WorldWideScience

Sample records for valley energy natural

  1. Solar energy innovation and Silicon Valley

    Science.gov (United States)

    Kammen, Daniel M.

    2015-03-01

    The growth of the U. S. and global solar energy industry depends on a strong relationship between science and engineering innovation, manufacturing, and cycles of policy design and advancement. The mixture of the academic and industrial engine of innovation that is Silicon Valley, and the strong suite of environmental policies for which California is a leader work together to both drive the solar energy industry, and keep Silicon Valley competitive as China, Europe and other area of solar energy strength continue to build their clean energy sectors.

  2. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various

  3. Robinson Rancheria Strategic Energy Plan; Middletown Rancheria Strategic Energy Plan, Scotts Valley Rancheria Strategic Energy Plan, Elem Indian Colony Strategic Energy Plan, Upperlake Rancheria Strategic Energy Plan, Big Valley Rancheria Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    McGinnis and Associates LLC

    2008-08-01

    The Scotts Valley Band of Pomo Indians is located in Lake County in Northern California. Similar to the other five federally recognized Indian Tribes in Lake County participating in this project, Scotts Valley Band of Pomo Indians members are challenged by generally increasing energy costs and undeveloped local energy resources. Currently, Tribal decision makers lack sufficient information to make informed decisions about potential renewable energy resources. To meet this challenge efficiently, the Tribes have committed to the Lake County Tribal Energy Program, a multi Tribal program to be based at the Robinson Rancheria and including The Elem Indian Colony, Big Valley Rancheria, Middletown Rancheria, Habematolel Pomo of Upper Lake and the Scotts Valley Pomo Tribe. The mission of this program is to promote Tribal energy efficiency and create employment opportunities and economic opportunities on Tribal Lands through energy resource and energy efficiency development. This program will establish a comprehensive energy strategic plan for the Tribes based on Tribal specific plans that capture economic and environmental benefits while continuing to respect Tribal cultural practices and traditions. The goal is to understand current and future energy consumption and develop both regional and Tribe specific strategic energy plans, including action plans, to clearly identify the energy options for each Tribe.

  4. 78 FR 57629 - Eagle Valley Clean Energy, LLC; Notice of Filing

    Science.gov (United States)

    2013-09-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EL13-87-000; QF13-658-000] Eagle Valley Clean Energy, LLC; Notice of Filing Take notice that on September 9, 2013, Eagle Valley Clean Energy, LLC filed Form 556 and a petition for certification as a qualifying small power production...

  5. Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice

    Science.gov (United States)

    Ghalamkari, Kazu; Tatsumi, Yuki; Saito, Riichiro

    2018-02-01

    The origin of valley polarization of the hexagonal lattice is analytically discussed by tight binding method as a function of energy band gap. When the energy gap decreases to zero, the intensity of optical absorption becomes sharp as a function of k near the K (or K') point in the hexagonal Brillouin zone, while the peak intensity at the K (or K') point keeps constant with decreasing the energy gap. When the dipole vector as a function of k can have both real and imaginary parts that are perpendicular to each other in the k space, the valley polarization occurs. When the dipole vector has only real values by selecting a proper phase of wave functions, the valley polarization does not occur. The degree of the valley polarization may show a discrete change that can be relaxed to a continuous change of the degree of valley polarization when we consider the life time of photo-excited carrier.

  6. Solar Energy within the Central Valley, CA: Current Practices and Potential

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is

  7. Natural heat storage in a brine-filled solar pond in the Tully Valley of central New York

    Science.gov (United States)

    Hayhurst, Brett; Kappel, William M.

    2014-01-01

    The Tully Valley, located in southern Onondaga County, New York, has a long history of unusual natural hydrogeologic phenomena including mudboils (Kappel, 2009), landslides (Tamulonis and others, 2009; Pair and others, 2000), landsurface subsidence (Hackett and others, 2009; Kappel, 2009), and a brine-filled sinkhole or “Solar pond” (fig. 1), which is documented in this report. A solar pond is a pool of salty water (brine) which stores the sun’s energy in the form of heat. The saltwater naturally forms distinct layers with increasing density between transitional zones (haloclines) of rapidly changing specific conductance with depth. In a typical solar pond, the top layer has a low salt content and is often times referred to as the upper convective zone (Lu and others, 2002). The bottom layer is a concentrated brine that is either convective or temperature stratified dependent on the surrounding environment. Solar insolation is absorbed and stored in the lower, denser brine while the overlying halocline acts as an insulating layer and prevents heat from moving upwards from the lower zone (Lu and others, 2002). In the case of the Tully Valley solar pond, water within the pond can be over 90 degrees Fahrenheit (°F) in late summer and early fall. The purpose of this report is to summarize observations at the Tully Valley brine-filled sinkhole and provide supplemental climate data which might affect the pond salinity gradients insolation (solar energy).

  8. Future of cluster developments : lessons from Energy Valley, the Netherlands

    NARCIS (Netherlands)

    Manickam, Anu

    2017-01-01

    The research explored how a Dutch energy cluster embedded within a larger context of European and global developments reflected complex dynamics due to changes in its context. The case study explored Energy Valley of the Netherlands, a peripheral region that meets the challenge of energy transition,

  9. The Characteristic of Molten Heat Salt Storage System Utilizing Solar Energy Combined with Valley Electric

    Directory of Open Access Journals (Sweden)

    LI .Jiu-ru

    2017-02-01

    Full Text Available With the environmental pollution and energy consumption clue to the large difference between peak and valley of power grid,the molten salt heat storage system(MSHSS utilizing solar Energy combined with valley electric is presented for good energy saving and low emissions. The costs of MSHSS utilizing solar Energy combined with valley electric are greatly reduced. The law of heat transfer in molten salt heat storage technology is studied with the method of grey correlation analysis. The results show the effect of elbow sizes on surface convective heat transfer coefficient with different flow velocities.

  10. 78 FR 28836 - Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2013-05-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1430-000] Arlington Valley Solar Energy II, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request..., of Arlington Valley Solar Energy II, LLC's application for market-based rate authority, with an...

  11. Analysis of a hybrid renewable energy system on the Mures valley using Homer

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragoş

    2011-12-01

    Full Text Available Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth, and plants. Virtually all regions of the world have renewable resources of one type or another. This paper deals with the modeling and analysis of a hybrid system based on renewable energy resources, located on the Mureş valley, using a dedicated software named HOMER. Different types and topologies of renewable resources for the energy supply are analyzed; a small consumer situated on the Mureş Valley is modeled based on a load curve. Finally, the energy flows between the renewable energy system and the local supplying network are analyzed.

  12. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    Science.gov (United States)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  13. Energy and environmental implications of carbon emission reduction targets: Case of Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Shrestha, Ram M.; Rajbhandari, Salony

    2010-01-01

    This paper analyzes the sectoral energy consumption pattern and emissions of CO 2 and local air pollutants in the Kathmandu Valley, Nepal. It also discusses the evolution of energy service demands, structure of energy supply system and emissions from various sectors under the base case scenario during 2005-2050. A long term energy system planning model of the Kathmandu Valley based on the MARKet ALlocation (MARKAL) framework is used for the analyses. Furthermore, the paper analyzes the least cost options to achieve CO 2 emission reduction targets of 10%, 20% and 30% below the cumulative emission level in the base case and also discusses their implications for total cost, technology-mix, energy-mix and local pollutant emissions. The paper shows that a major switch in energy use pattern from oil and gas to electricity would be needed in the Valley to achieve the cumulative CO 2 emission reduction target of 30% (ER30). Further, the share of electricity in the cumulative energy consumption of the transport sector would increase from 12% in the base case to 24% in the ER30 case.

  14. Valley-dependent band structure and valley polarization in periodically modulated graphene

    Science.gov (United States)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  15. Scotts Valley Energy Office and Human Capacity Building that will provide energy-efficiency services and develop sustainable renewable energy projects.

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Temashio [Scotts Valley Band of Pomo Indians

    2013-06-28

    The primary goal of this project is to develop a Scotts Valley Energy Development Office (SVEDO). This office will further support the mission of the Tribe's existing leadership position as the DOE Tribal Multi-County Weatherization Energy Program (TMCWEP) in creating jobs and providing tribal homes and buildings with weatherization assistance to increase energy efficiency, occupant comfort and improved indoor air quality. This office will also spearhead efforts to move the Tribe towards its further strategic energy goals of implementing renewable energy systems through specific training, resource evaluation, feasibility planning, and implementation. Human capacity building and continuing operations are two key elements of the SVEDO objectives. Therefore, the project will 1) train and employ additional Tribal members in energy efficiency, conservation and renewable resource analyses and implementation; 2) purchase materials and equipment required to implement the strategic priorities as developed by the Scotts Valley Tribe which specifically include implementing energy conservation measures and alternative energy strategies to reduce energy costs for the Tribe and its members; and 3) obtain a dedicated office and storage space for ongoing SVEDO operations.

  16. Sustainability and energy security : the squeeze on natural gas

    International Nuclear Information System (INIS)

    Hoover, G.; Howatson, A.; Parmenter, R.

    2004-01-01

    This paper outlines the impact of environmental policy on natural gas demand and describes alternative energy sources such as wind, solar, biomass and clean coal that can increase energy supplies. This briefing also establishes the short-, medium-, and long-term consequences of current natural gas realities. It also outlines the driving forces in Canada and the United States behind the demand for natural gas. The impact of policy formation and the phase-out of coal in Ontario are addressed along with natural gas supply prospects and the prospects and obstacles for riskier incremental supplies such as liquefied natural gas, natural gas from coal, and frontier natural gas. It was concluded that strong demand and tight supply are the factors that have driven up natural gas prices. Continued high natural gas prices in the short term will likely motivate conservation strategies at the personal household level as well as in the business and industrial sectors. Although wind power is seen as a clean, competitively prices alternative to natural gas-fired electricity generation, its contribution is not expected to change the supply and demand equilibrium. Initiatives such as the Mackenzie Valley Pipeline, the Alaskan Pipeline and drilling in the Atlantic may help balance natural gas supply and demand in the mid-term. 44 refs., 2 tabs., 7 figs

  17. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  18. Influence of natural and anthropogenic factors on the distribution of xerothermic plants in the lower San river valley (SE Poland

    Directory of Open Access Journals (Sweden)

    Rafał Krawczyk

    2012-12-01

    Full Text Available The aim of the present study was to describe the distribution of xerothermic species of vascular plants in the lower San River valley and the relationship between their density and the intensity of selected environmental (natural and anthropogenic factors. Xerothermic species occurred more frequently in the present valley floor compared to the glacial terrace. Within the present valley, the highest density was observed in the floodplain. The examined species also occurred more often on steep slopes of the valley, at the margins of the present valley terraces, and in the area of occurrence of aeolian sands. Moreover, a positive correlation has been found between the number of xerothermic species and the area of polyhemeroby ecosystems. The distribution of xero- and thermophilous species is determined by natural edaphic and geomorphological factors as well as anthropogenic ones (land use, lowering of the groundwater level as a result of river regulation.

  19. Asymmetric valley-resolved beam splitting and incident modes in slanted graphene junctions

    International Nuclear Information System (INIS)

    Hsieh, S. H.; Chu, C. S.

    2016-01-01

    Electron injection into a graphene sheet through a slanted armchair graphene nanoribbon (AGNR) is investigated. An incident mode, or subband, in the AGNR is valley-unpolarized. Our attention is on the valley-resolved nature of the injected electron beams and its connection to the incident mode. It is known for a normal injection that an incident mode will split symmetrically into two valley-resolved beams of equal intensity. We show, in contrast, that slanted injections result in asymmetric valley-resolved beam splitting. The most asymmetric beam splitting cases, when one of the valley-resolved beams has basically disappeared, are found and the condition derived. This is shown not due to trigonal warping because it holds even in the low incident energy regime, as long as collimation allows. These most asymmetric beam splitting cases occur at energies within an energy interval near and include the subband edge of an incident mode. The physical picture is best illustrated by a projection of the slanted AGNR subband states onto that of the 2D graphene sheet. It follows that the disappearing of a valley-resolved beam coincides with the situation that the group velocities of the projected states in the corresponding valley are in backward directions

  20. Christmas Valley Renewable Energy Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Del Mar, Robert [Oregon Department of Energy, Salem, OR (United States)

    2017-05-22

    In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. In partnership with the Oregon Military Department, the Department of Energy used the award to assess and evaluate renewable resources in a 2,622-acre location in Lake County, central Oregon, leading to future development of up to 200 MW of solar electricity. The Oregon Military Department (Military) acquired a large parcel of land located in south central Oregon. The land was previously owned by the US Air Force and developed for an Over-the-Horizon Backscatter Radar Transmitter Facility, located about 10 miles east of the town of Christmas Valley. The Military is investigating a number of uses for the site, including Research and Development (R&D) laboratory, emergency response, military operations, developing renewable energy and related educational programs. One of the key potential uses would be for a large scale solar photovoltaic power plant. This is an attractive use because the site has excellent solar exposure; an existing strong electrical interconnection to the power grid; and a secure location at a moderate cost per acre. The project objectives include: 1. Site evaluation 2. Research and Development (R&D) facility analysis 3. Utility interconnection studies and agreements 4. Additional on-site renewable energy resources analysis 5. Community education, outreach and mitigation 6. Renewable energy and emergency readiness training program for veterans

  1. Potential renewable energy resources of the Lerma Valley, Salta, Argentina for its strategic territorial planning

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.; Viramonte, J.G. [Instituto GEONORTE, Facultad de Ciencias Naturales, Universidad Nacional de Salta and CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina); Nunez, V. [Instituto de Recursos Naturales y Ecodesarrollo (IRNED), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Avda. Bolivia 5150, Campo Castanares, Salta CP 4400 (Argentina); Franco, J. [Instituto Nacional de Energias No Convencionales (INENCO), Facultad de Ciencias Exactas, Universidad Nacional de Salta, CONICET, Avda. Bolivia 5150, Salta CP 4400 (Argentina)

    2009-08-15

    Renewable energy sources are considered as strategic opportunities to improve the population's quality of life, to promote the development of more efficient and equitable economic systems, and to favor environmental sustainability in the territorial planning of Lerma Valley (Salta, Argentina). The mapping in raster format (each pixel having a reference value) of the potential renewable energy sources (solar, wind, biomass, hydraulic, mixed) is essential to define ideal locations for different types of renewable applications, and to plan suitable strategies for its implementation. It is necessary considering environmental diversity and site conditions (topographic, natural resource, infrastructure and service availability, social and economical) of the intervention area. Different methodologies are used for mapping of potential energy resources. Solar radiation is spatialized through the application of statistical regressions between altitude, latitude, precise incident solar radiation records, and radiation data estimated with the Geosol V.2.0. trademark software. The Argentina Map program is used for the wind potential resource modeling. It requires as inputs: a Digital Elevation Model, a land use and cover map (to determine roughness), and measured and/or estimated wind speed and frequency data. The hydroelectric potential for microturbine applications is calculated from the topographic drop and the annual mean flow in cumulative models, through the application of the Idrisi Kilimanjaro trademark 's runoff tool; while the power densities are compared at the watershed. Biomass potential (at this exploratory stage), is interpreted from the available biomass type (land use and cover map), its energy application availability, and some quantitative indicators associated with the biomass types identified as priority. In conclusion, the renewable energy potential in Lerma Valley is very high and diverse, and its close connection with social

  2. 77 FR 31037 - Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in...

    Science.gov (United States)

    2012-05-24

    ...; AZA34425] Notice of Segregation of Public Lands for the Proposed Hyder Valley Solar Energy Project in... of up to 2 years. This is for the purpose of processing one solar energy right-of-way (ROW) application submitted by Pacific Solar Investments, LLC, to construct and operate the Hyder Valley Solar...

  3. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity

    Energy Technology Data Exchange (ETDEWEB)

    Montelongo-Reyes, M.M.; Otazo-Sánchez, E.M.; Romo-Gómez, C.; Gordillo-Martínez, A.J.; Galindo-Castillo, E.

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO{sub 2} emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO{sub 2} sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO{sub 2} gas emissions were also significant, particularly SO{sub 2} (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. - Highlights: • First GHG & black carbon inventory for Mezquital Valley: Mexico City energy supplier • Energy industries caused the largest CO{sub 2} and SO{sub 2} emissions from residual fuel oil. • Diesel

  4. Bottomland Hardwoods of the Mississippi Alluvial Valley: Characteristics and Management of Natural Function, Structure, and Composition

    Science.gov (United States)

    Paul B. Hamel; Thomas L. Foti; [Editors

    2001-01-01

    A symposium entitled "Bottomland hardwoods of the Mississippi Alluvial Valley: characteristics and management of natural function, structure, and composition" convened on October 28, 1995, as part of the Natural Areas Conference, October 25-28, 1995, In Fayetteville, AR. The symposium's goal was to provide informatibn that managers need to begin...

  5. Cave Tourism: The Potential of Asar Cave as a Natural Tourism Asset at Lenggong Valley, Perak

    Directory of Open Access Journals (Sweden)

    Rindam Main

    2014-01-01

    Full Text Available The Lenggong Valley, from a standpoint of natural tourism research, presents strengths, weaknesses, opportunities and challenges that can be utilized to help increase the opportunities for the local community to increase their standard of living. Asar Cave comprises one of the caves that are found in Lenggong. A series of external studies have been done on Asar Cave in order to measure its potential for natural tourism in Lenggong. The objective of this study is to discuss caves as a natural resource that has great potential in the growth of the economy of the residents of the Lenggong Valley. Marketing caves as a source of nature tourism helps the government’s achievements in National Key Result Areas, apart from being a form of environmental control as well as helping to increase awareness about environmental education, specifically those associated with caves. The research results find that SWOT analysis presents huge potential for caves to become a source of nature tourism development in Lenggong. Great potential can also be seen from a standpoint of increasing the standard of living of its residents through their involvement in the tourism sector based on local natural assets.

  6. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    Science.gov (United States)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates

  7. Three consecutive years of road closures due to natural hazards in the Weisstannen valley, Canton of St-Gallen, Switzerland

    Science.gov (United States)

    Voumard, Jérémie; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    The Weisstannen small alpine valley located in the Canton of St-Gallen, Switzerland, has been affected by four different natural hazards these three last years. Its unique access road has been cut off height times during this period: by an earth slide in January 2014, by three debris flows in August 2015, by one debris flow in September 2016, by two floods in June and July 2016 and by a rockfall in May 2016. Although the valley is sparsely populated, 240 people have been affected by the height road closures due to these events. In addition to road damages, several buildings, of which a restaurant (with EUR 190'000 damages) and an animal shelter, have been damaged. In Switzerland, some roads of 15 communes have been affected by natural hazards at least three times in five years (2012-2016). Then the Weisstannen valley is not an exception at the communal level. However, it is the only valley whose unique access was cut off three consecutive years. With these repeated events, the population of the valley does not understand how possible it is to end up in such a situation in a country accustomed to natural hazards. In the media and social media, people do not hide their irritation regarding to this situation: "Have the authorities failed to take into account natural dangers despite of the 4.7 million Euro allocated for a flood protection project? Who is responsible of those repeated damages? Why the situation did not improve after the events of the first year and then the second year? ". In the present work, we try to shed the light on this peculiar case analysing the causes of road closures, studying meteorological, topographical, hydrological and geological data for each events. The effectiveness of the new protective measures built between the events are assessed, as the future planned protectives measures. Road closures consequences on the population and the economy are also estimated. Finally, we estimate the probability of having new road closures in the

  8. Valley dependent transport in graphene L junction

    Science.gov (United States)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  9. Valley-filtered edge states and quantum valley Hall effect in gated bilayer graphene.

    Science.gov (United States)

    Zhang, Xu-Long; Xu, Lei; Zhang, Jun

    2017-05-10

    Electron edge states in gated bilayer graphene in the quantum valley Hall (QVH) effect regime can carry both charge and valley currents. We show that an interlayer potential splits the zero-energy level and opens a bulk gap, yielding counter-propagating edge modes with different valleys. A rich variety of valley current states can be obtained by tuning the applied boundary potential and lead to the QVH effect, as well as to the unbalanced QVH effect. A method to individually manipulate the edge states by the boundary potentials is proposed.

  10. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  11. Greening Turner Valley

    International Nuclear Information System (INIS)

    Byfield, M.

    2010-01-01

    This article discussed remedial activities undertaken in the Turner Valley. Remedial action in the valley must satisfy the financial concerns of engineers and investors as well as the environmental concerns of residents and regulators. Natural gas production in the Turner Valley began in 1914. The production practices were harmful and wasteful. Soil and water pollution was not considered a problem until recently. The impacts of cumulative effects and other pollution hazards are now being considered as part of many oil and gas environmental management programs. Companies know it is cheaper and safer to prevent pollutants from being released, and more efficient to clean them up quickly. Oil and gas companies are also committed to remediating historical problems. Several factors have simplified remediation plans in the Turner Valley. Area real estate values are now among the highest in Alberta. While the valley residents are generally friendly to the petroleum industry, strong communication with all stakeholders in the region is needed. 1 fig.

  12. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    Science.gov (United States)

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  13. Effectiveness of the Solar Panels in the Castro Valley Unified School District Based on Projected Amount of Energy to be Produced

    Science.gov (United States)

    Sparks, J. R.; Palmer, T. C.; Siegel, A. P.

    2014-12-01

    In recent years Americans have warmed to the idea of installing solar panels to their homes and businesses. These panels help reduce the cost of receiving energy from power plants that lose a lot of energy in transportation. These power plants provide energy by burning gas or coal producing emissions that add to the growing problem of pollution and global warming. In 2010 the Castro Valley Unified School District decided to add solar panels to Canyon Middle School, Castro Valley High School, and Castro Valley Adult School. We researched whether the solar panels reached their projected amount of energy (74%) for the sites where the panels were placed. The solar panels at all three sites were found to exceed these projected amounts. The solar panels at each site produce a little over 74% for the each school.

  14. North American natural gas supply and demand

    International Nuclear Information System (INIS)

    Goobie, G.

    2006-01-01

    This presentation was given by leading energy analysts Pervin and Gertz, and provided their outlook on the North American natural gas supply and demand as well as transportation and processing options for the Mackenzie Valley project and the Alaska natural gas project. Arctic gas development was discussed in relation to larger North American and world energy markets. The impacts of liquefied natural gas (LNG) infrastructure development were compared with the potential impacts of the Alaska and Mackenzie Valley pipelines. A review of North American gas supplies was presented. LNG imports to the United States are expected to exceed 8 BCF/D by 2010. In addition, huge growth in the LNG markets is expected in middle eastern countries as well as in Africa. There is currently strong growth in liquefaction capacity in most regions. However, many proposed LNG terminals will not proceed due to opposition on the west coast of North America. It is also expected that natural gas liquids (NGL) delivered to Alberta from the Mackenzie Valley Gas project are expected to be used by the heavy oil industry. Canadian crude supplies are expected to grow to nearly 4 million barrels per day by 2015. The impacts of Alaska and Mackenzie Valley gas projects on western NGL markets and the petrochemicals industry were reviewed. It was concluded that major investments in supply and infrastructure are need in order to develop Arctic gas, as LNG is likely to be the largest source of incremental supply. tabs., figs

  15. Economic and Ethical Consequences of Natural Hazards in Alpine Valleys (EE-Con)

    Science.gov (United States)

    Ortner, Florian; Brantl, Dirk; Meyer, Lukas; Steininger, Karl; Sass, Oliver

    2015-04-01

    The Alps and their population are particularly vulnerable to geomorphological and hydrological hazards and this problem might be amplified by ongoing climate change. Natural disasters cause severe monetary damage which often leads to the difficult question whether it socially pays to protect settlements at high costs or whether alternatively settlement areas should better be abandoned. By investigations in the Johnsbachtal and the Kleinsölktal (Styria), the interdisciplinary project "Economic and Ethical Consequences of Natural Hazards in Alpine Valleys" (EE-Con), funded by the Austrian Academy of Sciences, seeks to answer the following questions: (1) Are natural hazards and associated damages in fact increasing, and is this due to meteorological triggers, to anthropogenic factors or to internal process dynamics? (2) What is the perception and knowledge of local people, how is risk and risk prevention communicated? (3) What is the respective cost ratio between protection infrastructure, soft measures of adaptation and other options (e.g. reduction of settlement area)? (4) What legitimate claims to compensation do people have, how far does societal responsibility go and where does individual responsibility start if parts of the settlement area had to be abandoned? These questions will be tackled in an interdisciplinary cooperation between geography, economics and normative theory (philosophy). EE-Con will follow broadly the path of risk analysis and risk assessment, focusing on the temporal dimension (past - present - future) with the aim to unravel the history of natural hazards in the areas and to analyse the economic values involved. In the following, natural hazard scenarios for the future (2050 and 2100) will be developed considering the economic consequences. Besides this, the project deals with local knowledge, risk perception and risk communication, which will be investigated via group interviews and stakeholder workshops and be integrated into a human

  16. GHG and black carbon emission inventories from Mezquital Valley: The main energy provider for Mexico Megacity.

    Science.gov (United States)

    Montelongo-Reyes, M M; Otazo-Sánchez, E M; Romo-Gómez, C; Gordillo-Martínez, A J; Galindo-Castillo, E

    2015-09-15

    The greenhouse gases and black carbon emission inventory from IPCC key category Energy was accomplished for the Mezquital Valley, one of the most polluted regions in Mexico, as the Mexico City wastewater have been continuously used in agricultural irrigation for more than a hundred years. In addition, thermoelectric, refinery, cement and chemistry industries are concentrated in the southern part of the valley, near Mexico City. Several studies have reported air, soil, and water pollution data and its main sources for the region. Paradoxically, these sources contaminate the valley, but boosted its economic development. Nevertheless, no research has been done concerning GHG emissions, or climate change assessment. This paper reports inventories performed by the 1996 IPCC methodology for the baseline year 2005. Fuel consumption data were derived from priority sectors such as electricity generation, refineries, manufacturing & cement industries, transportation, and residential use. The total CO2 emission result was 13,894.9 Gg, which constituted three-quarters of Hidalgo statewide energy category. The principal CO2 sources were energy transformation (69%) and manufacturing (19%). Total black carbon emissions were estimated by a bottom-up method at 0.66 Gg. The principal contributor was on-road transportation (37%), followed by firewood residential consumption (26%) and cocked brick manufactures (22%). Non-CO2 gas emissions were also significant, particularly SO2 (255.9 Gg), which accounts for 80% of the whole Hidalgo State emissions. Results demonstrated the negative environmental impact on Mezquital Valley, caused by its role as a Megacity secondary fuel and electricity provider, as well as by the presence of several cement industries. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Grand Valley State University Checks Out Energy Savings at New Mary Idema Pew Library

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    Grand Valley State University (GVSU) partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  18. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  19. An aerial radiological survey of the West Valley Demonstration Project and surrounding area, West Valley, New York

    International Nuclear Information System (INIS)

    Berry, H.A.

    1991-09-01

    An aerial radiological survey of the West Valley Demonstration Project and the surrounding area was conducted from mid-August through early September 1984 by EG ampersand G Energy Measurements, Inc. for the United States Department of Energy. The radiological survey was part of the United States Department of Energy Comprehensive Integrated Remote Sensing (CIRS) program, which provides state-of-the-art remote sensing to support the needs of the various DOE facilities. The survey consisted of airborne measurements of both natural and man-made gamma radiation emanating from the terrestrial surface. These measurements allowed an estimate of the distribution of isotopic concentrations in the area surrounding the project site. Results are reported as isopleths superimposed on aerial photographs of the area. Gamma ray energy spectra are also presented for the net man-made radionuclides. 8 refs., 16 figs., 9 tabs

  20. Energies of the X- and L-valleys in In{sub 0.53}Ga{sub 0.47}As from electronic structure calculations

    Energy Technology Data Exchange (ETDEWEB)

    Greene-Diniz, Gabriel; Greer, J. C. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland); Fischetti, M. V. [Department of Materials Science and Engineering, University of Texas at Dallas, 800 West Campbell Road RL10, Richardson, Texas 75080 (United States)

    2016-02-07

    Several theoretical electronic structure methods are applied to study the relative energies of the minima of the X- and L-conduction-band satellite valleys of In{sub x}Ga{sub 1−x}As with x = 0.53. This III-V semiconductor is a contender as a replacement for silicon in high-performance n-type metal-oxide-semiconductor transistors. The energy of the low-lying valleys relative to the conduction-band edge governs the population of channel carriers as the transistor is brought into inversion, hence determining current drive and switching properties at gate voltages above threshold. The calculations indicate that the position of the L- and X-valley minima are ∼1 eV and ∼1.2 eV, respectively, higher in energy with respect to the conduction-band minimum at the Γ-point.

  1. The natural population of bees of the earth (Melipona beecheii) and their flora in the valley San Andrés

    OpenAIRE

    Katiuska Ravelo Pimentel; Fernando Ramón Hernández Martínez; Iván Paneque Torres; Luisa Elena Toledo Peña; Hilda Gutiérrez Hernández

    2014-01-01

    The relationship of the natural population of bees of the earth is evaluated (Melipona beecheii) and its flora in the valley San Andrés, to inclination observations and samplings carried out in the formations studied vegetable. The melliferous plants and their use like tree of the nest of Melipona beecheii were studied for each one of the vegetable formations of the valley San Andrés, the indexes of diversity and their relationship were also analyzed with the values of density of colonies. It...

  2. Natural recharge estimation and uncertainty analysis of an adjudicated groundwater basin using a regional-scale flow and subsidence model (Antelope Valley, California, USA)

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Martin, Peter

    2015-01-01

    Groundwater has provided 50–90 % of the total water supply in Antelope Valley, California (USA). The associated groundwater-level declines have led the Los Angeles County Superior Court of California to recently rule that the Antelope Valley groundwater basin is in overdraft, i.e., annual pumpage exceeds annual recharge. Natural recharge consists primarily of mountain-front recharge and is an important component of the total groundwater budget in Antelope Valley. Therefore, natural recharge plays a major role in the Court’s decision. The exact quantity and distribution of natural recharge is uncertain, with total estimates from previous studies ranging from 37 to 200 gigaliters per year (GL/year). In order to better understand the uncertainty associated with natural recharge and to provide a tool for groundwater management, a numerical model of groundwater flow and land subsidence was developed. The transient model was calibrated using PEST with water-level and subsidence data; prior information was incorporated through the use of Tikhonov regularization. The calibrated estimate of natural recharge was 36 GL/year, which is appreciably less than the value used by the court (74 GL/year). The effect of parameter uncertainty on the estimation of natural recharge was addressed using the Null-Space Monte Carlo method. A Pareto trade-off method was also used to portray the reasonableness of larger natural recharge rates. The reasonableness of the 74 GL/year value and the effect of uncertain pumpage rates were also evaluated. The uncertainty analyses indicate that the total natural recharge likely ranges between 34.5 and 54.3 GL/year.

  3. Comparison of energy fluxes at the land surface-atmosphere interface in an Alpine valley as simulated with different models

    Directory of Open Access Journals (Sweden)

    G. Grossi

    2003-01-01

    Full Text Available Within the framework of a research project coupling meteorological and hydrological models in mountainous areas a distributed Snow-Soil-Vegetation-Atmosphere Transfer model was developed and applied to simulate the energy fluxes at the land surface – atmosphere interface in an Alpine valley (Toce Valley - North Italy during selected flood events in the last decade. Energy fluxes simulated by the distributed energy transfer model were compared with those simulated by a limited area meteorological model for the event of June 1997 and the differences in the spatial and temporal distribution. The Snow/Soil-Vegetation-Atmosphere Transfer model was also applied to simulate the energy fluxes at the land surface-atmosphere interface for a single cell, assumed to be representative of the Siberia site (Toce Valley, where a micro-meteorological station was installed and operated for 2.5 months in autumn 1999. The Siberia site is very close to the Nosere site, where a standard meteorological station was measuring precipitation, air temperature and humidity, global and net radiation and wind speed during the same special observing period. Data recorded by the standard meteorological station were used to force the energy transfer model and simulate the point energy fluxes at the Siberia site, while turbulent fluxes observed at the Siberia site were used to derive the latent heat flux from the energy balance equation. Finally, the hourly evapotranspiration flux computed by this procedure was compared to the evapotranspiration flux simulated by the energy transfer model. Keywords: energy exchange processes, land surface-atmosphere interactions, turbulent fluxes

  4. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada

    Science.gov (United States)

    Seiler, Ralph L.

    2012-01-01

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia.

  5. Physical setting and natural sources of exposure to carcinogenic trace elements and radionuclides in Lahontan Valley, Nevada.

    Science.gov (United States)

    Seiler, Ralph

    2012-04-05

    In Lahontan Valley, Nevada, arsenic, cobalt, tungsten, uranium, radon, and polonium-210 are carcinogens that occur naturally in sediments and groundwater. Arsenic and cobalt are principally derived from erosion of volcanic rocks in the local mountains and tungsten and uranium are derived from erosion of granitic rocks in headwater reaches of the Carson River. Radon and 210Po originate from radioactive decay of uranium in the sediments. Arsenic, aluminum, cobalt, iron, and manganese concentrations in household dust suggest it is derived from the local soils. Excess zinc and chromium in the dust are probably derived from the vacuum cleaner used to collect the dust, or household sources such as the furnace. Some samples have more than 5 times more cobalt in the dust than in the local soil, but whether the source of the excess cobalt is anthropogenic or natural cannot be determined with the available data. Cobalt concentrations are low in groundwater, but arsenic, uranium, radon, and 210Po concentrations often exceed human-health standards, and sometime greatly exceed them. Exposure to radon and its decay products in drinking water can vary significantly depending on when during the day that the water is consumed. Although the data suggests there have been no long term changes in groundwater chemistry that corresponds to the Lahontan Valley leukemia cluster, the occurrence of the very unusual leukemia cluster in an area with numerous 210Po and arsenic contaminated wells is striking, particularly in conjunction with the exceptionally high levels of urinary tungsten in Lahontan Valley residents. Additional research is needed on potential exposure pathways involving food or inhalation, and on synergistic effects of mixtures of these natural contaminants on susceptibility to development of leukemia. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Cowichan Valley energy mapping and modelling. Report 6 - Findings and recommendations. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    This report is the final report in a series of six reports detailing the findings from the Cowichan Valley Energy Mapping and Modelling project that was carried out from April of 2011 to March of 2012 by Ea Energy Analyses in conjunction with Geographic Resource Analysis and Science (GRAS). The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The present report is the final report and presents a summary of the findings of project tasks 1-5 and provides a set of recommendations to the CVRD based on the work done and with an eye towards the next steps in the energy planning process of the CVRD. (LN)

  7. Ecological restoration experiments (1992-2007) at the G.A. Pearson Natural Area, Fort Valley Experimental Forest (P-53)

    Science.gov (United States)

    Margaret M. Moore; Wallace Covington; Peter Z. Fulé; Stephen C. Hart; Thomas E. Kolb; Joy N. Mast; Stephen S. Sackett; Michael R. Wagner

    2008-01-01

    In 1992 an experiment was initiated at the G. A. Pearson Natural Area on the Fort Valley Experimental Forest to evaluate long-term ecosystem responses to two restoration treatments: thinning only and thinning with prescribed burning. Fifteen years of key findings about tree physiology, herbaceous, and ecosystem responses are presented.

  8. COMPARISON OF NATURAL BACKGROUND DOSE RATES FOR RESIDENTS OF THE AMARGOSA VALLEY, NV, TO THOSE IN LEADVILLE, CO, AND THE STATES OF COLORADO AND NEVADA

    International Nuclear Information System (INIS)

    D. Moeller and L. C. Sun

    2006-01-01

    In the latter half of 2005, the U.S. Environmental Protection Agency (USEPA) published a Proposed Rule (40 CFR Part 197) for establishing a dose rate standard for limiting radionuclide releases from the proposed Yucca Mountain high-level radioactive waste repository during the time period from 10 4 to 10 6 years after closure. The proposed standard was based on the difference in the estimated total dose rate from natural background in the Amargosa Valley and the ''average annual background radiation'' for the State of Colorado. As defined by the USEPA, ''natural background radiation consists of external exposures from cosmic and terrestrial sources, and internal exposures from indoor exposures to naturally-occurring radon''. On the basis of its assessments, the USEPA estimated that the difference in the dose rate in the two identified areas was 3.5 mSv y -1 . The purpose of this review was to provide an independent evaluation and review of this estimate. One of the first observations was that, because site-specific dose rate measurements for the Amargosa Valley ''were not available'', the dose rates for various sources of natural background in that area, used by the USEPA in its assessment, were based on modifications of the average values for the State of Nevada. A second observation was that the conversion factor applied in estimating the dose rates due to exposures to indoor radon and its decay products was a factor of 2 higher than the currently accepted value. Further review revealed that site-specific data for many natural background sources in the Amargosa Valley were available. One particularly important observation was that about 91% of the residents of that area live in mobile homes which, due to their construction and design, have indoor radon concentrations comparable to, or less than, those outdoors. For that reason, alone, the USEPA estimate of the average dose rate for residents of the Amargosa Valley, due to indoor radon, was not valid. For purposes

  9. Międzyodrze: an example of diverse economic and nature-related activities in the part of the Lower Odra Valley

    Directory of Open Access Journals (Sweden)

    Dąbkowski Szczepan L.

    2017-09-01

    Full Text Available Międzyodrze is an area in Lower Odra Valley, from the fork of the riverbed to Szczecin, with the islands between the Odra River and Lake Dąbie. In the past, it has served primarily as a waterway route and now serves a variety of economic and nature-related functions. This paper presents the historical and present role of Międzyodrze, taking into account the specific natural values of the Lower Odra Valley, hydrography, hydrology and soil conditions. In the area of Międzyodrze, there are basically three types of organic matter and the nature’s point of view, the area is rich in flora and fauna. The current stimulation to activity of Międzyodrze is to take account of the needs of the natural environment, tourism and recreation, while improving the hydrological and retention potential of the area. Exceptional natural values, complicated hydraulic system of canals, the complexity of hydrological phenomena and the specificity of soils make the selection of activities aimed at achieving the objectives of area revitalization requires comprehensive environmental and hydrological analyses as well as economic analyses. The paper outlined the range of difficulties encountered by this assessment.

  10. Valley-selective optical Stark effect probed by Kerr rotation

    Science.gov (United States)

    LaMountain, Trevor; Bergeron, Hadallia; Balla, Itamar; Stanev, Teodor K.; Hersam, Mark C.; Stern, Nathaniel P.

    2018-01-01

    The ability to monitor and control distinct states is at the heart of emerging quantum technologies. The valley pseudospin in transition metal dichalcogenide (TMDC) monolayers is a promising degree of freedom for such control, with the optical Stark effect allowing for valley-selective manipulation of energy levels in WS2 and WSe2 using ultrafast optical pulses. Despite these advances, understanding of valley-sensitive optical Stark shifts in TMDCs has been limited by reflectance-based detection methods where the signal is small and prone to background effects. More sensitive polarization-based spectroscopy is required to better probe ultrafast Stark shifts for all-optical manipulation of valley energy levels. Here, we show time-resolved Kerr rotation to be a more sensitive probe of the valley-selective optical Stark effect in monolayer TMDCs. Compared to the established time-resolved reflectance methods, Kerr rotation is less sensitive to background effects. Kerr rotation provides a fivefold improvement in the signal-to-noise ratio of the Stark effect optical signal and a more precise estimate of the energy shift. This increased sensitivity allows for observation of an optical Stark shift in monolayer MoS2 that exhibits both valley and energy selectivity, demonstrating the promise of this method for investigating this effect in other layered materials and heterostructures.

  11. Structural and functional characteristics of natural and constructed channels draining a reclaimed mountaintop removal and valley fill coal mine

    Science.gov (United States)

    Mountaintop removal and valley fill (MTR/VF) coal mining has altered the landscape of the Central Appalachian region in the United States. The goals of this study were to 1) compare the structure and function of natural and constructed stream channels in forested and MTR/VF catch...

  12. Forest types of the "Argentino River Valley" Natural Reserve

    Directory of Open Access Journals (Sweden)

    Bagnato S

    2008-09-01

    Full Text Available Forest classification is a fundamental target for understanding forest stand dynamics and for sustainable management strategy applications. In this paper the methodological approach of forest types, already used in other Italians region, was applied for the classification of the RNO "Argentino River Valley" (southern Apennine, Italy. This study has been organized in 4 steps: 1 bibliographic analysis and collection of the acquired knowledge; 2 preliminary verification of forest types in the field; 3 description of the different units; 4 final validation of typological units. Using this approach we have characterized 9 categories and 12 forest types units. The description of each units has been filed as cards, where information of different nature is summarized and related to the organization of the typological units, to its location, to the description of the qualitative indicators (disturbances, cohort, mortality, natural dynamic tendencies, SDT, CWD etc. and quantitative indicators (dbh, average height, current annual increment, etc., to the functioning and the current management. For a better understanding of types functioning, "sylvology models" based on the "Spatial Pattern of Relative Collective Interaction" (PSICR and on the principal characteristics influencing and characterizing forest stand dynamics (availability of resources, type and frequency of disturbances, stand development, etc. have been singled out and proposed. The "forest types map" and other maps useful for the management of forest resources have been obtained. Moreover, data collected did allow to formulate several hypotheses on sustainable management.

  13. Potential effects of geothermal energy conversion on Imperial Valley ecosystems. [Seven workshop presentations

    Energy Technology Data Exchange (ETDEWEB)

    Shinn, J.H. (ed.)

    1976-12-17

    This workshop on potential effcts of geothermal energy conversion on the ecology of Imperial Valley brought together personnel of Lawrence Livermore Laboratory and many collaborators under the sponsorship of the ERDA Imperial Valley Environmental Project (IVEP). The LLL Integrated Assessment Team identified the electric power potential and its associated effluents, discharges, subsidence, water requirements, land use, and noise. The Working Groups addressed the ecological problems. Water resource management problems include forces on water use, irrigation methods and water use for crops, water production, and water allocation. Agricultural problems are the contamination of edible crops and the reclamation of soil. A strategy is discussed for predevelopment baseline data and for identification of source term tracers. Wildlife resources might be threatened by habitat destruction, powerline impacts, noise and disturbance effects, gas emissions, and secondary impacts such as population pressure. Aquatic ecosystems in both the Salton Sea and fresh waters have potential hazards of salinity and trace metal effects, as well as existing stresses; baseline and bioassay studies are discussed. Problems from air pollution resulting from geothermal resource development might occur, particularly to vegetation and pollinator insects. Conversion of injury data to predicted economic damage isneeded. Finally, Imperial Valley desert ecosystems might be threatened by destruction of habitat and the possible effects on community structure such as those resulting from brine spills.

  14. A valley-filtering switch based on strained graphene.

    Science.gov (United States)

    Zhai, Feng; Ma, Yanling; Zhang, Ying-Tao

    2011-09-28

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device.

  15. A valley-filtering switch based on strained graphene

    International Nuclear Information System (INIS)

    Zhai Feng; Ma Yanling; Zhang Yingtao

    2011-01-01

    We investigate valley-dependent transport through a graphene sheet modulated by both the substrate strain and the fringe field of two parallel ferromagnetic metal (FM) stripes. When the magnetizations of the two FM stripes are switched from the parallel to the antiparallel alignment, the total conductance, valley polarization and valley conductance excess change greatly over a wide range of Fermi energy, which results from the dependence of the valley-related transmission suppression on the polarity configuration of inhomogeneous magnetic fields. Thus the proposed structure exhibits the significant features of a valley-filtering switch and a magnetoresistance device. (paper)

  16. Aburra Valley: Quo vadis?

    International Nuclear Information System (INIS)

    Hermelin, Michel

    2008-01-01

    These paper intents a brief description of the evolution that characterised natural risk prevention in the area surrounding the city of Medellin, Colombia, called the Aburra Valley. Both the lithological and structural composition of the Valle and its topographic and climatic conditions contribute to the abundance of destructive natural phenomena as earthquakes, slope movements, flash floods and, in a lower proportion, to floods. The population increase, which reaches now 3.5 millions inhabitants and the frequent occupation of sites exposed to natural hazards have resulted in numerous disasters. At present two entities called SIMPAD and DAPARD work on risk prevention, on city and department scale respectively. The amount of knowledge about physical environment is considered to be insufficient, together with regulations which should direct land use in accordance to restrictions related to natural hazards. Several seminars on this topic have already been carried out and the organisers of the present one, destined to commemorate the twentieth anniversary of the Villatina disaster, should make the decision to meet each two years. Furthermore, the creation of a permanent commission dedicated to study past events, to foster information broadcasting and to seek a better knowledge of the Aburra Valley, should be considered

  17. An evaluation of energy potential by biogas, in Alcala County - Valley of Cauca (Colombia)

    International Nuclear Information System (INIS)

    González Salcedo, Luis Octavio; Romo López, Liesely Karina

    2017-01-01

    Due to the increase in consumption of pork meat, pig accommodations have had to grow to meet this demand, and in turn increase organic waste becoming a big problem for the environment. The need to implement new alternatives to mitigate environmental impacts at the same time benefit the farms of this activity, using bio-digesters. The objective of this work is to evaluate the biogas potential of six farms in the Alcala County – Valley of Cauca (Colombia). The results for the total capacity of the farms show an interesting contribution to the energy component of the region, both in the production of biogas and in its energy equivalent. Various examples of energy use are made, including economic benefits. (author)

  18. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  19. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Science.gov (United States)

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  20. 77 FR 42722 - Copper Valley Electric Association; Notice of Updated Environmental Analysis Preparation Schedule

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley...: Original License Application. b. Project No.: 13124-002. c. Applicant: Copper Valley Electric Association (Copper Valley). d. Name of Project: Allison Creek Project. e. Location: On the south side of Port Valdez...

  1. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  2. Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007-08

    Science.gov (United States)

    Garner, Bradley D.; Truini, Margot

    2011-01-01

    The United States Geological Survey, in cooperation with the Arizona Department of Water Resources, initiated an investigation of the hydrogeology and water resources of Detrital, Hualapai, and Sacramento Valleys in northwestern Arizona in 2005, and this report is part of that investigation. Water budgets were developed for Detrital, Hualapai, and Sacramento Valleys to provide a generalized understanding of the groundwater systems in this rural area that has shown some evidence of human-induced water-level declines. The valleys are within the Basin and Range physiographic province and consist of thick sequences of permeable alluvial sediment deposited into basins bounded by relatively less permeable igneous and metamorphic rocks. Long-term natural recharge rates (1940-2008) for the alluvial aquifers were estimated to be 1,400 acre-feet per year (acre-ft/yr) for Detrital Valley, 5,700 acre-ft/yr for Hualapai Valley, and 6,000 acre-ft/yr for Sacramento Valley. Natural discharge rates were assumed to be equal to natural recharge rates, on the basis of the assumption that all groundwater withdrawals to date have obtained water from groundwater storage. Groundwater withdrawals (2007-08) for the alluvial aquifers were less than 300 acre-ft/yr for Detrital Valley, about 9,800 acre-ft/yr for Hualapai Valley, and about 4,500 acre-ft/yr for Sacramento Valley. Incidental recharge from leaking water-supply pipes, septic systems, and wastewater-treatment plants accounted for about 35 percent of total recharge (2007-08) across the study area. Natural recharge and discharge values in this study were 24-50 percent higher than values in most previously published studies. Water budgets present a spatially and temporally "lumped" view of water resources and incorporate many sources of uncertainty in this study area where only limited data presently are available.

  3. Visual Resource Analysis for Solar Energy Zones in the San Luis Valley

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Robert [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Abplanalp, Jennifer M. [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Zvolanek, Emily [Argonne National Laboratory (ANL), Argonne, IL (United States). Environmental Science Division; Brown, Jeffery [Bureau of Land Management, Washington, DC (United States). Dept. of the Interior

    2016-01-01

    This report summarizes the results of a study conducted by Argonne National Laboratory’s (Argonne’s) Environmental Science Division for the U.S. Department of the Interior Bureau of Land Management (BLM). The study analyzed the regional effects of potential visual impacts of solar energy development on three BLM-designated solar energy zones (SEZs) in the San Luis Valley (SLV) in Colorado, and, based on the analysis, made recommendations for or against regional compensatory mitigation to compensate residents and other stakeholders for the potential visual impacts to the SEZs. The analysis was conducted as part of the solar regional mitigation strategy (SRMS) task conducted by BLM Colorado with assistance from Argonne. Two separate analyses were performed. The first analysis, referred to as the VSA Analysis, analyzed the potential visual impacts of solar energy development in the SEZs on nearby visually sensitive areas (VSAs), and, based on the impact analyses, made recommendations for or against regional compensatory mitigation. VSAs are locations for which some type of visual sensitivity has been identified, either because the location is an area of high scenic value or because it is a location from which people view the surrounding landscape and attach some level of importance or sensitivity to what is seen from the location. The VSA analysis included both BLM-administered lands in Colorado and in the Taos FO in New Mexico. The second analysis, referred to as the SEZ Analysis, used BLM visual resource inventory (VRI) and other data on visual resources in the former Saguache and La Jara Field Offices (FOs), now contained within the San Luis Valley FO (SLFO), to determine whether the changes in scenic values that would result from the development of utility-scale solar energy facilities in the SEZs would affect the quality and quantity of valued scenic resources in the SLV region as a whole. If the regional effects were judged to be significant, regional

  4. Eco-Hydrological Modelling of Stream Valleys

    DEFF Research Database (Denmark)

    Johansen, Ole

    a flow reduction in the order of 20 % in a natural spring, whereas no effect could be measured in neither short nor deep piezometers in the river valley 50 m from the spring. Problems of measuring effects of pumping are partly caused by disturbances from natural water level fluctuations. In this aspect...

  5. The browse value of the Eastern Cape valley bushveld. | A.J. ...

    African Journals Online (AJOL)

    The feeding value of the Eastern Cape Valley Bushveld in terms of crude protein, digestible dry matter, digestible energy and metabolic energy, as selected by oesophageal fistulated Boer- and Angora goats was determined. Results show that the Valley Bushveld maintains a high feed value throughout the year. The high ...

  6. Cowichan Valley energy mapping and modelling. Report 5 - Energy density mapping projections. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Task 5 focused on energy projection mapping to estimate and visualise the energy consumption density and GHG emissions under different scenarios. The scenarios from task 4 were built around the energy consumption density of the residential sector under future land use patterns and rely on different energy source combinations (the suite of pathways). In task 5 the energy usage under the different scenarios were fed back into GIS, thereby giving a visual representation of forecasted residential energy consumption per unit area. The methodology is identical to that used in task 2 where current usage was mapped, whereas the mapping in this task is for future forecasts. These results are documented in this report. In addition, GHG mapping under the various scenarios was also undertaken. (LN)

  7. 78 FR 935 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-01-07

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  8. 78 FR 71599 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  9. 78 FR 38711 - Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Availability of Environmental Assessment In accordance with the... 47897), the Office of Energy Projects has reviewed Copper Valley Electric Association, Inc.'s...

  10. Electrical valley filtering in transition metal dichalcogenides

    Science.gov (United States)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  11. Inventory of emergencies and disasters in the Aburra Valley. Caused by natural and human phenomena in the period 1880-2007

    International Nuclear Information System (INIS)

    Aristizabal, Edier; Gomez, Julieta

    2008-01-01

    In recent years, natural and man induced disasters have been increasingly affecting numbers of people throughout the world, especially in the developing countries located within the tropics, such as Colombia. For this reason complete and high quality database on disasters and their human and economic impact is very much needed. It becomes an important tool for planners, policy makers, and field agencies engaged in preparedness and risk assessment. The Aburra Valley Metropolitan Area has implemented a local disaster database using the software DesInventar, developed in 1992 by La Red, Social Studies Network for Disaster Prevention in Latin America. The DesInventar methodology consists of two modules: DesInventar module, allows entry of space and temporal data, types of events, causes and sources through predefined fields? and DesConsultar module, allows easy database access, elaboration of queries including relations between the variables of effects, types of events, causes, sites, dates, etc, as well the use of tables, graphics and thematic maps. This local disaster database has been built using the data provided by previous works from EAFIT University, SIMPAD, Hormaza (1991) and Saldarriaga (2002). Here, we use the DesInventar methodology to identify the human and economic impact of natural and man induced disaster in the Aburra Valley. The current database indicates that the Aburra Valley has been affected by a large amount of events ranging in magnitude between small to moderate. During the period 1880 - 2007 a total of 6750 events were registered, classified as flooding events (42%), landslides (35%), and forest fires (15%). Manmade disasters are small, however its impact and recurrence has increased during the last two decades. In a global perspective of the Aburra Valley,we concluded that the most populated cities in the valley are the most affected, e.g. Medellin: 72% of events and 2'223.660 inhabitants? Itagui: 5,4% and 231.768 inhabitants? Envigado: 4

  12. Valley Hall effect and Nernst effect in strain engineered graphene

    Science.gov (United States)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  13. 76 FR 57100 - Natural Resource Plan

    Science.gov (United States)

    2011-09-15

    ... TENNESSEE VALLEY AUTHORITY Natural Resource Plan AGENCY: Tennessee Valley Authority (TVA). ACTION... environmental impact statement (EIS) for the Natural Resource Plan (NRP). The notice of availability of the Final Environmental Impact Statement for the Natural Resource Plan was published in the Federal Register...

  14. Vegetation - San Felipe Valley [ds172

    Data.gov (United States)

    California Natural Resource Agency — This Vegetation Map of the San Felipe Valley Wildlife Area in San Diego County, California is based on vegetation samples collected in the field in 2002 and 2005 and...

  15. Groundwater quality in Coachella Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  16. Sahagún's "Florentine codex," a little known Aztecan natural history of the Valley of Mexico.

    Science.gov (United States)

    Reeves, Henry M

    2006-01-01

    Franciscan missionary Fray Bernardino de Sahagún arrived in New Spain (Mexico) in 1529 to proselytize Aztecs surviving the Conquest, begun by Hernán Cortés in 1519. About 1558 he commenced his huge opus "Historia general de las cosas de Nueva España" completed in Latin-Nahuatl manuscript in 1569. The best surviving version, the "Florentine Codex," 1579 in Spanish-Nahuatl, is the basis for the editions published since 1829. The first English translation was issued in 13 volumes between 1950 and 1982, and the first facsimile was published in 1979. Book 11, "Earthly things," is a comprehensive natural history of the Valley of Mexico based on pre-Cortésian Aztec knowledge. Sahagún's work, largely unknown among English-speaking biologists, is an untapped treasury of information about Aztecan natural history. It also establishes the Aztecs as the preeminent pioneering naturalists of North American, and Sahagún and his colleagues as their documentarians.

  17. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai; Moody, Galan; Wu, Fengcheng; Dass, Chandriker Kavir; Xu, Lixiang; Chen, Chang Hsiao; Sun, Liuyang; Li, Ming-yang; Li, Lain-Jong; MacDonald, Allan H.; Li, Xiaoqin

    2016-01-01

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge

  18. 75 FR 22775 - Copper Valley Electric Association; Notice of Scoping Meeting and Soliciting Scoping Comments for...

    Science.gov (United States)

    2010-04-30

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-000] Copper Valley....: 13124-000. c. Applicant: Copper Valley Electric Association. d. Name of Project: Allison Lake Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  19. The Silicon Valley Eco System. High-energetic in many ways; Het Silicon Valley Eco Systeem: hoogenergetisch in vele opzichten

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, J.

    2012-04-15

    The highly commended Silicon Valley Eco System is bubbling with energy with regard to the subjects that are focused upon, including sustainable energy, or the widely available expertise that is needed for the developments, good ideas, capital and optimism, fed by frequent examples of extraordinarily successful companies. The sheer endlessness of network opportunities joins all these elements frequently. This article addresses several noteworthy interactions in the field of sustainable energy over the last period. [Dutch] Het veel geroemde Silicon Valley eco systeem bruist van energie in de vorm van de onderwerpen waar men zich op richt, waaronder duurzame energie, of de ruim aanwezige expertise die nodig is voor de ontwikkelingen, goede ideeen, kapitaal, en optimisme, gevoed door regelmatige voorbeelden van buitensporig succesvolle bedrijven. De schier oneindige netwerkmogelijkheden brengen al deze elementen met grote regelmaat bij elkaar. In dit artikel volgen enkele vermeldenswaardige interacties op het vlak van duurzame energie uit de afgelopen periode.

  20. Mackenzie Valley Pipeline market demand, supply, and infrastructure analysis : final report

    International Nuclear Information System (INIS)

    2004-01-01

    Mackenzie Valley Pipeline Co-Venturers is a consortium of petroleum companies proposing to construct a 1,400 km long, large-diameter, high-pressure natural gas transmission pipeline from the northwestern edge of the Northwest Territories to the Alberta-Northwest Territories border. The Mackenzie Valley Pipeline will bring natural gas from the Mackenzie Delta region to markets in Alberta, central and eastern Canada and the United States. Navigant Consulting Ltd. prepared this assessment of the long-term market need for natural gas produced from the Mackenzie Delta. It presents an analysis of gas demand, supply and infrastructure. Three sensitivity cases were examined, incorporating different assumptions about the initial capacity of the pipeline, potential expansion of its capacity and different levels of gas demand in Canada and the United States. The report indicates that gas markets in North America support construction of the proposed 34 million cubic metre per day pipeline in the 2009 timeframe, with possible expansion in 2015 and 2020. It also indicates that there will be enough capacity on the intra-Alberta gas transmission system to accommodate the projected deliveries of Mackenzie Delta gas. The increase in gas demand is due to an increase in residential and commercial gas consumption, electric power generation and the energy intensive bitumen extraction and processing activities in the Alberta oil sands industry. 36 tabs., 56 figs

  1. Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru.

    Science.gov (United States)

    Zhang, Dapeng; Arevalo-Gardini, Enrique; Mischke, Sue; Zúñiga-Cernades, Luis; Barreto-Chavez, Alejandro; Del Aguila, Jorge Adriazola

    2006-09-01

    Cocoa (Theobroma cacao) is indigenous to the Amazon region of South America, and it is well known that the Peruvian Amazon harbours a large number of diverse cocoa populations. A small fraction of the diversity has been collected and maintained as an ex-situ germplasm repository in Peru. However, incorrect labelling of accessions and lack of information on genetic diversity have hindered efficient conservation and use of this germplasm. This study targeted assessment of genetic diversity and population structure in a managed and a semi-natural population. Using a capillary electrophoresis genotyping system, 105 cocoa accessions collected from the Huallaga and Ucayali valleys of Peru were fingerprinted. Based on 15 loci SSR profiles, genetic identity was examined for each accession and duplicates identified, population structure assessed and genetic diversity analysed in these two populations. Ten synonymous mislabelled groups were identified among the 105 accessions. The germplasm group in the Huallaga valley was clearly separated from the group in Ucayali valley by the Bayesian assignment test. The Huallaga group has lower genetic diversity, both in terms of allelic richness and of gene diversity, than the Ucayali group. Analysis of molecular variance suggested genetic substructure in the Ucayali group. Significant spatial correlation between genetic distance and geographical distances was detected in the Ucayali group by Mantel tests. These results substantiate the hypothesis that the Peruvian Amazon hosts a high level of cocoa genetic diversity, and the diversity has a spatial structure. The introduction of exotic seed populations into the Peruvian Amazon is changing the cocoa germplasm spectrum in this region. The spatial structure of cocoa diversity recorded here highlights the need for additional collecting and conservation measures for natural and semi-natural cocoa populations.

  2. Burrowing Owl - Palo Verde Valley [ds197

    Data.gov (United States)

    California Natural Resource Agency — These burrowing owl observations were collected during the spring and early summer of 1976 in the Palo Verde Valley, eastern Riverside County, California. This is an...

  3. The natural population of bees of the earth (Melipona beecheii and their flora in the valley San Andrés

    Directory of Open Access Journals (Sweden)

    Katiuska Ravelo Pimentel

    2014-06-01

    Full Text Available The relationship of the natural population of bees of the earth is evaluated (Melipona beecheii and its flora in the valley San Andrés, to inclination observations and samplings carried out in the formations studied vegetable. The melliferous plants and their use like tree of the nest of Melipona beecheii were studied for each one of the vegetable formations of the valley San Andrés, the indexes of diversity and their relationship were also analyzed with the values of density of colonies. It was determined that the density of colonies of bees of the earth is directly related with the wealth and diversity of species of melliferous plants found in the study area. He was also proven that the arboreal species more used as tree of the nest they are: Bursera simaruba, Guazuma ulmifolia, Psidium guajava, Mangifera indica and Roystonea regia.

  4. Fort Valley studies: A natural laboratory for research and education

    Science.gov (United States)

    Brian W. Geils

    2008-01-01

    Drought, wildfire, extinction, and invasive species are considered serious threats to the health of our forests. Although these issues have global connections, we most readily see their consequences locally and attempt to respond with management based on science. For 100 years, the Fort Valley Experimental Forest (FVEF) has provided educational and experimental support...

  5. Mapping Ecosystem Services in the Jordan Valley, Jordan

    Science.gov (United States)

    Luz, Ana; Marques, Ana; Ribeiro, Inês; Alho, Maria; Catarina Afonso, Ana; Almeida, Erika; Branquinho, Cristina; Talozi, Samer; Pinho, Pedro

    2016-04-01

    In the last decade researchers started using ecosystem services as a new framework to understand the relationships between environment and society. Habitat quality and water quality are related with ecosystem services regulation and maintenance, or even provision. According to the Common International Classification of Ecosystem Services (CICES) both habitat quality and water quality are associated with lifecycle maintenance, habitat and gene pool protection, and water conditions, among others. As there is increased pressure on habitats and rivers especially for agricultural development, mapping and evaluating habitat and water quality has important implications for resource management and conservation, as well as for rural development. Here, we model and map habitat and water quality in the Jordan Valley, Jordan. In this study, we aim to identify and analyse ecosystem services both through 1) habitat quality and 2) water quality modelling using InVest, an integrated valuation of ecosystem services and tradeoffs. The data used in this study mainly includes the LULC, Jordan River watershed and main threats and pollutants in the study area, such as agriculture, industry, fish farms and urbanization. Results suggest a higher pressure on natural habitats in the Northern region of the Jordan Valley, where industry is dominant. Agriculture is present along the Jordan Valley and limits the few natural forested areas. Further, water pollution is mainly concentrated in disposal sites due to the low flow of the Jordan River. Our results can help to identify areas where natural resources and water resource management is most needed in the Jordan Valley. Acknowledgements: Transbasin FP7 project

  6. Generation of valley-polarized electron beam in bilayer graphene

    International Nuclear Information System (INIS)

    Park, Changsoo

    2015-01-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents

  7. Generation of valley-polarized electron beam in bilayer graphene

    Science.gov (United States)

    Park, Changsoo

    2015-12-01

    We propose a method to produce valley-polarized electron beams using a bilayer graphene npn junction. By analyzing the transmission properties of electrons through the junction with zigzag interface in the presence of trigonal warping, we observe that there exist a range of incident energies and barrier heights in which transmitted electrons are well polarized and collimated. From this observation and by performing numerical simulations, it is demonstrated that valley-dependent electronic currents with nearly perfect polarization can be generated. We also show that the peak-to-peak separation angle between the polarized currents is tunable either by incident energy or by barrier height each of which is controlled by using top and back gate voltages. The results can be used for constructing an electron beam splitter to produce valley-polarized currents.

  8. The Impact of Three-Dimensional Effects on the Simulation of Turbulence Kinetic Energy in a Major Alpine Valley

    Science.gov (United States)

    Goger, Brigitta; Rotach, Mathias W.; Gohm, Alexander; Fuhrer, Oliver; Stiperski, Ivana; Holtslag, Albert A. M.

    2018-07-01

    The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

  9. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  10. Mechanical energy dissipation in natural ceramic composites.

    Science.gov (United States)

    Mayer, George

    2017-12-01

    Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling

  11. Cowichan Valley energy mapping and modelling. Report 2 - Energy consumption and density mapping. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The second task in the overall project was the mapping of regional energy consumption density. Combined with the findings from task one, this enables comparison of energy consumption density per area unit with the renewable energy resource availability. In addition, it provides an energy baseline against which future energy planning activities can be evaluated. The mapping of the energy consumption density was divided into categories to correspond with local British Columbia Assessment Authority (BCAA) reporting. The residential sub-categories were comprised of single family detached dwellings, single family attached dwellings, apartments, and moveable dwellings. For commercial and industrial end-users the 14 sub-categories are also in line with BCAA as well as the on-going provincial TaNDM project of which the CVRD is a partner. The results of task two are documented in this report. (LN)

  12. Ground water in Dale Valley, New York

    Science.gov (United States)

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  13. Natural gas and energy security

    International Nuclear Information System (INIS)

    Saga, B.P.

    1996-01-01

    This paper relates to energy security by natural gas supply seen in an International Energy Agency perspective. Topics are: Security of supply, what is it; the role gas on the European energy scene; short term security of supply; long term security of supply; future structural and regulatory developments and possible implications for security of supply. 6 figs

  14. Natural resources and energy systems: a strategic perspective

    International Nuclear Information System (INIS)

    Lee, T.H.; Schmidt, E.; Anderer, J.

    1986-06-01

    Oil prices falls to below ten dollar a barrel. US synfuel program cancelled after billions of dollars are invested. Tennessee Valley Authority tries to sell unfinished nuclear plants to China. Completed nuclear plant stands idle in Austria. Canadians seek uses for excess power from Candu plants. A glut of cheap oil, a general excess of operating nuclear capacity, an ever growing number of mothballed or not quite completed non-operating nuclear plants. Today the formidable challenge is to use abundant energy sources in ways that support social and economic development and protect the environment. In this paper we seek to provide a strategic perspective on how to meet this challenge. Toward this end, we explore the misconceptions of the past that led to costly errors in energy planning. The issue here is to dispel the myth of resource depletion as the driving force for the shift from one energy source to another. To gain insight into the actual basis for energy substitution, we turn our attention to energy patterns, viewing these in retrospect and prospect. This review of energy development provides an opportunity to consider some of the environmental implications of the expanded use of energy resources. These findings are then drawn together in an attempt to highlight certain R and D options that we believe offer a sound basis for strategic energy management. (Author, shortened by G.Q.)

  15. Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal

    International Nuclear Information System (INIS)

    Dhakal, Shobhakar

    2003-01-01

    This paper estimates and analyzes the historical and future trends of energy demand and environmental emissions from passenger transportation of the Kathmandu Valley covering CO 2 , CO, HC, NO x , SO 2 , total suspended particles (TSP) and lead (Pb). It uses the Long-range Energy Alternatives Planning System framework for constructing future scenarios up to year 2020 and analyzing their implications; these scenarios mainly deal with the traffic improvement measures, promotion of public transportation and electric vehicles. The results estimate over a four-fold increase in energy demand in 1988-2000. TSP increase of 4.5 times in this period is the major concern since high particulate concentration is already above World Health Organization guidelines. Under the non-intervention scenario, energy demand in 2020 is estimated to be 2.7 times that in the year 2000. Similarly, 2.5 times increase of TSP in 2020 from the year 2000 is estimated that would further increase the TSP concentrations. The scenario analyses suggest that increasing vehicle speed, promoting public transportation and promoting electric vehicles could reduce energy demand by 28%, 28% and 18%, respectively, while promoting a reasonably comfortable condition on overcrowded public transportation could increase energy demand by 10% from non-intervention scenario. For TSP, any future measures would not be enough unless the attention is not paid to in-use vehicle stock. A mix of all the policies mentioned above has potentials to cut down CO 2 emissions to over 60% from the non-intervention case in 2020

  16. Feasibility of target communities in a Dutch brook valley system

    NARCIS (Netherlands)

    Prins, AH; Bekker, RM

    As a reaction to the ongoing deterioration of nature conservation interest in The Netherlands, an offensive nature strategy was formulated in the 1990 Nature Policy Plan. In this Plan, target communities and target plant species are mentioned. For the 'Drentse A brook valley system', target

  17. Energy market for energy. Natural gas and electricity

    International Nuclear Information System (INIS)

    Van Scherpenzeel, H.; De Boer, I.

    2000-10-01

    The aim of the title market study is to provide insight into the energy market in Argentina for the Dutch industry and business sector, focusing on the structure of the natural gas and electricity sector and the market for equipment for the production and processing of natural gas and equipment for electricity generation

  18. Nature conservation guidelines for renewable energy projects

    International Nuclear Information System (INIS)

    1994-01-01

    English Nature commissions this report in order to identify the likely nature conservation implications of renewable energy developments and for wind farm proposals in particular, to give guidance on siting criteria to minimise the nature conservation impact. The report is intended to be of use to developers, local planning authority staff and other interested parties in considering a renewable energy project. In consequence, the report concentrates on planning and nature conservation matters and outlines technical issues where relevant. (UK)

  19. Steelhead Critical Habitat, Central Valley - NOAA [ds123

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Steelhead Critical Habitat as well as habitat type and quality in the California Central Valley Evolutionary Significant Unit...

  20. Easing the natural gas crisis: Reducing natural gas prices through increased deployment of renewable energy and energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; St. Clair, Matt

    2004-12-21

    Heightened natural gas prices have emerged as a key energy-policy challenge for at least the early part of the 21st century. With the recent run-up in gas prices and the expected continuation of volatile and high prices in the near future, a growing number of voices are calling for increased diversification of energy supplies. Proponents of renewable energy and energy efficiency identify these clean energy sources as an important part of the solution. Increased deployment of renewable energy (RE) and energy efficiency (EE) can hedge natural gas price risk in more than one way, but this paper touches on just one potential benefit: displacement of gas-fired electricity generation, which reduces natural gas demand and thus puts downward pressure on gas prices. Many recent modeling studies of increased RE and EE deployment have demonstrated that this ''secondary'' effect of lowering natural gas prices could be significant; as a result, this effect is increasingly cited as justification for policies promoting RE and EE. This paper summarizes recent studies that have evaluated the gas-price-reduction effect of RE and EE deployment, analyzes the results of these studies in light of economic theory and other research, reviews the reasonableness of the effect as portrayed in modeling studies, and develops a simple tool that can be used to evaluate the impact of RE and EE on gas prices without relying on a complex national energy model. Key findings are summarized.

  1. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  2. Chinook Critical Habitat, Central Valley - NOAA [ds125

    Data.gov (United States)

    California Natural Resource Agency — This layer depicts areas designated for Chinook Critical Habitat as well as habitat type and quality in the Central Valley Spring-run Evolutionary Significant Unit...

  3. Bird Use of Imperial Valley Crops [ds427

    Data.gov (United States)

    California Natural Resource Agency — Agriculture crops in the Imperial Valley of California provide valuable habitat for many resident and migratory birds and are a very important component of the...

  4. Energy, entropy, and the flow of nature

    CERN Document Server

    Sherman, Thomas F

    2018-01-01

    A fresh and unified exploration of the laws that govern natural change, examining the historical roots and meaning of the concepts of energy and entropy. All natural processes--mechanical, thermal, chemical, electrical, and biological--are viewed as a flow across free energy gradients that interact with one another.

  5. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    International Nuclear Information System (INIS)

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith LaRue, J.; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  6. Switchgrass biomass energy storage project. Final report, September 23, 1996--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A.; Teel, A.; Brown, S.S. [Iowa State Univ., Ames, IA (United States)

    1996-07-01

    The Chariton Valley Biomass Power Project, sponsored by the Chariton Valley RC&D Inc., a USDA-sponsored rural development organization, the Iowa Department of Natural Resources Energy Bureau (IDNR-EB), and IES Utilities, a major Iowa energy company, is directed at the development of markets for energy crops in southern Iowa. This effort is part of a statewide coalition of public and private interests cooperating to merge Iowa`s agricultural potential and its long-term energy requirements to develop locally sustainable sources of biomass fuel. The four-county Chariton Valley RC&D area (Lucas, Wayne, Appanoose and Monroe counties) is the site of one of eleven NREL/EPRI feasibility studies directed at the potential of biomass power. The focus of renewable energy development in the region has centered around the use of swithgrass (Panicum virgatum, L.). This native Iowa grass is one of the most promising sustainable biomass fuel crops. According to investigations by the U.S. Department of Energy (DOE), switchgrass has the most potential of all the perennial grasses and legumes evaluated for biomass production.

  7. Clean Cities Award Winning Coalition: Coachella Valley

    Energy Technology Data Exchange (ETDEWEB)

    ICF Kaiser

    1999-05-20

    Southern California's Coachella Valley became a Clean Cities region in 1996. Since then, they've made great strides. SunLine Transit, the regional public transit provider, was the first transit provider to replace its entire fleet with compressed natural gas buses. They've also built the foundation for a nationally recognized model in the clean air movement, by partnering with Southern California Gas Company to install a refueling station and developing a curriculum for AFV maintenance with the College of the Desert. Today the valley is home to more than 275 AFVs and 15 refueling stations.

  8. 76 FR 78628 - Copper Valley Electric Association, Inc.; Notice of Application and Applicant-Prepared EA...

    Science.gov (United States)

    2011-12-19

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley... Application: Major License. b. Project No.: P-13124-003. c. Date filed: August 30, 2011. d. Applicant: Copper.... 791 (a)-825(r). h. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association...

  9. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    Science.gov (United States)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  10. Energy conversion in natural and artificial photosynthesis.

    Science.gov (United States)

    McConnell, Iain; Li, Gonghu; Brudvig, Gary W

    2010-05-28

    Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.

  11. Natural Gas Energy Educational Kit.

    Science.gov (United States)

    American Gas Association, Arlington, VA. Educational Services.

    Prepared by energy experts and educators to introduce middle school and high school students to natural gas and its role in our society, this kit is designed to be incorporated into existing science and social studies curricula. The materials and activities focus on the origin, discovery, production, delivery, and use of natural gas. The role of…

  12. The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects

    Science.gov (United States)

    Lespez, L.; Viel, V.; Rollet, A. J.; Delahaye, D.

    2015-12-01

    As in other European countries, western France has seen an increase in river restoration projects. In this paper, we examine the restoration goals, methods and objectives with respect to the long-term trajectory and understanding of the contemporary dynamics of the small low energy rivers typical of the lowlands of Western Europe. The exhaustive geomorphological, paleoenvironmental and historical research conducted in the Seulles river basin (Normandy) provides very accurate documentation of the nature and place of the different legacies in the fluvial systems we have inherited. The sedimentation rate in the Seulles valley bottom has multiplied by a factor of 20 since the end of the Bronze Age and has generated dramatic changes in fluvial forms. Hydraulic control of the rivers and valley bottoms drainage throughout the last millennium has channelized rivers within these deposits. The single meandering channel which characterizes this river today is the legacy of the delayed and complex effects of long term exploitation of the river basin and the fluvial system. Bring to light that the "naturalness" of the restored rivers might be questioned. Our research emphasizes the gap between the poor knowledge of the functioning of these rivers and the concrete objectives of the restoration works undertaken, including dam and weir removal. Account of the long-term history of fluvial systems is required, not only to produce a pedagogic history of the "river degradation" but more fundamentally (i) to situate the current functioning of the fluvial system in a trajectory to try to identify thresholds and anticipate the potential turning points in a context of climate and land use change, (ii) to understand the role of morphosedimentary legacies on the current dynamics, (iii) to open the discussion on reference functioning or expected states and (iv) to open discussion on the sustainability of ecological restoration. To conclude, we point out the necessity to take into account the

  13. Groundwater quality in the Owens Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  14. Natural and EDTA-complexed lanthanides used as a geochemical probe for aquifers: a case study of Orleans valley's alluvial and karstic aquifers

    International Nuclear Information System (INIS)

    Le Borgne, F.; Treuil, M.; Joron, J.L.; Lepiller, M.

    2005-01-01

    The transit of chemical elements within the different parts of Orleans valley's aquifer is studied by two complementary methods. Those methods rely on the fractionation of lanthanides (Ln) during their migration in natural waters. The first method consists in studying natural lanthanides patterns within the watershed, at its entries and exits. second one lies on multi-tracer experiments with Ln-EDTA complexes. This work is completed through an observation network consisting of 52 piezometers set on a sand and gravel quarry, and the natural entries and exits of the aquifer. Orleans valley's aquifer, which is made of an alluvial watershed lying on a karstic aquifer, is mainly fed by Loire river via a large karstic network. At the entries of the aquifer (Loire river at Jargeau), the Ln concentrations in the dissolved fraction ( heavy Ln. On the other hand, the filtration of alluvial groundwater with high colloids content induces no significant Ln fractionation when the solution contains no strong chelating agent. Hence, the transit of natural and artificial Ln in Orleans valley aquifer can be explained by two complementary processes. (I) Decanting/filtering or, on the opposite, stirring of colloids. Those processes induce no important Ln fractionation. (2) Exchanges of Ln between solute complexes, colloids and sediments due to the presence of strong chelating agents. Those exchanges fractionate the Ln in the order of their stability constants. Considering the natural Ln fractionation that occurs in the Loire river and in the studied aquifer, the carbonates, the stability constants of which follow the order light Ln < heavy Ln, are the best candidates as natural strong chelating agents. From the hydrodynamic point of view, both tracer experiments and natural Ln concentrations show that the transfer of elements within the alluvial watershed is pulsed by the Loire river movements. During an ascent phase, the elements migrate away from and perpendicularly to the karstic

  15. Commercial production of ethanol in the San Luis Valley, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

    1983-07-01

    The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

  16. Interaction Induced Quantum Valley Hall Effect in Graphene

    Directory of Open Access Journals (Sweden)

    E. C. Marino

    2015-03-01

    Full Text Available We use pseudo-quantum electrodynamics in order to describe the full electromagnetic interaction of the p electrons in graphene in a consistent 2D formulation. We first consider the effect of this interaction in the vacuum polarization tensor or, equivalently, in the current correlator. This allows us to obtain the T→0 conductivity after a smooth zero-frequency limit is taken in Kubo’s formula. Thereby, we obtain the usual expression for the minimal conductivity plus corrections due to the interaction that bring it closer to the experimental value. We then predict the onset of an interaction-driven spontaneous quantum valley Hall effect below an activation temperature of the order of 2 K. The transverse (Hall valley conductivity is evaluated exactly and shown to coincide with the one in the usual quantum Hall effect. Finally, by considering the effects of pseudo-quantum electrodynamics, we show that the electron self-energy is such that a set of P- and T-symmetric gapped electron energy eigenstates are dynamically generated, in association with the quantum valley Hall effect.

  17. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  18. DIVERSITY OF PTERIDOPHYTES IN THE PROTECTED AREA OF VÂLSAN VALLEY

    Directory of Open Access Journals (Sweden)

    Liliana Cristina Soare

    2012-04-01

    Full Text Available In the Vâlsan Valley there are two categories of regions that have been declared protected areas: The Natural Reserve Vâlsan Valley, code 2125 and The protected natural area of community interest Vâlsan Valley, code ROSCI0268. The aim of the research was to identify the species of pteridophytes in the protected areas, a necessary step for the conservation of their diversity. Within the area researched 26 species of pteridophytes were determined. Specific diversity across the genera identified ranges from 5 to 1, thus: Equisetum (5, Asplenium (4, Dryopteris (4, Polystichum (3 and Huperzia, Lycopodium, Selaginella, Botrychium, Polypodium, Phegopteris, Athyrium, Cystopteris, Gymnocarpium, Matteuccia with only one species. Concerning the abundance of the species identified, the pteridoflora in the area researched is made up of frequent (73% and sporadic species (27%, such as Huperzia selago, Lycopodium annotinum, Botrychium multifidum, Asplenium scolopendrium, Matteuccia struthiopteris, Dryopteris expansa, Polystichum braunii.

  19. Stratigraphy and uranium deposits, Lisbon Valley district, San Juan County, Utah

    International Nuclear Information System (INIS)

    Huber, G.C.

    1980-01-01

    Uranium occurrences are scattered throughout southeastern Utah in the lower sandstones of the Triassic Chinle Formation. The Lisbon Valley district, however, is the only area with uranium deposits of substantial size. The stratigraphy of the Lisbon Valley district was investigated to determine the nature of the relationship between the mineralized areas and the lower Chinle sandstones. The geochemistry of the Lisbon Valley uranium deposits indicates a possible district-wide zoning. Interpretation of the elemental zoning associated with individual ore bodies suggests that humates overtaken by a geochemical oxidation-reduction interface may have led to formation of the uranium deposits. Refs

  20. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Science.gov (United States)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  1. Consolidation of natural gas on the energy matrix

    International Nuclear Information System (INIS)

    Augusto, C.

    1990-01-01

    This paper joints itself in the effort to make natural gas a competitive fuel in Brazil as occurs in many countries. In the world, petroleum by products have an outstanding importance on the energy market as well as equals 38% of consumption. Comparing other commercialized energy, natural gas by itself contributes with 20% while other sources complete the world energy necessity. In Brazil, natural gas consumption is almost 2% of total consumption or 1/10 of that 20% said above so that there are plenty possibilities ahead to grow its participation. This paper aims to enlarge and solidify the natural gas utilization on the energy matrix so that new analysis have been made from new elements sources. The date collected should be considered not as an end result but as a first start to guide a market analysis study. (author)

  2. Transect survey of artificial 137Cs and natural 40K in moss and bilberry leaf samples from two main valleys from Tatra National Park

    International Nuclear Information System (INIS)

    Kubica, B.; Mietelski, J.W.; Stobinski, M.; Tuteja-Krysa, M.; Tomankiewicz, E.; Gaca, P.; Skiba, S.; Kubica, M.; Golas, J.; Krzan, Z.

    2004-01-01

    This paper presents the results of determination of artificial 137 Cs and natural 40 K activity concentrations in plants (bilberry (Vaccinum myrtillus) and moss (Polytrichum commune) and in soil samples from two main Tatra Valleys; Koscieliska and Rybi Potok Valley. The data were obtained during two years (2001-02). These plants are known a as good bio-monitors for radiocaesium. It is known that 137 Cs and 40 K isotopes play important roles in the environment, due to their good assimilation by plants. The transfer of these elements from soil to plant depends of many factors: type of soil, organic matter contents, pH, type of plants. In this paper some results concerning the transfer of 137 Cs and 40 K isotopes from various types of Tatra soil to moss or bilberry are shown. (author)

  3. Commercial production of ethanol in the San Luis Valley, Colorado. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

    1983-07-01

    The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

  4. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project is economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.

  5. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  6. Handbook of natural resource and energy economics. Volume III

    International Nuclear Information System (INIS)

    Kneese, A.V.; Sweeney, J.L.

    1993-01-01

    The last of a three-volume series of handbooks focuses on the economics of energy, minerals and exhaustible resources, and the forecasting issues. The relationship between energy, the environment and economic growth is also examined. Chapter headings are: economic theory of depletable resources; the optimal use of exhaustible resources; intertemporal consistency issues in depletable resources; buying energy and non-fuel minerals; mineral resource stocks and information; strategies for modelling exhaustible resource supply; natural resources in an age of substitutability; natural resource cartels; the economics of energy security; natural resource use and the environment; and energy, the environment and economic growth

  7. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.

    2014-12-04

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  8. Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers

    KAUST Repository

    Kim, J.; Hong, X.; Jin, C.; Shi, S.-F.; Chang, C.-Y. S.; Chiu, Ming-Hui; Li, Lain-Jong; Wang, F.

    2014-01-01

    The valley pseudospin is a degree of freedom that emerges in atomically thin two-dimensional transition metal dichalcogenides (MX2). The capability to manipulate it, in analogy to the control of spin in spintronics, can open up exciting opportunities. Here, we demonstrate that an ultrafast and ultrahigh valley pseudo-magnetic field can be generated by using circularly polarized femtosecond pulses to selectively control the valley degree of freedom in monolayer MX2. Using ultrafast pump-probe spectroscopy, we observed a pure and valley-selective optical Stark effect in WSe2 monolayers from the nonresonant pump, resulting in an energy splitting of more than 10 milli-electron volts between the K and K′ valley exciton transitions. Our study opens up the possibility to coherently manipulate the valley polarization for quantum information applications.

  9. Natural gamma radiation levels, indoor and water 222RN Concentrations in soil division of Kerio valley, kenya

    International Nuclear Information System (INIS)

    Nderitu, S.K.; Maina, D.M.; Kinyua, A.M.

    2001-01-01

    Human beings are constantly exposed to natural radioactivity. This radiation is mainly from natural gamma rays and radon and its decay products. The gamma rays are as a result of the decay of primordial nuclides and their daughter radioactive nuclides present in the earth's crust. Radon is produced from the decay of 226 Ra and it diffuses to the indoor environment through cracks on the floor or from building materials containing radium and hence radon problem is mainly indoors. In Kenya, some parts have been identified as having high gamma radiation causing exposure to the public. These areas include Mrima Hill (Kwale), Homa Bay, Bufayo, Weast Pokot, Kitui, Nanyuki, Kerio Valley and Tura. It is therefore necessary to carry out studies on the levels of radiation and determine whether they are within safe limits. Kerio valley, which is the area of study in this work, has been identified as one of the areas with uranium traces associated with fluorite mineralisation. In this study an assessment of the natural radiation levels in this area was carried out and in addition the radon concentrations indoor as well in water that the public is exposed were determined. To measure the radiation levels, soil samples were collected from the area of study, Kerio valley, and analysed for gamma levels using gamma spectroscopy technique. Indoor 222 Rn and radon in water concentrations were measured using the E-perm system. The activity concentrations of the radionuclides present, the doses as well as the annual effective dose equivalents were calculated for the soils using conversion factors adopted from the UNSCEAR (1988 and 1993) reports. Similarly, the dose equivalents and the annual effective doses for 222 Rn concentrations were evaluated. For natural gamma radiation 74 samples were analysed. The soil samples yielded activity concentrations ranging from 194.54??2.89 to 995.77??5.48 Bq Kg-1 for 40 K, 17.04??0.43 to 122.4??0.94 Bq Kg-1 for 232 Th which was evaluated from the 212

  10. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Science.gov (United States)

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  11. Update on the status of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Greeves, J.T.; Camper, L.W.; Orlando, D.A.; Glenn, C.J.; Buckley, J.T.; Giardina, P.A.

    2002-01-01

    From 1966 to 1972, under an Atomic Energy Commission (AEC) license, Nuclear Fuel Services (NFS) reprocessed 640 metric tons of spent fuel at its West Valley, New York, facility-, the only commercial spent fuel reprocessing plant in the U.S. The facility shut down in 1972, for modifications to increase its seismic stability and to expand its capacity. In 1976, without restarting the operation, NFS withdrew from the reprocessing business and returned control of the facilities to the site owner, the New York State Energy Research and Development Authority (NYSERDA). The reprocessing activities resulted in about 2.3 million liters (600,000 gallons) of liquid high-level waste (HLW) stored below ground in tanks, other radioactive wastes, and residual radioactive contamination. The West Valley site was licensed by AEC, and then the U.S. Nuclear Regulatory Commission (NRC), until 1981, when the license was suspended to execute the 1980 West Valley Demonstration Project (WVDP) Act. The WVDP Act outlines the responsibilities of the U.S. Department of Energy (DOE), NRC, and NYSERDA at the site, including the NRC's responsibility to develop decommissioning criteria for the site. The Commission published the final policy statement on decommissioning criteria for the WVDP at the West Valley site after considering comments from interested stakeholders. In that regard, the Commission prescribed the License Termination Rule (LTR) criteria for the WVDP at the West Valley site, reflecting the fact that the applicable decommissioning goal for the entire NRC-licensed site is compliance with the requirements of the LTR. This paper will describe the history of the site, provide an update of the status of the decommissioning of the site and an overview of the technical and policy issues facing Federal and State regulators and other stakeholders as they strive to complete the remediation of the site. (author)

  12. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  13. Natural gas central to world's future energy mix

    International Nuclear Information System (INIS)

    Carson, M.M.

    1997-01-01

    Continued growth in demand for natural gas is one of three pillars around which the energy mix of the future will take shape and upon which energy strategies should be based. The others are consumption efficiency and growth of renewable energy sources. This paper evaluates world energy supply and demand and includes an analysis of world pipeline gas, electricity, and LNG trends. The paper discusses the natural gas resource, proved reserves, reserves growth, gas prices and demand, country demand trends, world energy use, gas pipeline construction, power generation, electricity consumption and prices, and global carbon emissions

  14. Intelligent electric vehicle charging: Rethinking the valley-fill

    Science.gov (United States)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  15. Rock-fall Hazard In The Yosemite Valley, California

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent slope movements in Yosemite Na- tional Park, California. In historical time (1851-2001), more than 400 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the preliminary results of an attempt to assess rockfall hazard in the Yosemite Valley using STONE, a 3-dimensional rock-fall simulation computer program. The software computes 3-dimensional rock-fall trajectories starting from a digital terrain model (DTM), the location of rock-fall release points (source areas), and maps of the dynamic rolling coefficient and of the coefficients of normal and tan- gential energy restitution. For each DTM cell the software also calculates the number of rock falls passing through the cell, the maximum rock-fall velocity and the maxi- mum flying height. For the Yosemite Valley, a DTM with a ground resolution of 10 x 10 m was prepared using topographic contour lines from USGS 1:24,000-scale maps. Rock-fall release points were identified as DTM cells having a slope steeper than 60 degrees, an assumption based on the location of historical rock falls. Maps of the nor- mal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to cali- brate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of the model. The model results are also compared with a geomorphic assessment of rock-fall hazard based on potential energy referred to as a "shadow angle" approach, recently completed for the Yosemite Valley.

  16. 78 FR 61984 - Copper Valley Electric Association, Inc.; Notice of Application To Amend License and Accepted for...

    Science.gov (United States)

    2013-10-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-005] Copper Valley...: Amendment to License. b. Project No: 13124-005. c. Date Filed: September 27, 2013. d. Applicant: Copper..., Copper Valley Electric Association, Inc., P.O. Box 45, Mile 187 Glenn Highway, Glennallen, AK 99588, (907...

  17. Natural gas - bridge to a clean energy future

    International Nuclear Information System (INIS)

    Doelman, J.

    1991-01-01

    Per unit of useful energy natural gas gives the lowest environmental pollution of all fossil fuels. This is due to its low carbon content, the absence of sulphur compounds, and the fact that natural gas can, rather easily, be burnt completely in such a way that also the NO x emission is acceptably low. Although natural gas has already a good record as an efficient and clean fuel large improvements are still possible, but this requires more R+D and time. The presently known natural gas world reserves are high enough to go for a substantially higher share of gas in the energy package. E.g. replacing coal by natural gas will give large environmental improvements. Furthermore, direct gas use is very often the most efficient and cleanest option, also when electricity is an alternative. To develop and connect the known large reserves to the market enormous amounts of money are required. The political and economical situation should make these investments possible and attractive. The ideas first expressed by the Dutch prime minister, now incorporated in the Energy Charter, have been developed to that end. Special attention should be given to the development of small gas fields as is e.g. being done in The Netherlands, which has improved the local gas reserves situation impressively. As a first major step to a clean future the potential of natural gas should be explored and put to work worldwide. Its potential as an important diversified source of energy is underestimated. Amongst others by funding more natural gas R+D natural gas should develop a keyrole in the energy scene of the next 3-5 decades.(author) 3 figs., 8 tabs., 3 refs

  18. Cowichan Valley energy mapping and modelling. Report 1 - GIS mapping of potential renewable energy resources in the CVRD. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The first task in the project was the production of a series of thematic GIS maps and associated databases of potential renewable energy resources in the CVRD. The renewable energy sources mapped were solar, wind, micro hydro, and biomass (residues and waste). Other sources were also discussed (e.g. geothermal heat) but not mapped due to lack of spatially explicit input data. The task 1 findings are detailed in this report. (LN)

  19. Cost-Benefit Analysis applied to the natural gas program for vehicles in the Metropolitan Area of the Aburra Valley

    International Nuclear Information System (INIS)

    Saldarriaga Isaza, Carlos Adrian; Vasquez Sanchez, Edison; Chavarria Munera, Sergio

    2011-01-01

    This article presents the evaluation of the natural gas program for vehicles applied in Metropolitan Area of the Aburra Valley. By using the Cost- Benefit Analysis method, four cost variables were identified: private, fiscal, gas tax, and conversion tax; and three types of benefits: private, fiscal and social. For the environmental social benefit estimation the benefit transfer technique was employed, carrying out meta-analysis function estimation. The cost-benefit net outcome is positive and favors the program application in the study site; in real terms the total profits are about COP$ 803265 million for the complete eight year period it took place (2001- 2008).

  20. Landform-Sediment Assemblages Units of the Upper Mississippi River Valley

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Wisconsinan and Holocene Landform-Sediment Assemblages of the Upper Mississippi River Valley. Knowledge of the spatial distribution of natural and cultural resources...

  1. Can Deployment of Renewable Energy and Energy Efficiency PutDownward Pressure on Natural Gas Prices

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark

    2005-06-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy and energy efficiency. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent U.S.-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy and energy efficiency on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in U.S. natural gas demand could lead to long-term average wellhead price reductions of 0.8% to 2%, and that each megawatt-hour of renewable energy and energy efficiency may benefit natural gas consumers to the tune of at least $7.5 to $20.

  2. Chiral filtration-induced spin/valley polarization in silicene line defects

    Science.gov (United States)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  3. Birds of the St. Croix River valley: Minnesota and Wisconsin

    Science.gov (United States)

    Faanes, Craig A.

    1981-01-01

    The St. Croix River Valley encompasses nearly 11,550 km2 in east-central Minnesota and northwestern Wisconsin. A wide range of habitats are available for birds including upland oak, lowland deciduous, maple-basswood, lowland and upland coniferous forests, natural basin wetlands, and grasslands. Situated in the north-central region of the United States, the valley is a biological 'crossroads' for many species. Because of the mixed affinities of plant communities, the valley includes the northern and southern range limits for a number of species. Also, because the valley lies near the forest-prairie transition zone, many typical western breeding species (e.g. pintail, western meadowlark, yellow-headed blackbird) breed in proximity to typical eastern species such as tufted titmouse, eastern meadowlark, and cardinal. From 1966 to 1980, I conducted extensive surveys of avian distribution and abundance in the St. Croix River Valley. I have supplemented the results of these surveys with published and unpublished observations contributed by many ornithologists. These additional data include compilations from Christmas Bird Counts sponsored by the National Audubon Society and from the Breeding Bird Survey coordinated by the U.S. Fish and Wildlife Service. Three hundred fourteen species have been recorded in the study area; data are presented on the migration period, nesting season distribution, winter distribution, relative abundance, and habitat use of each species. Recognizing the uniqueness of the area, and its importance not only to wildlife but also to man, the U.S. Congress designated the St. Croix a National Scenic Riverway. This action provided a considerable degree of protection to lands along and directly adjacent to the river. Unfortunately, no similar legal measure exists to protect lands away from the river. With the exception of the northern quarter of the St. Croix River Valley, agricultural interests have made significant inroads into the habitat base. The

  4. Conceptualising energy security and making explicit its polysemic nature

    International Nuclear Information System (INIS)

    Chester, Lynne

    2010-01-01

    Twenty-first century access to energy sources depends on a complex system of global markets, vast cross-border infrastructure networks, a small group of primary energy suppliers, and interdependencies with financial markets and technology. This is the context in which energy security has risen high on the policy agenda of governments around the world and the term 'energy security' has quietly slipped into the energy lexicon. The limited discourse about the nature of the term or its underlying assumptions has been totally eclipsed by an almost overwhelming focus on securing supplies of primary energy sources and geopolitics. An examination of explicit and inferred definitions finds that the concept of energy security is inherently slippery because it is polysemic in nature, capable of holding multiple dimensions and taking on different specificities depending on the country (or continent), timeframe or energy source to which it is applied. This 'slipperiness' poses analytical, prediction and policy difficulties but if explicitly recognised through definitional clarity, new levels of understanding will enrich the policy debate to deal with obstacles impacting on the constantly evolving nature of energy security.

  5. Dietary α-ketoglutarate supplementation improves hepatic and intestinal energy status and anti-oxidative capacity of Cherry Valley ducks.

    Science.gov (United States)

    Guo, Shuangshuang; Duan, Rui; Wang, Lei; Hou, Yongqing; Tan, Linglin; Cheng, Qiang; Liao, Man; Ding, Binying

    2017-11-01

    α-Ketoglutarate (AKG) is an extensively used dietary supplement in human and animal nutrition. The aim of the present study was to investigate effects of dietary AKG supplementation on the energy status and anti-oxidative capacity in liver and intestinal mucosa of Cherry Valley ducks. A total of 80 1-day-old ducks were randomly assigned into four groups, in which ducks were fed basal diets supplemented with 0% (control), 0.5%, 1.0% and 1.5% AKG, respectively. Graded doses of AKG supplementation linearly decreased the ratio of adenosine monophosphate (AMP) to adenosine triphosphate (ATP) in the liver, but increased ATP content and adenylate energy charge (AEC) in a quadratic and linear manner, respectively (P ducks. © 2017 Japanese Society of Animal Science.

  6. Partitioning of radiation and energy balance components in an inhomogeneous desert valley

    International Nuclear Information System (INIS)

    Malek, E.; Bingham, G.E.

    1997-01-01

    Radiation and energy balance components are required to validate global, regional, and local scale models representing surface heat flux relationships in the heterogeneous surfaces of the world's arid and desert regions. Research was conducted in north-eastern Nevada, U.S.A., in a Great Basin inhomogeneous semi-arid desert valley located at 40° 44′ N, 114° 26′ W, with an elevation of 1707 m above mean sea level, to study the daily, monthly, and annual mesoscale radiation and energy balance components. We established five radiation stations along with five Bowen ratio systems to measure the incoming (R si ) and outgoing (R so ) solar (shortwave) radiation, net (R n ) radiation, air temperatures and moisture at 1 and 2 m above-ground, the aggregated (soil + vegetation) surface temperature, soil heat flux at 8 cm (three locations at each station), soil temperatures at 2 and 6 cm above each soil flux plate, wind speed and direction at 10 m, and precipitation (if any) every 5 s averaged into 20 min throughout the valley during the 93–94 water year (beginning 1 October). Our study during the 93–94 water year showed that albedo (R so /R si ) ranged from 85% (snow-covered surface) to 10% (cloudy skies with wet surface) among stations. The water year total incoming solar radiation (averaged among stations) amounted to 6·33 × 10 3 MJ·m −2 and about 24% of that was reflected back to the atmosphere. The net longwave radiation (R ln = R lo − R li ) was about 32% of R si , where R lo and R li are the terrestrial (outgoing) and atmospheric (incoming) longwave radiation, respectively. The 93–94 water year average net radiation (R n ) among stations amounted to 2·68 × 10 3 MJ·m −2 (about 44% of R si ). Approximately 85·3% and 14·6% of R n were used for the processes of sensible (H) and latent (LE) heat fluxes, respectively. The annual R n contribution to surface soil heat flux (G surf ) was almost 0·1%. Monthly and annual relationships among

  7. Natural gas: energy, environment, development and externalities; Gas natural: energia, meio-ambiente, desenvolvimento e externalidades

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Eduardo F. de [Universidade Salvador (UNIFACS), BA (Brazil)

    2010-07-01

    Natural gas is a major source of non-renewable energy in the Brazilian energy matrix, and the noticeable increase in demand for this energy. This can be checked with the expansion of investments in Brazil and in the state of Bahia for the various sectors. The environmental benefits of natural gas highlight the advantages of using this input to the other fossil fuels. This paper discusses the availability of natural gas in Brazil and how it occurs its participation in the national energy matrix. This issue of the vulnerability of the market by the conflict between the growing demand from various industries and the need for order of thermal. It indicates scenarios and future prospects, and limiting factors for their growth. (author)

  8. Performance analysis of solar energy integrated with natural-gas-to-methanol process

    International Nuclear Information System (INIS)

    Yang, Sheng; Liu, Zhiqiang; Tang, Zhiyong; Wang, Yifan; Chen, Qianqian; Sun, Yuhan

    2017-01-01

    Highlights: • Solar energy integrated with natural-gas-to-methanol process is proposed. • The two processes are modeled and simulated. • Performance analysis of the two processes are conducted. • The proposed process can cut down the greenhouse gas emission. • The proposed process can save natural gas consumption. - Abstract: Methanol is an important platform chemical. Methanol production using natural gas as raw material has short processing route and well developed equipment and technology. However, natural gas reserves are not large in China. Solar energy power generation system integrated with natural-gas-to-methanol (NGTM) process is developed, which may provide a technical routine for methanol production in the future. The solar energy power generation produces electricity for reforming unit and system consumption in solar energy integrated natural-gas-to-methanol system (SGTM). Performance analysis of conventional natural-gas-to-methanol process and solar energy integrated with natural-gas-to-methanol process are presented based on simulation results. Performance analysis was conducted considering carbon efficiency, production cost, solar energy price, natural gas price, and carbon tax. Results indicate that solar energy integrated with natural-gas-to-methanol process is able to cut down the greenhouse gas (GHG) emission. In addition, solar energy can replace natural gas as fuel. This can reduce the consumption of natural gas, which equals to 9.2% of the total consumed natural gas. However, it is not economical considering the current technology readiness level, compared with conventional natural-gas-to-methanol process.

  9. Valley polarization in bismuth

    Science.gov (United States)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  10. A Mackenzie Valley Pipeline -- Getting the challenge into perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cournoyea, N. J. [Iuvialuit Regional Corporation, Yellowknife, NT (Canada)

    2000-07-01

    Another perspective on a Mackenzie Valley pipeline is given by a former Premier and Minister of Energy, Mines and Petroleum Resources of the NWT. The author views a Mackenzie Valley Pipeline that would carry both American and Canadian natural gas down the Valley as the one that would offer Canada the largest return in terms of employment, income and fiscal benefits. It is her view that if the Alaska Highway pipeline were to be developed first, it would be much more difficult to link up Canadian gas later, and the loss of the estimated 70 Tcf of Canadian gas reserves would be catastrophic not only to resource owners, but to the public interest at large, since without this Canadian gas, other fuel sources would have to be used to meet the demand for energy, thereby increasing the production of carbon dioxide and added risk of accelerating global warming. This, of course, is in addition to the lost opportunity available to the Inuvialuit and other northern aboriginal people to set a course of economic development that would enable aboriginal people of the north to become full and equal participants in the northern and Canadian economies. It is an opportunity that can be realized only if all stakeholders meet the challenges and take their respective responsibilities seriously. This means action by the federal government to support and encourage the development of Canadian frontier gas, to put in place a fair and workable regulatory process, to help aboriginal people achieve a durable and fair share in the benefits of development, to ensure the protection of the environment and realize the goals of sustainable development. Industry and aboriginal leaders too, must show leadership by forging a genuine and effective partnership, and all stakeholders must cooperate to make Canadian frontier gas and pipeline development an example to the world of what sustainable development should and could be. Industry must also keep a perspective on the regulatory hurdles, on the

  11. Synergies of solar energy across a land-food-energy-water nexus

    Science.gov (United States)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2017-12-01

    Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.

  12. Geothermal resource assessment of western San Luis Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, Ted G.; Pearl, Richard Howard; Ringrose, Charles D.

    1983-01-01

    The Colorado Geological Survey initiated and carried out a fully integrated assessment program of the geothermal resource potential of the western San Luis Valley during 1979 and 1980. The San Luis Valley is a large intermontane basin located in southcentral Colorado. While thermal springs and wells are found throughout the Valley, the only thermal waters found along the western part of the Valley are found at Shaw Warm Springs which is a relatively unused spring located approximately 6 miles (9.66 km) north of Del Norte, Colorado. The waters at Shaws Warm Spring have a temperature of 86 F (30 C), a discharge of 40 gallons per minute and contain approximately 408 mg/l of total dissolved solids. The assessment program carried out din the western San Luis Valley consisted of: soil mercury geochemical surveys; geothermal gradient drilling; and dipole-dipole electrical resistivity traverses, Schlumberger soundings, Audio-magnetotelluric surveys, telluric surveys, and time-domain electro-magnetic soundings and seismic surveys. Shaw Warm Springs appears to be the only source of thermal waters along the western side of the Valley. From the various investigations conducted the springs appear to be fault controlled and is very limited in extent. Based on best evidence presently available estimates are presented on the size and extent of Shaw Warm Springs thermal system. It is estimated that this could have an areal extent of 0.63 sq. miles (1.62 sq. km) and contain 0.0148 Q's of heat energy.

  13. Conceptualising energy security and making explicit its polysemic nature

    Energy Technology Data Exchange (ETDEWEB)

    Chester, Lynne [The John Curtin Institute of Public Policy, Curtin University, GPO Box U1987, Perth WA 6845 (Australia)

    2010-02-15

    Twenty-first century access to energy sources depends on a complex system of global markets, vast cross-border infrastructure networks, a small group of primary energy suppliers, and interdependencies with financial markets and technology. This is the context in which energy security has risen high on the policy agenda of governments around the world and the term 'energy security' has quietly slipped into the energy lexicon. The limited discourse about the nature of the term or its underlying assumptions has been totally eclipsed by an almost overwhelming focus on securing supplies of primary energy sources and geopolitics. An examination of explicit and inferred definitions finds that the concept of energy security is inherently slippery because it is polysemic in nature, capable of holding multiple dimensions and taking on different specificities depending on the country (or continent), timeframe or energy source to which it is applied. This 'slipperiness' poses analytical, prediction and policy difficulties but if explicitly recognised through definitional clarity, new levels of understanding will enrich the policy debate to deal with obstacles impacting on the constantly evolving nature of energy security. (author)

  14. The potential of Saudi Arabian natural zeolites in energy recovery technologies

    International Nuclear Information System (INIS)

    Nizami, A.S.; Ouda, O.K.M.; Rehan, M.; El-Maghraby, A.M.O.; Gardy, J.; Hassanpour, A.; Kumar, S.; Ismail, I.M.I.

    2016-01-01

    Energy consumption in KSA (kingdom of Saudi Arabia) is growing rapidly due to economic development with raised levels of population, urbanization and living standards. Fossil fuels are currently solely used to meet the energy requirements. The KSA government have planned to double its energy generating capacity (upto 120 GW (gigawatts)) by 2032. About half of the electricity capacity of this targeted energy will come from renewable resources such as nuclear, wind, solar, WTE (waste-to-energy) etc. Natural zeolites are found abundantly in KSA at Jabal Shamah occurrence near Jeddah city, whose characteristics have never been investigated in energy related applications. This research aims to study the physical and chemical characteristics of natural zeolite in KSA and to review its potential utilization in selected WTE technologies and solar energy. The standard zeolite group of alumina–silicate minerals were found with the presence of other elements such as Na, Mg and K etc. A highly crystalline structure and thermal stability of natural zeolites together with unique ion exchange, adsorption properties, high surface area and porosity make them suitable in energy applications such as WTE and solar energy as an additive or catalyst. A simple solid–gas absorption system for storing solar energy in natural zeolites will be a cheap alternative method for KSA. In AD (anaerobic digestion), the dual characteristics of natural zeolite like Mordenite will increase the CH_4 production of OFMSW (organic fraction of municipal solid waste). Further investigations are recommended to study the technical, economical, and environmental feasibility of natural zeolite utilization in WTE technologies in KSA. - Highlights: • A highly crystalline structure is found in natural zeolites. • Natural zeolites will store solar energy in solid–gas absorption system. • The composites of natural zeolites will produce more liquid fuel like gasoline. • The natural zeolite will increase

  15. Topographic evolution of Yosemite Valley from Low Temperature Thermochronology

    Science.gov (United States)

    Tripathy-Lang, A.; Shuster, D. L.; Cuffey, K. M.; Fox, M.

    2014-12-01

    In this contribution, we interrogate the timing of km-scale topography development in the region around Yosemite Valley, California. Our goal is to determine when this spectacular glacial valley was carved, and how this might help address controversy surrounding the topographic evolution of the Sierra Nevada. At the scale of the range, two rival hypotheses are each supported by different datasets. Low-temperature thermochronology supports the idea that the range has been high-standing since the Cretaceous, whereas geomorphic evidence suggests that much of the elevation of the Sierra Nevada was attained during the Pliocene. Recent work by McPhillips and Brandon (2012) suggests instead that both ideas are valid, with the range losing much elevation during the Cenozoic, but regaining it during Miocene surface uplift.At the local scale, the classic study of Matthes (1930) determined that most of Yosemite Valley was excavated by the Sherwin-age glaciation that ended ~1 Ma. The consensus view is in agreement, although some argue that nearby comparable valleys comparable were carved long ago (e.g., House et al., 1998). If the Quaternary and younger glaciations were responsible for the bulk of the valley's >1 km depth, we might expect apatite (U-Th)/He ages at the valley floor to be histories at these locations, these data constrain patterns of valley topography development through time. We also supplement these data with zircon 4He/3He thermochronometry, which is a newly developed method that provides information on continuous cooling paths through ~120-220 °C. We will present both the apatite and zircon 4He/3He data and, in conjunction with thermo-kinematic modeling, discuss the ability and limitations of these data to test models of Sierra Nevada topography development through time. Matthes (1930) USGS Professional Paper House et al. (1998) Nature McPhillips and Brandon (2012) American Journal of Science

  16. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    National Research Council Canada - National Science Library

    Soret, R. A; Sun, G; Cheng, H; Menendez, J; Khurgin, J

    2007-01-01

    The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band which has a clean offset of 150 meV situated below other energy valleys Gamma and X...

  17. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  18. Short-term outlook for natural gas and natural gas liquids to 2006 : an energy market assessment

    International Nuclear Information System (INIS)

    2005-10-01

    In recent years, natural gas markets in North America have seen a close balance between supply and demand, resulting in high and volatile natural gas prices. The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This is the NEB's first energy market assessment report that presents a combined short-term analysis and outlook of natural gas and natural gas liquids (NGLs), such as ethane, propane and butane. It provides comprehensive information on the complexity of natural gas and NGL industries and highlights recent developments and topical issues. As a major producer of natural gas, western Canada has a correspondingly large natural gas processing capability that was developed specifically to extract NGLs. A world-scale petrochemical industry was developed in Alberta to convert NGLs into even higher valued products such as ethylene. Since NGLs in Canada are sourced mostly from natural gas, changes to the supply and demand for natural gas would impact NGL supply. This report addressed the issue of commodity prices with reference to crude oil, natural gas and NGL prices. Natural gas supply in terms of North American production and natural gas from coal (NGC) was also reviewed along with natural gas demand for residential and commercial heating, industrial use, power generation, and enhanced recovery for oil sand operations. There are about 692 gas plants in Canada that process raw natural gas into marketable gas and NGLs. Most are small field plants that process raw natural gas production to remove impurities such as sulphur, water and other contaminants. This report also discussed this infrastructure, with reference to field plants, straddle plants, pipelines, distribution and storage, including underground NGL storage. 3 tabs., 27 figs., 5 appendices

  19. Natural Radioactivity in Abu-Tartor Phosphate Deposits and the Surrounding Region, New Valley, Egypt

    International Nuclear Information System (INIS)

    Khater, A.E.; Higgy, R.H.; Pimpl, M.

    1999-01-01

    Abu-Tartor phosphate mine. New Valley district, is one of the biggest phosphate mines in Egypt which will start full production soon. The planned ore rocks (24.8%P 2 O 5 ) annual production is 4 million tons. The aim of this study is to estimate the natural radioactivity levels in Abu-Tartor phosphate deposits and the surrounding region. The environmental radioactivity levels in the surrounding region will be considered as pre-operational levels which are essential to determine the radiological impacts of phosphate mining later on. Phosphate samples (ore rocks, wet rocks and beneficiation wastes) and environmental samples (soil, water and plant)were collected. The specific activities of Ra-226 (U-238) series, Th-232 series and K-40 were measured using gamma-ray spectrometry based on Hyper pure Germanium detectors. The specific activities of uranium isotopes (U-238, U-235 and U-234) were measured using alpha spectrometry based on surface barrier detectors after radiochemical separation. The specific activity of Pb-210 was measured using low background proportional gas counting system after radiochemical separation . The results were discussed and compared with national and international values

  20. Groundwater quality in the Antelope Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  1. Community Response to Concentrating Solar Power in the San Luis Valley: October 9, 2008 - March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.; Hunter, L. M.; Kirkland, T. M.; Tierney, K. J.

    2010-06-01

    This report is about the social acceptance of utility-scale concentrating solar power (CSP) plants in the San Luis Valley, approximately 200 miles southwest of Denver, Colorado. The research focused on social factors that may facilitate and impede the adoption and implementation of CSP. During the winter of 2008-2009, interviews were conducted with a purposive sample of 25 CSP-related stakeholders inside and outside the Valley. Interviews focused on the perceived advantages and disadvantages of siting a hypothetical 100-MW CSP facility in the Valley, the level of community support and opposition to CSP development, and related issues, such as transmission. State policy recommendations based on the findings include developing education programs for Valley residents, integrating Valley decision makers into an energy-water-land group, providing training for Valley decision makers, offering workforce training, evaluating models of taxation, and forming landholder energy associations. In addition, the SLV could become a laboratory for new approaches to CSP facility and transmission siting decision-making. The author recommends that outside stakeholders address community concerns and engage Valley residents in CSP decisions. Engaging the residents in CSP and transmission decisions, the author says, should take parallel significance with the investment in solar technology.

  2. Groundwater quality in the Indian Wells Valley, California

    Science.gov (United States)

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  3. 75 FR 1052 - Terra-Gen Dixie Valley, LLC; TGP Dixie Development Company, LLC; New York Canyon, LLC; Notice of...

    Science.gov (United States)

    2010-01-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL10-29-000] Terra-Gen Dixie Valley, LLC; TGP Dixie Development Company, LLC; New York Canyon, LLC; Notice of Filing December 30, 2009. Take notice that on December 24, 2009, Terra-Gen Dixie Valley, LLC, TGP Dixie Development Company, LLC...

  4. Optimal Energy Consumption Analysis of Natural Gas Pipeline

    Science.gov (United States)

    Liu, Enbin; Li, Changjun; Yang, Yi

    2014-01-01

    There are many compressor stations along long-distance natural gas pipelines. Natural gas can be transported using different boot programs and import pressures, combined with temperature control parameters. Moreover, different transport methods have correspondingly different energy consumptions. At present, the operating parameters of many pipelines are determined empirically by dispatchers, resulting in high energy consumption. This practice does not abide by energy reduction policies. Therefore, based on a full understanding of the actual needs of pipeline companies, we introduce production unit consumption indicators to establish an objective function for achieving the goal of lowering energy consumption. By using a dynamic programming method for solving the model and preparing calculation software, we can ensure that the solution process is quick and efficient. Using established optimization methods, we analyzed the energy savings for the XQ gas pipeline. By optimizing the boot program, the import station pressure, and the temperature parameters, we achieved the optimal energy consumption. By comparison with the measured energy consumption, the pipeline now has the potential to reduce energy consumption by 11 to 16 percent. PMID:24955410

  5. Valley polarization due to trigonal warping on tunneling electrons in graphene

    International Nuclear Information System (INIS)

    Pereira Jr, J M; Peeters, F M; Costa Filho, R N; Farias, G A

    2009-01-01

    The effect of trigonal warping on the transmission of electrons tunneling through potential barriers in graphene is investigated. We present calculations of the transmission coefficient for single and double barriers as a function of energy, incidence angle and barrier heights. The results show remarkable valley-dependent directional effects for barriers oriented parallel to the armchair or parallel to the zigzag direction. These results indicate that electrostatic gates can be used as valley filters in graphene-based devices.

  6. 76 FR 67158 - Secretary of Energy Advisory Board Natural Gas Subcommittee

    Science.gov (United States)

    2011-10-31

    ... DEPARTMENT OF ENERGY Secretary of Energy Advisory Board Natural Gas Subcommittee AGENCY: Department of Energy. ACTION: Notice of Cancellation of Open Meeting. SUMMARY: This notice announces the cancellation of the November 1, 2011, meeting of the Secretary of Energy Advisory Board (SEAB) Natural Gas...

  7. West Valley Demonstration Project site environmental report calendar year 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  8. West Valley Demonstration Project site environmental report, calendar year 1999

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  9. West Valley Demonstration Project site environmental report, calendar year 1997

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-01

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  10. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  11. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site's tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site

  12. Geomorphological characteristics of increased landslide activity in the Gudbrandsdalen valley, Norway

    Science.gov (United States)

    Heyerdahl, Håkon; Høydal, Øyvind

    2016-04-01

    The Gudbrandsdalen valley in Eastern Norway lies in a region where annual precipitation is generally low (down to 300 mm/year). The landslide activity has consequently historically been low, although the lower part of the valley sides generally is draped with thick layers of Quaternary deposits, primarily of glacial or glaciofluvial origin. The perception of natural hazards in the valley was previously primarily connected to flooding in the main river in the valley bottom during early summer, due to large discharges resulting from snowmelt in the mountainous regions west and east of the valley. However, several high-intensity events have changed the image of the region. Starting with a localized, but intense, landslide event in the Northern part of the valley in year 2008, two larger events covering almost the entire valley occurred in the years 2011 and 2013. A high number of landslides was triggered in all these events, including many flash floods and debris flows/debris slides in small and steep tributary rivers along the valley slopes. Landslide triggering covers different release mechanisms: In 2008, landslides were triggered without precipitation in not-frozen soil deposits without snow cover in the lower part of the valley. Groundwater flow through the permeable bedrock ("Otta schist") resulting from snow-melt in the elevated mountainous areas caused landslide triggering due to positive pore-water pressures forming at the bedrock surface below soil deposits, or at depressions in the terrain. Subsequent rainfall resulted in even more landslides being released. In later events (years 2011 and 2013) many landslides were caused by surface water taking new paths downslope, often due to man-made changes in existing waterways (typically poorly planned drainage solutions or new roads). Relatively small discharges in slopes with unconsolidated and easily erodible glacial deposits (typically lateral moraine) in many cases lead to small initial slides that down

  13. Cowichan Valley energy mapping and modelling. Report 3 - Analysis of potentially applicable distributed energy opportunities. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. The third task built upon the findings of the previous two and undertook an analysis of potentially applicable distributed energy opportunities. These opportunities were analysed given a number of different parameters, which were decided upon in consultation with the CVRD. The primary output of this task was a series of cost figures for the various technologies, thus allowing comparison on a cents/kWh basis. All of the cost figures from this task have been entered into a tailor made Excel model. This 'technology cost' model is linked to the Excel scenario model utilised in task 4. As a result, as technology costs change, they can be updated accordingly and be reflected in the scenarios. Please note, that the technologies considered at present in the technology cost model are well-proven technologies, available in the market today, even though the output is being used for an analysis of development until 2050. Task 3 results are detailed in this report and both presents an initial screening for various local renewable energies, and provides the CVRD with the means of evaluating the costs and benefits of local energy productions versus

  14. Rock-fall potential in the Yosemite Valley, California

    Science.gov (United States)

    Wieczorek, G.F.; Morrissey, M.M.; Iovine, Giulio; Godt, Jonathan

    1999-01-01

    We used two methods of estimating rock-fall potential in the Yosemite Valley, California based on (1) physical evidence of previous rock-fall travel, in which the potential extends to the base of the talus, and (2) theoretical potential energy considerations, in which the potential can extend beyond the base of the talus, herein referred to as the rock-fall shadow. Rock falls in the valley commonly range in size from individual boulders of less than 1 m3 to moderate-sized falls with volumes of about 100,000 m3. Larger rock falls exceeding 100,000 m3, referred to as rock avalanches, are considered to be much less likely to occur based on the relatively few prehistoric rock-fall avalanche deposits in the Yosemite Valley. Because the valley has steep walls and is relatively narrow, there are no areas that are absolutely safe from large rock avalanches. The map shows areas of rock-fall potential, but does not predict when or how frequently a rock fall will occur. Consequently, neither the hazard in terms of probability of a rock fall at any specific location, nor the risk to people or facilities to such events can be assessed from this map.

  15. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  16. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    International Nuclear Information System (INIS)

    1996-03-01

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards

  17. Energy and process substitution in the frozen-food industry: geothermal energy and the retortable pouch

    Energy Technology Data Exchange (ETDEWEB)

    Stern, M.W.; Hanemann, W.M.; Eckhouse, K.

    1981-12-01

    An assessment is made of the possibilities of using geothermal energy and an aseptic retortable pouch in the food processing industry. The focus of the study is on the production of frozen broccoli in the Imperial Valley, California. Background information on the current status of the frozen food industry, the nature of geothermal energy as a potential substitute for conventional fossil fuels, and the engineering details of the retortable pouch process are covered. The analytical methodology by which the energy and process substitution were evaluated is described. A four-way comparison of the economics of the frozen product versus the pouched product and conventional fossil fuels versus geothermal energy was performed. A sensitivity analysis for the energy substitution was made and results are given. Results are summarized. (MCW)

  18. NNSS Soils Monitoring: Plutonium Valley (CAU 366)

    International Nuclear Information System (INIS)

    Miller, Julianne J.; Mizell, Steve A.; Nikolich, George; Campbell, Scott

    2012-01-01

    The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Nevada Site Office (NSO), Environmental Restoration Soils Activity has authorized the Desert Research Institute (DRI) to conduct field assessments of potential sediment transport of contaminated soil from Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites Contamination Area (CA) during precipitation runoff events.

  19. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  20. Land Subsidence Caused by Groundwater Exploitation in Quetta Valley, Pakistan

    Directory of Open Access Journals (Sweden)

    Najeebullah Kakar

    2016-12-01

    Full Text Available Land subsidence is affecting several metropolitan cities in developing as well as developed countries around the world such as Nagoya (Japan, Shanghai (China, Venice (Italy and San Joaquin valley (United States. This phenomenon is attributed to natural as well as anthropogenic activities that include extensive groundwater withdrawals. Quetta is the largest city of Balochistan province in Pakistan. This valley is mostly dry and ground water is the major source for domestic and agricultural consumption. The unplanned use of ground water resources has led to the deterioration of water quality and quantity in the Quetta valley. Water shortage in the region was further aggravated by the drought during (1998-2004 that hit the area forcing people to migrate from rural to urban areas. Refugees from the war torn neighboring Afghanistan also contributed to rapid increase in population of Quetta valley that has increased from 0.26 million in 1975 to 3.0 million in 2016. The objective of this study was to measure the land subsidence in Quetta valley and identify the effects of groundwater withdrawals on land subsidence. To achieve this goal, data from five Global Positioning System (GPS stations were acquired and processed. Furthermore the groundwater decline data from 41 observation wells during 2010 to 2015 were calculated and compared with the land deformation. The results of this study revealed that the land of Quetta valley is subsiding from 30mm/y on the flanks to 120 mm/y in the central part. 1.5-5.0 m/y of groundwater level drop was recorded in the area where the rate of subsidence is highest. So the extensive groundwater withdrawals in Quetta valley is considered to be the driving force behind land subsidence.

  1. The cadastre of waste heat in the Upper Rhine Valley

    International Nuclear Information System (INIS)

    Bartholomaei, G.; Kinzelbach, W.

    1980-04-01

    The cadastre of waste heat provides the distribution in space and time of anthropogeneous waste heat emissions on a 2 x 2 km 2 grid. In the case of the Upper Rhine Valley it serves as a basis for the numerical evaluations of climatic changes caused by man. Such a cadastre also allows to analyse the distribution of pollutant emissions and the heat or energy supply, respectively, of the region. In a close approximation the distribution of waste heat is equal to the distribution of energy consumption. As there are generally difficulties in obtaining data about the consumption of the types of energy on the grid level, methods were developed which allow to determine the local energy consumption by using the relevant structural data. The methods used for the Federal Republic of Germany and neighbouring countries and the results for the Upper Rhine Valley, obtained by these methods, are presented. The cadastre of waste heat is based on data of the year 1973 which was a time of great energy consumption. Only in 1978 this energy consumption was exceeded. To be able to estimate the change in the influence of the anthropogeneous waste heat during the next 20 years, the cadastre was extrapolated until the year 2000. (orig.) [de

  2. Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions

    Science.gov (United States)

    Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar

    2014-07-01

    We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux

  3. Natural gas in low energy house Zittau

    International Nuclear Information System (INIS)

    Maertens, L.; Koschack, A.

    1999-01-01

    This paper describes a low-energy house in Zittau, Germany. The house consists of two parts A and B. Part A is heated by means of gas boilers and condensed boilers, while part B is solar heated. Energy for heating and warming of tap water is an important part of the primary energy consumption in Germany. Therefore, one way of reducing the CO2 emissions is to reduce the heat losses of buildings through outer facades and air ventilation, to use regenerative energy sources, to use fuels with low CO2 emissivity like natural gas, and to install efficient heating- and hot water preparation systems. The low-energy house in Zittau is used for energy research

  4. Energy equivalence factor in gasoline to compressed vehicle natural gas substitution

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Amell Arrieta, Andres A

    1992-01-01

    In this paper, the authors show a model based in a vehicle energy balance used to obtain the ratio of energy equivalence of natural gas and petrol used as fuels in the vehicle. The model includes the engine, transmission and natural gas cylinders effects. The model has been applied to different colombian natural gases, it shows that Guajira natural gas has 14,5% lower ratio than Cusiana natural gas and 5,6% lower ratio than Apiay natural gas, these results shows a need in the study of colombian natural gases interchangeability

  5. Seismic-refraction survey to the top of salt in the north end of the Salt Valley Anticline, Grand County, Utah

    Science.gov (United States)

    Ackermann, Hans D.

    1979-01-01

    A seismic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt Valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the U.S. Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storages Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a geologic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock.

  6. Seismic-refraction survey to the top of salt in the north end of the Salt valley anticline, Grand County, Utah

    International Nuclear Information System (INIS)

    Achermann, H.D.

    1979-01-01

    A sesimic-refraction survey, consisting of three lines about 2700, 2760, and 5460 meters long, was made at the north end of the Salt valley anticline of the Paradox Basin in eastern Utah. The target was the crest of a diapiric salt mass and the overlying, deformed caprock. The interpretations reveal an undulating salt surface with as much as 80 meters of relief. The minimum depth of about 165 meters is near the location of three holes drilled by the US Department of Energy for the purpose of evaluating the Salt Valley anticline as a potential site for radioactive waste storage. Caprock properties were difficult to estimate because the contorted nature of these beds invalidated a goelogic interpretation in terms of velocity layers. However, laterally varying velocities of the critically refracted rays throughout the area suggest differences in the gross physical properties of the caprock

  7. Valley development on Hawaiian volcanoes

    International Nuclear Information System (INIS)

    Baker, V.R.; Gulick, V.C.

    1987-01-01

    Work in progress on Hawaiian drainage evolution indicates an important potential for understanding drainage development on Mars. Similar to Mars, the Hawaiian valleys were initiated by surface runoff, subsequently enlarged by groundwater sapping, and eventually stabilized as aquifers were depleted. Quantitative geomorphic measurements were used to evaluate the following factors in Hawaiian drainage evolution: climate, stream processes, and time. In comparing regions of similar climate, drainage density shows a general increase with the age of the volcani island. With age and climate held constant, sapping dominated valleys, in contrast to runoff-dominated valleys, display the following: lower drainage densities, higher ratios of valley floor width to valley height, and more positive profile concavities. Studies of stream junction angles indicate increasing junction angles with time on the drier leeward sides of the major islands. The quantitative geomorphic studies and earlier field work yielded important insights for Martian geomorphology. The importance of ash mantling in controlling infiltration on Hawaii also seems to apply to Mars. The Hawaiian valley also have implications for the valley networks of Martian heavily cratered terrains

  8. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 4: Appendix E -- Valley-wide fate and transport report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix E addresses contaminant releases and migration pathways from a valley-wide perspective and provides estimates of changes in contaminant fluxes in BCV

  9. The unexpected beneficial effect of the L-valley population on the electron mobility of GaAs nanowires

    International Nuclear Information System (INIS)

    Marin, E. G.; Ruiz, F. G.; Godoy, A.; Tienda-Luna, I. M.; Gámiz, F.

    2015-01-01

    The impact of the L-valley population on the transport properties of GaAs cylindrical nanowires (NWs) is analyzed by numerically calculating the electron mobility under the momentum relaxation time approximation. In spite of its low contribution to the electron mobility (even for high electron populations in small NWs), it is demonstrated to have a beneficial effect, since it significantly favours the Γ-valley mobility by screening the higher Γ-valley energy subbands

  10. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rosensteel, B.A.

    1996-03-01

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1)

  11. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    International Nuclear Information System (INIS)

    1996-01-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes

  12. Report on the remedial investigation of Bear Creek Valley at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 3: Appendix D -- Nature and extent of contamination report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This Remedial Investigation (RI) Report characterizes the nature and extent of contamination, evaluates the fate and transport of contaminants, and assesses risk to human health and the environment resulting from waste disposal and other US Department of Energy (DOE) operations in Bear Creek Valley (BCV). BCV, which is located within the DOE Oak Ridge Reservation (ORR) encompasses multiple waste units containing hazardous and radioactive wastes arising from operations at the adjacent Oak Ridge Y-12 Plant. The primary waste units discussed in this RI Report are the S-3 Site, Oil Landfarm (OLF), Boneyard/Burnyard (BYBY), Sanitary Landfill 1 (SL 1), and Bear Creek Burial Grounds (BCBG). These waste units, plus the contaminated media resulting from environmental transport of the wastes from these units, are the subject of this RI. This BCV RI Report represents the first major step in the decision-making process for the BCV watershed. The RI results, in concert with the follow-on FS will form the basis for the Proposed Plan and Record of Decision for all BCV sites. This comprehensive decision document process will meet the objectives of the watershed approach for BCV. Appendix D describes the nature and extent of contamination in environmental media and wastes.

  13. Energy as the Mediator between Natural and Supernatural Realms

    Directory of Open Access Journals (Sweden)

    Kristel Kivari

    2012-12-01

    Full Text Available This article discusses contemporary vernacular theory about the elusive energies that emanate from the ground. These energies are reported to be the ultimate reason for different remarkable occurrences, both natural and supernatural. The hypothesis of special energies is expressed in local tourism, in ecological debates and healing practises, driving the curiosity of amateur science. In these expressions knowledge as a form of engagement with the supernatural plays an integrating role between the individual and the forces beyond. Dowsing reveals the ‘energetic’ nature of reality, which will be discussed using three examples. Tuhala Nõiakaev (the Witch’s Well as a peculiar natural sight in the north of Estonia has drawn together many reports of energy columns that are linked to underground rivers and cultic stones. Another place under discussion is also famous for healing energy points: Kirna Manor works as a centre for spreading knowledge of the interdependence of physical health and the search for a spiritual path with the help of energies that the next example, the Society of Dowsers, attempts to discover using scientific methods. In these examples ‘energy’ designates the position of the individual, in which the participative relationship with the environment works as a form of folk epistemology within the limits of cultural understanding.

  14. Energy as the Mediator between Natural and Supernatural Realms

    Directory of Open Access Journals (Sweden)

    Kristel Kivari

    2013-01-01

    Full Text Available This article discusses contemporary vernacular theory about the elusive energies that emanate from the ground. These energies are reported to be the ultimate reason for different remarkable occurrences, both natural and supernatural. The hypothesis of special energies is expressed in local tourism, in ecological debates and healing practises, driving the curiosity of amateur science. In these expressions knowledge as a form of engagement with the supernatural plays an integrating role between the individual and the forces beyond.  Dowsing reveals the ‘energetic’ nature of reality, which will be discussed using three examples. Tuhala Nõiakaev (the Witch’s Well as a peculiar natural sight in the north of Estonia has drawn together many reports of energy columns that are linked to underground rivers and cultic stones. Another place under discussion is also famous for healing energy points: Kirna Manor works as a centre for spreading knowledge of the interdependence of physical health and the search for a spiritual path with the help of energies that the next example, the Society of Dowsers, attempts to discover using scientific methods. In these examples ‘energy’ designates the position of the individual, in which the participative relationship with the environment works as a form of folk epistemology within the limits of cultural understanding.

  15. The integrated melter off-gas treatment systems at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Vance, R.F. [West Valley Nuclear Services Co., Inc., NY (United States)

    1995-02-01

    The West Valley Demonstration Project was established by Public Law 96-368, the {open_quotes}West Valley Demonstration Project Act, {close_quotes} on October 1, l980. Under this act, Congress directed the Department of Energy to carry out a high level radioactive waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The purpose of this project is to demonstrate solidification techniques which can be used for preparing high level radioactive waste for disposal. In addition to developing this technology, the West Valley Demonstration Project Act directs the Department of Energy to: (1) develop containers suitable for permanent disposal of the high level waste; (2) transport the solidified high level waste to a Federal repository; (3) dispose of low level and transuranic waste produced under the project; and (4) decontaminate and decommission the facilities and materials associated with project activities and the storage tanks originally used to store the liquid high level radioactive waste. The process of vitrification will be used to solidify the high level radioactive liquid wastes into borosilicate glass. This report describes the functions, the controlling design criteria, and the resulting design of the melter off-gas treatment systems which are used in the vitrification process.

  16. Analysis, design and interventions on valley floors at the city of Alfenas [MG

    Directory of Open Access Journals (Sweden)

    Francisco José Cardoso

    2009-04-01

    Full Text Available The floor of valleys are areas with important physical and environmental characteristics, interacting with diverse natural processes that occur in our planet. With the urbanization, degradation of such areas usually occurs, resulting in the physical, social and cultural withdrawing of the population from the urban river and stream lands. The purpose of this paper is to study the action of the public administration on valley floors and the management tools which may render feasable thee environmental preservation as well as environment and landscape renaturalization of such areas thus promoting echological and functional balance in the urban fluviatic lands. In order to prepare a proposal, several items were studied: the physical environmental characteristics of the valley floors, the transformations associated to urbanization. Based on this research, a plan was made for city of Alfenas [MG] as regards the management of the valley floor lands: a proposal of intervention in one of the hydrographic basins.

  17. West Valley facility spent fuel handling, storage, and shipping experience

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-11-01

    The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs

  18. Application of heat-flow techniques to geothermal energy exploration, Leach Hot Springs area, Grass Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Sass, J.H.; Ziagos, J.P.; Wollenberg, H.A.; Munroe, R.J.; di Somma, D.E.; Lachenbruch, A.H.

    1977-01-01

    A total of 82 holes ranging in depth from 18 to 400 meters were drilled for thermal and hydrologic studies in a 200 km/sup 2/ area of Grass Valley, Nevada, near Leach Hot Springs. Outside the immediate area of Leach Hot Springs, heat flow ranges from 1 to 6.5 hfu with a mean of 2.4 hfu (1 hfu = 10/sup -6/ cal cm/sup 2/ s/sup -1/ = 41.8 mWm/sup -2/). Within 2 km of the springs, conductive heat flow ranges between 1.6 and more than 70 hfu averaging 13.6 hfu. Besides the conspicuous thermal anomaly associated with the hot springs, two additional anomalies were identified. One is associated with faults bounding the western margin of the Tobin Range near Panther Canyon, and the other is near the middle of Grass Valley about 5 km SSW of Leach Hot Springs. The mid-valley anomaly appears to be caused by hydrothermal circulation in a bedrock horst beneath about 375 meters of impermeable valley sediments. If the convective and conductive heat discharge within 2 km of the Leach Hot Springs is averaged over the entire hydrologic system (including areas of recharge), the combined heat flux from this part of Grass Valley is about 3 hfu, consistent with the average regional conductive heat flow in the Battle Mountain High. The hydrothermal system can be interpreted as being in a stationary stable phase sustained by high regional heat flow, and no localized crustal heat sources (other than hydrothermal convection to depths of a few kilometers) need be invoked to explain the existence of Leach Hot Springs.

  19. Spin filling of valley-orbit states in a silicon quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Lim, W H; Yang, C H; Zwanenburg, F A; Dzurak, A S, E-mail: wee.lim@unsw.edu.au [Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW 2052 (Australia)

    2011-08-19

    We report the demonstration of a low-disorder silicon metal-oxide-semiconductor (Si MOS) quantum dot containing a tunable number of electrons from zero to N = 27. The observed evolution of addition energies with parallel magnetic field reveals the spin filling of electrons into valley-orbit states. We find a splitting of 0.10 meV between the ground and first excited states, consistent with theory and placing a lower bound on the valley splitting. Our results provide optimism for the realisation in the near future of spin qubits based on silicon quantum dots.

  20. Natural selection and type 2 diabetes-associated mortality in an isolated indigenous community in the valley of Oaxaca, southern Mexico.

    Science.gov (United States)

    Little, Bertis B; Peña Reyes, Maria Eugenia; Malina, Robert M

    2017-03-01

    This study tests the hypothesis that natural selection is associated with type 2 diabetes (T2D)-associated mortality and fertility in a rural isolated Zapotec community in the Valley of Oaxaca, southern Mexico. Mortality data and related demographic and genealogic information were linked with data for fertility, prereproductive mortality and family history of mortality attributed to T2D. Physician verified T2D mortality (n = 27) between 1980 and 2009 and imputed T2D (n = 70) from cardiovascular mortality (68% random sample) and renal failure (44% random sample). Bootstrapping was used to obtain a robust variance estimate in survival analysis and multivariate analysis of variance. Estimated maximum natural selection by Crow's Index occurred circa 1930 and was relaxed after this time in the study population. Cox-regression survival analysis of T2D mortality with covariates (family history of T2D, cardiovascular disease, renal failure) indicated a significant hazard ratio (HR = 5.95, 95% CI: 1.38-25.67, p natural selection decreased, and favored offspring survival of non-T2D descedants. The results indicated statistically significant directional selection against T2D and imputed T2D to this population isolate. © 2016 Wiley Periodicals, Inc.

  1. The nonstructural protein NSs induces a variable antibody response in domestic ruminants naturally infected with Rift Valley fever virus.

    Science.gov (United States)

    Fernandez, José-Carlos; Billecocq, Agnès; Durand, Jean Paul; Cêtre-Sossah, Catherine; Cardinale, Eric; Marianneau, Philippe; Pépin, Michel; Tordo, Noël; Bouloy, Michèle

    2012-01-01

    Rift Valley fever (RVF) is an emerging zoonosis in Africa which has spread to Egypt, the Arabian Peninsula, Madagascar, and Comoros. RVF virus (RVFV) (Bunyaviridae family, Phlebovirus genus) causes a wide range of symptoms in humans, from benign fever to fatal hemorrhagic fever. Ruminants are severely affected by the disease, which leads to a high rate of mortality in young animals and to abortions and teratogenesis in pregnant females. Diagnostic tests include virus isolation and genome or antibody detection. During RVFV infection, the nucleoprotein encapsidating the tripartite RNA genome is expressed in large amounts and raises a robust antibody response, while the envelope glycoproteins elicit neutralizing antibodies which play a major role in protection. Much less is known about the antigenicity/immunogenicity of the nonstructural protein NSs, which is a major virulence factor. Here we have developed a competitive enzyme-linked immunosorbent assay (ELISA) enabling detection of low levels of NSs-specific antibodies in naturally infected or vaccinated ruminants. Detection of the NSs antibodies was validated by Western blotting. Altogether, our data showed that the NSs antibodies were detected in only 55% of animals naturally infected by RVFV, indicating that NSs does not induce a consistently high immune response. These results are discussed in light of differentiation between infected and vaccinated animals (DIVA) tests distinguishing naturally infected animals and those vaccinated with NSs-defective vaccines.

  2. Highlighting High Performance: Blackstone Valley Regional Vocational Technical High School; Upton, Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    2006-10-01

    This brochure describes the key high-performance building features of the Blackstone Valley High School. The brochure was paid for by the Massachusetts Technology Collaborative as part of their Green Schools Initiative. High-performance features described are daylighting and energy-efficient lighting, indoor air quality, solar energy, building envelope, heating and cooling systems, and water conservation. Energy cost savings are also discussed.

  3. Analysis of Mining-induced Valley Closure Movements

    Science.gov (United States)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  4. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.

    Science.gov (United States)

    Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan

    2014-01-08

    Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

  5. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  6. Renewable energy as a natural gas price hedge: the case of wind

    International Nuclear Information System (INIS)

    Berry, David

    2005-01-01

    Electric utilities use natural gas to fuel many of their power plants, especially those plants which provide electricity at peak and intermediate hours. Natural gas prices are highly volatile and have shown a general upward trend. Wind energy can provide a cost-effective hedge against natural gas price volatility or price increases. This conclusion is based on analysis of the costs of marginal conventional generation given the historical probability distribution of natural gas prices, the cost of wind energy, wind integration costs, transmission costs for wind energy, the capacity value of wind, and environmental benefits of wind energy for a hypothetical utility in the Southwestern United States. The efficacy of using wind energy as a hedge at a particular utility will depend on site specific conditions

  7. Abundance and sexual size dimorphism of the giant gartersnake (Thamnophis gigas) in the Sacramento valley of California

    Science.gov (United States)

    Wylie, G.D.; Casazza, Michael L.; Gregory, C.J.; Halstead, B.J.

    2010-01-01

    The Giant Gartersnake (Thamnophis gigas) is restricted to wetlands of the Central Valley of California. Because of wetland loss in this region, the Giant Gartersnake is both federally and state listed as threatened. We conducted markrecapture studies of four populations of the Giant Gartersnake in the Sacramento Valley (northern Central Valley), California, to obtain baseline data on abundance and density to assist in recovery planning for this species. We sampled habitats that ranged from natural, unmanaged marsh to constructed managed marshes and habitats associated with rice agriculture. Giant Gartersnake density in a natural wetland (1.90 individuals/ha) was an order of magnitude greater than in a managed wetland subject to active season drying (0.17 individuals/ha). Sex ratios at all sites were not different from 1 1, and females were longer and heavier than males. Females had greater body condition than males, and individuals at the least disturbed sites had significantly greater body condition than individuals at the managed wetland. The few remaining natural wetlands in the Central Valley are important, productive habitat for the Giant Gartersnake, and should be conserved and protected. Wetlands constructed and restored for the Giant Gartersnake should be modeled after the permanent, shallow wetlands representative of historic Giant Gartersnake habitat. ?? 2010 Society for the Study of Amphibians and Reptiles.

  8. Environment, safety and health, management and organization compliance assessment, West Valley Demonstration Program, West Valley, New York

    International Nuclear Information System (INIS)

    1989-08-01

    An Environment, Safety and Health ''Tiger Team'' Assessment was conducted at the West Valley Demonstration Project. The Tiger Team was chartered to conduct an onsite, independent assessment of WVDP's environment, safety and health (ES ampersand H) programs to assure compliance with applicable Federal and State laws, regulations, and standards, and Department of Energy Orders. The objective is to provide to the Secretary of Energy the following information: current ES ampersand H compliance status of each facility; specific noncompliance items; ''root causes'' for noncompliance items; evaluation of the adequacy of ES ampersand H organization and resources (DOE and contractor) and needed modifications; and where warranted, recommendations for addressing identified problem areas

  9. Is inexpensive natural gas hindering the grid energy storage industry?

    International Nuclear Information System (INIS)

    Hittinger, Eric; Lueken, Roger

    2015-01-01

    Grid energy storage is a maturing technology and forecasts of the industry's growth have been promising. However, recent years have realized little growth in actual deployments of grid-level storage and several high-profile storage companies and projects have failed. We hypothesize that falling natural gas prices have significantly reduced the potential profit from many U.S. energy storage projects since 2009 and quantify that effect. We use engineering–economic models to calculate the monthly revenue to energy storage devices providing frequency regulation and energy arbitrage in several electricity markets and compare that revenue to prevailing natural gas prices. We find that flywheel devices providing frequency regulation were profitable in months when natural gas prices were above $7/mcf, but face difficulties at current prices (around $4/mcf). For energy arbitrage alone, we find that the breakeven capital cost for large-scale storage was around $300/kWh in several key locations in 2004–2008, but is around $100/kWh in the same locations today. Though cost and performance improvements have been continually decreasing the effective cost of energy services from storage, fundamental market signals indicating the need for energy storage are at or near 10-year lows for both energy arbitrage and frequency regulation. - Highlights: • We use engineering–economic models to determine breakeven capital cost of storage. • Two applications are examined: frequency regulation and energy arbitrage. • For both services, potential revenue has decreased significantly since 2008. • We show a high correlation of revenue with natural gas price. • We demonstrate a causal relationship using the PHORUM grid modeling software.

  10. Resource assessment of the Imperial Valley. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biehler, S.; Lee, T.

    1977-01-01

    A resource assessment of the Imperial Valley has been made based on the use of the gravity anomalies as indicators of total excess mass. These data indicate a potential of producing electric power of 7 to 80 thousand megawatts for 30 years. Over half of the total potential is located in the Salton Sea Anomaly and approximately half of the potential of the Salton Sea field is water covered. An attempt has been made to assess not only the heat in storage in the fluid but also recoverable from the country rock by reinjection. Based on calculations, the natural recharge rate of heat in the Valley due to sea floor spreading is too small to give the resource an indefinite life-span since the economic rates of withdrawal appear to be at least an order of magnitude greater.

  11. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  12. Radiation balance in a deep Colorado valley: ASCOT 84

    International Nuclear Information System (INIS)

    Whiteman, C.D.; Fritschen, L.J.; Simpson, J.R.; Orgill, M.M.

    1984-12-01

    Five surface energy budget stations were installed at four sites in a deep, narrow valley in western Colorado as part of the Atmospheric Studies in Complex Terrain (ASCOT) Study. Radiation balance data are presented from these stations for the clear day September 29, 1984. 3 references, 3 figures, 3 tables

  13. Can solar energy substitute for oil? A natural capital accounting approach

    International Nuclear Information System (INIS)

    Slesser, M.

    1993-01-01

    Humans have managed to exploit the Earth's natural capital to create a vast human-made physical capital stock, whereby we provide food, fuel, clothing and shelter for the great majority of the planet's inhabitants. In doing so, we have damaged the environment and dissipated much that we inherited. Since the stock of natural capital is finite, for how long can this depletion and erosion continue? With what do we replace it in order to maintain our economic systems? This paper explores in a quantitative manner the potential to substitute solar energy for natural capital. In order to proceed, we need to distinguish between different types of natural capital, understand the nature of human-made capital and see what it is that determines the viability of solar energy systems. A macroeconomic model, GlobEcco, has been used to assess the potential for economic development at the global level in the context of the consequent rate of depletion of the Earth's depletable natural capital and/or its substitution by solar energy. Nine policies for the introduction of solar electricity, as derived from hydro-power, wind energy and photovoltaics, have been tested. (7 figures, 3 tables). (Author)

  14. Diversity of inland valleys and opportunities for agricultural development in Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Elliott Ronald Dossou-Yovo

    Full Text Available Inland valleys are becoming increasingly important agricultural production areas for rural households in sub-Saharan Africa due to their relative high and secure water availability and soil fertility. In addition, inland valleys are important as water buffer and biodiversity hot spots and they provide local communities with forest, forage, and fishing resources. As different inland-valley ecosystem functions may conflict with agricultural objectives, indiscriminate development should be avoided. This study aims to analyze the diversity of inland valleys in Sierra Leone and to develop guidelines for more precise interventions. Land use, biophysical and socio-economic data were analyzed on 257 inland valleys using spatial and multivariate techniques. Five cluster groups of inland valleys were identified: (i semi-permanently flooded with high soil organic carbon (4.2% and moderate available phosphorus (10.2 ppm, mostly under natural vegetation; (ii semi-permanently flooded with low soil organic carbon (1.5% and very low available phosphorus (3.1 ppm, abandoned by farmers; (iii seasonally flooded with moderate soil organic carbon (3.1% and low available phosphorus (8.3 ppm, used for rainfed rice and off-season vegetables produced without fertilizer application for household consumption and market; (iv well drained with moderate soil organic carbon (3.8% and moderate available phosphorus (10.0 ppm, used for rainfed rice and off-season vegetables produced with fertilizer application for household consumption and market; and (v well drained with moderate soil organic carbon (3.6% and moderate available phosphorus (11 ppm, used for household consumption without fertilizer application. Soil organic carbon, available phosphorus, hydrological regime, physical accessibility and market opportunity were the major factors affecting agricultural intensification of inland valleys. Opening up the areas in which inland valleys occur through improved roads and

  15. Engineered valley-orbit splittings in quantum-confined nanostructures in silicon

    NARCIS (Netherlands)

    Rahman, R.; Verduijn, J.; Kharche, N.; Lansbergen, G.P.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    An important challenge in silicon quantum electronics in the few electron regime is the potentially small energy gap between the ground and excited orbital states in 3D quantum confined nanostructures due to the multiple valley degeneracies of the conduction band present in silicon. Understanding

  16. Examining Spatiotemporal Urbanization Patterns in Kathmandu Valley, Nepal: Remote Sensing and Spatial Metrics Approaches

    Directory of Open Access Journals (Sweden)

    Rajesh Bahadur Thapa

    2009-09-01

    Full Text Available This paper examines the spatiotemporal pattern of urbanization in Kathmandu Valley using remote sensing and spatial metrics techniques. The study is based on 33-years of time series data compiled from satellite images. Along with new developments within the city fringes and rural villages in the valley, shifts in the natural environment and newly developed socioeconomic strains between residents are emerging. A highly dynamic spatial pattern of urbanization is observed in the valley. Urban built-up areas had a slow trend of growth in the 1960s and 1970s but have grown rapidly since the 1980s. The urbanization process has developed fragmented and heterogeneous land use combinations in the valley. However, the refill type of development process in the city core and immediate fringe areas has shown a decreasing trend in the neighborhood distances between land use patches, and an increasing trend towards physical connectedness, which indicates a higher probability of homogenous landscape development in the upcoming decades.

  17. Practical aspects of registration the transformation of a river valley by beavers using terrestrial laser scanning

    Science.gov (United States)

    Tyszkowski, Sebastian; Błaszkiewicz, Mirosław; Brykała, Dariusz; Gierszewski, Piotr; Kaczmarek, Halina; Kordowski, Jarosław; Słowiński, Michał

    2016-04-01

    Activity of beavers (Castor fiber) often significantly affects the environment in which they life. The most commonly observed effect of their being in environment is construction of beaver dams and formation a pond upstream. However, in case of a sudden break of a dam and beaver pond drainage, the valley below the dam may also undergo remodelling. The nature and magnitude of these changes depends on the quantity of water and its energy as well as on the geological structure of the valley. The effects of such events can be riverbank erosion, and the deposition of the displaced of erosion products in the form of sandbars or fans. The material can also be accumulated in local depressions or delivered to water bodies. Such events may occur multiple times in the same area. To assess their impact on the environment it is important to quantify the displaced material. The study of such transformations was performed within a small valley of the river of Struga Czechowska (Tuchola Pinewood Forest, Poland). The valley is mainly cut in sands and gravels. Its steep banks are overgrown with bushes and trees. The assessment of changes in morphology were based on the event of the beaver pond drainage of 2015. The study uses the measurements from the terrestrial laser scanning (scanner Riegl VZ-4000). The measurements were performed before and after the event. Each of the two models obtained for comparison was made up of more than 20 measurement stations. Point clouds were joined by Multi-Station Adjustment without placing in the terrain any objects of reference. During measurements attention was paid to the changes in morphology of both riverbed and valley surrounding. The paper presents the example of the recorded changes as well as the measurement procedure. Moreover, the aspects of fieldwork and issues related to post-processing, such as merging, filtering of point clouds and detection of changes, are also presented. This study is a contribution to the Virtual Institute of

  18. Precision Photometry to Study the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Lorenzon, Wolfgang; Schubnell, Michael

    2011-01-01

    Over the past decade scientists have collected convincing evidence that the expansion of the universe is accelerating, leading to the conclusion that the content of our universe is dominated by a mysterious 'dark energy'. The fact that present theory cannot account for the dark energy has made the determination of the nature of dark energy central to the field of high energy physics. It is expected that nothing short of a revolution in our understanding of the fundamental laws of physics is required to fully understand the accelerating universe. Discovering the nature of dark energy is a very difficult task, and requires experiments that employ a combination of different observational techniques, such as type-Ia supernovae, gravitational weak lensing surveys, galaxy and galaxy cluster surveys, and baryon acoustic oscillations. A critical component of any approach to understanding the nature of dark energy is precision photometry. This report addresses just that. Most dark energy missions will require photometric calibration over a wide range of intensities using standardized stars and internal reference sources. All of the techniques proposed for these missions rely on a complete understanding of the linearity of the detectors. The technical report focuses on the investigation and characterization of 'reciprocity failure', a newly discovered count-rate dependent nonlinearity in the NICMOS cameras on the Hubble Space Telescope. In order to quantify reciprocity failure for modern astronomical detectors, we built a dedicated reciprocity test setup that produced a known amount of light on a detector, and to measured its response as a function of light intensity and wavelength.

  19. Towards Biological Restoration of Tehran Megalopolis River Valleys- Case Study: Farahzad River

    Science.gov (United States)

    Samadi, Nafishe; Oveis Torabi, Seyed; Akhani, Hossein

    2017-04-01

    Towards biological restoration of Tehran megalopolis river-valleys: case study Farahzad river 1Nafiseh Samadi, 2OveisTorabi, 3Hossein Akhani 1Mahsab Shargh Company, Tehran ,Iran, nafiseh19@gmail.com 2 Mahsab Shargh Company, Tehran ,Iran, weg@tna-co.com 3Department of Plant Sciences, Halophytes and C4 Research Laboratory, School of Biology, College of Sciences, University of Tehran, PO Box 14155-6455, Tehran, Iran, akhani@khayam.ut.ac.ir Tehran is located in northcentral parts of Iran on the alluvium of southern Alborz Mountains. Seven rivers originated from the highlands of N Tehran run inside and around the city. Many of these river valleys have been deformed by a variety of urban utilizations such as garden, building, canal, park, autobahn etc. Tehran with more than eight million populations suffered from adverse environmental conditions such as pollution and scarcity of natural habitats for recreational activities. Ecological restoration of altered river valleys of Tehran is one of the priorities of Tehran municipality started as a pilot project in Farahzad river. Intensive disturbance, conversion into various urban utilization, illegal building construction, waste water release into the river, garbage accumulation, artificial park constructions and domination of invasive species have largely altered the river. Parts of the river located in Pardisan Nature Park was studied before its complete deformation into a modern park. The riparian vegetation consisted of Tamarix ramosissima and Salix acmophylla shrubs with large number of aquatic and palustric plants. The norther parts of the river still contain semi-natural vegetation which change into patchy and intensive degraded habitats towards its southern parts. In northern parts of valley there are old gardens of Morus alba and Juglans regia, and planted trees such as Plataneus oreientalis and Acer negundo. Salix acmophylla, Fraxinus excelsior and Celtis caucasica are native species growing on river margin or

  20. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Science.gov (United States)

    Guzzetti, F.; Reichenbach, P.; Wieczorek, G. F.

    Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857-2002) 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM), the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls confirmed the accuracy of

  1. Rockfall hazard and risk assessment in the Yosemite Valley, California, USA

    Directory of Open Access Journals (Sweden)

    F. Guzzetti

    2003-01-01

    Full Text Available Rock slides and rock falls are the most frequent types of slope movements in Yosemite National Park, California. In historical time (1857–2002 392 rock falls and rock slides have been documented in the valley, and some of them have been mapped in detail. We present the results of an attempt to assess rock fall hazards in the Yosemite Valley. Spatial and temporal aspects of rock falls hazard are considered. A detailed inventory of slope movements covering the 145-year period from 1857 to 2002 is used to determine the frequency-volume statistics of rock falls and to estimate the annual frequency of rock falls, providing the temporal component of rock fall hazard. The extent of the areas potentially subject to rock fall hazards in the Yosemite Valley were obtained using STONE, a physically-based rock fall simulation computer program. The software computes 3-dimensional rock fall trajectories starting from a digital elevation model (DEM, the location of rock fall release points, and maps of the dynamic rolling friction coefficient and of the coefficients of normal and tangential energy restitution. For each DEM cell the software calculates the number of rock falls passing through the cell, the maximum rock fall velocity and the maximum flying height. For the Yosemite Valley, a DEM with a ground resolution of 10 × 10 m was prepared using topographic contour lines from the U.S. Geological Survey 1:24 000-scale maps. Rock fall release points were identified as DEM cells having a slope steeper than 60°, an assumption based on the location of historical rock falls. Maps of the normal and tangential energy restitution coefficients and of the rolling friction coefficient were produced from a surficial geologic map. The availability of historical rock falls mapped in detail allowed us to check the computer program performance and to calibrate the model parameters. Visual and statistical comparison of the model results with the mapped rock falls

  2. Geotechnical environmental aspects of geothermal power generation at Herber, Imperial Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    1976-10-01

    The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

  3. Natural gas heating. The energy saving concept. Topical tasks of consumer guidance

    Energy Technology Data Exchange (ETDEWEB)

    Windfeder, H

    1978-01-01

    Brief comments on natural gas, the technology of using natural gas for heating purposes, consumer psychology, and on energy policies are presented. It is concluded that the more natural gas heating is installed, the more primary energy can be saved. Some fundamental thoughts on consumer guidance are given for discussion.

  4. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    Science.gov (United States)

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  5. Predicting the valley physics of silicon quantum dots directly from a device layout

    Science.gov (United States)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  6. Metallic iron for water treatment: leaving the valley of confusion

    Science.gov (United States)

    Makota, Susanne; Nde-Tchoupe, Arnaud I.; Mwakabona, Hezron T.; Tepong-Tsindé, Raoul; Noubactep, Chicgoua; Nassi, Achille; Njau, Karoli N.

    2017-12-01

    Researchers on metallic iron (Fe0) for environmental remediation and water treatment are walking in a valley of confusion for 25 years. This valley is characterized by the propagation of different beliefs that have resulted from a partial analysis of the Fe0/H2O system as (1) a reductive chemical reaction was considered an electrochemical one and (2) the mass balance of iron has not been really addressed. The partial analysis in turn has been undermining the scientific method while discouraging any real critical argumentation. This communication re-establishes the complex nature of the Fe0/H2O system while recalling that, finally, proper system analysis and chemical thermodynamics are the most confident ways to solve any conflicting situation in Fe0 environmental remediation.

  7. Oil and natural gas in Russia's eastern energy strategy: Dream or reality?

    International Nuclear Information System (INIS)

    Mareš, Miroslav; Laryš, Martin

    2012-01-01

    The article analyses Russia's Eastern energy strategy in the sectors of oil and natural gas, presenting its main aspects and examining it from the security perspective against the backdrop of official Russian documents. The goals set by the strategy are compared with the steps presently taken and planned by the Russian administration, as well as with short- and medium-term Russian energy policies in the sectors of oil and natural gas. The authors conclude that implementation of the Energy Strategy to 2030 in the sectors of oil and natural gas will be highly complicated in the Eastern vector of Russian politics and achievable only if new deposits are found. - Highlights: ► We compare goals of the Russia's Eastern energy strategy in the sectors of oil and natural gas with real policy.► In the Eastern vector are included China, both Korean states and Japan. ► For Russia's energy strategy to 2030 the Eastern market in the sector of oil and natural gas is advantageous and desirable. ► The present conditions can bring economic as well as political risks.

  8. Scienti fi c Approaches and Methods in the Investigation of the Formation and Stability of Hydromorphic Natural Complexes of the Irtysh River Valley System (The Kazakhstan Part

    Directory of Open Access Journals (Sweden)

    A. G. Tsaregorodtseva

    2006-12-01

    Full Text Available The current geo-environmental situation of the Irtysh River valley system is connected with the high degree of control of the river drainage, which affects the functioning of its entire ecosystem and determines some morphological features of its channel. In the present work, the methodological approaches in the study of formation of the valley’s hydromorphic natural complexes are discussed, and the results of studies on the channel processes in the middle course of the Irtysh River are given.

  9. PEARLS OF THE PČINJA VALLEY – RURAL TOURISM ATTRACTIONS OF THIS AREA

    Directory of Open Access Journals (Sweden)

    Svetlana Trajković

    2013-10-01

    Full Text Available River Valley Pčinja, with its source part and tributaries that make up the Aegean Sea with its configuration, where the gorge turns between nearby mountains and flat areas, meadows, gardens and of our arable land, remains of old mills, houses and villages, which, still do not leave the inhabitants of this region, contains tourist potential. This valley is adorned with rich flora and fauna where one can see examples of the unique flora and fauna, with its diversity and natural material in the form of a "devil's stone" Witness antiquities and places of worship as well as a special value of the Monastery of St. Prohor of Pcinja. The pleasant climate and in some areas of the river gurgling disrupts primordial peace and makes the holiday for eyes, soul of every lover of nature.

  10. Imperial Contradictions: Is the Valley a Watershed, Region, or Cyborg?

    Science.gov (United States)

    Rudy, Alan P.

    2005-01-01

    Is California's Imperial Valley a watershed? If so, at what level and by what topographic logic? Is it a region? If so, at what level and by what geographic logic? Are its boundaries natural, political, or multivalent on different scales? In short, this essay looks at the special (re)production of environmental conditions within a cyborg world.…

  11. An intimate understanding of place: Charles Sauriol and Toronto’s Don River Valley, 1927-1989.

    Science.gov (United States)

    Bonnell, Jennifer

    2011-01-01

    Every summer from 1927 to 1968, Toronto conservationist Charles Sauriol and his family moved from their city home to a rustic cottage just a few kilometres away, within the urban wilderness of Toronto’s Don River Valley. In his years as a cottager, Sauriol saw the valley change from a picturesque setting of rural farms and woodlands to an increasingly threatened corridor of urban green space. His intimate familiarity with the valley led to a lifelong quest to protect it. This paper explores the history of conservation in the Don River Valley through Sauriol’s experiences. Changes in the approaches to protecting urban nature, I argue, are reflected in Sauriol’s personal experience – the strategies he employed, the language he used, and the losses he suffered as a result of urban planning policies. Over the course of Sauriol’s career as a conservationist, from the 1940s to the 1990s, the river increasingly became a symbol of urban health – specifically, the health of the relationship between urban residents and the natural environment upon which they depend. Drawing from a rich range of sources, including diary entries, published memoirs, and unpublished manuscripts and correspondence, this paper reflects upon the ways that biography can inform histories of place and better our understanding of individual responses to changing landscapes.

  12. Analysis of technological alternatives and energy to the Metroplus system under an integrated assessment, Energy, Environment, Economy

    International Nuclear Information System (INIS)

    Alzate, Juan M; Builes, Luis A; Rave, Claudia C; Smith, Ricardo A; Cadena, Angela I

    2007-01-01

    Using a multi-period optimization model based on lineal programming, which integrates energy, economy and environment dimensions (MARKAL - Standard version), some economic and environmental impacts due to five different technological choices for the omnibus fleet of the Rapid Bus Transit (Metroplus System) which will operate at the metropolitan area of the Aburra Valley (Medellin - Colombia) were estimated. The technological choices compared are: (1) a fleet powered by compressed natural gas, (2) powered by diesel, (3) powered by Euro diesel III imported from the Mexican Gulf, (4) powered by a mixed fleet 50% compressed natural gas and 50% diesel, and (5) a fleet powered by hybrid diesel vehicles. Results out stand the economic and environmental benefits associated to the use of an omnibus fleet powered by compressed natural gas

  13. Controls on valley spacing in landscapes subject to rapid base-level fall

    Science.gov (United States)

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  14. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Science.gov (United States)

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  15. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  16. Assessment of geothermal development in the Imperial Valley of California. Volume 1. Environment, health, and socioeconomics

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D. (ed.)

    1980-07-01

    Utilization of the Imperial Valley's geothermal resources to support energy production could be hindered if environmental impacts prove to be unacceptable or if geothermal operations are incompatible with agriculture. To address these concerns, an integrated environmental and socioeconomic assessment of energy production in the valley was prepared. The most important impacts examined in the assessment involved air quality changes resulting from emissions of hydrogen sulfide, and increases in the salinity of the Salton Sea resulting from the use of agricultural waste waters for power plant cooling. The socioeconomics consequences of future geothermal development will generally be beneficial. (MHR)

  17. Water resources development in Santa Clara Valley, California: insights into the human-hydrologic relationship

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, Jesse L. [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Groundwater irrigation is critical to food production and, in turn, to humankind's relationship with its environment. The development of groundwater in Santa Clara Valley, California during the early twentieth century is instructive because (1) responses to unsustainable resource use were largely successful; (2) the proposals for the physical management of the water, although not entirely novel, incorporated new approaches which reveal an evolving relationship between humans and the hydrologic cycle; and (3) the valley serves as a natural laboratory where natural (groundwater basin, surface watershed) and human (county, water district) boundaries generally coincide. Here, I investigate how water resources development and management in Santa Clara Valley was influenced by, and reflective of, a broad understanding of water as a natural resource, including scientific and technological innovations, new management approaches, and changing perceptions of the hydrologic cycle. Market demands and technological advances engendered reliance on groundwater. This, coupled with a series of dry years and laissez faire government policies, led to overdraft. Faith in centralized management and objective engineering offered a solution to concerns over resource depletion, and a group dominated by orchardists soon organized, fought for a water conservation district, and funded an investigation to halt the decline of well levels. Engineer Fred Tibbetts authored an elaborate water salvage and recharge plan that optimized the local water resources by integrating multiple components of the hydrologic cycle. Informed by government investigations, groundwater development in Southern California, and local water law cases, it recognized the limited surface storage possibilities, the spatial and temporal variability, the relatively closed local hydrology, the interconnection of surface and subsurface waters, and the value of the groundwater basin for its storage, transportation, and

  18. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-05-15

    Advocates of energy efficiency and renewable energy have long argued that such technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that these sources provide. In evaluating this benefit, it is important to recognize that alternative price hedging instruments are available--in particular, gas-based financial derivatives (futures and swaps) and physical, fixed-price gas contracts. Whether energy efficiency and renewable energy can provide price stability at lower cost than these alternative means is therefore a key question for resource acquisition planners. In this paper we evaluate the cost of hedging gas price risk through financial hedging instruments. To do this, we compare the price of a 10-year natural gas swap (i.e., what it costs to lock in prices over the next 10 years) to a 10-year natural gas price forecast (i.e., what the market is expecting spot natural gas prices to be over the next 10 years). We find that over the past two years natural gas users have had to pay a premium as high as $0.76/mmBtu (0.53/242/kWh at an aggressive 7,000 Btu/kWh heat rate) over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost to hedge gas price risk exposure is potentially large enough - particularly if incorporated by policymakers and regulators into decision-making practices - to tip the scales away from new investments in variable-price, natural gas-fired generation and in favor of fixed-price investments in energy efficiency and renewable energy.

  19. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    International Nuclear Information System (INIS)

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-01-01

    Advocates of energy efficiency and renewable energy have long argued that such technologies can mitigate fuel price risk within a resource portfolio. Such arguments-made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001-have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that these sources provide. In evaluating this benefit, it is important to recognize that alternative price hedging instruments are available-in particular, gas-based financial derivatives (futures and swaps) and physical, fixed-price gas contracts. Whether energy efficiency and renewable energy can provide price stability at lower cost than these alternative means is therefore a key question for resource acquisition planners. In this paper we evaluate the cost of hedging gas price risk through financial hedging instruments. To do this, we compare the price of a 10-year natural gas swap (i.e., what it costs to lock in prices over the next 10 years) to a 10-year natural gas price forecast (i.e., what the market is expecting spot natural gas prices to be over the next 10 years). We find that over the past two years natural gas users have had to pay a premium as high as$0.76/mmBtu (0.53/242/kWh at an aggressive 7,000 Btu/kWh heat rate) over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost to hedge gas price risk exposure is potentially large enough - particularly if incorporated by policymakers and regulators into decision-making practices - to tip the scales away from new investments in variable-price, natural gas-fired generation and in favor of fixed-price investments in energy efficiency and renewable energy

  20. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    Science.gov (United States)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  1. The influence of an estimated energy saving due to natural ventilation on the Mexican energy system

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    This article shows the impacts of the extensive use of NV (natural ventilation) in the Mexican residential sector on the Mexican energy system. By integrating a thermal-airflow simulation programme with an energy systems analysis model, the impact on the Mexican energy system of replacing air...... conditioning, in particular, with natural ventilation to cool residential buildings is determined. It is shown that when, as in Mexico, there is a relatively simple connection between supply and electricity demand, NV creates savings which could be used to reduce either the fossil-fuel-based generation...

  2. Air quality modeling in the Valley of Mexico: meteorology, emissions and forecasting

    Science.gov (United States)

    Garcia-Reynoso, A.; Jazcilevich, A. D.; Diaz-Nigenda, E.; Vazquez-Morales, W.; Torres-Jardon, R.; Ruiz-Suarez, G.; Tatarko, J.; Bornstein, R.

    2007-12-01

    The Valley of Mexico presents important challenges for air quality modeling: complex terrain, a great variety of anthropogenic and natural emissions sources, and high altitude and low latitude increasing the amount of radiation flux. The modeling group at the CCA-UNAM is using and merging state of the art models to study the different aspects that influence the air quality phenomenon in the Valley of Mexico. The air quality model MCCM that uses MM5 as its meteorological input has been a valuable tool to study important features of the complex and intricate atmospheric flows on the valley, such as local confluences and vertical fumigation. Air quality modeling has allowed studying the interaction between the atmospheres of the valleys surrounding the Valley of Mexico, prompting the location of measurement stations during the MILAGRO campaign. These measurements confirmed the modeling results and expanded our knowledge of the transport of pollutants between the Valleys of Cuernavaca, Puebla and Mexico. The urban landscape of Mexico City complicates meteorological modeling. Urban-MM5, a model that explicitly takes into account the influence of buildings, houses, streets, parks and anthropogenic heat, is being implemented. Preliminary results of urban-MM5 on a small area of the city have been obtained. The current emissions inventory uses traffic database that includes hourly vehicular activity in more than 11,000 street segments, includes 23 area emissions categories, more than 1,000 industrial sources and biogenic emissions. To improve mobile sources emissions a system consisting of a traffic model and a car simulator is underway. This system will allow for high time and space resolution and takes into account motor stress due to different driving regimes. An important source of emissions in the Valley of Mexico is erosion dust. The erosion model WEPS has been integrated with MM5 and preliminary results showing dust episodes over Mexico City have been obtained. A

  3. Geologic summary of the Owens Valley drilling project, Owens and Rose Valleys, Inyo County, California

    International Nuclear Information System (INIS)

    Schaer, D.W.

    1981-07-01

    The Owens Valley Drilling Project consists of eight drill holes located in southwest Inyo County, California, having an aggregate depth of 19,205 feet (5853 m). Project holes penetrated the Coso Formation of upper Pliocene or early Pleistocene age and the Owens Lake sand and lakebed units of the same age. The project objective was to improve the reliability of uranium-potential-resource estimates assigned to the Coso Formation in the Owens Valley region. Uranium-potential-resource estimates for this area in $100 per pound U 3 O 8 forward-cost-category material have been estimatd to be 16,954 tons (15,384 metric tons). This estimate is based partly on project drilling results. Within the Owens Valley project area, the Coso Formation was encountered only in the Rose Valley region, and for this reason Rose Valley is considered to be the only portion of the project area favorable for economically sized uranium deposits. The sequence of sediments contained in the Owens Valley basin is considered to be largely equivalent but lithologically dissimilar to the Coso Formation of Haiwee Ridge and Rose Valley. The most important factor in the concentration of significant amounts of uranium in the rock units investigated appears to be the availability of reducing agents. Significant amounts of reductants (pyrite) were found in the Coso Formation. No organic debris was noted. Many small, disconnected uranium occurrences, 100 to 500 ppM U 3 O 8 , were encountered in several of the holes

  4. Charcterization of meadow ecosystems based on watershed and valley segment/reach scale characteristics [chapter 7

    Science.gov (United States)

    Wendy Trowbridge; Jeanne C. Chambers; Dru Germanoski; Mark L. Lord; Jerry R. Miller; David G. Jewett

    2011-01-01

    Great Basin riparian meadows are highly sensitive to both natural and anthropogenic disturbance. As detailed in earlier chapters, streams in the central Great Basin have a natural tendency to incise due to their geomorphic history (Miller and others 2001, 2004). Anthropogenic disturbances, including overgrazing by livestock, mining activities, and roads in the valley...

  5. Hydrology of modern and late Holocene lakes, Death Valley, California

    International Nuclear Information System (INIS)

    Grasso, D.N.

    1996-01-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi 2 , closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area

  6. Hydrology of modern and late Holocene lakes, Death Valley, California

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, D.N.

    1996-07-01

    Above-normal precipitation and surface-water runoff, which have been generally related to the cyclic recurrence of the El Nino-Southern Oscillation, have produced modern ephemeral lakes in the closed-basin Death Valley watershed. This study evaluates the regional hydroclimatic relations between precipitation, runoff, and lake transgressions in the Death Valley watershed. Recorded precipitation, runoff, and spring discharge data for the region are used in conjunction with a closed-basin, lake-water-budget equation to assess the relative contributions of water from these sources to modern lakes in Death Valley and to identify the requisite hydroclimatic changes for a late Holocene perennial lake in the valley. As part of the Yucca Mountain Site Characterization Program, an evaluation of the Quaternary regional paleoflood hydrology of the potential nuclear-waste repository site at Yucca Mountain, Nevada, was planned. The objectives of the evaluation were (1) to identify the locations and investigate the hydraulic characteristics of paleofloods and compare these with the locations and characteristics of modern floods, and (2) to evaluate the character and severity of past floods and debris flows to ascertain the potential future hazards to the potential repository during the pre-closure period (US Department of Energy, 1988). This study addresses the first of these objectives, and the second in part, by assessing and comparing the sizes, locations, and recurrence rates of modern, recorded (1962--83) floods and late Holocene paleofloods for the 8,533-mi{sup 2}, closed-basin, Death Valley watershed with its contributing drainage basins in the Yucca Mountain site area.

  7. Vale do Aco pipeline: pipeline natural gas implementation in ArcelorMittal Monlevade steel work; Gasoduto Vale do Aco: implantacao do gas natural via gasoduto na ArcelorMittal Monlevade

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Eduardo Sergio da Silva; Arantes, Luiz Flavio Mourao; Ribeiro, Vicente Aleixo Pinheiro [ArcelorMittal Monlevade, Joao Monlevade, MG (Brazil)

    2011-12-21

    Since September 2010, ArcelorMittal Monlevade has gained flexibility and an important opportunity to reduce the cost of its energy mix due to the arrival of the Natural Gas (NG) via Steel Valley Pipeline. The proposal of the project included the substitution of the Liquefied Petroleum Gas (LPG), Fuel Oil and Compressed Natural Gas for natural gas via pipeline. To support the investment decision, in addition to domestic economic and technical aspects, the macro economic environment concerning the NG was also taken into account. This paper shows the analysis for adjustment of internal equipment, the structure of the contract, the conceptual project of the gas distribution built inside the main events, the gains achieved, the alternatives for the acquisition of NG and operational flexibility of ArcelorMittal Monlevade in case of interruption of supply of natural gas. (author)

  8. Communication on climate, energy, natural gas and forests as a problem for energy planning

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    Danish energy planning has since its inception in the end of the 1970s been politically controversial, which led to language problems of communicating on alternatives (natural gas, nuclear energy). But previously alternative scenarios were in the 1990s successfully transformed into law...... that it can happen on the ground of wrong premises (on CO2 neutrality e.g.) that a shift say from natural gas to wood combustion can be interpreted as a solution to climate problems, whereas this in reality aggravates them. Not the least because forests because of continuously high emissions of CO2...

  9. Natural gas supply strategies for European energy market actors

    International Nuclear Information System (INIS)

    Girault, Vincent

    2007-06-01

    The liberalization of the European energy markets leads to the diversification of supplies. Hence, we analyse the natural gas importation problem in a power producer point of view. Upstream and downstream natural gas markets are concentrated. In this oligopoly context, our topic is to focus on strategies which modify natural gas sourcing price. This by studying the surplus sharing on the natural gas chain. A European firm can bundle gas and electricity outputs to increase its market share. Therefore, a bundling strategy of a power producer in competition with a natural gas reseller on the final European energy market increases upstream natural gas price. Bundling also acts as a raising rival cost strategy and reduces the rivals' profit. Profits opportunities incite natural gas producers to enter the final market. Vertical integration between a natural gas producer and a European gas reseller is a way, for producers, to catch end consumer surplus. Vertical integration results in the foreclosure of the power producer on the upstream natural gas market. To be active on the natural gas market, the power producer could supply bundles. But, this strategy reallocates the rent. The integrated firm on natural gas gets the rent of electricity market in expenses of the power producer. Then, a solution for the power producer is to supply gas and electricity as complements. Then, we consider a case where vertical integration is not allowed. Input price discrimination by a monopolist leads to a lower natural gas price for the actor which diversifies its supplying sources. Furthermore, a bundling strategy increases the gap between the price proposed to the firm which also diversify its output and the firm which is fully dependent from the producer to supply natural gas on final market. (author)

  10. Development of energy-efficient processes for natural gas liquids recovery

    International Nuclear Information System (INIS)

    Yoon, Sekwang; Binns, Michael; Park, Sangmin; Kim, Jin-Kuk

    2017-01-01

    A new NGL (natural gas liquids) recovery process configuration is proposed which can offer improved energy efficiency and hydrocarbon recovery. The new process configuration is an evolution of the conventional turboexpander processes with the introduction of a split stream transferring part of the feed to the demethanizer column. In this way additional heat recovery is possible which improves the energy efficiency of the process. To evaluate the new process configuration a number of different NGL recovery process configurations are optimized and compared using a process simulator linked interactively with external optimization methods. Process integration methodology is applied as part of the optimization to improve energy recovery during the optimization. Analysis of the new process configuration compared with conventional turbo-expander process designs demonstrates the benefits of the new process configuration. - Highlights: • Development of a new energy-efficient natural gas liquids recovery process. • Improving energy recovery with application of process integration techniques. • Considering multiple different structural changes lead to considerable energy savings.

  11. Stand development of trembling aspen in Canaan Valley, West Virginia

    Science.gov (United States)

    James S. Rentch; James T. Anderson

    2008-01-01

    In wetlands of Canaan Valley, West Virginia, trembling aspen occurs as a disjunct population well south of its primary natural range. Based on sample data from 15 stands, we found that aspen occurs as nearly monospecific stands or clones. Eight stands had median ages between 30 and 40 yrs, and we suggest that stand initiation was related to changes in land use after...

  12. Combinatorial vector fields and the valley structure of fitness landscapes.

    Science.gov (United States)

    Stadler, Bärbel M R; Stadler, Peter F

    2010-12-01

    Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.

  13. Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis

    Directory of Open Access Journals (Sweden)

    Pravesh Raghoo

    Full Text Available There is a paucity of studies on natural gas-based energy production in Small Island Developing States (SIDS even though technological improvements today are likely to make the application of natural gas more and more feasible. The development of natural gas in some of the regions of the Pacific, Africa, Indian Ocean and Caribbean attracts nearby countries and the coming up of the compressed natural gas (CNG technology which can serve regional markets are two motivations for SIDS to develop natural gas-based energy provision. A third factor concerns long-term energy security. Due to continued reliance on fossil fuels and slow uptake of renewable energy, there is a need to diversify SIDS’ energy mix for a sustainable electricity industry. Comparing the opportunities and constraints of liquefied natural gas (LNG and compressed natural gas (CNG in a SIDS-specific context, this paper discusses how to improve the integration of natural gas in prevailing energy regimes in SIDS as an alternative fuel to oil and complementary to renewable energy sources. To illustrate feasibility in practice, a techno-economic analysis is carried out using the island of Mauritius as an example. Keywords: Energy security, Natural gas, Small Island Developing States

  14. NATURAL GAS - A CHANCE FOR SUSTAINABLE DEVELOPMENT OF SERBIAN ENERGY SECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, S.; Djajic, N.; Kukobat, M.

    2007-07-01

    Republic Serbia has produced and consumed natural gas domestically since 1952, but has always been net importer. Strategy of Energy Development in Serbia and, especially, National Action Plan for the Gasification on the Territory of Republic of Serbia dedicated special attention to gas economy development in respect with expected contribution in efficient energy use and environmental policy protection in our country. Option of expanded share of natural gas in fulfilling energy requirements in future is reasonable, considering natural gas with its energetic, ecological and economical characteristics as very suitable fuel. Also, in mid-term and most probably in long-term period, the gas import is expected to be more advantageous than oil import. The paper deals the basic features of natural gas consumption in Serbia in nineties and analyses the further development in gas sector for next period until 2015 based on strategic analyses. (auth)

  15. Feeling Robots and Human Zombies: Mind Perception and the Uncanny Valley

    Science.gov (United States)

    Gray, Kurt; Wegner, Daniel M.

    2012-01-01

    The uncanny valley--the unnerving nature of humanlike robots--is an intriguing idea, but both its existence and its underlying cause are debated. We propose that humanlike robots are not only unnerving, but are so because their appearance prompts attributions of mind. In particular, we suggest that machines become unnerving when people ascribe to…

  16. Natural radiation - a perspective to radiological risk factors of nuclear energy production

    DEFF Research Database (Denmark)

    Mustonen, R.; Christensen, T.; Stranden, E.

    1992-01-01

    Radiation doses from natural radiation and from man-made modifications on natural radiation, and different natural radiological environments in the Nordic countries are summarized and used as a perspective for the radiological consequences of nuclear energy production. The significance of different...... radiation sources can be judged against the total collective effective dose equivalent from natural radiation in the Nordic countries, 92 000 manSv per year. The collective dose from nuclear energy production during normal operation is estimated to 20 manSv per year and from non-nuclear energy production...... to 80 manSv per year. The increase in collective dose due to the conservation of heating energy in Nordic dwellings is estimated to 23 000 manSv per year, from 1973 to 1984. An indirect radiological danger index is defined in order to be able to compare the significance of estimated future releases...

  17. The sensitivity of the electron transport within bulk zinc-blende gallium nitride to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqua, Poppy; O' Leary, Stephen K., E-mail: stephen.oleary@ubc.ca [School of Engineering, The University of British Columbia, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada)

    2016-09-07

    Within the framework of a semi-classical three-valley Monte Carlo simulation approach, we analyze the steady-state and transient electron transport that occurs within bulk zinc-blende gallium nitride. In particular, we examine how the steady-state and transient electron transport that occurs within this material changes in response to variations in the crystal temperature, the doping concentration, and the non-parabolicity coefficient associated with the lowest energy conduction band valley. These results are then contrasted with those corresponding to a number of other compound semiconductors of interest.

  18. Testing a Mars science outpost in the Antarctic dry valleys

    Science.gov (United States)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  19. Liquefied natural gas : a Canadian perspective : an energy market assessment

    International Nuclear Information System (INIS)

    2009-01-01

    World requirements for energy and natural gas are expected to increase in the near future. This energy market assessment presented an overview of global liquefied natural gas (LNG) supply and demand, and discussed the potential effects that imported LNG may have on Canadian gas markets and energy infrastructure. Regasification projects will double the world's existing LNG receiving capacity by 2015. However, LNG pricing will still be indexed to the price of crude oil and oil products in the future. LNG price differences will affect trading opportunities as well as the flow of LNG between regions. North American LNG facility development will be influenced by outlooks for continental gas supply and demand. Current declines combined with recent increases in United States natural gas production from unconventional gas resources will reduce requirements for LNG in the near future, and may have a significant impact on long-term North American and global LNG requirements. Canada's existing facilities are located competitively with other terminals. 33 figs.

  20. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    International Nuclear Information System (INIS)

    Ichimiya, Tsutomu; Narita, Tsutomu; Kitao, Kensuke.

    1998-03-01

    A quick index to γ-rays and X-rays from natural radionuclides is presented. In the list, γ-rays are arranged in order of increasing energy. The list also contains γ-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct γ-rays from interaction with the neutrons. Artificial radioactive nuclides emitting γ-rays with same or near energy value as that of the natural γ-rays and X-rays are also listed. In appendix, γ-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in γ-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  1. Natural background gamma-ray spectrum. List of gamma-rays ordered in energy from natural radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Ichimiya, Tsutomu [Japan Radioisotope Association, Tokyo (Japan); Narita, Tsutomu; Kitao, Kensuke

    1998-03-01

    A quick index to {gamma}-rays and X-rays from natural radionuclides is presented. In the list, {gamma}-rays are arranged in order of increasing energy. The list also contains {gamma}-rays from radioactive nuclides produced in a germanium detector and its surrounding materials by interaction with cosmic neutrons, as well as direct {gamma}-rays from interaction with the neutrons. Artificial radioactive nuclides emitting {gamma}-rays with same or near energy value as that of the natural {gamma}-rays and X-rays are also listed. In appendix, {gamma}-ray spectra from a rock, uranium ore, thorium, monazite and uraninite and also background spectra obtained with germanium detectors placed in iron or lead shield have been given. The list is designed for use in {gamma}-ray spectroscopy under the conditions of highly natural background, such as in-situ environmental radiation monitoring or low-level activity measurements, with a germanium detector. (author)

  2. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  3. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  4. Quaternary Geochronology, Paleontology, and Archaeology of the Upper San Pedro River Valley, Sonora, Mexico

    Science.gov (United States)

    Gaines, E. P.

    2013-12-01

    This poster presents the results of multi-disciplinary investigations of the preservation and extent of Quaternary fossil-bearing strata in the San Pedro River Valley in Sonora, Mexico. Geologic deposits in the portions of the San Pedro Valley in southern Arizona contain one of the best late Cenozoic fossil records known in North America and the best record of early humans and extinct mammals on the continent. The basin in the U.S. is one of the type locations for the Blancan Land Mammal Age. Hemiphilian and Irvingtonian fossils are common. Rancholabrean remains are widespread. Strata in the valley adjacent to the international border with Mexico have yielded the densest concentration of archaeological mammoth-kill sites known in the western hemisphere. Despite more than 60 years of research in the U.S., however, and the fact that over one third of the San Pedro River lies south of the international boundary, little has been known about the late Cenozoic geology of the valley in Mexico. The study reported here utilized extensive field survey, archaeological documentation, paleontological excavations, stratigraphic mapping and alluvial geochronology to determine the nature and extent of Quaternary fossil-bearing deposits in the portions of the San Pedro Valley in Sonora, Mexico. The results demonstrate that the Plio-Pleistocene fossil -bearing formations known from the valley in Arizona extend into the uppermost reaches of the valley in Mexico. Several new fossil sites were discovered that yielded the remains of Camelids, Equus, Mammuthus, and other Proboscidean species. Late Pleistocene archaeological remains were found on the surface of the surrounding uplands. AMS radiocarbon dating demonstrates the widespread preservation of middle- to late- Holocene deposits. However, the late Pleistocene deposits that contain the archaeological mammoth-kill sites in Arizona are absent in the valley in Mexico, and are now known to be restricted to relatively small portions of

  5. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States.

    Science.gov (United States)

    Hoffacker, Madison K; Allen, Michael F; Hernandez, Rebecca R

    2017-12-19

    Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year -1 ) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km 2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year -1 for photovoltaic (PV) and 2213 TWh year -1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

  6. Exploring the Potential Business Case for Synergies Between Natural Gas and Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Jaquelin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Doug [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Natural gas and renewable energy each contribute to economic growth, energy independence, and carbon mitigation, sometimes independently and sometimes collectively. Often, natural gas and renewables are considered competitors in markets, such as those for bulk electricity. This paper attempts to address the question, 'Given near- and long-term needs for abundant, cleaner energy sources and decarbonization, how can more compelling business models be created so that these two domestic forms of energy work in greater concert?' This paper explores revenue opportunities that emerge from systems-level perspectives in 'bulk energy' (large-scale electricity and natural gas production, transmission, and trade) and four 'distribution edge' subsectors: industrial, residential, commercial, and transportation end uses.

  7. Photo-medical valley. 'Photo medical research center'

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Daido, Hiroyuki; Tajima, Toshiki

    2008-01-01

    To develop a much more compact cancer diagnosis and therapeutic instrument using high intensity laser technology, Japan Atomic Energy Agency (JAEA) has successfully proposed this novel effort to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) program as the creation of a 'photo-medical industrial valley' base in 2007 fiscal year. In this report, a new laser techniques to drive controlled ion beams is described. It is very important approach to realize a laser-driven ion accelerator. (author)

  8. Comparative analysis of efficiency in cooking with natural gas and electricity

    International Nuclear Information System (INIS)

    Amell Arrieta, Andres; Cadavid Sierra Francisco Javier; Ospina Ospina, Juan Carlos

    2001-01-01

    The natural gas will have, at the Aburra Valley, a massive application in residential process like heating water and cooking, historically doing with electricity. In the study of electricity substitution in necessary to estimate the gas consumption in order to keep satisfying the energetic requirements at the different strata supposing that, alimentary habits in these have not important valuation through the time. Since the volume of natural gas requirements for the electricity substitution at given conditions depend on electrical energy before substitution, electrical equipment efficiency, gas equipment efficiency and gas substitution heating value, the determination of these efficiencies are necessary. This work presents the calculation processes comparing gas heating and cooking processes, versus electrical devises taking in mind several schemes and essay conditions

  9. Mechanical control over valley magnetotransport in strained graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ning, E-mail: maning@stu.xjtu.edu.cn [Department of Physics, MOE Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Zhang, Shengli, E-mail: zhangsl@mail.xjtu.edu.cn [Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Liu, Daqing, E-mail: liudq@cczu.edu.cn [School of Mathematics and Physics, Changzhou University, Changzhou 213164 (China)

    2016-05-06

    Recent experiments report that the graphene exhibits Landau levels (LLs) that form in the presence of a uniform strain pseudomagnetic field with magnitudes up to hundreds of tesla. We further reveal that the strain removes the valley degeneracy in LLs, and leads to a significant valley polarization with inversion symmetry broken. This accordingly gives rise to the well separated valley Hall plateaus and Shubnikov–de Haas oscillations. These effects are absent in strainless graphene, and can be used to generate and detect valley polarization by mechanical means, forming the basis for the new paradigm “valleytronics” applications. - Highlights: • We explore the mechanical strain effects on the valley magnetotransport in graphene. • We analytically derive the dc collisional and Hall conductivities under strain. • The strain removes the valley degeneracy in Landau levels. • The strain causes a significant valley polarization with inversion symmetry broken. • The strain leads to the well separated valley Hall and Shubnikov–de Haas effects.

  10. Energy efficient processing of natural resources; Energieeffiziente Verarbeitung natuerlicher Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Pehlken, Alexandra [Univ. Bremen (Germany). Projekt FU2; Hans, Carl [Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Abt. Intelligente Informations- und Kommunikationsumgebungen fuer die kooperative Produktion im Forschungsbereich Informations- und Kommunikationstechnische Anwendungen; Thoben, Klaus-Dieter [Univ. Bremen (Germany). Inst. fuer integrierte Produktentwicklung; Bremer Institut fuer Produktion und Logistik GmbH BIBA, Bremen (Germany). Forschungsbereich Informations- und kommunikationstechnische Anwendungen; Austing, Bernhard [Fa. Austing, Damme (Germany)

    2012-10-15

    Energy efficiency is gaining high importance in production processes. High energy consumption is directly related to high costs. The processing of natural resources is resulting in additional energy input because of defined output quality demands. This paper discussed approaches and IT-solutions for the automatically adjustment of production processes to cope with varying input qualities. The intention is to achieve the lowest energy input into the process without quality restraints.

  11. The role of BNDES' Energy Department (DEENE) on natural gas area

    International Nuclear Information System (INIS)

    Drummond, P.H.; Abreu Filho, J. de

    1988-01-01

    This work describes the activities of BNDES' Energy Department (DEENE) as the main financing agent of the brazilian energy sector, with particular emphasis on natural gas - which has not played an important role yet, despite DEENE's disposition and expectancy in participating of projects in this area. The work also outlines the department's plan at short and medium term concerning natural gas, and presents the Bank's financing conditions to this sector. (author)

  12. Canada's conventional natural gas resources : a status report : an energy market assessment

    International Nuclear Information System (INIS)

    2004-04-01

    The National Energy Board monitors the supply of all energy commodities in Canada as well as the demand for Canadian energy commodities in domestic and export markets. Energy market assessment reports examine different facets of the Canadian energy market and include long term-assessments of Canada's supply and demand as well as near-term energy market issues. This report examines the geological potential for conventional natural gas resources. An estimate of those resources for Canada was also presented. The main objective of the report is to set the groundwork for future partnerships between provincial, territorial and federal agencies. The size of Alberta's conventional natural gas resources is being examined in partnership with the Alberta Energy and Utilities Board (EUB). The ultimate potential for conventional natural gas in British Columbia is being assessed by the British Columbia Ministry of Energy and Mines. The Board's internal assessment for 2004 has revealed an estimate of 207 trillion cubic feet for the ultimate of conventional natural gas in Alberta. This estimate is higher than the estimate provided by the Canadian Gas Potential Committee in 2001 and higher than the 1992 assessment of the EUB. It was noted that most undiscovered resources in Alberta will be found in the shallow Cretaceous zones, not in deep Devonian zones. The Board also revised its estimate for the Mackenzie Delta-Beaufort Sea region and the East Newfoundland Basin. The current estimate for ultimate potential of conventional natural gas in Canada is 501 trillion cubic feet, with the following distribution of the resources by basin: Western Canada Sedimentary Basin (54.5 per cent), Northern Canada (23.1 per cent), East Coast (18.3 per cent), West Coast (3.4 per cent), Ontario (0.5 per cent), and Gulf of St. Lawrence (0.3 per cent). 39 refs., 7 tabs., 13 figs

  13. Feasibilty study of renewable energy powered seawater desalination technology using natural vacuum technique

    Energy Technology Data Exchange (ETDEWEB)

    Ayhan, Teoman; Al Madani, Hussain [Mechanical Engineering Department, College of Engineering, University of Bahrain, P.O. box 32038, Isatown 32036 (Bahrain)

    2010-02-15

    With an ever-increasing population and rapid growth of industrialization, there is great demand for fresh water. Desalination has been a key proponent to meet the future challenges due to decreasing availability of fresh water. However, desalination uses significant amount of energy, today mostly from fossil fuels. It is, therefore, reasonable to rely on renewable energy sources such as solar energy, wind energy, ocean thermal energy, waste heat from the industry and other renewable sources. The present study deals with the energy-efficient seawater desalination system utilizing renewable energy sources and natural vacuum technique. A new desalination technology named Natural Vacuum Desalination is proposed. The novel desalination technique achieve remarkable energy efficiency through the evaporation of seawater under vacuum and will be described in sufficient detail to demonstrate that it requires much less electric energy compared to any conventional desalination plant of fresh water production of similar capacity. The discussion will highlight the main operative and maintenance features of the proposed natural vacuum seawater desalination technology which seems to have promising techno-economic potential providing also advantageous coupling with renewable energy sources. (author)

  14. Cowichan Valley energy mapping and modelling. Report 4 - Analysis of opportunity costs and issues related to regional energy resilience. Final report. [Vancouver Island, Canada

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-06-15

    The driving force behind the Integrated Energy Mapping and Analysis project was the identification and analysis of a suite of pathways that the Cowichan Valley Regional District (CVRD) can utilise to increase its energy resilience, as well as reduce energy consumption and GHG emissions, with a primary focus on the residential sector. Mapping and analysis undertaken will support provincial energy and GHG reduction targets, and the suite of pathways outlined will address a CVRD internal target that calls for 75% of the region's energy within the residential sector to come from locally sourced renewables by 2050. The target has been developed as a mechanism to meet resilience and climate action target. The maps and findings produced are to be integrated as part of a regional policy framework currently under development. Based on the outputs from the first three tasks, a suite of coherent pathways towards the overall target of 75% residential local energy consumption was created, and the costs and benefits for the region were calculated. This was undertaken via a scenario analysis which also highlighted the risks and robustness of the different options within the pathways. In addition to a direct economic comparison between the different pathways, more qualitative issues were described, including potential local employment, environmental benefits and disadvantages, etc. The main tool utilised in this analysis was a tailor made Excel energy model that includes mechanisms for analysing improvements in the CVRD energy system down to an area level, for example renewable energy in residential buildings, renewable energy generation, and the effects of energy efficiency improvements. For the industrial, commercial, and transport sectors, simple and generic forecasts and input possibilities were included in the model. The Excel 'technology cost' and 'energy' models are accompanied with a user manual so that planners within the CVRD can become well

  15. 77 FR 71189 - AES Beaver Valley, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Science.gov (United States)

    2012-11-29

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-442-000] AES Beaver Valley, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of AES Beaver...

  16. Nuclear energy and natural environment. Information seminar

    International Nuclear Information System (INIS)

    1994-01-01

    The material of the Jadwisin 93' seminar is the collection 20 of 19 articles discussing aspects of the subject of nuclear energy and natural environment. The lectures were presented at six sessions: 1) Nuclear energy applications in medicine, agriculture, industry, food preservation and protection of the environment; 2) Nuclear power in the world; 3) Public attitudes towards different energy options, the example of Sweden; 4) Nuclear power in neighbouring countries; 5) Radiation and human health; 6) Radioactive waste management and potential serious radiological hazards. The general conclusion of the seminar can be as follows. In some cases the nuclear power is a source of environment pollution but very often nuclear techniques are now used and certainly more often in the future will be used for environment and human health protection

  17. Wind-energy harnessing - global, national and local considerations

    International Nuclear Information System (INIS)

    Price, T.; Bunn, J.

    1996-01-01

    A review of the global issues of wind-energy capture and use is given, along with a case for developing the wind-energy potential of part of the Rhymney Valley, South Wales. Such an energy-supply project should be incorporated into an integrated energy and environmental strategy for the region. This would not only yield benefits with respect to the local, national and global environments, but also aid in enhancing the quality of life for the Rhymney Valley region and its inhabitants. (UK)

  18. Hoopa Valley Small Scale Hydroelectric Feasibility Project

    Energy Technology Data Exchange (ETDEWEB)

    Curtis Miller

    2009-03-22

    This study considered assessing the feasibility of developing small scale hydro-electric power from seven major tributaries within the Hoopa Valley Indian Reservation of Northern California (http://www.hoopa-nsn.gov/). This study pursued the assessment of seven major tributaries of the Reservation that flow into the Trinity River. The feasibility of hydropower on the Hoopa Valley Indian Reservation has real potential for development and many alternative options for project locations, designs, operations and financing. In order to realize this opportunity further will require at least 2-3 years of intense data collection focusing on stream flow measurements at multiple locations in order to quantify real power potential. This also includes on the ground stream gradient surveys, road access planning and grid connectivity to PG&E for sale of electricity. Imperative to this effort is the need for negotiations between the Hoopa Tribal Council and PG&E to take place in order to finalize the power rate the Tribe will receive through any wholesale agreement that utilizes the alternative energy generated on the Reservation.

  19. Integrated hydrologic model of Pajaro Valley, Santa Cruz and Monterey Counties, California

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang; Faunt, Claudia C.; Lear, Jonathan; Lockwood, Brian

    2014-01-01

    Increasing population, agricultural development (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available groundwater resources in the Pajaro Valley, one of the most productive agricultural regions in the world. This study provided a refined conceptual model, geohydrologic framework, and integrated hydrologic model of the Pajaro Valley. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that are being considered in the revision and updates to the Basin Management Plan (BMP). The Pajaro Valley Hydrologic Model (PVHM) was designed to reproduce the most important natural and human components of the hydrologic system and related climatic factors, permitting an accurate assessment of groundwater conditions and processes that can inform the new BMP and help to improve planning for long-term sustainability of water resources. Model development included a revision of the conceptual model of the flow system, reevaluation of the previous model transformed into MODFLOW, implementation of the new geohydrologic model and conceptual model, and calibration of the transient hydrologic model.

  20. Phase III Drilling Operations at the Long Valley Exploratory Well (LVF 51-20)

    Energy Technology Data Exchange (ETDEWEB)

    Finger, J.T.; Jacobson, R.D.

    1999-06-01

    During July-September, 1998, a jointly funded drilling operation deepened the Long Valley Exploratory Well from 7178 feet to 9832 feet. This was the third major drilling phase of a project that began in 1989, but had sporadic progress because of discontinuities in tiding. Support for Phase III came from the California Energy Commission (CEC), the International Continental Drilling Program (ICDP), the US Geological Survey (USGS), and DOE. Each of these agencies had a somewhat different agenda: the CEC wants to evaluate the energy potential (specifically energy extraction from magma) of Long Valley Caldera; the ICDP is studying the evolution and other characteristics of young, silicic calderas; the USGS will use this hole as an observatory in their Volcano Hazards program; and the DOE, through Sandia, has an opportunity to test new geothermal tools and techniques in a realistic field environment. This report gives a description of the equipment used in drilling and testing; a narrative of the drilling operations; compiled daily drilling reports; cost information on the project; and a brief summary of engineering results related to equipment performance and energy potential. Detailed description of the scientific results will appear in publications by the USGS and other researchers.

  1. Evaluating small mammal response to natural disturbance and restoration in oak ecosystems in the Mississippi alluvial valley

    International Nuclear Information System (INIS)

    Smith Carl G; Hamel Paul B; Fuzaro Gullo, Manoelle

    2010-01-01

    Oak species form a conspicuous and often dominant component of bottom land forests of the Mississippi Alluvial Valley. The extent of these forests has been drastically reduced as a result of clearing for agriculture in the past two centuries. Patterns of clearing have reduced the distribution of remaining forest patches to a much more flood-prone subset of the landscape than was historically the case, reducing the diversity of oak species currently present on the landscape. Intensive harvesting has further changed the composition of the remaining stands. Small remnant patches of primary forest continue to exist as Research Natural Areas on the Delta National Forest in Sharkey County, Mississippi. In particular, the Over cup Oak (Quercus lyrata) and Redgum (Liquidambar styraciflua) Research Natural Areas pres ent substantial components of the trees for which the areas were named, as well as Quercus nuttallii and smaller components of other species. Recent interest in afforestation has produced a resurgence of interest in restoration of oak forest to abandoned farmland in the region. We have studied small mammal response to restoration on an extensive experiment near the Delta National Forest since 1995. We have also examined small mammal response to a tornado that disturbed approximately half of the Over cup Oak Research Natural Area in 2008. We use these studies to demonstrate how population estimates of small mammals can be obtained from capture-recapture studies, employing different designs, and utilizing Program Capture for population estimation. Small mammal communities in these stands are more species-rich in early succession than in primary forest. The study of response to tornado damage to the Over cup Oak Research Natural Area is complicated by the fact that this particular forest type is very flood-prone, creating obstacles to colonization by small mammals. Analysis of capture-recapture data with robust methods illustrated in this study permits extraction

  2. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    Science.gov (United States)

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  3. Systematic Mapping and Statistical Analyses of Valley Landform and Vegetation Asymmetries Across Hydroclimatic Gradients

    Science.gov (United States)

    Poulos, M. J.; Pierce, J. L.; McNamara, J. P.; Flores, A. N.; Benner, S. G.

    2015-12-01

    Terrain aspect alters the spatial distribution of insolation across topography, driving eco-pedo-hydro-geomorphic feedbacks that can alter landform evolution and result in valley asymmetries for a suite of land surface characteristics (e.g. slope length and steepness, vegetation, soil properties, and drainage development). Asymmetric valleys serve as natural laboratories for studying how landscapes respond to climate perturbation. In the semi-arid montane granodioritic terrain of the Idaho batholith, Northern Rocky Mountains, USA, prior works indicate that reduced insolation on northern (pole-facing) aspects prolongs snow pack persistence, and is associated with thicker, finer-grained soils, that retain more water, prolong the growing season, support coniferous forest rather than sagebrush steppe ecosystems, stabilize slopes at steeper angles, and produce sparser drainage networks. We hypothesize that the primary drivers of valley asymmetry development are changes in the pedon-scale water-balance that coalesce to alter catchment-scale runoff and drainage development, and ultimately cause the divide between north and south-facing land surfaces to migrate northward. We explore this conceptual framework by coupling land surface analyses with statistical modeling to assess relationships and the relative importance of land surface characteristics. Throughout the Idaho batholith, we systematically mapped and tabulated various statistical measures of landforms, land cover, and hydroclimate within discrete valley segments (n=~10,000). We developed a random forest based statistical model to predict valley slope asymmetry based upon numerous measures (n>300) of landscape asymmetries. Preliminary results suggest that drainages are tightly coupled with hillslopes throughout the region, with drainage-network slope being one of the strongest predictors of land-surface-averaged slope asymmetry. When slope-related statistics are excluded, due to possible autocorrelation, valley

  4. Natural gas position in the energy sector of the 21. century

    International Nuclear Information System (INIS)

    Peltier, Th.

    2000-01-01

    Natural gas with its abundant reserves, largely distributed all around the world, and with its low environmental impacts, should assert its position since the beginning of the 21. century. However, the fundamentals of our world are changing more and more rapidly and some short term events can modify this long term optimistic vision of natural gas development. This was the topic debated during a round table of the WOC 9 working committee of the CMG 2000 worldwide gas congress: the long term future of natural gas industry, the population need for a sustainable development, the potentialities of gas resources, the need for large scale interconnected energy networks, the new technologies favourable to the development of natural gas uses, the progressive 'decarbonization' of energy sources, the global warming and the role of R and D, the risks that could threat natural gas development. (J.S.)

  5. Data Validation Package, December 2015, Groundwater and Surface Water Sampling at the Monument Valley, Arizona, Processing Site March 2016

    Energy Technology Data Exchange (ETDEWEB)

    Tyrrell, Evan [Navarro Research and Engineering, Inc., Oak Ridge, NV (United States); Denny, Angelita [USDOE Office of Legacy Management, Washington, DC (United States)

    2016-03-23

    Fifty-two groundwater samples and one surface water sample were collected at the Monument Valley, Arizona, Processing Site to monitor groundwater contaminants for evaluating the effectiveness of the proposed compliance strategy as specified in the 1999 Final Site Observational Work Plan for the UMTRA Project Site at Monument Valley, Arizona. Sampling and analyses were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and-analysis-plan-us-department- energy-office-legacy-management-sites). Samples were collected for metals, anions, nitrate + nitrite as N, and ammonia as N analyses at all locations.

  6. Energy and environment: an intergovernmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Keenan, B.R. (ed.)

    1978-01-01

    The Ohio River Valley Assembly was convened for round table discussions of the development of the energy resources of the valley and the environmental impacts. The participation was limited to government officials and participants included representatives from local, state, and federal governments and from several regional organizations with particular responsibilities in the Ohio River Valley. The background papers, comments by legislators, speeches, and the final report of the Assembly are compiled. (JSR)

  7. Can deployment of renewable energy put downward pressure on natural gas prices?

    International Nuclear Information System (INIS)

    Wiser, Ryan; Bolinger, Mark

    2007-01-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent US-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in US natural gas demand could lead to long-term average wellhead price reductions of 0.8-2%, and that each megawatt-hour of renewable energy may benefit natural gas consumers to the tune of at least $7.5-20

  8. Can deployment of renewable energy put downward pressure on natural gas prices?

    International Nuclear Information System (INIS)

    Wiser, R.; Bolinger, M.

    2007-01-01

    High and volatile natural gas prices have increasingly led to calls for investments in renewable energy. One line of argument is that deployment of these resources may lead to reductions in the demand for and price of natural gas. Many recent US-based modeling studies have demonstrated that this effect could provide significant consumer savings. In this article we evaluate these studies, and benchmark their findings against economic theory, other modeling results, and a limited empirical literature. We find that many uncertainties remain regarding the absolute magnitude of this effect, and that the reduction in natural gas prices may not represent an increase in aggregate economic wealth. Nonetheless, we conclude that many of the studies of the impact of renewable energy on natural gas prices appear to have represented this effect within reason, given current knowledge. These studies specifically suggest that a 1% reduction in US natural gas demand could lead to long-term average wellhead price reductions of 0.8-2%, and that each megawatt-hour of renewable energy may benefit natural gas consumers to the tune of at least $7.5-20. [Author

  9. Eradicating tsetse from the Southern Rift Valley of Ethiopia

    International Nuclear Information System (INIS)

    2003-01-01

    Farming activities in Ethiopia, as in much of sub-Saharan Africa, are restricted by the presence of tsetse flies (Glossina spp.). These carry the livestock and human disease, trypanosomosis, which severely affects agricultural production and human well-being. In collaboration with the Ethiopian authorities, the International Atomic Energy Agency is sponsoring a Sterile Insect Technique (SIT) programme to eradicate tsetse from the Southern Rift Valley of Ethiopia. (IAEA)

  10. Cold fusion valleys for the synthesis of Z=118 isotopes

    International Nuclear Information System (INIS)

    Gherghescu, R.

    2005-01-01

    Cold fusion reactions are investigated with the goal to synthesize Z=118 isotopes with neutron numbers N=162, 168, 172, 176. Potential energy surfaces are calculated as the result of dynamic minimization with independent deformations of the target and projectile, small semi-axis of the projectile and distance between centers as degrees of freedom. An advanced binary macroscopic-microscopic method is used to obtain the deformation energy and the Werner-Wheeler approximation yield the mass tensor. Charge asymmetry is varied for the same mass asymmetry channel which belongs to a given energy valley. The highest penetrability values are obtained for cold fusion channels with Sn, Te and Xe isotopes as projectiles

  11. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    Science.gov (United States)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  12. Natural gas transmission and distribution model of the National Energy Modeling System

    International Nuclear Information System (INIS)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA's modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes

  13. Natural gas transmission and distribution model of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  14. 27 CFR 9.27 - Lime Kiln Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  15. Water resources of Parowan Valley, Iron County, Utah

    Science.gov (United States)

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  16. North American natural gas liquids pricing and convergence : an energy market assessment

    International Nuclear Information System (INIS)

    2001-05-01

    A background on natural gas liquids (NGL) pricing was presented along with a discussion regarding the impact of energy price convergence. The high energy prices in the fall of 2000 were a result of many factors, including the high price of NGLs. All NGL components such as ethane, propane and butane can be used as petrochemical feedstock. In the winter of 2000/2001 the relationship between liquids and crude oil prices collapsed when high energy prices led to a situation where, for a short while, extraction of liquids from natural gas became uneconomic since producers got more value for NGLs left in the gas stream. As a result, when the supply and demand balances for NGL tightened in many regions of North America, NGL prices were reflecting the unprecedented high natural gas prices. This paper also explained how the four major North American NGL trading hubs in Alberta, Ontario, Kansas and Texas operate. The pricing events of 2000 have impacted on the NGL industry and energy prices remain an issue since both crude oil and natural gas price are forecasted to remain strong in the near future. 5 figs

  17. EPA Region 1 - Valley Depth in Meters

    Science.gov (United States)

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  18. Injection of radioactive waste by hydraulic fracturing at West Valley, New York. Volume 2. Text

    International Nuclear Information System (INIS)

    1978-05-01

    Results of a preliminary study are presented of the technical feasibility of radioactive waste disposal by hydraulic fracturing and injection into shale formations below the Nuclear Fuel Services Incorporated site at West Valley, New York. At this time there are approximately 600,000 gallons of high level neutralized Purex waste, including both the supernate (liquid) and sludge, and a further 12,000 gallons of acidic Thorex waste stored in tanks at the West Valley facilities. This study assesses the possibility of combining these wastes in a suitable grout mixture and then injecting them into deep shale formations beneath the West Valley site as a means of permanent disposal. The preliminary feasibility assessment results indicated that at the 850 to 1,250 feet horizons, horizontal fracturing and injection could be effectively achieved. However, a detailed safety analysis is required to establish the acceptability of the degree of isolation. The principal concerns regarding isolation are due to existing and possible future water supply developments within the area and the local effects of the buried valley. In addition, possible future natural gas developments are of concern. The definition of an exclusion zone may be appropriate to avoid problems with these developments. The buried valley may require the injections to be limited to the lower horizon depending on the results of further investigations

  19. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    Science.gov (United States)

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement

  20. Optically initialized robust valley-polarized holes in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2015-11-25

    A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (~10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.

  1. Bichromatic Scintillometer Measurements of Sensible and Latent Heat Fluxes over a Boreal Forested Valley

    Science.gov (United States)

    Isabelle, P. E.; Nadeau, D.; Parent, A. C.; Rousseau, A. N.; Jutras, S.; Anctil, F.

    2017-12-01

    Boreal forest covers roughly 10% of the earth emerged surface, making it one of the world most common type of landscape. There is a large number of studies on the land-atmosphere exchanges of water and energy for this type of forested surfaces. However, few were located in complex terrain, and, to the best of our knowledge, none have looked at continuous regional scale fluxes. Scintillometry is a powerful tool that allows such measurements, but is usually used over flat homogeneous terrain due to its dependency on Monin-Obukhov Similarity Theory. However, some recent studies have applied this method over slopes, measuring fluxes comparable to those using the eddy covariance method. Still, more experiments are needed using scintillometry over sloped surfaces. This study presents bichromatic scintillometer measurements of sensible and latent heat fluxes over a boreal-forested valley. The field site is located in the Montmorency Forest, Québec, Canada (47°17'N; 71°10'W). The instrumented valley is surrounded by ridges at 900 m elevation, with the bottom stream at 785 m, and follows a 300-120° azimuth coinciding with the two main wind direction (up and down-valley, respectively). Vegetation mostly includes balsam firs 6-10 m tall, creating a rough but homogeneous surface. Scintillometer transmitters and receivers are installed on top of the ridges enclosing the valley, making the path 1.35 km long and its effective height 70-m tall. The setup includes a large aperture and a micro-wave scintillometer with crossing paths allowing the use of the bichromatic method. Measurement are taken continuously from August to October 2017. Scintillometer fluxes are compared with those measured by a 15-m eddy covariance tower located 100 m west of the measurement path, on the southern slope of the valley. Net radiation is also measured to assess energy budget closure over the valley. The setup allows us to test the limits of applicability of scintillometer measurements, especially

  2. Valley-orbit hybrid states in Si quantum dots

    Science.gov (United States)

    Gamble, John; Friesen, Mark; Coppersmith, S. N.

    2013-03-01

    The conduction band for electrons in layered Si nanostructures oriented along (001) has two low-lying valleys. Most theoretical treatments assume that these valleys are decoupled from the long-wavelength physics of electron confinement. In this work, we show that even a minimal amount of disorder (a single atomic step at the quantum well interface) is sufficient to mix valley states and electron orbitals, causing a significant distortion of the long-wavelength electron envelope. For physically realistic electric fields and dot sizes, this valley-orbit coupling impacts all electronic states in Si quantum dots, implying that one must always consider valley-orbit hybrid states, rather than distinct valley and orbital degrees of freedom. We discuss the ramifications of our results on silicon quantum dot qubits. This work was supported in part by ARO (W911NF-08-1-0482) and NSF (DMR-0805045).

  3. 77 FR 12579 - Copper Valley Electric Association, Inc.; Notice of Extension of Time for Filing of Comments...

    Science.gov (United States)

    2012-03-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-003] Copper Valley Electric Association, Inc.; Notice of Extension of Time for Filing of Comments, Final Terms and Conditions, Recommendations, and Prescriptions As stated in a letter dated January 27, 2012, in this proceeding by the...

  4. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  5. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    Science.gov (United States)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year record, indicating a long-term non-stationarity in hydrologic system dynamics. The tight coupling between surface waters and the glacier surface energy balance bring forth remarkably consistent hydrologic patterns on the daily and annual timescales, providing a model system for understanding fundamental

  6. Natural factors and antropics and their relationship with the density of colonies of Melipona beecheii in five vegetable formations of the valley San Andres

    Directory of Open Access Journals (Sweden)

    Katiuska Ravelo Pimentel

    2014-12-01

    Full Text Available It is evaluated the influence of natural factors and antropics on the density of colonies of Melipona beecheii in forest five vegetable formations of the solid one of the valley San Andrés, through surveys to residents and workers of the area, as well as the observations and samplings carried out in the studied vegetable formations. The following factors were studied: rocosity, vegetable covering, flourished plants, height of the entrance hole and the man's activity; being determined that the density of beehives has been affected fundamentally by factors antropics, having this its biggest incidence in the gallery forests, being this the most affected one. The pruning of trees, the naturalness of the forests and their access affect the population's conservation considerably under natural conditions, what demonstrates that this it is the main factor that locates in extirpation danger to the species in the study area. In turn the density of colonies keeps direct relationship with the other analyzed factors, since the same ones depend on the trees for the location of its nests, of the time in that the plants flourish for its feeding and of the holes found in the rocks, so much for the making of its colonies like it stops its establishment and reproduction.

  7. Radiation energy devaluation in diffusion combusting flows of natural gas

    International Nuclear Information System (INIS)

    Makhanlall, Deodat; Munda, Josiah L.; Jiang, Peixue

    2013-01-01

    Abstract: CFD (Computational fluid dynamics) is used to evaluate the thermodynamic second-law effects of thermal radiation in turbulent diffusion natural gas flames. Radiative heat transfer processes in gas and at solid walls are identified as important causes of energy devaluation in the combusting flows. The thermodynamic role of thermal radiation cannot be neglected when compared to that of heat conduction and convection, mass diffusion, chemical reactions, and viscous dissipation. An energy devaluation number is also defined, with which the optimum fuel–air equivalence for combusting flows can be determined. The optimum fuel–air equivalence ratio for a natural gas flame is determined to be 0.7. The CFD model is validated against experimental measurements. - Highlights: • Thermodynamic effects of thermal radiation in combusting flows analyzed. • General equation for second-law analyses of combusting flows extended. • Optimum fuel–air equivalence ratio determined for natural gas flame

  8. The hydrogeology of the Tully Valley, Onondaga County, New York: an overview of research, 1992-2012

    Science.gov (United States)

    Kappel, William M.

    2014-01-01

    Onondaga Creek begins approximately 15 miles south of Syracuse, New York, and flows north through the Onondaga Indian Nation, then through Syracuse, and finally into Onondaga Lake in central New York. Tully Valley is in the upper part of the Onondaga Creek watershed between U.S. Route 20 and the Valley Heads end moraine near Tully, N.Y. Tully Valley has a history of several unusual hydrogeologic phenomena that affected past land use and the water quality of Onondaga Creek; the phenomena are still present and continue to affect the area today (2014). These phenomena include mud volcanoes or mudboils, landslides, and land-surface subsidence; all are considered to be naturally occurring but may also have been influenced by human activity. The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency and the Onondaga Lake Partnership, began a study of the Tully Valley mudboils beginning in October 1991 in hopes of understanding (1) what drives mudboil activity in order to remediate mudboil influence on the water quality of Onondaga Creek, and (2) land-surface subsidence issues that have caused a road bridge to collapse, a major pipeline to be rerouted, and threatened nearby homes. Two years into this study, the 1993 Tully Valley landslide occurred just over 1 mile northwest of the mudboils. This earth slump-mud flow was the largest landslide in New York in more than 70 years (Fickies, 1993); this event provided additional insight into the geology and hydrology of the valley. As the study of the Tully Valley mudboils progressed, other unusual hydrogeologic phenomena were found within the Tully Valley and provided the opportunity to perform short-term, small-scale studies, some of which became graduate student theses—Burgmeier (1998), Curran (1999), Morales-Muniz (2000), Baldauf (2003), Epp (2005), Hackett, (2007), Tamulonis (2010), and Sinclair (2013). The unusual geology and hydrology of the Tully Valley, having been investigated for

  9. Toward the renewables - A natural gas/solar energy transition strategy

    Science.gov (United States)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  10. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi

    2017-12-19

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  11. Epitaxial Single-Layer MoS2 on GaN with Enhanced Valley Helicity

    KAUST Repository

    Wan, Yi; Xiao, Jun; Li, Jingzhen; Fang, Xin; Zhang, Kun; Fu, Lei; Li, Pan; Song, Zhigang; Zhang, Hui; Wang, Yilun; Zhao, Mervin; Lu, Jing; Tang, Ning; Ran, Guangzhao; Zhang, Xiang; Ye, Yu; Dai, Lun

    2017-01-01

    Engineering the substrate of 2D transition metal dichalcogenides can couple the quasiparticle interaction between the 2D material and substrate, providing an additional route to realize conceptual quantum phenomena and novel device functionalities, such as realization of a 12-time increased valley spitting in single-layer WSe2 through the interfacial magnetic exchange field from a ferromagnetic EuS substrate, and band-to-band tunnel field-effect transistors with a subthreshold swing below 60 mV dec−1 at room temperature based on bilayer n-MoS2 and heavily doped p-germanium, etc. Here, it is demonstrated that epitaxially grown single-layer MoS2 on a lattice-matched GaN substrate, possessing a type-I band alignment, exhibits strong substrate-induced interactions. The phonons in GaN quickly dissipate the energy of photogenerated carriers through electron–phonon interaction, resulting in a short exciton lifetime in the MoS2/GaN heterostructure. This interaction enables an enhanced valley helicity at room temperature (0.33 ± 0.05) observed in both steady-state and time-resolved circularly polarized photoluminescence measurements. The findings highlight the importance of substrate engineering for modulating the intrinsic valley carriers in ultrathin 2D materials and potentially open new paths for valleytronics and valley-optoelectronic device applications.

  12. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  13. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  14. 1982 environmental-monitoring program report for the West Valley Demonstration Project site

    International Nuclear Information System (INIS)

    1983-05-01

    This report is prepared and submitted in accordance with the requirements of DOE Order 5484.1 and presents environmental monitoring program data collected at the West Valley Demonstration Project (WVDP) site from February 26, 1982, through December 31, 1982. The WVDP objective is to solidify approximately 600,000 gallons of high-level liquid radioactive waste stored at the former Nuclear Fuel Services reprocessing facility at West Valley, New York. Nuclear Fuel Services conducted an environmental monitoring program in accordance with Nuclear Regulatory Commission requirements which were appropriate for shutdown maintenance operations conducted at the site. That program was embraced by West Valley Nuclear Services Company (WVNS) at the time of transition (February 26, 1982) and will be modified to provide a comprehensive monitoring program in preparation for waste solidification operations scheduled for startup in June 1988. As such, the data presented in this report is considered preoperational in nature in accordance with DOE Order 5484.1, Chapter III, Paragraph 1. The environmental monitoring program planned for the operating phase of the project will be fully implemented by fiscal year 1985 and will provide at least two years of preoperational data prior to startup

  15. Device-Level Models Using Multi-Valley Effective Mass

    Science.gov (United States)

    Baczewski, Andrew D.; Frees, Adam; Gamble, John King; Gao, Xujiao; Jacobson, N. Tobias; Mitchell, John A.; Montaño, Inès; Muller, Richard P.; Nielsen, Erik

    2015-03-01

    Continued progress in quantum electronics depends critically on the availability of robust device-level modeling tools that capture a wide range of physics and effective mass theory (EMT) is one means of building such models. Recent developments in multi-valley EMT show quantitative agreement with more detailed atomistic tight-binding calculations of phosphorus donors in silicon (Gamble, et. al., arXiv:1408.3159). Leveraging existing PDE solvers, we are developing a framework in which this multi-valley EMT is coupled to an integrated device-level description of several experimentally active qubit technologies. Device-level simulations of quantum operations will be discussed, as well as the extraction of process matrices at this level of theory. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  16. Valley and spin thermoelectric transport in ferromagnetic silicene junctions

    International Nuclear Information System (INIS)

    Ping Niu, Zhi; Dong, Shihao

    2014-01-01

    We have investigated the valley and spin resolved thermoelectric transport in a normal/ferromagnetic/normal silicene junction. Due to the coupling between the valley and spin degrees of freedom, thermally induced pure valley and spin currents can be demonstrated. The magnitude and sign of these currents can be manipulated by adjusting the ferromagnetic exchange field and local external electric field, thus the currents are controllable. We also find fully valley and/or spin polarized currents. Similar to the currents, owing to the band structure symmetry, tunable pure spin and/or valley thermopowers with zero charge counterpart are generated. The results obtained here suggest a feasible way of generating a pure valley (spin) current and thermopower in silicene

  17. Iceland's Central Highlands: Nature conservation, ecotourism, and energy resource utilization

    Science.gov (United States)

    Bjorn Gunnarsson; Maria-Victoria Gunnarsson

    2002-01-01

    Iceland’s natural resources include an abundance of geothermal energy and hydropower, of which only 10 to 15 percent is currently being utilized. These are clean, renewable sources of energy. The cost to convert these resources to electricity is relatively low, making them attractive and highly marketable for industrial development, particularly for heavy industry....

  18. Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars

    Science.gov (United States)

    Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; hide

    2011-01-01

    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.

  19. Influence of the orographic roughness of glacier valleys across the Transantarctic Mountains in an atmospheric regional model

    Energy Technology Data Exchange (ETDEWEB)

    Jourdain, Nicolas C.; Gallee, Hubert [Laboratoire de Glaciologie et Geophysique de l' Environnement, Saint Martin d' Heres (France)

    2011-03-15

    Glacier valleys across the Transantarctic Mountains are not properly taken into account in climate models, because of their coarse resolution. Nonetheless, glacier valleys control katabatic winds in this region, and the latter are thought to affect the climate of the Ross Sea sector, frsater formation to snow mass balance. The purpose of this paper is to investigate the role of the production of turbulent kinetic energy by the subgrid-scale orography in the Transantarctic Mountains using a 20-km atmospheric regional model. A classical orographic roughness length parametrization is modified to produce either smooth or rough valleys. A one-year simulation shows that katabatic winds in the Transantarctic Mountains are strongly improved using smooth valleys rather than rough valleys. Pressure and temperature fields are affected by the representation of the orographic roughness, specifically in the Transantarctic Mountains and over the Ross Ice Shelf. A smooth representation of escarpment regions shows better agreement with automatic weather station observations than a rough representation. This work stresses the need to improve the representation of subgrid-scale orography to simulate realistic katabatic flows. This paper also provides a way of improving surface winds in an atmospheric model without increasing its resolution. (orig.)

  20. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive.

  1. Engineering assessment of inactive uranium mill tailings: Monument Valley Site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevalated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposure of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching; Treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovery is economically unattractive

  2. New energy efficiency technologies associated with increased natural gas demand in delivery and consumption sectors of Iran

    Energy Technology Data Exchange (ETDEWEB)

    Alghalandis, Saeid Mansouri

    2010-09-15

    Increasing population and economic growth in developing countries has changed their energy consumption patterns. So, the conventional systems of energy supply have become inadequate to deal with rising energy demand. Iran has great reservoirs of natural gas and its natural gas usage is far more than average international standard. Dominance of natural gas share in energy basket in Iran, make it necessary to consider energy efficient technologies and solutions for this domain. In this study new technologies for increasing energy efficiency (EE) in natural gas delivery and consumption sub sectors are discussed and evaluated according to available infrastructures in Iran.

  3. Sustainable agricultural development in inland valleys

    NARCIS (Netherlands)

    Zwart, S.J.

    2018-01-01

    The inland valley in Africa are common landscapes that have favorable conditions for agricultural production. Compared to the surrounding uplands they are characterized by a relatively high and secure water availability and high soil fertility levels. Inland valleys thus have a high agricultural

  4. The valley method and its application to the instanton-induced phenomena in non-abelian gauge theories

    International Nuclear Information System (INIS)

    Khoze, V.V.

    1991-06-01

    The semiclassical evaluation of the functional integral on non-Abelian gauge theories is generalized by means of the so-called valley method. The physically very important example of the valley, the instanton-anti-instanton field configuration, is discussed in details and its contributions to the physical quantities for zero-temperature and for thermal field theories are investigated. The high-energy behaviour of the total cross-section σ Δ F for electroweak fermion number violating two particles collisions is studied using the optical theorem approach. The calculation is done at energies below the sphaleron mass (E<10TeV) where it leads to the most complete result for σ Δ F known to date. Some estimations and a qualitative physical picture are discussed for energies above the sphaleron mass for the confinement and Higgs phases of the gauge theory. The effects of instanton-anti-instanton interactions are also studied in thermal QCD. (au)

  5. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    Energy Technology Data Exchange (ETDEWEB)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  6. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    International Nuclear Information System (INIS)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm

  7. Study on the detached house plan using of a maximum natural energy. Part 1; Shizen energy fukugo riyo no keikaku ni kansuru kenkyu. 1

    Energy Technology Data Exchange (ETDEWEB)

    Wada, I; Mino, M; Miyata, T; Okawa, M [Nihon University, Tokyo (Japan)

    1996-10-27

    The geographical position or environment is set on the assumption that the natural energy of a detached house is used in a hybrid state. Moreover, the energy consumption of the house and the natural energy supply obtained from the geographical position were compared and investigated. As a result, the energy consumption is 10,617 kWh, and the energy supply is 8,236 kWh. About 78% of the whole consumption can be theoretically made from natural energy. The energy supply is calculated on the low side during prediction. Therefore, an increase in the energy supply is expected by installing a solar collector based on solar energy, expanding the solar panel area, and increasing the number of wind mills. However, this energy is partially lost via an inverter while it is supplied to the general domestic equipment. At the six main points in Tokyo and its districts, the adaptability of natural energy used based on the regional characteristics is investigated presently and the installation of a system is examined. 13 refs., 2 figs., 6 tabs.

  8. Valley-polarized quantum transport generated by gauge fields in graphene

    Science.gov (United States)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  9. Groundwater availability of the Central Valley Aquifer, California

    Science.gov (United States)

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  10. Energy and exergy analysis of electricity generation from natural gas pressure reducing stations

    International Nuclear Information System (INIS)

    Neseli, Mehmet Alparslan; Ozgener, Onder; Ozgener, Leyla

    2015-01-01

    Highlights: • Forecasting the recoverable energy from natural gas pressure reduction stations. • Electricity generation through pressure reduction stations via turboexpanders. • A thermodynamics analysis of PRS. - Abstract: Electricity generation or power recovery through pressure reduction stations (PRS) for general use has not been realized in Izmir. The main objective of the present study was to do a case study for calculating electricity to be recovered in one natural gas pressure reduction stations in Izmir. It is the first forecasting study to obtain energy from natural gas pressure-reducing stations in Izmir. Energy can be obtained from natural gas PRS with turbo-expanders instead of using throttle valves or regulators from the PRS. The exergy performance of PRS with TE is evaluated in this study. Exergetic efficiencies of the system and components are determined to assess their individual performances. Based upon pressure change and volumetric flow rate, it can be obtained by recovering average estimated installed capacity and annual energy 494.24 kW, 4113.03 MW h, respectively. In terms of estimated installed capacity power and annual energy, the highest level is 764.88 kW, approximately 6365.34 MW h, in Aliaga PRS. Also it can be seen that CO 2 emission factor average value is 295.45 kg/MW h

  11. Seismic performance evaluation of high natural frequency mechanical structure from the viewpoint of energy balance

    International Nuclear Information System (INIS)

    Minagawa, Keisuke; Fujita, Satoshi; Endo, Rokuro; Amemiya, Mitsuhiko

    2009-01-01

    In this study, vibration characteristics of mechanical structure having high natural frequency are investigated from the viewpoint of energy balance. Mechanical structures having high natural frequency in a nuclear power plant are generally designed statically and elastically. However it has been reported that fracture of ordinary piping is produced not by momentary large load but by cumulative fatigue damage. Therefore it is very important to grasp seismic performance dynamically by considering cyclic load. This paper deals with an investigation regarding seismic performance evaluation of high natural frequency mechanical structure. The energy balance equation that is one of valid methods for structural calculation is applied through the investigation. The main feature of the energy balance equation is that it explains accumulated information of motion. Therefore the energy balance equation is adequate for the investigation of the influence of cumulative load such as seismic response. In this paper, vibration experiment and simulation using sinusoidal waves and artificial seismic waves were examined in order to investigate relationship between natural frequency of structure and energy. As a result, we found that input energy decreases with an increase in the natural frequency. (author)

  12. Analyzing the role of Bavan Valley in Mamasani as tourists attraction

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Firoozi

    2012-10-01

    Full Text Available Tourism industry plays an important role on developing economy especially in regions where there are different historical, landscape and other natural attractions. Bavan Valley located in Nur Abad Mamasani city in Iran is one of the well-known places among tourists. The region has outstanding natural landscapes, moderate weather especially in spring and summer, low distance from the major road locating between different local regions such as Fars, Bushehr, Khuzestan, and Kohkiluye Boyer Ahmad Province. These regions provide appropriate accessibility for the citizens of highly populated cities of this province and it plays essential role of a major attractive pole in southern part of the country. The primary objective of this research is to recognize the present barriers for attracting tourists and to analyze the tourists’ satisfactions associated with the facilities and tourist services. The statistical population of this research includes all the tourists of Bavan Valley in which 381 individuals were chosen as the sample of this research, using Cochran's formula. The results indicate that there is a significant relationship between the absence of advertisement about Bavan Valley and the number of tourists in this zone (P<0.05. The findings also show that there is a significant relationship between lack of infrastructural equipments and un-development in tourism industry (P<0.05. Moreover, the findings of SWOT analysis indicates that 9 internal strength versus 10 internal weaknesses and 7 external chance versus 8 external threat were recognized and analyzed with regard to ecotourism in this zone. Thus, generally 16 strength and chances as the advantages and 18 weaknesses and threats as the obstacles about the Bavan Valley’s tourism were recognized in order to develop tourism.

  13. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  14. An example of Alaknanda valley, Garhwal Himalaya, India

    Indian Academy of Sciences (India)

    2014) have been best explained by the geometry .... flows through narrow valley confined by the steep valley slopes. ... valley (figure 3b) which opens up around Srina- ... Method. 4.1 Drainage basin and stream network. Digital Elevation Model (DEM) helps in extracting ... was processed to fill the pits or sinks, and to obtain.

  15. Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

    Science.gov (United States)

    Senior, Lisa A.; Sloto, Ronald A.; Reif, Andrew G.

    1997-01-01

    .5 inches in 1990 and 13.7 inches in 1991. Ground-water quality in the basin reflects differences in lithology and has been affected by human activities. Ground water in the carbonate rocks is naturally hard, has a near neutral pH, and contains more dissolved solids and less dissolved iron, manganese, and radon-222 than ground water in the noncarbonate rocks, which is soft, with moderately acidic to acidic pH. Regional contamination by chloride and nitrate and local contamination by organic compounds and metals was detected. Natural background concentrations are estimated to be about 1 milligram per liter for nitrate as nitrogen and less than 3 milligrams per liter for chloride. Ground water in unsewered areas and agricultural areas of the basin has median concentrations of nitrate that are greater than those in ground water from other areas; septic system effluent and fertilizer are probable sources of elevated nitrate. Water samples from wells in urbanized areas contain greater concentrations of chloride than samples from wells in residential areas; road salt is the probable source of elevated chloride. Organic solvents, especially trichloroethylene, were detected in 30 percent of the wells sampled in the urbanized carbonate valley. Most of the organic solvents and some of the metals in ground water were detected near old industrial sites.Base-flow stream quality of West Valley Creek was determined at 15 sites from monthly sampling for 1 year. Differences in stream quality reflect differences in lithology, land use, and point sources in tributary subbasins and mainstem reaches. The chemical composition of base flow in the mainstem is dominated by ground-water discharge from carbonate rocks. Elevated concentrations of nitrate (greater than 3 milligrams per liter as nitrogen) in base flow were measured in a tributary draining agricultural land and in a tributary draining an unsewered residential area. Elevated concentrations of phosphate (greater than 0.5 milligrams per

  16. Results of environmental monitoring in the Kinta Valley and Cameron Highland areas

    International Nuclear Information System (INIS)

    Thoste, V.

    1994-01-01

    The environmental radioactivity of the Kinta Valley and the Cameron Highlands show relative high values of gamma and alpha radiation. Both types of radiation are strongly related to meteorological conditions. In the Kinta Valley the average environmental values for Ra-222 are I 00 Bq/m sup 3 air. The monitoring chart shows a sinus shaped curve of the Radon 222 daughter concentration (EER = energy equivalent radon concentration). The concentration levels differ by I 0 times from a low in the late afternoon (around 18:00) and a high with the sunrise in the early morning (around 7:00). In the Kinta Valley and at the Pangkor island the observed interval is 24-hours. In the Kinta Valley three different surveys each of one week length showed, that the daily fluctuations exists over the whole year and doe not depend on rainy or dry seasons.. In the Cameron Highlands the outdoor radioactivity varies much faster than in the valley. There wash-out and building up periods during and between rain falls control external gamma and alpha concentration. Immediately after wash-out local gamma values can rise to 10 μSv/hour near the ground. It is concluded that the radioactivity concentration in the air is controlled by the building up time of the Rn 222 (around two hours) and the Rn 220 progeny (around 12 hours). An equilibrium factor of around 0.2 to 0.3 shows that full equilibrium is never reached in the air system. The calculation of the yearly external exposure is only possible with the knowledge of the local monitored concentration curve. A first calculation of the external dose rate for the persons living in the Kinta Valley was made. The calculations suggest dose rates between 5 and 15 mSv per year. High effective doses rates are expected film inhalation of indoor Radon progeny concentrations and from ingestion of contaminated food. (author)

  17. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2004-01-01

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60 Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  18. Testing the Cosmic Coincidence Problem and the Nature of Dark Energy

    International Nuclear Information System (INIS)

    Dalal, Neal; Abazajian, Kevork; Jenkins, Elizabeth; Manohar, Aneesh V.

    2001-01-01

    Dark energy models which alter the relative scaling behavior of dark energy and matter could provide a natural solution to the cosmic coincidence problem -- why the densities of dark energy and dark matter are comparable today. A generalized class of dark energy models is introduced which allows noncanonical scaling of the ratio of dark matter and dark energy with the Robertson-Walker scale factor a(t) . We show that determining whether there is a coincidence problem, and the extent of cosmic coincidence, can be addressed by several forthcoming experiments

  19. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-27

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& amp; W West Valley, LLC (CHBWV)

    2013-09-19

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  1. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    International Nuclear Information System (INIS)

    2011-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  2. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  3. California's restless giant: the Long Valley Caldera

    Science.gov (United States)

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  4. Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect

    Science.gov (United States)

    Zhai, Xuechao; Wang, Yun-Tong; Wen, Rui; Wang, Shu-Xuan; Tian, Yue; Zhou, Xingfei; Chen, Wei; Yang, Zhihong

    2018-02-01

    Silicene and germanene, as graphenelike materials with observable spin-orbit couplings and two distinctive valleys, have potential applications in future low-dissipation spintronics and valleytronics. We here propose a magnetic system of silicene or germanene intercalated between two ferromagetic (FM) dielectric layers, and find that the system with a proximity-induced asymmetric magnetic field supports an attractive phenomenon named the valley-locked spin-dependent Seebeck effect (VL-SSE) driven by a thermal gradient. The VL-SSE indicates that the carries from only one valley could be thermally excited, with opposite spin polarization counterpropagating along the thermal gradient direction, while nearly no carrier from the other insulating valley is excited due to the relatively wide band gap. It is also illustrated that the VL-SSE here does not survive in the usual FM or anti-FM systems, and can be destroyed by the overlarge temperature broadening. Moreover, we prove that the signal for VL-SSE can be weakened gradually with the enhancement of the local interlayer electric field, and be strengthened lineally by increasing the source-drain temperature difference in a caloritronic field effect transistor. Further calculations indicate that the VL-SSE is robust against many perturbations, including the global and local Fermi levels as well as the magnetic strength. These findings about the valley-locked thermospin effect provide a nontrivial and convenient dimension to control the quantum numbers of spin and valley and are expected to be applied in future spin-valley logic circuits and energy-saving devices.

  5. Natural Antibodies Related to Energy Balance in Early Lactation Dairy Cows

    NARCIS (Netherlands)

    Knegsel, van A.T.M.; Vries Reilingh, de G.; Meulenberg, S.; Brand, van den H.; Dijkstra, J.; Kemp, B.; Parmentier, H.K.

    2007-01-01

    The objectives of this study were to determine the presence of natural antibodies (NAb) in plasma and milk of individual dairy cows and to study the relation between NAb concentrations and energy balance (EB) and dietary energy source. Cows (n = 76) were fed a mainly glucogenic, lipogenic, or a

  6. US Department of Energy natural phenomena design/evaluation guidelines/lessons learned

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1991-08-01

    In the spring of 1988, DOE Order 6430.1A, General Design Criteria [1], was issued for use. This document references UCRL-15910, Design and Evaluation Guidelines for DOE Facilities Subjected to Natural Phenomena Hazards [2], which is to be used as the basis for the design and evaluation of new and existing facilities to natural phenomena loading. Rather than use the historical deterministic methods for computing structural and component loading from potential natural phenomena, UCRL-15910 incorporated the years of hazards studies conducted throughout the US Department of Energy complex into probabilistic-based methods. This paper describes the process used to incorporate US Department of Energy natural phenomena design guidelines into the Hanford Plant Standards -- Standard Design Criteria for Architectural and Civil Standards [3]. It also addresses the subsequent use of these criteria during structural assessments of facilities, systems, and components of various vintage in support of updating safety analysis reports. The paper includes comparison of results using these most recent probabilistic-based natural phenomena loading criteria to those obtained from previous assessments, and it addresses the lessons learned from the many structural evaluations of 1940--1960 vintage buildings

  7. Natural Regulation of Energy Flow in a Green Quantum Photocell

    OpenAIRE

    Arp, Trevor B.; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M.

    2015-01-01

    Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we show that regulation against these fluctuations arises naturally within a tw...

  8. Valley Fever

    Science.gov (United States)

    ... valley fever. These fungi are commonly found in soil in specific regions. The fungi's spores can be stirred into the air by ... species have a complex life cycle. In the soil, they grow as a mold with long filaments that break off into airborne ...

  9. Nematic and Valley Ordering in Anisotropic Quantum Hall Systems

    Science.gov (United States)

    Parameswaran, S. A.; Abanin, D. A.; Kivelson, S. A.; Sondhi, S. L.

    2010-03-01

    We consider a multi-valley two dimensional electron system in the quantum Hall effect (QHE) regime. We focus on QHE states that arise due to spontaneous breaking of the valley symmetry by the Coulomb interactions. We show that the anisotropy of the Fermi surface in each valley, which is generally present in such systems, favors states where all the electrons reside in one of the valleys. In a clean system, the valley ordering occurs via a finite temperature Ising-like phase transition, which, owing to the Fermi surface anisotropy, is accompanied by the onset of nematic order. In a disordered system, domains of opposite polarization are formed, and therefore long-range valley order is destroyed, however, the resulting state is still compressible. We discuss the transport properties in ordered and disordered regimes, and point out the possible relation of our results to recent experiments in AlAs [1]. [1] Y. P. Shkolnikov, S. Misra, N. C. Bishop, E. P. De Poortere, and M. Shayegan, Observation of Quantum Hall ``Valley Skyrmions", Phys. Rev. Lett. 95, 068809 (2005)[2] D.A. Abanin, S.A. Parameswaran, S.A. Kivelson and S.L. Sondhi, Nematic and Valley Ordering in Anisotropic Quantum Hall Systems, to be published.

  10. Loss experience from natural phenomena hazards in the Department of Energy (50 years of natural phenomena hazard losses)

    International Nuclear Information System (INIS)

    Hill, J.R.

    1993-01-01

    This paper presents a historical prespective on losses due to natural hazard incidents (1943-1993) at Department of Energy (DOE) and predecessor agencies including the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA). This paper also demonstrates how an existing DOE resource can be used to gain valuable insight into injury or property damage incidents. That resource is the Computerized Accident/Incident Reporting System (CAIRS) module of DOE's Safety Performance Measurement System. CAIRS data selected the 1981-1991 DOE injury/illness reports, from all the accident reports of the AEC that cited a natural phenomena hazard as either the direct or indirect cause of the injury/property damage. Specifically, injury or property damage reports were selected for analysis if they had a causal factor link to severe weather or natural phenomena hazard categories. Natural phenomena hazard categories are injury/property damage caused by hurricane/tornado, earthquake, lightning, or flood. Severe weather categories are injury/property damage associated with other than normal weather conditions. The lessons learned, as a result of reviewing case histories, are presented, as are suggestions on how to reduce the likelihood of future injuries/property damage as a result of similar events. A significant finding, is that most injuries and property damage were the result of an indirect causal link to a natural phenomena hazard and thus, may be more preventable than previously thought possible. The primary message, however, is that CAIRS and other incident data bases are valuable resources and should be considered for use by those interested in identifying new ways of protecting the health and safety of the worker and for reducing building losses due to the effects of natural phenomena hazards

  11. Hydrodynamic modelling of extreme flood events in the Kashmir valley in India

    Science.gov (United States)

    Jain, Manoj; Parvaze, Sabah

    2017-04-01

    Floods are one of the most predominant, costly and deadly hazards of all natural vulnerabilities. Every year, floods exert a heavy toll on human life and property in many parts of the world. The prediction of river stages and discharge during flood extremes plays a vital role in planning structural and non-structural measures of flood management. The predictions are also valuable to prepare the flood inundation maps and river floodplain zoning. In the Kashmir Valley, floods occur mainly and very often in the Jhelum Basin mostly due to extreme precipitation events and rugged mountainous topography of the basin. These floods cause extreme damage to life and property in the valley from time to time. Excessive rainfall, particularly in higher sub-catchments causes the snow to melt resulting in excessive runoff downhill to the streams causing floods in the Kashmir Valley where Srinagar city is located. However, very few hydrological studies have been undertaken for the Jhelum Basin mainly due to non-availability of hydrological data due to very complex mountainous terrain. Therefore, the present study has been conducted to model the extreme flood events in the Jhelum Basin in Kashmir Valley. An integrated NAM and MIKE 11 HD model has been setup for Jhelum basin up to Ram Munshi Bagh gauging site and then four most extreme historical flood events in the time series has been analyzed separately including the most recent and most extreme flood event of 2014. In September 2014, the Kashmir Valley witnessed the most severe flood in the past 60 years due to catastrophic rainfall from 1st to 6th September wherein the valley received unprecedented rainfall of more than 650 mm in just 3 days breaking record of many decades. The MIKE 11 HD and NAM model has been calibrated using 21 years (1985-2005) data and validated using 9 years (2006-2014) data. The efficiency indices of the model for calibration and validation period is 0.749 and 0.792 respectively. The model simulated

  12. West Valley high-level nuclear waste glass development: a statistically designed mixture study

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Bowen, W.M.; Lokken, R.O.; Wald, J.W.; Bunnell, L.R.; Strachan, D.M.

    1984-10-01

    The first full-scale conversion of high-level commercial nuclear wastes to glass in the United States will be conducted at West Valley, New York, by West Valley Nuclear Services Company, Inc. (WVNS), for the US Department of Energy. Pacific Northwest Laboratory (PNL) is supporting WVNS in the design of the glass-making process and the chemical formulation of the glass. This report describes the statistically designed study performed by PNL to develop the glass composition recommended for use at West Valley. The recommended glass contains 28 wt% waste, as limited by process requirements. The waste loading and the silica content (45 wt%) are similar to those in previously developed waste glasses; however, the new formulation contains more calcium and less boron. A series of tests verified that the increased calcium results in improved chemical durability and does not adversely affect the other modeled properties. The optimization study assessed the effects of seven oxide components on glass properties. Over 100 melts combining the seven components into a wide variety of statistically chosen compositions were tested. Viscosity, electrical conductivity, thermal expansion, crystallinity, and chemical durability were measured and empirically modeled as a function of the glass composition. The mathematical models were then used to predict the optimum formulation. This glass was tested and adjusted to arrive at the final composition recommended for use at West Valley. 56 references, 49 figures, 18 tables.

  13. Natural gas for power generation : issues and implications : an energy market assessment

    International Nuclear Information System (INIS)

    2006-06-01

    This report presented a historical examination of trends in natural gas-fired generation as well as a perspective on the issues and potential implications of increasing reliance on natural gas. Potential changes to Canadian energy consumers were reviewed in addition to natural gas infrastructure and services. Electricity prices relating to natural gas generation were examined. A broad regional and continental perspective was employed to account for energy market integration and the fact that gas trends reflect developments outside of Canada. The report was divided into 2 sections: (1) an examination of the trend toward natural-gas fired generation of electricity in North America; and (2) an examination of issues in closer detail from a regional perspective followed by a discussion of the changes in generation and natural gas markets in western, eastern, and central North America. Questions arising from the analysis of specific regional supply, demand and infrastructure situations were also examined. Recommendations were presented for issues concerning the current gas market and the appropriate role of the government in ensuring adequate generation. Uncertainties in future natural gas supply were also considered. It was concluded that rapid industrial growth will continue to increase demand for natural gas and electricity supply. 5 figs

  14. Mapping the depth to ice-cemented ground in the high elevation Dry Valleys, Antarctica

    Science.gov (United States)

    Marinova, M.; McKay, C. P.; Heldmann, J. L.; Davila, A. F.; Andersen, D. T.; Jackson, A.; Lacelle, D.; Paulsen, G.; Pollard, W. H.; Zacny, K.

    2011-12-01

    The high elevation Dry Valleys of Antarctica provide a unique location for the study of permafrost distribution and stability. In particular, the extremely arid and cold conditions preclude the presence of liquid water, and the exchange of water between the ice-cemented ground and the atmosphere is through vapour transport (diffusion). In addition, the low atmospheric humidity results in the desiccation of the subsurface, forming a dry permafrost layer (i.e., cryotic soils which are dry and not ice-cemented). Weather data suggests that subsurface ice is unstable under current climatic conditions. Yet we do find ice-cemented ground in these valleys. This contradiction provides insight into energy balance modeling, vapour transport, and additional climate effects which stabilize subsurface ice. To study the driving factors in the stability and distribution of ice-cemented ground, we have extensively mapped the depth to ice-cemented ground in University Valley (1730 m; 77°S 51.8', 160°E 43'), and three neighbouring valleys in the Beacon Valley area. We measured the depth to ice-cemented ground at 15-40 locations per valley by digging soil pits and drilling until ice was reached; for each location 3-5 measurements within a ~1 m2 area were averaged (see figure). This high-resolution mapping of the depth to ice-cemented ground provides new insight on the distribution and stability of subsurface ice, and shows significant variability in the depth to ground ice within each valley. We are combining data from mapping the depth to ice-cemented ground with year-round, in situ measurements of the atmospheric and subsurface conditions, such as temperature, humidity, wind, and light, to model the local stability of ice-cemented ground. We are using this dataset to examine the effects of slopes, shading, and soil properties, as well as the suggested importance of snow recurrence, to better understand diffusion-controlled subsurface ice stability.

  15. Pathways to Decarbonization. Natural Gas and Renewable Energy. Lessons Learned from Energy System Stakeholders

    Energy Technology Data Exchange (ETDEWEB)

    Pless, Jacquelyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Arent, Douglas J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cochran, Jaquelin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Stark, Camila [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-04-30

    Ensuring the resilience, reliability, flexibility, and affordability of the U.S. electric grid is increasingly important as the country addresses climate change and an aging infrastructure. State and federal policy and actions by industry, non-profits, and others create a dynamic framework for achieving these goals. Three principle low-carbon generation technologies have formed the basis for multiple scenarios leading toward a low-carbon, resilient, and affordable power system. While there is no “silver bullet,” one avenue identified by key stakeholders is the opportunity to invest in natural gas (NG) and renewable resources, both of which offer abundant domestic resource bases and contribute to energy independence, carbon mitigation, and economic growth. NG and renewable electricity (RE) have traditionally competed for market share in the power sector, but there is a growing experience base and awareness for their synergistic use (Cochran et al. 2014). Building upon these observations and previous work, the Joint Institute for Strategic Energy Analysis (JISEA), in collaboration with the Center for the New Energy Economy and the Gas Technology Institute, convened a series of workshops in 2014 to explore NG and RE synergies in the U.S. power sector. This report captures key insights from the workshop series, Synergies of Natural Gas and Renewable Energy: 360 Degrees of Opportunity, as well as supporting economic valuation analyses conducted by JISEA researchers that quantify the value proposition of investing in NG and RE together as complements.

  16. Barriers to Coverage of Transborder Environmental Issues in the Ferghana Valley of Central Asia

    Science.gov (United States)

    Freedman, Eric

    2014-01-01

    Three former Soviet republics occupy Central Asia's Ferghana Valley, a region of serious transborder environmental problems, especially ones that involve water and energy. Most news organizations in Kyrgyzstan, Tajikistan, and Uzbekistan provide little in-depth coverage of these issues. Journalists in one country usually do not seek news sources…

  17. Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security

    Science.gov (United States)

    2013-05-15

    installation of natural gas generation or cogeneration plants to increase their energy security from the typical three days using diesel supplies to weeks-to...better quantify the regional impact of natural gas for energy security. Modeling and simulation could identify those regions and DoD installations that...Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security N. Judson 15 May 2013 Prepared for the

  18. Hydrologic models and analysis of water availability in Cuyama Valley, California

    Science.gov (United States)

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    Changes in population, agricultural development practices (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available water resources, particularly groundwater, in the Cuyama Valley, one of the most productive agricultural regions in Santa Barbara County. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that could be considered in the evaluation of the sustainable water supply. The Cuyama Valley Hydrologic Model (CUVHM) was designed to simulate the most important natural and human components of the hydrologic system, including components dependent on variations in climate, thereby providing a reliable assessment of groundwater conditions and processes that can inform water users and help to improve planning for future conditions. Model development included a revision of the conceptual model of the flow system, construction of a precipitation-runoff model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (MF-OWHM). The hydrologic models were calibrated to historical conditions of water and land use and, then, used to assess the use and movement of water throughout the Valley. These tools provide a means to understand the evolution of water use in the Valley, its availability, and the limits of sustainability. The conceptual model identified inflows and outflows that include the movement and use of water in both natural and anthropogenic systems. The groundwater flow system is characterized by a layered geologic sedimentary sequence that—in combination with the effects of groundwater pumping, natural recharge, and the application of irrigation water at the land surface—displays vertical hydraulic-head gradients. Overall, most of the agricultural demand for water in the Cuyama Valley in the initial part of the growing season is

  19. Holocene environmental change and archaeology, Yangtze River Valley, China: Review and prospects

    Directory of Open Access Journals (Sweden)

    Li Wu

    2012-11-01

    Full Text Available Holocene environmental change and environmental archaeology are important components of an international project studying the human-earth interaction system. This paper reviews the progress of Holocene environmental change and environmental archaeology research in the Yangtze River Valley over the last three decades, that includes the evolution of large freshwater lakes, Holocene transgression and sea-level changes, Holocene climate change and East Asian monsoon variation, relationship between the rise and fall of primitive civilizations and environmental changes, cultural interruptions and palaeoflood events, as well as relationship between the origin of agriculture and climate change. These research components are underpinned by the dating of lacustrine sediments, stalagmites and peat to establish a chronology of regional environmental and cultural evolution. Interdisciplinary and other environment proxy indicators need to be used in comparative studies of archaeological site formation and natural sedimentary environment in the upper, middle and lower reaches of the Yangtze River Valley. Modern technology such as remote sensing, molecular bioarchaeology, and virtual reality, should be integrated with currently used dating, geochemical, sedimentological, and palaeobotanical methods of analysis in environmental archaeology macro- and micro-studies, so as to provide a greater comprehensive insight into Holocene environmental and cultural interaction and change in the Yangtze River Valley area.

  20. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  1. Natural gas prices in the Maritimes : an energy market assessment

    International Nuclear Information System (INIS)

    2004-03-01

    The National Energy Board monitors the supply and price of natural gas in the Maritimes. This report contains the results and analysis of a survey of the wholesale natural gas prices paid by Canadian buyers in the Maritimes from November 2002 to October 2003. The objective of the report is to improve the understanding of the market factors that influence wholesale natural gas prices in the Maritimes. A comparative evaluation of domestic and export prices shows that Canadian buyers have had access to gas at prices similar to the export market at St. Stephen, New Brunswick. Since the number of participants in the domestic market is low, only four large buyers have a major impact on average prices in the region. The challenge for small buyers will be to buy gas from others who can divert some of their own sales of use. However, these sellers may not want to over-commit to new firm sales in case they have to re-purchase the gas during shortages that may occur due to fluctuations in production or shipping. It was noted that a new gas supply into the region would support many buyers and sellers, and could lead to a more transparent Maritime natural gas market. The National Energy Board is satisfied that the Maritime natural gas market is currently performing as well as can be expected, given its young stage of development. 1 tab., 8 figs., 1 appendix

  2. Functions and Requirements for West Valley Demonstration Project Tank Lay-up

    International Nuclear Information System (INIS)

    Elmore, Monte R.; Henderson, Colin

    2002-01-01

    Documents completion of Milestone A.1-1, ''Issue Functions and Requirements for WVDP Tank Lay-Up,'' in Technical Task Plan TTP RL3-WT21A - ''Post-Retrieval and Pre-Closure HLW Tank Lay-Up.'' This task is a collaborative effort among Pacific Northwest National Laboratory, Jacobs Engineering Group Inc., and West Valley Nuclear Services (WVNS). Because of the site-specific nature of this task, the involvement of WVNS personnel is critical to the success of this task

  3. Assessing the full costs of water, liquid waste, energy and solid waste infrastructure in the Fraser Valley Regional District (FVRD)

    International Nuclear Information System (INIS)

    Pollard, D.

    2001-01-01

    This document presents a newly drafted growth strategy developed by the Fraser Valley Regional District (FVRD) in British Columbia. It guides the sustainable growth, change and development of the region for the next 25 years and deals with air pollution, water quality, traffic congestion, affordable housing, employment, energy use, parks and green space. In particular, this case study develops a method to apply full cost accounting (FCA) to a growth strategy. FCA is the most appropriate way to approach a sustainable strategy because it considers economic, social and environmental issues. The study also includes the development of a software tool consisting of an ACCESS database and an ARCVIEW GIS file for compiling and analyzing detailed infrastructure profiles which can be used to assess the full costs of different growth scenarios. The following four issue categories of environmental and economic indicators of FVRD performance were addressed: solid waste, water and wastewater, energy, and infrastructure costs. Each issue category was then used to establish a set of 5 performance indicators that can be measured and assessed over time. These included solid waste, water consumption, wastewater, energy consumption and air emissions. The database and methodology developed for this project is suitable for other regions. The software can be viewed by contacting the Sheltair Group Resource Consultants Inc. in Vancouver

  4. Canadian natural gas market: dynamics and pricing -- an energy market assessment

    International Nuclear Information System (INIS)

    2000-11-01

    This publication is part of the Energy Market Assessment Program of the National Energy Board. It focuses on identifying factors that affect natural gas prices and describe the current functioning of domestic regional markets in British Columbia, Alberta, Saskatchewan, Manitoba, Ontario, Quebec and in the Atlantic provinces.The report emphasizes the growth in demand for natural gas throughout North America, and the aggressive response by producers to the current high price environment with increased drilling programs. The report also predicts a supply and demand adjustment over time, and an accompanying relief in natural gas prices, although the Board is not able to predict with certainty any movements in commodity markets. The Board's findings indicate that domestic users of natural gas paid less than export customers until 1998, at which point the two prices have converged. The end result of the convergence was that Canadians have had access to natural gas under terms and conditions which were no less favourable than those in effect for export customers. The influence of electronic trading systems is reviewed, noting that spot markets and futures markets such as the NYMEX and AECO-C/NIT have had a significant impact on the pricing of natural gas, mostly by allowing market participants to manage price volatility by forward contracting. 1 tab., 42 figs., 1 glossary

  5. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  6. Energy saving and emission reduction of China's urban district heating

    International Nuclear Information System (INIS)

    Chen, Xia; Wang, Li; Tong, Lige; Sun, Shufeng; Yue, Xianfang; Yin, Shaowu; Zheng, Lifang

    2013-01-01

    China's carbon dioxide (CO 2 ) emission ranks highest in the world. China is committed to reduce its CO 2 emission by 40% to 45% from the 2005 levels by 2020. To fulfill the target, China's CO 2 emission reduction must exceed 6995 million tons. Energy consumption and CO 2 emission of China's urban district heating (UDH) are increasing. The current policy implemented to improve UDH focuses on replacing coal with natural gas to reduce energy consumption and CO 2 emission to some extent. This paper proposes that heat pump heating (HPH) could serve as a replacement for UDH to help realize energy-saving and emission-reduction goals to a greater extent. The paper also analyzes the impact of this replacement on the heating and power generation sectors. The results show that replacing coal-based UDH with HPH decreases energy consumption and CO 2 emission by 43% in the heating sector. In the power generation sector, the efficiency of power generation at the valley electricity time increases by 0.512%, and the ratio of peak–valley difference decreases by 16.5%. The decreases in CO 2 emission from the heating and power generation sectors cumulatively account for 5.55% of China's total CO 2 emission reduction target in 2020. - Highlights: ► Replacing urban district heating with heat pump heating. ► Impact of heat pump heating on heating and power generation sectors. ► Potential of energy saving and emission reduction for heat pump heating. ► China should adjust current urban heating strategy

  7. Duck Valley Habitat Enhancement and Protection, 2001-2002 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mattie H.; Sellman, Jake (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2003-03-01

    The Duck Valley Indian Reservation's Habitat Enhancement project is an ongoing project designed to enhance and protect critical riparian areas, natural springs, the Owhyee River and its tributaries, and native fish spawning areas on the Reservation. The project commenced in 1997 and addresses the Northwest Power Planning Council's measures 10.8C.2, 10.8C.3, and 10.8C.5 of the 1994 Columbia River Basin Fish and Wildlife Program. The performance period covers dates from April 2001 through August 2002.

  8. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    Science.gov (United States)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  9. Potential hazards of compressed air energy storage in depleted natural gas reservoirs.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Paul W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2011-09-01

    This report is a preliminary assessment of the ignition and explosion potential in a depleted hydrocarbon reservoir from air cycling associated with compressed air energy storage (CAES) in geologic media. The study identifies issues associated with this phenomenon as well as possible mitigating measures that should be considered. Compressed air energy storage (CAES) in geologic media has been proposed to help supplement renewable energy sources (e.g., wind and solar) by providing a means to store energy when excess energy is available, and to provide an energy source during non-productive or low productivity renewable energy time periods. Presently, salt caverns represent the only proven underground storage used for CAES. Depleted natural gas reservoirs represent another potential underground storage vessel for CAES because they have demonstrated their container function and may have the requisite porosity and permeability; however reservoirs have yet to be demonstrated as a functional/operational storage media for compressed air. Specifically, air introduced into a depleted natural gas reservoir presents a situation where an ignition and explosion potential may exist. This report presents the results of an initial study identifying issues associated with this phenomena as well as possible mitigating measures that should be considered.

  10. Thermoluminescence dating of CaCO3 nodules from buried soil of the lower Narmada Valley

    International Nuclear Information System (INIS)

    Nambi, K.S.V.; Hegde, K.T.M.

    1982-01-01

    Calcium carbonate nodules excavated at an archaeological site in Lower Narmada River Valley have been dated by the thermoluminescence technique. Tiny, sensitive TL dosimeters using natural CaF 2 as the phosphor, were employed to evaluate the natural radiation levels at the excavation site over a period of a year. The estimated TL age value is 22890 yrs B.P. with an uncertainty of about +/- 8%. The reported 14 C age of these nodules is 22452 +/- 550 years B.P

  11. Drivers of solar radiation variability in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Obryk, Maciej; Fountain, Andrew G.; Doran, Peter; Lyons, Berry; Eastman, Ryan

    2018-01-01

    Annually averaged solar radiation in the McMurdo Dry Valleys, Antarctica has varied by over 20 W m−2 during the past three decades; however, the drivers of this variability are unknown. Because small differences in radiation are important to water availability and ecosystem functioning in polar deserts, determining the causes are important to predictions of future desert processes. We examine the potential drivers of solar variability and systematically eliminate all but stratospheric sulfur dioxide. We argue that increases in stratospheric sulfur dioxide increase stratospheric aerosol optical depth and decrease solar intensity. Because of the polar location of the McMurdo Dry Valleys (77–78°S) and relatively long solar ray path through the stratosphere, terrestrial solar intensity is sensitive to small differences in stratospheric transmissivity. Important sources of sulfur dioxide include natural (wildfires and volcanic eruptions) and anthropogenic emission.

  12. Antifan activism as a response to MTV's The Valleys

    Directory of Open Access Journals (Sweden)

    Bethan Jones

    2015-06-01

    Full Text Available MTV has launched several reality TV shows in the United Kingdom, but one, The Valleys (2012–14, about youth moving from the South Wales Valleys to Cardiff, has received much criticism. Grassroots criticism of the show arose, and a Valleys-centric campaign, The Valleys Are Here, took direct action. I adopt Jonathan Gray's definition of antifans to complicate ideas of fan activism. I utilize comments and posts made on the Valleys Are Here Twitter feed and Facebook account, as well as the organization's Web site, to examine the ways in which they encourage activism among antifans of the series. I pay particular attention to activist calls for MTV to be held accountable for its positioning of Wales and the Valleys, and to how it encourages participation among varied groups of people whose common denominator is their dislike of the series. Fan activism is not exclusive to people who consider themselves fans, and notions of fan activism can be complicated by drawing in antifans.

  13. Subsurface-controlled geological maps for the Y-12 plant and adjacent areas of Bear Creek Valley

    International Nuclear Information System (INIS)

    King, H.L.; Haase, C.S.

    1987-04-01

    Bear Creek Valley in the vicinity of the US Department of Energy Y-12 Plant is underlain by Middle to Late Cambrian strata of the Conasauga Group. The group consists of interbedded limestones, shales, mudstones, and siltstones, and it can be divided into six discrete formations. Bear Creek Valley is bordered on the north by Pine Ridge, which is underlain by sandstones, siltstones, and shales of the Rome Formation, and on the south by Chestnut Ridge, which is underlain by dolostones of the Knox Group. Subsurface-controlled geological maps illustrating stratigraphic data and formational contacts for the formations within the Conasauga Group have been prepared for the Y-12 Plant vicinity and selected areas in Bear Creek Valley westward from the plant. The maps are consistent with all available surface and subsurface data for areas where sufficient data exist to make map construction feasible. 13 refs

  14. Remote Sensing Contributions to Prediction and Risk Assessment of Natural Disasters Caused by Large Scale Rift Valley Fever Outbreaks

    Science.gov (United States)

    Anyamba, Assaf; Linthicum, Kenneth J.; Small, Jennifer; Britch, S. C.; Tucker, C. J.

    2012-01-01

    Remotely sensed vegetation measurements for the last 30 years combined with other climate data sets such as rainfall and sea surface temperatures have come to play an important role in the study of the ecology of arthropod-borne diseases. We show that epidemics and epizootics of previously unpredictable Rift Valley fever are directly influenced by large scale flooding associated with the El Ni o/Southern Oscillation. This flooding affects the ecology of disease transmitting arthropod vectors through vegetation development and other bioclimatic factors. This information is now utilized to monitor, model, and map areas of potential Rift Valley fever outbreaks and is used as an early warning system for risk reduction of outbreaks to human and animal health, trade, and associated economic impacts. The continuation of such satellite measurements is critical to anticipating, preventing, and managing disease epidemics and epizootics and other climate-related disasters.

  15. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    Energy Technology Data Exchange (ETDEWEB)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  16. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-09-28

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  17. Seasonal reversal at Miryang Eoreumgol (Ice Valley), Korea: observation and monitoring

    Science.gov (United States)

    Byun, Hi-Ryong; Tanaka, Hiroshi L.; Choi, Pom-Yong; Kim, Do-Woo

    2011-12-01

    We investigate an anomalous phenomenon evident in the Miryang Eoreumgol (Ice Valley), Korea: The wind and water are cold during summer and warm during winter, and ice formation does not occur in winter but in summer. We have initiated observations and investigations into the origin of heat sources particularly with regard to the mechanism of ice formation in summer. Previous theories, e.g., concerning underground gravity currents, water evaporation, diurnal and seasonal respirations of the talus, effects of ground heat, radiation and topography, etc., are considered. After a calculation of heat sources, we propose two new concepts—a repetitious heat separation mechanism and a positive feedback mechanism of cold air generation—to demonstrate that the heat mechanism of the seasonal reversal of the ice valley may be controlled by the use of the phase change between ice and water vapor with only a small amount of additional unknown energy.

  18. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    International Nuclear Information System (INIS)

    2010-01-01

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  19. Full-Wave Ambient Noise Tomography of the Long Valley Volcanic Region (California)

    Science.gov (United States)

    Flinders, A. F.; Shelly, D. R.; Dawson, P. B.; Hill, D. P.; Shen, Y.

    2017-12-01

    In the late 1970s, and throughout the 1990s, Long Valley Caldera (California) experienced intense periods of unrest characterized by uplift of the resurgent dome, earthquake swarms, and CO2 emissions around Mammoth Mountain. While modeling of the uplift and gravity changes support the possibility of new magmatic intrusions beneath the caldera, geologic interpretations conclude that the magmatic system underlying the caldera is moribund. Geophysical studies yield diverse versions of a sizable but poorly resolved low-velocity zone at depth (> 6km), yet whether this zone is indicative of a significant volume of crystal mush, smaller isolated pockets of partial melt, or magmatic fluids, is inconclusive. The nature of this low-velocity zone, and the state of volcano's magmatic system, carry important implications for the significance of resurgent-dome inflation and the nature of associated hazards. To better characterize this low-velocity zone we present preliminary results from a 3D full-waveform ambient-noise seismic tomography model derived from the past 25 years of vertical component broadband and short-period seismic data. This new study uses fully numerical solutions of the wave equation to account for the complex wave propagation in a heterogeneous, 3D earth model, including wave interaction with topography. The method ensures that wave propagation is modeled accurately in 3D, enabling the full use of seismic records. By using empirical Green's functions, derived from ambient noise and modeled as Rayleigh surface waves, we are able to extend model resolution to depths beyond the limits of previous local earthquake studies. The model encompasses not only the Long Valley Caldera, but the entire Long Valley Volcanic Region, including Mammoth Mountain and the Mono Crater/Inyo Domes volcanic chain.

  20. Valley method versus instanton-induced effective lagrangian up to (E/Espha)8/3

    International Nuclear Information System (INIS)

    Balitsky, I.; Schaefer, A.

    1993-01-01

    We compare the two most popular approaches to the problem of instanton-anti-instanton interaction at high energies - the valley method and the effective lagrangian approach - and use them to calculate the next-to-next-to-leading term in the expansion of the 'holy grail' function determining the cross section with baryon number violation in the standard model. (orig.)

  1. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  2. An overview of the West Valley demonstration project

    International Nuclear Information System (INIS)

    Hannum, W.H.; Boswell, M.B.; De Boer, T.K.; Duckworth, J.P.

    1984-01-01

    This session is titled ''DOE Special Waste Management Projects.'' West Valley and TMI are indeed special projects, in that they represent today's problems. They may well have been the two most visible symbols as to how nuclear wastes can poison the entire civilian nuclear power program. Each in its own way has been perceived as a major threat to the environment and to public health and safety; in both cases this threat has been perceived to be grossly more severe than it has been in fact. It is the Department of Energy' intent that both of these problems be made to disappear. This paper serves to introduce a series of paper describing the status of the West Valley Project. In the West Valley case substantial progress is being made and we believe we are well on the way toward transforming what has been a skeleton along the road to progress into positive and unmistakable evidence that high-level nuclear wastes such as those resulting from reprocessing can be managed, understood, and prepared for disposal by a straightforward adaptation and application of existing technologies. Further, we now have evidence that the costs of doing this are not exorbitant. Subsequent papers will describe waste characterization; the plans and designs for solidification; and the ancillary and supporting programs for handling effluents and wastes, for D and D to utilize existing facilities, and environmental support. In this paper we describe the history of this plant and the wastes being used in the demonstration; the legislation and intent of the Project; the accomplishments to date; and the projected schedule and costs

  3. Photon wavelength dependent valley photocurrent in multilayer MoS2

    Science.gov (United States)

    Guan, Hongming; Tang, Ning; Xu, Xiaolong; Shang, LiangLiang; Huang, Wei; Fu, Lei; Fang, Xianfa; Yu, Jiachen; Zhang, Caifeng; Zhang, Xiaoyue; Dai, Lun; Chen, Yonghai; Ge, Weikun; Shen, Bo

    2017-12-01

    The degree of freedom (DOF) of the K (K') valley in transition-metal dichalcogenides, especially molybdenum disulfide (MoS2), offers an opportunity for next-generation valleytronics devices. In this work, the K (K') valley DOF of multilayer MoS2 is studied by means of the photon wavelength dependent circular photogalvanic effect (CPGE) at room temperature upon a strong external out-of-plane electric field induced by an ionic liquid (IL) gate, which breaks the spatial-inversion symmetry. It is demonstrated that only on resonant excitations in the K (K') valley can the valley-related CPGE signals in multilayer MoS2 with an IL gate be detected, indicating that the valley contrast is indeed regenerated between the K and K' valleys when the electric field is applied. As expected, it can also be seen that the K (K') valley DOF in multilayer MoS2 can be modulated by the external electric field. The observation of photon wavelength dependent valley photocurrent in multilayer MoS2, with the help of better Ohmic contacts, may pave a way for optoelectronic applications of valleytronics in the future.

  4. Spin-valley splitting of electron beam in graphene

    Directory of Open Access Journals (Sweden)

    Yu Song

    2016-11-01

    Full Text Available We study spatial separation of the four degenerate spin-valley components of an electron beam in a EuO-induced and top-gated ferromagnetic/pristine/strained graphene structure. We show that, in a full resonant tunneling regime for all beam components, the formation of standing waves can lead sudden phase jumps ∼−π and giant lateral Goos-Hänchen shifts as large as the transverse beam width, while the interplay of the spin and valley imaginary wave vectors in the modulated regions can lead differences of resonant angles for the four spin-valley flavors, manifesting a spin-valley beam splitting effect. The splitting effect is found to be controllable by the gating and strain.

  5. Natural gas facing the new energy disorders: opportunities and constraints of a waited economic growth

    International Nuclear Information System (INIS)

    Valais, M.

    1991-01-01

    This paper studies natural gas industry facing the new disorders on energy markets. Energy world-wide demand growth is the strong point of natural gas development. Natural gas supply is based on abundant resources, well geographically distributed, but more expensive. This paper describes international trade growth and economic constraints, the impact of economic growth reduction, Gulf crisis and USSR or East Europe disorders on natural gas market. In the last part, the influence of environmental policy, regulations and ecological anxiety are briefly approached. 1 fig., 3 tabs

  6. Long term effects of climate on human adaptation in the middle Gila River Valley, Arizona, America

    NARCIS (Netherlands)

    Zhu, T.; Ertsen, M.W.; Van de Giesen, N.C.

    2015-01-01

    The Hohokam, an irrigation-based society in the American South West, used the river valleys of the Salt and Gila Rivers between 500 and 1500 AD to grow their crops. Such irrigated crops are linking human agency, water sources and the general natural environment. In order to grow crops, water

  7. Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California

    Science.gov (United States)

    Leighton, David A.; Phillips, Steven P.

    2003-01-01

    ground-water development have eliminated the natural sources of discharge, and pumping for agricultural and urban uses have become the primary source of discharge from the ground-water system. Infiltration of return flows from agricultural irrigation has become an important source of recharge to the aquifer system. The ground-water flow model of the basin was discretized horizontally into a grid of 43 rows and 60 columns of square cells 1 mile on a side, and vertically into three layers representing the upper, middle, and lower aquifers. Faults that were thought to act as horizontal-flow barriers were simulated in the model. The model was calibrated to simulate steady-state conditions, represented by 1915 water levels and transient-state conditions during 1915-95 using water-level and subsidence data. Initial estimates of the aquifer-system properties and stresses were obtained from a previously published numerical model of the Antelope Valley ground-water basin; estimates also were obtained from recently collected hydrologic data and from results of simulations of ground-water flow and land subsidence models of the Edwards Air Force Base area. Some of these initial estimates were modified during model calibration. Ground-water pumpage for agriculture was estimated on the basis of irrigated crop acreage and crop consumptive-use data. Pumpage for public supply, which is metered, was compiled and entered into a database used for this study. Estimated annual pumpage peaked at 395,000 acre-feet (acre-ft) in 1952 and then declined because of declining agricultural production. Recharge from irrigation-return flows was estimated to be 30 percent of agricultural pumpage; the irrigation-return flows were simulated as recharge to the regional water table 10 years following application at land surface. The annual quantity of natural recharge initially was based on estimates from previous studies. During model calibration, natural recharge was reduced from the initial

  8. West Valley Demonstration Project Annual Site Environmental Report (ASER) Calendar Year (2016)

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Alison F. [CH2M Hill BWXT West Valley, LLC, NY (United States); Pendl, Michael P. [CH2M Hill BWXT West Valley, LLC, NY (United States); Steiner, II, Robert E. [CH2M Hill BWXT West Valley, LLC, NY (United States); Fox, James R. [CH2M Hill BWXT West Valley, LLC, NY (United States); Hoch, Jerald J. [CH2M Hill BWXT West Valley, LLC, NY (United States); Williams, Janice D. [CH2M Hill BWXT West Valley, LLC, NY (United States); Wrotniak, Chester M. [CH2M Hill BWXT West Valley, LLC, NY (United States); Werchowski, Rebecca L. [CH2M Hill BWXT West Valley, LLC, NY (United States)

    2017-09-12

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2016. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2016. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2016 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  9. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica

    International Nuclear Information System (INIS)

    Lyons, W.B.; Leslie, D.L.; Harmon, R.S.; Neumann, K.; Welch, K.A.; Bisson, K.M.; McKnight, D.M.

    2013-01-01

    Highlights: ► δ 13 C-DIC reported from McMurdo Dry Valleys, Antarctica, streams. ► Stream water δ 13 C PDB values range −9.4‰ to +5.1‰, largely inorganic in character. ► Atmospheric exchange is the dominant control on δ 13 C-DIC. - Abstract: The McMurdo Dry Valleys region of Antarctica is the largest ice-free region on the continent. This study reports the first C stable isotope measurements for dissolved inorganic C present in ephemeral streams in four dry valleys that flow for four to twelve weeks during the austral summer. One of these valleys, Taylor Valley, has been the focus of the McMurdo Dry Valleys Long-Term Ecological Research (MCM-LTER) program since 1993. Within Taylor Valley, numerous ephemeral streams deliver water to three perennially ice-covered, closed-basin lakes: Lake Fryxell, Lake Hoare, and Lake Bonney. The Onyx River in the Wright Valley, the longest river in Antarctica, flows for 40 km from the Wright Lower Glacier and Lake Brownworth at the foot of the glacier to Lake Vanda. Streamflow in the McMurdo Dry Valley streams is produced primarily from glacial melt, as there is no overland flow. However, hyporheic zone exchange can be a major hydrogeochemical process in these streams. Depending on landscape position, these streams vary in gradient, channel substrate, biomass abundance, and hyporheic zone extent. This study sampled streams from Taylor, Wright, Garwood, and Miers Valleys and conducted diurnal sampling of two streams of different character in Taylor Valley. In addition, transect sampling was undertaken of the Onyx River in Wright Valley. The δ 13 C PDB values from these streams span a range of greater than 14‰, from −9.4‰ to +5.1‰, with the majority of samples falling between −3‰ and +2‰, suggesting that the C stable isotope composition of dissolved C in McMurdo Dry Valley streams is largely inorganic in character. Because there are no vascular plants on this landscape and no groundwater input to these

  10. The energy sector abroad. Part 12. The Czech Republic. Spider in the European natural gas web

    International Nuclear Information System (INIS)

    Holwerda, B.

    1998-01-01

    The natural gas industry in the Czech Republic is one of the oldest in Europe. In the past, natural gas has played a modest role in the Czech energy supply: coal and town gas from coal and lignite were the major energy sources. However, more and more use is made of natural gas, imported from Russia (Gazprom) and Norway. Besides, the Czech natural gas distribution, transportation and storage system occupies a key position in the Central-European natural gas network

  11. An Embedded Sensor Network for Measuring Elevation Effects on Temperature, Humidity, and Evapotranspiration Within a Tropical Alpine Valley

    Science.gov (United States)

    Hellstrom, R. A.; Mark, B. G.

    2006-12-01

    Conditions of glacier recession in the seasonally dry tropical Peruvian Andes motivates research to better constrain the hydrological balance in alpine valleys. Studies suggest that glaciers in the tropical Andes are particularly sensitive to seasonal humidity flux due to the migration of the Intertropical Convergence Zone. However, there is an outstanding need to better measure and model the spatiotemporal variability of energy and water budgets within pro-glacial valleys. In this context, we introduce a novel embedded network of low- cost, discrete temperature and humidity microloggers and an automatic weather station installed in the Llanganuco valley of the Cordillera Blanca. This paper presents data recorded over a full annual cycle (2004- 2005) and reports on network design and results during the dry and wet seasons. The transect of sensors ranging from about 3500 to 4700 m reveal seasonally characteristic diurnal fluctuations in up-valley lapse rate. A process-based water balance model (Brook90) examines the influence of meteorological forcing on evapotranspiration (ET) rates in the valley. The model results suggest that cloud-free daylight conditions enhances ET during the wet season. ET was insignificant throughout the dry season. In addition, we report on the effects of elevation on ET.

  12. 18 CFR 2.400 - Statement of interpretation of waste concerning natural gas as the primary energy source for...

    Science.gov (United States)

    2010-04-01

    ... interpretation of waste concerning natural gas as the primary energy source for qualifying small power production... concerning natural gas as the primary energy source for qualifying small power production facilities. For purposes of deciding whether natural gas may be considered as waste as the primary energy source pursuant...

  13. Valley-polarized quantum transport generated by gauge fields in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Garcia, Jose H; Roche, Stephan

    2017-01-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by t...... Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder....

  14. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland

    International Nuclear Information System (INIS)

    Walencik-Łata, A.; Kozłowska, B.; Dorda, J.; Przylibski, T.A.

    2016-01-01

    A survey was conducted to measure natural radioactivity in spa waters from the Kłodzko Valley. The main goal of this study was to determine the activity concentration of uranium, radium and radon isotopes in the investigated groundwaters. Samples were collected several times from 35 water intakes from 5 spas and 2 mineral water bottling plants. The authors examined whether the increased gamma radiation background, as well as the elevated values of radium and uranium content in reservoir rocks, have a significant impact on the natural radioactivity of these waters. The second objective of this research was to provide information about geochemistry of U, Ra, Rn radionuclides and the radiological and chemical risks incurred by ingestion of isotopes with drinking water. On the basis of results obtained, it is feasible to assess the health hazard posed by ingestion of natural radioactivity with drinking waters. Moreover, the data yielded by this research may be helpful in the process of verification of the application of these waters in balneotherapy. In addition, annual effective radiation doses resulting from the isotopes consumption were calculated on the basis of the evaluated activity concentrations. In dose assessment for uranium and radium isotopes, the authors provided values for different human age groups. The obtained uranium content in the investigated waters was compared with the currently valid regulations concerning the quality of drinking water. Based on the activity concentrations data, the activity isotopic ratios 234 U/ 238 U, 226 Ra/ 238 U, 222 Rn/ 238 U, 222 Rn/ 226 Ra and the correlations between radionuclides content were then examined. In brief, it may be concluded on the basis of the obtained results that radon solubility is inversely proportional to radium and uranium dissolution in environmental water circulation. The presented study allows conclusions to be drawn on the radionuclide circulation among different environmental biota: from

  15. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    International Nuclear Information System (INIS)

    1995-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A

  16. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  17. Mutual Impacts of Geocaching and Natural Environment

    Directory of Open Access Journals (Sweden)

    Jiří Schneider

    2016-01-01

    Full Text Available Rising popularity of geocaching is linked to increased risk of negative impacts on natural environment. Based on that, this paper intends to present possible approach of how to evaluate these impacts in the Landscape protected area Moravian Karst (Czech Republic and in the Vrátna dolina valley (National park Malá Fatra, Slovak Republic. Recreation along with nature conservation has been solved in these areas in the log-run and geocaching has been steadily extending offer of recreational activities. Therefore, it seems desirable to examine how geocaching affects environment and simultaneously how topography or land cover influences availability or difficulty of caches. 57 caches (i.e. one third of the total has been analyzed in the Moravian Karst and 11 caches in the Vrátna dolina valley. To assess impacts, own classification of indicators has been suggested, such as cache attendance, environment attractiveness or visually detected impacts of geocaching on natural environment. Our study revealed the major risk lies primarily in geo-highways which – with respect to soil type, land cover and intensity of cache attendance – grow rather fast. Despite the local nature of detected impacts, an increased attention shall be devoted to environment care and specifically to regulation of attendance.

  18. Natural energy and vernacular architecture

    Energy Technology Data Exchange (ETDEWEB)

    Fathy, H.

    1986-01-01

    This volume presents insights into the indigenous architectural forms in hot arid climates. The author presents his extensive research on climate control, particularly in the Middle East, to demonstrate the advantages of many locally available building materials and traditional building methods. He suggests improved uses of natural energy that can bridge the gap between traditional achievements and modern needs. He argues that various architectural forms in these climates have evolved intuitively from scientifically valid concepts. Such forms combine comfort and beauty, social and physical functionality. He discusses that in substituting modern materials, architects sometimes have ignored the environmental context of traditional architecture. As a result, individuals may find themselves physically and psychologically uncomfortable in modern structures. His approach, informed by a sensitive humanism, demonstrates the ways in which traditional architectural forms can be of use in solving problems facing contemporary architecture, in particular the critical housing situation in the Third World.

  19. Possible effects of groundwater pumping on surface water in the Verde Valley, Arizona

    Science.gov (United States)

    Leake, Stanley A.; Haney, Jeanmarie

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with The Nature Conservancy, has applied a groundwater model to simulate effects of groundwater pumping and artificial recharge on surface water in the Verde Valley sub-basin of Arizona. Results are in two sets of maps that show effects of locations of pumping or recharge on streamflow. These maps will help managers make decisions that will meet water needs and minimize environmental impacts.

  20. Ground ice and hydrothermal ground motions on aufeis plots of river valleys

    Directory of Open Access Journals (Sweden)

    V. R. Alekseev

    2015-01-01

    Full Text Available Localized groundwater outflow and layered freezing of them in forms of large ice clusters on the surface creates specific conditions for energy and mass exchange in the «atmosphere–soil–lithosphere» system. In winter, the soil temperature profile is essentially deformed due to heat emission by the aufeis layer of water at its freezing that forms a specific thermocline layer. Deformation of the temperature profile, gradually decreasing, moves down the cross-section and disappearing at the interface between frozen and thawed rocks. Magnitude and number of the temperature deviations from a «normal» state depends on the heat storage of the aufeis-forming waters and on the number of outflows at a given point. The thermocline formation changes conditions of freezing for underlying ground layers together with mechanism of ice saturation of them, and that results in formation of two-layer ice-ground complexes (IGC which differ drastically from cryogenic features in adjacent parts of the valley. Analysis of genetic characteristics and relation of components of the surface and subsurface layers allowed identification of seven types of the aufeis IGC: massive-segregation, cement-basal, layered-segregation, basal-segregation, vacuum-filtration, pressureinjection, and fissure-vein. Yearly formation and destruction of aufeises and subsurface ices is accompanied by a sequence of particularly hazardous geodynamical phenomena, among which the most important are winter flooding of territories, layered freezing of water, ground heaving, thermokarst, and thermoerosion. Combination of these processes may cause a rapid (often unexpected reconfiguration of channels of both surface and subsurface runoff, abrupt uplifts and subsidences of the surface, and decompaction and «shaking-up» of seasonally thawing and seasonally freezing rocks, which may create exceptionally unfavorable conditions for construction and operation of engineering structures. Aufeis plots

  1. Valley detection using a graphene gradual pn junction with spin–orbit coupling: An analytical conductance calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou, E-mail: yang.mou@hotmail.com [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Wang, Rui-Qiang [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Bai, Yan-Kui [College of Physical Science and Information Engineering and Hebei Advance Thin Films Laboratory, Hebei Normal University, Shijiazhuang, Hebei 050024 (China)

    2015-09-04

    Graphene pn junction is the brick to build up variety of graphene nano-structures. The analytical formula of the conductance of graphene gradual pn junctions in the whole bipolar region has been absent up to now. In this paper, we analytically calculated that pn conductance with the spin–orbit coupling and stagger potential taken into account. Our analytical expression indicates that the energy gap causes the conductance to drop a constant value with respect to that without gap in a certain parameter region, and manifests that the curve of the conductance versus the stagger potential consists of two Gaussian peaks – one valley contributes one peak. The latter feature allows one to detect the valley polarization without using double-interface resonant devices. - Highlights: • Analytical conductance formula of the gradual graphene pn junction with spin–orbit coupling in the whole bipolar region. • Exploring the valley-dependent transport of gradual graphene pn junctions analytically. • Conductance peak without resonance.

  2. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    Science.gov (United States)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  3. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    Science.gov (United States)

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  4. Leguminosas naturalizadas en el Valle del Cauto, Cuba Naturalized legumes in the Cauto Valley, Cuba

    Directory of Open Access Journals (Sweden)

    I Gómez

    2010-12-01

    Full Text Available Con el objetivo de evaluar la dinámica de crecimiento de 24 accesiones del género Brachiaria spp., se desarrolló la presente investigación en la región de Barrancabermeja, Santander, Colombia. Se utilizó un diseño experimental completamente aleatorizado, en 72 parcelas de 21 m2 cada una y tres réplicas (parcelas para cada tratamiento. Las accesiones fueron agrupadas según los hábitos de crecimiento en: estoloníferas, decumbentes y erectas, y se determinó la tasa de crecimiento en función de la altura del pasto. Las accesiones con mejor crecimiento durante la investigación fueron: de las estoloníferas, B. dictyoneura CIAT-6133; de las de hábito decumbente, B. decumbens CIAT-606; y de las de crecimiento erecto, B. brizantha CIAT-16113, CIAT-26110, CIAT-26318 y CIAT-16322. Algunas accesiones no tuvieron un buen comportamiento, al parecer por las condiciones edafoclimáticas a las que fueron sometidas. Entre ellas se encuentran B. dictyoneura CIAT-16871, B. ruziziensis CIAT-26180 y B. brizantha CIAT-16212, 26124 y 26427.With the objective of prospect and collect the naturalized legumes for livestock production usage in the Cauto Valley, Cuba, two searches were made in representative zones of the region. The first search was conducted in the territory located west of Bayamo city, where there are different soils and rainfall regimes, and the second one on soils affected by salinity. In prospection number 1 the presence of 17 genera was determined and within them a total of 22 species, among which the following prevailed: Galactia spiciformis, Centrosema molle, Desmodium triflorum and Teramnus uncinatum; the existence of an important number of species was also known on vertisol soils with deficient drainage, which edaphic grouping constitutes the most extended in the region, and on the other hand, the associability degree of each legume with other species of the spontaneous vegetation present in the search areas, was characterized. In

  5. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......–airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  6. Fulfilling information needs of environmental groups: the current West Valley experience

    International Nuclear Information System (INIS)

    Hoffman, W.D.

    1986-01-01

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety

  7. Fulfilling information needs of environmental groups: the current West Valley experience

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, W.D.

    1986-07-15

    This paper addresses the justification for environmental group communications and the options available in formatting such a dialogue. The West Valley program is explained including realized and potential project benefits. The environmental communications program in place at the West Valley Demonstration Project (WVDP) was instituted in the throes of a challenging scenario. The site had just been chosen by the US Department of Energy (DOE) to demonstrate the cleanup of high-level nuclear wastes with a relatively new technology. The former nuclear fuel reprocessing operator had maintained a closed door communications policy. Consequently, the initial reaction of environmental groups to the project was one of suspicion and fear. The WVDP information exchange involves regularly bringing persons to the site, many of whom are antinuclear and initially skeptical of the project. Many have indicated their early concern about the site has been alleviated; furthermore, they are impressed with the purpose of the project and its commitment to safety.

  8. The British Columbia natural gas market overview and assessment : an energy market assessment

    International Nuclear Information System (INIS)

    2004-04-01

    The National Energy Board monitors the supply of all energy commodities in Canada along with the demand for Canadian energy commodities in domestic and export markets. This report provides an assessment of the natural gas market in British Columbia (BC) and discusses several issues facing the market. The main challenges facing the market in recent years have been rising prices, price spikes and increased price volatility. New exploration and development projects have been announced along with new gas pipeline projects that move gas to eastern markets. Industrial consumers are exploring fuel alternatives to reduce natural gas consumption. Despite these challenges, the Board believes the natural gas market in British Columbia is working well. Natural gas prices are integrated with the North American market, consumers have responded to higher prices by reducing demand, and producers have increased exploration and production. Price discovery has improved due to better pricing reporting standards and access to electronic gas trading at pricing points for BC gas. The small market size in British Columbia and the lack of storage in the Lower Mainland limit market liquidity in comparison with other major market centres. 20 figs

  9. Harvesting electrical energy from torsional thermal actuation driven by natural convection.

    Science.gov (United States)

    Kim, Shi Hyeong; Sim, Hyeon Jun; Hyeon, Jae Sang; Suh, Dongseok; Spinks, Geoffrey M; Baughman, Ray H; Kim, Seon Jeong

    2018-06-07

    The development of practical, cost-effective systems for the conversion of low-grade waste heat to electrical energy is an important area of renewable energy research. We here demonstrate a thermal energy harvester that is driven by the small temperature fluctuations provided by natural convection. This harvester uses coiled yarn artificial muscles, comprising well-aligned shape memory polyurethane (SMPU) microfibers, to convert thermal energy to torsional mechanical energy, which is then electromagnetically converted to electrical energy. Temperature fluctuations in a yarn muscle, having a maximum hot-to-cold temperature difference of about 13 °C, were used to spin a magnetic rotor to a peak torsional rotation speed of 3,000 rpm. The electromagnetic energy generator converted the torsional energy to electrical energy, thereby producing an oscillating output voltage of up to 0.81 V and peak power of 4 W/kg, based on SMPU mass.

  10. Prospective regional studies: The Rhine Meuse study and the Tennessee Valley study

    International Nuclear Information System (INIS)

    Bayer, A.

    1980-01-01

    Within the scope of this report two regional studies are presented: - the 'Rhein-Maas-Study' within which the expected radiological impact of the population in the Rhein and Maas basin - which is situated within Central Europe - is assessed on the basis of the planned and forecasted development of nuclear energy in the coming decades. - The 'Tennessee Valley Study' within which the expected radiological impact of the population in the Tennessee-Cumberland basis - which is situated within North America - is assessed likewise on the basis of the planned and forecasted development of nuclear energy in the coming decades. (orig./RW)

  11. 78 FR 79478 - Advisory Committee on Climate Change and Natural Resource Science

    Science.gov (United States)

    2013-12-30

    ... Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting notice... announce that the Advisory Committee on Climate Change and Natural Resource Science will hold a meeting..., National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201 Sunrise Valley Drive...

  12. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A.

    1993-02-01

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils number-sign 2 and number-sign 6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort

  13. Energy companies in the Netherlands work on sustainable use of natural gas. Manifesto

    International Nuclear Information System (INIS)

    Ten Berge, J.B.M.; Boersma, M.A.M.; Dijkgraaf, H.G.; Platenkamp, R.J.

    2004-01-01

    This manifesto concerns the vision of several Dutch energy companies with regard to sustainable use of natural gas in the Netherlands. The aim is to realize innovations in the field of efficient supply of natural gas, improving the efficiency of gas appliances, use of natural gas in transportation, development of 'virtual power plants', and experimental applications for 'green' gas and hydrogen [nl

  14. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    Science.gov (United States)

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  15. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    Science.gov (United States)

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    into upper- and lower-aquifer systems. Ground-water inflow occurs as natural recharge in the form of streamflow infiltration and areal infiltration of precipitation along stream channels, artificial recharge from infiltration of imported water at recharge ponds and along selected stream channels, and leakage along selected transmission pipelines. Ground-water outflow occurs as evapotranspiration, stream base flow, discharge through pumpage from wells, and subsurface flow to the San Francisco Bay. The geohydrologic framework of the regional ground-water flow system was represented as six model layers. The hydraulic properties were redefined on the basis of cell-based lithologic properties that were delineated in terms of aggregate thicknesses of coarse-grained, fine-grained, and mixed textural categories. The regional aquifer systems also are dissected by several laterally extensive faults that may form at least partial barriers to the lateral flow of ground water. The spatial extent of the ground-water flow model was extended and refined to cover the entire Santa Clara Valley, including the Evergreen subregion. The temporal discretization was refined and the period of simulation was extended to 197099. The model was upgraded to MODFLOW-2000 (MF2K) and was calibrated to fit historical ground-water levels, streamflow, and land subsidence for the period 197099. The revised model slightly overestimates measured water levels with an root-mean-square error of -7.34 feet. The streamflow generally shows a good match on gaged creeks and rivers for flows greater than 1.2 cubic feet per second. The revised model also fits the measured deformation at the borehole extensometer site located near San Jose within 16 to 27 percent and the extensometer site near Sunnyvale within 3 percent of the maximum measured seasonal deformation for the deepest extensometers. The total ground-water inflow and outflow of about 225,500 acre-feet per

  16. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  17. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  18. 76 FR 69720 - NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing...

    Science.gov (United States)

    2011-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [ Docket No. ER12-295-000] NaturEner Rim Rock Wind Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... NaturEner Rim Rock Wind Energy, LLC's application for market-based rate authority, with an accompanying...

  19. WHIPJET progress on piping restraint elimination at Beaver Valley - 2

    International Nuclear Information System (INIS)

    Server, W.L.; Szy Slow Ski, J.J.; Goldstein, N.A.

    1986-01-01

    Fracture mechanics technology has advanced to the point that an engineering approach using the concept of leak-before-break in lieu of postulating double-ended pipe rupture is now possible. An approach based upon this fracture mechanics technology, termed WHIPJET, is currently being applied to Beaver Valley Power Station, Unit 2 for Duquesne Light Company. The WHIPJET philosophy is simple, conservative, and provides defense-in-depth arguments for high energy piping throughout the balance-of-plant. Progress being made in applying WHIPJET to several lines is presented

  20. Breathing Valley Fever

    Centers for Disease Control (CDC) Podcasts

    2014-02-04

    Dr. Duc Vugia, chief of the Infectious Diseases Branch in the California Department of Public Health, discusses Valley Fever.  Created: 2/4/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/5/2014.

  1. Natural gas in Brazil's energy matrix: demand for 1995-2010 and usage factors

    International Nuclear Information System (INIS)

    Fernandes, Elton; Fonseca, Marcus Vinicius de A; Alonso, P.S.R.

    2005-01-01

    This paper describes and analyzes the constraints hampering achievement of the 12% share planned for natural gas in Brazil's energy matrix by 2010, and advises policies for reaching that goal on the basis of forecasts and three probable scenarios for the development of the Brazilian economy. The 12% share goal was established in 1993 by the Ministry of Mines and Energy and confirmed in 2000, and is now in full development. The figures used to represent the estimates of natural gas demands in the three scenarios were obtained from the Integrated Energy Planning Model (MIPE--Modelo Integrado de Planejamento Energetico), which is a technical and economic forecasting model developed by a group of researchers linked to the Energy Planning Program run by the Graduate Engineering Programs Coordination Unit at the Rio de Janeiro Federal University (COPPE-UFRJ) under the sponsorship of Petrobras (a Brazilian enterprise operating in the oil and gas segment) and Eletrobras (a Brazilian enterprise in charge of electricity demand planning). The analysis of the constraints take place under the aegis of the objective proposed by the Brazilian Government. The authors suggest specific actions to be taken in four application areas of natural gas: industrial, electric power generation, domestic distribution and vehicular fleet conversions. All the actions proposed encourage the use of a fuel with low environmental impacts and high calorie power, replacing firewood and other polluting fuels and are evaluated relative to the impacts occurring in society, especially from the standpoint of social welfare in a developing country. The necessity of developing the goods and services infrastructure in the country to support the natural gas insertion in the Brazilian energy matrix is also addressed

  2. Natural gas reserves/total energy consumption: a useful new ratio for addressing global climate change concerns

    International Nuclear Information System (INIS)

    Siddiqi, T.A.

    2002-01-01

    Energy analysts have used the reserves/production ratios for oil and natural gas for decades as indicators of the ability of countries to maintain or increase their production of those fuels. The global community is now faced with the challenge of reducing carbon dioxide emissions from a variety of sources, with the energy sector being the largest contributor to the anthropogenic emissions of greenhouse gases. Natural gas has emerged as a highly desirable fuel, since it produces lower emissions of carbon dioxide than coal or oil for equivalent amounts of energy supplied. The ratio of a country's proven natural gas reserves to its total energy consumption is a good indicator of its ability to improve its air quality situation or address greenhouse gas reduction targets from domestic natural gas sources. This paper provides the ratio for several countries at different stages of development, and discusses some of the implications. In countries where exploration for natural gas has been limited, the estimated resources in place may sometimes be a more useful indicator than proven reserves, and could be used instead. (author)

  3. Groundwater-flow and land-subsidence model of Antelope Valley, California

    Science.gov (United States)

    Siade, Adam J.; Nishikawa, Tracy; Rewis, Diane L.; Martin, Peter; Phillips, Steven P.

    2014-01-01

    Antelope Valley, California, is a topographically closed basin in the western part of the Mojave Desert, about 50 miles northeast of Los Angeles. The Antelope Valley groundwater basin is about 940 square miles and is separated from the northern part of Antelope Valley by faults and low-lying hills. Prior to 1972, groundwater provided more than 90 percent of the total water supply in the valley; since 1972, it has provided between 50 and 90 percent. Most groundwater pumping in the valley occurs in the Antelope Valley groundwater basin, which includes the rapidly growing cities of Lancaster and Palmdale. Groundwater-level declines of more than 270 feet in some parts of the groundwater basin have resulted in an increase in pumping lifts, reduced well efficiency, and land subsidence of more than 6 feet in some areas. Future urban growth and limits on the supply of imported water may increase reliance on groundwater.

  4. Technical safety appraisal of the West Valley Demonstration Project

    International Nuclear Information System (INIS)

    1989-09-01

    This report presents the results of one in a series of Technical Safety Appraisals (TSAs) being conducted of DOE nuclear operations by the Assistant Secretary for Environment, Safety, and Health Office of Safety Appraisals TSAs are one of the ititiatives announced by the Secretary of Energy on September 18, 1985, to enhance the DOE environment, safety and health program. This report presents the results of a TSA of the West Valley Demonstration Project (WVDP). The appraisal was conducted by a team of exerts assembled by the DOE Office of Safety Appraisal and was conducted during onsite visits of June 26-30 and July 10-21, 1989. West Valley, about 30 miles south of Buffalo, New York is the location of the only commercial nuclear fuel reprocessing facility operated in the United States. Nuclear Fuels Services, Inc. (NFS) operated the plant from 1966 to 1972 and processed about 640 metric tons of spent reactor fuel. The reprocessing operation generated about 560,000 gallons of high-level radioactive waste, which was transferred into underground tanks for storage. In 1972 NFS closed the plant and subsequently decided not to reopen it

  5. Incidence of the phenomena El Nino and The Nina, on the climatic conditions in the valley of the River Cauca. Part I - climatological Analysis

    International Nuclear Information System (INIS)

    Pena Quinones Andres Javier; Cortes Betancourt, Enrique; Montealegre Leon, Fernando

    2001-01-01

    The influence of the phenomena known as El Nino and La Nina on the climatic conditions in the Cauca Valley (South-western Colombia) was studied by means of the analysis of climatic variability caused by these phenomena. Data were analysed from three weather stations located in the sugarcane area of influence, recorded during the 1972-1998 period. It was found that when these events are present in the Tropical Pacific Ocean, the behaviour of some climatic variables in the Cauca Valley is altered. These anomalies, which are of different magnitude for the different climatic variables, tend to be opposite in nature. The incidence of these phenomena on the Cauca Valley climate is noticeable in certain seasons and months

  6. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    Science.gov (United States)

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  7. New fission valley for 258Fm and nuclei beyond

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.; Swiatecki, W.J.

    1986-01-01

    Experimental results on the fission properties of nuclei close to 264 Fm show sudden and large changes with a change of only one or two neutrons or protons. The nucleus 258 Fm, for instance, undergoes symmetric fission with a half-life of about 0.4 ms and a kinetic energy peaked at about 235 MeV whereas 256 Fm undergoes asymmetric fission with a half-life of about 3 h and a kinetic energy peaked at about 200 MeV. Qualitatively, these sudden changes hve been postulated to be due to the emergence of fragment shells in symmetric fission products close to 132 Sn. A quantitative calculation that shows where high-kinetic-energy symmetric fission occurs and why it is associated with a sudden and large decrease in fission half-lives. The study is based on calculations of potential-energy surfaces in the macroscopic-microscopic model and a semi-empirical model for the nuclear inertia. The implications of the new fission valley on the stability of the heaviest elements is discussed. 33 refs., 12 figs

  8. 75 FR 62852 - Notice of Availability of the Record of Decision for the Chevron Energy Solutions Lucerne Valley...

    Science.gov (United States)

    2010-10-13

    ..., 22835 Calle San Juan de Los Lagos, Moreno Valley, California 92553 or via the Internet at http://www.blm..., parking area, and set-back area. A portion of Zircon Road will also be relocated. Pursuant to BLM's CDCA...

  9. Energy Security prospects in Cyprus and Israel: A focus on Natural Gas

    Directory of Open Access Journals (Sweden)

    Constantinos Taliotis

    2014-06-01

    Full Text Available The global production of natural gas has increased from 1226 bcm in 1973 to 3282 bcm in 2010 and is projected to continue rising by an annual growth rate of 1.6% between 2010 to 2035. Cyprus and Israel have recently made major offshore discoveries of natural gas, which can supply to a great extent the two countries’ current domestic energy needs for the next few decades and still export a substantial volume. MESSAGE, a global optimization model was used to explore the possible interactions between the two countries’ energy systems. Scenarios are presented that assess the export potential for electricity (generated by gas-fired power plants, liquefied natural gas (LNG or gas-to-liquid products (GTL. The results are compared to a scenario without any available reserves to illustrate the financial benefits that will arise from the exploitation of the gas resources in the two countries.

  10. Quaternary glaciation of the Tashkurgan Valley, Southeast Pamir

    Science.gov (United States)

    Owen, Lewis A.; Chen, Jie; Hedrick, Kathyrn A.; Caffee, Marc W.; Robinson, Alexander C.; Schoenbohm, Lindsay M.; Yuan, Zhaode; Li, Wenqiao; Imrecke, Daniel B.; Liu, Jinfeng

    2012-07-01

    The Quaternary glacial history of Tashkurgan valley, in the transition between the Pamir and Karakoram, in Xinjiang Province, China was examined using remote sensing, field mapping, geomorphic analysis of landforms and sediments, and 10Be terrestrial cosmogenic nuclide dating. Moraines were assigned to four glacial stages: 1) the Dabudaer glacial stage that dates to the penultimate glacial cycle and/or earlier, and may represent one or more glaciations; 2) the Tashkurgan glacial stage that dates to early last glacial, most likely Marine Oxygen Isotope Stage (MIS) 4; 3) the Hangdi glacial stage that dates to MIS 2, possibly early MIS 2; and 4) the Kuzigun glacial stage that dates to the MIS 2, possibly the global Last Glacial Maximum, and is younger than the Hangdi glacial stage. Younger moraines and rock glaciers are present at the heads of tributary valleys; but these were inaccessible because they are located close to politically sensitive borders with Pakistan, Afghanistan and Tajikistan. Glaciers during the Dabudaer glacial stage advanced into the central part of the Tashkurgan valley. During the Tashkurgan glacial stages, glaciers advanced several kilometers beyond the mouths of the tributary valleys into the Tashkurgan valley. Glaciers during the Hangdi and Kuzigun glacial stages advanced just beyond the mouths of the tributary valleys. Glaciation in this part of the Himalayan-Tibetan orogen is likely strongly controlled by northern hemisphere climate oscillations, although a monsoonal influence on glaciation cannot be ruled out entirely.

  11. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    International Nuclear Information System (INIS)

    Rendall, John D.; Steiner, Alison F.; Pendl, Michael P.; Biedermann, Charles A.; Steiner II, Robert E.; Fox, James R.; Hoch, Jerald J.; Wrotniak, Chester M.; Werchowski, Rebecca L.

    2016-01-01

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  12. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2014

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2015-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2014. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2014. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2014 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  13. West Valley Demonstration Project Annual Site Environmental Report (ASER) for Calendar Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Rendall, John D. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, Alison F. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Pendl, Michael P. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Biedermann, Charles A. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Steiner, II, Robert E. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Fox, James R. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Hoch, Jerald J. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Wrotniak, Chester M. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States); Werchowski, Rebecca L. [CH2M HILL BWXT West Valley, LLC, West Valley, NY (United States)

    2016-09-15

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2015. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2015. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2015 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  14. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  15. Linking Orbital, Field, and Laboratory Analyses of Dolerites in the McMurdo Dry Valleys of Antarctica: Terrestrial Studies and Planetary Applications

    Science.gov (United States)

    Salvatore, M. R.; Mustard, J. F.; Head, J. W.; Marchant, D. R.; Wyatt, M. B.; Seeley, J.

    2012-03-01

    Primary igneous and secondary alteration signatures can be resolved using orbital spectroscopy over mafic regions of the McMurdo Dry Valleys. We assess the nature of these signatures and their link to surface stability and regional microclimates.

  16. MX Siting Investigation. Gravity Survey - Sevier Desert Valley, Utah.

    Science.gov (United States)

    1981-01-24

    Cheyenne, Wyoming. DMAHTC reduces the data to Simple Bouguer Anomaly (see Section A1.4, Appendix Al.0). The Defense Mapping Agency Aerospace Center...Desert Valley, Utah ......... 2 2 Topographic Setting - Sevier Desert Valley, Utah . 3 LIST OF DRAWINGS Drawing Number 1 Complete Bouguer Anomaly...gravity stations were distributed throughout the valley at an approxi- mate interval of 1.4 miles (2.3 km). Drawing 1 is a Complete Bouguer Anomaly

  17. Anthropogenic influence on forest landscape in the Khumbu valley, Nepal

    Science.gov (United States)

    Lingua, Emanuele; Garbarino, Matteo; Urbinati, Carlo; Carrer, Marco

    2013-04-01

    High altitude Himalayan regions are geo-dynamically very active and very sensitive to natural and anthropogenic disturbances due to their steep slopes, variations of precipitations with elevation and short growing periods. Nonetheless, even in this remote region human pressure is often the most important factor affecting forest landscape. In the last decades the firewood demand has increased each year between September to December. The increase in the number of tourists, mountaineering, guides, porters, carpenters, lodges lead to a peak in the use of fuelwood. In order to understand anthropogenic impacts on forest, resources landscape and stand scale dynamics were analyzed in the Sagarmatha National Park (SNP) and its Buffer Zone in the Khumbu Valley (Nepal, Eastern Himalaya). Biological and historical data sources were employed, and a multi-scale approach was adopted to capture the influence of human activities on the distribution of tree species and forest structure. Stand structure and a range of environmental variables were sampled in 197 20x20 m square plots, and land use and anthropogenic variables were derived in a GIS environment (thematic maps and IKONOS, Landsat and Terra ASTER satellite images). We used multivariate statistical analyses to relate forest structure, anthropogenic influences, land uses, and topography. Fuel wood is the prime source of energy for cooking (1480-1880 Kg/person/year) and Quercus semecarpifolia, Rhododendron arboreum and Pinus wallichiana, among the others, are the most exploited species. Due to lack of sufficient energy sources deforestation is becoming a problem in the area. This might be a major threat causing soil erosion, landslides and other natural hazards. Among the 25 species of trees that were found in the Buffer Zone Community Forests of SNP, Pinus wallichiana, Lyonia ovalifolia, Quercus semecarpifolia and Rhododendron arboreum are the dominant species. The total stand density ranged from 228 to 379 tree/ha and the

  18. Sutter Buttes-the lone volcano in California's Great Valley

    Science.gov (United States)

    Hausback, Brain P.; Muffler, L.J. Patrick; Clynne, Michael A.

    2011-01-01

    The volcanic spires of the Sutter Buttes tower 2,000 feet above the farms and fields of California's Great Valley, just 50 miles north-northwest of Sacramento and 11 miles northwest of Yuba City. The only volcano within the valley, the Buttes consist of a central core of volcanic domes surrounded by a large apron of fragmental volcanic debris. Eruptions at the Sutter Buttes occurred in early Pleistocene time, 1.6 to 1.4 million years ago. The Sutter Buttes are not part of the Cascade Range of volcanoes to the north, but instead are related to the volcanoes in the Coast Ranges to the west in the vicinity of Clear Lake, Napa Valley, and Sonoma Valley.

  19. Gravity and magnetic data of Midway Valley, southwest Nevada

    International Nuclear Information System (INIS)

    Ponce, D.A.; Langenheim, V.E.; Sikora, R.F.

    1993-01-01

    Detailed gravity and ground magnetic data collected along five traverses across Midway Valley on the eastern flank of Yucca Mountain in southwest Nevada are described. These data were collected as part of an effort to evaluate faulting in the vicinity of proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. Geophysical data show that Midway Valley is bounded by large gravity and magnetic anomalies associated with the Bow Ridge and Paintbrush Canyon faults, on the west side of Exile Hill and on the west flank of Fran Ridge, respectively. In addition, Midway Valley itself is characterized by a number of small-amplitude anomalies that probably reflect small-scale faulting beneath Midway Valley

  20. Natural Regulation of Energy Flow in a Green Quantum Photocell.

    Science.gov (United States)

    Arp, Trevor B; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M

    2016-12-14

    Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light energy harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light-harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we compare the theoretical minimum energy fluctuations in nanoscale quantum heat engine photocells that incorporate one or two photon-absorbing channels and show that fluctuations are naturally suppressed in the two-channel photocell. This intrinsic suppression acts as a passive regulation mechanism that enables the efficient conversion of varying incident solar power into a steady output for absorption over a broad range of the solar spectrum on Earth. Remarkably, absorption in the green portion of the spectrum provides no inherent regulatory benefit, indicating that green light should be rejected in a photocell whose primary role is the regulation of energy flow.

  1. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  2. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    International Nuclear Information System (INIS)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-01-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km 2 -large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 o steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  3. Gate-tunable valley-spin filtering in silicene with magnetic barrier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X. Q., E-mail: xianqiangzhe@126.com [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Meng, H. [School of Physics and Telecommunication Engineering, Shanxi University of Technology, Hanzhong 723001 (China)

    2015-05-28

    We theoretically study the valley- and spin-resolved scattering through magnetic barrier in a one layer thick silicene, using the mode-matching method for the Dirac equation. We show that the spin-valley filtering effect can be achieved and can also be tuned completely through both a top and bottom gate. Moreover, when reversing the sign of the staggered potential, we find the direction of the valley polarization is switched while the direction of spin polarization is unchanged. These results can provide some meaningful information to design valley valve residing on silicene.

  4. Restriction of Rift Valley Fever Virus Virulence in Mosquito Cells

    Directory of Open Access Journals (Sweden)

    Sonja R. Gerrard

    2010-02-01

    Full Text Available Arboviruses are maintained in a natural cycle that requires blood-sucking arthropod and vertebrate hosts. Arboviruses are believed to persistently infect their arthropod host without overt pathology and cause acute infection with viremia in their vertebrate host. We have focused on elucidating how a specific arbovirus, Rift Valley fever (RVF virus, causes cytopathic effect in cells derived from vertebrates and non-cytopathic infection in cells derived from arthropods. We demonstrate that the vertebrate virulence factor, NSs, is functional in arthropod cells but is expressed at significantly lower levels in infected arthropod versus infected vertebrate cells.

  5. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  6. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  7. Ocorrência de infecção natural de Fasciola hepatica Linnaeus, 1758 em Lymnaea columella Say, 1817 no Vale do Paraíba, SP, Brasil Natural infection by Fasciola hepatica in Lymnaea columella in the Paraíba river valley, S. Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Marlene Tiduko Ueta

    1980-06-01

    Full Text Available Foram registradas em Piquete, no vale do rio Paraíba do Sul (SP, Brasil, taxas de 1,22% e 0,14% de infecção natural em Lymnaea columella, por Fasciola hepatica. Em um único exemplar de Lymnaea columella dentre os 1.052 examinados, foram observadas rédias com xifidiocercárias, rédias com cercárias de Fasciola hepatica e metacercárias de Echinostomatidae.Infection rates of 1.22% and 0.14% were obtained in Lymnaea columella snails naturally infected by Fasciola hepatica. Samples of the snails were collected in Piquete, a municipality of Paraíba do Sul, a river valley area in the State of S. Paulo. Also observed was one of the 1052 specimen of the Lymnaea columella rediae which had xiphidiocercariae and rediae with Fasciola hepatica cercariae and metacercariae of Echinostomatidae.

  8. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    Science.gov (United States)

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  9. Sleeping sickness and its relationship with development and biodiversity conservation in the Luangwa Valley, Zambia.

    Science.gov (United States)

    Anderson, Neil E; Mubanga, Joseph; Machila, Noreen; Atkinson, Peter M; Dzingirai, Vupenyu; Welburn, Susan C

    2015-04-15

    The Luangwa Valley has a long historical association with Human African Trypanosomiasis (HAT) and is a recognised geographical focus of this disease. It is also internationally acclaimed for its high biodiversity and contains many valuable habitats. Local inhabitants of the valley have developed sustainable land use systems in co-existence with wildlife over centuries, based on non-livestock keeping practices largely due to the threat from African Animal Trypanosomiasis. Historical epidemics of human sleeping sickness have influenced how and where communities have settled and have had a profound impact on development in the Valley. Historical attempts to control trypanosomiasis have also had a negative impact on conservation of biodiversity.Centralised control over wildlife utilisation has marginalised local communities from managing the wildlife resource. To some extent this has been reversed by the implementation of community based natural resource management programmes in the latter half of the 20(th) century and the Luangwa Valley provides some of the earliest examples of such programmes. More recently, there has been significant uncontrolled migration of people into the mid-Luangwa Valley driven by pressure on resources in the eastern plateau region, encouragement from local chiefs and economic development in the tourist centre of Mfuwe. This has brought changing land-use patterns, most notably agricultural development through livestock keeping and cotton production. These changes threaten to alter the endemically stable patterns of HAT transmission and could have significant impacts on ecosystem health and ecosystem services.In this paper we review the history of HAT in the context of conservation and development and consider the impacts current changes may have on this complex social-ecological system. We conclude that improved understanding is required to identify specific circumstances where win-win trade-offs can be achieved between the conservation of

  10. Innovation excellence. Creating market success in the energy and natural resources sector

    Energy Technology Data Exchange (ETDEWEB)

    Scholtissek, Stephan

    2011-07-01

    In this book, author Stephan Scholtissek examines innovations as they relate to companies in the energy and natural resources sector, which contrary to popular opinion are indeed innovative. These companies are undergoing massive change as the balance of power shifts towards emerging economies and as the world looks to a range of low carbon technologies. Scholtissek sheds light on different forms of innovation and argues that R and D resources must be extended across all these forms. He includes a number of detailed case studies from the energy and natural resources industries that have shown a remarkable capacity to innovate: BP, Dow Corning, Evonik Industries, Iberdrola, Marathon Oil, Perrier, Schott and Siemens. (orig.)

  11. Four newly recorded species of Dryopteridaceae from Kashmir valley, India

    Directory of Open Access Journals (Sweden)

    SHAKOOR AHMAD MIR

    2014-04-01

    Full Text Available Mir SA, Mishra AK, Reshi ZA, Sharma MP. 2014. Four newly recorded species of Dryopteridaceae from Kashmir valley, India. Biodiversitas 15: 6-11. Habitat diversity, elevation, cloud cover, rainfall, seasonal and temperature variations have created many ideal sites for the luxuriant growth of pteridophytes in the Kashmir valley, yet all the regions of the valley have not been surveyed. In Kashmir valley the family Dryopteridaceae is represented by 31 species. During the recent extensive field surveys of Shopian district four more species viz., Dryopteris caroli-hopei Fraser-Jenkins, Dryopteris blanfordii subsp. nigrosquamosa (Ching Fraser-Jenkins, Dryopteris pulvinulifera (Bedd. Kuntze and Polystichum Nepalense (Spreng C. Chr. have been recorded for the first time from the valley. The taxonomic description, synonyms, distribution and photographs of each species are given in this article.

  12. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  13. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1995-09-01

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE's goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology

  14. Mathematics in energy related research at the Tennessee Valley Authority, at Union Carbide's Oak Ridge Facilities, and at University of Tennessee College of Engineering. Final report

    International Nuclear Information System (INIS)

    Barett, L.K.

    1979-05-01

    This report contains a description of the work performed under the Department of Energy Contract No. ER078-S-05-5944 to the University of Tennessee. The major objective of this contract was to survey and to classify a selection of the mathematics used in energy-related activities at the Tennessee Valley Authority (TVA), at Union Carbide's Oak Ridge Facilities (UCORF), and at the University of Tennessee College of Engineering (UTCE). Eighty-seven projects were identified at these organizations in which mathematics plays a significant modeling or problem-solving role. Uniform abstracts of these projects are included in this report, as well as abstracts of twenty-seven presentations by TVA and UCORF personnel on the topic of mathematics in energy research, at the 1978 Fall SIAM meeting. Classifications of these one hundred and fourteen abstracts are given in terms of the energy area or function involved and in terms of the mathematical disciplines used in the activity. Only a selection of the mathematical activity at the TVA, UCORF, and UTCE involved in energy research was obtained due to time and budget constraints. However, it was possible to make some important observations and recommendations based upon these sample data, and these are included in the summary of this report

  15. Flowers of Çoruh Valley

    Directory of Open Access Journals (Sweden)

    Ramazan Çakmakçı

    2018-01-01

    Full Text Available Coruh valley has an important biological diversity in term of plants, flora-fauna, wildlife and ecosystems. These regions contain the landraces, wild and weedy relatives, other wild, herbaceous and flowering trees, herbaceous flowering plants, medicinal and aromatic and flowering and ornamental shrubs plants species which are especially economically important plant for floriculture, eco-tourism, botanical tourism and nature tourism. Many important medicinal and aromatic and ornamental plants species are found in this region and naturally grow. It is considered that Acantholimon, Achillea, Alkanna, Allium, Amygdalus, Angelica, Anemone, Anthemis, Arabis, Arctium, Artemisia, Asparagus, Asperula, Astragalus, Calamintha, Calendula, Calutea, Campanula, Capparis, Cardamine, Centaurea, Cephalanthera, Cephalaria, Chelidonium, Chenopodium, Chysanthemum, Colchicum, Consolida, Coriandrum, Cornus, Coronilla, Cerasus, Cotoneaster, Crataegus, Crocus, Cyclamen, Dactylorhiza, Digitalis, Dianthus, Draba, Echinops, Equisetum, Ferula, Filipendula, Fritillaria, Fumaria, Gagea, Galanthus, Galium, Genista, Gentiana, Geranium, Geum, Gladiolus, Glychirrza, Helichrysum, Hesperis, Hypericum, İnula, İris, Isatis, Juniperus, Lilium, Linaria, Linum, lysimachia, Malus, Malva, Marrubium, Melissa, Mentha, Micromeria, Morina, Muscari, Mysotis, Narcissus, Neotchichatchewia, Nepeta, Onobrychis, Orchis, Ornithogalum, Origanum, Paeonia, Papaver, Pedicularis, Peganum, Phelypaea, Platanthera, Plantago, Pilosella, Pelargonium, Potentilla, Polygonum, Polygala, Primula, Punica, Prunus, Pyrus, Ranunculus, Rhamnus, Rhododendron, Rhus, Rosa, Rubia, Rubus, Rumex, Salvia, Sambucus, Satureja, Scilla, Scorzonera, Scutellaria, Sedum, Sempervivum, Sideritis, Sophora, Sorbus, Stachys, Tanecetum, Teucrium, Thymus, Trigonella, Tulipa, Tussilago, Uechtriitzia, Vaccinium, Verbascum, Verbena, Veronica, Viburnum and Ziziphora species commonly found in the region may be may be evaluated economically.

  16. Ventilation potential during the emissions survey in Toluca Valley, Mexico

    Science.gov (United States)

    Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.

    2017-12-01

    During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.

  17. Residence Times in Central Valley Aquifers Recharged by Dammed Rivers

    Science.gov (United States)

    Loustale, M.; Paukert Vankeuren, A. N.; Visser, A.

    2017-12-01

    Groundwater is a vital resource for California, providing between 30-60% of the state's water supply. Recent emphasis on groundwater sustainability has induced a push to characterize recharge rates and residence times for high priority aquifers, including most aquifers in California's Central Valley. Flows in almost all rivers from the western Sierra to the Central Valley are controlled by dams, altering natural flow patterns and recharge to local aquifers. In eastern Sacramento, unconfined and confined shallow aquifers (depth recharged by a losing reach of the Lower American River, despite the presence of levees with slurry cut-off walls.1 Flow in the Lower American River is controlled through the operation of the Folsom and Nimbus Dams, with a minimum flow of 500 cfs. Water table elevation in wells in close proximity to the river are compared to river stage to determine the effect of river stage on groundwater recharge rates. Additionally, Tritium-3Helium dates and stable isotopes (∂18O and ∂2H) have been measured in monitoring wells 200- 2400 ft lateral distance from the river, and depths of 25 -225 feet BGS. Variation in groundwater age in the vertical and horizontal directions are used to determine groundwater flow path and velocity. These data are then used to calculate residence time of groundwater in the unconfined and confined aquifer systems for the Central Valley in eastern Sacramento. Applying groundwater age tracers can benefit future compliance metrics of the California Sustainable Groundwater Resources Act (SGMA), by quantifying river seepage rates and impacts of groundwater management on surface water resources. 1Moran et al., UCRL-TR-203258, 2004.

  18. Fitness-valley crossing with generalized parent-offspring transmission.

    Science.gov (United States)

    Osmond, Matthew M; Otto, Sarah P

    2015-11-01

    Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene complexes separated by "valleys" of low fitness. Crossing such fitness valleys allows a population to escape suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright's shifting balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by allowing bias in parent-offspring transmission. This generalization extends the existing mathematical framework to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible enough to provide insight into shifts between alternate stable states in cultural systems with "transmission valleys". Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the limiting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance, and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times. Despite component traits being passed on poorly in the previous cultural background, small advantages in the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some of these assumptions can promote fitness-valley crossing. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Energy-Efficient Train Operation Using Nature-Inspired Algorithms

    Directory of Open Access Journals (Sweden)

    Kemal Keskin

    2017-01-01

    Full Text Available A train operation optimization by minimizing its traction energy subject to various constraints is carried out using nature-inspired evolutionary algorithms. The optimization process results in switching points that initiate cruising and coasting phases of the driving. Due to nonlinear optimization formulation of the problem, nature-inspired evolutionary search methods, Genetic Simulated Annealing, Firefly, and Big Bang-Big Crunch algorithms were employed in this study. As a case study a real-like train and test track from a part of Eskisehir light rail network were modeled. Speed limitations, various track alignments, maximum allowable trip time, and changes in train mass were considered, and punctuality was put into objective function as a penalty factor. Results have shown that all three evolutionary methods generated effective and consistent solutions. However, it has also been shown that each one has different accuracy and convergence characteristics.

  20. Energy saving by using natural energy from the shallow ground depths - many years operating results

    Science.gov (United States)

    Besler, Maciej; Skrzycki, Maciej; Cepiński, Wojciech

    2017-11-01

    We pay back more and more larger attention on solutions which saving energy produced from conventional fuels. This is possible to obtainment in significant quantities in fields in which use up the large quantities of energy. The formation the microclimate of interiors is an example of such situation. Especially in the case air conditioning, heating and mechanical ventilation. There is, however, a possibility of energy saving as well as considerable reducing the pollution coming from combustion of raw materials by utilising the natural renewable energy from the shallow ground. In the paper the results gained during several year of continuous measurement on the exchanger were presented. In summer periods an air cooling occurs 10-12 K, e. g. from +30 °C to +20 °C. In winter on the other hand, a preparatory preheating of the air is possible, e.g. from-18°C to about ± 0°C. It is then possible to obtain for the air conditioning system the total energy needed for cooling purposes at the summer periods, or up to 50% of the ventilation heat energy in winter picks.

  1. Quantification of the contribution of nitrogen from septic tanks to ground water in Spanish Springs Valley, Nevada

    Science.gov (United States)

    Rosen, Michael R.; Kropf, Christian; Thomas, Karen A.

    2006-01-01

    Analysis of total dissolved nitrogen concentrations from soil water samples collected within the soil zone under septic tank leach fields in Spanish Springs Valley, Nevada, shows a median concentration of approximately 44 milligrams per liter (mg/L) from more than 300 measurements taken from four septic tank systems. Using two simple mass balance calculations, the concentration of total dissolved nitrogen potentially reaching the ground-water table ranges from 25 to 29 mg/L. This indicates that approximately 29 to 32 metric tons of nitrogen enters the aquifer every year from natural recharge and from the 2,070 houses that use septic tanks in the densely populated portion of Spanish Springs Valley. Natural recharge contributes only 0.25 metric tons because the total dissolved nitrogen concentration of natural recharge was estimated to be low (0.8 mg/L). Although there are many uncertainties in this estimate, the sensitivity of these uncertainties to the calculated load is relatively small, indicating that these values likely are accurate to within an order of magnitude. The nitrogen load calculation will be used as an input function for a ground-water flow and transport model that will be used to test management options for controlling nitrogen contamination in the basin.

  2. An overview of waste management systems at the West Valley demonstration project

    International Nuclear Information System (INIS)

    McIntosh, T.W.; Bixby, W.W.; Krauss, J.E.; Leap, D.R.

    1988-01-01

    In 1980, the United States Congress passed into law the West Valley Demonstration Project Act authorizing the Department of Energy (DOE) to conduct a nuclear waste management project at a former commercial nuclear fuel reprocessing facility located in West Valley, New York. The Project's main objective is to solidify approximately two million litres of high-level radioactive liquid waste into a form suitable for transport to a federal repository for final disposal. The majority of the liquid waste was produced as a by-product of the PUREX extraction process and is stored in an underground steel tank. A waste characterization program has shown that the neutralized waste has settled into two distinct layers: a clear alkaline liquid (supernatant) layer and a dense precipitate (sludge) layer. The principle radioactive elements in the waste are cesium 137 (supernatant) and strontium 90 (sludge). This paper describes the overall project strategy, the waste management systems, the present project engineering and construction status and the project schedule leading to radioactive operation

  3. Subglacial tunnel valleys in the Alpine foreland: an example from Bern, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Duerst Stucki, M.; Reber, R.; Schlunegger, F.

    2010-12-15

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Plateau. Specifically, we identify the presence of subsurface valleys beneath the city of Bern and discuss their genesis. Stratigraphic investigations of more than 4'000 borehole data within a 430 km{sup 2}-large area reveal the presence of a network of >200 m-deep and 1'000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary glacial deposits. The central valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20 {sup o} steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 km length. Approximately 500 m high bedrock highlands flank the valley network. The highlands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The highland valleys served as proglacial meltwater paths and are hanging with respect to the trunk system, indicating that these incipient highland systems as well as the main gorge beneath Bern formed by glacial melt water under pressure. (authors)

  4. Influence of natural organic matter fouling and osmotic backwash on pressure retarded osmosis energy production from natural salinity gradients.

    Science.gov (United States)

    Yip, Ngai Yin; Elimelech, Menachem

    2013-01-01

    Pressure retarded osmosis (PRO) has the potential to produce clean, renewable energy from natural salinity gradients. However, membrane fouling can lead to diminished water flux productivity, thus reducing the extractable energy. This study investigates organic fouling and osmotic backwash cleaning in PRO and the resulting impact on projected power generation. Fabricated thin-film composite membranes were fouled with model river water containing natural organic matter. The water permeation carried foulants from the feed river water into the membrane porous support layer and caused severe water flux decline of ∼46%. Analysis of the water flux behavior revealed three phases in membrane support layer fouling. Initial foulants of the first fouling phase quickly adsorbed at the active-support layer interface and caused a significantly greater increase in hydraulic resistance than the subsequent second and third phase foulants. The water permeability of the fouled membranes was lowered by ∼39%, causing ∼26% decrease in projected power density. A brief, chemical-free osmotic backwash was demonstrated to be effective in removing foulants from the porous support layer, achieving ∼44% recovery in projected power density. The substantial performance recovery after cleaning was attributed to the partial restoration of the membrane water permeability. This study shows that membrane fouling detrimentally impacts energy production, and highlights the potential strategies to mitigate fouling in PRO power generation with natural salinity gradients.

  5. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    Science.gov (United States)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  6. A new Proposal to Mexico Valley Zonification

    Science.gov (United States)

    Flores-Estrella, H. C.; Yussim, S.; Lomnitz, C.

    2004-12-01

    The effects of the Michoacan earthquake (19th September, 1985, Mw 8.1) in Mexico City caused a significant change in the political, social and scientific history, as it was considered the worst seismic disaster ever lived in Mexico. Since then, numerous efforts have been made to understand and determine the parameters that caused the special features registered. One of these efforts had began on 1960 with the work by Marsal and Masari, who published the Mexico Valley seismological and geotechnical zonification (1969), based on gravimetric and shallow borehole data. In this work, we present a revision of the studies that proposed the zonification, a description of the valley geology, and basing on it we propose a new zonification for Mexico Valley.

  7. Pelletized vs. natural iron ore technology: energy, labor, and capital changes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kakela, P.

    1978-09-01

    Total energy requirements per ton of iron-in-ore for natural and pelletized ore were calculated by a hybrid energy analysis. Energy requirements for ore preparation were subsequently considered as one energy input (embodied) to blast furnaces. Total energy requirements per ton molten iron were calculated for each year from 1955 through 1975 to identify changes attributable to the shift in iron ore preparation. Four results were found. (1) In practice, the lean ores are energetically superior. Pelletized ore requires more energy at the mine than natural ore, but pellets produce offsetting energy savings in the blast furnace. (2) Labor changes followed a similar pattern: man-hours per ton of molten iron increased at the mine with pelletization, but decreased at the blast furnance. Net labor required per ton of molten iron has decreased with pelletization. (3) Capital investments per ton of molten iron have increased greatly at iron ore mines with pelletization and decreased moderately at blast furnaces. New capital investment per ton of molten iron has increased with pelletization. (4) In the iron and steel industry, relatively low-priced energy held a substantial advantage over high-priced labor between 1950 and 1969. The industry, however, discovered that capital investments in pellet plants could save both labor and energy up to 1963; after 1963 capital and energy weresubstituted for labor. A sharp reversal of substitutional advantage occurred in 1970; energy jumped to the most costly factor. Thus capital presently shows a strong substitutional advantage over high-priced energy and intermediately-priced labor.

  8. 2nd Workshop on the Nature of the High-Energy Unidentified Sources

    CERN Document Server

    Cheng, K S; Multiwavelength Approach to Unidentified Gamma-Ray Sources

    2005-01-01

    Nearly one half of the point-like gamma-ray sources detected by EGRET instrument of the late Compton satellite are still defeating our attempts at identifying them. To establish the origin and nature of these enigmatic sources has become a major problem of current high-energy astrophysics. The second workshop on Multiwavelength Approach to Unidentified Gamma-ray Sources intends to shed new and fresh light on the problem of the nature of these mysterious sources and the objects behind them. The proceedings contain 46 contributed papers in this subject, which cover theoretical models on gamma-ray sources as well as the best multiwavelength strategies for the identification of the promising candidates. The topics of this conference also include energetic phenomena ocurring both in galactic and extragalactic scenarios, phenomena that might lead to the appearance of what we have called high-energy unidentified sources. The book will be of interest for all active researchers in the high-energy astrophysics and rela...

  9. Use of natural gas for swimming facilities: Energy savings and environmental compatibility

    International Nuclear Information System (INIS)

    Ciocca, B.

    1992-01-01

    In the last twenty years, natural gas consumption has greatly increased in the civil sector and this trend will be confirmed in the next decade which will have a considerable increase in the domestic Italian distribution and in national supply networks. Swimming centres, particularly those equipped with covered swimming-pools and therefore characterized by continuous operation during the year, have significant energy consumption, with the same volume, compared with other civil users. This is due not only to the particular operating characteristics of the swimming pool but, in most cases, to the little attention payed to running costs and thus to energy savings. Natural gas, as a versatile fuel of good quality, can offer a valid contribution to the limitation of the energy consumption of swimming centres, as well as, to the abatement of air pollution, in particular, if it is employed together with new technologies such as the cogeneration and gas fuelled heat pumps

  10. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    Science.gov (United States)

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  11. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site

  12. The detailed analysis of natural radionuclides dissolved in spa waters of the Kłodzko Valley, Sudety Mountains, Poland

    Energy Technology Data Exchange (ETDEWEB)

    Walencik-Łata, A., E-mail: agata.walencik@us.edu.pl [University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, Uniwersytecka 4 St., 40-007 Katowice (Poland); Kozłowska, B.; Dorda, J. [University of Silesia, Institute of Physics, Department of Nuclear Physics and Its Applications, Uniwersytecka 4 St., 40-007 Katowice (Poland); Przylibski, T.A. [Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Division of Geology and Mineral Waters, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław (Poland)

    2016-11-01

    A survey was conducted to measure natural radioactivity in spa waters from the Kłodzko Valley. The main goal of this study was to determine the activity concentration of uranium, radium and radon isotopes in the investigated groundwaters. Samples were collected several times from 35 water intakes from 5 spas and 2 mineral water bottling plants. The authors examined whether the increased gamma radiation background, as well as the elevated values of radium and uranium content in reservoir rocks, have a significant impact on the natural radioactivity of these waters. The second objective of this research was to provide information about geochemistry of U, Ra, Rn radionuclides and the radiological and chemical risks incurred by ingestion of isotopes with drinking water. On the basis of results obtained, it is feasible to assess the health hazard posed by ingestion of natural radioactivity with drinking waters. Moreover, the data yielded by this research may be helpful in the process of verification of the application of these waters in balneotherapy. In addition, annual effective radiation doses resulting from the isotopes consumption were calculated on the basis of the evaluated activity concentrations. In dose assessment for uranium and radium isotopes, the authors provided values for different human age groups. The obtained uranium content in the investigated waters was compared with the currently valid regulations concerning the quality of drinking water. Based on the activity concentrations data, the activity isotopic ratios {sup 234}U/{sup 238}U, {sup 226}Ra/{sup 238}U, {sup 222}Rn/{sup 238}U, {sup 222}Rn/{sup 226}Ra and the correlations between radionuclides content were then examined. In brief, it may be concluded on the basis of the obtained results that radon solubility is inversely proportional to radium and uranium dissolution in environmental water circulation. The presented study allows conclusions to be drawn on the radionuclide circulation among

  13. Graphene valley pseudospin filter using an extended line defect

    Science.gov (United States)

    Gunlycke, Daniel; White, Carter

    2011-03-01

    Although graphene exhibits excellent electron and thermal transport properties, it does not have an intrinsic band gap, required to use graphene as a replacement material for silicon and other semiconductors in conventional electronics. The band structure of graphene with its two cones near the Fermi level, however, offers opportunities to develop non-traditional applications. One such avenue is to exploit the valley degeneracy in graphene to develop valleytronics. A central component in valleytronics is the valley filter, just as the spin filter is central in spintronics. Herein, we present a two-dimensional valley filter based on scattering of electrons and holes off a recently observed extended line defect [Nat. Nanotech.5, 326 (2010)] within graphene. The transmission probability depends strongly on the valley pseudospin and the angle of incidence of the incident quasiparticles. Quasiparticles arriving at the line defect at a high angle of incidence lead to a valley polarization of the transmitted beam that is near 100 percent. This work was supported by ONR, directly and through NRL.

  14. US Department of Energy investments in natural gas R ampersand D: An analysis of the gas industry proposal

    International Nuclear Information System (INIS)

    Sutherland, R.J.

    1992-01-01

    The natural gas industry has proposed an increase in the DOE gas R ampersand D budget from about $100 million to about $250 million per year for each of the next 10 years. The proposal includes four programs: natural gas supplies, fuel cells, natural gas vehicles and stationary combustion systems. This paper is a qualitative assessment of the gas industry proposal and recommends a natural gas R ampersand D strategy for the DOE. The methodology is a conceptual framework based on an analysis of market failures and the energy policy objectives of the DOE's (1991) National Energy Strategy. This framework would assist the DOE in constructing an R ampersand D portfolio that achieves energy policy objectives. The natural gas supply program is recommended to the extent that it contributes to energy price stability. Stationary combustion programs are supported on grounds of economic efficiency and environmental quality. The fuel cell program is supported on grounds of environmental quality. The natural gas vehicle program may potentially contribute to environmental quality and energy price stability. The R ampersand D programs in natural gas vehicles and in fuel cells should be complemented with policies that encourage the commercialization and use of the technology, not merely its development

  15. Hydrological responses to channelization and the formation of valley plugs and shoals

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  16. Paper birch decline in the Niobrara River Valley, Nebraska: Weather, microclimate, and birch stand conditions

    Science.gov (United States)

    Stroh, Esther D.; Miller, Joel P.

    2009-01-01

    The Niobrara River Valley in north-central Nebraska supports scattered stands of paper birch (Betula papyrifera Marsh), a species more typical of boreal forests. These birch stands are considered to be relictual populations that have persisted since the end of the Wisconsin glaciation, when regional flora was more boreal in nature (Wright 1970, Kaul and others, 1988). Dieback of canopy-sized birch has been observed throughout the Niobrara Valley in recent years, although no onset dates are documented. The current dieback event probably started around or after the early 1980’s. The study objectives were to understand microclimatic conditions in birch stands relative to nearby weather stations and historic weather conditions, and to assess current health conditions of individual birch trees. Temperature was measured every half-hour from June 2005 through October 2007 in 12 birch stands and individual birch tree health was measured as expressed by percent living canopy in these and 13 additional stands in spring 2006 and 2007. Birch site microclimate was compared to data from a National Weather Service station in Valentine, Nebraska, and to an automated weather station at The Nature Conservancy Niobrara Valley Preserve 24 kilometers north of Johnstown, Nebraska. Historic weather data from the Valentine station and another National Weather Service Station at Ainsworth, Nebraska, were used to reconstruct minimum and maximum temperature at The Nature Conservancy and one microclimate monitoring station using Kalman filtering and smoothing algorithms. Birch stand microclimate differed from local weather stations as well as among stands. Birch health was associated with annual minimum temperature regimes; those stands whose annual daily minimum temperature regimes were most like The Nature Conservancy station contained smaller proportions of living trees. Frequency of freeze/thaw conditions capable of inducing rootlet injury and subsequent crown dieback significantly have

  17. The California Valley grassland

    Science.gov (United States)

    Keeley, J.E.; Schoenherr, Allan A.

    1990-01-01

    Grasslands are distributed throughout California from Oregon to Baja California Norte and from the coast to the desert (Brown 1982) (Figure 1). This review will focus on the dominant formation in cismontane California, a community referred to as Valley Grassland (Munz 1959). Today, Valley Grassland is dominated by non-native annual grasses in genera such as Avena (wild oat), Bromus (brome grass), and Hordeum (barley), and is often referred to as the California annual grassland. On localized sites, native perennial bunchgrasses such as Stipa pultra (purple needle grass) may dominate and such sites are interpreted to be remnants of the pristine valley grassland. In northwestern California a floristically distinct formation of the Valley Grassland, known as Coast Prairie (Munz 1959) or Northern Coastal Grassland (Holland and Keil 1989) is recognized. The dominant grasses include many native perennial bunchgrasses in genera such as Agrostis, Calamagrostis, Danthonia, Deschampsia, Festuca, Koeleria and Poa (Heady et al. 1977). Non-native annuals do not dominate, but on some sites non-native perennials like Anthoxanthum odoratum may colonize the native grassland (Foin and Hektner 1986). Elevationally, California's grasslands extend from sea level to at leas 1500 m. The upper boundary is vague because montane grassland formations are commonly referred to as meadows; a community which Munz (1959) does not recognize. Holland and Keil (1989) describe the montane meadow as an azonal community; that is, a community restricted not so much to a particular climatic zone but rather controlled by substrate characteristics. They consider poor soil-drainage an over-riding factor in the development of montane meadows and, in contrast to grasslands, meadows often remain green through the summer drought. Floristically, meadows are composed of graminoids; Cyperaceae, Juncaceae, and rhizomatous grasses such as Agropyron (wheat grass). Some bunchgrasses, such as Muhlenbergia rigens, are

  18. A temporal stable isotopic (d18O, dD, d-excess) comparison in glacier meltwater streams, Taylor Valley, Antarctica

    Science.gov (United States)

    In this paper, we describe the importance of hyporheic dynamics within Andersen Creek and Von Guerard Stream, Taylor Valley, Antarctica, from the 2010-11 melt season using natural tracers. Water collection started at flow onset and continued, with weekly hyporheic zone sampling. The water d18O and d...

  19. Pattern of ground deformation in Kathmandu valley during 2015 Gorkha Earthquake, central Nepal

    Science.gov (United States)

    Ghimire, S.; Dwivedi, S. K.; Acharya, K. K.

    2016-12-01

    The 25th April 2015 Gorkha Earthquake (Mw=7.8) epicentered at Barpak along with thousands of aftershocks released seismic moment nearly equivalent to an 8.0 Magnitude earthquake rupturing a 150km long fault segment. Although Kathmandu valley was supposed to be severely devastated by such major earthquake, post earthquake scenario is completely different. The observed destruction is far less than anticipated as well as the spatial pattern is different than expected. This work focuses on the behavior of Kathmandu valley sediments during the strong shaking by the 2015 Gorkha Earthquake. For this purpose spatial pattern of destruction is analyzed at heavily destructed sites. To understand characteristics of subsurface soil 2D-MASW survey was carried out using a 24-channel seismograph system. An accellerogram recorded by Nepal Seismological Center was analyzed to characterize the strong ground motion. The Kathmandu valley comprises fluvio-lacustrine deposit with gravel, sand, silt and clay along with few exposures of basement rocks within the sediments. The observations show systematic repetition of destruction at an average interval of 2.5km mostly in sand, silt and clay dominated formations. Results of 2D-MASW show the sites of destruction are characterized by static deformation of soil (liquefaction and southerly dipping cracks). Spectral analysis of the accelerogram indicates maximum power associated with frequency of 1.0Hz. The result of this study explains the observed spatial pattern of destruction in Kathmandu valley. This is correlated with the seismic energy associated with the frequency of 1Hz, which generates an average wavelength of 2.5km with an average S-wave velocity of 2.5km/s. The cumulative effect of dominant frequency and associated wavelength resulted in static deformation of surface soil layers at an average interval of 2.5km. This phenomenon clearly describes the reason for different scenario than that was anticipated in Kathmandu valley.

  20. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    International Nuclear Information System (INIS)

    1995-10-01

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites

  1. West Valley Demonstration Project site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  2. Pasteurization of naturally contaminated water with solar energy.

    OpenAIRE

    Ciochetti, D A; Metcalf, R H

    1984-01-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 6...

  3. Origin and Evolution of Li-rich Brines at Clayton Valley, Nevada, USA

    Science.gov (United States)

    Munk, L. A.; Bradley, D. C.; Hynek, S. A.; Chamberlain, C. P.

    2011-12-01

    Lithium is the key component in Li-ion batteries which are the primary energy storage for electric/hybrid cars and most electronics. Lithium is also an element of major importance on a global scale because of interest in increasing reliance on alternative energy sources. Lithium brines and pegmatites are the primary and secondary sources, respectively of all produced Li. The only Li-brine in the USA that is currently in production exists in Clayton Valley, NV. The groundwater brines at Clayton Valley are located in a closed basin with an average evaporation rate of 142 cm/yr. The brines are pumped from six aquifer units that are composed of varying amounts of volcanic ash, gravel, salt, tufa, and fine-grained sediments. Samples collected include spring water, fresh groundwater, groundwater brine, and meteoric water (snow). The brines are classified as Na-Cl waters and the springs and fresh groundwater have a mixed composition and are more dilute than the brines. The Li content of the waters in Clayton Valley ranges from less than 1 μg/L (snow) up to 406.9 mg/L in the lower ash aquifer system (one of six aquifers in the basin). The cold springs surrounding Clayton Valley have Li concentrations of about 1 mg/L. A hot spring located just east of Clayton Valley contains 1.6 mg/L Li. The Li concentration of the fresh groundwater is less than 1 mg/L. Hot groundwater collected in the basin contain 30-40 mg/L Li. Water collected from a geothermal drilling north of Silver Peak, NV, had water with 4.9 mg/L Li at a depth of >1000m. The δD and δ18O isotopic signatures of fresh groundwater and brine form an evaporation path that extends from the global meteoric water line toward the brine from the salt aquifer system (the most isotopically enriched brine with ave. δD = -3.5, ave. δ18O = -67.0). This suggests that mixing of inflow water with the salt aquifer brine could have played an important role in the evolution of the brines. Along with mixing, evaporation appears to

  4. Exploring the Effect of Climate Perturbations on Water Availability for Renewable Energy Development in the Indian Wells Valley, California

    Science.gov (United States)

    Rey, David M.

    Energy and water are connected through the water-use cycle (e.g. obtaining, transporting, and treating water) and thermoelectric energy generation, which converts heat to electricity via steam-driven turbines. As the United States implements more renewable energy technologies, quantifying the relationships between energy, water, and land-surface impacts of these implementations will provide policy makers the strengths and weaknesses of different renewable energy options. In this study, a MODFLOW model of the Indian Wells Valley (IWV), in California, was developed to capture the water, energy, and land-surface impacts of potential proposed 1) solar, 2) wind, and 3) biofuel implementations. The model was calibrated to pre-existing groundwater head data from 1985 to present to develop a baseline model before running two-year predictive scenarios for photovoltaic (PV), concentrating solar power (CSP), wind, and biofuel implementations. Additionally, the baseline model was perturbed by decreasing mountain front recharge values by 5%, 10%, and 15%, simulating potential future system perturbations under a changing climate. These potential future conditions were used to re-run each implementation scenario. Implementation scenarios were developed based on population, typical energy use per person, existing land-use and land-cover type within the IWV, and previously published values for water use, surface-area use, and energy-generation potential for each renewable fuel type. The results indicate that the quantity of water needed, localized drawdown from pumping water to meet implementation demands, and generation efficiency are strongly controlled by the fuel type, as well as the energy generating technology and thermoelectric technologies implemented. Specifically, PV and wind-turbine (WT) implementations required less than 1% of the estimated annual aquifer recharge, while technologies such as biofuels and CSP, which rely on thermoelectric generation, ranged from 3% to 20

  5. The Energy Regulatory Commission. The Regulation of Natural Gas in Mexico

    International Nuclear Information System (INIS)

    1995-01-01

    In May of 1995 the Congress approved amendments to the Regulatory Law of Constitutional article 27 on Petroleum. This legal reform fundamentally redefined the petroleum industry and authorizes the private sector to construct, operate, and own natural gas transportation, storage and distribution systems-activities previously reserved to the state. To complement these reforms and to implement the legislative mandate of the Regulatory Law on Petroleum, the Natural Gas Regulation (Reglamento de Gas Natural) was issued in November 1995. The regulation reconciles the interests of the various natural gas industry participants and signifies a Federal Commitment to promote comprehensive development of the industry. In parallel with the development of the substantive legal framework, the law of the Comision Reguladora de Energia (CRE) was also enacted by Congress in October 1995 to strength the institutional framework and implemented the legal changes. This law defines the CRE as an agency of the Energy Ministry with technical, operational, and budgetary autonomy, and responsibility for implementing natural gas industry regulation. (Author)

  6. Energy performance of supermarket refrigeration and air conditioning integrated systems working with natural refrigerants

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2012-01-01

    The current trends in commercial refrigeration aim at reducing the synthetic refrigerant charge, either by minimising the internal volume of the circuit or by utilising natural refrigerants, and at energy saving. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study aims at investigating the performance of different lay-out and technological solutions where only natural refrigerants are used and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis, chillers and heat pumps working with ammonia or propane, medium temperature systems working with ammonia or propane and carbon dioxide as heat transfer fluid or with carbon dioxide as the refrigerant and low temperature systems working with carbon dioxide are considered and benchmarked with a state-of-the-art HFCs based plant. The most efficient investigated solution enables an annual energy saving higher than 15% with respect to the baseline solution for all the considered climates. - Highlights: ► Different natural refrigerants supermarket HVAC and R integrated systems are analysed. ► Some of the proposed solutions offer a significant benefit over the baseline one. ► Up to 18.7% energy saving is achieved in the considered climates. ► The refrigeration unit condensation by the AC chiller offers the poorest results.

  7. The Health Valley: Global Entrepreneurial Dynamics.

    Science.gov (United States)

    Dubuis, Benoit

    2014-12-01

    In the space of a decade, the Lake Geneva region has become the Health Valley, a world-class laboratory for discovering and developing healthcare of the future. Through visionary individuals and thanks to exceptional infrastructure this region has become one of the most dynamic in the field of innovation, including leading scientific research and exceptional actors for the commercialization of academic innovation to industrial applications that will improve the lives of patients and their families. Here follows the chronicle of a spectacular expansion into the Health Valley.

  8. Radon/helium survey of thermal springs of Parbati, Beas and Sutlej valleys in Himachal Himalaya

    International Nuclear Information System (INIS)

    Virk, H.S.; Sharma, Anand K.; Naresh Kumar

    1998-01-01

    India has more than 300 thermal springs spread over the entire geographical area of the subcontinent. Some of these springs have linkage with Indian mythology and are famous pilgrimage centres since historical times. The temperature of water recorded in these springs varies from 40 degC to that of steam. Some of them are being exploited as a source for geothermal energy. The purpose of this study is to measure radon and helium activity in the thermal springs of Himachal Himalaya. Radon is estimated in the soil and thermal waters using alpha spectrometry and scintillometry, respectively. The radon activity is maximum ( 716.3 Bq/l ) in thermal spring at Kasol and minimum ( 15.9 Bq/l ) in a natural spring ( bauli ) at Takrer. Radon concentration is highly variable in the Parbati valley with minimum value of 2230±430 Bq/m 3 recorded at Chhinjra on the banks of river Parbati and a maximum value of 57700±2050 Bq/m 3 at Dharmaur, the site of uranium ore exploitation by the AMD (DAE). Helium is estimated in the thermal springs by using a Helium Leak Detector (sniffing technique). The radon and helium contents of Kasol thermal springs are correlatable with high radioactivity in the soil of the area as revealed by Alpha Guard survey in the environs of Parbati valley. The helium content recorded in thermal springs is found to vary between 15-90 ppm. Radon and helium are well established as geochemical precursors for earthquake prediction studies. Helium/radon ratio seems to be a better predictive tool for earthquakes in comparison to individual radon and helium precursors. (author)

  9. [Ethnic conflicts and environmental degradation in Central Asia. The Ferghana valley and northern Kazakhstan].

    Science.gov (United States)

    De Cordier, B

    1996-01-01

    This work seeks to demonstrate that the combination of ecological degradation, demographic pressure, and ethnic heterogeneity in Central Asia constitute a serious threat to the future stability of the region. The predominantly rural Ferghana Valley and Northern Kazakhstan suffer from shortages of water and land and from unemployment that leads to extensive out-migration to cities suffering from decline in their Soviet-era industries. The problem in the Ferghana Valley began with Tsarist conquest of the valley in 1876 and the subsequent imposition of cotton cultivation, which was greatly expanded by the Soviet Union. The Ferghana Valley, despite being a natural unit, was divided between Uzbekistan, Tajikistan, and Kyrgyzstan in the 1920s and 1930s, and remains divided between the independent states. The current population of 11 million is ethnically diverse, with Uzbeks in the majority and increasing most rapidly. Immigration from the Caucasus since 1950 added to the tension. Future peace will depend on such factors as whether the neo-Communist political regime chooses to incite ethnic hostilities, the manner in which land is redistributed, and the outcome of struggles for control of the flourishing narcotics trade. The northern Kazakhstan region was designated a pioneer wheat-growing region by Soviet planners in 1954. Russian and Ukrainian migrants established between 1954 and 1956 are today the predominant population sector, but feel their privileged position threatened by nationalist policies making Kazakh the official language and giving preference in employment to Kazakhs. Resettlement of Kazakhs from Mongolia, China, and Afghanistan in the region and the high Kazakh birth rate increase tensions. Grain production initially grew rapidly, but the mediocre soil and erosion-inducing constant dry winds have caused production to stagnate or decline. Regional disputes within Kazakhstan complicate the situation. Northern Kazakhstan, with its industrial development, is

  10. Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake

    Science.gov (United States)

    Takai, Nobuo; Shigefuji, Michiko; Rajaure, Sudhir; Bijukchhen, Subeg; Ichiyanagi, Masayoshi; Dhital, Megh Raj; Sasatani, Tsutomu

    2016-01-01

    On 25 April 2015, a large earthquake of Mw 7.8 occurred along the Main Himalayan Thrust fault in central Nepal. It was caused by a collision of the Indian Plate beneath the Eurasian Plate. The epicenter was near the Gorkha region, 80 km northwest of Kathmandu, and the rupture propagated toward east from the epicentral region passing through the sediment-filled Kathmandu Valley. This event resulted in over 8000 fatalities, mostly in Kathmandu and the adjacent districts. We succeeded in observing strong ground motions at our four observation sites (one rock site and three sedimentary sites) in the Kathmandu Valley during this devastating earthquake. While the observed peak ground acceleration values were smaller than the predicted ones that were derived from the use of a ground motion prediction equation, the observed peak ground velocity values were slightly larger than the predicted ones. The ground velocities observed at the rock site (KTP) showed a simple velocity pulse, resulting in monotonic-step displacements associated with the permanent tectonic offset. The vertical ground velocities observed at the sedimentary sites had the same pulse motions that were observed at the rock site. In contrast, the horizontal ground velocities as well as accelerations observed at three sedimentary sites showed long duration with conspicuous long-period oscillations, due to the valley response. The horizontal valley response was characterized by large amplification (about 10) and prolonged oscillations. However, the predominant period and envelope shape of their oscillations differed from site to site, indicating a complicated basin structure. Finally, on the basis of the velocity response spectra, we show that the horizontal long-period oscillations on the sedimentary sites had enough destructive power to damage high-rise buildings with natural periods of 3 to 5 s.

  11. Landslide inventory along a pipeline corridor in the Mackenzie Valley, Northwest Territories

    Energy Technology Data Exchange (ETDEWEB)

    Couture, R.; Riopel, S. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada

    2007-07-01

    The route for the proposed Mackenzie Valley gas pipeline in the Northwest Territories includes areas that are known for widespread landsliding. Natural Resources Canada initiated a landslide mapping project in an effort to develop a synthesis of the types, regional distribution, and controlling factors of landslides in the region. The study area is covered by unconsolidated sediments dominated by morainal, lacustrine, and alluvial deposits. Three types of permafrost were mapped, notably continuous, extensive discontinuous, and intermediate discontinuous. A preliminary inventory of 1,807 landslides and other natural terrain hazard features were identified by air photo interpretations. The landslide limits were digitized and catalogued in the Mackenzie Valley landslide spatial database. Several attributes were recorded for each landslide feature, including unique identifiers, landslide type, size, location, morphological parameters, and relative age. The landslide distribution was then characterized. The results indicate an average density of one landslide per 5 km{sup 2}. The dominant landslide types are retrogressive thaw flows and active layer detachments, followed by rock falls, debris flows, earth slides, surficial landslides, and retrogressive thaw slides. Nearly half of all landslides took place in morainal deposits, 19 per cent in lacustrine sediments, 14 per cent in bedrock, and 13 per cent in glaciofluvial sediments. According to tone, texture, and vegetation regrowth attributes, 39 per cent of the landslides were classified as being older than 50 years, 39 per cent were 10 to 50 years old and 22 per cent were less than 10 years old.

  12. Coordinated Operation of the Electricity and Natural Gas Systems with Bi-directional Energy Conversion

    DEFF Research Database (Denmark)

    Zeng, Qing; Zhang, Baohua; Fang, Jiakun

    2017-01-01

    A coordinated operation of the natural gas and electricity network with bi-directional energy conversion is expected to accommodate high penetration levels of renewables. This work focuses on the unified optimal operation of the integrated natural gas and electricity system considering the network...

  13. Waste Energy Recovery from Natural Gas Distribution Network: CELSIUS Project Demonstrator in Genoa

    Directory of Open Access Journals (Sweden)

    Davide Borelli

    2015-12-01

    Full Text Available Increasing energy efficiency by the smart recovery of waste energy is the scope of the CELSIUS Project (Combined Efficient Large Scale Integrated Urban Systems. The CELSIUS consortium includes a world-leading partnership of outstanding research, innovation and implementation organizations, and gather competence and excellence from five European cities with complementary baseline positions regarding the sustainable use of energy: Cologne, Genoa, Gothenburg, London, and Rotterdam. Lasting four-years and coordinated by the City of Gothenburg, the project faces with an holistic approach technical, economic, administrative, social, legal and political issues concerning smart district heating and cooling, aiming to establish best practice solutions. This will be done through the implementation of twelve new high-reaching demonstration projects, which cover the most major aspects of innovative urban heating and cooling for a smart city. The Genoa demonstrator was designed in order to recover energy from the pressure drop between the main supply line and the city natural gas network. The potential mechanical energy is converted to electricity by a turboexpander/generator system, which has been integrated in a combined heat and power plant to supply a district heating network. The performed energy analysis assessed natural gas saving and greenhouse gas reduction achieved through the smart systems integration.

  14. Hierofonía and cosmology in indigenous art Sibundoy Valley

    Directory of Open Access Journals (Sweden)

    Óscar Fernando Sánchez Suárez

    2013-01-01

    Full Text Available An analysis of the large existing indigenous cultural diversity in South America as the initial part of the study and support of research is presented. It is also a reflection from the perspective of different authors on the thinking of man in relation to nature, archetypes, cosmogony and rituals. It is also woven with the history of the peoples or ethnic communities of Kamentzá and Inga. The inhabitants of Sibundoy Valley, Putumayo Colombia show a strong influence of Eastern and other Amerindian cultures that have had a great relevance and importance on other cultures of the continent. Similarly, it treats the nature of the Indian art and aesthetics as an important aspect in the development of cosmology and the spirituality embodied in the different objects and in the aesthetics in other elements of cultural elements proper to the Kamentzá and Inga cultures.

  15. Biogeochemical studies of wintering waterfowl in the Imperial and Sacramento Valleys

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, J.J.; Stuart, M.; Thompson, S.; Conrado, C.

    1979-10-01

    Trace and major elemental composition were determined in the organs of wintering waterfowl in the Imperial and Sacramento Valleys of California, and in soils, sediments, and agricultural fertilizer that constitute the various sources of elements in the waterfowl. These data provide a biogeochemical baseline for waterfowl populations wintering in an area being developed for geothermal power. This baseline in the Imperial Valley is affected by soil and sediment composition, agricultural effluents in irrigation and stream water, and spent shot deposited by hunters in waterfowl habitats. The waterfowl acquire a set of trace elements from these sources and concentrations increase in their organs over the wintering period. Nickel, arsenic, selenium, bromine, and lead are the primary elements acquired from soil sources, agricultural effluents, and spent shot in the Imperial Valley. The assessment of effects from geothermal effluents on waterfowl populations in complex because there are large influxes of materials into the Imperial Valley ecosystem that contain trace elements, i.e., irrigation water, phosphatic fertilizers, pesticides, and lead shot. Multiple sources exist for many elements prominent in the expected geothermal effluents. The relationships between the two California valleys, the Imperial and Sacramento, are apparent in the trace element concentrations in the organs of waterfowl obtained in those two valleys. Arsenic is absent in the waterfowl organs obtained in the Sacramento Valley and relatively common in the Imperial Valley waterfowl. The effect of any release of geothermal effluent in the Imperial Valley waterfowl habitats will be difficult to describe because of the complexity of the biogeochemical baseline and the multiple sources of trace and major elements in the ecosystem.

  16. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    Science.gov (United States)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  17. Future considerations: Imperial finds new promise in natural gas

    International Nuclear Information System (INIS)

    Martin, J.

    1988-01-01

    After decades of having natural gas a minor part of its operations, Imperial Oil has reevaluated the importance of that resource within the company's strategy. A comprehensive business review of the industry was conducted in 1987 and prompted Imperial's subsidiary, Esso Resources Canada, to adopt the goal of becoming an industry leader in natural gas reserves, production, and marketing. Imperial's natural gas business started in 1921, when it assumed control of the company whose Turner Valley gas find sparked an oil rush in 1914. By the early 1940s, when Turner Valley was still Canada's only major oil field, Imperial was considering the manufacture of synthetic oil from natural gas, but then it discovered the first well of the Leduc oil boom in 1947. Imperial built the first gas conservation plant in Canada in 1950, but largely left other companies to develop gas fields. The deregulated gas market of the mid-1980s saw Imperial buying its first major acquisition in over 20 years, Sulpetro Ltd.; this boosted Imperial's annual gas production and its reserves by a third. A further purchase of Ocelot Industries increased overall gas production by another 20%. Imperial also made substantial gas finds in the Mackenzie Delta, and the company's holdings at Obed (Alberta) will add 8% to gas production

  18. Summary of the engineering assessment of inactive uranium mill tailings: Monument Valley site, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1981-10-01

    Ford, Bacon and Davis Utah Inc. has reevaluated the Monument Valley site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Monument Valley, Arizona. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.1 million tons of tailings at the Monument Valley site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $6,600,000 for stabilization in-place, to about $15,900,000 for disposal at a distance of about 15 mi. Three principal alternatives for reprocessing the Monument Valley tailings were examined: heap leaching, treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be more than $500/lb of U 3 O 8 by heap leach or conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is economically unattractive

  19. Primary state formation in the Viru Valley, north coast of Peru.

    Science.gov (United States)

    Millaire, Jean-François

    2010-04-06

    The origins of urban life and functioning states are two of the most fascinating research problems in anthropological archeology and a topic that has intrigued generations of scholars working on the Peruvian north coast. In this region, Andeanists have documented the rise of Moche as a dominant culture during the first millennium A.D., and the emergence of urban life and stately institutions at this society's principal center. Although there is a broad consensus that Moche represents an archaic state, it is still unclear whether it is an example of primary state formation or a case of a second-generation state. To document this question, archaeological excavations were recently carried out at the Gallinazo Group site in the Virú Valley. Results from a radiocarbon dating program indicate that a functioning state probably emerged in this valley during the second century B.C., possibly preceding Moche by a few centuries. These results necessarily raise question regarding the nature of state development on the north coast of Peru and, in particular, whether there was a single center of state development in this region or multiple sites where similar conditions and processes led to the parallel emergence of functioning states.

  20. Substituting natural gas heating for electric heating: assessment of the energy and environmental effects in Ontario

    International Nuclear Information System (INIS)

    Rosen, M.A.; Sy, E.; Gharghouri, P.

    1996-01-01

    A study was conducted to find practical ways to reduce Ontario's energy consumption and environmental emissions. A major portion of the study focused on the advantages of cogeneration in certain regions and sectors of Ontario. Substituting direct fuel heating with natural gas for electric heating was the principal recommendation. Results of a technical analysis of the effects of substituting electric heating with natural gas heating were described. One of the benefits of this substitution would be reduced fuel energy requirements for direct heating, relative to the two-step process of electricity generation followed by electric heating. It was suggested that natural gas should still be used for electricity generation because natural gas has many advantages as an electricity supply option including reductions in coal and uranium use and related emissions. It was recommended that developers and designers of energy systems seriously consider this option. 33 refs., 2 tabs., 4 figs