidney. The 122-square-mile study area lies in the south-central part of Cheyenne County, with Lodgepole Creek and Sidney Draw occupying the southern and western parts of the study area and the Cheyenne Tablelands occupying most of the northern part of the study area. Twenty-nine monitoring wells were installed and then sampled in 2004 and 2005 for physical characteristics, nutrients, major ions, and stable isotopes. Some of the 29 sites also were sampled for ground-water age dating. Ground water is limited in extent in the tableland areas. Spring 2005 depths to ground water in the tableland areas ranged from 95 to 188 feet. Ground-water flow in the tableland areas primarily is northeasterly. South of a ground-water divide, ground-water flows southeasterly toward Lodgepole Creek Valley. Water samples from monitoring wells in the Ogallala Group were predominantly a calcium bicarbonate type, and those from monitoring wells in the Brule Formation were a sodium bicarbonate type. Water samples from monitoring wells open to the Brule sand were primarily a calcium bicarbonate type at shallow depths and a sodium bicarbonate type at deeper depths. Ground water in Lodgepole Creek Valley had a strong sodium signature, which likely results from most of the wells being open to the Brule. Concentrations of sodium and nitrate in ground-water samples from the Ogallala were significantly different than in water samples from the Brule and Brule sand. In addition, significant differences were seen in concentrations of calcium between water samples

  17. Ground-water data, 1969-77, Vandenberg Air Force Base area, Santa Barbara County, California

    Science.gov (United States)

    Lamb, Charles E.

    1980-01-01

    The water supply for Vandenberg Air Force Base is obtained from wells in the Lompoc Plain, San Antonio Valley, and Lompoc Terrace groundwater basins. Metered pumpage during the period 1969-77 from the Lompoc Plain decreased from a high of 3,670 acre-feet in 1969 to a low of 2,441 acre-feet in 1977, while pumpage from the San Antonio Valley increased from a low of 1 ,020 acre-feet in 1969 to a high of 1,829 acre-feet in 1977. Pumpage from the Lompoc Terrace has remained relatively constant and was 187 acre-feet in 1977. In the Barka Slough area of the San Antonio Valley, water levels in four shallow wells declined during 1976 and 1977. Water levels in observation wells in the two aquifers of the Lompoc Terrace ground-water basin fluctuated during the period, but show no long term trends. Chemical analyses or field determinations of temperature and specific conductance were made of 219 water samples collected from 53 wells. In the Lompoc Plain the dissolved-solids concentration in all water samples was more than 625 milligrams per liter, and in most was more than 1,000 milligrams per liter. The manganese concentration in analyzed samples equaled or exceeded the recommended limit of 50 micrograms per liter for public water supplies. Dissolved-solids concentrations increased with time in water samples from two wells east of the Air Force Base in San Antonio Valley. In the base well-field area, concentrations of dissolved solids ranged from 290 to 566 milligrams per liter. Eight analyses show manganese at or above the recommended limit of 50 milligrams per liter. In the Lompoc Terrace area dissolved-solids concentrations ranged from 470 to 824 milligrams per liter. Five new supply wells, nine observation wells, and two exploratory/observation wells were drilled on the base during the period 1972-77. (USGS)

  18. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  19. Ground-water resources of the El Paso area, Texas

    Science.gov (United States)

    Sayre, Albert Nelson; Livingston, Penn Poore

    1945-01-01

    released from storage by the formation of the cone centering in the Mesa field was calculated at 22,000 acre-feet, but the total pumpage was estimated to have been 90,000 acre-feet. Thus, about one-fourth of the total pumpage was taken from storage; the remaining three-fourths and apparently was taken from recharge. About 210,000 acre-feet of water has been pumped from the cone of depression in the El Paso Valley in and near El Paso. The volume of this cone could not be determined because there are artesian conditions in this area. Computations were made of the amount of water that would be recovered from storage if, for a distance of 10 miles north of the Mesa well field, the water level in a series of wells were drawn down the same amount as the present drawdown in the wells in that field. The water that would be recovered from storage in the formation 0f this depression in the ground water surface was calculated at about 130,000 acre-feet, the equivalent of about 70 years' supply at the 1935 rate of pumping.It is, of course, available in addition to the annual recharge. The sudden increase in 1924 in the saltwater content of the water from El Paso well 3 (well 52), in the Montana well field, was shown to be the result of a leak in the casing at a depth of about 127 feet, and the well was successfully repaired during the investigation. However, the chloride content of all of the wells in the field has been increasing gradually. This may indicate that salty water is being pulled in from considerable distances or that the barriers between the fresh-water-bearing beds and the saltwater-bearing beds above-them are not capable of preventing vertical movement of the ground water. The fact that in the valley the static water level in the shallow beds yielding poor water is higher than that in the deeper beds is disquieting, and if the level in the lower beds continues to decline, seepage from the river will eventually force the shallow highly mineralized water

  20. Transitions in midwestern ground water law

    International Nuclear Information System (INIS)

    Bowman, J.A.; Clark, G.R.

    1989-01-01

    The evolution of ground-water law in eight states in the Midwest (Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) is examined, and a review of transitions in ground-water doctrines is presented. Two underlying themes in changing ground-water management are communicated. First, ground-water law is evolving from private property rules of capture based on the absolute ownership doctrines to rules requiring conservation and sharing of ground water as a public resource. Second, in both courts and state legislatures, a proactive role of ground-water management is emerging, again, with an emphasis on sharing. Both of these trends are apparent in the Midwest. In the last decade midwestern states have (1) seen significant shifts in court decisions on ground-water use with greater recognition of the reciprocal or mutually dependent nature of ground-water rights, and (2) seen increased legislative development of comprehensive ground-water management statutes that emphasize the reciprocal liabilities of ground-water use. These trends are examined and ground-water management programs discussed for eight states in the Midwest

  1. Numerical simulation of ground-water flow through glacial deposits and crystalline bedrock in the Mirror Lake area, Grafton County, New Hampshire

    Science.gov (United States)

    Tiedeman, Claire; Goode, Daniel J.; Hsieh, Paul A.

    1997-01-01

    recharge from precipitation to the water table is 26 to 28 cm/year. Hydraulic conductivities are 1.7 x 10-6 to 2.7 x 10-6 m/s for glacial deposits, about 3 x 10-7 m/s for bedrock beneath lower hillsides and valleys, and about 6x10-8 m/s for bedrock beneath upper hillsides and hilltops. Analysis of parameter uncertainty indicates that the above values are well constrained, at least within the context of regression analysis. In the regression, several attributes of the ground-water flow model are assumed perfectly known. The hydraulic conductivity for bedrock beneath upper hillsides and hilltops was determined from few data, and additional data are needed to further confirm this result. Model fit was not improved by introducing a 10-to-1 ration of horizontal-to-vertical anisotropy in the hydraulic conductivity of the glacial deposits, or by varying hydraulic conductivity with depth in the modeled part (uppermost 150m) of the bedrock. The calibrated model was used to delineate the Mirror Lake ground-water basin, defined as the volumes of subsurface through which ground water flows from the water table to Mirror Lake or its inlet streams. Results indicate that Mirror Lake and its inlet streams drain an area of ground-water recharge that is about 1.5 times the area of the surface-water basin. The ground-water basin extends far up the hillside on the northwestern part of the study area. Ground water from this area flows at depth under Norris Brook to discharge into Mirror Lake or its inlet streams. As a result, the Mirror Lake ground-water basin extends beneath the adjacent ground-water basin that drains into Norris Brook. Model simulation indicates that approximately 300,000 m3/year of precipitation recharges the Mirror Lake ground-water basin. About half the recharge enters the basin in areas where the simulated water table lies in glacial deposits; the other half enters the basin in areas where the simulated water table lies in be

  2. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  3. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    Science.gov (United States)

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical

  4. Ground-water resources of north-central Connecticut

    Science.gov (United States)

    Cushman, Robert Vittum

    1964-01-01

    The term 'north-central Connecticut' in this report refers to an area of about 640 square miles within the central lowland of the Connecticut River basin north of Middletown. The area is mostly a broad valley floor underlain by unconsolidated deposits of Pleistocene and Recent age which mantle an erosional surface formed on consolidated rocks of pre-Triassic and Triassic age. The mean annual precipitation at Hartford, near the center of the area, is 42.83 inches and is uniformly distributed throughout the year. The average annual streamflow from the area is about 22 inches or about half the precipitation. The consolidated water-bearing formations are crystalline rocks of pre-Triassic age and sedimentary and igneous rocks of the Newark group of Triassic age. The crystalline rocks include the Middletown gneiss, the Maromas granite gneiss, the Glastonbury granite-gneiss of Rice and Gregory (1906), and the Bolton schist which form the basement complex and the Eastern Upland of north-central Connecticut. Enough water for domestic, stock, and small commercial use generally can be obtained from the crystalline rocks. Recoverable ground water occurs in the interconnected joints and fracture zones and is yielded in amounts ranging from 29 to 35 gpm (gallons per minute) to wells ranging in depth from 29 to 550 feet. The sedimentary rocks of Triassic age underlie all the Connecticut River Lowland and are predominantly arkosic sandstone and shale. Water supplies sufficient for domestic, stock, and small commercial use can be obtained from shallow wells penetrating these rocks, and larger supplies sufficient for industries and smaller municipalities can probably be obtained from deeper wells. Reported yields range from ? to 578 gpm; the larger yields are generally obtained from wells between 300 and 600 feet in depth. Yields are larger where the overlying material is sand and gravel or where the rocks are well fractured. The igneous rocks of Triassic age are basalt and have

  5. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  6. Management of ground water using isotope techniques

    International Nuclear Information System (INIS)

    Romani, Saleem

    2004-01-01

    Ground water play a major role in national economy and sustenance of life and environment. Prevalent water crisis in India includes falling water table, water quality deterioration, water logging and salinity. Keeping in view the increasing thrust on groundwater resources and the present scenario of availability vis-a vis demand there is a need to reorient our approach to ground water management. The various ground water management options require proper understanding of ground water flow system. Isotopes are increasingly being applied in hydrogeological investigations as a supplementary tool for assessment of aquifer flow and transport characteristics. Isotope techniques coupled with conventional hydrogeological and hydrochemical methods can bring in greater accuracy in the conceptualization of hydrogeological control mechanism. The use of isotope techniques in following areas can certainly be of immense help in implementing various ground water management options in an efficient manner. viz.Interaction between the surface water - groundwater systems to plan conjunctive use of surface and ground water. Establishing hydraulic interconnections between the aquifers in a multi aquifer system. Depth of circulation of water and dating of ground water. Demarcating ground water recharge and discharge areas. Plan ground water development in coastal aquifers to avoid sea water ingress. Development of flood plain aquifer. (author)

  7. Composite liners protect ground water

    Energy Technology Data Exchange (ETDEWEB)

    Tatzky, R; August, H

    1987-12-01

    For about 10 years flexible membrane liners (FMLs) have been used as bottom liners to protect ground water in the vicinity of waste sites. But a permeation (absorption, diffusion, desorption) of chemical liquids, e.g. hydrocarbons (HC) and chlorinated hydrocarbons (CHC) will generally occur. The rates of permeation depend, first of all, on the chemical affinity, the thickness of the FML and the boundary conditions. In order to improve the barrier quality of polymeric membranes, it is necessary to study the transport processes of HC and CHC through the polymeric materials. Long-term tests with composite liners are additionally carried out. These are liners which consist of two components, flexible membrane and natural soil liner (recompacted clay, bentonite-soil mixtures). Laboratory studies show that with composite liners a perfect sealing of waste sites may be possible. Test methods for measuring permeation rates of HC and CHC through polymeric membranes and methods of testing for the development of composite liner systems are presented. (orig.)

  8. About the issue of monitoring method of Ararat valley soils salinization

    Directory of Open Access Journals (Sweden)

    A.G. Yeghiazaryan

    2017-12-01

    Full Text Available The short description of the agro-ameliorative situation of the Republic of Armenia, particularly, that of Ararat valley shows that the unpredictable and unmanageable process of regime procedures at this area can cause serious consequences, pushing out the agricultural golden fund of the republic from the agricultural turnover, namely the land of Ararat valley. Numerous investigations on the soil reclaimed state in Ararat valley at the Republic of Armenia reveal that they are currently in an extremely threatening condition. The result analyses show that more than 35% of Ararat valley lands of agricultural importance are in insufficiently reclaimed state, moreover the 54% of them are weakly salinized, 11,8% are averagely and strongly salinized and 34.2% are strongly salinized. The analyses of the conducted theoretical and experimental research results show that the above mentioned negative processes are promoted by the depth of the ground water allocation, which in Ararat valley fluctuates within the depth of 1 m, 1-3 m and more than 3 m. According to the distribution area the ground waters on 6,6% land areas of Ararat valley irrigated soils are allocated at the depth of 1 m, in 27,8% land areas the ground waters are allocated at the depth of 1–3 m, and in the rest of 65,6% land area waters are allocated at the depth of more than 3 m. For the prevention of the soils salinization process at Ararat valley and for the development of measures for struggling against it, the impact of ground waters installation depth, their mineralization, calculated evapo-transpiration from the soil and plants, irrigation norm, watering regime and technique, pressure nutrition caused from underground water basin and the impact of evaporation raising from the ground water surfaces on the ground waters level change in the vegetation period is evaluated in the current work. For the evaluation of the above mentioned individual factors the integral

  9. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1992-12-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water monitoring procedures are developed and used in accordance with the PNL Quality Assurance Program

  10. Tectono-geomorphic indices of the Erin basin, NE Kashmir valley, India

    Science.gov (United States)

    Ahmad, Shabir; Alam, Akhtar; Ahmad, Bashir; Afzal, Ahsan; Bhat, M. I.; Sultan Bhat, M.; Farooq Ahmad, Hakim; Tectonics; Natural Hazards Research Group

    2018-01-01

    The present study aims to assess the tectonic activity in the Erin basin (NE Kashmir) on the basis of several relevant geomorphic indices and field observations. We use Digital Elevation Model (SRTM) and Survey of India (SoI) topographic maps in GIS environment to compute the geomorphic indices. The indices i.e., convex hypsometric curve, high hypsometric integral value (Hi > 0.5), low basin elongation ratio (Eb = 0.17), low mountain front sinuosity values (Smf = 1.08 average), low valley floor width ratios (Vf 4) suggest that the area is tectonically active. Moreover, prominent irregularities (knickpoints/knickzones) along longitudinal profile of the Erin River even in homogenous resistant lithology (Panjal trap) and anomalous stream gradient index (SL) values reflect that the Erin basin is dissected by two faults (EF-1 and EF-2) with NNW-SSE and SSW-NNE trends respectively. The results of this preliminary study further substantiate the recent GPS studies, which argue that the maximum strain is accumulating in the NE part of the Kashmir Himalaya.

  11. Pollutant infiltration and ground water management

    International Nuclear Information System (INIS)

    1993-01-01

    Following a short overview of hazard potentials for ground water in Germany, this book, which was compiled by the technical committee of DVWK on ground water use, discusses the natural scientific bases of pollutant movement to and in ground water. It points out whether and to what extent soil/ground water systems can be protected from harmful influences, and indicates relative strategies. Two zones are distinguished: the unsaturated zone, where local defence and remedial measures are frequently possible, and the saturated zone. From the protective function of geological systems, which is always pollutant-specific, criteria are derived for judging the systems generally, or at least regarding entire classes of pollutants. Finally, the impact of the infiltration of pollutants into ground water on its use as drinking water is pointed out and an estimate of the cost of remedial measures is given. (orig.) [de

  12. High-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region, California

    Science.gov (United States)

    Ponce, D. A.; Mangan, M.; McPhee, D.

    2013-12-01

    A new high-resolution aeromagnetic survey of the Mono Basin-Long Valley Caldera region greatly enhances previous magnetic interpretations that were based on older, low-resolution, and regional aeromagnetic data sets and provides new insights into volcano-tectonic processes. The surveyed area covers a 8,750 km2 NNW-trending swath situated between the Sierra Nevada to the west and the Basin and Range Province to the east. The surveyed area includes the volcanic centers of Mono Lake, Mono-Inyo Craters, Mammoth Mountain, Devils Postpile, and Long Valley Caldera. The NW-trending eastern Sierra frontal fault zone crosses through the study area, including the active Mono Lake, Silver Lake, Hartley Springs, Laurel Creek, and Hilton Creek faults. Over 6,000 line-kilometers of aeromagnetic data were collected at a constant terrain clearance of 150 m, a flight-line spacing of 400 m, and a tie-line spacing of 4 km. Data were collected via helicopter with an attached stinger housing a magnetic sensor using a Scintrex CS-3 cesium magnetometer. In the northern part of the survey area, data improve the magnetic resolution of the individual domes and coulees along Mono Craters and a circular shaped magnetic anomaly that coincides with a poorly defined ring fracture mapped by Kistler (1966). Here, aeromagnetic data combined with other geophysical data suggests that Mono Craters may have preferentially followed a pre-existing plutonic basement feature that may have controlled the sickle shape of the volcanic chain. In the northeastern part of the survey, aeromagnetic data reveal a linear magnetic anomaly that correlates with and extends a mapped fault. In the southern part of the survey, in the Sierra Nevada block just south of Long Valley Caldera, aeromagnetic anomalies correlate with NNW-trending Sierran frontal faults rather than to linear NNE-trends observed in recent seismicity over the last 30 years. These data provide an important framework for the further analysis of the

  13. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    Science.gov (United States)

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  14. Hanford site ground water protection management plan

    International Nuclear Information System (INIS)

    1994-10-01

    Ground water protection at the Hanford Site consists of preventative and remedial measures that are implemented in compliance with a variety of environmental regulations at local, state, and federal levels. These measures seek to ensure that the resource can sustain a broad range of beneficial uses. To effectively coordinate and ensure compliance with applicable regulations, the U.S. Department of Energy has issued DOE Order 5400.1 (DOE 1988a). This order requires all U.S. Department of Energy facilities to prepare separate ground water protection program descriptions and plans. This document describes the Ground Water Protection Management Plan (GPMP) for the Hanford Site located in the state of Washington. DOE Order 5400.1 specifies that the GPMP covers the following general topical areas: (1) documentation of the ground water regime; (2) design and implementation of a ground water monitoring program to support resource management and comply with applicable laws and regulations; (3) a management program for ground water protection and remediation; (4) a summary and identification of areas that may be contaminated with hazardous waste; (5) strategies for controlling hazardous waste sources; (6) a remedial action program; and (7) decontamination, decommissioning, and related remedial action requirements. Many of the above elements are currently covered by existing programs at the Hanford Site; thus, one of the primary purposes of this document is to provide a framework for coordination of existing ground water protection activities. The GPMP provides the ground water protection policy and strategies for ground water protection/management at the Hanford Site, as well as an implementation plan to improve coordination of site ground water activities

  15. Selected ground-water data for Yucca Mountain Region, southern Nevada and eastern California, through December 22

    International Nuclear Information System (INIS)

    La Camera, R.J.; Westenburg, C.L.

    1994-01-01

    The U.S. Geological Survey, in support of the U.S. Department of Energy, Yucca Mountain Site-Characterization Project, collects, compiles, and summarizes hydrologic data in the Yucca Mountain region. The data are collected to allow assessments of ground-water resources during studies to determine the potential suitability of Yucca Mountain for storing high-level nuclear waste. Data on ground-water levels at 36 sites, ground-water discharge at 6 sites, ground-water quality at 19 sites, and ground-water withdrawals within Crater Flat, Jackass Flats, Mercury Valley, and the Amargosa Desert are presented. Data on ground-water levels, discharges, and withdrawals collected by other agencies (or as part of other programs) are included to further indicate variations through time at selected monitoring locations. Data are included in this report from 1910 through 1992

  16. Implications of ground water chemistry and flow patterns for earthquake studies.

    Science.gov (United States)

    Guangcai, Wang; Zuochen, Zhang; Min, Wang; Cravotta, Charles A; Chenglong, Liu

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for delta18O, deltaD, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57 degrees C to 160 degrees C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas.

  17. Ethiopian Central Rift Valley basin hydrologic modelling using HEC-HMS and ArcSWAT

    Science.gov (United States)

    Pascual-Ferrer, Jordi; Candela, Lucila; Pérez-Foguet, Agustí

    2013-04-01

    An Integrated Water Resources Management (IWRM) shall be applied to achieve a sustainable development, to increase population incomes without affecting lives of those who are highly dependent on the environment. First step should be to understand water dynamics at basin level, starting by modeling the basin water resources. For model implementation, a large number of data and parameters are required, but those are not always available, especially in some developing countries where different sources may have different data, there is lack of information on data collection, etc. The Ethiopian Central Rift Valley (CRV) is an endorheic basin covering an area of approximately 10,000 km2. For the period 1996-2005, the average annual volume of rainfall accounted for 9.1 Mm3, and evapotranspiration for 8 Mm3 (Jansen et al., 2007). From the environmental point of view, basin ecosystems are endangered due to human activities. Also, poverty is widespread all over the basin, with population mainly living from agriculture on a subsistence economy. Hence, there is an urgent need to set an IWRM, but datasets required for water dynamics simulation are not too reliable. In order to reduce uncertainty of numerical simulation, two semi-distributed open software hydrologic models were implemented: HEC-HMS and ArcSWAT. HEC-HMS was developed by the United States Army Corps of Engineers (USACoE) Hydrologic Engineering Center (HEC) to run precipitation-runoff simulations for a variety of applications in dendritic watershed systems. ArcSWAT includes the SWAT (Soil and Water Assessment Tool, Arnold et al., 1998) model developed for the USDA Agricultural Research Service into ArcGIS (ESRI®). SWAT was developed to assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time (Neitsch et al., 2005). According to this, ArcSWAT would be the best option for IWRM implementation in the basin. However

  18. Floods of November-December 1950 in the Central Valley basin, California

    Science.gov (United States)

    Paulsen, C.G.

    1953-01-01

    The flood of November-December 1950 in the Central Valley basin was the greatest in most parts of the basin since the turn of the century and probably was exceeded in the lower San Joaquin River basin only by the historic flood of 1862. In respect to monetary loss, the 1950 flood was the most disastrous in the history of the basin. Loss of life was remarkably small when one considers the extensive damage and destruction to homes and other property, which is estimated at 33 million dollars. Outstanding features of the flood were its unprecedented occurrence so early in the winter flood season, its magnitude in respect to both peak and volume in most major tributaries, and the occurrence of a succession of near-peak flows with a period of three weeks. The flood was caused by a series of storms during the period November 16 to December 8, which brought exceptionally warm, moisture-laden air inland against the Sierra Nevada range and caused intense rainfall, instead of snowfall, at unusually high altitudes. Basin-wide totals of rainfall during the period ranged from 30 inches over the Yuba and American River basins to 13 inches over the upper Sacramento and Feather River basins. Based on continuous records of discharge on major tributaries for periods ranging from 22 to 55 years and averaging about 43 years, the 1950 flood peaks were the greatest of record on the American, Cosumnes, Mokelumne, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, lower San Joaquin, Kings, Kaweah, Tule, and Kern Rivers. Second highest peak of record occurred during the flood of March 1928 on the Yuba, American and Mokelumne Rivers; the flood of Marcn 1940 on Cosumnes River; the flood of January 1911 on the Stanislaus and Tuolumne Rivers; the flood of December 1937 on the Merced, Kings, and Kaweah Rivers; the flood of March 1938 on the Chowchilla, Fresno, and lower San Joaquin Rivers; and the flood of March 1943 on the Tule and Kern Rivers. Peak discharges for 1950 did not exceed previous

  19. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  20. Ground-water pollution determined by boron isotope systematics

    International Nuclear Information System (INIS)

    Vengosh, A.; Kolodny, Y.; Spivack, A.J.

    1998-01-01

    Boron isotopic systematics as related to ground-water pollution is reviewed. We report isotopic results of contaminated ground water from the coastal aquifers of the Mediterranean in Israel, Cornia River in north-western Italy, and Salinas Valley, California. In addition, the B isotopic composition of synthetic B compounds used for detergents and fertilizers was investigated. Isotopic analyses were carried out by negative thermal ionization mass spectrometry. The investigated ground water revealed different contamination sources; underlying saline water of a marine origin in saline plumes in the Mediterranean coastal aquifer of Israel (δ 11 B=31.7 per mille to 49.9 per mille, B/Cl ratio ∼1.5x10 -3 ), mixing of fresh and sea water (25 per mille to 38 per mille, B/Cl∼7x10 -3 ) in saline water associated with salt-water intrusion to Salinas Valley, California, and a hydrothermal contribution (high B/Cl of ∼0.03, δ 11 B=2.4 per mille to 9.3 per mille) in ground water from Cornia River, Italy. The δ 11 B values of synthetic Na-borate products (-0.4 per mille to 7.5 per mille) overlap with those of natural Na-borate minerals (-0.9 per mille to 10.2 per mille). In contrast, the δ 11 B values of synthetic Ca-borate and Na/Ca borate products are significantly lower (-15 per mille to -12.1 per mille) and overlap with those of the natural Ca-borate minerals. We suggest that the original isotopic signature of the natural borate minerals is not modified during the manufacturing process of the synthetic products, and it is controlled by the crystal chemistry of borate minerals. The B concentrations in pristine ground-waters are generally low ( 11 B=39 per mille), salt-water intrusion and marine-derived brines (40 per mille to 60 per mille) are sharply different from hydrothermal fluids (δ 11 B=10 per mille to 10 per mille) and anthropogenic sources (sewage effluent: δ 11 B=0 per mille to 10 per mille; boron-fertilizer: δ 11 B=-15 per mille to 7 per mille). some

  1. Ground Water in the Anchorage Area, Alaska--Meeting the Challenges of Ground-Water Sustainability

    Science.gov (United States)

    Moran, Edward H.; Galloway, Devin L.

    2006-01-01

    Ground water is an important component of Anchorage's water supply. During the 1970s and early 80s when ground water extracted from aquifers near Ship Creek was the principal source of supply, area-wide declines in ground-water levels resulted in near record low streamflows in Ship Creek. Since the importation of Eklutna Lake water in the late 1980s, ground-water use has been reduced and ground water has contributed 14-30 percent of the annual supply. As Anchorage grows, given the current constraints on the Eklutna Lake water availability, the increasing demand for water could place an increasing reliance on local ground-water resources. The sustainability of Anchorage's ground-water resources challenges stakeholders to develop a comprehensive water-resources management strategy.

  2. Geology and ground-water resources of Goshen County, Wyoming; Chemical quality of the ground water

    Science.gov (United States)

    Rapp, J.R.; Visher, F.N.; Littleton, R.T.; Durum, W.H.

    1957-01-01

    siltstone, ranges in thickness from a knife edge to about 450 feet and yields water to domestic and stock wells from fractures and from lenses of sandstone. The Arikaree formation ranges in thickness from a knife edge to about 1,000 feet, and yields water to several domestic and stock wells in the northwestern part of the area. The Pliocene channel deposits, which probably do not exceed 25 feet in thickness, are not a source of water for wells in Goshen County. The upland deposits, which are mainly of Pleistocene age, generally are dry and do not serve as aquifers; however, test drilling revealed several deep, buried channels occupied by deposits which probably would yield moderate quantities of water to wells if a sufficient saturated thickness were penetrate The deposits of the third terrace, which are of Pleistocene age, range in thickness from a knife edge to about 210 feet and yield water to a large number of irrigation wells in the area. The flood-plain deposits, which are of Pleistocene and Recent age, range in thickness from a knife edge to about 200 feet. Those in the valley of the North Platte River yield abundant water to many large supply wells. The flood-plain deposits along the valley of Rawhide Creek consist mainly of fine-grained materials and yield large supplies of water to well only in the lower stretches of the creek valley near its confluence with the valley of the North Platte River. The deposits along the valleys of Horse and Bear Creeks generally are relatively thin and fine grained. In the vicinity of Ls grange, however, the deposits, which are about 45 feet thick, yield moderate, supplies of water to several irrigation wells. Other Recent deposits in the area--dune sand, loesslike deposits, and slope wash--generally are fine grained and relatively thin and, hence, are not important sources of ground water. The unconsolidated sand and gravel of the flood-plain and terrace deposits are the principal aquifers in the area. In some places

  3. Large-scale gravity sliding in the Miocene Shadow Valley Supradetachment Basin, Eastern Mojave Desert, California

    Science.gov (United States)

    Davis, G. A.; Friedmann, S. J.

    2005-12-01

    The Miocene Shadow Valley basin in the eastern Mojave Desert of California developed above the active west-dipping Kingston Range-Halloran Hills extensional detachment fault system between 13.5 and ca. 7 mybp. Although mass-wasting processes are common phenomena in supradetachment basins, the Shadow Valley basin is an exceptional locale for the study of such processes, especially rock-avalanches and gravity sliding. A score of megabreccias, interpreted as rock-avalanche deposits, and half that number of very large (> 1 km 2, up to 200 m thick), internally intact gravity-driven slide sheets are interbedded with various sedimentary facies. The slide sheets, variably composed of Proterozoic crystalline rocks and Proterozoic, Paleozoic, and Tertiary sedimentary strata, moved across both depositional and erosional surfaces in the basin. Although the majority consist of Paleozoic carbonate rocks, the largest slide sheet, the Eastern Star crystalline allochthon, contains Proterozoic gneisses and their sedimentary cover and is now preserved as klippen atop Miocene lacustrine and alluvial fan deposits over an area > 40 km 2. Estimates of slide sheet runouts into the basin from higher eastern and northern source terranes range from approximately a few km to > 10 km; in most cases the exact provenances of the slide blocks are not known. The basal contacts of Shadow Valley slide sheets are characteristically knife sharp, show few signs of lithologic mixing of upper- and lower-plate rocks, and locally exhibit slickensided and striated, planar fault-like bases. Pronounced folding of overridden Miocene lacustrine and fan deposits beneath the Eastern Star allochthon extends to depths up to 40 m at widely scattered localities. We conclude that this slow moving slide sheet encountered isolated topographic asperities (hills) and that stress transfer across the basal slide surface produced folding of footwall strata. Synkinematic gypsum veins in footwall playa sediments, with fibers

  4. Ground-Water Protection and Monitoring Program

    International Nuclear Information System (INIS)

    Dresel, P.E.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options

  5. Ground-Water Protection and Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the ground-water protection and monitoring program strategy for the Hanford Site in 1994. Two of the key elements of this strategy are to (1) protect the unconfined aquifer from further contamination, and (2) conduct a monitoring program to provide early warning when contamination of ground water does occur. The monitoring program at Hanford is designed to document the distribution and movement of existing ground-water contamination and provides a historical baseline for evaluating current and future risk from exposure to the contamination and for deciding on remedial action options.

  6. Biopetrology of coals from Krishnavaram area, Chintalapudi sub-basin, Godavari valley coalfields, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Sarate, O.S. [Birbal Sahni Institute of Palaeobotany, Lucknow (India)

    2001-07-01

    Critical analysis of the constitution and rank of the sub-surface coal deposits from Krishnavaram area in the Chintalapudi sub-basin of Godavari valley coalfield is presented. Three coal/shale zones viz. A, B and C (in the ascending order) are encountered from Barakar Formation and lower Kamthi Member of the Lower Gondwana sequence. Zone C mostly contains shaly beds interbedded with thin coal bands (mostly shaly coal), and as such has no economic significance. Zone B is dominated by the vitric and mixed type of coal which has attained high volatile bituminous B and C ranks. The lowermost Zone A is characterised by mixed and fusic coal types with high volatile bituminous C rank. Both the zones A and B contain good quality coal and bear high economic potential. Cold and humid climate with alternating dry and oxidising spells have been interpreted from the constitution of coal. Moreover, the accumulation of thick pile of sediments rich in organic matter is attributed to the sinking of the basin floor due to the activation of faults. Later tectonic events either caused extinction or drastically reduced the number of the floral elements and formed thick shaly horizons interrupting the continuity of the coal facies.

  7. Hydrogeology and simulation of ground-water flow, Picatinny Arsenal and vicinity, Morris County, New Jersey

    Science.gov (United States)

    Voronin, L.M.; Rice, D.E.

    1996-01-01

    Ground-water flow in glacial sediments and bedrock at Picatinny Arsenal, N.J., was simulated by use of a three-dimensional finite-difference ground- water-flow model. The modeled area includes a 4.3-square-mile area that extends from Picatinny Lake to the Rockaway River. Most of the study area is bounded by the natural hydrologic boundaries of the ground-water system. eophysical logs, lithologic logs, particle-size data, and core data from selected wells and surface geophysical data were analyzed to define the hydrogeologic framework. Hydrogeologic sections and thickness maps define six permeable and three low-permeability layers that are represented in the model as aquifers and confining units, respectively. Hydrologic data incorporated in the model include a rate of recharge from precipitation of 22 inches per year, estimated from long-term precipitation records and estimates of evapotranspiration. Additional recharge from infiltration along valleys was estimated from measured discharge of springs along the adjacent valley walls and from estimates of runoff from upland drainage that flows to the valley floor. Horizontal and vertical hydraulic conductivities of permeable and low-permeability layers were estimated from examination of aquifer-test data, gamma-ray logs, borehole cuttings, and previously published data. Horizontal hydraulic conductivities in glacial sediments range from 10 to 380 feet per day. Vertical hydraulic conductivities of the low-permeability layers range from 0.01 to 0.7 feet per day. The model was calibrated by simulating steady-state conditions during 1989-93 and by closely matching simulated and measured ground-water levels, vertical ground-water-head differences, and streamflow gain and loss. Simulated steady-state potentiometric- surface maps produced for the six permeable layers indicate that ground water in the unconfined material within Picatinny Arsenal flows predominantly toward the center of the valley, where it discharges to Green

  8. Ground-water monitoring under RCRA

    International Nuclear Information System (INIS)

    Coalgate, J.

    1993-11-01

    In developing a regulatory strategy for the disposal of hazardous waste under the Resource Conservation and Recovery Act (RCRA), protection of ground-water resources was the primary goal of the Environmental Protection Agency (EPA). EPA's ground-water protection strategy seeks to minimize the potential for hazardous wastes and hazardous constituents in waste placed in land disposel units to migrate into the environment. This is achieved through liquids management (limiting the placement of liquid wastes in or on the land, requiring the use of liners beneath waste, installing leachate collection systems and run-on and run-off controls, and covering wastes at closure). Ground-water monitoring serves to detect any failure in EPA's liquids management strategy so that ground-water contamination can be detected and addressed as soon as possible

  9. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  10. A survey of valleys and basins of the Western USA for the capacity to produce winter ozone.

    Science.gov (United States)

    Mansfield, Marc L; Hall, Courtney F

    2018-04-18

    High winter ozone in the Uintah Basin, Utah, and the Upper Green River Basin, Wyoming, occurs because of the confluence of three separate factors: (1) extensive oil or natural gas production, (2) topography conducive to strong multi-day thermal inversions, and (3) snow cover. We surveyed 13 basins and valleys in the western USA for the existence and magnitude of these factors. Seven of the basins, because winter ozone measurements were available, were assigned to four different behavioral classes. Based on similarities among the basins, the remaining six were also given a tentative assignment. Two classes (1 and 2) correspond to basins with high ozone because all three factors listed above are present at sufficient magnitude. Class 3 corresponds to rural basins with ozone at background levels, and occurs because at least one of the three factors is weak or absent. Class 4 corresponds to ozone below background levels, and occurs, for example, in urban basins whose emissions scavenge ozone. All three factors are present in the Wind River Basin, Wyoming, but compared to the Uintah or the Upper Green Basins, it has only moderate oil and gas production, and is assigned to class 3. We predict that the Wind River Basin, as well as other class 3 basins that have inversions and snow cover, would transition from background (class 3) to high ozone behavior (class 1 or 2) if oil or gas production were to intensify, or to class 4 (low winter ozone) if they were to become urban. Implication Statement High ozone concentrations in winter only occur in basins or valleys that have an active oil and natural gas production industry, multi-day thermal inversions, and snow cover; and have only been documented in two basins worldwide. We have examined a number of other candidate basins in the Western USA and conclude that these factors are either absent or too weak to produce high winter ozone. This study illustrates how strong each factor needs to be before winter ozone can be expected

  11. Geology and ground-water resources of the lower Little Bighorn River Valley, Big Horn County, Montana, with special reference to the drainage of waterlogged lands, with a section on chemical quality of the water

    Science.gov (United States)

    Moulder, E.A.; Klug, M.F.; Morris, D.A.; Swenson, F.A.; Krieger, R.A.

    1960-01-01

    The lower Little Bighorn River valley, Montana, is in the unglaciated part of the Missouri Plateau section of the Great Plains physiographic province. The river and its principal tributaries rise in the Bighorn Mountains, and the confluence of this northward-flowing stream with the Bighorn River is near the east edge of Hardin, Mont. The normal annual precipitation ranges from about 12 inches in the northern part of the area to 15 inches in the southern part. The economy of the area is founded principally on farming, much of the low-lying land adjacent to the river being irrigated. The irrigated land is within the Crow Indian Reservation, although a part is privately owned. The bedrock formations exposed in the area are of Cretaceous age and include the Parkman sandstone, Claggett shale, Eagle sandstone, Telegraph Creek shale, and Cody shale. The Cloverly formation, Tensleep sandstone, and Madison limestone, which underlie but are not exposed in the area, and the Parkman sandstone in the southern half of the area appear to be the principal bedrock aquifers. All except the Parkman lie at depths ranging from a few feet to several thousand feet, and all appear to be capable of yielding water in commercial quantities. Some of the other formations arc capable of yielding enough water for domestic and stock needs. The river alluvium of Recent age and the Pleistocene terrace deposits are the principal unconsolidated formations in the area with respect to water supply and drainage. Wells yielding as much as 100 gallons per minute may be developed in favorable areas. Pumping tests reveal that the transmissibility of the coarser unconsolidated materials probably ranges from about 15,000 to 30,000 gallons per day per foot. Two tests of the Parkman sandstone showed transmissibilities of 6,000 and 20,000 gallons per day per foot. Although a test of the Cloverly formation showed a transmissibility of only 3,000 gallons per day per foot, the high artesian pressure--80 pounds per

  12. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    Science.gov (United States)

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  13. Detection of Ground Water Availability at Buhias Island, Sitaro Regency

    Directory of Open Access Journals (Sweden)

    Zetly E Tamod

    2016-08-01

    Full Text Available The study aims to detect ground water availability at Buhias Island, Siau Timur Selatan District, Sitaro Regency. The research method used the survey method by geoelectrical instrument based on subsurface rock resistivity as a geophysical exploration results with geoelectrical method of Wenner-Schlumberger configuration. Resistivity geoelectrical method is done by injecting a flow into the earth surface, then it is measured the potential difference. This study consists of 4 tracks in which each track is made the stretch model of soil layer on subsurface of ground.  Then, the exploration results were processed using software RES2DINV to look at the data of soil layer based on the value of resistivity (2D. Interpretation result of the track 1 to 4 concluded that there is a layer of ground water. State of dominant ground water contains the saline (brackish. Location of trajectory in the basin to the lowland areas is mostly mangrove swamp vegetation. That location is the junction between the results of the runoff of rainfall water that falls down from the hills with sea water. Bedrock as a constituent of rock layer formed from marine sediments that carry minerals salts.

  14. Preliminary results of hydrogeologic investigations Humboldt River Valley, Winnemucca, Nevada

    Science.gov (United States)

    Cohen, Philip M.

    1964-01-01

    Most of the ground water of economic importance and nearly all the ground water closely associated with the flow o# the Humboldt River in the. 40-mile reach near Winnemucca, Nev., are in unconsolidated sedimentary deposits. These deposits range in age from Pliocene to Recent and range in character from coarse poorly sorted fanglomerate to lacustrine strata of clay, silt, sand, and gravel. The most permeable deposit consists of sand and gravel of Lake Lahontan age--the so-called medial gravel unit--which is underlain and overlain by fairly impermeable silt and clay also of Lake Lahontan age. The ultimate source of nearly all the water in the study area is precpitation within the drainage basin of the Humboldt River. Much of this water reaches the study, area as flow or underflow of the Humboldt River and as underflow from other valleys tributary to the study area. Little if any flow from the tributary streams in the study area usually reaches the Humboldt River. Most of the tributary streamflow within the study area evaporates or is transpired by vegetation, but a part percolates downward through unconsolidated deposits of the alluvial fans flanking the mountains and move downgradient as ground-water underflow toward the Humboldt River. Areas that contribute significant amounts of ground-water underflow to. the valley of the Humboldt River within the study area are (1) the valley of the Humboldt River upstream from the study area, (2) the Pole Creek-Rock Creek area, (3) Paradise Valley, and (4) Grass Valley and the northwestern slope of the Sonoma Range. The total average underflow from these areas in the period 1949-61 was about 14,000-19,000 acre-feet per year. Much of this underflow discharged into the Humboldt River within the study area and constituted a large part of the base flow of the river. Streamflow in the Humboldt River increases substantially in the early spring, principally because of runoff to the river in the reaches upstream from the study area

  15. Sequence stratigraphic analysis and the origins of Tertiary brown coal lithotypes, Latrobe Valley, Gippsland Basin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Holdgate, G R; Kershaw, A P; Sluiter, I R.K. [Monash University, Clayton, Vic. (Australia). Dept. of Earth Sciences

    1995-11-01

    Sequence analysis methods have been applied to the onshore Gippsland Basin and to the Latrobe Valley Group coal measures. In the east of the Latrobe Valley evidence for marine transgressions into the coal measures are recorded in most of the interseam sediment splits by the presence of contained foraminifer and dinoflagellates. To the west these splits pinch out into continuous coal. However, they can be followed westwards as enhanced organic sulphur levels along sharply defined boundaries between light coal lithotypes below and dark coal lithotypes above. The dark lithotype immediately overlying each of these boundaries contains the highest sulphur value and warmer climate pollen assemblages. Colorimeter and lithotype logging supports an upwards lightening cyclicity to coal colour at 12-20 m intervals through the approx. 100 m thick seams, with cycle boundaries defined at sharp planar to undulating surfaces. The lightening upward lithotype cycles together with their unique boundary conditions are interpreted as parasequences and parasequence boundaries respectively. Each major coal seam can comprise up to five parasequences and is interpreted to represent deposition during an outbuilding high stand systems tract at one of several maximum periods of Tertiary coastal onlap. Stratigraphic correlation of the sequence boundaries identified in the coal measures to the internationally dated marine Seaspray Group, provides a basis for chronostratigraphic correlation of the coal successions to the coastal onlap charts of Haq et al (1989). It appears that each major seam is confined to high standards of third order eustatic cycles. It follows that the lithotype cycles that comprise each seam are related to fourth order eustatic cycles. 49 refs., 11 figs., 1 tab.

  16. Knowledge and Understanding of the Hydrogeology of the Salt Basin in South-Central New Mexico and Future Study Needs

    Science.gov (United States)

    Huff, G.F.; Chace, D.A.

    2006-01-01

    The Salt Basin covers about 2,400 square miles of south-central New Mexico and extends across the State line into Texas. As much as 57 million acre-feet of ground water may be stored within the New Mexico part of the Salt Basin of which 15 million acre-feet are potentially potable and recoverable. Recent work suggests that the volume of ground water in storage within the New Mexico portion of the Salt Basin may be substantially greater than 57 million acre-feet. In this report, aquifers contained in the San Andres, Bone Spring, and Victorio Peak Limestones and in the Yeso, Hueco, and Abo Formations are collectively referred to as the carbonate aquifer. Porosity and permeability of the major aquifer are primarily determined by the density and interconnectedness of fractures and karstic solution channels. The spatial variability of these fractures and karstic features leads to a large spatial variability in hydraulic properties in the carbonate aquifer. Ground water generally moves southward away from recharge areas along the northern border of the Salt Basin and generally moves eastward to southeastward away from areas of distributed recharge on the Otero Mesa and the Diablo Plateau. Ground water originating from these recharge areas generally moves toward the central valley. Present day discharge is mostly through ground-water withdrawal for agricultural irrigation. A zone of relatively low hydraulic gradient, corresponding to the location of the Otero Break, extends from near the Sacramento River watershed southward toward Dell City, Texas. Ground water in the carbonate aquifer generally is very hard and has dissolved-solids concentrations ranging from 500 to 6,500 milligrams per liter. Substantial variability exists in current estimates of (1) ground-water recharge, (2) natural ground-water discharge, (3) the volume of ground water in storage, (4) the volume of recoverable ground water, (5) the conceptual model of ground-water flow, (6) the distribution of ground-water

  17. Evaluation of Water Security in Kathmandu Valley before and after Water Transfer from another Basin

    Directory of Open Access Journals (Sweden)

    Bhesh Raj Thapa

    2018-02-01

    Full Text Available Kathmandu Upatyaka Khanepani Limited (KUKL has planned to harness water from outside the valley from Melamchi as an inter-basin project to supply water inside the ring road (core valley area of the Kathmandu Valley (KV. The project, called the “Melamchi Water Supply Project (MWSP”, is expected to have its first phase completed by the end of September 2018 and its second phase completed by the end of 2023 to supply 170 MLD (million liters a day through the first phase and an additional 340 MLD through the second phase. The area has recently faced a severe water deficit and KUKL’s existing infrastructure has had a limited capability, supplying only 19% of the water that is demanded in its service areas during the dry season and 31% during the wet season. In this context, this study aims to assess the temporal trends and spatial distribution of household water security index (WSI, defined as a ratio of supply to demand for domestic water use for basic human water requirements (50 L per capita per day (lpcd and economic growth (135 lpcd as demand in pre- and post-MWSP scenarios. For this purpose, data on water demand and supply with infrastructure were used to map the spatial distribution of WSI and per capita water supply using ArcMap. Results show a severe water insecurity condition in the year 2017 in all KUKL service areas (SAs, which is likely to improve after completion of the MWSP. It is likely that recent distribution network and strategies may lead to inequality in water distribution within the SAs. This can possibly be addressed by expanding existing distribution networks and redistributing potable water, which can serve an additional 1.21 million people in the area. Service providers may have to develop strategies to strengthen a set of measures including improving water supply infrastructures, optimizing water loss, harnessing additional water from hills, and managing water within and outside the KUKL SAs in the long run to cover

  18. Comparison of peak discharges among sites with and without valley fills for the July 8-9, 2001 flood in the headwaters of Clear Fork, Coal River basin, mountaintop coal-mining region, southern West Virginia

    Science.gov (United States)

    Wiley, Jeffrey B.; Brogan, Freddie D.

    2003-01-01

    The effects of mountaintop-removal mining practices on the peak discharges of streams were investigated in six small drainage basins within a 7-square-mile area in southern West Virginia. Two of the small basins had reclaimed valley fills, one basin had reclaimed and unreclaimed valley fills, and three basins did not have valley fills. Indirect measurements of peak discharge for the flood of July 8-9, 2001, were made at six sites on streams draining the small basins. The sites without valley fills had peak discharges with 10- to 25-year recurrence intervals, indicating that rainfall intensities and totals varied among the study basins. The flood-recurrence intervals for the three basins with valley fills were determined as though the peak discharges were those from rural streams without the influence of valley fills, and ranged from less than 2 years to more than 100 years.

  19. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  20. A hydrogeologic map of the Death Valley region, Nevada, and California, developed using GIS techniques

    International Nuclear Information System (INIS)

    Faunt, C.C.; D'Agnese, F.A.; Turner, A.K.

    1997-01-01

    In support of Yucca Mountain site characterization studies, a hydrogeologic framework was developed, and a hydrogeologic map was constructed for the Death Valley region. The region, covering approximately 100,000 km 2 along the Nevada-California border near Las Vegas, is characterized by isolated mountain ranges juxtaposed against broad, alluvium-filled valleys. Geologic conditions are typical of the Basin and Range Province; a variety of sedimentary and igneous intrusive and extrusive rocks have been subjected to both compressional and extensional deformation. The regional ground-water flow system can best be described as a series of connected intermontane basins in which ground-water flow occurs in basin-fill deposits, carbonate rocks, clastic rocks, and volcanic rocks. Previous investigations have developed more site-specific hydrogeologic relationships; however, few have described all the lithologies within the Death Valley regional ground-water flow system. Information required to characterize the hydrogeologic units in the region was obtained from regional geologic maps and reports. Map data were digitized from regional geologic maps and combined into a composite map using a geographic information system. This map was simplified to show 10 laterally extensive hydrogeologic units with distinct hydrologic properties. The hydraulic conductivity values for the hydrogeologic units range over 15 orders of magnitude due to the variability in burial depth and degree of fracturing

  1. Ground-water quality and geochemistry, Carson Desert, western Nevada

    Science.gov (United States)

    Lico, Michael S.; Seiler, R.L.

    1994-01-01

    Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.

  2. Soil and ground-water remediation techniques

    International Nuclear Information System (INIS)

    Beck, P.

    1996-01-01

    Urban areas typically contain numerous sites underlain by soils or ground waters which are contaminated to levels that exceed clean-up guidelines and are hazardous to public health. Contamination most commonly results from the disposal, careless use and spillage of chemicals, or the historic importation of contaminated fill onto properties undergoing redevelopment. Contaminants of concern in soil and ground water include: inorganic chemicals such as heavy metals; radioactive metals; salt and inorganic pesticides, and a range of organic chemicals included within petroleum fuels, coal tar products, PCB oils, chlorinated solvents, and pesticides. Dealing with contaminated sites is a major problem affecting all urban areas and a wide range of different remedial technologies are available. This chapter reviews the more commonly used methods for ground-water and soil remediation, paying particular regard to efficiency and applicability of specific treatments to different site conditions. (author). 43 refs., 1 tab., 27 figs

  3. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  4. Nitrate Removal from Ground Water: A Review

    Directory of Open Access Journals (Sweden)

    Archna

    2012-01-01

    Full Text Available Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion exchange. This paper reviews the developments in the field of nitrate removal processes which can be effectively used for denitrifying ground water as well as industrial water.

  5. Geotechnics - the key to ground water protection

    DEFF Research Database (Denmark)

    Baumann, Jens; Foged, Niels; Jørgensen, Peter

    2000-01-01

    During the past 5 to 10 years research into ground water protection has proved that fractures in clay till may increase the hydraulic conductivity and herby the vulnerability of the ground water considerably. However, research has not identified a non-expensive and efficient method to map...... the fracture conditions of the various clay tills. Tests performed at the Danish Geotechnical Institute with large undisturbed columns of clay till show that there is a relation between the strength of the clay till and the hydraulic conductivity. Geotechnical methods may therefore be the key to determine...

  6. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  7. Palms and Palm Communities in the Upper Ucayali River Valley - a Little-Known Region in the Amazon Basin

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.; Kristiansen, Thea

    2010-01-01

    The Amazon region and its palms are inseparable. Palms make up such an important part of the rain forest ecosystem that it is impossible to imagine the Amazon basin without them. Palms are visible in the canopy and often fill up the forest understory. Palms – because of their edible fruits...... – are cornerstone species for the survival of many animals, and palms contribute substantially to forest inventories in which they are often among the ten most important families. Still, the palms and palm communities of some parts of the Amazon basin remain poorly studied and little known. We travelled to a little......-explored corner of the western Amazon basin, the upper Ucayali river valley. There, we encountered 56 different palms, 18 of which had not been registered for the region previously, and 21 of them were found 150–400 km beyond their previously known limits....

  8. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    Science.gov (United States)

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  9. Ground water work breakdown structure dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  10. Ground water work breakdown structure dictionary

    International Nuclear Information System (INIS)

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  11. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Science.gov (United States)

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.

    2016-01-01

    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  12. Turbidite pathways in Cascadia Basin and Tufts abyssal plain, Part A, Astoria Channel, Blanco Valley, and Gorda Basin

    Science.gov (United States)

    Wolf, Stephen C.; Hamer, Michael R.

    1999-01-01

    This open-file report was prepared in support of the USGS Earthquake Hazards of Cascadia Project. The primary objective of this phase of the project is to determine recurrence intervals of turbidites in Cascadia basin-floor channel systems and evaluate implications of this event record for the paleoseismic history of the Cascadia subduction zone. The purpose of this study is to determine whether the canyon/channel systems themselves are blocked or deformed in such a way that the downstream turbidite stratigraphy might be biased. To accomplish this investigation approximately 7500 kilometers of pre-existing 3.5 KHz seismic data were evaluated to determine the direction and extent of the Astoria Channel/pathway system, which originates at the base of the Astoria Fan. Additionally, distribution and thickness of turbidite sediment sequences were determined along each identified pathway. Bathymetery and distance were used to determine gradients along the main pathway axis and for each of the secondary pathways that feed into it. Channel pathways were identified on the basis of channel phyisiography, where visible at the seafloor, subbottom channel configuration, and acoustic packets of sediments that might represent turbidite deposits. A principal result of this study is that the Astoria Channel/pathway extends continuously from the base of the Astoria Fan southward along the base of the continental slope through the Blanco Valley, then heads southwestward through the Gorda Basin and into the region of the Escanaba Trough. Additionally it was determined that the Astoria Channel is filled and basically buried for it's full length south of 44 degrees latitude. The 44 North Slump, as defined by Goldfinger (1999, see Map 3 ref.), may have been instrumental in blocking the pathway and thus contributed to the filling of the channel/pathway. Sheets 1 and 2 show the Astoria and secondary turbidite pathways highlighted in blue. Ship survey tracklines are shown for the area

  13. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  14. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    Science.gov (United States)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It

  15. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  16. Ground-water discharge and base-flow nitrate loads of nontidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay Watershed, middle Atlantic Coast

    Science.gov (United States)

    Bachman, L. Joseph; Lindsey, Bruce D.; Brakebill, John W.; Powars, David S.

    1998-01-01

    billion gallons of water that reaches the Chesapeake Bay each day, nearly 27 billion gallons is base flow. Generalized lithology (siliciclastic, carbonate, crystalline, and unconsolidated) was combined with physiographic province (the Appalachian Plateau, the Valley and Ridge, the Blue Ridge, the Piedmont, including the Mesozoic Lowland section, and the Coastal Plain) to delineate 11 hydrogeomorphic regions. Areal variation of base flow and base-flow nitrate yield were assessed by means of nonparametric, one-way analysis of variance on basins grouped by the dominant hydrogeomorphic region and by correlation analysis of base flow or base-flow nitrate yield with the percentage of land area of a given hydrogeomorphic region within a basin. Base flow appeared to have a significant relation to the hydrogeomorphic regions. The highest percentages of base flow were found in areas underlain by carbonate rock, crystalline rock with relatively low relief, and unconsolidated sediments. Lower percentages were found in areas underlain by siliclastic rocks and crystalline rocks with relatively high relief. The relation between base-flow nitrate yield and hydrogeomorphic region is less clear. Although there is a relation between low nitrate yields and areas underlain by highrelief siliciclastic rocks, and a relation between high yields and carbonate rocks, much of this relation can be explained by the strong association between the hydrogeomorphic units and land use. In addition, most basins are mixtures of several hydrogeomorphic regions, so the nitrate yield from a basin depends on a large number of complex interacting factors. These unclear results indicate that the sample of available data used here may not be adequate to fully assess the relation between base-flow nitrate yield and the hydrogeomorphic setting of the basin. The results appear to show, however, that ground-water discharge is an important component of the total nontidal streamflow, and that ground

  17. Ground water currents: Developments in innovative ground water treatment, March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, R.

    1994-03-01

    ;Contents: Hydrodynamic cavitation oxidation destroys organics; Biosparging documented in fuel remediation study; Surfactant flushing research to remove organic liquids from aquifers; and Compilation of Ground-Water Models (a book review).

  18. Preliminary report on the geology and ground-water supply of the Newark, New Jersey, area

    Science.gov (United States)

    Herpers, Henry; Barksdale, Henry C.

    1951-01-01

    In the Newark area, ground water is used chiefly for industrial cooling, air-conditioning, general processing, and for sanitary purposes. A small amount is used in the manufacture of beverages. Total ground-water pumpage in Newark is estimated at not less than 20,000,000 gallons daily. The Newark area is underlain by formations of Recent, Pleistocene and Triassic age, and the geology and hydrologic properties of these formations are discussed. Attention is called to the important influence of a buried valley in the rock floor beneath the Newark area on the yield of wells located within it. Data on the fluctuation of the water levels and the variation in pumpage are presented, and their significance discussed. The results of a pumping test made during the investigation were inconclusive. The beneficial results of artificially recharging the aquifers in one part of the area are described. The intrusion of salt water into certain parts of the ground-water body is described and graphically portrayed by a map showing the chloride concentration of the ground water in various parts of the City. Insofar as available data permit, the chemical quality of the ground water is discussed and records are given of the ground-water temperatures in various parts of the City. There has been marked lowering of the water table in the eastern part of the area, accompanied by salt water intrusion, indicating that the safe yield of the formations in this part of Newark has probably been exceeded. It is recommended that the study of the ground-water resources of this area be continued, and that artificial recharging of the aquifers be increased over as wide an area as possible.

  19. Case study on ground water flow (8)

    International Nuclear Information System (INIS)

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as 14 C, 36 Cl and 4 He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  20. Case study on ground water flow (8)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-01

    The report comprises research activities made in fiscal year 1997 under the contract of Japan Nuclear Fuel Cycle Development Center and the main items are: (1) Evaluation of water permeability through discontinuous hard bedrock in deep strata in relevant with underground disposal of radioactive wastes, (2) Three dimensional analysis of permeated water in bedrock, including flow analysis in T ono district using neuro-network and modification of Evaporation Logging System, (3) Development of hydraulic tests and necessary equipment applicable to measurements of complex dielectric constants of contaminated soils using FUDR-V method, this giving information on soil component materials, (4) Investigation methods and modeling of hydraulics in deep strata, (5) Geological study of ground water using environmental isotopes such as {sup 14}C, {sup 36}Cl and {sup 4}He, particularly measurement of ages of ground water using an accelerator-mass spectrometer, and (6) Re-submerging phenomena affecting the long-term geological stability. (S. Ohno)

  1. Procedures for ground-water investigations

    International Nuclear Information System (INIS)

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual

  2. Ground-water pumpage in the Willamette lowland regional aquifer system, Oregon and Washington, 1990

    Science.gov (United States)

    Collins, Charles A.; Broad, Tyson M.

    1996-01-01

    Ground-water pumpage for 1990 was estimated for an area of about 5,700 square miles in northwestern Oregon and southwestern Washington as part of the Puget-Willamette Lowland Regional Aquifer System Analysis study. The estimated total ground-water pumpage in 1990 was about 340,000 acre-feet. Ground water in the study area is pumped mainly from Quaternary sediment; lesser amounts are withdrawn from Tertiary volcanic materials. Large parts of the area are used for agriculture, and about two and one-half times as much ground water was pumped for irrigation as for either public- supply or industrial needs. Estimates of ground- water pumpage for irrigation in the central part of the Willamette Valley were generated by using image-processing techniques and Landsat Thematic Mapper data. Field data and published reports were used to estimate pumpage for irrigation in other parts of the study area. Information on public- supply and industrial pumpage was collected from Federal, State, and private organizations and individuals.

  3. Activation analysis of ground water of Chandigarh

    International Nuclear Information System (INIS)

    Mittal, V.K.

    1997-01-01

    Ground water samples from Chandigarh were analysed for 22 trace elements using neutron activation analysis (NAA) technique. These samples were drawn from shallow aquifers using hand pumps. It was found that for most of the elements the concentrations were well within the ISI/WHO recommended values. However, samples collected from the industrial belt of the city showed higher concentrations of trace elements, particularly some toxic ones. (author). 6 refs., 1 tab

  4. Nitrate Removal from Ground Water: A Review

    OpenAIRE

    Archna; Sharma, Surinder K.; Sobti, Ranbir Chander

    2012-01-01

    Nitrate contamination of ground water resources has increased in Asia, Europe, United States, and various other parts of the world. This trend has raised concern as nitrates cause methemoglobinemia and cancer. Several treatment processes can remove nitrates from water with varying degrees of efficiency, cost, and ease of operation. Available technical data, experience, and economics indicate that biological denitrification is more acceptable for nitrate removal than reverse osmosis and ion ex...

  5. Noble Gases in Lakes and Ground Waters

    OpenAIRE

    Kipfer, Rolf; Aeschbach-Hertig, Werner; Peeters, Frank; Stute, Marvin

    2002-01-01

    In contrast to most other fields of noble gas geochemistry that mostly regard atmospheric noble gases as 'contamination,' air-derived noble gases make up the far largest and hence most important contribution to the noble gas abundance in meteoric waters, such as lakes and ground waters. Atmospheric noble gases enter the meteoric water cycle by gas partitioning during air / water exchange with the atmosphere. In lakes and oceans noble gases are exchanged with the free atmosphere at the surface...

  6. Environmental isotope observations on Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    Environmental isotope measurements have been conducted on the outputs of some of the main dewatering points in both north and south mining areas as well as on numerous other observation points in the Sishen compartment. The effect of the dykes bounding the compartment could be observed from the behaviour of the isotopic composition of ground waters in the conduit zone. Measurements were done on radiocarbon, tritium oxygen-18 and carbon-13

  7. Reading Ground Water Levels with a Smartphone

    Science.gov (United States)

    van Overloop, Peter-Jules

    2015-04-01

    Most ground water levels in the world are measured manually. It requires employees of water management organizations to visit sites in the field and execute a measurement procedure that requires special tools and training. Once the measurement is done, the value is jotted down in a notebook and later, at the office, entered in a computer system. This procedure is slow and prone to human errors. A new development is the introduction of modern Information and Communication Technology to support this task and make it more efficient. Two innovations are introduced to measure and immediately store ground water levels. The first method is a measuring tape that gives a sound and light when it just touches the water in combination with an app on a smartphone with which a picture needs to be taken from the measuring tape. Using dedicated pattern recognition algorithms, the depth is read on the tape and it is verified if the light is on. The second method estimates the depth using a sound from the smartphone that is sent into the borehole and records the reflecting waves in the pipe. Both methods use gps-localization of the smartphone to store the depths in the right location in the central database, making the monitoring of ground water levels a real-time process that eliminates human errors.

  8. Isotope techniques in hydrological studies: application to Chacabuco-Polpaico basin

    International Nuclear Information System (INIS)

    Orphanopoulus Stehr, D.

    1982-01-01

    A hydrogeological study was carried out in a small alluvial valley, 45 kms. north of Santiago, Chile. Although the main economical activity is the agriculture, the valley only has small seasonal rivers. The irrigation water comes from a near basin through a channel of about 100 kms. and from the ground water. The study include aspects like: pumping tests evaluations, well stratigraphy, potentiometric surface fluctuation, water chemistry, stable isotopes and water balances. Isotopes, oxygen-18 and deuterium were used to identify the origin of the ground water in different sections of the valley and the importance of the infiltration. Also experiences were made to evaluate the evaporation of a small damm, using isotopes and the classical water balance methods. (O.S.)

  9. Preliminary evaluation of the radioactive waste isolation potential of the alluvium-filled valleys of the Great Basin

    International Nuclear Information System (INIS)

    Smyth, J.R.; Crowe, B.M.; Halleck, P.M.; Reed, A.W.

    1979-08-01

    The occurrences, geologic features, hydrology, and thermal, mechanical, and mineralogical properties of the alluvium-filled valleys are compared with those of other media within the Great Basin. Computer modeling of heat conduction indicates that heat generated by the radioactive waste can be dissipated through the alluvium in a manner that will not threaten the integrity of the repository, although waste emplacement densities will be lower than for other media available. This investigation has not revealed any failure mechanism by which one can rule out alluvium as a primary waste isolation medium. However, the alluvium appears to rank behind one or more other possible media in all properties examined except, perhaps, in sorption properties. It is therefore recommended that alluvium be considered as a secondary isolation medium unless primary sites in other rock types in the Great Basin are eliminated from consideration on grounds other than those considered here

  10. Status and understanding of groundwater quality in the Monterey Bay and Salinas Valley Basins, 2005-California GAMA Priority Basin Project

    Science.gov (United States)

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 1,000 square mile (2,590 km2) Monterey Bay and Salinas Valley Basins (MS) study unit was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in central California in Monterey, Santa Cruz, and San Luis Obispo Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA MS study was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer systems (hereinafter referred to as primary aquifers). The assessment is based on water-quality and ancillary data collected in 2005 by the USGS from 97 wells and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifers were defined by the depth intervals of the wells listed in the CDPH database for the MS study unit. The quality of groundwater in the primary aquifers may be different from that in the shallower or deeper water-bearing zones; shallow groundwater may be more vulnerable to surficial contamination. The first component of this study, the status of the current quality of the groundwater resource, was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. This status assessment is intended to characterize the quality of groundwater resources in the primary aquifers of the MS study unit, not the treated drinking water delivered to consumers by water purveyors. Relative-concentrations (sample concentration divided by the health- or aesthetic-based benchmark concentration) were used for evaluating groundwater quality for those constituents that have Federal and (or) California regulatory or

  11. Groundwater quality in the Western San Joaquin Valley study unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Fram, Miranda S.

    2017-06-09

    Water quality in groundwater resources used for public drinking-water supply in the Western San Joaquin Valley (WSJV) was investigated by the USGS in cooperation with the California State Water Resources Control Board (SWRCB) as part of its Groundwater Ambient Monitoring and Assessment (GAMA) Program Priority Basin Project. The WSJV includes two study areas: the Delta–Mendota and Westside subbasins of the San Joaquin Valley groundwater basin. Study objectives for the WSJV study unit included two assessment types: (1) a status assessment yielding quantitative estimates of the current (2010) status of groundwater quality in the groundwater resources used for public drinking water, and (2) an evaluation of natural and anthropogenic factors that could be affecting the groundwater quality. The assessments characterized the quality of untreated groundwater, not the quality of treated drinking water delivered to consumers by water distributors.The status assessment was based on data collected from 43 wells sampled by the U.S. Geological Survey for the GAMA Priority Basin Project (USGS-GAMA) in 2010 and data compiled in the SWRCB Division of Drinking Water (SWRCB-DDW) database for 74 additional public-supply wells sampled for regulatory compliance purposes between 2007 and 2010. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and SWRCB-DDW regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a spatially weighted, grid-based method to estimate the proportion of the groundwater resources used for public drinking water that has concentrations for particular constituents or class of constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale within the WSJV study unit, and permits comparison of the two study areas to other areas assessed by the GAMA Priority Basin Project

  12. Audiomagnetotelluric investigation of Snake Valley, eastern Nevada and western Utah

    Science.gov (United States)

    McPhee, Darcy K.; Pari, Keith; Baird, Frank

    2009-01-01

    Audiomagnetotelluric (AMT) data along four profiles in western Snake Valley and the corresponding two-dimensional (2-D) inverse models reveal subsurface structures that may be significant to ground-water investigations in the area. The AMT method is a valuable tool for estimating the electrical resistivity of the earth over depth ranges from a few meters to less than one kilometer. The method has the potential to identify faults and stratigraphy within basins of eastern Nevada, thereby helping define the hydrogeologic framework of the region.

  13. Regional hydrology of the Dolores River Basin, eastern Paradox Basin, Colorado and Utah

    International Nuclear Information System (INIS)

    Weir, J.E. Jr.; Maxfield, E.B.; Zimmerman, E.A.

    1983-01-01

    The Dolores River Basin, is in the eastern part of the Paradox Basin and includes the eastern slope of the La Sal Mountains, the western slopes of the Rico and La Plata Mountains, and the southwest flank of the Uncompahgre Plateau. The climate of this area is more humid than most of the surrounding Colorado Plateau region. Precipitation ranges from slightly 200 mm/yr to 1000 mm/yr; the estimated volume of water falling on the area is 4000 x 10 6 cm 3 /yr. Of this total, about 600 x 10 6 cm 3 /yr is runoff; 190 x 10 6 cm 3 /yr recharges the upper ground-water system; and an estimated 55 x 10 6 cm 3 returns to the atmosphere via evapotranspiration from stream valleys. The remainder evaporates. Principal hydrogeologic units are permeable sandstone and limestone and nearly impermeable salt (halitic) deposits. Structurally, the area is dominated by northwest-trending salt anticlines and contiguous faults paralleled by synclinal structures. The Uncompahgre Plateau lies along the north and northeast sides of the area. The instrusive masses that form the La Sal Mountains are laccoliths with bysmaliths and other complex intrusive forms comprising, in gross form, moderately faulted omal structures. Intrusive rocks underlie the La Plata and Rico Mountains along the southeastern edge of the area. These geologic structures significantly modify ground-water flow patterns in the upper ground-water system, but have no conspicuous effect on the flow regime in the lower ground-water system. The water in the upper ground-water system generally is fresh except where it is affected by evaporite dissolution from salt anticlines. The water of the lower ground-water system is slightly saline to briny. Water quality of the Dolores River is slightly saline to fresh, based on dissolved chemical constituents; some of the smaller tributaries of the river have saline water

  14. Modeling decadal timescale interactions between surface water and ground water in the central Everglades, Florida, USA

    Science.gov (United States)

    Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.

    2006-04-01

    Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to

  15. Ground-water resources of the Alma area, Michigan

    Science.gov (United States)

    Vanlier, Kenneth E.

    1963-01-01

    The Alma area consists of 30 square miles in the northwestern part of Gratiot County, Mich. It is an area of slight relief gently rolling hills and level plains and is an important agricultural center in the State.The Saginaw formation, which forms the bedrock surface in part of the area, is of relatively low permeability and yields water containing objectionable amounts of chloride. Formations below the Saginaw are tapped for brine in and near the Alma area.The consolidated rocks of the Alma area are mantled by Pleistocene glacial deposits, which are as much as 550 feet thick where preglacial valleys were eroded into the bedrock. The glacial deposits consist of till, glacial-lake deposits, and outwash. Till deposits are at the surface along the south-trending moraines that cross the area, and they underlie other types of glacial deposits at depth throughout the area. The till deposits are of low permeability and are not a source of water to wells, though locally they include small lenses of permeable sand and gravel.In the western part of the area, including much of the city of Alma, the glacial-lake deposits consist primarily of sand and are a source of small supplies of water. In the northeastern part of the area the lake deposits are predominantly clayey and of low permeability.Sand and gravel outwash yields moderate and large supplies of water within the area. Outwash is present at the surface along the West Branch of the Pine River. A more extensive deposit of outwash buried by the lake deposits is the source of most of the ground water pumped at Alma. The presence of an additional deposit of buried outwash west and southwest of the city is inferred from the glacial history of the area. Additional water supplies that may be developed from these deposits are probably adequate for anticipated population and industrial growth.Water levels have declined generally in the vicinity of the city of Alma since 1920 in response to pumping for municipal and industrial

  16. Petrography and geochemistry of Oligocene bituminous coal from the Jiu Valley, Petrosani basin (southern Carpathian Mountains), Romania

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, Jennifer M.K. [Morehead State University, Morehead, KY, 40351 (United States); Tatu, Calin A. [University of Medicine and Pharmacy, Department of Immunology, Clinical Laboratory No. 1, Pta. E. Murgu No. 2, RO-1900 Timisoara (Romania); Buia, Grigore [University of Petrosani, Department of Geology, University St. 20, RO-2675 Petrosani (Romania)

    2010-05-01

    Belt samples of Oligocene (Chattian) bituminous coal from 10 underground mines located in the Jiu Valley, Hunedoara County, Petrosani basin, Romania, have been examined and analyzed for proximate and ultimate analysis, major-, minor- and trace-element chemistry, organic petrography, and vitrinite reflectance. The mineral chemistry and mode of occurrence of trace elements also have been investigated using SEM and electron microprobe techniques. Twenty coal beds occur in the Jiu Valley and most of the samples are from bed no. 3, the most productive bed of the Dilja-Uricani Formation of Oligocene age. The Petrosani basin, oriented SW-NE, is 48-km long, 10-km wide at the eastern part and 2-km wide at the western part. The coal mines are distributed along the center of the valley generally following the Jiu de Vest River. Reflectance measurements indicate that the rank of the coals ranges from high-volatile B to high-volatile A bituminous. Overall, rank decreases from the southwest to the northeast. In bed no. 3, R{sub max} varies from 0.75% in the northeast to 0.93% in the southwest. Although, most Oligocene coals in Romania and adjacent countries are lignite in rank, the Jiu Valley bituminous coals have been affected by regional metamorphism and attending hydrothermal fluids related to the Alpine orogenic event. The coals are all dominated by vitrinite; resinite and funginite are important minor macerals in most of the coals. Pyrite and carbonate generally dominate the mineral assemblages with carbonate more abundant in the northwest. Siderite occurs as nodules and masses within the macerals (generally vitrinite). Dolomite and calcite occur as fracture fillings, plant-cell fillings, and in other authigenic forms. Late-stage fracture fillings are siderite, dolomite, calcite, and ankerite. In one instance, two populations of siderite ({proportional_to} 35 and {proportional_to} 45 wt.% FeO) plus ankerite fill a large fracture. Late-stage pyrite framboid alteration is Ni

  17. Ground water in Creek County, Oklahoma

    Science.gov (United States)

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  18. Ground-water models: Validate or invalidate

    Science.gov (United States)

    Bredehoeft, J.D.; Konikow, Leonard F.

    1993-01-01

    The word validation has a clear meaning to both the scientific community and the general public. Within the scientific community the validation of scientific theory has been the subject of philosophical debate. The philosopher of science, Karl Popper, argued that scientific theory cannot be validated, only invalidated. Popper’s view is not the only opinion in this debate; however, many scientists today agree with Popper (including the authors). To the general public, proclaiming that a ground-water model is validated carries with it an aura of correctness that we do not believe many of us who model would claim. We can place all the caveats we wish, but the public has its own understanding of what the word implies. Using the word valid with respect to models misleads the public; verification carries with it similar connotations as far as the public is concerned. Our point is this: using the terms validation and verification are misleading, at best. These terms should be abandoned by the ground-water community.

  19. Hanford Site ground-water surveillance for 1989

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.; Kemner, M.L.

    1990-06-01

    This annual report of ground-water surveillance activities provides discussions and listings of results for ground-water monitoring at the Hanford Site during 1989. The Pacific Northwest Laboratory (PNL) assesses the impacts of Hanford operations on the environment for the US Department of Energy (DOE). The impact Hanford operations has on ground water is evaluated through the Hanford Site Ground-Water Surveillance program. Five hundred and sixty-seven wells were sampled during 1989 for Hanford ground-water monitoring activities. This report contains a listing of analytical results for calendar year (CY) 1989 for species of importance as potential contaminants. 30 refs., 29 figs,. 4 tabs

  20. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used to evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  1. Ground-water monitoring and modeling at the Hanford Site

    International Nuclear Information System (INIS)

    Mitchell, P.J.; Freshley, M.D.

    1987-01-01

    The ground-water monitoring program at the Hanford Site in southeastern Washington State is continually evolving in response to changing operations at the site, changes in the ground-water flow system, movement of the constituents in the aquifers, and regulatory requirements. Sampling and analysis of ground water, along with ground-water flow and solute transport modeling are used ito evaluate the movement and resulting distributions of radionuclides and hazardous chemical constituents in the unconfined aquifer. Evaluation of monitoring results, modeling, and information on waste management practices are being combined to continually improve the network of ground-water monitoring wells at the site

  2. Discontinuous drainage systems formed by highland precipitation and ground-water outflow in the Navua Valles and southwest Hadriacus Mons regions, Mars

    Science.gov (United States)

    Hargitai, H. I.; Gulick, V. C.; Glines, N. H.

    2017-09-01

    The Navua Valles are systems of paleodrainages located north of Dao Vallis, which empty into Hellas Planitia, the largest impact basin on Mars. In this study, we mapped and characterized the Navua Valles Region's individual drainage systems, including drainages along the southwestern flank of Hadriacus Mons, and one valley network from the same source as Navua Valles but flowing in the opposite direction. The major drainage systems share morphological characteristics common to both outflow channels and valley networks. The slopes in this region are dissected by two major Navua drainage systems (here Navua A* and B*) and several shorter, sub-parallel valleys formed on the highest gradient (approximately 20 m/km [1.15°]) slopes, at the lowest part of Hellas Basin's rim. The two major drainage systems originate in the highlands, and empty into the basin. Our mapping suggests that water in Navua Valles reached the basin floor in a complicated descent and included several episodes of surface ponding, surface runoff, infiltration, subsurface flow and subsequent outflow. The most prominent channel system, Navua A, forms a repetitive sequence of deep incision into bedrock, followed by a transition into broad channels in erodible materials, and then into unconfined deposits. This successive erosion-transport-deposition sequence continues to repeat along the valley's entire length forming a discontinuous pattern that is consistent with classical fluvial process models. The channels cut into volcanic plains likely emplaced from the formation of Tyrrhenus and Hadriacus Montes. The dendritic source valleys of Navua A originate from the rim of a highland crater while the rest of this subsystem consists of a single, discontinuous channel which is consistent with a single water source zone that likely supplied water for all channels downslope. These drainages may have formed as discontinuous channels, revealing the potential existence of subsurface drainage pathways located

  3. Selection of geohydrologic boundaries for ground-water flow models, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Downey, J.S.; Gutentag, E.D.; Kolm, K.E.

    1990-01-01

    The conceptual ground-water model of the southern Nevada/Death Valley, California region presented in this paper includes two aquifer systems: a shallow, intermontane, mostly unconfined aquifer composed of unconsolidated or poorly consolidated sediments and consolidated, layered volcanics, and a deep, regional multiple-layered, confined aquifer system composed of faulted and fractured carbonate and volcanic rocks. The potentiometric surfaces of both aquifer systems indicate that ground water leaks vertically from the deeper to the shallower geologic units, and that water in the shallower aquifer may not flow beyond the intermontane subbasin, whereas water in the deeper aquifer may indicate transbasinal flow to the playas in Death Valley. Most of the hydrologic boundaries of the regional aquifer systems in the Yucca Mountain region are geologically complex. Most of the existing numerical models simulating the ground-water flow system in the Yucca Mountain region are based on limited potentiometric-head data elevation and precipitation estimates, and simplified geology. These models are two-dimensional, and are not adequate. The alternative approach to estimating unknown boundary conditions for the regional ground-water flow system involves the following steps: (1) Incorporate known boundary-conditions data from the playas in Death Valley and the Ash Meadows spring line; (2) use estimated boundary data based on geological, pedological, geomorphological, botanical, and hydrological observations; (3) test these initial boundary conditions with three-dimensional models, both steady-state and transient; (4) back-calculate the boundary conditions for the northern, northwestern, northeastern and eastern flux boundaries; (5) compare these calculated values with known data during model calibration steps; and (6) adjust the model. 9 refs., 6 figs

  4. Geologic characterization report for the Paradox Basin Study Region, Utah Study Areas. Volume 6: Salt Valley

    Science.gov (United States)

    1984-12-01

    Surface landforms in the Salt Valley Area are generally a function of the Salt Valley anticline and are characterized by parallel and subparallel cuestaform ridges and hogbacks and flat valley floors. The most prominent structure in the Area is the Salt Valley anticline. Erosion resulting from the Tertiary uplift of the Colorado Plateau led to salt dissolution and subsequent collapse along the crest of the anticline. Continued erosion removed the collapse material, forming an axial valley along the crest of the anticline. Paleozoic rocks beneath the salt bearing Paradox Formation consist of limestone, dolomite, sandstone, siltstone and shale. The salt beds of the Paradox formation occur in distinct cycles separated by an interbed sequence of anhydrite, carbonate, and clastic rocks. The Paradox Formation is overlain by Pennsylvanian limestone; Permian sandstone; and Mesozoic sandstone, mudstone, conglomerate and shale. No earthquakes have been reported in the area during the period of the historic record and contemporary seismicity appears to be diffusely distributed, of low level and small magnitude. The upper unit includes the Permian strata and upper Honaker trail formation.

  5. Morphometric analysis of Martian valley network basins using a circularity function

    Science.gov (United States)

    Luo, Wei; Howard, Alan D.

    2005-12-01

    This paper employs a circularity function to quantify the internal morphology of Martian watershed basins in Margaritifer Sinus region and to infer the primary erosional processes that led to their current geomorphologic characteristics and possible climatic conditions under which these processes operated. The circularity function describes the elongation of a watershed basin at different elevations. We have used the circularity functions of terrestrial basins that were interpreted as having been modified by (1) erosion related to primarily groundwater sapping and (2) erosion related to primarily rainfall and surface run-off, as well as the circularity functions of cratering basins on the Moon, in order to formulate discriminant functions that are able to separate the three types of landforms. The spatial pattern of the classification of Martian basins based on discriminant functions shows that basins that look morphologically similar to terrestrial fluvial basins are mostly clustered near the mainstream at low elevation, while those that look morphologically similar to terrestrial basins interpreted as groundwater sapping origin are located near the tributaries and at higher elevation. There are more of the latter than the former. This spatial distribution is inconsistent with a continuous Earth-like warm and wet climate for early Mars. Instead, it is more aligned with an overall early dry climate punctuated with episodic wet periods. Alternatively, the concentrated erosion in the mainstream could also be caused by a change of water source from rainfall to snowfall or erosion cut through a duricrust layer.

  6. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    Science.gov (United States)

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and

  7. Evaluation of geohydrologic framework, recharge estimates and ground-water flow of the Joshua Tree area, San Bernardino County, California

    Science.gov (United States)

    Nishikawa, Tracy; Izbicki, John A.; Hevesi, Joseph A.; Stamos, Christina L.; Martin, Peter

    2005-01-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. The Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin. The JBWD is concerned with the long-term sustainability of the underlying aquifer. To help meet future demands, the JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. As growth continues in the desert, there may be a need to import water to supplement the available ground-water resources. In order to manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. The purpose of this study was threefold: (1) improve the understanding of the geohydrologic framework of the Joshua Tree and Copper Mountain ground-water subbasins, (2) determine the distribution and quantity of recharge using field and numerical techniques, and (3) develop a ground-water flow model that can be used to help manage the water resources of the region. The geohydrologic framework was refined by collecting and interpreting water-level and water-quality data, geologic and electric logs, and gravity data. The water-bearing deposits in the Joshua Tree and Copper Mountain ground-water subbasins are Quarternary alluvial deposits and Tertiary sedimentary and volcanic deposits. The Quarternary alluvial deposits were divided into two aquifers (referred to as the 'upper' and the 'middle' alluvial aquifers), which are about 600 feet (ft) thick, and the Tertiary sedimentary and volcanic deposits were assigned to a single aquifer (referred to as the 'lower' aquifer), which is as thick as 1,500 ft. The ground-water quality of the Joshua Tree and Copper Mountain ground-water subbasins was defined by collecting 53 ground-water samples from 15 wells (10 in the

  8. Isotopes in hydrology of ground water

    International Nuclear Information System (INIS)

    Rodriguez, N.; C, O.

    1996-01-01

    Fundamental concepts on Radioactivity, Isotopes, Radioisotopes, Law of Nuclear Decay (Middle Life concept), Radioactivity units, Types of radiation, Absorption and dispersion of both Alfa and Beta particles and both gamma and X-rays attenuation are presented. A description on Environmental Isotopes (those that are presented in natural form in the environment and those that can't be controlled by the humans), both stables and unstable (radioisotopes) isotopes is made. Isotope hydrology applications in surface water investigations as: Stream flow measurements and Atmosphere - surface waters interrelationship is described. With relation to the groundwater investigations, different applications of the isotope hydrology, its theoretical base and its methodology are presented to each one of the substrates as: Unsaturated zone (soil cape), Saturated zone (aquifer cape), Surface waters - ground waters interrelationship (infiltration and recharge) and to hydrologic balance

  9. Hydrogeology of the West Siberian Basin

    International Nuclear Information System (INIS)

    Foley, M.G.; Bradley, D.J.; Cole, C.R.

    1996-01-01

    Nuclear fuel cycle activities of the former Soviet Union (FSU) have resulted in extensive radioactive contaminant releases to the environment in western Siberia. We are developing three-dimensional numerical models of the hydrogeology and potential contaminant migration in the West Siberian Basin. We have assumed that ground-water flow in the West Siberian Basin is topographically driven, with recharge to the basin occurring in the highlands on the west, east, and south, and internal discharge localized in numerous river valleys and lakes that ultimately discharge north to the ocean. We are modeling the regional hydrogeology as three-dimensional, steady-state, saturated flow that is recharged from above. We acquired topographic, geologic, hydrostratigraphic, hydrogeologic, and water-balance data for the West Siberian Basin and constructed a regional water table. We correlated and combined 70 different rock types derived from published descriptions of West Siberian Basin rocks into 17 rock types appropriate for assignment of hydrogeologic properties on the basis of spatial heterogeneity and constituent (i.e., sand, silt, and clay) diversity. Examination of resulting three-dimensional assemblages of rock types showed that they were consistent with published and inferred paleogeography and depositional processes. Calibrating the basin's moisture balance (i.e., recharge and discharge) to the derived water table determined plausible input parameter values for unknowns such as hydraulic conductivities. The general directions of calculated ground-water flow suggest that major rivers act as discharge areas, with upwelling below the rivers extending down into the basement rocks, and that ground-water divides that penetrate the entire thickness of the model are evident between major rivers

  10. Ground-water altitudes and well data, Nye County, Nevada, and Inyo County, California

    International Nuclear Information System (INIS)

    Ciesnik, M.S.

    1995-01-01

    This report contains ground-water altitudes and well data for wells located in Nye County, Nevada, and Inyo County, California, south of Yucca Mountain, Nevada, the potential site for a high-level nuclear waste repository. Data are from wells whose coordinates are within the Beatty and Death Valley Junction, California-Nevada maps from the US Geological Survey, scale 1:100,000 (30-minute x 60-minute quadrangle). Compilation of these data was made to provide a reference for numerical models of ground-water flow at Yucca Mountain and its vicinity. Water-level measurements were obtained from the US Geological Survey National Water Information System (NWIS) data base, and span the period of October 1951 to May 1991; most measurements were made from 1980 to 1990

  11. Gondwana sedimentation in the Chintalapudi sub-basin, Godavari Valley, Andhra Pradesh

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, G. [Geological Survey of India, Calcutta (India). Division of Monitoring

    1995-10-01

    A 3000 m thick Gondwana lithic fill consisting of multifacies associations were preserved in a NW-SE oriented intracratonic Chintalapudi sub-basin set across the Eastern Chat Complex (EGC). Sedimentation commenced with the deposition of diamictite-rhythmite sequence of the Talchir Formation in glacio-lacustrine environment. The succeeding sandstone-coal cyclothems of the Barakar Formation were formed in fluvial-coal swamps complex. The fluvial streams flowed across the EGC, originating somewhere in the southeast beyond the East Coast of India. Phase wise upliftment of the EGC during Mesozoic imparted changes to the Permian intercontinental drainage system which started supplying increased amount of detritus to the basin. Basin marginal faults were first formed at the beginning of Triassic. Alluvial fans originated in the east and southeast and northwesterly flowing braided streams deposited the conglomerate sandstone sequence of the Kamthi Formation. The Early Jurassic uplift of the Mailaram high in the north imparted westerly shift to the braided rivers during the Kota sedimentation. Due to prominence of Kamavarapukota ridge in the south by Early Cretaceous, the drainage pattern became centripetal and short-lived high sinuous rivers debouched into the basin. The silting up of the Chintalapudi sub-basin with the sandstone-claystone sequence of the Gangapur Formation marks the culmination of the Gondwana sedimentation, perhaps, coinciding with the breakup of India from the Gondwanaland.

  12. Ground-water resources of Cambodia

    Science.gov (United States)

    Rasmussen, William Charles; Bradford, Gary M.

    1977-01-01

    available information is on the central lowlands and contiguous low plateaus, as the mountainous areas on the west and the high plateaus on the east are relatively unexplored with respect to their ground-water availability. No persistent artesian aquifer has been identified nor have any large potential ground-water sources been found .although much of the country yet remains to be explored by test drilling. Well irrigation for garden produce is feasible on a modest scale in many localities throughout Cambodia. It does not seem likely, however, that large-scale irrigation from wells will come about in the future. Ground water may be regarded as a widely available supplemental source to surface water for domestic, small-scale industrial, and irrigation use.

  13. Ground-Water Availability in the United States

    Science.gov (United States)

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  14. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  15. Eocene extension in Idaho generated massive sediment floods into Franciscan trench and into Tyee, Great Valley, and Green River basins

    Science.gov (United States)

    Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.

    2013-01-01

    The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.

  16. Groundwater Pumping and Streamflow in the Yuba Basin, Sacramento Valley, California

    Science.gov (United States)

    Moss, D. R.; Fogg, G. E.; Wallender, W. W.

    2011-12-01

    Water transfers during drought in California's Sacramento Valley can lead to increased groundwater pumping, and as yet unknown effects on stream baseflow. Two existing groundwater models of the greater Sacramento Valley together with localized, monitoring of groundwater level fluctuations adjacent to the Bear, Feather, and Yuba Rivers, indicate cause and effect relations between the pumping and streamflow. The models are the Central Valley Hydrologic Model (CVHM) developed by the U.S. Geological Survey and C2VSIM developed by Department of Water Resources. Using two models which have similar complexity and data but differing approaches to the agricultural water boundary condition illuminates both the water budget and its uncertainty. Water budget and flux data for localized areas can be obtained from the models allowing for parameters such as precipitation, irrigation recharge, and streamflow to be compared to pumping on different temporal scales. Continuous groundwater level measurements at nested, near-stream piezometers show seasonal variations in streamflow and groundwater levels as well as the timing and magnitude of recharge and pumping. Preliminary results indicate that during years with relatively wet conditions 65 - 70% of the surface recharge for the groundwater system comes from irrigation and precipitation and 30 - 35% comes from streamflow losses. The models further indicate that during years with relatively dry conditions, 55 - 60% of the surface recharge for the groundwater system comes from irrigation and precipitation while 40 - 45% comes from streamflow losses. The models irrigation water demand, surface-water and groundwater supply, and deep percolation are integrated producing values for irrigation pumping. Groundwater extractions during the growing season, approximately between April and October, increase by almost 200%. The effects of increased pumping seasonally are not readily evident in stream stage measurements. However, during dry time

  17. Optimization of ground-water withdrawal in the lower Fox River communities, Wisconsin

    Science.gov (United States)

    Walker, J.F.; Saad, D.A.; Krohelski, J.T.

    1998-01-01

    Pumping from closely spaced wells in the Central Brown County area and the Fox Cities area near the north shore of Lake Winnebago has resulted in the formation of deep cones of depression in the vicinity of the two pumping centers. Water-level measurements indicate there has been a steady decline in water levels in the vicinity of these two pumping centers for the past 50 years. This report describes the use of ground-water optimization modeling to efficiently allocate the ground-water resources in the Lower Fox River Valley. A 3-dimensional ground-water flow model was used along with optimization techniques to determine the optimal withdrawal rates for a variety of management alternatives. The simulations were conducted separately for the Central Brown County area and the Fox Cities area. For all simulations, the objective of the optimization was to maximize total ground-water withdrawals. The results indicate that ground water can supply nearly all of the projected 2030 demand for Central Brown County municipalities if all of the wells are managed (including the city of Green Bay), 8 new wells are installed, and the water-levels are allowed to decline to 100 ft below the bottom of the confining unit. Ground water can supply nearly all of the projected 2030 demand for the Fox Cities if the municipalities in Central Brown County convert to surface water; if Central Brown County municipalities follow the optimized strategy described above, there will be a considerable shortfall of available ground water for the Fox Cities communities. Relaxing the water-level constraint in a few wells, however, would likely result in increased availability of water. In all cases examined, optimization alternatives result in a rebound of the steady-state water levels due to projected 2030 withdrawal rates to levels at or near the bottom of the confining unit, resulting in increased well capacity. Because the simulations are steady-state, if all of the conditions of the model remain

  18. A multiple-tracer approach to understanding regional groundwater flow in the Snake Valley area of the eastern Great Basin, USA

    International Nuclear Information System (INIS)

    Gardner, Philip M.; Heilweil, Victor M.

    2014-01-01

    Highlights: • Age tracers and noble gases constrain intra- and inter-basin groundwater flow. • Tritium indicates modern (<60 yr) recharge occurring in all mountain areas. • Noble-gas data identify an important interbasin hydraulic discontinuity. • Further groundwater development may significantly impact Snake Valley springs. - Abstract: Groundwater in Snake Valley and surrounding basins in the eastern Great Basin province of the western United States is being targeted for large-scale groundwater extraction and export. Concern about declining groundwater levels and spring flows in western Utah as a result of the proposed groundwater withdrawals has led to efforts that have improved the understanding of this regional groundwater flow system. In this study, environmental tracers (δ 2 H, δ 18 O, 3 H, 14 C, 3 He, 4 He, 20 Ne, 40 Ar, 84 Kr, and 129 Xe) and major ions from 142 sites were evaluated to investigate groundwater recharge and flow-path characteristics. With few exceptions, δ 2 H and δ 18 O show that most valley groundwater has similar ratios to mountain springs, indicating recharge is dominated by relatively high-altitude precipitation. The spatial distribution of 3 H, terrigenic helium ( 4 He terr ), and 3 H/ 3 He ages shows that modern groundwater (<60 yr) in valley aquifers is found only in the western third of the study area. Pleistocene and late-Holocene groundwater is found in the eastern parts of the study area. The age of Pleistocene groundwater is supported by minimum adjusted radiocarbon ages of up to 32 ka. Noble gas recharge temperatures (NGTs) are generally 1–11 °C in Snake and southern Spring Valleys and >11 °C to the east of Snake Valley and indicate a hydraulic discontinuity between Snake and Tule Valleys across the northern Confusion Range. The combination of NGTs and 4 He terr shows that the majority of Snake Valley groundwater discharges as springs, evapotranspiration, and well withdrawals within Snake Valley rather than

  19. Geology, water-quality, hydrology, and geomechanics of the Cuyama Valley groundwater basin, California, 2008--12

    Science.gov (United States)

    Everett, Rhett; Gibbs, Dennis R.; Hanson, Randall T.; Sweetkind, Donald S.; Brandt, Justin T.; Falk, Sarah E.; Harich, Christopher R.

    2013-01-01

    To assess the water resources of the Cuyama Valley groundwater basin in Santa Barbara County, California, a series of cooperative studies were undertaken by the U.S. Geological Survey and the Santa Barbara County Water Agency. Between 2008 and 2012, geologic, water-quality, hydrologic and geomechanical data were collected from selected sites throughout the Cuyama Valley groundwater basin. Geologic data were collected from three multiple-well groundwater monitoring sites and included lithologic descriptions of the drill cuttings, borehole geophysical logs, temperature logs, as well as bulk density and sonic velocity measurements of whole-core samples. Generalized lithologic characterization from the monitoring sites indicated the water-bearing units in the subsurface consist of unconsolidated to partly consolidated sand, gravel, silt, clay, and occasional cobbles within alluvial fan and stream deposits. Analysis of geophysical logs indicated alternating layers of finer- and coarser-grained material that range from less than 1 foot to more than 20 feet thick. On the basis of the geologic data collected, the principal water-bearing units beneath the monitoring-well sites were found to be composed of younger alluvium of Holocene age, older alluvium of Pleistocene age, and the Tertiary-Quaternary Morales Formation. At all three sites, the contact between the recent fill and younger alluvium is approximately 20 feet below land surface. Water-quality samples were collected from 12 monitoring wells, 27 domestic and supply wells, 2 springs, and 4 surface-water sites and were analyzed for a variety of constituents that differed by site, but, in general, included trace elements; nutrients; dissolved organic carbon; major and minor ions; silica; total dissolved solids; alkalinity; total arsenic and iron; arsenic, chromium, and iron species; and isotopic tracers, including the stable isotopes of hydrogen and oxygen, activities of tritium, and carbon-14 abundance. Of the 39

  20. Application of GIS and Visualization Technology in the Regional-Scale Ground-Water Modeling of the Twentynine Palms and San Jose Areas, California

    Science.gov (United States)

    Li, Z.

    2003-12-01

    Application of GIS and visualization technology significantly contributes to the efficiency and success of developing ground-water models in the Twentynine Palms and San Jose areas, California. Visualizations from GIS and other tools can help to formulate the conceptual model by quickly revealing the basinwide geohydrologic characteristics and changes of a ground-water flow system, and by identifying the most influential components of system dynamics. In addition, 3-D visualizations and animations can help validate the conceptual formulation and the numerical calibration of the model by checking for model-input data errors, revealing cause and effect relationships, and identifying hidden design flaws in model layering and other critical flow components. Two case studies will be presented: The first is a desert basin (near the town of Twentynine Palms) characterized by a fault-controlled ground-water flow system. The second is a coastal basin (Santa Clara Valley including the city of San Jose) characterized by complex, temporally variable flow components ­¦ including artificial recharge through a large system of ponds and stream channels, dynamically changing inter-layer flow from hundreds of multi-aquifer wells, pumping-driven subsidence and recovery, and climatically variable natural recharge. For the Twentynine Palms area, more than 10,000 historical ground-water level and water-quality measurements were retrieved from the USGS databases. The combined use of GIS and visualization tools allowed these data to be swiftly organized and interpreted, and depicted by water-level and water-quality maps with a variety of themes for different uses. Overlaying and cross-correlating these maps with other hydrological, geological, geophysical, and geochemical data not only helped to quickly identify the major geohydrologic characteristics controlling the natural variation of hydraulic head in space, such as faults, basin-bottom altitude, and aquifer stratigraphies, but also

  1. Status and understanding of groundwater quality in the Santa Clara River Valley, 2007-California GAMA Priority Basin Project

    Science.gov (United States)

    Burton, Carmen A.; Montrella, Joseph; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 460-square-mile Santa Clara River Valley study unit was investigated from April through June 2007 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Project is conducted by the U.S. Geological Survey (USGS) in collaboration with the California State Water Resources Control Board and the Lawrence Livermore National Laboratory. The Santa Clara River Valley study unit contains eight groundwater basins located in Ventura and Los Angeles Counties and is within the Transverse and Selected Peninsular Ranges hydrogeologic province. The Santa Clara River Valley study unit was designed to provide a spatially unbiased assessment of the quality of untreated (raw) groundwater in the primary aquifer system. The assessment is based on water-quality and ancillary data collected in 2007 by the USGS from 42 wells on a spatially distributed grid, and on water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer system was defined as that part of the aquifer system corresponding to the perforation intervals of wells listed in the CDPH database for the Santa Clara River Valley study unit. The quality of groundwater in the primary aquifer system may differ from that in shallow or deep water-bearing zones; for example, shallow groundwater may be more vulnerable to surficial contamination. Eleven additional wells were sampled by the USGS to improve understanding of factors affecting water quality.The status assessment of the quality of the groundwater used data from samples analyzed for anthropogenic constituents, such as volatile organic compounds (VOCs) and pesticides, as well as naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to characterize the quality of untreated groundwater resources in the primary aquifers of the Santa Clara River Valley study unit

  2. Geology and ground-water resources of the island of Oahu, Hawaii

    Science.gov (United States)

    Stearns, Harold T.; Vaksvik, Knute N.

    1935-01-01

    master streams are characterized by deep amphitheater-headed valleys. After this erosion cycle the island was submerged more than 1,200 feet, and these great valleys were drowned and alluviated. Besides this submergence, several strand lines, preserved up to 100 feet above present sea level occur, which may be due to world-wide changes in sea level in response to the withdrawal and restoration of water concurrent with the advances and recessions of the polar ice caps and to accompanying changes in the ocean floor. During this time of shifting ocean levels spasmodic eruptions occurred on the southeast end of the Koolau Range, producing numerous lava flows and tuff cones, most of which are nephelite basalt. The last of these eruptions occurred in Recent time. A description of the climate, rates of run-off, and results of experiments to determine evaporation and transpiration in the areas of high rainfall are given. It was found that the consumptive use decreases materially and becomes a very small percentage of the rainfall in the areas of high precipitation. The lava rocks of the island are very permeable and, because of a rainfall reaching a maximum of 300 inches a year, carry large amounts of ground water, confined and unconfined, basal and perched. The basal ground water floats on salt water because of its lower specific gravity. Consequently for each foot the water table stands above sea level, salt water lies about 42 feet below sea level, in accordance with the sea along the coast as basal ground water. In most places the lava rocks along the shore are overlain by an impermeable or nearly impermeable caprock consisting of submerged lateritic soils and marine noncalcareous sediments. These deposits retard the escape of basal ground water into the sea and give rise to artesian water, but unlike most other artesian systems, this one has no lower restraining formation. The artesian water is the principal source of domestic, municipal, and irrigation supplies. The

  3. Ground water quality evaluation in Beed city, Maharashtra, India ...

    African Journals Online (AJOL)

    A survey was undertaken to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical and bacteriological parameters into consideration. The present investigation is aimed to calculate Water Quality Index (WQI) of ground water and to assess the impact of pollutants due to agriculture ...

  4. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  5. Ground water hydrology report: Revision 1, Attachment 3. Final

    International Nuclear Information System (INIS)

    1996-12-01

    This report presents ground water hydrogeologic activities for the Maybell, Colorado, Uranium Mill Tailings Remedial Action Project site. The Department of Energy has characterized the hydrogeology, water quality, and water resources at the site and determined that the proposed remedial action would comply with the requirements of the EPA ground water protection standards

  6. 40 CFR 258.51 - Ground-water monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... water that has not been affected by leakage from a unit. A determination of background quality may... that ensures detection of ground-water contamination in the uppermost aquifer. When physical obstacles... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water monitoring systems. 258...

  7. 40 CFR 257.3-4 - Ground water.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground water. 257.3-4 Section 257.3-4... and Practices § 257.3-4 Ground water. (a) A facility or practice shall not contaminate an underground drinking water source beyond the solid waste boundary or beyond an alternative boundary specified in...

  8. IN-SITU BIOREMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This document is one in a series of Ground Water Issue papers which have been prepared in response to needs expressed by the Ground Water Forum. It is based on findings from the research community in concert with experience gained at sites undergoing remediation. the intent of th...

  9. Estimation of ground water hydraulic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Hvilshoej, Soeren

    1998-11-01

    The main objective was to assess field methods to determine ground water hydraulic parameters and to develop and apply new analysis methods to selected field techniques. A field site in Vejen, Denmark, which previously has been intensively investigated on the basis of a large amount of mini slug tests and tracer tests, was chosen for experimental application and evaluation. Particular interest was in analysing partially penetrating pumping tests and a recently proposed single-well dipole test. Three wells were constructed in which partially penetrating pumping tests and multi-level single-well dipole tests were performed. In addition, multi-level slug tests, flow meter tests, gamma-logs, and geologic characterisation of soil samples were carried out. In addition to the three Vejen analyses, data from previously published partially penetrating pumping tests were analysed assuming homogeneous anisotropic aquifer conditions. In the present study methods were developed to analyse partially penetrating pumping tests and multi-level single-well dipole tests based on an inverse numerical model. The obtained horizontal hydraulic conductivities from the partially penetrating pumping tests were in accordance with measurements obtained from multi-level slug tests and mini slug tests. Accordance was also achieved between the anisotropy ratios determined from partially penetrating pumping tests and multi-level single-well dipole tests. It was demonstrated that the partially penetrating pumping test analysed by and inverse numerical model is a very valuable technique that may provide hydraulic information on the storage terms and the vertical distribution of the horizontal and vertical hydraulic conductivity under both confined and unconfined aquifer conditions. (EG) 138 refs.

  10. Evaluating data worth for ground-water management under uncertainty

    Science.gov (United States)

    Wagner, B.J.

    1999-01-01

    A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models-a chance-constrained ground-water management model and an integer-programing sampling network design model-to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring network design model identifies, prior to data collection, the sampling strategy that will minimize model uncertainty; (3) the optimal ground-water management strategy is recalculated on the basis of the projected model uncertainty after sampling; and (4) the worth of the monitoring strategy is assessed by comparing the value of the sample information-i.e., the projected reduction in management costs-with the cost of data collection. Steps 2-4 are repeated for a series of data collection budgets, producing a suite of management/monitoring alternatives, from which the best alternative can be selected. A hypothetical example demonstrates the methodology's ability to identify the ground-water sampling strategy with greatest net economic benefit for ground-water management.A decision framework is presented for assessing the value of ground-water sampling within the context of ground-water management under uncertainty. The framework couples two optimization models - a chance-constrained ground-water management model and an integer-programming sampling network design model - to identify optimal pumping and sampling strategies. The methodology consists of four steps: (1) The optimal ground-water management strategy for the present level of model uncertainty is determined using the chance-constrained management model; (2) for a specified data collection budget, the monitoring

  11. Groundwater quality in the shallow aquifers of the Tulare, Kaweah, and Tule Groundwater Basins and adjacent highlands areas, Southern San Joaquin Valley, California

    Science.gov (United States)

    Fram, Miranda S.

    2017-01-18

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The shallow aquifers of the Tulare, Kaweah, and Tule groundwater basins and adjacent highlands areas of the southern San Joaquin Valley constitute one of the study units being evaluated.

  12. Environmental Setting and Effects on Water Quality in the Great and Little Miami River Basins, Ohio and Indiana

    Science.gov (United States)

    Debrewer, Linda M.; Rowe, Gary L.; Reutter, David C.; Moore, Rhett C.; Hambrook, Julie A.; Baker, Nancy T.

    2000-01-01

    The Great and Little Miami River Basins drain approximately 7,354 square miles in southwestern Ohio and southeastern Indiana and are included in the more than 50 major river basins and aquifer systems selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Principal streams include the Great and Little Miami Rivers in Ohio and the Whitewater River in Indiana. The Great and Little Miami River Basins are almost entirely within the Till Plains section of the Central Lowland physiographic province and have a humid continental climate, characterized by well-defined summer and winter seasons. With the exception of a few areas near the Ohio River, Pleistocene glacial deposits, which are predominantly till, overlie lower Paleozoic limestone, dolomite, and shale bedrock. The principal aquifer is a complex buried-valley system of sand and gravel aquifers capable of supporting sustained well yields exceeding 1,000 gallons per min-ute. Designated by the U.S. Environmental Protection Agency as a sole-source aquifer, the Buried-Valley Aquifer System is the principal source of drinking water for 1.6 million people in the basins and is the dominant source of water for southwestern Ohio. Water use in the Great and Little Miami River Basins averaged 745 million gallons per day in 1995. Of this amount, 48 percent was supplied by surface water (including the Ohio River) and 52 percent was supplied by ground water. Land-use and waste-management practices influence the quality of water found in streams and aquifers in the Great and Little Miami River Basins. Land use is approximately 79 percent agriculture, 13 percent urban (residential, industrial, and commercial), and 7 percent forest. An estimated 2.8 million people live in the Great and Little Miami River Basins; major urban areas include Cincinnati and Dayton, Ohio. Fertilizers and pesticides associated with agricultural activity, discharges from municipal and

  13. Ground-water geology of Kordofan Province, Sudan

    Science.gov (United States)

    Rodis, Harry G.; Hassan, Abdulla; Wahadan, Lutfi

    1968-01-01

    For much of Kordofan Province, surface-water supplies collected and stored in hafirs, fulas, and tebeldi trees are almost completely appropriated for present needs, and water from wells must serve as the base for future economic and cultural development. This report describes the results of a reconnaissance hydrogeologic investigation of the Province and the nature and distribution of the ground-water resources with respect to their availability for development. Kordofan Province, in central Sudan, lies within the White Nile-Nile River drainage basin. The land surface is largely a plain of low relief; jebels (hills) occur sporadically, and sandy soils are common in most areas except in the south where clayey soils predominate. Seasonal rainfall, ranging from less than 100 millimeters in the north to about 800 millimeters in the south, occurs almost entirely during the summer months, but little runoff ever reaches the Nile or White Nile Rivers. The rocks beneath the surficial depsits (Pleistocene to Recent) in the Province comprise the basement complex (Precambrian), Nawa Series (upper Paleozoic), Nubian Series (Mesozoic), laterite (lower to middle Tertiary), and the Umm Ruwaba Series (Pliocene to Pleistocene). Perennial ground-water supplies in the Province are found chiefly in five hydrologic units, each having distinct geologic or hydrologic characteristics. These units occur in Nubian or Umm Ruwaba strata or both, and the sandstone and conglomerate beds form the :principal aquifers. The water is generally under slight artesian head, and the upper surface of the zone of saturation ranges from about 50 meters to 160 meters below land surface. The surficial deposits and basement rocks are generally poor sources of ground water in most of the Province. Supplies from such sources are commonly temporary and may dissipate entirely during the dry season. Locally, however, perennial supplies are obtained from the surficial deposits and from the basement rocks. Generally

  14. Shallow ground water in the Powder River Bbasin, northeastern Wyoming: Description of selected publications, 1950-91, and indications for further study. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lindner-Lunsford, J.B.; Wilson, J.F.

    1992-01-01

    The report describes the conclusions and contributions to knowledge of shallow ground water in publications resulting from previous ground-water investigations in the Powder River Basin and describes indications for further study. For the report, shallow ground water is defined as water in geologic formations overlying the Upper Cretaceous Pierre Shale and equivalents. The 76 publications described were produced from 1950-91 by the U.S. Geological Survey, other government agencies, and academic and private organizations, including mining companies and engineering consultants. Only those parts of the publications that are relevant to thee quantity or quality of shallow ground water in the Powder River Basin are described. Mine plans for coal and uranium mines (many of which contain detailed, local hydrologic information) and publications containing pertinent geologic information, but no hydrologic information, are not included

  15. Simulated effects of impoundment of lake seminole on ground-water flow in the upper Floridan Aquifer in southwestern Georgia and adjacent parts of Alabama and Florida

    Science.gov (United States)

    Jones, L. Elliott; Torak, Lynn J.

    2004-01-01

    Hydrologic implications of the impoundment of Lake Seminole in southwest Georgia and its effect on components of the surface- and ground-water flow systems of the lower Apalachicola?Chattahoochee?Flint (ACF) River Basin were investigated using a ground-water model. Comparison of simulation results of postimpoundment drought conditions (October 1986) with results of hypothetical preimpoundment conditions (a similar drought prior to 1955) provides a qualitative measure of the changes in hydraulic head and ground-water flow to and from streams and Lake Seminole, and across State lines caused by the impoundment. Based on the simulation results, the impoundment of Lake Seminole changed ground-water flow directions within about 20?30 miles of the lake, reducing the amount of ground water flowing from Florida to Georgia southeast of the lake. Ground-water storage was increased by the impoundment, as indicated by a simulated increase of as much as 26 feet in the water level in the Upper Floridan aquifer. The impoundment of Lake Seminole caused changes to simulated components of the ground-water budget, including reduced discharge from the Upper Floridan aquifer to streams (315 million gallons per day); reduced recharge from or increased discharge to regional ground-water flow at external model boundaries (totaling 183 million gallons per day); and reduced recharge from or increased discharge to the undifferentiated overburden (totaling 129 million gallons per day).

  16. Hanford Site ground-water monitoring for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P. [and others

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  17. Hanford Site ground-water monitoring for 1994

    International Nuclear Information System (INIS)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal

  18. Ground-water contribution to dose from past Hanford Operations

    International Nuclear Information System (INIS)

    Freshley, M.D.; Thorne, P.D.

    1992-08-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is being conducted to estimate radiation doses that populations and individuals could have received from Hanford Site operations from 1944 to the present. Four possible pathways by which radionuclides migrating in ground water on the Hanford Site could have reached the public have been identified: (1) through contaminated ground water migrating to the Columbia River; (2) through wells on or adjacent to the Hanford Site; (3) through wells next to the Columbia River downstream of Hanford that draw some or all of their water from the river (riparian wells); and (4) through atmospheric deposition resulting in contamination of a small watershed that, in turn, results in contamination of a shallow well or spring by transport in the ground water. These four pathways make up the ''ground-water pathway,'' which is the subject of this study. Assessment of the ground-water pathway was performed by (1) reviewing the existing extensive literature on ground water and ground-water monitoring at Hanford and (2) performing calculations to estimate radionuclide concentrations where no monitoring data were collected. Radiation doses that would result from exposure to these radionuclides were calculated

  19. Uranium isotopes in ground water as a prospecting technique

    International Nuclear Information System (INIS)

    Cowart, J.B.; Osmond, J.K.

    1980-02-01

    The isotopic concentrations of dissolved uranium were determined for 300 ground water samples near eight known uranium accumulations to see if new approaches to prospecting could be developed. It is concluded that a plot of 234 U/ 238 U activity ratio (A.R.) versus uranium concentration (C) can be used to identify redox fronts, to locate uranium accumulations, and to determine whether such accumulations are being augmented or depleted by contemporary aquifer/ground water conditions. In aquifers exhibiting flow-through hydrologic systems, up-dip ground water samples are characterized by high uranium concentration values (> 1 to 4 ppB) and down-dip samples by low uranium concentration values (less than 1 ppB). The boundary between these two regimes can usually be identified as a redox front on the basis of regional water chemistry and known uranium accumulations. Close proximity to uranium accumulations is usually indicated either by very high uranium concentrations in the ground water or by a combination of high concentration and high activity ratio values. Ground waters down-dip from such accumulations often exhibit low uranium concentration values but retain their high A.R. values. This serves as a regional indicator of possible uranium accumulations where conditions favor the continued augmentation of the deposit by precipitation from ground water. Where the accumulation is being dispersed and depleted by the ground water system, low A.R. values are observed. Results from the Gulf Coast District of Texas and the Wyoming districts are presented

  20. Evaluation of geologic structure guiding ground water flow south and west of Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    McKee, E.H.

    1998-01-01

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifying large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range

  1. Analysis of geophysical well logs from the Mariano Lake-Lake Valley drilling project, San Juan Basin, Northwestern New Mexico

    International Nuclear Information System (INIS)

    Scott, J.H.

    1986-01-01

    Geophysical well logs were obtained in eight deep holes drilled and cored by the U.S. Geological Survey to examine the geology of the Mariano Lake-Lake Valley area in the southern part of the San Juan basin, New Mexico. The logs were made to determine the petrophysical properties of the rocks penetrated by the holes, to aid in making stratigraphic correlations between the holes, and to estimate the grade of uranium enrichment in mineralized zones. The logs can be divided into six categories-nuclear, electric, sonic, magnetic, dipmeter, and borehole conditions. Examples of these logs are presented and related to lithological and petrophysical properties of the cores recovered. Gamma-ray and prompt fission neutron logs were used to estimate uranium grade in mineralized zones. Resistivity and spontaneous potential logs were used to make stratigraphic correlations between drill holes and to determine the variability of the sandstone:mudstone ratios of the major sedimentary units. In one drill hole a dipmeter log was used to estimate the direction of sediment transport of the fluvial host rock. Magnetic susceptibility logs provided supportive information for a laboratory study of magnetic mineral alteration in drill cores. This study was used to infer the geochemical and hydrologic environment associated with uranium deposition in the project area

  2. Developing and implementing institutional controls for ground water remediation

    International Nuclear Information System (INIS)

    Ulland, L.M.; Cooper, M.G.

    1995-01-01

    The US DOE has initiated its Ground Water Project as the second phase of the Uranium Mill Tailings Remedial Action (UMTRA) Project authorized under the Uranium Mill Tailings Radiation Control Act (UMTRCA). In the Ground Water Project, the DOE must reduce risk from ground water contaminated by uranium mill processing activities at 24 inactive processing sites by meeting the US EPA standards. The UMTRCA also requires consistency with federal statutes such as the Resource Conservation and Recovery Act (RCRA). The use of institutional controls to reduce risk from contaminated ground water is one element of compliance with standards and the protection of public health and the environment. Institutional controls are active or passive measures that reduce exposure to risks by preventing intrusion or restricting direct access to an area, or restricting access to the contamination through secondary means. Because of inconsistent regulations and multi-party authorities for ground water management, the key to selecting and implementing effective institutional controls lies with developing a consensus between the parties responsible for ground water remediation; those with authority to implement, monitor, and maintain institutional controls; and those facing the risks from contaminated ground water. These parties must develop a consensus for an institutional control program that meets minimum regulatory requirements and protects public health and the environment. Developing consensus and implementing a successful institutional controls program was achieved by the DOE during the cleanup of uranium mill tailings. An effective institutional controls program can also be developed to protect against risks from contaminated ground water. Consensus building and information transmission are the critical elements of an institutional control program that protects human health and the environment from risks associated with ground water contamination

  3. Ground water in the Piedmont upland of central Maryland

    Science.gov (United States)

    Richardson, Claire A.

    1982-01-01

    This report, describing ground-water occurrence in a 130-square-mile area of the central Maryland Piedmont, was originally designed for use by the U.S. Environmental Protection Agency in replying to a request for designation of the aquifers to be the sole or principal source of ground water. However, the information contained in the report is pertinent to other crystalline-rock areas as well. The study area is underlain chiefly by crystalline rocks and partly by unaltered sandstones and siltstones. The ground water is derived from local precipitation and generally occurs under water-table conditions. Its movement is restricted by the lack of interconnected openings, and most ground water occurs within 300 feet of the land surface. Hydrographs indicate no long-term change in ground-water storage. A few wells yield more than 100 gallons per minute, but about 70 percent of 286 inventoried wells yield 10 gallons per minute or less; most specific capacities are less than 1.0 gallon per minute per foot. The ground-water quality is generally satisfactory without treatment, and there are no known widespread pollution problems. Estimated daily figures on ground-water use are as follows: 780,000 gallons for domestic purposes; 55,000, for commercial purposes; and 160,000, for public supply. Although part of the area is served by an existing surface-water supply and could be served by possible extension of it and of other public-supply water mains, much of the rural population is dependent on the ground water available from private wells tapping the single aquifer that underlies any given location. Neither the ground-water conditions nor this dependence on individual wells is unique to the study area, but, rather, applies to the entire Piedmont province.

  4. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    Science.gov (United States)

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within “water-balance subregions” (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori.

  5. Superfund Record of Decision (EPA Region 9): North Hollywood/Burbank Well Field Area 1, San Fernando Valley Site, California (first remedial action), September 1987. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-24

    The North Hollywood - Burbank Well Field (NHBWF) is located within the San Fernando Valley Ground Water basin, which can provide drinking water for approximately 500,000 people residing in the San Fernando Valley and Los Angeles. In 1980 TCE and PCE were discovered in 25% of DWP's wells. In July 1981, DWP and the Southern California Association of Governments began a two-year study funded by EPA. The study revealed the occurrence of ground-water contamination plume patterns that are spreading toward the southeast. The primary contaminant of concern to the ground-water is TCE with PCE and other VOCs present. The selected remedial action for the site is ground-water pump and treatment using aeration and granular-activated-carbon - air-filtering units, with discharge to the DWP Pumping Station for chlorination and distribution. Spent carbon will be removed and replaced with fresh carbon, with the spent carbon scheduled either for disposal or regeneration. The estimated capital cost for this remedial action is $2,192,895 with present worth OandM of $2,284,105.

  6. Short-time variations of the ground water level

    International Nuclear Information System (INIS)

    Nilsson, Lars Y.

    1977-09-01

    Investigations have demonstrated that the ground water level of aquifers in the Swedish bedrock shows shorttime variations without changing their water content. The ground water level is among other things affected by regular tidal movements occuring in the ''solid'' crust of the earth variations in the atmospheric pressure strong earthquakes occuring in different parts of the world These effects proves that the system of fissures in the bedrock are not stable and that the ground water flow is influenced by both water- and airfilled fissures

  7. Theoretical aspects on the phenomenon of contamination of ground waters

    International Nuclear Information System (INIS)

    Echeverri, G.E.

    1998-01-01

    The phenomenon of contamination of ground waters and the destination of certain constituents of the water keep in mind diverse mechanisms of physical nature, chemistry and biological; in this work it is consigned in a concise way, the theoretical aspects of these topics, that is to say, the basic principles of the ground water hydraulics, the fundamental concepts of the physics of the movement and the chemistry of the ground water, as well as the equations that govern the phenomenon of contamination of the mass of water contained in the interstices of the floors and the rocks, broadly used in the mathematical modeling of the phenomenon

  8. Isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B.Th.

    1985-01-01

    Environmental isotope observations were conducted on ground waters from approximately 50 boreholes covering a substantial part of Gordonia. The quality of these waters ranges from fresh to saline. The observed isotope ratios cover a wide range of values, indicating varied hydrological conditions. The most important conclusions arrived at by this study are: 1. no important regional movement of ground water occurs at present; 2. there is widespread evidence of diffuse rainfall recharge; and 3. an important part of ground-water salinity is derived from the unsaturated zone, during such recharge

  9. Geohydrological and environmental isotope observation of Sishen ground waters

    International Nuclear Information System (INIS)

    Verhagen, B.Th.; Dziembowski, Z.M.

    1985-01-01

    The dewatering of Sishen Mine in the northern Cape Province supplies good quality water for the mine and surrounding areas. Using various approaches, attempts are made to quantify the remaining storage of ground water. Geohydrological observations provide an estimate based on extrapolating the thickness of dewatered rock. Environmental isotope observations on various borehole outputs show contrasts between different ground-water bodies and their mixtures and allows for some extrapolations of observed trends. Indications are that previous estimates of storage, based on ground-water level changes, are conservative

  10. Interactions between cement grouts and sulphate bearing ground water

    International Nuclear Information System (INIS)

    Walton, P.L.; Duerden, S.L.; Atkins, K.M.; Majumdar, A.J.

    1989-01-01

    The physical, chemical and mineralogical properties of mixtures of Ordinary Portland cement and blastfurnace slag or pulverized fuel ash, exposed to a sulphate-bearing ground water at different temperatures and pressures, were investigated in order to assess the long term durability of cements for encapsulating radioactive waste and backfilling a repository. The effect of the ground water on the chemical and mineralogical characteristics of the cements is minimal. Calcite and C-S-H are present in all the samples and are durable throughout the test. Dimensional changes in the cements during setting and curing may cause weaknesses in the materials which may increase the effects of a percolating ground water. (author)

  11. Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management

    Science.gov (United States)

    Chiu, Y.; Nishikawa, T.; Martin, P.

    2008-12-01

    Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond

  12. Simulation of ground-water flow in the St. Peter aquifer in an area contaminated by coal-tar derivatives, St. Louis Park, Minnesota. Water Resources Investigation

    International Nuclear Information System (INIS)

    Lorenz, D.L.; Stark, J.R.

    1990-01-01

    A model constructed to simulate ground-water flow in part of the Prairie du Chien-Jordan and St. Peter aquifers, St. Louis Park, Minnesota, was used to test hypotheses about the movement of ground water contaminated with coal-tar derivatives and to simulate alternatives for reducing the downgradient movement of contamination in the St. Peter aquifer. The model, constructed for a previous study, was applied to simulate the effects of current ground-water withdrawals on the potentiometric surface of the St. Peter aquifer. Model simulations predict that the multiaquifer wells have the potential to limit downgradient migration of contaminants in the St. Peter aquifer caused by cones of depression created around the multiaquifer wells. Differences in vertical leakage to the St. Peter aquifer may exist in areas of bedrock valleys. Model simulations indicate that these differences are not likely to affect significantly the general patterns of ground-water flow

  13. Ground-water recharge in the arid and semiarid southwestern United States

    Science.gov (United States)

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge

  14. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  15. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  16. Hanford Site ground-water monitoring for 1990

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-06-01

    The Pacific Northwest Laboratory monitors ground-water quality across the Hanford Site for the US Department of Energy (DOE) to assess the impact of Site operations on the environment. Monitoring activities were conducted to determine the distribution of mobile radionuclides and identify chemicals present in ground water as a result of Site operations and whenever possible, relate the distribution of these constituents to Site operations. To comply with the Resource Conservation and Recovery Act, additional monitoring was conducted at individual waste sites by the Site Operating Contractor, Westinghouse Hanford Company (WHC), to assess the impact that specific facilities have had on ground-water quality. Six hundred and twenty-nine wells were sampled during 1990 by all Hanford ground-water monitoring activities

  17. Guide to North Dakota's ground-water resources

    Science.gov (United States)

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  18. ground water quality evaluation in beed city, maharashtra, india

    African Journals Online (AJOL)

    Khatib Afsar

    2013-12-18

    Dec 18, 2013 ... to assess the quality of ground water in Beed district of Maharashtra taking both physico-chemical .... All ideal value s (Vio) are taken as zero for the drinking water ..... Conference: Ustron, Poland, 2004, Routledge, New York.

  19. Bacteriological investigation of ground water sources in selected ...

    African Journals Online (AJOL)

    cml

    2012-06-16

    Jun 16, 2012 ... Microbial contamination of ground water sources is a common problem in all the big cities, which endangers ... include leakage of pipes, pollution from sewerage pipes ..... and Quality Control Authority, Karachi, Pakistan.

  20. Technology Transfer Opportunities: Automated Ground-Water Monitoring

    Science.gov (United States)

    Smith, Kirk P.; Granato, Gregory E.

    1997-01-01

    Introduction A new automated ground-water monitoring system developed by the U.S. Geological Survey (USGS) measures and records values of selected water-quality properties and constituents using protocols approved for manual sampling. Prototypes using the automated process have demonstrated the ability to increase the quantity and quality of data collected and have shown the potential for reducing labor and material costs for ground-water quality data collection. Automation of water-quality monitoring systems in the field, in laboratories, and in industry have increased data density and utility while reducing operating costs. Uses for an automated ground-water monitoring system include, (but are not limited to) monitoring ground-water quality for research, monitoring known or potential contaminant sites, such as near landfills, underground storage tanks, or other facilities where potential contaminants are stored, and as an early warning system monitoring groundwater quality near public water-supply wells.

  1. Ephemeral-stream channel and basin-floor infiltration and recharge in the Sierra Vista subwatershed of the Upper San Pedro Basin, Southeastern Arizona: Chapter J in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    Science.gov (United States)

    Coes, A.L.; Pool, D.R.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    The timing and location of streamflow in the San Pedro River are partially dependent on the aerial distribution of recharge in the Sierra Vista subwatershed. Previous investigators have assumed that recharge in the subwatershed occurs only along the mountain fronts by way of stream-channel infiltration near the contact between low-permeability rocks of the mountains and the basin fill. Recent studies in other alluvial basins of the Southwestern United States, however, have shown that significant recharge can occur through the sediments of ephemeral stream channels at locations several kilometers distant from the mountains. The purpose of this study was to characterize the spatial distribution of infiltration and subsequent recharge through the ephemeral channels in the Sierra Vista subwatershed.Infiltration fluxes in ephemeral channels and through the basin floor of the subwatershed were estimated by using several methods. Data collected during the drilling and coring of 16 boreholes included physical, thermal, and hydraulic properties of sediments; chloride concentrations of sediments; and pore-water stable-isotope values and tritium activity. Surface and subsurface sediment temperatures were continuously measured at each borehole.Twelve boreholes were drilled in five ephemeral stream channels to estimate infiltration within ephemeral channels. Active infiltration was verified to at least 20 meters at 11 of the 12 borehole sites on the basis of low sediment-chloride concentrations, high soil-water contents, and pore-water tritium activity similar to present-day precipitation. Consolidated sediments at the twelfth site prevented core recovery and estimation of infiltration. Analytical and numerical methods were applied to determine the surface infiltration flux required to produce the observed sediment-temperature fluctuations at six sites. Infiltration fluxes were determined for summer ephemeral flow events only because no winter flows were recorded at the sites

  2. Contamination of Ground Water Due To Landfill Leachate

    OpenAIRE

    M. V. S. Raju

    2012-01-01

    The present site under investigation at Ajitsingh Nagar in Vijayawada of Andhra Pradesh is initially a low lying area and used for disposing the urban solid waste for the last few years, through open dumping with out taking any measures to protect the Ground water against pollution. The present study has been taken up to measure the degree of pollution of ground water due to leachate produced in the landfill site. Bore holes were made at eight random locations ...

  3. Identification of technical guidance related to ground water monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act.

  4. Identification of technical guidance related to ground water monitoring

    International Nuclear Information System (INIS)

    Vogelsberger, R.R.; Smith, E.D.; Broz, M.; Wright, J.C. Jr.

    1987-05-01

    Monitoring of ground water quality is a key element of ground water protection and is mandated by several federal and state laws concerned with water quality or waste management. Numerous regulatory guidance documents and technical reports discuss various aspects of ground water monitoring, but at present there is no single source of guidance on procedures and practices for ground water monitoring. This report is intended to assist US Department of Energy (DOE) officials and facility operating personnel in identifying sources of guidance for developing and implementing ground water monitoring programs that are technically sound and that comply with applicable regulations. Federal statutes and associated regulations were reviewed to identify requirements related to ground water monitoring, and over 160 documents on topics related to ground water monitoring were evaluated for their technical merit, their utility as guidance for regulatory compliance, and their relevance to DOE's needs. For each of 15 technical topics involved in ground water monitoring, the report presents (1) a review of federal regulatory requirements and representative state requirements, (2) brief descriptions of the contents and merits of available guidance documents and technical references, and (3) recommendations of the guidance documents or other technical resources that appear to be most appropriate for use in DOE's monitoring activities. The contents of the report are applicable to monitoring activities involving both radioactive and nonradioactive substances. The main sources of regulatory requirements considered in the report are the Atomic Energy Act (including the Uranium Mill Tailings Radiation Control Act), Resource Conservation and Recovery Act, Comprehensive Environmental Response, Compensation and Liability Act, Safe Drinking Water Act, Toxic Substances Control Act, and Federal Water Pollution Control Act

  5. Handling the decline of ground water using artificial recharge areas

    Science.gov (United States)

    Hidayatullah, Muhammad Shofi; Yoga, Kuncaraningrat Edi; Muslim, Dicky

    2017-11-01

    Jatinagor, a region with rapid growth cause increasing in water demand. The ground water surface in the observation area shows a decrease based on its potential. This deflation is mainly caused by the inequality between inputs and outputs of the ground water itself. The decrease of this ground water surface is also caused by the number of catchment areas that keeps decreasing. According to the data analysis of geology and hydrology, the condition of ground water in Jatinangor on 2015 had indicated a decrease compared to 2010. Nowadays, the longlivity of clean water can be ensure by the hydrogeology engineering, which is to construct an artificial recharge for ground water in use. The numerical method is aims to determine the number of ground water supply in Jatinangor. According to the research, the most suitable artificial recharge is in the form of a small dam located in the internment river. With the area of 209.000 m2, this dam will be able to contain 525 m3 runoff water with the intensity of maximum rainfall effectively 59,44 mm/hour. The increase of water volume generate by this artificial recharge, fulfilled the demand of clean water.

  6. Uranium mineralization by ground water in sedimentary rocks, Japan

    International Nuclear Information System (INIS)

    Doi, K.; Hirono, S.; Sakamaki, Y.

    1975-01-01

    To solve the mechanism of uranium concentration in stratabound uranium deposits occurring in the basal part of Neogene sediments overlying granite basement, attention was paid to uranium leaching from weathered granite by circulating carbonated fissure waters, to effective adsorbents for fixing uranium from uraniferous ground waters, to structural features controlling the ground-water circulation, and other relevant factors. The evidence for uranium transportation by hydothermal solutions, including hot spring waters, is hard to observe. Conclusions are summarized as follows: Uranium in the deposits is supplied from surrounding source rocks, mostly from granite. Uranium is transported by circulating ground-water solutions. The uranium dissolved in ground water is fixed in minerals in various ways, the most important being adsorption by carbonaceous matter. Ore-grade uranium concentrated from very dilute solutions occurs by multiple repetition of a leaching-and-fixation cycle between minerals or adsorbents and circulating uraniferous ground water. Important factors for uranium mineralization are sufficient uranium, supplied mostly from granite, the existence of effective adsorbents such as carbonaceous matter in the host rocks, and favorable geological, geochemical, and geophysical environments. The last seem to require not only physical and chemical conditions but also correct flow and volume of ground water. (U.S.)

  7. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  8. Design and optimization of a ground water monitoring system using GIS and multicriteria decision analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D.; Gupta, A.D.; Ramnarong, V.

    1998-12-31

    A GIS-based methodology has been developed to design a ground water monitoring system and implemented for a selected area in Mae-Klong River Basin, Thailand. A multicriteria decision-making analysis has been performed to optimize the network system based on major criteria which govern the monitoring network design such as minimization of cost of construction, reduction of kriging standard deviations, etc. The methodology developed in this study is a new approach to designing monitoring networks which can be used for any site considering site-specific aspects. It makes it possible to choose the best monitoring network from various alternatives based on the prioritization of decision factors.

  9. Effects of recharge, Upper Floridan aquifer heads, and time scale on simulated ground-water exchange with Lake Starr, a seepage lake in central Florida

    Science.gov (United States)

    Swancar, Amy; Lee, Terrie Mackin

    2003-01-01

    ground-water inflow to lakes, saturated-flow models of lake basins need to account for the potential effects of rapid and efficient recharge in the surficial aquifer system closest to the lake. In this part of the basin, the ability to accurately estimate recharge is crucial because the water table is shallowest and the response time between rainfall and recharge is shortest. Use of the one-dimensional LEACHM model to simulate the effects of the unsaturated zone on the timing and magnitude of recharge in the nearshore improved the simulation of peak values of ground-water inflow to Lake Starr. Results of weekly simulations suggest that weekly recharge can approach the majority of weekly rainfall on the nearshore part of the lake basin. However, even though a weekly simulation with higher recharge in the nearshore was able to reproduce the extremes of ground-water exchange with the lake more accurately, it was not consistently better at predicting net ground-water flow within the water budget error than a simulation with lower recharge. The more subtle effects of rainfall and recharge on ground-water inflow to the lake were more difficult to simulate. The use of variably saturated flow modeling, with time scales that are shorter than weekly and finer spatial discretization, is probably necessary to understand these processes. The basin-wide model of Lake Starr had difficulty simulating the full spectrum of ground-water inflows observed in the water budget because of insufficient information about recharge to ground water, and because of practical limits on spatial and temporal discretization in a model at this scale. In contrast, the saturated flow model appeared to successfully simulate the effects of heads in the Upper Floridan aquifer on water levels and ground-water exchange with the lake at both weekly and monthly stress periods. Most of the variability in lake leakage can be explained by the average vertical head difference between the lake and a re

  10. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    International Nuclear Information System (INIS)

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps

  11. Numerical modeling of ground-water flow systems in the vicinity of the reference repository location, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Davis, P.; Beyeler, W.; Logsdon, M.; Coleman, N.; Brinster, K.

    1989-04-01

    This report documents south-central Washington State's Pasco Basin ground-water modeling studies. This work was done to support the NRC's review of hydrogeologic studies under the Department of Energy's (DOE) Basalt Waste Isolation Project. The report provides a brief overview of the geology, hydrology, and hydrochemistry of the Pasco Basin as a basis for the evaluation of previous conceptual and numerical ground-water flow models of the region. Numerical models were developed to test new conceptual models of the site and to provide a means of evaluating the Department of Energy's performance assessments and proposed hydrologic testing. Regional ground-water flow modeling of an area larger than the Pasco Basin revealed that current concepts on the existence and behavior of a hydrologic barrier west of the proposed repository location are inconsistent with available data. This modeling also demonstrated that the measured pattern of hydraulic heads cannot be produced with a model that (1) has uniform layer properties over the entire domain; (2) has zones of large conductivity associated with anticlinal structures; or (3) includes recharge from the industrial disposal ponds. Adequate representation of the measured hydraulic heads was obtained with a model that contained regions of larger hydraulic conductivity that corresponded to the presence of sedimentary interbeds. In addition, a detailed model of a region smaller than the Pasco Basin was constructed to provide the NRC staff with the ability to analyze proposed Department of Energy hydrologic tests. 62 refs., 145 figs., 18 tabs

  12. California GAMA Program: Sources and Transport of Nitrate in Groundwater in the Livermore Valley Basin, California

    International Nuclear Information System (INIS)

    Beller, H; Eaton, G F; Ekwurzel, B E; Esser, B K; Hu, Q; Hudson, G B; Leif, R; McNab, W; Moody-Bartel, C; Moore, K; Moran, J E

    2005-01-01

    A critical component of the State Water Resource Control Board's Groundwater Ambient Monitoring and Assessment (GAMA) Program is to assess the major threats to groundwater resources that supply drinking water to Californians (Belitz et al., 2004). Nitrate concentrations approaching and greater than the maximum contaminant level (MCL) are impairing the viability of many groundwater basins as drinking water sources Source attribution and nitrate fate and transport are therefore the focus of special studies under the GAMA program. This report presents results of a study of nitrate contamination in the aquifer beneath the City of Livermore, where high nitrate levels affect both public supply and private domestic wells. Nitrate isotope data are effective in determining contaminant sources, especially when combined with other isotopic tracers such as stable isotopes of water and tritium-helium ages to give insight into the routes and timing of nitrate inputs to the flow system. This combination of techniques is demonstrated in Livermore, where it is determined that low nitrate reclaimed wastewater predominates in the northwest, while two flowpaths with distinct nitrate sources originate in the southeast. Along the eastern flowpath, (delta) 15 N values greater than 10(per t housand) indicate that animal waste is the primary source. Diminishing concentrations over time suggest that contamination results from historical land use practices. The other flowpath begins in an area where rapid recharge, primarily of low nitrate imported water (identified by stable isotopes of water and a tritium-helium residence time of less than 1 year), mobilizes a significant local nitrate source, bringing groundwater concentrations above the MCL of 45 mg NO 3 L -1 . In this area, artificial recharge of imported water via local arroyos induces flux of the contaminant to the regional aquifer. The low (delta) 15 N value (3.1(per t housand)) in this location implicates synthetic fertilizer

  13. Modelling of the evolution of ground waters in a granite system at low temperature: the Stripa ground waters, Sweden

    International Nuclear Information System (INIS)

    Grimaud, D.; Michard, G.; Beaucaire, C.

    1990-01-01

    From chemical data on the Stripa ground waters we have tried to model the evolution of the chemical composition of a ground water in a granitic system at low temperature. The existence of two end-member ground water compositions made it possible first, to test the conventional model of a geothermal system according to which an overall equilibrium between the waters and a given mineral assemblage can be defined, and then to show that such a model could be extended to low temperatures (10 o C). Conversely, if we know the mineral assemblage, the equilibration temperature and the charge of the mobile ions (in this case, Cl), the composition of the solution is entirely fixed. In our model of the Stripa ground waters, the existence of two end-member ground water compositions can be explained by an evolution from a ''kaolinite-albite-laumontite'' equilibrium to a ''prehnite-albite-laumontite'' equilibrium, the latter requiring less Al than the former. We have also emphasized the importance of the Cl ion concentrations of the ground waters, because they can be considered as indicators of the degree of reaction progress between rock and water, thus determining the degree of equilibration of the system. (author)

  14. Hanford Site ground-water monitoring for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C. [and others

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  15. Speciation and transport of radionuclides in ground water

    International Nuclear Information System (INIS)

    Robertson, D.E.; Toste, A.P.; Abel, K.H.; Cowan, C.E.; Jenne, E.A.; Thomas, C.W.

    1984-01-01

    Studies of the chemical speciation of a number of radionuclides migrating in a slightly contaminated ground water plume are identifying the most mobile species and providing an opportunity to test and/or validate geochemical models of radionuclide transport in ground waters. Results to date have shown that most of the migrating radionuclides are present in anionic or nonionic forms. These include anionic forms of 55 Fe, 60 Co, /sup 99m/Tc, 106 Ru, 131 I, and nonionic forms of 63 Ni and 125 Sb. Strontium-70 and a small fraction of the mobile 60 Co are the only cationic radionuclides which have been detected moving in the ground water plume beyond 30 meters from the source. A comparison of the observed chemical forms with the predicted species calculated from modeling thermodynamic data and ground water chemical parameters has indicated a good agreement for most of the radioelements in the system, including Tc, Np, Cs, Sr, Ce, Ru, Sb, Zn, and Mn. The discrepancies between observed and calculated solutions species were noted for Fe, Co, Ni and I. Traces of Fe, Co, and Ni were observed to migrate in anionic or nonionic forms which the calculations failed to predict. These anionic/nonionic species may be organic complexes having enhanced mobility in ground waters. The radioiodine, for example, was shown to behave totally as an anion but further investigation revealed that 49-57% of this anionic iodine was organically bound. The ground water and aqueous extracts of trench sediments contain a wide variety of organic compounds, some of which could serve as complexing agents for the radionuclides. These results indicate the need for further research at a variety of field sites in defining precisely the chemical forms of the mobile radionuclide species, and in better understanding the role of dissolved organic materials in ground water transport of radionuclides

  16. Hanford Site ground-water monitoring for 1993

    International Nuclear Information System (INIS)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site's geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices

  17. Water resources of southeastern Florida, with special reference to geology and ground water of the Miami area

    Science.gov (United States)

    Parker, Garald G.; Ferguson, G.E.; Love, S.K.

    1955-01-01

    The circulation of water, in any form, from the surface of the earth to the atmosphere and back again is called the hydrologic cycle. A comprehensive study of the water resources of any area must, therefore, include data on the climate of the area. The humid subtropical climate of southeast Florida is characterized by relatively high temperatures, alternating semi-annual wet and dry season, and usually light put persistent winds. The recurrence of drought in an area having relatively large rainfall such as southeastern Florida indicates that the agencies that remove water are especially effective. Two of the most important of the agencies associated with climate are evaporation and transpiration, or 'evapotranspiraton'. Evaporation losses from permanent water areas are believed to average between 40 and 45 inches per year. Over land areas indirect methods much be used to determine losses by evapotranspiration; necessarily, there values are not precise. Because of their importance in the occurrence and movement of both surface and ground waters, detailed studies were made of the geology and geomorphology of southern Florida. As a result of widespread crustal movements, southern Florida emerged from the sea in later Pliocene time and probably was slightly tilted to the west. At the beginning of the Pleistocene the continent emerged still farther as a result of the lowering of sea level attending the first widespread glaciation. During this epoch, south Florida may have stood several hundred feet above sea level. During the interglacial ages the sea repeatedly flooded southern Florida. The marine members of the Fort Thompson formation in the Lake Okeechobee-Everglades depression and the Calossahatchee River Valley apparently are the deposits of the interglacial invasions by the sea. The fresh-water marls, sands, and organic deposits of the Fort Thompson formation appear to have accumulated during glacial ages when seas level was low and the area was a land surface

  18. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    Science.gov (United States)

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  19. Map showing ground-water conditions in the Kaibito and Tuba City areas, Coconino and Navajo counties, Arizona, 1978

    Science.gov (United States)

    Farrar, C.D.

    1978-01-01

    The Kaibito and Tuba City areas include about 2,500 square miles in north-central Arizona. Ground water is obtained from the N aquifer and from alluvium. The N aquifer consists of Navajo Sandstone, Kayenta Formation, Moenave Formation, and the Lukachukai Member of the Wingate Sandstone. The main source of ground water is the Navajo Sandstone. Ground-water development has been slight in the areas. In 1977 the estimated ground-water withdrawals were about 350 acre-feet in the Kaibito area and 650 acre-feet in the Tuba City area. Water levels ranged from flowing at the land surface to 1,360 feet below the land surface. The chemical quality of the water in the N aquifer does not vary greatly in the areas. Dissolved-solids concentrations in the water range from 101 to 669 milligrams per liter but generally are less than 300 milligrams per liter. Along some of the valleys in the Kaibito and Tuba City areas, the alluvium yields water to many shallow dug wells. The water levels generally are from 5 to 15 feet below the land surface. Dissolved-solids concentrations in water from the alluvium usually are less than 600 milligrams per liter. Information shown on the map (scale 1:125,000) includes depth to water, altitude of the water level, and specific conductance and fluoride concentrations. (Woodard-USGS)

  20. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    Science.gov (United States)

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  1. Ground-water resources data for Baldwin County, Alabama

    Science.gov (United States)

    Robinson, James L.; Moreland, Richard S.; Clark, Amy E.

    1996-01-01

    Geologic and hydrologic data for 237 wells were collected, and water-levels in 223 wells in Baldwin and Escambia Counties were measured. Long-term water water-level data, available for many wells, indicate that ground-water levels in most of Baldwin County show no significant trends for the period of record. However, ground-water levels have declined in the general vicinity of Spanish Fort and Daphne, and ground-water levels in the Gulf Shores and Orange Beach areas are less than 5 feet above sea level in places. The quality of ground water generally is good, but problems with iron, sulfur, turbidity, and color occur. The water from most private wells in Baldwin County is used without treatment or filtration. Alabama public- health law requires that water from public-supply wells be chlorinated. Beyond that, the most common treatment of ground water by public-water suppliers in Baldwin County consists of pH adjustment, iron removal, and aeration. The transmissivity of the Miocene-Pliocene aquifer was determined at 10 locations in Baldwin County. Estimates of transmissivity ranged from 700 to 5,400 feet squared per day. In general, aquifer transmissivity was greatest in the southeastern part of the county, and least in the western part of the county near Mobile Bay. A storage coefficient of 1.5 x 10-3 was determined for the Miocene-Pliocene aquifer near Loxley.

  2. A strategy for improving pump and treat ground water remediation

    International Nuclear Information System (INIS)

    Hoffman, F.

    1992-07-01

    Established pump and treat ground water remediation has a reputation for being too expensive and time consuming, especially when cleanup standards are set at very low levels, e.g., 50 ft below ground surface) widespread ground water contamination. The perceived shortcomings of pump and treat result from the (1) tendency of most contaminants to sorb to formation materials, thus retarding contaminant removal; (2) geologic complexity, which requires detailed characterization for the design of optimal extraction systems within available resources; and (3) failure to apply dynamic well field management techniques. An alternative strategy for improving pump and treat ground water remediation consists of (1) detailed characterization of the geology, hydrology, and chemistry; (2) use of computer-aided data interpretation, data display, and decision support systems; (3) removal of sources, if possible; (4) initial design for plume containment and source remediation; (5) phased installation of the well field; (6) detailed monitoring of the remediation; (7) active ongoing re-evaluation of the operating well field, including redesign as appropriate (dynamic management); (8) re-injection of treated ground water to speed the flushing of contaminants; and (9) setting of appropriate cleanup levels or goals. Use of some or all of these techniques can dramatically reduce the time required to achieve cleanup goals and thus the cost of ground water remediation

  3. Analytic game—theoretic approach to ground-water extraction

    Science.gov (United States)

    Loáiciga, Hugo A.

    2004-09-01

    The roles of cooperation and non-cooperation in the sustainable exploitation of a jointly used groundwater resource have been quantified mathematically using an analytical game-theoretic formulation. Cooperative equilibrium arises when ground-water users respect water-level constraints and consider mutual impacts, which allows them to derive economic benefits from ground-water indefinitely, that is, to achieve sustainability. This work shows that cooperative equilibrium can be obtained from the solution of a quadratic programming problem. For cooperative equilibrium to hold, however, enforcement must be effective. Otherwise, according to the commonized costs-privatized profits paradox, there is a natural tendency towards non-cooperation and non-sustainable aquifer mining, of which overdraft is a typical symptom. Non-cooperative behavior arises when at least one ground-water user neglects the externalities of his adopted ground-water pumping strategy. In this instance, water-level constraints may be violated in a relatively short time and the economic benefits from ground-water extraction fall below those obtained with cooperative aquifer use. One example illustrates the game theoretic approach of this work.

  4. Ground-water conditions in Utah, spring of 1995

    Science.gov (United States)

    Allen, D.V.; Steiger, J.I.; Sory, J.D.; Garrett, R.B.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Gerner, S.J.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1995-01-01

    This is the thirty-second in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Department of Natural Resources, Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1994. Much of the reported data were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Divisions of Water Rights and Water Resources.

  5. Ground-water conditions in Utah, spring of 1994

    Science.gov (United States)

    Allen, D.V.; Garrett, R.B.; Sory, J.D.; Burden, Carole B.; Danner, M.R.; Herbert, L.R.; Steiger, J.I.; ReMillard, M.D.; Slaugh, B.A.; Swenson, R.L.; Howells, J.H.; Christiansen, H.K.; Bagley, A.D.

    1994-01-01

    This is the thirty-first in a series of annual reports that describe ground-water conditions in Utah. Reports in this series, published cooperatively by the U.S. Geological Survey and the Utah Division of Water Resources, provide data to enable interested parties to keep abreast of changing ground-water conditions.This report, like the others in the series, contains information on well construction, ground-water withdrawal from wells, water-level changes, related changes in precipitation and streamflow, and chemical quality of water. Supplementary data, such as maps showing water-level contours, are included in reports of this series only for those years or areas for which applicable data are available and are important to a discussion of changing ground-water conditions.This report includes individual discussions of selected significant areas of ground-water development in the State for calendar year 1993. Water-level fluctuations and selected related data, however, are described from the spring of 1989 to the spring of 1994. Much of the data used in this report were collected by the U.S. Geological Survey in cooperation with the Divisions of Water Rights and Water Resources, Utah Department of Natural Resources.

  6. Remediation of ground water containing volatile organic compounds and tritium

    International Nuclear Information System (INIS)

    Shukla, S.N.; Folsom, E.N.

    1994-03-01

    The Trailer 5475 (T-5475) East Taxi Strip Area at Lawrence Livermore National Laboratory (LLNL), Livermore, California was used as a taxi strip by the US Navy to taxi airplanes to the runway from 1942 to 1947. Solvents were used in some unpaved areas adjacent to the East Taxi Strip for cleaning airplanes. From 1953 through 1976, the area was used to store and treat liquid waste. From 1962 to 1976 ponds were constructed and used for evaporation of liquid waste. As a result, the ground water in this area contains volatile organic compounds (VOCs) and tritium. The ground water in this area is also known to contain hexavalent chromium that is probably naturally occurring. Therefore, LLNL has proposed ''pump-and-treat'' technology above grade in a completely closed loop system. The facility will be designed to remove the VOCs and hexavalent chromium, if any, from the ground water, and the treated ground water containing tritium will be reinjected where it will decay naturally in the subsurface. Ground water containing tritium will be reinjected into areas with equal or higher tritium concentrations to comply with California regulations

  7. Ground-Water Quality Data in the Central Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Ferrari, Matthew J.; Fram, Miranda S.; Belitz, Kenneth

    2008-01-01

    Ground-water quality in the approximately 950 square kilometer (370 square mile) Central Sierra study unit (CENSIE) was investigated in May 2006 as part of the Priority Basin Assessment project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin Assessment project was developed in response to the Ground-Water Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). This study was designed to provide a spatially unbiased assessment of the quality of raw ground water used for drinking-water supplies within CENSIE, and to facilitate statistically consistent comparisons of ground-water quality throughout California. Samples were collected from thirty wells in Madera County. Twenty-seven of the wells were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study area (grid wells), and three were selected to aid in evaluation of specific water-quality issues (understanding wells). Ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates), constituents of special interest (N-nitrosodimethylamine, perchlorate, and 1,2,3-trichloropropane), naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon], and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. In total, over 250 constituents and water-quality indicators were investigated. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected at approximately one-sixth of the wells, and

  8. Hydrogeology and simulation of ground-water flow at Arnold Air Force Base, Coffee and Franklin counties, Tennessee

    Science.gov (United States)

    Haugh, C.J.; Mahoney, E.N.

    1994-01-01

    The U.S. Air Force at Arnold Air Force Base (AAFB), in Coffee and Franklin Counties, Tennessee, is investigating ground-water contamination in selected areas of the base. This report documents the results of a comprehensive investigation of the regional hydrogeology of the AAFB area. Three aquifers within the Highland Rim aquifer system, the shallow aquifer, the Manchester aquifer, and the Fort Payne aquifer, have been identified in the study area. Of these, the Manchester aquifer is the primary source of water for domestic use. Drilling and water- quality data indicate that the Chattanooga Shale is an effective confining unit, isolating the Highland Rim aquifer system from the deeper, upper Central Basin aquifer system. A regional ground-water divide, approximately coinciding with the Duck River-Elk River drainage divide, underlies AAFB and runs from southwest to northeast. The general direction of most ground-water flow is to the north- west or to the northwest or to the southeast from the divide towards tributary streams that drain the area. Recharge estimates range from 4 to 11 inches per year. Digital computer modeling was used to simulate and provide a better understanding of the ground-water flow system. The model indicates that most of the ground-water flow occurs in the shallow and Manchester aquifers. The model was most sensitive to increases in hydraulic conductivity and changes in recharge rates. Particle-tracking analysis from selected sites of ground-water contamination indicates a potential for contami- nants to be transported beyond the boundary of AAFB.

  9. Identification of contaminants of concern in Hanford ground waters

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Evans, J.C.; Bryce, R.W.

    1990-01-01

    More than 1,500 waste-disposal sites have been identified at the U.S. Department of Energy Hanford Site. At the request of the U.S. Environmental Protection Agency, these sites were aggregated into four administrative areas for listing on the National Priority List. Within the four aggregate areas, 646 inactive sites were selected for further evaluation using the Hazard Ranking System (HRS). Evaluation of inactive waste sites by HRS provided valuable insight to design a focused radiological- and hazardous-substance monitoring network. Hanford Site-wide ground-water monitoring was expanded to address not only radioactive constituents but also hazardous chemicals. The HRS scoring process considers the likelihood of ground-water contamination from past disposal practices at inactive waste sites. The network designed to monitor ground water at those facilities identified 129 I, 99 Tc, 90 Sr, uranium, chromium, carbon tetrachloride, and cyanide

  10. The effect of the earth's rotation on ground water motion.

    Science.gov (United States)

    Loáiciga, Hugo A

    2007-01-01

    The average pore velocity of ground water according to Darcy's law is a function of the fluid pressure gradient and the gravitational force (per unit volume of ground water) and of aquifer properties. There is also an acceleration exerted on ground water that arises from the Earth's rotation. The magnitude and direction of this rotation-induced force are determined in exact mathematical form in this article. It is calculated that the gravitational force is at least 300 times larger than the largest rotation-induced force anywhere on Earth, the latter force being maximal along the equator and approximately equal to 34 N/m(3) there. This compares with a gravitational force of approximately 10(4) N/m(3).

  11. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  12. Report of analyses for light hydrocarbons in ground water

    International Nuclear Information System (INIS)

    Dromgoole, E.L.

    1982-04-01

    This report contains on microfiche the results of analyses for methane, ethane, propane, and butane in 11,659 ground water samples collected in 47 western and three eastern 1 0 x 2 0 quadrangles of the National Topographic Map Series (Figures 1 and 2), along with a brief description of the analytical technique used and some simple, descriptive statistics. The ground water samples were collected as part of the National Uranium Resource Evaluation (NURE) hydrogeochemical and stream sediment reconnaissance. Further information on the ground water samples can be obtained by consulting the NURE data reports for the individual quadrangles. This information includes (1) measurements characterizing water samples (pH, conductivity, and alkalinity), (2) physical measurements, where applicable (water temperature, well description, and other measurements), and (3) elemental analyses

  13. Resolving superimposed ground-water contaminant plumes characterized by chromium, nitrate, uranium, and technetium--99

    International Nuclear Information System (INIS)

    Hall, S.H.

    1990-02-01

    Leakage from a liquid waste storage and solar evaporation basin at the Hanford Site in southeastern Washington State has resulted in a ground-water contaminant plume characterized by nitrate, hexavalent chromium, uranium, and technetium-99. The plume is superimposed on a larger, pre-existing plume extending from upgradient sites and having the same suite of contaminants. However, the relative abundance of contaminant species is quite different for each plume source. Thus, characteristic concentration ratios, rather than concentrations of individual species, are used as geochemical tracers, with emphasis on graphical analysis. Accordingly, it has been possible to resolve the boundaries of the smaller plume and to estimate the contribution of each plume to the observed contamination downgradient from the storage basin. 11 refs., 7 figs

  14. The Virginia Beach shallow ground-water study

    Science.gov (United States)

    Johnson, Henry M.

    1999-01-01

    IntroductionVirginia Beach is a rapidly growing city of more than 425,000 people. Sources of fresh water within the city, however, are limited. Prior to 1998, the Virginia Beach Public Utilities Department met the city's water needs by purchasing treated drinking water from the City of Norfolk. Because Norfolk had to meet its own requirements, the amount of water available to Virginia Beach was limited to about 30 million gallons per day (mgd) and even less during droughts. This water supply was supplemented with ground water from city-owned, community, and private wells. In many parts of the city, however, ground water cannot be used because of high concentrations of chloride, iron, and (or) sulfur, which give the water an unpleasant taste.In early 1998, a pipeline came on-line that can carry up to 45 mgd of water from Lake Gaston to Virginia Beach. The Gaston pipeline has alleviated concerns about water supply and quality for most residents living north of the "Green Line." These residents primarily use ground water only for small-scale domestic activities such as watering lawns, filling ponds and pools, and washing cars. City water and sewer services have been extended beyond the Green Line into the "Transition Area." Residents and businesses south of the Transition Area, however, continue to rely on ground water to meet most of their needs for potable and non-potable water. To help assure a continued, reliable supply of ground water, the U.S. Geological Survey (USGS), in cooperation with the City of Virginia Beach Public Utilities Department, has begun an assessment of the shallow ground-water resources underlying the City of Virginia Beach.

  15. Apparatus for ground water chemistry investigations in field caissons

    International Nuclear Information System (INIS)

    Cokal, E.J.; Stallings, E.; Walker, R.; Nyhan, J.W.; Polzer, W.L.; Essington, E.H.

    1985-01-01

    Los Alamos is currently in its second season of ground water chemistry and hydrology experimentation in a field facility that incorporates clusters of six, 3-meter-diameter by 6-meter-deep, soil-filled caissons and required ancillaries. Initial experience gained during the 1983 field season indicated the need for further development of the technology of this type of experimentation supporting hydrologic waste management research. Uniform field application of water/matrix solutions to the caisson, matrix and tracer solution blending/storage, and devices for ground water sampling are discussed

  16. Temporal variation of uranium in ground water with conductivity

    International Nuclear Information System (INIS)

    Pulhani, Vandana; Chaudhury, Moushumi D.; Jha, S.K.; Tripathi, R.M.

    2015-01-01

    The concentration of uranium in drinking water sources is a matter of health concern since it has been proved to be chemo-toxic to humans. Uranium being a more soluble actinide is also very mobile in the environment. The effect of water quality parameters and their co-relation to uranium content in the water is an interesting study to understand and predict its behavior in ground water and subsequently to judge the hazard posed. Hence studies on spatial and temporal variation of uranium concentration with electrical conductivity, pH, total dissolved solids and salinity in ground water was carried out. (author)

  17. The Hydrolysis of Di-Isopropyl Methylphosphonate in Ground Water

    Energy Technology Data Exchange (ETDEWEB)

    Sega, G.A., Tomkins, B.A., Griest, W.H., Bayne, C.K.

    1997-12-31

    Di-isopropyl methylphosphonate (DIMP) is a byproduct from the manufacture of the nerve agent Sarin. The persistence of DIMP in the ground water is an important question in evaluating the potential environmental impacts of DIMP contamination. The half-life of DIMP in ground water at 10 deg C was estimated to be 500 years with a 95% confidence interval of 447 to 559 years from measurements of the hydrolysis rates at temperatures between 70 to 98 deg C.Extrapolation of the kinetics to 10 deg C used the Arrhenius equation, and calculation of the half-life assumed first-order kinetics. Inorganic phosphate was not detected.

  18. Shallow ground-water conditions, Tom Green County, Texas

    Science.gov (United States)

    Lee, J.N.

    1986-01-01

    Most of the water needs of Tom Green County, Texas, are supplied by ground water; however, the city of San Angelo is supplied by surface water. Groundwater withdrawals during 1980 (latest year for which data are available) in Tom Green County totaled about 15,300 acre-feet, all derived from shallow aquifers. Shallow aquifers in this report refer to the ground-water system generally less than 400 feet deep that contains water with less than a 10,000 milligrams per liter concentration of dissolved solids; aquifers comprising this system include: The Leona, Comanche Peak, Trinity, Blaine, San Angelo, Choza, Bullwagon, Vale, Standpipe, and Arroyo aquifers.

  19. Valuation of potential hazards to ground water from abandoned sites

    International Nuclear Information System (INIS)

    Kerndorff, H.; Schleyer, R.; Dieter, H.H.

    1993-01-01

    With a view to obtaining, for the large number of abandoned sites suspected of pollution, necessary information regarding the type and extent of possible ground water contamination with a minimum of effort and cost, a hierarchical investigation strategy was developed and successfully tested in more than 100 cases in Germany. As a decisive advantage, already the well-defined and simple investigation steps ''preliminary prospecting'' and ''screening'' permit to recognize polluted sites posing a hazard to ground water. The more specific and demanding investigation steps ''pollutant analysis'' and ''detailed investigations'' may be carried through if necessary. (orig./BBR). 27 figs., 36 tabs [de

  20. Ground Water Recharge Estimation Using Water Table Fluctuation Method And By GIS Applications

    Science.gov (United States)

    Vajja, V.; Bekkam, V.; Nune, R.; M. v. S, R.

    2007-05-01

    Quite often it has become a debating point that how much recharge is occurring to the groundwater table through rainfall on one hand and through recharge structures such as percolation ponds and checkdams on the other. In the present investigations Musi basin of Andhra Pradesh, India is selected for study during the period 2005-06. Pre-monsoon and Post-monsoon groundwater levels are collected through out the Musi basin at 89 locations covering an area11, 291.69 km2. Geology of the study area and rainfall data during the study period has been collected. The contour maps of rainfall and the change in groundwater level between Pre-monsoon and Post- monsoon have been prepared. First the change in groundwater storage is estimated for each successive strips of areas enclosed between two contours of groundwater level fluctuations. In this calculation Specific yield (Sy) values are adopted based on the local Geology. Areas between the contours are estimated through Arc GIS software package. All such storages are added to compute the total storage for the entire basin. In order to find out the percent of rainfall converted into groundwater storage as well as to find out the ground water recharge due to storageponds, a contour map of rainfall for the study area is prepared and areas between successive contours have been calculated. Based on the Geology map, Infiltration values are adopted for each successive strip of the contour area. Then the amount of water infiltrated into the ground is calculated by adjusting the infiltration values for each strip, so that the total infiltrated water for the entire basin is matched with change in Ground water storage, which is 1314.37 MCM for the upper Musi basin while it is 2827.29 MCM for entire Musi basin. With this procedure on an average 29.68 and 30.66 percent of Rainfall is converted into Groundwater recharge for Upper Musi and for entire Musi basin respectively. In the total recharge, the contribution of rainfall directly to

  1. The glacially overdeepened trough of the Salzach Valley, Austria: Bedrock geometry and sedimentary fill of a major Alpine subglacial basin

    Science.gov (United States)

    Pomper, Johannes; Salcher, Bernhard C.; Eichkitz, Christoph; Prasicek, Günther; Lang, Andreas; Lindner, Martin; Götz, Joachim

    2017-10-01

    Overdeepened valleys are unambiguous features of glacially sculpted landscapes. They result from erosion at the bed of the glacier and their size and shape is determined by ice dynamics and the characteristics of the underlying bedrock. Major overdeepened valleys representing vertical bedrock erosion of several hundreds of meters are characteristic features of many trunk valleys in the formerly glaciated parts of the Alpine mountain belt. The thick sedimentary fill usually hinders attempts to unravel bedrock geometry, formation history and fill characteristics. Based on reflection seismic data and core-logs from multiple deep drillings we construct a detailed bedrock model of the Lower Salzach Valley trough, one of the largest overdeepened valleys in the European Alps. The analysed overdeepened structure characterized by a strongly undulating topography. Two reaches of enhanced erosion can be identified and are suggested to be related to variations in bedrock erodibility and a triple glacier confluence. The sedimentary fill shows clear characteristics of rapid infilling and subaqueous fan delta deposits indicate a strong influence of tributary streams. Associated surface lowering of the valley floor had a major impact on tributary stream incision but also on the available ice accumulation area at subsequent glaciations. The extent to which fills of earlier glaciations have been preserved from erosion during the last glacial maximum remains ambiguous and demands further exploration. To our knowledge the presented bedrock model is one of the best defined of any major overdeepened trunk valley.

  2. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    Science.gov (United States)

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  3. Implications of diapir-derived detritus and gypsic paleosols in Lower Triassic strata near the Castle Valley salt wall, Paradox Basin, Utah

    Science.gov (United States)

    Lawton, Timothy F.; Buck, Brenda J.

    2006-10-01

    Gypsum-bearing growth strata and sedimentary facies of the Moenkopi Formation on the crest and NE flank of the Castle Valley salt wall in the Paradox Basin record salt rise, evaporite exposure, and salt-withdrawal subsidence during the Early Triassic. Detrital gypsum and dolomite clasts derived from the middle Pennsylvanian Paradox Formation were deposited in strata within a few kilometers of the salt wall and indicate that salt rise rates roughly balanced sediment accumulation, resulting in long-term exposure of mobile evaporite. Deposition took place primarily in flood-basin or inland sabkha settings that alternated between shallow subaqueous and subaerial conditions in a hyperarid climate. Matrix-supported and clast-supported conglomerates with gypsum fragments represent debris-flow deposits and reworked debris-flow deposits, respectively, interbedded with flood-basin sandstone and siltstone during development of diapiric topography. Mudstone-rich flood-basin deposits with numerous stage I to III gypsic paleosols capped by eolian gypsum sand sheets accumulated during waning salt-withdrawal subsidence. Association of detrital gypsum, eolian gypsum, and gypsic paleosols suggests that the salt wall provided a common source for gypsum in the surrounding strata. This study documents a previously unrecognized salt weld with associated growth strata containing diapir-derived detritus and gypsic palesols that can be used to interpret halokinesis.

  4. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    Science.gov (United States)

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  5. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the 2007 Slide and Grass Valley Fires, San Bernardino County, Southern California

    Science.gov (United States)

    Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.

    2007-01-01

    INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.

  6. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste-characterization of the Death Valley region, Nevada and California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, K.A.; Langer, W.H.

    1989-01-01

    The Death Valley region, Nevada and California, in the Basin and Range province, is an area of about 80,200 sq km located in southern Nevada and southeastern California. Precambrian metamorphic and intrusive basement rocks are overlain by a thick section of Paleozoic clastic and evaporitic sedimentary rocks. Mesozoic and Cenozoic rocks include extrusive and intrusive rocks and clastic sedimentary rocks. Structural features within the Death Valley indicate a long and complex tectonic evolution from late Precambrian to the present. Potential repository host media in the region include granite and other coarse-grained plutonic rocks, ashflow tuff, basaltic and andesitic lava flows, and basin fill. The Death Valley region is composed largely of closed topographic basins that are apparently coincident with closed groundwater flow systems. In these systems, recharge occurs sparingly at higher altitudes by infiltration of precipitation or by infiltration of ephemeral runoff. Discharge occurs largely by spring flow and by evaporation and transpiration in the playas. Death Valley proper, for which the region was named, is the ultimate discharge area for a large, complex system of groundwater aquifers that occupy the northeastern part of the region. The deepest part of the system consists of carbonate aquifers that connect closed topographic basins at depth. The discharge from the system occurs in several intermediate areas that are geomorphically, stratigraphically, and structurally controlled. Ultimately, most groundwater flow terminates by discharge to Death Valley; groundwater is discharged to the Colorado River from a small part of the region

  7. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    Science.gov (United States)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  8. Hydrology and snowmelt simulation of Snyderville Basin, Park City, and adjacent areas, Summit County, Utah

    Science.gov (United States)

    Brooks, Lynette E.; Mason, James L.; Susong, David D.

    1998-01-01

    Increasing residential and commercial development is placing increased demands on the ground- and surface-water resources of Snyderville Basin, Park City, and adjacent areas in the southwestern corner of Summit County, Utah. Data collected during 1993-95 were used to assess the quantity and quality of the water resources in the study area.Ground water within the study area is present in consolidated rocks and unconsolidated valley fill. The complex geology makes it difficult to determine the degree of hydraulic connection between different blocks of consolidated rocks. Increased ground-water withdrawal during 1983- 95 generally has not affected ground-water levels. Ground-water withdrawal in some areas, however, caused seasonal fluctuations and a decline in ground-water levels from 1994 to 1995, despite greater-than-normal recharge in the spring of 1995.Ground water generally has a dissolved-solids concentration that ranges from 200 to 600 mg/L. Higher sulfate concentrations in water from wells and springs near Park City and in McLeod Creek and East Canyon Creek than in other parts of the study area are the result of mixing with water that discharges from the Spiro Tunnel. The presence of chloride in water from wells and springs near Park City and in streams and wells near Interstate Highway 80 is probably caused by the dissolution of applied road salt. Chlorofluorocarbon analyses indicate that even though water levels rise within a few weeks of snowmelt, the water took 15 to 40 years to move from areas of recharge to areas of discharge.Water budgets for the entire study area and for six subbasins were developed to better understand the hydrologic system. Ground-water recharge from precipitation made up about 80 percent of the ground-water recharge in the study area. Ground-water discharge to streams made up about 40 percent of the surface water in the study area and ground-water discharge to springs and mine tunnels made up about 25 percent. Increasing use of

  9. DETERMINING HOW VAPOR PHASE MTBE REACHES GROUND WATER

    Science.gov (United States)

    EPA Region 2 and ORD have funded a RARE project for FY 2005/2006 to evaluate the prospects that MTBE (and other fuel components) in vapors that escape from an underground storage tank (UST) can find its way to ground water produced by monitoring wells at a gasoline filling statio...

  10. Hanford Site ground-water monitoring for 1991

    International Nuclear Information System (INIS)

    Evans, J.C.; Bryce, R.W.; Bates, D.J.

    1992-10-01

    The Pacific Northwest Laboratory (PNL) monitors the distribution of radionuclides and other hazardous materials in ground water at the Hanford Site for the US Department of Energy (DOE). This work is performed through the Ground-Water Surveillance Project and is designed to meet the requirements of DOE Order 5400.1 that apply to environmental surveillance and ground-water monitoring (DOE 1988). This annual report discusses results of ground-water monitoring at the Hanford Site during 1991. In addition to the general discussion, the following topics are discussed in detail: (1) carbon tetrachloride in the 200-West Area; (2) cyanide in and north of the 200-East and the 200-West areas; (3) hexavalent chromium contamination in the 100, 200, and 600 areas; (4) trichloroethylene in the vicinity of the Solid Waste Landfill, 100-F Area, and 300 Area; (5) nitrate across the Site; (6) tritium across the Site; and (7) other radionuclide contamination throughout the Site, including gross alpha, gross beta, cobalt-60, strontium-90, technetium-99, iodine-129, cesium-137, uranium, and plutonium

  11. Development and evaluation of an ultrasonic ground water seepage meter.

    Science.gov (United States)

    Paulsen, R J; Smith, C F; O'Rourke, D; Wong, T F

    2001-01-01

    Submarine ground water discharge can influence significantly the near-shore transport and flux of chemicals into the oceans. Quantification of the sources and rates of such discharge requires a ground water seepage meter that provides continuous measurements at high resolution over an extended period of time. An ultrasonic flowmeter has been adapted for such measurements in the submarine environment. Connected to a steel collection funnel, the meter houses two piezoelectric transducers mounted at opposite ends of a cylindrical flow tube. By monitoring the perturbations of fluid flow on the propagation of sound waves inside the flow tube, the ultrasonic meter can measure both forward and reverse fluid flows in real time. Laboratory and field calibrations show that the ultrasonic meter can resolve ground water discharges on the order of 0.1 microm/sec, and it is sufficiently robust for deployment in the field for several days. Data from West Neck Bay, Shelter Island, New York, elucidate the temporal and spatial heterogeneity of submarine ground water discharge and its interplay with tidal loading. A negative correlation between the discharge and tidal elevation was generally observed. A methodology was also developed whereby data for the sound velocity as a function of temperature can be used to infer the salinity and source of the submarine discharge. Independent measurements of electrical conductance were performed to validate this methodology.

  12. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  13. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  14. Geophysical techniques for the study of ground water pollution: A ...

    African Journals Online (AJOL)

    Geophysical techniques for the study of ground water pollution: A review. IB Osazuwa, NK Abdulahi. Abstract. No Abstract. Nigerian Journal of Physics Vol. 20 (1) 2008: pp.163-174. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. Ground water arsenic contamination: A local survey in India

    Directory of Open Access Journals (Sweden)

    Arun Kumar

    2016-01-01

    Conclusions: The present study concludes that in Simri village there is high contamination of arsenic in ground water in all the strips. Such a huge population is at very high risk leading the village on the verge of causing health hazards among them. Therefore, an immediate strategy is required to combat the present problem.

  16. Ground-water conditions in the vicinity of Enid, Oklahoma

    Science.gov (United States)

    Schoff, Stuart L.

    1948-01-01

    This memorandum summaries matter discussed at a meeting of the City Commission of Enid, Oklahoma, on Thursday, January 15, 1948, at which the write presented a brief analysis of the ground-water resources available to the City of Enid and answered questions brought up by the commissioners.

  17. Second status report on regional and local ground-water flow modeling for Richton and Cypress Creek Domes, Mississippi

    International Nuclear Information System (INIS)

    1986-08-01

    Regional and local ground-water flow within the principal geohydrologic units in the Mississippi salt-dome basin is evaluated by developing conceptual models of the flow regime at a regional and a local scale and testing these models using a three-dimensional, finite-difference flow code. Semiquantitative sensitivity analyses (a limited parametric study) are conducted to define the system response to changes in the conceptual models. The conceptual models are described in terms of their areal and vertical discretizations, aquifer properties, fluid properties, and hydrologic boundary conditions. The simulated ground-water flow fields are described with potentiometric surfaces, areas of upward and downward flow across aquitards, tables summarizing the real and vertical volumetric flows through the principal units, and Darcy velocities with specified finite-difference blocks. Ground-water travel paths and times from both Richton Dome and Cypress Creek Dome are provided. The regional scale simulation results are discussed with regard to measured field data. The reported work is the second state of an ongoing evaluation of Richton and Cypress Creek Domes as potential repositories for high-level radioactive wastes. The results and conclusions should thus be considered preliminary and subject to modification with the collection of additional data. However, the report does provide a useful basis for describing the sensitivity of the present conceptualization of ground-water flow to parameterization and, to a lesser extent, the uncertainties in the present conceptualization. 19 refs., 33 figs., 25 tabs

  18. Ground-water contamination and legal controls in Michigan

    Science.gov (United States)

    Deutsch, Morris

    1963-01-01

    The great importance of the fresh ground-water resources of Michigan is evident because 90 percent of the rural and about 70 percent of the total population of the State exclusive of the Detroit metropolitan area are supplied from underground sources. The water-supply and public-health problems that have been caused by some cases of ground-water contamination in the State illustrate the necessity of protecting this vital resource.Manmade and natural contaminants, including many types of chemical and organic matter, have entered many of the numerous aquifers of the State. Aquifers have been contaminated by waste-laden liquids percolating from the surface or from the zone of aeration and by direct injection to the aquifer itself. Industrial and domestic wastes, septic tanks, leaking sewers, flood waters or other poor quality surface waters, mine waters, solids stored or spread at the surface, and even airborne wastes all have been sources of ground-water contamination in Michigan. In addition, naturally occurring saline waters have been induced into other aquifers by overpumping or unrestricted flow from artesian wells, possibly by dewatering operations, and by the deepening of surface stream channels. Vertical migration of saline waters through open holes from formations underlying various important aquifers also has spoiled some of the fresh ground waters in the State. In spite of the contamination that has occurred, however, the total amount of ground water that has been spoiled is only a small part of the total resource. Neither is the contamination so widespread as that of the surface streams of Michigan.Overall legal authority to control most types of ground-water contamination in the State has been assigned by the Michigan Legislature to the Water Resources Commission, although the Department of Conservation and the Health Department also exercise important water-pollution control functions. The Michigan Supreme Court, in an important case upholding the power

  19. Core fracture analysis applied to ground water flow systems: Chickamauga Group, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Bittner, E.; Dreier, R.B.

    1989-01-01

    The objective of this study is to correlate hydrologic properties with detailed geologic fabrics and to investigate the influence of a complex geologic setting on ground water systems. The Chickamauga Group (CH) located in Bethel Valley on the DOE Oak Ridge Reservation is comprised of limestones and interbedded shales. Five core holes (CH 1-5), oriented across strike, provide a cross section of the CH and were mapped for fracture density, orientation and cross-cutting relationships as well as lithologic variations. Correlation of structural and lithologic features with downhole geophysical logs and hydraulic conductivity values shows a relationship between lithology, fracture density and increased permeability in an otherwise low-permeability environment. Structures identified as influential in enhancing hydraulic conductivity include contractional bedding plane and tectonic stylolites and extensional fractures. Three sets of extensional fractures are indicated by cross-cutting relationships and various degrees of veining. Hydraulic conductivity values (K) for the five wells indicate two ground water flow systems in the valley. A shallow system (up to 150 feet deep) shows a range in K from 10E-4 centimeters per second to 10E-6 centimeters per second. Shallow horizons show more open fractures than are observed at depth, and these fractures appear to control the enhanced K in the shallow system. A subhorizontal interface that is not defined by pre-existing structures or a stratigraphic horizon separates the two flow systems. The deeper system ranges in K values from 10E-9 centimeters per second to 10E-5 centimeters per second. The higher K values at depth correspond to increased fracture density at lithologic contacts, zones of tectonic stylolitization and partially veined extension fractures. 11 refs., 11 figs., 2 tabs

  20. Status of groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units, 2005-08: California GAMA Priority Basin Project

    Science.gov (United States)

    Bennett, George L.; Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the Southern, Middle, and Northern Sacramento Valley study units was investigated as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study units are located in California's Central Valley and include parts of Butte, Colusa, Glenn, Placer, Sacramento, Shasta, Solano, Sutter, Tehama, Yolo, and Yuba Counties. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory. The three study units were designated to provide spatially-unbiased assessments of the quality of untreated groundwater in three parts of the Central Valley hydrogeologic province, as well as to provide a statistically consistent basis for comparing water quality regionally and statewide. Samples were collected in 2005 (Southern Sacramento Valley), 2006 (Middle Sacramento Valley), and 2007-08 (Northern Sacramento Valley). The GAMA studies in the Southern, Middle, and Northern Sacramento Valley were designed to provide statistically robust assessments of the quality of untreated groundwater in the primary aquifer systems that are used for drinking-water supply. The assessments are based on water-quality data collected by the USGS from 235 wells in the three study units in 2005-08, and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter, referred to as primary aquifers) assessed in this study are defined by the depth intervals of the wells in the CDPH database for each study unit. The quality of groundwater in shallow or deep water-bearing zones may differ from quality of groundwater in the primary aquifers; shallow groundwater may be more vulnerable to contamination from the surface. The status of the current quality of the groundwater resource was assessed by using data from samples analyzed for volatile organic

  1. Studies of geology and hydrology in the Basin and Range province, southwestern United States, for isolation of high-level radioactive waste: characterization of the Sonoran region, California

    International Nuclear Information System (INIS)

    Bedinger, M.S.; Sargent, Kenneth A.; Langer, William H.

    1989-01-01

    The Sonoran region of California lies west of the Colorado River and adjoins the Mojave Desert on the west, Death Valley on the northwest, and the Salton trough on the south. The region is arid with annual precipitation ranging from less than 80 millimeters to as great as 250 millimeters in one mountain range; annual free-surface evaporation is as great as 2,500 millimeters. The characteristic basin and range topography of the region was caused by a mid-Tertiary period of intense crustal extension, accompanied by volcanic eruptions, clastic sedimentation, faulting, and tilting. Potential host media for isolation of high-level radioactive waste include granite and other coarsegrained plutonic rocks, ash-flow tuff, and basalt and basaltic andesite lava flows. Thick sections of the unsaturated zone in basin fill, intrusive, and volcanic rocks appear to have potential as host media. The region is bordered on the west by areas of relatively greater Quaternary faulting, vertical crustal uplift, and seismicity. The region has a few areas of Quaternary volcanic activity. Geothermal heat flows of 2.5 heat-flow units or greater and one earthquake of magnitude 6-7 have been recorded. The region includes topographically closed basins as well as basins that drain to the Colorado River. Dry lakes and playas occupy the closed basins. Ground-water recharge and surface runoff are small because of the small amount of precipitation and great potential evaporation. Natural ground-water discharge is by evaporation in the basin playas and by underflow to the Colorado River. Dissolved-solids concentration of ground water generally is less than 500 milligrams per liter, and much of it is of the sodium bicarbonate type. Ground water is saline in many of the playas, and chloride or sulfate is the predominant anion. Small tonnages of ore have been produced from numerous precious and fewer base-metal deposits. (author)

  2. Ground-water temperature of the Wyoming quadrangle in central Delaware : with application to ground-water-source heat pumps

    Science.gov (United States)

    Hodges, Arthur L.

    1982-01-01

    Ground-water temperature was measured during a one-year period (1980-81) in 20 wells in the Wyoming Quadrangle in central Delaware. Data from thermistors set at fixed depths in two wells were collected twice each week, and vertical temperature profiles of the remaining 18 wells were made monthly. Ground-water temperature at 8 feet below land surface in well Jc55-1 ranged from 45.0 degrees F in February to 70.1 degrees F in September. Temperature at 35 feet below land surface in the same well reached a minimum of 56.0 degrees F in August, and a maximum of 57.8 degrees F in February. Average annual temperature of ground water at 25 feet below land surface in all wells ranged from 54.6 degrees F to 57.8 degrees F. Variations of average temperature probably reflect the presence or absence of forestation in the recharge areas of the wells. Ground-water-source heat pumps supplied with water from wells 30 or more feet below land surface will operate more efficiently in both heating and cooling modes than those supplied with water from shallower depths. (USGS)

  3. Petroleum systems and geologic assessment of undiscovered oil and gas, Cotton Valley group and Travis Peak-Hosston formations, East Texas basin and Louisiana-Mississippi salt basins provinces of the northern Gulf Coast region. Chapters 1-7.

    Science.gov (United States)

    ,

    2006-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.

  4. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  5. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    Science.gov (United States)

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  6. Ground-Water Quality Data in the Southern Sierra Study Unit, 2006 - Results from the California GAMA Program

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2007-01-01

    Ground-water quality in the approximately 1,800 square-mile Southern Sierra study unit (SOSA) was investigated in June 2006 as part of the Statewide Basin Assessment Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA Statewide Basin Assessment Project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Southern Sierra study was designed to provide a spatially unbiased assessment of raw ground-water quality within SOSA, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from fifty wells in Kern and Tulare Counties. Thirty-five of the wells were selected using a randomized grid-based method to provide statistical representation of the study area, and fifteen were selected to evaluate changes in water chemistry along ground-water flow paths. The ground-water samples were analyzed for a large number of synthetic organic constituents [volatile organic compounds (VOCs), pesticides and pesticide degradates, pharmaceutical compounds, and wastewater-indicator compounds], constituents of special interest [perchlorate, N-nitrosodimethylamine (NDMA), and 1,2,3-trichloropropane (1,2,3-TCP)], naturally occurring inorganic constituents [nutrients, major and minor ions, and trace elements], radioactive constituents, and microbial indicators. Naturally occurring isotopes [tritium, and carbon-14, and stable isotopes of hydrogen and oxygen in water], and dissolved noble gases also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blanks, replicates, and samples for matrix spikes) were collected for approximately one-eighth of the wells, and the results for these samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the

  7. Ground-Water Quality Data in the San Francisco Bay Study Unit, 2007: Results from the California GAMA Program

    Science.gov (United States)

    Ray, Mary C.; Kulongoski, Justin T.; Belitz, Kenneth

    2009-01-01

    Ground-water quality in the approximately 620-square-mile San Francisco Bay study unit (SFBAY) was investigated from April through June 2007 as part of the Priority Basin project of the Ground-Water Ambient Monitoring and Assessment (GAMA) Program. The GAMA Priority Basin project was developed in response to the Groundwater Quality Monitoring Act of 2001, and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The study was designed to provide a spatially unbiased assessment of raw ground-water quality, as well as a statistically consistent basis for comparing water quality throughout California. Samples in SFBAY were collected from 79 wells in San Francisco, San Mateo, Santa Clara, Alameda, and Contra Costa Counties. Forty-three of the wells sampled were selected using a spatially distributed, randomized grid-based method to provide statistical representation of the study unit (grid wells). Thirty-six wells were sampled to aid in evaluation of specific water-quality issues (understanding wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOC], pesticides and pesticide degradates, pharmaceutical compounds, and potential wastewater-indicator compounds), constituents of special interest (perchlorate and N-nitrosodimethylamine [NDMA]), naturally occurring inorganic constituents (nutrients, major and minor ions, trace elements, chloride and bromide isotopes, and uranium and strontium isotopes), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, carbon-14 isotopes, and stable isotopes of hydrogen, oxygen, nitrogen, boron, and carbon), and dissolved noble gases (noble gases were analyzed in collaboration with Lawrence Livermore National Laboratory) also were measured to help identify the source and age of the sampled ground water. Quality-control samples (blank samples

  8. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  9. Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

    Science.gov (United States)

    Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.

    2008-01-01

    Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were

  10. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2016-02-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater . For betterment sanitary condition villages and pure waters in their area will be a necessity of right infrastructure and good condition (sewers, water treatments and proper animal excrements management. Research conducted in 2001–2011 in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were placed (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in a ground water which are exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from the source of pollutants. Also water from a farm wells, which are periodically used, manifested the presence of large chemical elements concentration, especially NO3- and PO43-, what proves a constant inflow of pollutants. For monitoring ground water in samples we marked the concentration of NH4+, NO3- i PO43- and pH.

  11. ESTIMATION OF THE INFLUENCE OF FARM INFRASTRUCTURE ON THE POLLUTION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Tadeusz Durkowski

    2015-11-01

    Full Text Available In farm areas, evacuations of animal excrements (manure, liquid manure, slurry and domestic sewage are most dangerous for pure groundwater. For betterment sanitary condition villages and pure waters in their area will be necessity of right infrastructure and good condition (canalization, water treatments and proper animal excrements management. Researches conducted in 2001–2011 years in six farms located in the area of a few villages in the basin of Miedwie lake. Researches points were put (piezometer and wells in the area of these farms. High concentration of NH4+, NO3- and PO43- were found in ground water which is exposed to contact inflow of pollutant from farms areas, and sources which are occurred in outlying from a source of pollutants. Also water from a farm wells, which are periodically used, showed the presence of large concentrations of chemical elements especially NO3- and PO43- what proves constant inflow of pollutants. For monitoring ground water we marked concentration of NH4+, NO3- i PO43- and pH in the samples.

  12. A dual model approach to ground water recovery trench design

    International Nuclear Information System (INIS)

    Clodfelter, C.L.; Crouch, M.S.

    1992-01-01

    The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes

  13. Hanford Ground-Water Data Base management guide

    International Nuclear Information System (INIS)

    Rieger, J.T.; Mitchell, P.J.; Muffett, D.M.; Fruland, R.M.; Moore, S.B.; Marshall, S.M.

    1990-02-01

    This guide describes the Hanford Ground-Water Data Base (HGWDB), a computerized data base used to store hydraulic head, sample analytical, temperature, geologic, and well-structure information for ground-water monitoring wells on the Hanford Site. These data are stored for the purpose of data retrieval for report generation and also for historical purposes. This guide is intended as an aid to the data base manager and the various staff authorized to enter and verify data, maintain the data base, and maintain the supporting software. This guide focuses on the structure of the HGWDB, providing a fairly detailed description of the programs, files, and parameters. Data-retrieval instructions for the general user of the HGWDB will be found in the HGWDB User's Manual. 6 figs

  14. Toward implementation of a national ground water monitoring network

    Science.gov (United States)

    Schreiber, Robert P.; Cunningham, William L.; Copeland, Rick; Frederick, Kevin D.

    2008-01-01

    The Federal Advisory Committee on Water Information's (ACWI) Subcommittee on Ground Water (SOGW) has been working steadily to develop and encourage implementation of a nationwide, long-term ground-water quantity and quality monitoring framework. Significant progress includes the planned submission this fall of a draft framework document to the full committee. The document will include recommendations for implementation of the network and continued acknowledgment at the federal and state level of ACWI's potential role in national monitoring toward an improved assessment of the nation's water reserves. The SOGW mission includes addressing several issues regarding network design, as well as developing plans for concept testing, evaluation of costs and benefits, and encouraging the movement from pilot-test results to full-scale implementation within a reasonable time period. With the recent attention to water resource sustainability driven by severe droughts, concerns over global warming effects, and persistent water supply problems, the SOGW mission is now even more critical.

  15. INVESTIGATIONS ON BIOCHEMICAL PURIFICATION OF GROUND WATER FROM HYDROGEN SULFIDE

    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho

    2015-01-01

    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  16. Environmental and ground-water surveillance at Hanford

    International Nuclear Information System (INIS)

    Dirkes, R.L.; Luttrell, S.P.

    1995-01-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment

  17. Environmental and ground-water surveillance at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Dirkes, R.L.; Luttrell, S.P.

    1995-06-01

    Environmental and ground-water surveillance of the Hanford Site and surrounding region is conducted to demonstrate compliance with environmental regulations, confirm adherence to DOE environmental protection policies, support DOE environmental management decisions, and provide information to the public. Environmental surveillance encompasses sampling and analyzing for potential radiological and nonradiological chemical contaminants on and off the Hanford Site. Emphasis is placed on surveillance of exposure pathways and chemical constituents that pose the greatest risk to human health and the environment.

  18. Ground-water development and problems in Idaho

    Science.gov (United States)

    Crosthwaite, E.G.

    1954-01-01

    The development of groundwater for irrigation in Idaho, as most of you know, has proceeded at phenomenal rate since the Second World War. In the period 1907 to 1944 inclusive only about 328 valid permits and licenses to appropriate ground water were issued by the state. thereafter 28 permits became valid in 1945, 83 in 1946, and 121 in 1947. Sine 1947 permits and licenses have been issued at the rate of more than 400 a year.  

  19. Florida's ground water quality monitoring program: background hydrogeochemistry

    OpenAIRE

    Maddox, Gary; Upchurch, Sam; Lloyd, Jacqueline; Scott, Tom

    1992-01-01

    The purpose of this report is to present the results of the initial quantification of background water quality in each of the state's major potable aquifer systems. Results are presented and interpreted in light of the influencing factors which locally and regionally affect ambient ground-water quality. This initial data will serve as a baseline from which future sampling results can be compared. Future sampling of the Network will indicate the extent to which Flori...

  20. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    Raje, N.; Swain, K.K.

    2002-01-01

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  1. A contribution on the problem of ground water pollution

    International Nuclear Information System (INIS)

    Zilliox, L.; Muntzer, P.; Kresser, W.

    1982-01-01

    The authors present the underlying physics of processes relevant to the problem of ground water pollution. A series of models are discussed which include two-dimensional diffusion from a point source of pollution in a uniform homogeneous medium and the modifying effect of inhomogeneities, together with displacement processes for miscible liquids in saturated porous media. In conclusion an account of laboratory and theoretical investigations of these diffusion processes in layered media of different permeabilities is given. (J.R.B.)

  2. The isotope hydrology of ground waters of the Kalahari, Gordonia

    International Nuclear Information System (INIS)

    Verhagen, B. Th.

    1982-01-01

    An intensive hydrological and geophysical survey of fresh water occurance in the Gordonia area, promoted a parallel study of the isotope hydrology and hydrochemistry of both the fresh and saline ground waters of the area. Measurements of 14 C, 3 H, 13 C and 18 O as well of major element hydrochemistry were conducted on numerous samples. Radiocarbon concentrations range from 6 pmc to 111 pmc. Significant tritium is only observed in cases where 14 C concentrations are significantly higher than 90 pmc

  3. Simulating the effects of ground-water withdrawals on streamflow in a precipitation-runoff model

    Science.gov (United States)

    Zarriello, Philip J.; Barlow, P.M.; Duda, P.B.

    2004-01-01

    Precipitation-runoff models are used to assess the effects of water use and management alternatives on streamflow. Often, ground-water withdrawals are a major water-use component that affect streamflow, but the ability of surface-water models to simulate ground-water withdrawals is limited. As part of a Hydrologic Simulation Program-FORTRAN (HSPF) precipitation-runoff model developed to analyze the effect of ground-water and surface-water withdrawals on streamflow in the Ipswich River in northeastern Massachusetts, an analytical technique (STRMDEPL) was developed for calculating the effects of pumped wells on streamflow. STRMDEPL is a FORTRAN program based on two analytical solutions that solve equations for ground-water flow to a well completed in a semi-infinite, homogeneous, and isotropic aquifer in direct hydraulic connection to a fully penetrating stream. One analytical method calculates unimpeded flow at the stream-aquifer boundary and the other method calculates the resistance to flow caused by semipervious streambed and streambank material. The principle of superposition is used with these analytical equations to calculate time-varying streamflow depletions due to daily pumping. The HSPF model can readily incorporate streamflow depletions caused by a well or surface-water withdrawal, or by multiple wells or surface-water withdrawals, or both, as a combined time-varying outflow demand from affected channel reaches. These demands are stored as a time series in the Watershed Data Management (WDM) file. This time-series data is read into the model as an external source used to specify flow from the first outflow gate in the reach where these withdrawals are located. Although the STRMDEPL program can be run independently of the HSPF model, an extension was developed to run this program within GenScn, a scenario generator and graphical user interface developed for use with the HSPF model. This extension requires that actual pumping rates for each well be stored

  4. UMTRA Ground Water Project management action process document

    International Nuclear Information System (INIS)

    1996-03-01

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards

  5. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  6. A FIXED BED SORPTION SYSTEM FOR DEFLUORIDATION OF GROUND WATER

    Directory of Open Access Journals (Sweden)

    Ayoob Sulaiman

    2009-06-01

    Full Text Available The presence of excess fluoride in ground water has become a global threat with as many as 200 million people affected in more than 35 countries in all the continents. Of late, there have been significant advances in the knowledge base regarding the effects of excess fluoride on human health. As a result, defluoridation of ground water is regarded as one of the key areas of attention among the universal water community triggering global research. This study describes the sorptive responses of a newly developed adsorbent, alumina cement granules (ALC, in its real-life application in fixed beds, for removing fluoride from the ground waters of a rural Indian village. ALC exhibited almost consistent scavenging capacity at various bed depths in column studies with an enhanced adsorption potential of 0.818 mg/g at a flow rate of 4 ml/min. The Thomas model was examined to describe the sorption process. The process design parameters of the column were obtained by linear regression of the model. In all the conditions examined, the Thomas model could consistently predict its characteristic parameters and describe the breakthrough sorption profiles in the whole range of sorption process.

  7. Ground-water quality for Grainger County, Tennessee

    Science.gov (United States)

    Weaver, J.D.; Patel, A.R.; Hickey, A.C.

    1994-01-01

    The residents of Grainger County depend on ground water for many of their daily needs including personal consumption and crop irrigation. To address concerns associated with ground-water quality related to domestic use, the U.S. Geological Survey collected water samples from 35 wells throughout the county during the summer 1992. The water samples were analyzed to determine if pesticides, nutrients, bacteria, and other selected constituents were present in the ground water. Wells selected for the study were between 100 and 250 feet deep and yielded 10 to 50 gallons of water per minute. Laboratory analyses of the water found no organic pesticides at concentrations exceeding the primary maximum contaminant levels established by the State of Tennessee for wells used for public supply. However, fecal coliform bacteria were detected at concentrations exceeding the State's maximum contaminant level in water from 15 of the 35 wells sampled. Analyses also indicated several inorganic compounds were present in the water samples at concentrations exceeding the secondary maximum contaminant level.

  8. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  9. Simulated effects of groundwater pumping and artificial recharge on surface-water resources and riparian vegetation in the Verde Valley sub-basin, Central Arizona

    Science.gov (United States)

    Leake, Stanley A.; Pool, Donald R.

    2010-01-01

    In the Verde Valley sub-basin, groundwater use has increased in recent decades. Residents and stakeholders in the area have established several groups to help in planning for sustainability of water and other resources of the area. One of the issues of concern is the effect of groundwater pumping in the sub-basin on surface water and on groundwater-dependent riparian vegetation. The Northern Arizona Regional Groundwater-Flow Model by Pool and others (in press) is the most comprehensive and up-to-date tool available to understand the effects of groundwater pumping in the sub-basin. Using a procedure by Leake and others (2008), this model was modified and used to calculate effects of groundwater pumping on surface-water flow and evapotranspiration for areas in the sub-basin. This report presents results for the upper two model layers for pumping durations of 10 and 50 years. Results are in the form of maps that indicate the fraction of the well pumping rate that can be accounted for as the combined effect of reduced surface-water flow and evapotranspiration. In general, the highest and most rapid responses to pumping were computed to occur near surface-water features simulated in the modified model, but results are not uniform along these features. The results are intended to indicate general patterns of model-computed response over large areas. For site-specific projects, improved results may require detailed studies of the local hydrologic conditions and a refinement of the modified model in the area of interest.

  10. Ground-water monitoring compliance projects for Hanford Site facilities: Annual progress report for 1987

    International Nuclear Information System (INIS)

    Hall, S.H.

    1988-09-01

    This report describes progress during 1987 of five Hanford Site ground water monitoring projects. Four of these projects are being conducted according to regulations based on the federal Resource Conservation and Recovery Act of 1976 and the state Hazardous Waste Management Act. The fifth project is being conducted according to regulations based on the state Solid Waste Management Act. The five projects discussed herein are: 300 Area Process Trenches; 183-H Solar Evaporation Basins; 200 Areas Low-Level Burial Grounds; Nonradioactive Dangerous Waste Landfill; Solid Waste Landfill. For each of the projects, there are included, as applicable, discussions of monitoring well installations, water-table measurements, background and/or downgradient water quality and results of chemical analysis, and extent and rate of movement of contaminant plumes. 14 refs., 30 figs., 13 tabs

  11. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (L