WorldWideScience

Sample records for vacuum ultraviolet beamline

  1. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research.

    Science.gov (United States)

    Zhou, Zhongyue; Du, Xuewei; Yang, Jiuzhong; Wang, Yizun; Li, Chaoyang; Wei, Shen; Du, Liangliang; Li, Yuyang; Qi, Fei; Wang, Qiuping

    2016-07-01

    An undulator-based vacuum ultraviolet (VUV) beamline (BL03U), intended for combustion chemistry studies, has been constructed at the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. The beamline is connected to the newly upgraded Hefei Light Source (HLS II), and could deliver photons in the 5-21 eV range, with a photon flux of 10(13) photons s(-1) at 10 eV when the beam current is 300 mA. The monochromator of the beamline is equipped with two gratings (200 lines mm(-1) and 400 lines mm(-1)) and its resolving power is 3900 at 7.3 eV for the 200 lines mm(-1) grating and 4200 at 14.6 eV for the 400 lines mm(-1) grating. The beamline serves three endstations which are designed for respective studies of premixed flame, fuel pyrolysis in flow reactor, and oxidation in jet-stirred reactor. Each endstation contains a reactor chamber, an ionization chamber where the molecular beam intersects with the VUV light, and a home-made reflectron time-of-flight mass spectrometer. The performance of the beamline and endstations with some preliminary results is presented here. The ability to detect reactive intermediates (e.g. H, O, OH and hydroperoxides) is advantageous in combustion chemistry research.

  2. Vacuum ultraviolet spectroscopy I

    CERN Document Server

    Samson, James A; Lucatorto, Thomas

    1998-01-01

    This volume is for practitioners, experimentalists, and graduate students in applied physics, particularly in the fields of atomic and molecular physics, who work with vacuum ultraviolet applications and are in need of choosing the best type of modern instrumentation. It provides first-hand knowledge of the state-of-the-art equipment sources and gives technical information on how to use it, along with a broad reference bibliography.Key Features* Aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field* Contains a detailed chapter on la

  3. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  4. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  5. Synchrotron vacuum ultraviolet radiation studies of the D 1Πu state of H2

    NARCIS (Netherlands)

    Dickenson, G. D.; Ivanov, T. I.; Roudjane, M.; de Oliveira, N.; Joyeux, D.; Nahon, L.; Tchang-Brillet, W. Ü L; Glass-Maujean, M.; Haas, I.; Ehresmann, A.; Ubachs, W.

    2010-01-01

    The 3pπD 1Πu state of the H2 molecule was reinvestigated with different techniques at two synchrotron installations. The Fourier transform spectrometer in the vacuum ultraviolet wavelength range of the DESIRS beamline at the SOLEIL synchrotron was used for recording absorption spectra of the D Π1u

  6. Quantum interference spectroscopy in the vacuum ultraviolet

    NARCIS (Netherlands)

    Eikema, K. S E; Zinkstok, R. Th; Witte, S.; Hogervorst, W.; Ubachs, W.

    2006-01-01

    With two experiments on respectively krypton at 2 x 212 nm and xenon at 125 nm we have demonstrated the method of quantum interference spectroscopy in the deep- and vacuum-ultraviolet. Multiple pulses from a frequency comb laser are amplified and frequency converted and used in a Ramsey-like direct

  7. Large-Area Vacuum Ultraviolet Sensors

    Science.gov (United States)

    Aslam, Shahid; Franz, David

    2012-01-01

    Pt/(n-doped GaN) Schottky-barrier diodes having active areas as large as 1 cm square have been designed and fabricated as prototypes of photodetectors for the vacuum ultraviolet portion (wavelengths approximately equal 200 nm) of the solar spectrum. In addition to having adequate sensitivity to photons in this wavelength range, these photodetectors are required to be insensitive to visible and infrared components of sunlight and to have relatively low levels of dark current.

  8. Heats of vaporization of room temperature ionic liquids by tunable vacuum ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; To, Albert; Koh, Christine; Strasser, Daniel; Kostko, Oleg; Leone, Stephen R.

    2009-11-25

    The heats of vaporization of the room temperature ionic liquids (RTILs) N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide, N-butyl-N-methylpyrrolidinium dicyanamide, and 1-butyl-3-methylimidazolium dicyanamide are determined using a heated effusive vapor source in conjunction with single photon ionization by a tunable vacuum ultraviolet synchrotron source. The relative gas phase ionic liquid vapor densities in the effusive beam are monitored by clearly distinguished dissociative photoionization processes via a time-of-flight mass spectrometer at a tunable vacuum ultraviolet beamline 9.0.2.3 (Chemical Dynamics Beamline) at the Advanced Light Source synchrotron facility. Resulting in relatively few assumptions, through the analysis of both parent cations and fragment cations, the heat of vaporization of N-butyl-N-methylpyrrolidinium bistrifluorosulfonylimide is determined to be Delta Hvap(298.15 K) = 195+-19 kJ mol-1. The observed heats of vaporization of 1-butyl-3-methylimidazolium dicyanamide (Delta Hvap(298.15 K) = 174+-12 kJ mol-1) and N-butyl-N-methylpyrrolidinium dicyanamide (Delta Hvap(298.15 K) = 171+-12 kJ mol-1) are consistent with reported experimental values using electron impact ionization. The tunable vacuum ultraviolet source has enabled accurate measurement of photoion appearance energies. These appearance energies are in good agreement with MP2 calculations for dissociative photoionization of the ion pair. These experimental heats of vaporization, photoion appearance energies, and ab initio calculations corroborate vaporization of these RTILs as intact cation-anion ion pairs.

  9. Vacuum Ultraviolet Photoionization of Complex Chemical Systems.

    Science.gov (United States)

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-05-27

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion-molecule reactions and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. New directions in coupling VUV radiation to interrogate complex chemical systems are discussed.

  10. Vacuum ultraviolet detector for gas chromatography.

    Science.gov (United States)

    Schug, Kevin A; Sawicki, Ian; Carlton, Doug D; Fan, Hui; McNair, Harold M; Nimmo, John P; Kroll, Peter; Smuts, Jonathan; Walsh, Phillip; Harrison, Dale

    2014-08-19

    Analytical performance characteristics of a new vacuum ultraviolet (VUV) detector for gas chromatography (GC) are reported. GC-VUV was applied to hydrocarbons, fixed gases, polyaromatic hydrocarbons, fatty acids, pesticides, drugs, and estrogens. Applications were chosen to feature the sensitivity and universal detection capabilities of the VUV detector, especially for cases where mass spectrometry performance has been limited. Virtually all chemical species absorb and have unique gas phase absorption cross sections in the approximately 120-240 nm wavelength range monitored. Spectra are presented, along with the ability to use software for deconvolution of overlapping signals. Some comparisons with experimental synchrotron data and computed theoretical spectra show good agreement, although more work is needed on appropriate computational methods to match the simultaneous broadband electronic and vibronic excitation initiated by the deuterium lamp. Quantitative analysis is governed by Beer-Lambert Law relationships. Mass on-column detection limits reported for representatives of different classes of analytes ranged from 15 (benzene) to 246 pg (water). Linear range measured at peak absorption for benzene was 3-4 orders of magnitude. Importantly, where absorption cross sections are known for analytes, the VUV detector is capable of absolute determination (without calibration) of the number of molecules present in the flow cell in the absence of chemical interferences. This study sets the stage for application of GC-VUV technology across a wide breadth of research areas.

  11. Vacuum Ultraviolet Laser Probe of Chemical Dynamics of Aerospace Relevance

    Science.gov (United States)

    2012-09-12

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 09/12/12 01/15/09-11/30/11 VACUUM ULTRAVIOLET LASER PROBES OF CHEMICAL DYNAMICS PF...is to be limited. Standard Form 298 Back (Rev. 8/98) FINAL AFOSR REPORT (Dec. 1, 2008-Nov. 30, 2011) I. Grant Title: Vacuum Ultraviolet ...goal of this research program is to provide pertinent information about the energetics, photochemistry , and chemical dynamics of spacecraft effluents

  12. Atomic Oscillator Strengths In The Vacuum Ultraviolet

    Science.gov (United States)

    Nave, Gillian; Sansonetti, C. J.; Szabo, C. I.

    2008-05-01

    Transitionsin singly-ionized and doubly-ionized iron-group elements give rise to prominent emission lines from a wide variety of astrophysical objects. Although the database of experimental oscillator strengths of Fe II has also been greatly extended by the FERRUM project, few experimental oscillator strengths are available in the region below 1600 Å, where many levels that give rise to emission lines at longer wavelengths have their dominant decays. The established way to measure accurate oscillator strengths for atomic lines combines the measurement of a lifetime of an upper energy level with a separate measurement of the branching fractions of all the lines emitted from that level. This technique relies on being able to observe all the spectral lines emitted by the upper level, which range down to Ly-α or below for many fluorescence lines. We have developed techniques to measure branching fractions in the vacuum ultraviolet using our 10.7-m normal incidence grating spectrograph. For this we use phosphor image plates as replacements for the photographic plates previously used on this instrument. Image plates are sensitive to wavelengths from the X-ray region to 2200 Å, and have a linear intensity response with a dynamic range of at least 10000. We have recorded spectra of iron-neon hollow cathode and Penning discharges, using a deuterium standard lamp for radiometric calibration. We will present the first measurements of oscillator strengths using this technique. We are also investigating methods of radiometric calibration below 1150 Å using hollow cathode standard lamps. This will enable us to measure branching ratios down to 800 Å or below. This work is partially funded by NASA under the inter-agency agreement W-10,255.

  13. Vacuum ultraviolet radiometry of xenon positive column discharges

    Science.gov (United States)

    Doughty, D. A.; Fobare, D. F.

    1995-10-01

    In order to judge the potential fluorescent lamp applications of various low-pressure positive column discharges it is necessary to measure the absolute power emitted in the ultraviolet region of the spectrum. For rare-gas discharges the principle emission occurs in the vacuum ultraviolet so that it is difficult to measure the radiant emittance (power per unit area) of the resonance radiation by standard methods. Two independent techniques are discussed for measuring the radiant emittance of positive column discharges in the vacuum ultraviolet. These techniques are used to study xenon positive column discharges at the resonance wavelength of 147 nm. The first method relies on the measurement of the resonance level density by absorption techniques. The effective decay rate of the resonance level is then determined by the simulation of resonance radiation transport. These two quantities are combined to yield the radiant emittance at 147 nm without implementing vacuum ultraviolet techniques. The second method uses a measurement of the resonance radiation normal to the positive column axis made with a calibrated vacuum ultraviolet detector. The angular distribution of the resonance radiation leaving the tube is determined by the simulation of resonance radiation transport. The detector measurement places the angular distribution of the radiance on an absolute scale, which can then be integrated to yield the radiant emittance. These two techniques are compared for pure xenon discharges at various pressures and currents.

  14. Frequency comb laser spectroscopy in the vacuum-ultraviolet region

    NARCIS (Netherlands)

    Zinkstok, R.T.; Witte, S.; Ubachs, W.M.G.; Hogervorst, W.; Eikema, K.S.E.

    2006-01-01

    We demonstrate that the output of a frequency comb laser can be amplified and upconverted to the vacuum ultraviolet (vuv) in a gaseous medium while its phase coherence is maintained to a high degree (< 1 30 of a vuv cycle). The produced vuv pulses are well suited to perform frequency comb

  15. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene

    DEFF Research Database (Denmark)

    Dawes, Anita; Pascual, Natalia; Hoffmann, Soren V.

    2017-01-01

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with com parisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers w ere grow n at 25 K and annealed to 90 K under conditions pertinent to interstellaricy dust grains...

  16. Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy.

    Science.gov (United States)

    Santos, Inês C; Schug, Kevin A

    2017-01-01

    The vacuum ultraviolet spectrophotometer was developed recently as an alternative to existing gas chromatography detectors. This detector measures the absorption of gas-phase chemical species in the range of 120-240 nm, where all chemical compounds present unique absorption spectra. Therefore, qualitative analysis can be performed and quantification follows standard Beer-Lambert law principles. Different fields of application, such as petrochemical, food, and environmental analysis have been explored. Commonly demonstrated is the capability for facile deconvolution of co-eluting analytes. The concept of additive absorption for co-eluting analytes has also been advanced for classification and speciation of complex mixtures using a data treatment procedure termed time interval deconvolution. Furthermore, pseudo-absolute quantitation can be performed for system diagnosis, as well as potentially calibrationless quantitation. In this manuscript an overview of these features, the vacuum ultraviolet spectrophotometer instrumentation, and performance capabilities are given. A discussion of the applications of the vacuum ultraviolet detector is provided by describing and discussing the papers published thus far since 2014. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Photochemistry of solid interstellar molecular samples exposed to vacuum-ultraviolet synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Jen-Iu; Chou, Sheng-Lung; Peng, Yu-Chain; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming, E-mail: bmcheng@nsrrc.org.tw

    2014-10-15

    Highlights: • By means of an end station attached to synchrotron, we investigate the VUV photolysis of gaseous samples condensed at 3 K. • The end station is applicable to explore the VUV photochemistry of interstellar solid molecules. • We upgraded the end station with detection of absorption of IR light and of emission of UV–vis light. • As a demonstration, we recorded simultaneously absorption spectra of photoproduct N{sub 3} and emission from VUV excited N{sub 2}. • The end station is applicable to investigate cometary mixed-ice analogs excited with VUV light from the synchrotron. - Abstract: At the vacuum-ultraviolet (VUV) beamline of the Taiwan synchrotron, an end station for photochemistry coupled to instruments to record infrared absorption spectra and ultraviolet and visible emission spectra is used to investigate the photolysis of samples of gases condensed at 3 K. This end station is applicable to explore the VUV photochemistry of interstellar molecules in solid samples. For demonstration, we discuss the response of solid dinitrogen to VUV irradiation. In the future, the upgraded photochemistry end station is applicable to investigate the cometary mixed-ice analogs excited with VUV light from the synchrotron.

  18. Performance of the undulator based ultraviolet and soft x-ray beamline for catalysis and surface science at National Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liangliang [University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Hefei, Anhui 230029 (China); University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Du, Xuewei, E-mail: xwdu@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wei, Shen [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Li, Chaoyang [China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Pan, Congyuan; Ju, Huanxin [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Wang, Qiuping, E-mail: qiuping@ustc.edu.cn [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China); Zhu, Junfa [University of Science and Technology of China, National Synchrotron Radiation Laboratory, Hefei, Anhui 230029 (China)

    2016-12-01

    The undulator based ultraviolet and soft x-ray beamline BL11U for catalysis and surface science at National Synchrotron Radiation Laboratory (NSRL) has been under opteration for months and the present performance is described. This beamline utilizes radiation from an in-vacuum undulator, which has 30 magnetic periods with the period length of 40 mm. A varied-line-spacing plane grating monochromator is employed tto cover the photon energy region of 20–600 eV by two gratings with nominal groove densities of 400 llmm and 1200 l/mm respectively. The energy resolution power E/ΔE is measured with a gas ionization chamber and the photon flux is measured by a photodiode. Results show that the resolution power is better than 10,000 at a photon energy of 29.2 eV. And the flux is higher than 1×10{sup 10} phs/s under 300 mA ring beam current for most of the covered photon energy.

  19. Large area, surface discharge pumped, vacuum ultraviolet light source

    Science.gov (United States)

    Sze, Robert C.; Quigley, Gerard P.

    1996-01-01

    Large area, surface discharge pumped, vacuum ultraviolet (VUV) light source. A contamination-free VUV light source having a 225 cm.sup.2 emission area in the 240-340 nm region of the electromagnetic spectrum with an average output power in this band of about 2 J/cm.sup.2 at a wall-plug efficiency of approximately 5% is described. Only ceramics and metal parts are employed in this surface discharge source. Because of the contamination-free, high photon energy and flux, and short pulse characteristics of the source, it is suitable for semiconductor and flat panel display material processing.

  20. Vacuum ultraviolet electronic properties of liquids. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Painter, L.R.

    1980-06-01

    A program to study the electronic structure of liquids over the energy range from 2 to 25 eV was carried out from November, 1968 to October 1980. These studies basically consisted of measuring the reflectance, transmittance, photoionization, and photoemission of liquids in the vacuum ultraviolet spectral region as a function of angle of incidence and photon energy. Such measurements are analyzed to yield the optical and dielectric functions of the liquid as functions of photon energy. A summary of the progress in the program is presented. (GHT)

  1. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    Science.gov (United States)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  2. Absolute photon-flux measurements in the vacuum ultraviolet

    Science.gov (United States)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  3. Nonthermal combined ultraviolet and vacuum-ultraviolet curing process for organosilicate dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, H.; Guo, X.; Pei, D.; Li, W.; Blatz, J.; Hsu, K.; Benjamin, D.; Shohet, J. L., E-mail: shohet@engr.wisc.edu [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Lin, Y.-H.; Fung, H.-S.; Chen, C.-C. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Nishi, Y. [Stanford University, Stanford, California 94305 (United States)

    2016-06-13

    Porous SiCOH films are of great interest in semiconductor fabrication due to their low-dielectric constant properties. Post-deposition treatments using ultraviolet (UV) light on organosilicate thin films are required to decompose labile pore generators (porogens) and to ensure optimum network formation to improve the electrical and mechanical properties of low-k dielectrics. The goal of this work is to choose the best vacuum-ultraviolet photon energy in conjunction with vacuum ultraviolet (VUV) photons without the need for heating the dielectric to identify those wavelengths that will have the most beneficial effect on improving the dielectric properties and minimizing damage. VUV irradiation between 8.3 and 8.9 eV was found to increase the hardness and elastic modulus of low-k dielectrics at room temperature. Combined with UV exposures of 6.2 eV, it was found that this “UV/VUV curing” process is improved compared with current UV curing. We show that UV/VUV curing can overcome drawbacks of UV curing and improve the properties of dielectrics more efficiently without the need for high-temperature heating of the dielectric.

  4. Internal Energies of Ion-Sputtered Neutral Tryptophan and Thymine Molecules Determined by Vacuum Ultraviolet Photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jia; Takahashi, Lynelle; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2010-03-11

    Vacuum ultraviolet photoionization coupled to secondary neutral mass spectrometry (VUV-SNMS) of deposited tryptophan and thymine films are performed at the Chemical Dynamics Beamline. The resulting mass spectra show that while the intensity of the VUV-SNMS signal is lower than the corresponding secondary ion mass spectroscopy (SIMS) signal, the mass spectra are significantly simplified in VUV-SNMS. A detailed examination of tryptophan and thymine neutral molecules sputtered by 25 keV Bi3 + indicates that the ion-sputtered parent molecules have ~;;2.5 eV of internal energy. While this internal energy shifts the appearance energy of the photofragment ions for both tryptophan and thymine, it does not change the characteristic photoionizaton efficiency (PIE) curves of thymine versus photon energy. Further analysis of the mass spectral signals indicate that approximately 80 neutral thymine molecules and 400 tryptophan molecules are sputtered per incident Bi3 + ion. The simplified mass spectra and significant characteristic ion contributions to the VUV-SNMS spectra indicate the potential power of the technique for organic molecule surface analysis.

  5. The extra-terrestrial vacuum-ultraviolet wavelength range

    Science.gov (United States)

    Timothy, J. Gethyn; Wilhelm, Klaus; Xia, Lidong

    Electromagnetic radiation in the vacuum-ultraviolet (VUV) and extra-terrestrial range at wavelengths from 10 nm to 300 nm is absorbed in the upper atmosphere by ozone, molecular and atomic oxygen, and molecular nitrogen. Observations at wavelengths down to ≈ 200 nm can be carried out from stratospheric balloons, and observations below 200 nm require space platforms operating at altitudes above 250 km. The VUV spectral region contains emission lines and continua arising from plasma at formation temperatures ranging from about 104 K to more than 107 K. This chapter describes the wide range of plasma diagnostic techniques available at VUV wavelengths, and the development of instrumentation for studies of the high-temperature solar outer atmosphere and astrophysical plasmas. Finally, the prospects for future studies are briefly discussed.

  6. 3m vacuum ultraviolet spectrometer with optical multichanel detector

    Energy Technology Data Exchange (ETDEWEB)

    Marin, P.; Peraza, C. [Instituto Investigacion Basica. CIEMAT (Spain); Blanco, F.; Campos, J. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas

    1993-08-01

    This paper, describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT: It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate/phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the arrays is digitized by a 12-bit analog to digital converter and stored in a computer for its later analysis. The necessary software to store and display data has been developed. (Author)

  7. 3m vacuum ultraviolet spectrometer with optical multichanel detector

    Energy Technology Data Exchange (ETDEWEB)

    Marin, P.; Peraza, C. (Instituto Investigacion Basica. CIEMAT (Spain)); Blanco, F.; Campos, J. (Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas)

    1993-01-01

    This paper, describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT: It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate/phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the arrays is digitized by a 12-bit analog to digital converter and stored in a computer for its later analysis. The necessary software to store and display data has been developed. (Author)

  8. In-vacuum sensors for the beamline components of the ITER neutral beam test facility

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it; Pasqualotto, R.; Spagnolo, S.; Spolaore, M. [Consorzio RFX, Padova 35127 (Italy); Sartori, E. [Consorzio RFX, Padova 35127 (Italy); Università degli Studi di Padova, Padova 35122 (Italy); Veltri, P. [Consorzio RFX, Padova 35127 (Italy); INFN-LNL, Legnaro (PD) 35020 (Italy)

    2016-11-15

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  9. In-vacuum sensors for the beamline components of the ITER neutral beam test facility.

    Science.gov (United States)

    Dalla Palma, M; Pasqualotto, R; Sartori, E; Spagnolo, S; Spolaore, M; Veltri, P

    2016-11-01

    Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.

  10. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light.

    Science.gov (United States)

    Chen, Jing; Zhang, Peng-yi; Liu, Jian

    2007-01-01

    The photodegradation of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by 185 nm vacuum ultraviolet (VUV) light was examined to develop an effective technology to deal with PFOA pollution. PFOA degraded very slowly under irradiation of 254 nm UV light. However, 61.7% of initial PFOA was degraded by 185 nm VUV light within 2 h, and defluorination ratio reached 17.1%. Pseudo first-order-kinetics well simulated its degradation and defluorination. Besides, fluoride ion formed in water, 4 shorter-chain perfluorinated carboxylic acids (PFCAs), that is, perfluoroheptanoic acid, perfluorohexanoic acid, perfluoropentanoic acid, and perfluorobutanoic acid. These were identified as intermediates by LC-MS measurement. These PFCAs consecutively formed and further degraded with irradiation time. According to the mass balance calculation, no other byproducts were formed. It was proposed that PFCAs initially are decarboxylated by 185 nm light, and the radical thus formed reacts with water to form shorter-chain PFCA with one less CF2 unit.

  11. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    Science.gov (United States)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  12. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  13. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  14. Comparing vacuum and extreme ultraviolet radiation for postionization of laser desorbed neutrals from bacterial biofilms and organic fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L. [Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street (m/c 111), Chicago, IL 60607 (United States); Takahashi, Lynelle K. [Department of Chemistry, University of California, Berkeley, Room 419 Latimer Hall, Berkeley, CA 94720-1460 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Zhou Jia; Ahmed, Musahid [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Moore, Jerry F. [MassThink LLC, 500 East Ogden Avenue Suite 200, Naperville, IL 60563 (United States); Hanley, Luke, E-mail: lhanley@uic.edu [Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street (m/c 111), Chicago, IL 60607 (United States)

    2011-09-01

    Vacuum and extreme ultraviolet radiation from 8 to 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  15. Comparing Vacuum and Extreme Ultraviolet Radiation for Postionization of Laser Desorbed Neutrals from Bacterial Biofilms and Organic Fullerene

    Energy Technology Data Exchange (ETDEWEB)

    Gaspera, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moored, Jerry F.; Hanley, Luke

    2010-12-08

    Vacuum and extreme ultraviolet radiation from 8 - 24 eV generated at a synchrotron was used to postionize laser desorbed neutrals of antibiotic-treated biofilms and a modified fullerene using laser desorption postionization mass spectrometry (LDPI-MS). Results show detection of the parent ion, various fragments, and extracellular material from biofilms using LDPI-MS with both vacuum and extreme ultraviolet photons. Parent ions were observed for both cases, but extreme ultraviolet photons (16-24 eV) induced more fragmentation than vacuum ultraviolet (8-14 eV) photons.

  16. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, K.; O' Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l' Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2013-07-15

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  17. Resolution of isomeric new designer stimulants using gas chromatography - Vacuum ultraviolet spectroscopy and theoretical computations.

    Science.gov (United States)

    Skultety, Ludovit; Frycak, Petr; Qiu, Changling; Smuts, Jonathan; Shear-Laude, Lindsey; Lemr, Karel; Mao, James X; Kroll, Peter; Schug, Kevin A; Szewczak, Angelica; Vaught, Cory; Lurie, Ira; Havlicek, Vladimir

    2017-06-08

    Distinguishing isomeric representatives of "bath salts", "plant food", "spice", or "legal high" remains a challenge for analytical chemistry. In this work, we used vacuum ultraviolet spectroscopy combined with gas chromatography to address this issue on a set of forty-three designer drugs. All compounds, including many isomers, returned differentiable vacuum ultraviolet/ultraviolet spectra. The pair of 3- and 4-fluoromethcathinones (m/z 181.0903), as well as the methoxetamine/meperidine/ethylphenidate (m/z 247.1572) triad, provided very distinctive vacuum ultraviolet spectral features. On the contrary, spectra of 4-methylethcathinone, 4-ethylmethcathinone, 3,4-dimethylmethcathinone triad (m/z 191.1310) displayed much higher similarities. Their resolution was possible only if pure standards were probed. A similar situation occurred with the ethylone and butylone pair (m/z 221.1052). On the other hand, majority of forty-three drugs was successfully separated by gas chromatography. The detection limits for all the drug standards were in the 2-4 ng range (on-column amount), which is sufficient for determinations of seized drugs during forensics analysis. Further, state-of-the-art time-dependent density functional theory was evaluated for computation of theoretical absorption spectra in the 125-240 nm range as a complementary tool. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Vacuum ultraviolet and infrared spectra of condensed methyl acetate on cold astrochemical dust analogs

    Energy Technology Data Exchange (ETDEWEB)

    Sivaraman, B. [Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad 380009 (India); Nair, B. G.; Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Lo, J.-I.; Cheng, B.-M. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Kundu, S.; Davis, D.; Prabhudesai, V.; Krishnakumar, E. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400005 (India); Raja Sekhar, B. N., E-mail: bhala@prl.res.in [B-4, Indus-1, BARC Spectroscopy Lab at Indus-1, Atomic and Molecular Physics Division, BARC, Mumbai and RRCAT, Indore 452013 (India)

    2013-12-01

    Following the recent report of the first identification of methyl acetate (CH{sub 3}COOCH{sub 3}) in the interstellar medium (ISM), we have carried out vacuum ultraviolet (VUV) and infrared (IR) spectroscopy studies on methyl acetate from 10 K until sublimation in an ultrahigh vacuum chamber simulating astrochemical conditions. We present the first VUV and IR spectra of methyl acetate relevant to ISM conditions. Spectral signatures clearly showed molecular reorientation to have started in the ice by annealing the amorphous ice formed at 10 K. An irreversible phase change from amorphous to crystalline methyl acetate ice was found to occur between 110 K and 120 K.

  19. Generation of a vacuum ultraviolet to visible Raman frequency comb in H2-filled kagomé photonic crystal fiber.

    Science.gov (United States)

    Mridha, M K; Novoa, D; Bauerschmidt, S T; Abdolvand, A; St J Russell, P

    2016-06-15

    We report on the generation of a purely vibrational Raman comb, extending from the vacuum ultraviolet (184 nm) to the visible (478 nm), in hydrogen-filled kagomé-style photonic crystal fiber pumped at 266 nm. Stimulated Raman scattering and molecular modulation processes are enhanced by higher Raman gain in the ultraviolet. Owing to the pressure-tunable normal dispersion landscape of the "fiber + gas" system in the ultraviolet, higher-order anti-Stokes bands are generated preferentially in higher-order fiber modes. The results pave the way toward tunable fiber-based sources of deep and vacuum ultraviolet light for applications in, e.g., spectroscopy and biomedicine.

  20. Metallic Na formation in NaCl crystals with irradiation of electron or vacuum ultraviolet photon

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, Shigehiro [Osaka Prefecture Univ., Sakai, Osaka (Japan). Coll. of Integrated Arts and Sciences; Koyama, Shigeko; Takahashi, Masao; Kamada, Masao; Suzuki, Ryouichi

    1997-03-01

    Metallic Na was formed in NaCl single crystals with irradiation of a variety of radiation sources and analyzed the physical states with several methods. In the case of irradiation of 21 MeV electron pulses to the crystal blocks, the optical absorption and lifetime measurement of positron annihilation indicated appearance of Na clusters inside. Radiation effects of electron beam of 30 keV to the crystals in vacuum showed the appearance of not only metallic Na but atomic one during irradiation with Auger electron spectroscopy. Intense photon fluxes in vacuum ultraviolet region of synchrotron radiation were used as another source and an analyzing method of ultraviolet photoelectron spectroscopy. The results showed the metallic Na layered so thick that bulk plasmon can exist. (author)

  1. Vacuum ultraviolet and visible spectra of ZnO:Eu{sup 3+} prepared by combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Bingming [National Synchrotron Radiation Research Centre, Hsinchu, Taiwan (China); Yu Lixin; Duan Changkui; Wang, Huaishan; Tanner, Peter A [Department of Biology and Chemistry, City University of Hong Kong, Kowloon (Hong Kong)], E-mail: bhtan@cityu.edu.hk

    2008-08-27

    Zinc oxide doped with 1 at.% Eu{sup 3+} has been prepared by combustion synthesis using several different reductants. Samples sintered at 800 deg. C were {approx}30 nm in size and Fourier transform IR spectra demonstrated that they were relatively free of contaminants. Ultraviolet and near-ultraviolet laser excited emission spectra showed that Eu{sup 3+} ions are disordered and not situated at discrete lattice sites in ZnO and consequently no evidence for energy transfer from the host to Eu{sup 3+} was found. Vacuum ultraviolet (VUV) excitation produced defect site emission in addition to near-band-edge emission but the intensity of the Eu{sup 3+} visible emission was very weak. Bands between 6.2 and 9.1 eV in the VUV excitation spectra have been assigned to electric dipole allowed transitions, 3d-4p.

  2. Luminescence properties of organic–inorganic layered perovskite-type compounds under vacuum ultraviolet irradiation

    Science.gov (United States)

    Kawano, Naoki; Koshimizu, Masanori; Okada, Go; Fujimoto, Yutaka; Kawaguchi, Noriaki; Yanagida, Takayuki; Asai, Keisuke

    2018-02-01

    We investigated the luminescence properties of organic–inorganic layered perovskite-type compounds under vacuum ultraviolet irradiation. A crystal of (C6H5C2H4NH3)2PbBr4 was fabricated by the poor-solvent diffusion method. Exciton emissions from the inorganic layer were observed at 410 nm under ultraviolet irradiation (excitation wavelengths: 180 and 300 nm). The rise time behavior observed in the luminescence decay curve showed no difference among the excitation wavelengths of 60–300 nm. In addition, no excitation peak of benzene such as an intense peak at 180 nm (1A1g → 1E1u) in the vacuum ultraviolet region was observed in the excitation spectra measured while monitoring the exciton emissions from the inorganic layer. These results indicate that the effect of energy transfer from the organic layer to the inorganic layer has negligible contribution to the luminescence properties of organic–inorganic layered perovskite-type compounds.

  3. A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet range: From the optical design to the first UV spectrum.

    Science.gov (United States)

    de Oliveira, N; Joyeux, D; Phalippou, D; Rodier, J C; Polack, F; Vervloet, M; Nahon, L

    2009-04-01

    We describe a Fourier transform (FT) spectrometer designed to operate down to 60 nm (20 eV) on a synchrotron radiation beamline for high resolution absorption spectrometry. As far as we know, such an instrument is not available below 140 nm mainly because manufacturing accurate and efficient beam splitters remains a major problem at these wavelengths, especially if a wide bandwidth operation is desired. In order to overcome this difficulty, we developed an interferometer based on wave front division instead of amplitude division. It relies on a modified Fresnel bimirror configuration that requires only flat mirrors. The instrument provides path difference scanning through the translation of one reflector. During the scanning, the moving reflector is controlled by an optical system that keeps its direction constant within a tolerable value and provides an accurate interferometric measurement of the path difference variation. Therefore, a regular interferogram sampling is obtained, producing a nominal spectral impulse response and an accurate spectral calibration. The first results presented in this paper show a measured spectral resolution of delta(sigma)=0.33 cm-1 (interval between spectral samples). This was obtained with a sampling interval of 29 nm (path difference) and 512 K samples from a one-sided interferogram using a cosine FT. Such a sampling interval should allow the recording of large bandwidth spectra down to lambda=58 nm with an ultimate resolving power of 500,000 at this wavelength. In order to check the instrument performances, we first recorded an interferogram from a He-Ne stabilized laser. This provided the actual spectral impulse function, which was found to be fully satisfactory. The determination of the impulse response distortion and of the noise on the vacuum ultraviolet (VUV) spectral range provided accurate information in the sampling error profile over a typical scan. Finally, the instrument has been moved to the SU5 undulator

  4. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    Science.gov (United States)

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  5. Tunable vacuum ultraviolet laser based spectrometer for angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Rui; Mou, Daixiang; Wu, Yun; Huang, Lunan; Kaminski, Adam [Division of Materials Science and Engineering, Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); McMillen, Colin D.; Kolis, Joseph [Department of Chemistry, Clemson University, Clemson, South Carolina 29634 (United States); Giesber, Henry G.; Egan, John J. [Advanced Photonic Crystals LLC, Fort Mill, South Carolina 29708 (United States)

    2014-03-15

    We have developed an angle-resolved photoemission spectrometer with tunable vacuum ultraviolet laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3 eV and 7 eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on potassium beryllium fluoroborate crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10{sup 14} photon/s. We demonstrate that this energy range is sufficient to measure the k{sub z} dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  6. Absolute vacuum ultraviolet flux in inductively coupled plasmas and chemical modifications of 193 nm photoresist

    Science.gov (United States)

    Titus, M. J.; Nest, D.; Graves, D. B.

    2009-04-01

    Vacuum ultraviolet (VUV) photons in plasma processing systems are known to alter surface chemistry and may damage gate dielectrics and photoresist. We characterize absolute VUV fluxes to surfaces exposed in an inductively coupled argon plasma, 1-50 mTorr, 25-400 W, using a calibrated VUV spectrometer. We also demonstrate an alternative method to estimate VUV fluence in an inductively coupled plasma (ICP) reactor using a chemical dosimeter-type monitor. We illustrate the technique with argon ICP and xenon lamp exposure experiments, comparing direct VUV measurements with measured chemical changes in 193 nm photoresist-covered Si wafers following VUV exposure.

  7. Vacuum ultraviolet spectroscopy in detached plasmas with impurity gas seeding in LHD

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, C., E-mail: csuzuki@nifs.ac.jp; Murakami, I.; Akiyama, T.; Masuzaki, S.; Funaba, H.; Yoshinuma, M.

    2015-08-15

    We have carried out vacuum ultraviolet (VUV) spectroscopy of impurity ions in detached plasmas with impurity gas seeding in the Large Helical Device (LHD). In neon (Ne) gas seeding experiments, temporal evolutions of VUV spectral lines from Ne IV–VIII were recorded by a grazing incidence spectrometer. In addition, spatial profiles of fully ionized Ne density were measured by charge exchange spectroscopy. An electron temperature range where each ion emits is inferred based on the comparisons of the measured line intensity ratios with the calculations using collisional-radiative models.

  8. CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer

    Science.gov (United States)

    West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.

  9. Vacuum ultraviolet light source utilizing rare gas scintillation amplification sustained by photon positive feedback

    Science.gov (United States)

    Aprile, Elena (Inventor); Chen, Danli (Inventor)

    1995-01-01

    A source of light in the vacuum ultraviolet (VUV) spectral region includes a reflective UV-sensitive photocathode supported in spaced parallel relationship with a mesh electrode within a rare gas at low pressure. A high positive potential applied to the mesh electrode creates an electric field which causes drifting of free electrons occurring between the electrodes and producing continuous VUV light output by electric field-driven scintillation amplification sustained by positive photon feedback mediated by photoemission from the photocathode. In one embodiment the lamp emits a narrow-band continuum peaked at 175 nm.

  10. Energetics, ionization, and expansion dynamics of atomic clusters irradiated with short intense vacuum-ultraviolet pulses.

    Science.gov (United States)

    Ziaja, B; Wabnitz, H; Wang, F; Weckert, E; Möller, T

    2009-05-22

    Kinetic equations are used to model the dynamics of Xe clusters irradiated with short, intense vacuum-ultraviolet pulses. Various cluster size and pulse fluences are considered. It is found that the highly charged ions observed in the experiments are mainly due to Coulomb explosion of the outer cluster shell. Ions within the cluster core predominantly recombine with plasma electrons, forming a large fraction of neutral atoms. To our knowledge, our model is the first and only one that gives an accurate description of all of the experimental data collected from atomic clusters at 100 nm photon wavelength.

  11. CIV Vacuum Ultraviolet Fabry-Perot Interferometers for Transition-Region Magnetography

    Science.gov (United States)

    Gary, G. Allen; West, Edward A.; Rees, David; Zukic, Maumer; Herman, Peter; Li, Jianzhao

    2006-01-01

    The vacuum ultraviolet region allows remote sensing of the upper levels of the solar atmosphere where the magnetic field dominates the physics. Obtaining an imaging interferometer that observes the transition region is the goal of this program. This paper gives a summary of our instrument development program (1998-2005) for a high-spectral-resolution, piezoelectric tunable Vacuum Ultraviolet Fabry-Perot Interferometer (VUV FPI) for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CN (155nm). A VUV interferometer will allow us to observe the magnetic field, flows, and heating events in the mid-transition region. The MSFC VUV FPI has measured values of FWHM approx. 9pm, FSR approx. 62pm, finesse approx. 5.3 and transmittance approx. 50% at 157nm. For the measurements, the University of Toronto's F2 eximer laser was used as an appropriate proxy for CIV 155nm. This has provided the first tunable interferometer with a FWHM compatible to VUV filter magnetograph.

  12. [Design and study of a high resolution vacuum ultraviolet imaging spectrometer carried by satellite].

    Science.gov (United States)

    Yu, Lei; Lin, Guan-yu; Qu, Yi; Wang, Shu-rong; Wang, Long-qi

    2011-12-01

    A high resolution vacuum ultraviolet imaging spectrometer prototype carried by satellite applied to the atmosphere detection of particles distribution in 115-300 nm was developed for remote sensing. First, based on the analysis of advanced loads, the optical system including an off-axis parabolic mirror as the telescope and Czerny-Turner structure as the imaging spectrometer was chosen Secondly, the 2-D photon counting detector with MCP was adopted for the characteristic that the radiation is weak in vacuum ultraviolet waveband. Then the geometric method and 1st order differential calculation were introduced to improve the disadvantages that aberrations in the traditional structure can not be corrected homogeneously to achieve perfect broadband imaging based on the aberration theory. At last, an advanced example was designed. The simulation and calculation of results demonstrate that the modulation transfer function (MTF) of total field of view is more than 0.6 in the broadband, and the spectral resolution is 1.23 nm. The structure is convenient and predominant. It proves that the design is feasible.

  13. Simultaneous removal of NO and SO2 using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS).

    Science.gov (United States)

    Liu, Yangxian; Wang, Yan; Wang, Qian; Pan, Jianfeng; Zhang, Jun

    2018-01-01

    Simultaneous removal process of SO2 and NO from flue gas using vacuum ultraviolet light (VUV)/heat/peroxymonosulfate (PMS) in a VUV spraying reactor was proposed. The key influencing factors, active species, reaction products and mechanism of SO2 and NO simultaneous removal were investigated. The results show that vacuum ultraviolet light (185 nm) achieves the highest NO removal efficiency and yield of and under the same test conditions. NO removal is enhanced at higher PMS concentration, light intensity and oxygen concentration, and is inhibited at higher NO concentration, SO2 concentration and solution pH. Solution temperature has a double impact on NO removal. CO2 concentration has no obvious effect on NO removal. and produced from VUV-activation of PMS play a leading role in NO removal. O3 and ·O produced from VUV-activation of O2 also play an important role in NO removal. SO2 achieves complete removal under all experimental conditions due to its very high solubility in water and good reactivity. The highest simultaneous removal efficiency of SO2 and NO reaches 100% and 91.3%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Gerald L; Takahashi, Lynelle K; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  15. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  16. Ultraviolet-vacuum ultraviolet photoluminescence and x ray radioluminescence of Ce3+-doped Ba3MgSi2O8

    NARCIS (Netherlands)

    Ding, X.; Liang, H.; Hou, D.; Su, Q.; Dorenbos, P.; Sun, S.; Tao, Y.

    2011-01-01

    Ce3+-doped Ba3MgSi2O8 phosphors were prepared by a solid-state reaction route. The photoluminescence properties in the vacuum ultraviolet-vis spectral range and the x ray excited radioluminescence were investigated. Ce3+ ions were found to enter three different sites in the host lattice. Five

  17. The electronic states of 1,2,3-triazole studied by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy, and a comparison with ab initio configuration interaction methods

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Hoffmann, Søren Vrønning; Jones, Nykola C.

    2011-01-01

    The Rydberg states in the vacuum ultraviolet photoabsorption spectrum of 1,2,3-triazole have been measured and analyzed with the aid of comparison to the UV valence photoelectron ionizations and the results of ab initio configuration interaction (CI) calculations. Calculated electronic ionization...

  18. Ultra-fast switching of light by absorption saturation in vacuum ultra-violet region.

    Science.gov (United States)

    Yoneda, Hitoki; Inubushi, Yuichi; Tanaka, Toshihiro; Yamaguchi, Yuta; Sato, Fumiya; Morimoto, Shunsuke; Kumagai, Taisuke; Nagasono, Mitsuru; Higashiya, Atsushi; Yabashi, Makina; Ishikawa, Tetsuya; Ohashi, Haruhiko; Kimura, Hiroaki; Kitamura, Hikaru; Kodama, Ryosuke

    2009-12-21

    Advances in free electron lasers producing high energy photons [Nat. Photonics 2(9), 555-559 (2008)] are expected to open up a new science of nonlinear optics of high energy photons. Specifically, lasers of photon energy higher than the plasma frequency of a metal can show new interaction features because they can penetrate deeply into metals without strong reflection. Here we show the observation of ultra-fast switching of vacuum ultra-violet (VUV) light caused by saturable absorption of a solid metal target. A strong gating is observed at energy fluences above 6J/cm2 at wavelength of 51 nm with tin metal thin layers. The ratio of the transmission at high intensity to low intensity is typically greater than 100:1. This means we can design new nonlinear photonic devices such as auto-correlator and pulse slicer for the VUV region.

  19. Photofragmentation of gas-phase acetic acid and acetamide clusters in the vacuum ultraviolet region

    Science.gov (United States)

    Berholts, Marta; Myllynen, Hanna; Kooser, Kuno; Itälä, Eero; Granroth, Sari; Levola, Helena; Laksman, Joakim; Oghbaiee, Shabnam; Oostenrijk, Bart; Nõmmiste, Ergo; Kukk, Edwin

    2017-11-01

    Photofragmentation of gas-phase acetamide and acetic acid clusters produced by a supersonic expansion source has been studied using time-of-flight mass spectrometry and the partial ion yield (PIY) technique combined with tunable vacuum-ultraviolet synchrotron radiation. Appearance energies of the clusters and their fragments were experimentally determined from the PIY measurements. The effect of clusterization conditions on the formation and fragmentation of acetic acid clusters was investigated. Ab initio quantum mechanical calculations were performed on both samples' dimers to find their neutral and ionized geometries as well as proton transfer energy barriers leading to the optimal geometries. In the case of the acetamide dimer, the reaction resulting in the production of ammoniated acetamide was probed, and the geometry of the obtained ion was calculated.

  20. Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultraviolet irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masahito [Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Tyuou-2, AIST, Umezono 1-1-1, Tsukuba, Ibaraki, 305-8568 (Japan)], E-mail: masahito-tanaka@aist.go.jp; Kaneko, Fusae [Graduate School of Science and Technology, Kobe University, Tsurukabuto 3-11, Nada-ku, Kobe 657-8501 (Japan); Koketsu, Toshiyuki [Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, Kobe 657-8501 (Japan); Nakagawa, Kazumichi [Graduate School of Science and Technology, Kobe University, Tsurukabuto 3-11, Nada-ku, Kobe 657-8501 (Japan); Graduate School of Human Development and Environment, Kobe University, Tsurukabuto 3-11, Nada-ku, Kobe 657-8501 (Japan); Yamada, Toru [Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Tyuou-2, AIST, Umezono 1-1-1, Tsukuba, Ibaraki 305-8568 (Japan)

    2008-10-15

    The chemical reaction of aliphatic amino acid, such as alanine (Ala) and leucine (Leu), in the solid phase induced by vacuum ultraviolet (VUV) irradiation was studied by high-performance liquid chromatography technique and mass spectroscopic method. Quantum efficiencies of dimerization of Ala in the solid phase obviously showed irradiated VUV wavelength dependence. The values of quantum efficiencies of formation of Ala dimer were determined to be 5.7x10{sup -5}, 1.3x10{sup -3}, and 2.4x10{sup -4} for 208, 183, and 87 nm irradiation, respectively. VUV-induced fragment desorption from Ala and Leu films has also been examined by mass spectroscopic method. Observed mass spectra clearly indicated that both the deamination and decarboxylation reactions were common in both Ala and Leu films, and the dissociation of side chain occurred only in Leu film.

  1. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak

    Science.gov (United States)

    Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team

    2018-02-01

    A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.

  2. Selective irradiation of radicals for biomedical treatment using vacuum ultraviolet light from an excimer lamp

    Science.gov (United States)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-10-01

    In plasma medicine, radicals are considered to play important roles. However, the medical effect of each radical, such as OH and O, is unknown. To examine the effect of each radical, selective production of radicals is needed. We developed selective production of radicals for biomedical treatment using a vacuum ultraviolet (VUV) light emitted from an excimer lamp. Selective irradiation of OH radicals can be achieved by irradiating the 172-nm VUV light from a Xe2 excimer lamp to a humid helium flow in a quartz tube. The water molecules are strongly photodissociated by the VUV light to produce OH radicals. A photochemical simulation for the selective OH production is developed to calculate the OH density. The calculated OH density is compared with OH density measured using laser-induced fluorescence (LIF). Selective production of other radicals than OH is also discussed.

  3. Vacuum ultraviolet circularly polarized coherent femtosecond pulses from laser seeded relativistic electrons

    Directory of Open Access Journals (Sweden)

    N. Čutić

    2011-03-01

    Full Text Available We have demonstrated the generation of circularly polarized coherent light pulses at 66 nm wavelength by combining laser seeding at 263 nm of a 375 MeV relativistic electron bunch with subsequent coherent harmonic generation from an elliptical undulator of APPLE-II type. Coherent pulses at higher harmonics in linear polarization have been produced and recorded up to the sixth order (44 nm. The duration of the generated pulses depends on the temporal overlap of the initial seed laser pulse and the electron bunch and was on the order of 200 fs. Currently, this setup is the only source worldwide producing coherent fs-light pulses with variable polarization in the vacuum ultraviolet.

  4. Vacuum Ultraviolet Field Emission Lamp Consisting of Neodymium Ion Doped Lutetium Fluoride Thin Film as Phosphor

    Directory of Open Access Journals (Sweden)

    Masahiro Yanagihara

    2014-01-01

    Full Text Available A vacuum ultraviolet (VUV field emission lamp was developed by using a neodymium ion doped lutetium fluoride (Nd3+ : LuF3 thin film as solid-state phosphor and carbon nanofiber field electron emitters. The thin film was synthesized by pulsed laser deposition and incorporated into the lamp. The cathodoluminescence spectra of the lamp showed multiple emission peaks at 180, 225, and 255 nm. These emission spectra were in good agreement with the spectra reported for the Nd3+ : LuF3 crystal. Moreover, application of an acceleration voltage effectively increased the emission intensity. These results contribute to the performance enhancement of the lamp operating in the VUV region.

  5. Si nanocrystals embedded in SiO2: Optical studies in the vacuum ultraviolet range

    DEFF Research Database (Denmark)

    Pankratov, V.; Osinniy, Viktor; Kotlov, A.

    2011-01-01

    Photoluminescence excitation and transmission spectra of Si nanocrystals of different diameters embedded in a SiO2 matrix have been investigated in the broad visible-vacuum ultraviolet spectral range using synchrotron radiation. The dependence of the photoluminescence excitation spectra...... on the nanocrystals size was experimentally established. It is shown that the photoluminescence excitation and absorption spectra are significantly blueshifted with decreasing Si nanocrystal size. A detailed comparison of photoluminescence excitation and absorption spectra with data from theoretical modeling has been...... done. It is demonstrated that the experimentally determined blueshift of the photoluminescence excitation and absorption spectra is larger than the theoretical predictions. The influence of point defects in the SiO2 matrix on the optical and luminescence properties of the embedded Si nanocrystals...

  6. Synchrotron Vacuum Ultraviolet Light and Soft X-Ray Radiation Effects on Aluminized Teflon FEP Investigated

    Science.gov (United States)

    Dever, Joyce A.; Townsend, Jacqueline A.; Gaier, James R.; Jalics, Alice I.

    1999-01-01

    Since the Hubble Space Telescope (HST) was deployed in low Earth orbit in April 1990, two servicing missions have been conducted to upgrade its scientific capabilities. Minor cracking of second-surface metalized Teflon FEP (DuPont; fluorinated ethylene propylene) surfaces from multilayer insulation (MLI) was first observed upon close examination of samples with high solar exposure retrieved during the first servicing mission, which was conducted 3.6 years after deployment. During the second HST servicing mission, 6.8 years after deployment, astronaut observations and photographic documentation revealed significant cracks in the Teflon FEP layer of the MLI on both the solar- and anti-solar-facing surfaces of the telescope. NASA Goddard Space Flight Center directed the efforts of the Hubble Space Telescope MLI Failure Review Board, whose goals included identifying the low-Earth-orbit environmental constituent(s) responsible for the cracking and embrittling of Teflon FEP which was observed during the second servicing mission. The NASA Lewis Research Center provided significant support to this effort. Because soft x-ray radiation from solar flares had been considered as a possible cause for the degradation of the mechanical properties of Teflon FEP (ref. 1), the effects of soft xray radiation and vacuum ultraviolet light on Teflon FEP were investigated. In this Lewisled effort, samples of Teflon FEP with a 100-nm layer of vapor-deposited aluminum (VDA) on the backside were exposed to synchrotron radiation of various vacuum ultraviolet and soft x-ray wavelengths between 18 nm (69 eV) and 0.65 nm (1900 eV). Synchrotron radiation exposures were conducted using the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of FEP/VDA were exposed with the FEP surface facing the synchrotron beam. Doses and fluences were compared with those estimated for the 20-yr Hubble Space Telescope mission.

  7. Permanent hydrophilic modification of polypropylene and poly(vinyl alcohol) films by vacuum ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, Guilherme Kretzmann [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Charles, German [Centro de Química Aplicada (CEQUIMAP), Facultad de Ciencias Químicas, Unversidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Strumia, Miriam Cristina [Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IPQA-Conicet, Haya de la Torre y Medina Allende, Edificio de Ciencias II, Ciudad Universitaria, Córdoba 5000 (Argentina); Weibel, Daniel Eduardo, E-mail: danielw@iq.ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil)

    2016-09-30

    Highlights: • Polypropylene and Poly(vinyl alcohol) were surface modified by vacuum ultraviolet (VUV) irradiation. • The hydrophilicity of the treated films was permanent and resisted aging for several months. • Grafting of styrene monomer was only observed in the VUV irradiated regions. • The obtained results showed the potential in the use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region. - Abstract: Polypropylene (PP) and Poly(vinyl alcohol) (PVA) both synthetics polymers but one of them biodegradable, were surface modified by vacuum ultraviolet (VUV) irradiation. After VUV irradiation in an inert nitrogen atmosphere, the films were exposed to oxygen gas. The treated films were characterized by water contact angle measurements (WCA), optical profilometry, FTIR-ATR, XPS, UPS and NEXAFS techniques. PP and PVA VUV-treated films reached superhydrophilic conditions (WCAs <10°) in about 30 min of irradiation under our experimental conditions. It was observed that when the WCAs reached about 35–40° the hydrophilicity was permanent in both polymers. These results contrasted with typical plasma treatments were a rapid hydrophobic recovery with aging time is usually observed. UPS and XPS data showed the presence of new functionalities on the PP and PVA surfaces that were assigned to COO, C=O, C−O and C=C functional groups. Finally, grafting of styrene (ST) as a typical monomer was tested on PP films. It was confirmed that only in the VUV irradiated region an efficient grafting of ST or polymerized ST was found. Outside the irradiated regions no ST grafted was observed. Our results showed the potential use of VUV treatment for surface modification and processing of polymers which lack chromophores in the UV region.

  8. Investigation of the Surface of Poly(ethylene terephthalate) Films Modified by Vacuum Ultraviolet Irradiation in Air

    NARCIS (Netherlands)

    Mitrofanov, A. V.; Karban, O. V.; Sugonyako, A.; Lubomska, M.

    This paper reports on the results of measuring the changes in the characteristics of the surface of poly(ethylene terephthalate) films upon radiation-induced oxidation of the polymer under vacuum ultraviolet irradiation in an oxygen-containing medium. The films were irradiated by light from a

  9. Effects of plasma and vacuum-ultraviolet exposure on the mechanical properties of low-k porous organosilicate glass

    Science.gov (United States)

    X. Guo; J.E. Jakes; S. Banna; Y. Nishi; J.L. Shohet

    2014-01-01

    The effects of plasma exposure and vacuum-ultraviolet (VUV) irradiation on the mechanical properties of low-k porous organosilicate glass (SiCOH) dielectric films were investigated. Nanoindentation measurements were made on SiCOH films before and after exposure to an electron-cyclotron-resonance plasma or a monochromatic synchrotron VUV beam, to determine the changes...

  10. Transformation of porous structure under vacuum ultraviolet irradiation of the films based on silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Dultsev, F.N., E-mail: fdultsev@isp.nsc.ru [Institute of Semiconductor Physics SB RAS, Novosibirsk 630090, Lavrentiev ave., 13 (Russian Federation); Novosibirsk State University, 630090, Novosibirsk (Russian Federation); Nekrasov, D.V. [Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2016-03-31

    Transformation of the films with the pores of different radii under the action of vacuum ultraviolet radiation was studied experimentally and theoretically. Simulation results showed that Si–O–Si angle depends on pore size. Fourier Transform infrared spectra provide indirect confirmation of this statement. The experimental data and calculation results suggest that methyl group decreases π bonding, which causes a decrease in Si–O–Si angle. The action of ultraviolet radiation is to be considered as a photochemical reaction; the fragments formed in this reaction (CH{sub 3}{sup ⁎}, CH{sub 2}{sup ⁎}) can participate in polymerization, which leads to pore sealing. - Highlights: • Irradiation with the energy of 10–20 eV causes pore sealing. • FTIR studies and simulation results show that Si–O–Si angle depends on pore size. • Fragments formed in photochemical reaction (CH{sub 2}{sup ⁎}) can participate in polymerization. • Polymerization probability is high because the process takes place in closed space.

  11. [Luminescence properties of thenardite activated with Dy3+ under vacuum ultraviolet excitation].

    Science.gov (United States)

    Taximaiti, Yusufu; Ajimu, Abulai; Su, Zong-Cai; Aierken, Sidike

    2011-08-01

    Na2SO4: Dy3+ phosphors were prepared by heating pure natural thenardite (Na2SO4) with DyF3 at 900 degrees C for 25 min in air studied the Luminescence properties of Na2SO4: Dy3+ were studied by synchrotron radiation. Their photoluminescence (PL) spectra were also investigated under vacuum ultraviolet-ultraviolet (VUV-UV) at room temperature. According to the emission spectra, the yellow-blue ratio (Y/B) is different under different concentrations of Dy3+ and the position of excitation. And the excitation spectrum is consisted of strong bands assigned to the 4f9-->4f8 5d transition at 172 nm, the O(2-)- Tm3+ charge transfer band at 165 nm and weak bands assigned to host absorption (138, 245 nm) and the 6 H15/2-->4D7/2, 6H15/2-->6P3/2, and 6H15/2-->6P7/2 transition at 299, 325 and 351 nm respectively.

  12. Flash vacuum-ultraviolet source utilizing a surface-discharge substrate

    Science.gov (United States)

    Sagae, Michiaki; Sato, Eiichi; Shikoda, Arimitsu; Oizumi, Teiji; Hayasi, Yasuomi; Shoji, Tetsuo; Shishido, Koro; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1993-01-01

    The fundamental studies for the flash vacuum-ultraviolet (VUV) source utilizing a surface- discharge substrate are described. This flash VUV source consists of the following essential components: a high-voltage power supply, a polarity-inversion-type high-voltage pulser with a condenser capacity of 14.3 nF, an oil diffusion pump, and a flash VUV chamber with a glass body. The VUV chamber employed a surface-discharge ferrite substrate that's pattern was formed by means of the copper vacuum evaporation and was connected to an oil diffusion pump with a pressure of 1.3 X 10-3 Pa. The combined ceramic condenser in the pulser was charged from 10 to 30 kV by a power supply, and the electric charges in the condenser were discharged to the radiation chamber after closing a gap switch. Then the flash VUV rays were generated. The maximum values of the cathode voltage and the tube current were about -21 kV and 1.7 kA, respectively. The VUV outputs were measured by a combination of a plastic scintillator and a photomultiplier. The pulse durations of the VUV rays were nearly equivalent to the durations of the damped oscillations of the voltage and current, and their values were about 10 microsecond(s) .

  13. Vacuum Ultraviolet Radiation and Atomic Oxygen Durability Evaluation of HST Bi-Stem Thermal Shield Materials

    Science.gov (United States)

    Dever, Joyce; deGroh, Kim K.

    2002-01-01

    Bellows-type thermal shields were used on the bi-stems of replacement solar arrays installed on the Hubble Space Telescope (HST) during the first HST servicing mission (SMI) in December 1993. These thermal shields helped reduce the problem of thermal gradient- induced jitter observed with the original HST solar arrays during orbital thermal cycling and have been in use on HST for eight years. This paper describes ground testing of the candidate solar array bi-stem thermal shield materials including backside aluminized Teflon(R)FEP (fluorinated ethylene propylene) with and without atomic oxygen (AO) and ultraviolet radiation protective surface coatings for durability to AO and combined AO and vacuum ultraviolet (VOV) radiation. NASA Glenn Research Center (GRC) conducted VUV and AO exposures of samples of candidate thermal shield materials at HST operational temperatures and pre- and post-exposure analyses as part of an overall program coordinated by NASA Goddard Space Flight Center (GSFC) to determine the on-orbit durability of these materials. Coating adhesion problems were observed for samples having the AO- and combined AO/UV-protective coatings. Coating lamination occurred with rapid thermal cycling testing which simulated orbital thermal cycling. This lack of adhesion caused production of coating flakes from the material that would have posed a serious risk to HST optics if the coated materials were used for the bi-stem thermal shields. No serious degradation was observed for the uncoated aluminized Teflon(R) as evaluated by optical microscopy, although atomic force microscopy (AFM) microhardness testing revealed that an embrittled surface layer formed on the uncoated Teflon(R) surface due to vacuum ultraviolet radiation exposure. This embrittled layer was not completely removed by AO erosion, No cracks or particle flakes were produced for the embrittled uncoated material upon exposure to VUV and AO at operational temperatures to an equivalent exposure of

  14. The SLS optics beamline

    Energy Technology Data Exchange (ETDEWEB)

    Flechsig, U.; Abela, R.; Betemps, R.; Blumer, H.; Frank, K.; Jaggi, A.; MacDowell A.A.; Padmore, H.A.; Schonherr, V.; Ulrich, J.; Walther, H.; Zelenika, S.; Zumbach, C.

    2006-05-20

    A multipurpose beamline for tests and developments in the field of x-ray optics and synchrotron radiation instrumentation in general is under construction at the Swiss Light Source (SLS) bending magnet X05DA. The beamline uses a newly developed UHV compatible, 100 mm thick, brazed CVD diamond vacuum window. The very compact cryogenically cooled channel cut Si(111) monochromator and bendable 1:1 toroidal focusing mirror at 7:75 m from the source point are installed inside the shielding tunnel. The beamline covers a photon energy range of about 6 to 17 keV.We expect 5x1011 photons=s within a 100 mu m spot and a resolving power of 1300. The monochromator and focusing mirror can be retracted independently for unfocused monochromatic and focused ''white'' light operation respectively.

  15. The electron spectro-microscopy beamline at National Synchrotron Light Source II: a wide photon energy range, micro-focusing beamline for photoelectron spectro-microscopies.

    Science.gov (United States)

    Reininger, R; Hulbert, S L; Johnson, P D; Sadowski, J T; Starr, D E; Chubar, O; Valla, T; Vescovo, E

    2012-02-01

    A comprehensive optical design for a high-resolution, high-flux, wide-energy range, micro-focused beamline working in the vacuum ultraviolet and soft x-ray photon energy range is proposed. The beamline is to provide monochromatic radiation to three photoelectron microscopes: a full-field x-ray photoelectron emission microscope and two scanning instruments, one dedicated to angle resolved photoemission spectroscopy (μ-ARPES) and one for ambient pressure x-ray photoelectron spectroscopy and scanning photoelectron microscopy (AP-XPS/SPEM). Microfocusing is achieved with state of the art elliptical cylinders, obtaining a spot size of 1 μm for ARPES and 0.5 μm for AP-XPS/SPEM. A detailed ray tracing analysis quantitatively evaluates the overall beamline performances.

  16. Cell patterning using a template of microstructured organosilane layer fabricated by vacuum ultraviolet light lithography.

    Science.gov (United States)

    Yamaguchi, Munehiro; Ikeda, Koji; Suzuki, Masaaki; Kiyohara, Ai; Kudoh, Suguru N; Shimizu, Kyoko; Taira, Toshio; Ito, Daisuke; Uchida, Tsutomu; Gohara, Kazutoshi

    2011-10-18

    Micropatterning techniques have become increasingly important in cellular biology. Cell patterning is achieved by various methods. Photolithography is one of the most popular methods, and several light sources (e.g., excimer lasers and mercury lamps) are used for that purpose. Vacuum ultraviolet (VUV) light that can be produced by an excimer lamp is advantageous for fabricating material patterns, since it can decompose organic materials directly and efficiently without photoresist or photosensitive materials. Despite the advantages, applications of VUV light to pattern biological materials are few. We have investigated cell patterning by using a template of a microstructured organosilane layer fabricated by VUV lithography. We first made a template of a microstructured organosilane layer by VUV lithography. Cell adhesive materials (poly(d-lysine) and polyethyleneimine) were chemically immobilized on the organosilane template, producing a cell adhesive material pattern. Primary rat cardiac and neuronal cells were successfully patterned by culturing them on the pattern substrate. Long-term culturing was attained for up to two weeks for cardiac cells and two months for cortex cells. We have discussed the reproducibility of cell patterning and made suggestions to improve it. © 2011 American Chemical Society

  17. Bipolar ionization source for ion mobility spectrometry based on vacuum ultraviolet radiation induced photoemission and photoionization.

    Science.gov (United States)

    Chen, Chuang; Dong, Can; Du, Yongzhai; Cheng, Shasha; Han, Fenglei; Li, Lin; Wang, Weiguo; Hou, Keyong; Li, Haiyang

    2010-05-15

    A novel bipolar ionization source based on a commercial vacuum-UV Kr lamp has been developed for ion mobility spectrometry (IMS), which can work in both negative and positive ion mode. Its reactant ions formed in negative ion mode were predominantly assigned to be O(3)(-)(H(2)O)(n), which is different from that of the (63)Ni source with purified air as carrier and drift gases. The formation of O(3)(-)(H(2)O)(n) was due to the production of ozone caused by ultraviolet radiation, and the ozone concentration was measured to be about 1700 ppmv by iodometric titration method. Inorganic molecules such as SO(2), CO(2), and H(2)S can be easily detected in negative ion mode, and a linear dynamic range of 3 orders of magnitude and a limit of detection (S/N = 3) of 150 pptv were obtained for SO(2). Its performance as a negative ion source was investigated by the detection of ammonium nitrate fuel oil explosive, N-nitrobis(2-hydroxyethyl)amine dinitrate, cyclo-1,3,5-trimethylene-2,4,6-trinitramine, and pentaerythritol tetranitrate (PETN) at 150 degrees C. The limit of detection was reached at 45 pg for PETN, which was much lower than the 190 pg using (63)Ni ion mobility spectrometry under the same experimental condition. Also, its performance as an ordinary photoionization source was investigated in detecting benzene, toluene, and m-xylene.

  18. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid; Jackson, Teresa L.; Thiemens, Mark H.

    2012-01-03

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasing synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

  19. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water.

    Science.gov (United States)

    Marin, Timothy W; Janik, Ireneusz; Bartels, David M; Chipman, Daniel M

    2017-05-17

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.

  20. On-line product analysis of pine wood pyrolysis using synchrotron vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Weng, Junjie; Jia, Liangyuan; Sun, Shaobo; Wang, Yu; Tang, Xiaofeng; Zhou, Zhongyue; Qi, Fei

    2013-09-01

    The pyrolysis process of pine wood, a promising biofuel feedstock, has been studied with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. The mass spectra at different photon energies and temperatures as well as time-dependent profiles of several selected species during pine wood pyrolysis process were measured. Based on the relative contents of three lignin subunits, the data indicate that pine wood is typical of softwood. As pyrolysis temperature increased from 300 to 700 °C, some more details of pyrolysis chemistry were observed, including the decrease of oxygen content in high molecular weight species, the observation of high molecular weight products from cellulose chain and lignin polymer, and potential pyrolysis mechanisms for some key species. The formation of polycyclic aromatic hydrocarbons (PAHs) was also observed, as well as three series of pyrolysis products derived from PAHs with mass difference of 14 amu. The time-dependent profiles show that the earliest products are formed from lignin, followed by hemicellulose products, and then species from cellulose.

  1. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. I. Argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, WI 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, WI 53706 (United States); Radovanov, Svetlana; Persing, Harold [Varian Semiconductor Equipment, Applied Materials Inc., Gloucester, MA 01939 (United States)

    2014-03-15

    Vacuum ultraviolet (VUV) photons emitted from excited atomic states are ubiquitous in material processing plasmas. The highly energetic photons can induce surface damage by driving surface reactions, disordering surface regions, and affecting bonds in the bulk material. In argon plasmas, the VUV emissions are due to the decay of the 1s{sub 4} and 1s{sub 2} principal resonance levels with emission wavelengths of 104.8 and 106.7 nm, respectively. The authors have measured the number densities of atoms in the two resonance levels using both white light optical absorption spectroscopy and radiation-trapping induced changes in the 3p{sup 5}4p→3p{sup 5}4s branching fractions measured via visible/near-infrared optical emission spectroscopy in an argon inductively coupled plasma as a function of both pressure and power. An emission model that takes into account radiation trapping was used to calculate the VUV emission rate. The model results were compared to experimental measurements made with a National Institute of Standards and Technology-calibrated VUV photodiode. The photodiode and model results are in generally good accord and reveal a strong dependence on the neutral gas temperature.

  2. High-accuracy measurement of the emission spectrum of liquid xenon in the vacuum ultraviolet region

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Keiko, E-mail: fujii-keiko-nv@ynu.jp [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Endo, Yuya; Torigoe, Yui; Nakamura, Shogo [Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 (Japan); Haruyama, Tomiyoshi; Kasami, Katsuyu [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Mihara, Satoshi; Saito, Kiwamu; Sasaki, Shinichi [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); The Graduate School of Advanced Studies, Hayama, Kanagawa 240-0193 (Japan); Tawara, Hiroko [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan)

    2015-09-21

    The emission spectrum of cryogenic liquid xenon in the vacuum ultraviolet region was measured by irradiating liquid xenon with gamma-rays from a radioactive source. To achieve a high signal-to-noise ratio, we employed coincident photon counting. Additionally, the charge of the photo-sensor signals was measured to estimate the number of detected photons accurately. In addition, proper corrections were incorporated for the wavelength; response functions of the apparatus obtained using a low-pressure mercury lamp, and photon detection efficiencies of the optical system were considered. The obtained emission spectrum is found to be in the shape of a Gaussian function, with the center at 57,199±34 (stat.)±33 (syst.) cm{sup −1} (174.8±0.1 (stat.)±0.1 (syst.) nm) and the full width at half maximum of 3328±72 (stat.)±65 (syst.) cm{sup −1} (10.2±0.2 (stat.)±0.2 (sys.) nm). These results are the most accurate values obtained in terms of the data acquisition method and the calibration for the experimental system and provide valuable information regarding the high-precision instruments that employ a liquid-xenon scintillator.

  3. Determination of ionization energies of small silicon clusters with vacuum?ultraviolet (VUV) radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Leone, Stephen R.; Duncan, Michael A.; Ahmed, Musahid

    2009-09-23

    In this work we report on single photon vacuum ultraviolet photoionization of small silicon clusters (n=1-7) produced via laser ablation of Si. The adiabatic ionization energies (AIE) are extracted from experimental photoionization efficiency (PIE) curves with the help of Frank?Condon simulations, used to interpret the shape and onset of the PIE curves. The obtained AIEs are (all energies are in eV): Si (8.13+-0.05), Si2 (7.92+-0.05), Si3 (8.12+-0.05), Si4 (8.2+-0.1), Si5 (7.96+-0.07), Si6 (7.8+-0.1), and Si7 (7.8+-0.1). Most of the experimental AIE values are in good agreement with ab initio electronic structure calculations. To explain observed deviations between the experimental and theoretical AIEs for Si4 and Si6, a theoretical search of different isomers of these species is performed. Electronic structure calculations aid in the interpretation of the a2PIu state of Si2+ dimer in the PIE spectrum. Time dependent density functional theory (TD-DFT) calculations are performed to reveal the energies of electronically excited states in the cations for a number of Si clusters.

  4. Photoluminescence excitation spectra of lanthanide doped YAlO3 in vacuum ultraviolet region

    Science.gov (United States)

    Shimizu, Yuhei; Ueda, Kazushige; Inaguma, Yoshiyuki

    2017-04-01

    To understand luminescent mechanisms of lanthanide (Ln) doped phosphors, it is important to know the energy positions of unoccupied Ln2+ 4f and Ln3+ 5d states, as well as occupied Ln3+ 4f states, relative to the energy bands of host materials. Photoluminescence excitation (PLE) spectra of Ln doped YAlO3 were measured in a vacuum ultraviolet (VUV) region and the energy positions of Ln2+ 4f and Ln3+ 5d states in the wide-gap YAlO3 were elucidated. Peaks assignable to host lattice excitation were observed in all samples at approximately 8 eV in the PLE spectra. PLE peaks derived from charge transfer (CT) and 4f-5d transitions were observed at lower energy than the bandgap energy. Ln2+ 4f energy levels were obtained from the PLE peak energies for the CT transitions along with the valence band maximum. In contrast, Ln3+ 5d energy levels were evaluated from those for the 4f-5d transitions along with the Ln3+ 4f energy levels, which were obtained previously from X-ray photoelectron spectroscopy measurements. The elucidated Ln2+ 4f and Ln3+ 5d energy levels were exhibited in an energy diagram together with Ln3+ 4f energy levels and host energy bands. The experimental Ln2+ 4f and Ln3+ 5d energy levels were in good agreement with the reported theoretical data.

  5. Identification and deconvolution of carbohydrates with gas chromatography-vacuum ultraviolet spectroscopy.

    Science.gov (United States)

    Schenk, Jamie; Nagy, Gabe; Pohl, Nicola L B; Leghissa, Allegra; Smuts, Jonathan; Schug, Kevin A

    2017-09-01

    Methodology for qualitative and quantitative determination of carbohydrates with gas chromatography coupled to vacuum ultraviolet detection (GC-VUV) is presented. Saccharides have been intently studied and are commonly analyzed by gas chromatography-mass spectrometry (GC-MS), but not always effectively. This can be attributed to their high degree of structural complexity: α/β anomers from their axial/equatorial hydroxyl group positioning at the C1-OH and flexible ring structures that lead to the open chain, five-membered ring furanose, and six-membered ring pyranose configurations. This complexity can result in convoluted chromatograms, ambiguous fragmentation patterns and, ultimately, analyte misidentification. In this study, mono-, di, and tri-saccharides were derivatized by two different methods-permethylation and oximation/pertrimethylsilylation-and analyzed by GC-VUV. These two derivatization methods were then compared for their efficiency, ease of use, and robustness. Permethylation proved to be a useful technique for the analysis of ketopentoses and pharmaceuticals soluble in dimethyl sulfoxide (DMSO), while the oximation/pertrimethylsilylation method prevailed as the more promising, overall, derivatization method. VUV spectra have been shown to be distinct and allow for efficient differentiation of isomeric species such as ketopentoses and reducing versus non-reducing sugars. In addition to identification, pharmaceutical samples containing several compounds were derivatized and analyzed for their sugar content with the GC-VUV technique to provide data for qualitative analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Control of the Polarization of a Vacuum-Ultraviolet, High-Gain, Free-Electron Laser

    Directory of Open Access Journals (Sweden)

    Enrico Allaria

    2014-12-01

    Full Text Available The two single-pass, externally seeded free-electron lasers (FELs of the FERMI user facility are designed around Apple-II-type undulators that can operate at arbitrary polarization in the vacuum ultraviolet-to-soft x-ray spectral range. Furthermore, within each FEL tuning range, any output wavelength and polarization can be set in less than a minute of routine operations. We report the first demonstration of the full output polarization capabilities of FERMI FEL-1 in a campaign of experiments where the wavelength and nominal polarization are set to a series of representative values, and the polarization of the emitted intense pulses is thoroughly characterized by three independent instruments and methods, expressly developed for the task. The measured radiation polarization is consistently >90% and is not significantly spoiled by the transport optics; differing, relative transport losses for horizontal and vertical polarization become more prominent at longer wavelengths and lead to a non-negligible ellipticity for an originally circularly polarized state. The results from the different polarimeter setups validate each other, allow a cross-calibration of the instruments, and constitute a benchmark for user experiments.

  7. Sterilization of Bacillus atrophaeus using OH radicals supplied by vacuum ultraviolet method

    Science.gov (United States)

    Yonetamari, Kenta; Tokumitsu, Yusuke; Yonemori, Seiya; Ono, Ryo; Yasuda, Hachiro; Mizuno, Akira

    2015-09-01

    Sterilization by cold plasma has widely been performed. It is well known that reactive oxygen species (ROS) has a potential of sterilization. However, it is not clear which ROS is effective on sterilization because a lot of types of ROS are produced in plasma. In this study, sterilization effect of OH radicals by vacuum ultraviolet (VUV) method was investigated. This method utilizes photodissociation reaction to produce ROS so it can produce ROS selectively. Wet and dry helium with and without 1% O2 gas was used to demonstrate sterilization effect of OH radicals. Gases were flowed in a quartz tube (inner diameter 2 mm, outer diameter 4 mm) at a flow rate of 1.5 L/min. The produced ROS flowed out of the quartz tube nozzle. A Xe2 excimer lamp emitting 172 +/- 7 nm VUV light was placed parallel to the quartz tube with a distance of 8 mm. The distance between the lower end of the lamp and the nozzle of quartz tube was changed from 3 to 15 cm. As a target of sterilization, Bacillus atrophaeus (ATCC 9372) was used. The density of OH radicals was measured using laser-induced fluorescence (LIF). As a result, sterilization using VUV method was verified. This result showed that OH radicals sterilized the bacteria.

  8. Solid state direct bonding of polymers by vacuum ultraviolet light below 160 nm

    Science.gov (United States)

    Hashimoto, Yuki; Yamamoto, Takatoki

    2017-10-01

    This work investigated the application of vacuum ultraviolet (VUV) irradiation to the bonding of various substrates, including glass, polycarbonate (PC), cyclic olefin polymer (COP), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA). This method has the advantage of being able to bond various substrates without the application of heat or adhesives, and therefore may be very useful in the fabrication of micro/nanoscale structures composed of polymers. In contrast to previous applications of this technique, the present study used VUV radiation at wavelengths at and below 160 nm so as to take advantage of the higher energy in this range. Bonding was assessed based on measuring the shear stress of various test specimens subjected to VUV irradiation and then pressed together, and a number of analytical methods were also employed to examine the irradiated surfaces in order to elucidate the morphological and chemical changes following VUV treatment. These analyses included water contact angle measurements, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), time of flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). Poor bonding was identified between combinations consisting of PMMA/PC, PMMA/COP, PMMA/PMMA, PMMA/glass, and PC/COP, whereas all other combinations resulted in successful bonding with the bonding stress values such as PC/PC = 2.0 MPa, PC/glass = 10.7 MPa and COP/COP = 1.7 MPa, respectively.

  9. Interfacial chemistry of poly(methyl methacrylate) arising from exposure to vacuum-ultraviolet light and atomic oxygen.

    Science.gov (United States)

    Yuan, Hanqiu; Killelea, Daniel R; Tepavcevic, Sanja; Kelber, Scott I; Sibener, S J

    2011-04-28

    We herein report on the chemical and physical changes that occur in thin films of poly(methyl methacrylate), PMMA, induced by exposure to high-energy vacuum ultraviolet radiation and a supersonic beam of neutral, ground electronic state O((3)P) atomic oxygen. A combination of in situ quartz crystal microbalance and in situ Fourier-transform infrared reflection-absorption spectroscopy were used to determine the photochemical reaction kinetics and mechanisms during irradiation. The surface morphological changes were measured with atomic force microscopy. The results showed there was no enhancement in the mass loss rate during simultaneous exposure of vacuum ultraviolet (VUV) radiation and atomic oxygen. Rather, the rate of mass loss was impeded when the polymer film was exposed to both reagents. This study elucidates the kinetics of photochemical and oxidative reaction for PMMA, and shows that the synergistic effect involving VUV irradiation and exposure to ground state atomic oxygen depends substantially on the relative fluxes of these reagents.

  10. Beamline 08ID-1, the prime beamline of the Canadian Macromolecular Crystallography Facility.

    Science.gov (United States)

    Grochulski, Pawel; Fodje, Michel N; Gorin, James; Labiuk, Shaunivan L; Berg, Russ

    2011-07-01

    Beamline 08ID-1 is the prime macromolecular crystallography beamline at the Canadian Light Source. Based on a small-gap in-vacuum undulator, it is designed for challenging projects like small crystals and crystals with large cell dimensions. Beamline 08ID-1, together with a second bending-magnet beamline, constitute the Canadian Macromolecular Crystallography Facility (CMCF). This paper presents an overall description of the 08ID-1 beamline, including its specifications, beamline software and recent scientific highlights. The end-station of the beamline is equipped with a CCD X-ray detector, on-axis crystal visualization system, a single-axis goniometer and a sample automounter allowing remote access to the beamline. The general user program is guaranteed up to 55% of the useful beam time and is run under a peer-review proposal system. The CMCF staff provide `Mail-in' crystallography service to the users with the highest-scored proposals.

  11. Photoluminescence performance of thulium doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} under irradiation of ultraviolet and vacuum ultraviolet lights

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhaofeng [Department of Science Teaching, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Yezhou, E-mail: leelienzoey@gmail.com [Department of Science Teaching, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Liu, Xiong; Wei, Xingmin; Chen, Yueling; Zhou, Fei [Department of Science Teaching, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Wang, Yuhua [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)

    2014-11-15

    Highlights: • A novel blue-emitting phosphor Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was reported. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} exhibited excellent thermal and irradiation stability. • Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} was found to possess high color purity. - Abstract: In this work, we synthesized Tm{sup 3+} doped Li{sub 4}SrCa(SiO{sub 4}){sub 2} phosphors and investigated their photoluminescence properties under the excitation of ultraviolet and vacuum ultraviolet lights. The crystal structure analysis and variation of cell parameters confirm that Tm{sup 3+} ions have been successfully doped in the structure of Li{sub 4}SrCa(SiO{sub 4}){sub 2} host by occupying the sites of Ca{sup 2+} with the coordination number of 6. The luminescence results suggest that Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} is a good blue-emitting phosphor when excited by ultraviolet and vacuum ultraviolet irradiations. In addition, it is observed that there is nearly no degradation for Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} after undergoing thermal and irradiation treatments. Possible mechanisms for the luminescence processes are proposed on the basis of the discussion of excitation and emission spectra. In particular, the emission color of Li{sub 4}SrCa(SiO{sub 4}){sub 2}:Tm{sup 3+} by excitation of 147 and 172 nm irradiations is very close to the standard blue color, suggesting that it could be potentially applied in plasma display panels and mercury-free fluorescence lamps.

  12. Vacuum ultraviolet spectroscopy and photochemistry of zinc dihydride and related molecules in low-temperature matrices.

    Science.gov (United States)

    Henchy, Chris; Kilmartin, Una; McCaffrey, John G

    2013-09-26

    Optical absorption spectra of thin film samples, formed by the codeposition of zinc vapor with D2 and CH4, have been recorded with synchrotron radiation. With sufficiently low metal vapor flux, samples deposited at 4 K were found to consist exclusively of isolated zinc atoms for both solids. The atomic absorption bands in the quantum solids D2 and CH4 were found to exhibit large bandwidths, behavior related to the high lattice frequencies of these low mass solids. The reactivity of atomic zinc was promoted with (1)P state photolysis leading to the first recording of electronic absorption spectra for the molecules ZnD2 and CH3ZnH in the vacuum ultraviolet (VUV) region. (3)P state luminescence of atomic zinc observed in the Zn/CH4 system points to the involvement of the spin triplet state in the relaxation of CH3ZnH system as it evolves into the C3v ground state. This state is not involved in the relaxation of the higher symmetry molecule ZnD2. Time dependent density functional theory (TD-DFT) calculations were conducted to predict the electronic transitions of the inserted molecular species. Comparisons with experimental data indicate the predicted transition energies are approximately 0.5 eV less than the recorded values. Possible reasons for the discrepancy are discussed. The molecular photochemistry of ZnD2 and CH3ZnH observed in the VUV was modeled successfully with a simple four-valence electron AH2 Walsh-type diagram.

  13. Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle K.; Zhou, Jia; Kostko, Oleg; Golan, Amir; Leone, Stephen R.; Ahmed, Musahid

    2011-02-09

    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed.

  14. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  15. Flash vacuum-ultraviolet generator having a mercury-anode tube

    Science.gov (United States)

    Sagae, Michiaki; Sato, Eiichi; Oizumi, Teiji; Yamamoto, Mariko; Takabe, Akihito; Sakamaki, Kimio; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1995-09-01

    The fundamental studies on a flash vacuum-ultraviolet (VUV) generator for producing water- window x rays are described. this generator consisted of the following essential components: a high-voltage power supply, a polarity-inversion-type high-voltage pulser having a 15 nF condenser, a thyristor pulser as a trigger device, a turbo molecular pump, and a VUV tube. The VUV tube employed a mercury anode, and the ferrite cathode was embedded in the anode. The pressure in the tube was primarily determined by the steam pressure of mercury as a function of temperature. The condenser in the pulser was charged from -10 to -30 kV by the power supply, and the electric charges in the condenser were discharged to the radiation tube after closing a gap switch by the thyristor pulser. As the high electron flows from the cathode electrode evaporated the anode electrode, VUV rays were then produced. The maximum output voltage from the pulser was approximately -1 times the charging voltage, and both the tube voltage and current displayed damped oscillations. The maximum values of the tube voltage and current were 14 kV and 2.0 kA, respectively. Since the effective accelerating voltage was substantially decreased by the ferrite cathode, soft x rays were easily generated. The pulse durations of the VUV rays including water-window x rays were nearly equivalent to those of the damped oscillations of the voltage and current, and their values were less than 15 microsecond(s) .

  16. Vacuum ultraviolet photon-mediated production of [18 F]F2.

    Science.gov (United States)

    Krzyczmonik, Anna; Keller, Thomas; Kirjavainen, Anna K; Forsback, Sarita; Solin, Olof

    2017-04-01

    The chemistry of F2 and its derivatives are amenable to facile aliphatic or aromatic substitution, as well as electrophilic addition. The main limitation in the use of [18 F]F2 for radiopharmaceutical synthesis is the low specific activity achieved by the traditional methods of production. The highest specific activities, 55 GBq/μmol, for [18 F]F2 have been achieved so far by using electrical discharge in the post-target production of [18 F]F2 gas from [18 F]CH3 F. We demonstrate that [18 F]F2 is produced by illuminating a gas mixture of neon/F2 /[18 F]CH3 F with vacuum ultraviolet photons generated by an excimer laser. We tested several illumination chambers and production conditions. The effects of the initial amount of [18 F]F- , amount of carrier F2 , and number of 193-nm laser pulses at constant power were evaluated regarding radiochemical yield and specific activity. The specific activity attained for [18 F]F2 -derived [18 F]NFSi was 10.3 ± 0.9 GBq/μmol, and the average radiochemical yield over a wide range of conditions was 6.7% from [18 F]F- . The production can be improved by optimization of the synthesis device and procedures. The use of a commercially available excimer laser and the simplicity of the process can make this method relatively easy for adaptation in radiochemistry laboratories. Copyright © 2017 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  17. Sulfur Isotopic Fractionation During Vacuum Ultraviolet Photolysis of SO2: Implication for Meteorites and Early Earth

    Science.gov (United States)

    Chakraborty, S.; Jackson, T. L.; Rude, B.; Ahmed, M.; Thiemens, M. H.

    2016-12-01

    Several sulfur bearing gas phase species existed in the solar nebula, including H2S, SO2, SiS, OCS, CS2, CS, NS and SO as a consequence of multiple available chemical valence states (S2- to S6+). Sulfur directly condensed into refractory phases in the solar nebula under reducing conditions. Mass independent (MI) sulfur isotopic compositions have been measured in chondrules and organics from chondritic meteorites. Large 33S excesses in sulfides from achondrite meteoritic groups have also been found suggesting that refractory sulfide minerals condensed from a nebular gas with an enhanced carbon to oxygen ratio. Photochemical reactions in the early solar nebula have been inferred to be a leading process in generating MI sulfur compositions. Previously, we have reported wavelength dependent mass-independent sulfur isotopic compositions (with a varying degree in D33S and D36S) in the product elemental sulfur during vacuum ultraviolet (VUV) photodissociation of H2S. Recently we performed photodissociation of SO2 experiments in the wavelength region 98 to 200 nm at low pressures (0.5 torr) using the VUV photons from the Advanced Light Source Synchrotron in a differentially pumped reaction chamber. To our knowledge, this is the first ever experiment to determine the isotopic fractionation in VUV photodissociation of SO2. At VUV energy region, SO2 is mostly predissociative. The measured sulfur isotopic compositions in the product elemental sulfur are MI and dependent on the wavelength. These new results support the previous finding from photodissociation of other di- and tri-atomic molecules (CO, N2, H2S) that predissociative photodissociation produces MI isotopic products and is a quantum mechanically driven selective phenomenon. These new results are useful because (i) they are important in interpreting meteoritic data and decipher sulfur chemistry in the early nebula which is indicative of the redox condition of the nebula (ii) SO2 photolysis in the atmosphere of early

  18. Selective adsorption of protein on micropatterned flexible poly(ethylene terephthalate) surfaces modified by vacuum ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Li Shaoying [School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan 430070 (China); Wu Zhongkui, E-mail: zkwu@whut.edu.cn [School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan 430070 (China); Tang Hongxiao; Yang Jun [School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Rd, Wuhan 430070 (China)

    2012-03-01

    Protein micropattern was fabricated on the flexible poly(ethylene terephthalate) (PET) surfaces modified by vacuum ultraviolet lithography (VUV). Chemical composition and topographies changes of the modified PET surfaces were characterized and analyzed by X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and static water contact angle. As demonstrated in fluorescence microscope, the protein patterns were surrounded by a protein-repellant layer of poly(ethylene glycol) (PEG) that were faithful reproductions of the copper mesh. These results suggested that this technique can be extended to other polymeric materials and will be useful in fields where arrays of protein patterns are desired.

  19. Surface Emitting, High Efficiency Near-Vacuum Ultraviolet Light Source with Aluminum Nitride Nanowires Monolithically Grown on Silicon.

    Science.gov (United States)

    Zhao, S; Djavid, M; Mi, Z

    2015-10-14

    To date, it has remained challenging to realize electrically injected light sources in the vacuum ultraviolet wavelength range (∼200 nm or shorter), which are important for a broad range of applications, including sensing, surface treatment, and photochemical analysis. In this Letter, we have demonstrated such a light source with molecular beam epitaxially grown aluminum nitride (AlN) nanowires on low cost, large area Si substrate. Detailed angle dependent electroluminescence studies suggest that, albeit the light is TM polarized, the dominant light emission direction is from the nanowire top surface, that is, along the c axis, due to the strong light scattering effect. Such an efficient surface emitting device was not previously possible using conventional c-plane AlN planar structures. The AlN nanowire LEDs exhibit an extremely large electrical efficiency (>85%), which is nearly ten times higher than the previously reported AlN planar devices. Our detailed studies further suggest that the performance of AlN nanowire LEDs is predominantly limited by electron overflow. This study provides important insight on the fundamental emission characteristics of AlN nanowire LEDs and also offers a viable path to realize an efficient surface emitting near-vacuum ultraviolet light source through direct electrical injection.

  20. Ultrabroadband terahertz source and beamline based on coherent transition radiation

    Directory of Open Access Journals (Sweden)

    S. Casalbuoni

    2009-03-01

    Full Text Available Coherent transition radiation (CTR in the THz regime is an important diagnostic tool for analyzing the temporal structure of the ultrashort electron bunches needed in ultraviolet and x-ray free-electron lasers. It is also a powerful source of such radiation, covering an exceptionally broad frequency range from about 200 GHz to 100 THz. At the soft x-ray free-electron laser FLASH we have installed a beam transport channel for transition radiation (TR with the intention to guide a large fraction of the radiation to a laboratory outside the accelerator tunnel. The radiation is produced on a screen inside the ultrahigh vacuum beam pipe of the linac, coupled out through a diamond window and transported to the laboratory through an evacuated tube equipped with five focusing and four plane mirrors. The design of the beamline has been based on a thorough analysis of the generation of TR on metallic screens of limited size. The optical propagation of the radiation has been computed taking into account the effects of near-field (Fresnel diffraction. The theoretical description of the TR source is presented in the first part of the paper, while the design principles and the technical layout of the beamline are described in the second part. First experimental results demonstrate that the CTR beamline covers the specified frequency range and preserves the narrow time structure of CTR pulses emitted by short electron bunches.

  1. CERN News: Slow ejection efficiency at the PS; Vacuum tests on the ISR; Fire in the neutrino beam-line; Prototype r.f . cavity for the Booster; Crane-bridge in ISR experimental hall; Modifications to the r.f . system at the PS

    CERN Multimedia

    1969-01-01

    CERN News: Slow ejection efficiency at the PS; Vacuum tests on the ISR; Fire in the neutrino beam-line; Prototype r.f . cavity for the Booster; Crane-bridge in ISR experimental hall; Modifications to the r.f . system at the PS

  2. Microfocusing at the PG1 beamline at FLASH.

    Science.gov (United States)

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; Mey, Tobias; Reininger, Ruben; Rübhausen, Michael; Siewert, Frank; Weigelt, Holger; Brenner, Günter

    2016-01-01

    The Kirkpatrick-Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.

  3. ALS beamline design requirements: A guide for beamline designers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This manual is written as a guide for researchers in designing beamlines and endstations acceptable for use at the ALS. It contains guidelines and policies related to personnel safety and equipment and vacuum protection. All equipment and procedures must ultimately satisfy the safety requirements set aside in the Lawrence Berkeley National Laboratory (LBNL) Health and Safety Manual (PUB-3000) which is available from the ALS User Office or on the World WideWeb from the LBNL Homepage (http:// www.lbl.gov).

  4. Selective protein patterning based on the micro-structured organosilane self-assembled monolayer by vacuum ultraviolet light lithography.

    Science.gov (United States)

    Lim, Sung-Hyuk; Yamaguchi, Munehiro; Nishimura, Okio; Mie, Yasuhiro; Tamura, Tomohiro; Kim, Byung-Woo; Suzuki, Masaaki

    2009-12-01

    We have succeeded to immobilize fluorescent proteins selectively using a micro-structured organosilane self-assembled monolayer as a template. An organosilane layer with amino terminal group was formed on a thermally oxidized Si wafer by liquid-phase method and then was pattern-etched by vacuum ultraviolet light (VUV). The second organosilane layer with thiol terminal group was deposited on the etched area by chemical vapor surface modification method (CVSM). These micro-structured organosilane layer containing two reactive terminal groups were chemically modified using bi-functional linkers. Two kinds of fluorescent protein, Enhanced Cyan Fluorescent Protein (ECFP) and R-phycoerythrin were selectively immobilized on the chemically modified surface.

  5. The characterization of selected drugs with infrared laser desorption/tunable synchrotron vacuum ultraviolet photoionization mass spectrometry.

    Science.gov (United States)

    Pan, Yang; Yin, Hao; Zhang, Taichang; Guo, Huijun; Sheng, Liusi; Qi, Fei

    2008-08-01

    Some selected drugs including captopril, fudosteine and racecadotril have been analyzed by infrared (IR) laser desorption/tunable synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The molecular ions of captopril and racecadotril are exclusively observed without any fragments at near threshold single-photon ionization (SPI). However, fudosteine easily forms fragments even at a photon energy near the ionization threshold, indicating the instability of its molecular ion. For these drugs, a number of fragments are yielded with the increase of photon energy. The structures of such fragments proposed by IR LD/VUV PIMS are supported by electron ionization time-of-flight mass spectrometry (EI-TOFMS) results. Fragmentation pathways are discussed in detail. Copyright (c) 2008 John Wiley & Sons, Ltd.

  6. Determination of the coherence length in the vacuum-ultraviolet spectral region for the BPO4 crystal

    Science.gov (United States)

    Zhang, Xin; Wang, Guiling; Zhang, Shufeng; Zhang, Erpan; Wang, Lirong; Zhu, Yong; Wu, Yicheng; Chen, Chuangtian

    2012-03-01

    An experimental system has been set up to determine the coherence lengths of nonlinear optical crystals in the vacuum-ultraviolet (VUV) spectral region by measuring the Maker fringes in the VUV region. Using this system, the Maker fringes generated by frequency conversion from 354.7 to 177.3 nm in the BPO4 crystal were obtained and the coherence length corresponding to the nonlinear optical (NLO) coefficient d36 of the BPO4 crystal was determined to be lc(d36) = (0.785 ± 0.002) μm. To the best of our knowledge, this is the first time that the coherence length of NLO crystals in VUV was determined by experiment, and the result could be an essential parameter for designing a quasi-phase-matched BPO4 device.

  7. The electronic states of 1,2,4-triazoles: A study of 1H- and1-methyl-1,2,4-triazole by vacuum ultraviolet photoabsorption and ultraviolet photoelectron spectroscopy and a comparison with ab initio configuration interaction computations

    DEFF Research Database (Denmark)

    Palmer, Michael H.; Camp, Philip J.; Hoffmann, Søren Vrønning

    2012-01-01

    The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2,4-...

  8. Luminescence of Ce3+ at two different sites in ?-Sr2P2O7 under vacuum ultraviolet-UV and x-ray excitation

    NARCIS (Netherlands)

    Hou, D.; Han, B.; Chen, W.; Liang, H.; Su, Q.; Dorenbos, P.; Huang, Y.; Gao, Z.; Tao, Y.

    2010-01-01

    A series of Ce3+ doped ?-Sr2?2xCexNaxP2O7 phosphor compounds has been prepared using a high-temperature solid-state reaction technique. The luminescence properties under vacuum ultraviolet-UV and x-ray excitation were studied. Luminescence spectra reveal three UV-emitting peaks at about 310, 330,

  9. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Science.gov (United States)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  10. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, H.; Hammer, M. U.; Reuter, S. [Center for Innovation Competence plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von [Leibniz Institute for Plasma Science and Technology, INP Greifswald e.V. Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  11. Decontamination of unpackaged and vacuum-packaged boneless chicken breast with pulsed ultraviolet light.

    Science.gov (United States)

    Keklik, N M; Demirci, A; Puri, V M

    2010-03-01

    The effectiveness of pulsed UV light on the microbial load of boneless chicken breast was investigated. Unpackaged and vacuum-packaged samples inoculated with an antibiotic-resistant strain of Salmonella Typhimurium on the top surfaces were treated with pulsed UV light for 5, 15, 30, 45, and 60 s at 5, 8, and 13 cm distance from the quartz window in the pulsed UV light chamber. The log(10) reductions of Salmonella (cfu/cm(2)) on unpackaged samples varied from 1.2 to 2.4 after a 5-s treatment at 13 cm and a 60-s treatment at 5 cm, respectively. The log(10) reductions on vacuum-packaged samples varied from 0.8 to 2.4 after the 5-s treatment at 13 cm and the 60-s treatment at 5 cm, respectively. The optimum treatment conditions were determined to be 5 cm-15 s for unpackaged samples and 5 cm-30 s for vacuum-packaged samples, both of which resulted in about 2 log(10) reduction (approximately 99%). The total energy and temperatures of samples increased with longer treatment time and shorter distance from the quartz window in the pulsed UV light chamber. The changes in chemical quality and color of samples were determined after mild (at 13 cm for 5 s), moderate (at 8 cm for 30 s), and extreme (at 5 cm for 60 s) treatments. Neither malonaldehyde contents nor color parameters changed significantly (P > 0.05) after mild and moderate treatments. Mechanical properties of the packaging material were analyzed before and after pulsed UV light treatments. The elastic modulus at both along-machine and perpendicular-to-machine direction and yield strength at perpendicular-to-machine direction changed significantly (P light has a potential to be used for decontamination of unpackaged and vacuum-packaged poultry.

  12. Low Damage Reductive Patterning of Oxidized Alkyl Self-Assembled Monolayers through Vacuum Ultraviolet Light Irradiation in an Evacuated Environment.

    Science.gov (United States)

    Soliman, Ahmed I A; Tu, Yudi; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2017-10-17

    Through 172 nm vacuum ultraviolet light irradiation in a high vacuum condition (HV-VUV), well-defined micropatterns with a varied periodic friction were fabricated at the surface of self-assembled monolayers (SAMs) terminated with oxygenated groups. No apparent height contrast between the HV-VUV-irradiated and -masked areas was observed, which indicated the stability of the C-C skeleton of the assembled molecules. The trimming of oxygenated groups occurred through dissociating the C-O bonds and promoting the occurrence of α- and β-cleavages in the C═O-containing components. Hence, the HV-VUV treatment trimmed the oxygenated groups without degrading the C-C skeleton. The HV-VUV treatment influenced the order of the assembled molecules, and the step-terrace structure was distorted. The decrease in friction at the HV-VUV-irradiated domains was attributed to the dissociation of oxygenated groups. (3-Aminopropyl)trimethoxysilane (APTMS) aggregated at the masked areas of the HV-VUV-patterned SAM, where the oxygenated groups worked as anchors. APTMS aggregations did not exist at the irradiated areas, indicating the trimming of the oxygenated groups at these areas. The direct assembling of APTMS on the Si substrate at the irradiated areas was prevented by the remaining C-C skeleton.

  13. Vacuum ultraviolet trimming of oxygenated functional groups from oxidized self-assembled hexadecyl monolayers in an evacuated environment

    Science.gov (United States)

    Soliman, Ahmed I. A.; Utsunomiya, Toru; Ichii, Takashi; Sugimura, Hiroyuki

    2017-09-01

    Vacuum ultraviolet light irradiation in dry air generates active oxygen species, which have powerful oxidation abilities. These active oxygen species (O) can oxidize the alkyl moieties of polymers, and generate new oxygenated groups such as OH, CHO and COOH groups. Reducing the oxygen content in the exposure environment decreases the rate of oxidation processes. In this study, we examined the influences of the 172 nm VUV irradiation in a high vacuum (HV, < 10-3 Pa) environment on the chemical constituents, surface properties and morphological structure of well-defined VUV/(O)-modified hexadecyl (HD-) self-assembled monolayer (SAM) prepared on hydrogen-terminated silicon (H-Si) substrate. After VUV light irradiation in a HV environment (HV-VUV), the chemical constituents and surface properties were changed in two distinct stages. At short irradiation time (the first stage), the Csbnd O and COO groups decreased rapidly, while the Cdbnd O groups slightly changed. The dissociation of nonderivatizable groups (such as ether (Csbnd Osbnd C) and ester (Csbnd COOsbnd C) groups) compensated the dissociated OH, CHO, Csbnd COsbnd C and COOH groups. With further irradiation (the second stage), the quantities of the oxygenated groups slightly decreased. The carbon skeleton (Csbnd C) of SAM was scarcely dissociated during the HV-VUV treatment. These chemical changes affected the surface properties, such as wettability and morphology.

  14. Calibration and standards beamline 6.3.2 at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, J.H.; Gullikson, E.M.; Koike, M. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    More sophisticated optics for the x-ray, soft x-ray and far ultraviolet spectral regions being developed for synchrotron radiation research and many other applications, require accurate calibration and standards facilities for measuring reflectivity of mirrors and multilayer coatings, transmission of thin films, bandpass of multilayers, efficiency of gratings or detectors, etc. For this purpose beamline 6.3.2 was built at the ALS. Its energy coverage, versatility, simplicity and convenience also make it useful for a wide range of other experiments. The paper describes the components of this beamline, consisting of: a four jaw aperture; a horizontal focusing mirror; a monochromator; exit slit; vertical focusing mirror; mechanical and vacuum system; reflectometer; filter wheels; and data acquisition system.

  15. Rotary Valve & Beamline Highlights for Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Fitsos, P [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-21

    This Fiscal Year (FY) work was divided between continued testing and characterization work of the Rotary Valve (RV) and mechanical engineering support for the beamline hardware stands. This configuration is more like the final setup with the accelerator firing deuterons down the evacuated beamline toward the RV for interaction with the deuterium and neutron production. The beamline cells were part of an experiment to reduce the impact that RV gas would have on the beamline vacuum. This work will be reported separately from this report. Previous testing had been with the beamline at atmospheric pressure and now the goal was to get test results of the RV with it connected to a beamline that’s running at some level of vacuum.

  16. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain

  17. Vacuum ultraviolet radiation/atomic oxygen synergism in fluorinated ethylene propylene Teflon erosion

    Science.gov (United States)

    Stiegman, A. E.; Brinza, David E.; Laue, Eric G.; Anderson, Mark S.; Liang, Ranty H.

    1992-01-01

    A micrographic investigation is reported of samples of the fluorinated ethylene propylene (FEP) Teflon thermal-blanketing materials recovered from the Long-Duration Exposure Facility (LDEF) satellite. The samples are taken from the trailing edge and row 8 which correspond to exposures to vacuum UV (VUV) and VUV + atomic O, respectively. Data are taken from SEM and IR-spectra observations, and the LDEF leading-edge FEP shows a high degree of erosion, roughening, and sharp peaks angled in the direction of the flow of atomic O. The trailing edge sample influenced primarily by VUV shows a hard brittle layer and some cracked mosaic patterns. Comparisons to a reference sample suggest that the brittle layer is related to exposure to VUV and is removed by atomic-O impingement. Polymers that are stable to VUV radiation appear to be more stable in terms of atomic oxygen.

  18. Development of a high-speed vacuum ultraviolet (VUV) imaging system for the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Zhou, Fan; Ming, Tingfeng; Wang, Yumin; Wang, Zhijun; Long, Feifei; Zhuang, Qing; Li, Guoqiang; Liang, Yunfeng; Gao, Xiang

    2017-07-01

    A high-speed vacuum ultraviolet (VUV) imaging system for edge plasma studies is being developed on the Experimental Advanced Superconducting Tokamak (EAST). Its key optics is composed of an inverse type of Schwarzschild telescope made of a set of Mo/Si multilayer mirrors, a micro-channel plate (MCP) equipped with a P47 phosphor screen and a high-speed camera with CMOS sensors. In order to remove the contribution from low-energy photons, a Zr filter is installed in front of the MCP detector. With this optics, VUV photons with a wavelength of 13.5 nm, which mainly come from the line emission from intrinsic carbon (C vi: n = 4-2 transition) or the Ly-α line emission from injected Li iii on the EAST, can be selectively measured two-dimensionally with both high temporal and spatial resolutions. At present, this system is installed to view the plasma from the low field side in a horizontal port in the EAST. It has been operated routinely during the 2016 EAST experiment campaign, and the first result is shown in this work. To roughly evaluate the system performance, synthetic images are created. And it indicates that this system mainly measures the edge localized emissions by comparing the synthetic images and experimental data.

  19. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, D. S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-01

    An ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic, including the high-powered laser system and high-resolution optical relay system. In addition, we will also describe the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles. Finally, we will present results from six high-explosive (HE), shock-driven Sn-ejecta experiments. Particle-size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double-pulsed experiment will be described.

  20. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, Danny S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  1. Conformation of membrane-bound proteins revealed by vacuum-ultraviolet circular-dichroism and linear-dichroism spectroscopy.

    Science.gov (United States)

    Matsuo, Koichi; Maki, Yasuyuki; Namatame, Hirofumi; Taniguchi, Masaki; Gekko, Kunihiko

    2016-03-01

    Knowledge of the conformations of a water-soluble protein bound to a membrane is important for understanding the membrane-interaction mechanisms and the membrane-mediated functions of the protein. In this study we applied vacuum-ultraviolet circular-dichroism (VUVCD) and linear-dichroism (LD) spectroscopy to analyze the conformations of α-lactalbumin (LA), thioredoxin (Trx), and β-lactoglobulin (LG) bound to phosphatidylglycerol liposomes. The VUVCD analysis coupled with a neural-network analysis showed that these three proteins have characteristic helix-rich conformations involving several helical segments, of which two amphiphilic or hydrophobic segments take part in interactions with the liposome. The LD analysis predicted the average orientations of these helix segments on the liposome: two amphiphilic helices parallel to the liposome surface for LA, two hydrophobic helices perpendicular to the liposome surface for Trx, and a hydrophobic helix perpendicular to and an amphiphilic helix parallel to the liposome surface for LG. This sequence-level information about the secondary structures and orientations was used to formulate interaction models of the three proteins at the membrane surface. This study demonstrates the validity of a combination of VUVCD and LD spectroscopy in conformational analyses of membrane-binding proteins, which are difficult targets for X-ray crystallography and nuclear magnetic resonance spectroscopy. © 2016 Wiley Periodicals, Inc.

  2. Experimental and theoretical studies of vacuum-ultraviolet electronic circular dichroism of hydroxy acids in aqueous solution.

    Science.gov (United States)

    Fukuyama, Takayuki; Matsuo, Koichi; Gekko, Kunihiko

    2011-01-01

    The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (+)-(S)-2-hydroxy-3-methylbutyric acid, and (-)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO(-) and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the nπ* transition of the carboxyl group, with the latter peak also being influenced by the ππ* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO(-) and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids. Copyright © 2011 Wiley Periodicals, Inc.

  3. STUDENT AWARD FINALIST: Study of Self-Absorbed Vacuum Ultraviolet Radiation during Pulsed Atmospheric Breakdown in Air

    Science.gov (United States)

    Laity, George; Fierro, Andrew; Hatfield, Lynn; Neuber, Andreas

    2011-10-01

    This paper describes recent experiments to investigate the role of self-produced vacuum ultraviolet (VUV) radiation in the physics of pulsed atmospheric breakdown. A unique apparatus was constructed which enables the detailed exploration of VUV light in the range 115-135 nm, which is emitted from breakdown between two point-point electrodes in an air environment at atmospheric pressure. Time-resolved diagnostics include VUV sensitive photomultipliers, intensified CCD imaging, optically isolated high voltage probes, and fast rise-time Rogowski current monitors. Temporally resolved spectroscopy from air breakdowns revealed VUV emission is released during the initial streamer phase before voltage collapse, with the majority of the emission lines identified from various atmospheric gases or surface impurities. Imaging of VUV radiation was performed which conserved the spatial emission profile, and distinct differences between nitrogen and oxygen VUV emission during onset of breakdown have been observed. Specifically, the self-absorption of HI, OI, and NI lines is addressed which elucidates the role of radiation transport during the photon-dominated streamer breakdown process. Supported by AFOSR, NASA / TSGC, DEPS, and IEEE DEIS.

  4. Effects of vacuum-ultraviolet irradiation on copper penetration into low-k dielectrics under bias-temperature stress

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Zheng, H.; Xue, P.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-01-05

    The effects of vacuum-ultraviolet (VUV) irradiation on copper penetration into non-porous low-k dielectrics under bias-temperature stress (BTS) were investigated. By employing x-ray photoelectron spectroscopy depth-profile measurements on both as-deposited and VUV-irradiated SiCOH/Cu stacks, it was found that under the same BTS conditions, the diffusion depth of Cu into the VUV-irradiated SiCOH is higher than that of as-deposited SiCOH. On the other hand, under the same temperature-annealing stress (TS) without electric bias, the Cu distribution profiles in the VUV-irradiated SiCOH were same with that for the as-deposited SiCOH. The experiments suggest that in as-deposited SiCOH, the diffused Cu exists primarily in the atomic state, while in VUV-irradiated SiCOH, the diffused Cu is oxidized by the hydroxyl ions (OH{sup −}) generated from VUV irradiation and exists in the ionic state. The mechanisms for metal diffusion and ion injection in VUV irradiated low-k dielectrics are discussed.

  5. System for time resolved spectral studies of pulsed atmospheric discharges in the visible to vacuum ultraviolet range.

    Science.gov (United States)

    Laity, G; Neuber, A; Rogers, G; Frank, K

    2010-08-01

    Vacuum ultraviolet (VUV) emission is believed to play a major role in the development of plasma streamers in pulsed atmospheric discharges, but detection of VUV light is difficult in pulsed experiments at atmospheric pressures. Since VUV light is absorbed in most standard optical materials as well, careful attention must be given to the selection of the lens and mirror optics used in these studies. Of highest interest is the VUV emission during the initial stage of pulsed atmospheric discharges, which has a typical duration in the nanosecond regime. An experiment was designed to study this fast initial stage of VUV emission coupled with fast optical imaging of streamer propagation, both with temporal resolution on the order of nanoseconds. A repetitive solid-state high voltage pulser was constructed which produces triggered flashover discharges with low jitter and consistent pulse amplitude. VUV emission is captured utilizing both photomultiplier and intensified charge-coupled device detectors during the fast stage of streamer propagation. These results are discussed in context with the streamer formation photographed in the visible wavelength regime with 3 ns exposure time.

  6. Vacuum ultra-violet damage and damage mitigation for plasma processing of highly porous organosilicate glass dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Marneffe, J.-F. de, E-mail: marneffe@imec.be; Lukaszewicz, M.; Porter, S. B.; Vajda, F.; Rutigliani, V.; Verdonck, P.; Baklanov, M. R. [IMEC v.z.w., 3001 Leuven (Belgium); Zhang, L.; Heyne, M.; El Otell, Z.; Krishtab, M. [IMEC v.z.w., 3001 Leuven (Belgium); Department of Chemistry, KULeuven, 3001 Leuven (Belgium); Goodyear, A.; Cooke, M. [Oxford Instruments Plasma Technology, BS49 4AP Bristol (United Kingdom)

    2015-10-07

    Porous organosilicate glass thin films, with k-value 2.0, were exposed to 147 nm vacuum ultra-violet (VUV) photons emitted in a Xenon capacitive coupled plasma discharge. Strong methyl bond depletion was observed, concomitant with a significant increase of the bulk dielectric constant. This indicates that, besides reactive radical diffusion, photons emitted during plasma processing do impede dielectric properties and therefore need to be tackled appropriately during patterning and integration. The detrimental effect of VUV irradiation can be partly suppressed by stuffing the low-k porous matrix with proper sacrificial polymers showing high VUV absorption together with good thermal and VUV stability. In addition, the choice of an appropriate hard-mask, showing high VUV absorption, can minimize VUV damage. Particular processing conditions allow to minimize the fluence of photons to the substrate and lead to negligible VUV damage. For patterned structures, in order to reduce VUV damage in the bulk and on feature sidewalls, the combination of both pore stuffing/material densification and absorbing hard-mask is recommended, and/or the use of low VUV-emitting plasma discharge.

  7. Effects of pH on photochemical decomposition of perfluorooctanoic acid in different atmospheres by 185nm vacuum ultraviolet.

    Science.gov (United States)

    Wang, Yuan; Zhang, Pengyi

    2014-11-01

    Perfluorooctanoic acid (PFOA), a persistent organic pollutant, receives increasing concerns due to its worldwide occurrence and resistance to most conventional treatment processes. The photochemical decomposition by 185nm vacuum ultraviolet (VUV) is one of the efficient methods for PFOA decomposition. The effects of pH on PFOA decomposition in nitrogen atmosphere or oxygen atmosphere were investigated. At its original pH (4.5) of PFOA aqueous solution, PFOA decomposed efficiently both in nitrogen and in oxygen atmosphere. However, when the pH increased to 12.0, PFOA decomposition was greatly inhibited in oxygen atmosphere, while it was greatly accelerated in nitrogen atmosphere with a very short half-life time (9min). Furthermore, fluorine atoms originally contained in PFOA molecules were almost completely transformed into fluoride ions. Two decomposition pathways have been proposed to explain the PFOA decomposition under different conditions. In acidic and neutral solutions, PFOA predominantly decomposes via the direct photolysis in both atmospheres; while in the alkaline solution and in the absence of oxygen, the decomposition of PFOA is mainly induced by hydrated electrons. Copyright © 2014. Published by Elsevier B.V.

  8. Real-time radiative divertor feedback control development for the NSTX-U tokamak using a vacuum ultraviolet spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V. A., E-mail: vlad@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Kaita, R.; Stratton, B. [Princeton Plasma Physics Laboratory, 100 Stellarator Rd., Princeton, New Jersey 08543 (United States)

    2016-11-15

    A radiative divertor technique is planned for the NSTX-U tokamak to prevent excessive erosion and thermal damage of divertor plasma-facing components in H-mode plasma discharges with auxiliary heating up to 12 MW. In the radiative (partially detached) divertor, extrinsically seeded deuterium or impurity gases are used to increase plasma volumetric power and momentum losses. A real-time feedback control of the gas seeding rate is planned for discharges of up to 5 s duration. The outer divertor leg plasma electron temperature T{sub e} estimated spectroscopically in real time will be used as a control parameter. A vacuum ultraviolet spectrometer McPherson Model 251 with a fast charged-coupled device detector is developed for temperature monitoring between 5 and 30 eV, based on the Δn = 0, 1 line intensity ratios of carbon, nitrogen, or neon ion lines in the spectral range 300–1600 Å. A collisional-radiative model-based line intensity ratio will be used for relative calibration. A real-time T{sub e}-dependent signal within a characteristic divertor detachment equilibration time of ∼10–15 ms is expected.

  9. Real-time analysis of soot emissions from bituminous coal pyrolysis and combustion with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer.

    Science.gov (United States)

    Gao, Shaokai; Zhang, Yang; Meng, Junwang; Shu, Jinian

    2009-01-15

    This paper reports on-line analyses of the soot emissions from the Inner Mongolia bituminous coal combustion and pyrolysis processes with a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The soot particles are generated by heating a small amount of screened coal powder in synthetic air and nitrogen atmosphere in a tubular oven. The vacuum ultraviolet photoionization time-of-flight (VUV-TOF) mass spectra of the soot particles emitted from combustion and pyrolysis at different oven temperatures and different stages are obtained. The VUV-TOF mass spectra are assigned with the references of the results of the off-line GC/MS analysis.

  10. Preparation and characterization of pixelated phosphor screens for high-resolution linear imaging in the vacuum ultraviolet and x-ray ranges

    Science.gov (United States)

    Rodríguez-Barquero, L.; Zurro, B.; Martin, P.; McCarthy, K. J.; Baciero, A.

    2004-10-01

    Indirect digital imaging sensors employ tailored phosphors screens to convert incident x-ray or vacuum-ultraviolet (VUV) photons to visible light quanta A convenient method to prepare pixelated phosphor screens that can be easily tailored in thickness, type, and spatial resolution is presented. The characterization and evaluation of these screens in the laboratory is addressed and their application to high-resolution VUV and x-ray cameras is discussed.

  11. Microfocusing at the PG1 beamline at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Dziarzhytski, Siarhei, E-mail: siarhei.dziarzhytski@desy.de [DESY, Notkestrasse 85, 22067 Hamburg (Germany); Gerasimova, Natalia [European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg (Germany); Goderich, Rene [University of South Florida (United States); Mey, Tobias [Laser Laboratorium Göttingen eV, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen (Germany); Reininger, Ruben [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Rübhausen, Michael [University of Hamburg and Center for Free-Electron Laser Science, Notkestrasse 85, 22607 Hamburg (Germany); Siewert, Frank [Institute for Nanometre Optics and Technology at Helmholtz Zentrum Berlin/BESSY II, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Weigelt, Holger; Brenner, Günter [DESY, Notkestrasse 85, 22067 Hamburg (Germany)

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirrors unit at the PG1 beamline at FLASH has been newly designed, developed and fully commissioned. The vertical focal size of the KB optics is measured to be 5.8 ± 1 µm FWHM and the horizontal 6 ± 2 µm FWHM; astigmatism has been minimized to below 1 mm between waist positions. Such a tight focus is essential for the VUV double Raman spectrometer as it serves as an entrance slit for the first monochromator and defines its resolution to a very large extent. The Raman spectrometer is a permanent end-station at the PG1 beamline, dedicated to inelastic soft X-ray scattering experiments. The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines and limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus

  12. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  13. Beamline for Schools 2016

    CERN Multimedia

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline. Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ‘Pyramid Hunters’ from Poland and ‘Relatively Special’ from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. 

  14. The Normal-incidence Vacuum-ultraviolet Spectrometer for the TJ-II and First Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, K.J.; Zurro, B.; Baciero, A.

    2002-07-01

    A normal-incidence spectrometer, operating in the extreme-ultraviolet and ultraviolet wavelength regions, has been commissioned for the TJ-II stellarator. The instrument has been custom built by McPherson, Chelmsford, MA, and has several unique features and accessories that are described here. The instrument and CCD detector has been tested and calibrated, and its performance evaluated, using spectral lines from glow discharges and a RF excited flow lamp. Finally, the first spectra collected with the instrument of TJ-II plasmas are presented and a preliminary estimation of an oxygen ion temperature is made. (Author) 23 refs.

  15. Absorption spectroscopy of xenon and ethylene-noble gas mixtures at high pressure: Towards Bose-Einstein condensation of vacuum ultraviolet photons

    CERN Document Server

    Wahl, Christian; Schmitt, Julian; Vewinger, Frank; Christopoulos, Stavros; Weitz, Martin

    2016-01-01

    Bose-Einstein condensation is a phenomenon well known for material particles as cold atomic gases, and this concept has in recent years been extended to photons confined in microscopic optical cavities. Essential for the operation of such a photon condensate is a thermalization mechanism that conserves the average particle number, as in the visible spectral regime can be realized by subsequent absorption re-emission processes in dye molecules. Here we report on the status of an experimental effort aiming at the extension of the concept of Bose-Einstein condensation of photons towards the vacuum ultraviolet spectral regime, with gases at high pressure conditions serving as a thermalization medium for the photon gas. We have recorded absorption spectra of xenon gas at up to 30 bar gas pressure of the $5p^6 - 5p^56s$ transition with a wavelength close to 147 nm. Moreover, spectra of ethylene noble gas mixtures between 155 and 180 nm wavelength are reported.

  16. 3m Vacuum Ultraviolet Spectrometer with Optical Multichannel Detector; Espectrometro de ultravioleta de vacio de 3m provisto de sistema de deteccion optical multicanal

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.; Peraza, C.; Blanco, F.; Campos, J.

    1993-07-01

    This paper describes the design and the performance of a normal incidence vacuum ultraviolet spectrometer, for the 300-2400 A spectral range. It is provided with a multichannel detection system. The monochromator is original design and it has been built at CIEMAT. It is equipped with a 3 m concave holographic grating with 2400 grooves/mm. The multichannel detector consists of a windowless double microchannel plate / phosphor screen image intensifier, coupled by fiber optic to a 1024 elements self-scanning linear photodiode array. The output from the array is digitized by a 12-bit analog to digital converter and stored in a computer, for its later analysis. The necessary software to store and display data has been developed. (Author) 18 refs.

  17. Supercontinuum generation and tunable ultrafast emission in the vacuum ultraviolet using noble-gas-filled hollow-core photonic crystal fiber

    CERN Document Server

    Ermolov, Alexey; Frosz, Michael H; Travers, John C; Russell, Philip St J

    2015-01-01

    We report on the generation of a three-octave supercontinuum extending from the vacuum ultraviolet (VUV) to the near-infrared, spanning at least 113 to 1000 nm (i.e., 11 to 1.2 eV), in He-filled hollow-core kagome-style photonic crystal fiber. The same system also permits generation of narrower-band VUV radiation tunable from 113 to 200 nm with efficiencies exceeding 1% and VUV pulse energies in excess of 50 nJ. Modeling confirms that the mechanism involves soliton self-compression to sub-femtosecond pulse durations, dispersive-wave emission and the plasma-induced soliton self-frequency blue-shift. The bandwidth of the generated VUV light, which modeling shows to be coherent, is sufficient to support 500 as single-cycle pulses.

  18. Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    CERN Document Server

    Ishikawa, Kenji; Kono, Akihiko; Horibe, Hideo; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru; 10.1021/jz2002937

    2012-01-01

    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.

  19. Vacuum ultraviolet spectroscopic properties of rare earth (RE=Ce,Tb,Eu,Tm,Sm)-doped hexagonal KCaGd(PO4)2 phosphate

    Science.gov (United States)

    Zhang, Z. J.; Yuan, J. L.; Duan, C. J.; Xiong, D. B.; Chen, H. H.; Zhao, J. T.; Zhang, G. B.; Shi, C. S.

    2007-11-01

    Hexagonal KCaGd(PO4)2:RE3+ (RE =Ce,Tb,Eu,Tm,Sm) were synthesized by coprecipitation method and their vacuum ultraviolet-ultraviolet (VUV-UV) spectroscopic properties were investigated. The bands at about 165nm in the VUV excitation spectra are attributed to the host lattice absorptions. For Ce3+-doped samples, the bands at 207, 256, 275, and 320nm are assigned to the 4f-5d transitions of Ce3+ in KCaGd(PO4)2. For Tb3+-doped sample, the bands at 203 and 222nm are related to the 4f-5d spin-allowed transitions. For Eu3+-doped sample, the O2--Eu3+ charge-transfer band (CTB) at 229nm is observed, and the fine emission spectrum of Eu3+ indicates that Eu3+ ions prefer to occupy Gd3+ or Ca2+ sites in the host lattice. For Tm3+- and Sm3+-doped samples, the O2--Tm3+ and O2--Sm3+ CTBs are observed to be at 176 and 186nm, respectively. From the standpoints of the absorption band, color purity, and luminescent intensity, Tb3+-doped KCaGd(PO4)2 is a potential candidate for 172nm excited green plasma display phosphors.

  20. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry.

    Science.gov (United States)

    Hua, Lei; Wu, Qinghao; Hou, Keyong; Cui, Huapeng; Chen, Ping; Wang, Weiguo; Li, Jinghua; Li, Haiyang

    2011-07-01

    A novel combined ion source based on a vacuum ultraviolet (VUV) lamp with both single photon ionization (SPI) and chemical ionization (CI) capabilities has been developed for an orthogonal acceleration time-of-flight mass spectrometer (oaTOFMS). The SPI was accomplished using a commercial 10.6 eV krypton discharge lamp with a photon flux of about 10(11) photons s(-1), while the CI was achieved through ion-molecule reactions with O(2)(+) reactant ions generated by photoelectron ionization at medium vacuum pressure (MVP). To achieve high ionization efficiency, the ion source pressure was elevated to 0.3 mbar and the photoionization length was extended to 36 mm. As a result, limits of detection (LODs) down to 3, 4, and 6 ppbv were obtained for benzene, toluene, and p-xylene in MVP-SPI mode, and values of 8 and 10 ppbv were obtained for toluene and chloroform, respectively, in SPI-CI mode. As it is feasible to switch between MVP-SPI mode and SPI-CI mode rapidly, this system is capable of monitoring complex organic mixtures with a wide range of ionization energies (IEs). The analytical capacity of this system was demonstrated by measuring dehydrogenation products of long-chain paraffins to olefins through direct capillary sampling and drinking water disinfection byproducts from chlorine through a membrane interface.

  1. Survivorship in micro fungi and crustacean resting stages during ultraviolet (UV) and vacuum land testing of EXPOSE unit

    Science.gov (United States)

    Alekseev, Victor; Alekseev, Victor; Novikova, Nataliya; Sychev, Vladimir; Levinskikh, Margarita; Deshevaya, Elena; Brancelj, Anton; Malyavin, Stanislav

    Dormancy protects animals and plants in harsh environmental conditions within a special resting phases of life cycle lasting from months up to hundred years. This phenomenon is perspective for space researches on interplanetary quarantine within space missions. Direct experiments in open space supported in principle the fact of survivorship of bacteria and fungi spores in open space during long time experiments (Novikova et al. 2007). The rate of survivorship in long-term mission was low but enough to conclude that biological invasion to Mars is a real danger. The possibility for resting stages to survive under UV treatment in vacuum without some protection was not clear. To test it dormant stages (spores) of primitive fungi Aspergillus versicolor, Aspergillus sydowii, Penicillium expansum, and Penicillium aurantiogriseum derived from ISS environment were used in the land EXPOSE imitation of outside space station UV and vacuum conditions. Survivorship in resting eggs of some crustaceans with dried (cladoceran Daphnia magna, fair-shrimp Streptocephalus torvicornis and ostracode Eucypris ornate from hemi desert Caspian area) and wet diapause state (copepod Mixodiaptomus tatricus from the Tatra mountains, altitude 1510 m) was tested also. The total UV dose of 9,1x10 to the 4th KJ/m2 during this imitation was accomplished with a SOL 2000 sun simulator lamp. The final vacuum value achieved during EST was 10 to the minus 6 Pa. Temperature during the experiment fluctuated in the range 19-25 o C. Micro fungi showed a high level of survivorship in samples treated with UV samples varied from 95 till 100 Supported by RFBR grant 07-04-00006.

  2. Vacuum ultraviolet photoionization and ab initio Investigations of methyl tert-butyl ether (MTBE) clusters and MTBE-water clusters

    Science.gov (United States)

    Di Palma, Tonia M.; Bende, Attila

    2013-03-01

    The structures and energetics of neutral, ionized and protonated methyl tert-butyl ether (MTBE) clusters and (MTBE)m(H2O)n clusters are investigated by tunable vacuum-UV photoionization mass spectrometry and DFT calculations. While the mass spectra of bare MTBE clusters show unprotonated and protonated clusters ions, the mass spectra of mixed clusters show protonated ions that exhibit magic numbers that correspond to n = m - 2 combinations. Ab initio calculations show that in the larger clusters a multiple proton transfer leads to a protonated water core where all available hydrogen bonds interact with MTBE molecules. The resulting bond structure explains the cluster stability.

  3. Design and performance of a new VIS-VUV photoluminescence beamline at UVSOR-III.

    Science.gov (United States)

    Fukui, Kazutoshi; Ikematsu, Ryu-ichi; Imoto, Yoshinori; Kitaura, Mamoru; Nakagawa, Kazumichi; Ejima, Takao; Nakamura, Eiken; Sakai, Masahiro; Hasumoto, Masami; Kimura, Shin-ichi

    2014-03-01

    A new bending-magnet beamline with a 2.5 m normal-incidence monochromator has been constructed to serve with a light source in the visible-vacuum-ultraviolet region for photoluminescence, transmission and reflection spectroscopies of solids at the UVSOR-III 750 MeV synchrotron radiation light source. The aim is to pave the way to establishing a beamline with high photon flux, high brilliance, high energy-resolution, high linear-polarization and low higher-order light. To obtain high photon flux and brilliance, the acceptance angle of the bending-magnet radiation was designed to be 40 mrad (H) × 14 mrad (V) and the post-mirror system employed Kirkpatrick-Baez optics. The incidence angle of the incoming light to the optical elements, except to the gratings, was set to a grazing angle in order to keep a degree of linear polarization. For achieving high energy-resolution, an off-plane Eagle-type monochromator was adopted. Higher-order unwanted light in the energy range below ∼11 eV was suppressed to be less than 0.1%.

  4. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    Energy Technology Data Exchange (ETDEWEB)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Martín-Gago, J. A. [Centro de Astrobiología (CAB), INTA-CSIC, Torrejón de Ardoz, 28850 Madrid (Spain); Instituto de Ciencias de Materiales de Madrid (ICMM–CSIC), Cantoblanco, 28049 Madrid (Spain)

    2015-10-15

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  5. Production of reactive species using vacuum ultraviolet photodissociation as a tool for studying their effects in plasma medicine: simulations and measurements

    Science.gov (United States)

    Ono, Ryo; Tokumitsu, Yusuke; Zen, Shungo; Yonemori, Seiya

    2014-11-01

    We propose a method for producing OH, H, O, O3, and O2(a1Δg) using the vacuum ultraviolet photodissociation of H2O and O2 as a tool for studying the reaction processes of plasma medicine. For photodissociation, an H2O/He or O2/He mixture flowing in a quartz tube is irradiated by a Xe2 or Kr2 excimer lamp. The effluent can be applied to a target. Simulations show that the Xe2 lamp method can produce OH radicals within 0.1-1 ppm in the effluent at 5 mm from a quartz tube nozzle. This is comparable to those produced by a helium atmospheric-pressure plasma jet (He-APPJ) currently used in plasma medicine. The Xe2 lamp method also produces H atoms of, at most, 6 ppm. In contrast, the maximum O densities produced by the Xe2 and Kr2 lamp methods are 0.15 ppm and 2.5 ppm, respectively; these are much lower than those from He-APPJ (several tens of ppm). Both lamp methods can produce ozone at concentrations above 1000 ppm and O2(a1Δg) at tens of ppm. The validity of the simulations is verified by measuring the O3 and OH densities produced by the Xe2 lamp method using ultraviolet absorption and laser-induced fluorescence. The differences between the measured and simulated densities for O3 and OH are 20% and factors of 3-4, respectively.

  6. Optimized IR synchrotron beamline design.

    Science.gov (United States)

    Moreno, Thierry

    2015-09-01

    Synchrotron infrared beamlines are powerful tools on which to perform spectroscopy on microscopic length scales but require working with large bending-magnet source apertures in order to provide intense photon beams to the experiments. Many infrared beamlines use a single toroidal-shaped mirror to focus the source emission which generates, for large apertures, beams with significant geometrical aberrations resulting from the shape of the source and the beamline optics. In this paper, an optical layout optimized for synchrotron infrared beamlines, that removes almost totally the geometrical aberrations of the source, is presented and analyzed. This layout is already operational on the IR beamline of the Brazilian synchrotron. An infrared beamline design based on a SOLEIL bending-magnet source is given as an example, which could be useful for future IR beamline improvements at this facility.

  7. Thermal desorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments.

    Science.gov (United States)

    Fang, Wenzheng; Gong, Lei; Shan, Xiaobin; Liu, Fuyi; Wang, Zhenya; Sheng, Liusi

    2011-12-01

    This paper describes thermal desorption/tunable vacuum-ultraviolet photoionization time-of-flight aerosol mass spectrometry (TD-VUV-TOF-PIAMS) for the real-time analysis of secondary organic aerosols (SOAs) in smog chamber experiments. SOAs are sampled directly from atmospheric pressure and are focused through an aerodynamic lens assembly into the mass spectrometer. Once the particles have entered the source region, they impact on a heater and are vaporized. The nascent vapor is then softly ionized by tunable VUV synchrotron radiation. TD-VUV-TOF-PIAMS was used in conjunction with the smog chamber to study SOA formation from the photooxidation of toluene with hydroxyl radicals. The ionization energies (IEs) of these SOA products are sometimes very different with each other. As the ideal photon source is tunable, its energy can be adjusted for each molecular to be ionized. The mass spectra obtained at different photon energies are then to be useful for molecular identification. Real-time analysis of the mass spectra of SOAs is compared with previous off-line measurements. These results illustrate the potential of TD-VUV-TOF-PIAMS for direct molecular characterization of SOAs in smog chamber experiments.

  8. Effect of the methyl substitution on the combustion of two methylheptane isomers: Flame chemistry using vacuum-ultraviolet (VUV) photoionization mass spectrometry

    KAUST Repository

    Selim, Hatem

    2015-04-16

    Alkanes with one or more methyl substitutions are commonly found in liquid transportation fuels, so a fundamental investigation of their combustion chemistry is warranted. In the present work, stoichiometric low-pressure (20 Torr) burner-stabilized flat flames of 2-methylheptane and 3-methylheptane were investigated. Flame species were measured via time-of-flight molecular-beam mass spectrometry, with vacuum-ultraviolet (VUV) synchrotron radiation as the ionization source. Mole fractions of major end-products and intermediate species (e.g., alkanes, alkenes, alkynes, aldehydes, and dienes) were quantified axially above the burner surface. Mole fractions of several free radicals were also measured (e.g., CH3, HCO, C2H3, C3H3, and C3H5). Isomers of different species were identified within the reaction pool by an energy scan between 8 and 12 eV at a distance of 2.5 mm away from the burner surface. The role of methyl substitution location on the alkane chain was determined via comparisons of similar species trends obtained from both flames. The results revealed that the change in CH3 position imposed major differences on the combustion of both fuels. Comparison with numerical simulations was performed for kinetic model testing. The results provide a comprehensive set of data about the combustion of both flames, which can enhance the erudition of both fuels combustion chemistry and also improve their chemical kinetic reaction mechanisms. © 2015 American Chemical Society.

  9. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-06-10

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman- region) in the interstellar medium.

  10. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-03-02

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  11. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    Science.gov (United States)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  12. Comparison of surface vacuum ultraviolet emissions with resonance level number densities. II. Rare-gas plasmas and Ar-molecular gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Boffard, John B., E-mail: jboffard@wisc.edu; Lin, Chun C. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Wang, Shicong; Wendt, Amy E. [Department of Electrical and Computer Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Culver, Cody [Materials Science Program, University of Wisconsin, Madison, Wisconsin 53706 (United States); Radovanov, Svetlana; Persing, Harold [Applied Materials Inc., Gloucester, Massachusetts 01939 (United States)

    2015-03-15

    Vacuum ultraviolet (VUV) emissions from excited plasma species can play a variety of roles in processing plasmas, including damaging the surface properties of materials used in semiconductor processing. Depending on their wavelength, VUV photons can easily transmit thin upper dielectric layers and affect the electrical characteristics of the devices. Despite their importance, measuring VUV fluxes is complicated by the fact that few materials transmit at VUV wavelengths, and both detectors and windows are easily damaged by plasma exposure. The authors have previously reported on measuring VUV fluxes in pure argon plasmas by monitoring the concentrations of Ar(3p{sup 5}4s) resonance atoms that produce the VUV emissions using noninvasive optical emission spectroscopy in the visible/near-infrared wavelength range [Boffard et al., J. Vac. Sci. Technol., A 32, 021304 (2014)]. Here, the authors extend this technique to other rare-gases (Ne, Kr, and Xe) and argon-molecular gas plasmas (Ar/H{sub 2}, Ar/O{sub 2}, and Ar/N{sub 2}). Results of a model for VUV emissions that couples radiation trapping and the measured rare-gas resonance level densities are compared to measurements made with both a calibrated VUV photodiode and a sodium salicylate fluorescence detection scheme. In these more complicated gas mixtures, VUV emissions from a variety of sources beyond the principal resonance levels of the rare gases are found to contribute to the total VUV flux.

  13. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Chuang, K.-J.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ip, W.-H., E-mail: yujung@usc.edu [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  14. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region.

    Science.gov (United States)

    Plogmaker, Stefan; Linusson, Per; Eland, John H D; Baker, Neville; Johansson, Erik M J; Rensmo, Håkan; Feifel, Raimund; Siegbahn, Hans

    2012-01-01

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of ~8 to ~120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  15. Versatile high-repetition-rate phase-locked chopper system for fast timing experiments in the vacuum ultraviolet and x-ray spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Plogmaker, Stefan; Johansson, Erik M. J.; Rensmo, Haakan; Feifel, Raimund; Siegbahn, Hans [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Linusson, Per [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Eland, John H. D. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom); Baker, Neville [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ (United Kingdom)

    2012-01-15

    A novel light chopper system for fast timing experiments in the vacuum-ultraviolet (VUV) and x-ray spectral region has been developed. It can be phase-locked and synchronized with a synchrotron radiation storage ring, accommodating repetition rates in the range of {approx}8 to {approx}120 kHz by choosing different sets of apertures and subharmonics of the ring frequency (MHz range). Also the opening time of the system can be varied from some nanoseconds to several microseconds to meet the needs of a broad range of applications. Adjusting these parameters, the device can be used either for the generation of single light pulses or pulse packages from a microwave driven, continuous He gas discharge lamp or from storage rings which are otherwise often considered as quasi-continuous light sources. This chopper can be utilized for many different kinds of experiments enabling, for example, unambiguous time-of-flight (TOF) multi-electron coincidence studies of atoms and molecules excited by a single light pulse as well as time-resolved visible laser pump x-ray probe electron spectroscopy of condensed matter in the valence and core level region.

  16. A new membrane inlet interface of a vacuum ultraviolet lamp ionization miniature mass spectrometer for on-line rapid measurement of volatile organic compounds in air.

    Science.gov (United States)

    Hou, Keyong; Wang, Junde; Li, Haiyang

    2007-01-01

    A novel membrane inlet interface coupled to a single-photon ionization (SPI) miniature time-of-flight mass spectrometer has been developed for on-line rapid measurement of volatile organic compounds (VOCs). The vacuum ultraviolet (VUV) light source for SPI was a commercial krypton discharge lamp with photon energy of 10.6 eV and photon flux of 10(10) photons/s. The experimental results showed that the sensitivity was 5 times as high as obtained with the traditional membrane inlet. The enrichment efficiency could be adjusted in the range of 10 to 20 times for different VOCs when a buffer cell was added to the inlet interface, and the memory effect was effectively eliminated. A detection limit as low as 25 parts-per-billion by volume (ppbv) for benzene has been achieved, with a linear dynamic range of three orders of magnitude. The rise times were 6 s, 10 s and 15 s for benzene, toluene and p-xylene, respectively, and the fall time was only 6 s for all of these compounds. The analytical capacity of this system was demonstrated by the on-line analysis of VOCs in single puff mainstream cigarette smoke, in which more than 50 compounds were detected in 2 s. Copyright 2007 John Wiley & Sons, Ltd.

  17. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Cuylle, S. H.; Linnartz, H. [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. box 9513, 2300 RA Leiden (Netherlands); Henning, T. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-07-07

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  18. Beamline for schools

    CERN Multimedia

    2015-01-01

    This video is about BL4S Snapshot 22 Sep 2015 12:02:47From 10–20 September, winners of the Beamline for Schools competition visited CERN to perform their experiments. Two teams of high-school students – “Accelerating Africa” from South Africa and “Leo4G” from Italy – were chosen from a total of 119 teams, adding up to 1050 high-school students. “When we were told we’d won we never believed it. People’s parents thought we were lying,” says Michael Copeland from Accelerating Africa. The two teams shared a fully equipped accelerator beamline and conducted their experiment just like other researchers at CERN.

  19. Vacuum ultraviolet excited luminescence properties of sol–gel derived GdP{sub 5}O{sub 14}:Eu{sup 3+} powders

    Energy Technology Data Exchange (ETDEWEB)

    Mbarek, Aïcha [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Laboratoire de Chimie Industrielle, Ecole Nationale d' Ingénieurs de Sfax, Université de Sfax, BP W 3038, Sfax (Tunisia); Chadeyron, Geneviève, E-mail: genevieve.chadeyron@ensccf.fr [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Boyer, Damien [Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Avignant, Daniel [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); Fourati, Mohieddine [Laboratoire de Chimie Industrielle, Ecole Nationale d' Ingénieurs de Sfax, Université de Sfax, BP W 3038, Sfax (Tunisia); Zambon, Daniel [Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 CLERMONT-FERRAND (France); and others

    2014-01-15

    Sol–gel route has successfully been used to synthesize pure and Eu{sup 3+} doped polycrystalline samples of the GdP{sub 5}O{sub 14} pentaphosphates. The as-prepared samples have structurally been characterized using X-ray diffraction. Optical properties in the vacuum ultraviolet (VUV) of Eu{sup 3+} activated GdP{sub 5}O{sub 14} samples prepared either by sol–gel process or solid-state reaction were investigated at room temperature for comparison. In this GdP{sub 5}O{sub 14} host matrix the P{sub 5}O{sub 14} ultraphosphate groups were proved to exhibit an efficient absorption in the VUV range. The excitation spectra recorded in the VUV-UV spectral region from 120 nm to 350 nm have revealed the presence of Gd{sup 3+} 4f–5d interconfiguration transitions, Gd{sup 3+}–O{sup 2−} and Eu{sup 3+}–O{sup 2−} charge transfer states(CTS)in addition to intraconfiguration transitions of Gd{sup 3+} ions.Furthermore the Gd{sup 3+}→Eu{sup 3+} energy transfer process was investigated and discussed in the framework of the multiphonon relaxation process. Besides, the GdP{sub 5}O{sub 14}:Eu{sup 3+} phosphor led to a strong red emission under 147/172 nm excitation, so that it can be considered as a promising red phosphor for mercury-free lamps and plasma display panels applications. -- Highlights: • Lanthanide pentaphosphates were synthesized by the sol–gel process. • A broad absorption was evidenced in the VUV range for GdP{sub 5}O{sub 14}:Eu{sup 3+}. • An efficient energy transfer was proved from pentaphosphate lattice to Eu{sup 3+} ions.

  20. 25 W of average power at 172 nm in the vacuum ultraviolet from flat, efficient lamps driven by interlaced arrays of microcavity plasmas

    Science.gov (United States)

    Park, S.-J.; Herring, C. M.; Mironov, A. E.; Cho, J. H.; Eden, J. G.

    2017-04-01

    More than 25 W of average power and >800 W of peak power have been generated at λ =172 nm (h ν =7.2 eV) in the vacuum ultraviolet (VUV) from the Xe2 molecule in flat, 10 × 10 cm2 lamps having an active area and volume of 80 cm2 and interlaced arrays of microplasmas generated within cavities fabricated into an interior surface of the 20 % . For a bipolar voltage waveform driving frequency of 137 kHz and a 54% Xe/Ne gas fill mixture at a 300 K pressure of 550 Torr, the lamp generates as much as 31.5 W of average power and intensities >350 mW cm-2 in 40-60 μJ, 70±10 ns FWHM pulses produced in a burst mode-four pulses of 600-850 W peak power in every cycle of the driving waveform. The lamp intensity is uniform to within ±2.5% at ≥10 mm from its surface and average power varies linearly with pulse repetition frequency throughout the 18-135 kHz interval. The spectral breadth of the Xe dimer emission is ˜9 nm FWHM and time-resolved, spatial intensity maps show improved utilization of the power pulse (VṡI) with two or more microcavity arrays that are interleaved. This photonic source technology is capable of generating unprecedented power levels in the VUV spectral region (e.g., ˜2.5 kW m-2) with tiled lamps.

  1. Beamline AR-NW12A: high-throughput beamline for macromolecular crystallography at the Photon Factory.

    Science.gov (United States)

    Chavas, L M G; Matsugaki, N; Yamada, Y; Hiraki, M; Igarashi, N; Suzuki, M; Wakatsuki, S

    2012-05-01

    AR-NW12A is an in-vacuum undulator beamline optimized for high-throughput macromolecular crystallography experiments as one of the five macromolecular crystallography (MX) beamlines at the Photon Factory. This report provides details of the beamline design, covering its optical specifications, hardware set-up, control software, and the latest developments for MX experiments. The experimental environment presents state-of-the-art instrumentation for high-throughput projects with a high-precision goniometer with an adaptable goniometer head, and a UV-light sample visualization system. Combined with an efficient automounting robot modified from the SSRL SAM system, a remote control system enables fully automated and remote-access X-ray diffraction experiments.

  2. Vibrational autoionization of state-selective jet-cooled methanethiol (CH3SH) investigated with infrared vacuum-ultraviolet photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Min; Sen, Zhitao; Pratt, S. T.; Lee, Yuan-Pern

    2017-11-21

    Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. We employed time-of-flight mass detection of CH3SH+ to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH3SH) on exciting CH3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν3, SH stretching mode) and 2948 cm-12, CH3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν3 and ν2) states of CH3SH+. When IR light at 3014 cm-1 (overlapped ν19, CH3 antisymmetric stretching and CH2 antisymmetric stretching modes) was employed, two converging limits towards vibrationally excited states (ν1 and ν9) of CH3SH+ were observed. In contrast, when IR light at 2867 cm-1 (2ν10, overtone of CH3 deformation mode) and 2892 cm-1 (2ν4, overtone of CH2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH3SH+ (v4+ = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH3SH is a p-like lone pair orbital on the S atom. The quantum yields for autoionization of various vibrational excited states are discussed.

  3. Radiation protection of a proton beamline at ELI-Beamlines

    Science.gov (United States)

    Bechet, S.; Versaci, R.; Rollet, S.; Olsovcova, V.; Fajstavr, A.; Zakova, M.; Margarone, D.

    2016-12-01

    ELI-Beamlines (ELI stands for Extreme Light Infrastructure) is a new EU funded laser facility located near Prague, in Czech Republic. It will use laser-driven plasma sources to accelerate particles and host a dedicated proton beamline called ELIMAIA (ELI Multidisciplinary Applications of laser- Ion Acceleration) designed to reach energies up to 250 MeV. This beamline could be exploited to study possible future medical application of laser-driven beams. The first part of this paper introduces the beamline, the corresponding source terms and the complete set-up. The second part of the paper details the evaluation of the ambient dose equivalent and the activation study inside the experimental halls based on Monte-Carlo simulation. These calculations show that the ELIMAIA operation is safe as long as nobody is present in the hall when the beam is on.

  4. Diamond beamline I07: a beamline for surface and interface diffraction.

    Science.gov (United States)

    Nicklin, Chris; Arnold, Tom; Rawle, Jonathan; Warne, Adam

    2016-09-01

    Beamline I07 at Diamond Light Source is dedicated to the study of the structure of surfaces and interfaces for a wide range of sample types, from soft matter to ultrahigh vacuum. The beamline operates in the energy range 8-30 keV and has two endstations. The first houses a 2+3 diffractometer, which acts as a versatile platform for grazing-incidence techniques including surface X-ray diffraction, grazing-incidence small- (and wide-) angle X-ray scattering, X-ray reflectivity and grazing-incidence X-ray diffraction. A method for deflecting the X-rays (a double-crystal deflector) has been designed and incorporated into this endstation, extending the surfaces that can be studied to include structures formed on liquid surfaces or at liquid-liquid interfaces. The second experimental hutch contains a similar diffractometer with a large environmental chamber mounted on it, dedicated to in situ ultrahigh-vacuum studies. It houses a range of complementary surface science equipment including a scanning tunnelling microscope, low-energy electron diffraction and X-ray photoelectron spectroscopy ensuring that correlations between the different techniques can be performed on the same sample, in the same chamber. This endstation allows accurate determination of well ordered structures, measurement of growth behaviour during molecular beam epitaxy and has also been used to measure coherent X-ray diffraction from nanoparticles during alloying.

  5. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  6. The bio-crystallography beamline (BL41XU) at SPring-8

    CERN Document Server

    Kawamoto, M; Kamiya, N

    2001-01-01

    The bio-crystallography beamline (BL41XU), one of two pilot beamlines at SPring-8, was constructed using a standard in-vacuum-type undulator and opened for general users from domestic and overseas countries. Many tests and improvements were carried out on beamline elements and equipment for macromolecular crystallography, especially on the so-called 'pin-post' water cooling crystal of rotated-inclined double crystal monochromator. The maximum brilliance at sample position reached to 4x10 sup 1 sup 5 photons/s/mm sup 2 /mrad sup 2 at an X-ray energy of 11 keV. Commercially available X-ray detectors of CCD and imaging plate were installed in the experimental station. A beamline control software system for beam tracking and an on-line reader for large-format imaging plate were newly developed.

  7. High-throughput Toroidal Grating Beamline for Photoelectron Spectroscopy at CAMD.

    Science.gov (United States)

    Kizilkaya, O; Jiles, R W; Patterson, M C; Thibodeaux, C A; Poliakoff, E D; Sprunger, P T; Kurtz, R L; Morikawa, E

    A 5 meter toroidal grating (5m-TGM) beamline has been commissioned to deliver 28 mrad of bending magnet radiation to an ultrahigh vacuum endstation chamber to facilitate angle resolved photoelectron spectroscopy. The 5m-TGM beamline is equipped with Au-coated gratings with 300, 600 and 1200 lines/mm providing monochromatized synchrotron radiation in the energy ranges 25-70 eV, 50-120 eV and 100-240 eV, respectively. The beamline delivers excellent flux (~1014-1017 photons/sec/100mA) and a combined energy resolution of 189 meV for the beamline (at 1.0 mm slit opening) and HA-50 hemispherical analyzer was obtained at the Fermi level of polycrystalline gold crystal. Our preliminary photoelectron spectroscopy results of phenol adsorption on TiO2 (110) surface reveals the metal ion (Ti) oxidation.

  8. A compact tool for coaxial laser alignment on a time-sharing beamline at Taiwan Light Source.

    Science.gov (United States)

    Yuh, Jih Young

    2014-09-01

    A simple design and easily installed tool for alignment has been developed for time-sharing undulator beamlines. A laser beam is directed onto a beam splitter inside the vacuum chamber, then reflects 90° along the synchrotron beam path; this beam serves as a reference to mimic the synchrotron beam path. Use of this tool greatly abbreviated alignment of an end-station after beamline switching; both beamline diagnosis and end-station development can be completed before the synchrotron beam time begins.

  9. Valence and ionic lowest-lying electronic states of ethyl formate as studied by high-resolution vacuum ultraviolet photoabsorption, He(I) photoelectron spectroscopy, and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Śmiałek, M. A., E-mail: smialek@pg.gda.pl [Department of Control and Energy Engineering, Faculty of Ocean Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Łabuda, M.; Guthmuller, J. [Department of Theoretical Physic and Quantum Information, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk (Poland); Hubin-Franskin, M.-J.; Delwiche, J. [Département de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, B-4000 Liège (Belgium); Duflot, D. [Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), UMR CNRS 8523, Université Lille1 Sciences et Technologies, F-59655 Villeneuve d' Ascq Cedex (France); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V.; Jones, N. C. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Building 1520, DK-8000 Aarhus C (Denmark); Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-14

    The highest resolution vacuum ultraviolet photoabsorption spectrum of ethyl formate, C{sub 2}H{sub 5}OCHO, yet reported is presented over the wavelength range 115.0–275.5 nm (10.75–4.5 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new ab initio calculations of the vertical excitation energies and oscillator strengths. Calculations have also been carried out to determine the ionization energies and fine structure of the lowest ionic state of ethyl formate and are compared with a newly recorded He(I) photoelectron spectrum (from 10.1 to 16.1 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross sections have been used to calculate the photolysis lifetime of ethyl formate in the upper stratosphere (20–50 km)

  10. An Improved Vacuum System for COLLAPS

    CERN Document Server

    Bruchim, Daniel

    2015-01-01

    The COLLAPS beamline in general, and the current ROC setup specifically, has very many valves and pumps. We require a safety system in order to prevent action that would cause damage to vacuum components, i.e. opening a valve between atmosphere and vacuum. The system needs to be adaptable (programmable) to the various possible setups of COLLAPS and needs to be as robust as possible in order to prevent damage of equipment.

  11. Attosecond beamline with actively stabilized and spatially separated beam paths.

    Science.gov (United States)

    Huppert, M; Jordan, I; Wörner, H J

    2015-12-01

    We describe a versatile and compact beamline for attosecond spectroscopy. The setup consists of a high-order harmonic source followed by a delay line that spatially separates and then recombines the extreme-ultraviolet (XUV) and residual infrared (IR) pulses. The beamline introduces a controlled and actively stabilized delay between the XUV and IR pulses on the attosecond time scale. A new active-stabilization scheme combining a helium-neon-laser and a white-light interferometer minimizes fluctuations and allows to control delays accurately (26 as rms during 1.5 h) over long time scales. The high-order-harmonic-generation region is imaged via optical systems, independently for XUV and IR, into an interaction volume to perform pump-probe experiments. As a consequence of the spatial separation, the pulses can be independently manipulated in intensity, polarization, and frequency content. The beamline can be combined with a variety of detectors for measuring attosecond dynamics in gases, liquids, and solids.

  12. Upgrade of beamline BL08B at Taiwan Light Source from a photon-BPM to a double-grating SGM beamline.

    Science.gov (United States)

    Yuh, Jih Young; Lin, Shan Wei; Huang, Liang Jen; Fung, Hok Sum; Lee, Long Life; Chen, Yu Joung; Cheng, Chiu Ping; Chin, Yi Ying; Lin, Hong Ji

    2015-09-01

    During the last 20 years, beamline BL08B has been upgraded step by step from a photon beam-position monitor (BPM) to a testing beamline and a single-grating beamline that enables experiments to record X-ray photo-emission spectra (XPS) and X-ray absorption spectra (XAS) for research in solar physics, organic semiconductor materials and spinel oxides, with soft X-ray photon energies in the range 300-1000 eV. Demands for photon energy to extend to the extreme ultraviolet region for applications in nano-fabrication and topological thin films are increasing. The basic spherical-grating monochromator beamline was again upgraded by adding a second grating that delivers photons of energy from 80 to 420 eV. Four end-stations were designed for experiments with XPS, XAS, interstellar photoprocess systems (IPS) and extreme-ultraviolet lithography (EUVL) in the scheduled beam time. The data from these experiments show a large count rate in core levels probed and excellent statistics on background normalization in the L-edge adsorption spectrum.

  13. High-resolution threshold photoelectron-photoion coincidence experiments performed on beamline 9.0.2.2: Kinetic energy release study of the process SF{sub 6} + hv {yields} SF{sub 5}{sup +} F + e{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Evans, M.; Ng, C.Y. [Ames Lab., IA (United States); Hsu, C.W.; Heimann, P. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Vacuum ultraviolet (VUV) photoionization mass spectrometry has been used extensively to determine the energetics of neutral radicals and radical cations, as well as to study the dynamics of the dissociative photoionization process. Very often these measurements are concerned with determining the appearance energy (AE) for a dissociative ionization process, as well as determining the heats of formation of the species involved. One such photoionization mass spectrometric technique employed on End Station 2 of the Chemical Dynamics Beamline (9.0.2.2) at the Advanced Light Source is the threshold photoelectron-photoion coincidence (TPEPICO) method. TPEPICO involves measuring the time-of-flight (TOF) mass spectrum of a given cation in coincidence with threshold photoelectrons at a known photoionization energy.

  14. The LUCIA beamline at SOLEIL.

    Science.gov (United States)

    Vantelon, D; Trcera, N; Roy, D; Moreno, T; Mailly, D; Guilet, S; Metchalkov, E; Delmotte, F; Lassalle, B; Lagarde, Pierre; Flank, A-M

    2016-03-01

    Commissioned in May 2004 on the SLS machine, the LUCIA beamline was moved to the synchrotron SOLEIL during the summer of 2008. To take advantage of this new setting several changes to its design were introduced. Here, a review of the various improvements of the mechanics and, mostly, of the optics is given. Described in detail are the results of a new multilayer grating monochromator implemented on the Kohzu vessel already holding the two-crystal set-up. It consists of a grating grooved onto a multilayer (replacing the first crystal) associated to a multilayer (as a second crystal). It allows a shift of the low-energy limit of the beamline to around 500 eV with an energy resolution and a photon flux comparable with those of the previous couples of crystals (KTP and beryl).

  15. Design Of The LBNF Beamline

    OpenAIRE

    Papadimitriou, V.; Ammigan, K.; Anderson Jr., J.; Anderson, K. E.; Andrews, R; Bocean, V; Crowley, C. F.; Eddy, N.; Hartsell, B. D.; Hays, S; Hurh, P.; Hylen, J.; Johnstone, J. A.; Kasper, P.; Kobilarcik, T.

    2017-01-01

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward the Deep Underground Neutrino Experiment (DUNE) detectors, placed deep underground at the SURF Facility in Lead, South Dakota. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos will be produced when the protons interact with a solid target to produ...

  16. In-vacuum long-wavelength macromolecular crystallography.

    Science.gov (United States)

    Wagner, Armin; Duman, Ramona; Henderson, Keith; Mykhaylyk, Vitaliy

    2016-03-01

    Structure solution based on the weak anomalous signal from native (protein and DNA) crystals is increasingly being attempted as part of synchrotron experiments. Maximizing the measurable anomalous signal by collecting diffraction data at longer wavelengths presents a series of technical challenges caused by the increased absorption of X-rays and larger diffraction angles. A new beamline at Diamond Light Source has been built specifically for collecting data at wavelengths beyond the capability of other synchrotron macromolecular crystallography beamlines. Here, the theoretical considerations in support of the long-wavelength beamline are outlined and the in-vacuum design of the endstation is discussed, as well as other hardware features aimed at enhancing the accuracy of the diffraction data. The first commissioning results, representing the first in-vacuum protein structure solution, demonstrate the promising potential of the beamline.

  17. A compact double crystal monochromator for electrochemistry beamline at PLS

    CERN Document Server

    Rah, S; Kim, G H

    2001-01-01

    A compact double crystal monochromator based on 16.5'' CF flange has been designed, fabricated and installed for electrochemistry beamline at Pohang light source. The Bragg angle range of the monochromator is 7-75 deg. The mechanical design is modified from typical Boomerang design [J.A. Golovchenko et al., Rev. Sci. Instrum. 52 (1981) 509; J.P. Kirkland, Nucl. Instr. and Meth. A291 (1990) 185] to have fixed beam offset and single driving axis for spectroscopy experiments. The parallelism error of the crystals is minimized to less than 6 mu rad for the range, by using a precision single axis linear guide, Also, the number of mechanical parts in the vacuum is minimized and 1.8x10 sup - sup 9 Torr of vacuum is achieved without baking.

  18. Beamline 9.0.1 - a high-resolution undulator beamline for gas-phase spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bozek, J.D.; Heimann, P.A.; Mossessian, D. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.0.1 at the Advanced Light Source is an undulator beamline with a Spherical Grating Monochromator (SGM) which provides very high resolution and flux over the photon energy range 20-320eV. The beamline has been used primarily by the atomic and molecular science community to conduct spectroscopy experiments using electron, ion and fluorescence photon detection. A description of the beamline and its performance will be provided in this abstract.

  19. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A

    2008-01-01

    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  20. Interstitial oxygen molecules in amorphous SiO2. I. Quantitative concentration analysis by thermal desorption, infrared photoluminescence, and vacuum-ultraviolet optical absorption

    Science.gov (United States)

    Kajihara, Koichi; Hirano, Masahiro; Uramoto, Motoko; Morimoto, Yukihiro; Skuja, Linards; Hosono, Hideo

    2005-07-01

    The amount of oxygen molecules (O2) in amorphous SiO2(a-SiO2), also called interstitial O2, was quantitatively measured by combining thermal-desorption spectroscopy (TDS) with infrared photoluminescence (PL) measurements of interstitial O2 at 1272 nm while exciting with 1064-nm Nd: yttrium aluminum garnet laser light. It was found that the amount of O2 released by the TDS measurement is proportional to the intensity decrease of the PL band, demonstrating that a-SiO2 easily emits interstitial O2 during thermal annealing in vacuum. This correlation yielded the proportionality coefficient between the absolute concentration of interstitial O2 and its PL intensity normalized against the intensity of the fundamental Raman bands of a-SiO2. This relationship was further used to determine the optical-absorption cross section of the Schumann-Runge band of the interstitial O2 located at photon energies ≳6.5eV. This band is significantly redshifted and has a larger cross section compared to that of O2 in the gas phase.

  1. Beamline for Schools Safety Awareness Day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their first day at CERN at the Safety Training Center in Prévessin. They covered amongst others radiation protection, cryogenics and fire-fighting. The teams will spend the rest of the week at the T9 beamline.

  2. Some aspects of SR beamline alignment

    Energy Technology Data Exchange (ETDEWEB)

    Gaponov, Yu.A., E-mail: Yury.Gaponov@maxlab.lu.se [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Cerenius, Y. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden); Nygaard, J. [Faculty of Life Sciences, University of Copenhagen, DK-1871 Frederiksberg C (Denmark); Ursby, T.; Larsson, K. [MAX-lab, Lund University, P.O.B. 118, SE-221 00 Lund (Sweden)

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  3. Design of the LBNF Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Papadimitriou, Vaia; et al.

    2016-06-01

    The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a neutrino beam of sufficient intensity and appropriate energy range toward DUNE detectors, placed deep underground at the SURF Facility in South Dakota. The primary proton beam (60 - 120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a solid target and produce mesons which are subsequently focused by magnetic horns into a 194 m long decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spacial and radiological constraints and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015. We discuss here the design status and the associated challenges as well as the R&D and plans for improvements before baselining the facility.

  4. BNL ATF II beamlines design

    Energy Technology Data Exchange (ETDEWEB)

    Fedurin, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Jing, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stratakis, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Swinson, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    The Brookhaven National Laboratory. Accelerator Test Facility (BNL ATF) is currently undergoing a major upgrade (ATF-II). Together with a new location and much improved facilities, the ATF will see an upgrade in its major capabilities: electron beam energy and quality and CO2 laser power. The electron beam energy will be increased in stages, first to 100-150 MeV followed by a further increase to 500 MeV. Combined with the planned increase in CO2 laser power (from 1-100 TW), the ATF-II will be a powerful tool for Advanced Accelerator research. A high-brightness electron beam, produced by a photocathode gun, will be accelerated and optionally delivered to multiple beamlines. Besides the energy range (up to a possible 500 MeV in the final stage) the electron beam can be tailored to each experiment with options such as: small transverse beam size (<10 um), short bunch length (<100 fsec) and, combined short and small bunch options. This report gives a detailed overview of the ATFII capabilities and beamlines configuration.

  5. Conceptual design of NBI beamline for VEST plasma heating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.S., E-mail: tskim@kaeri.re.kr; In, S.R.; Jeong, S.H.; Park, M.; Chang, D.H.; Jung, B.K.; Lee, K.W.

    2016-11-01

    Highlights: • VEST NBI injector is conceptually designed to support further VEST plasma experiment. • VEST NBI injector composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, electrostatic ion dumps, NB vessel with cryopump, and rotating calorimerter. • The vacuum vessel of the beamline is divided into two parts for high injection efficiency and different direction (co- and counter-current) of neutral beam injection. • An ion source for the VEST NBI system was also designed to deliver neutral hydrogen beams with a power of 0.3 MW. The plasma generator of the VEST NB ion source has modified TFTR bucket multi-cusp chamber. The plasma generator has twelve hair-pin shaped tungsten filaments used as a cathode and an arc chamber including a bucket and an electron dump which serve as anode. The accelerator system consists of three grids, each having extraction area of 100 mm × 320 mm and 64 shaped slits of 3 mm spacing. • The preliminary structure design and the layout of the main components of the injector have been completed. Simulation and calculation for optimization of the NB beamline design results prove that the parameters of ion source, neutralization efficiency (76%:95% equilibrium neutralization efficiency), and beam power transmission efficiency (higher than 90%) are in agreement with design targets of the VEST NB beamline. • This VEST NBI system will provide a neutral beam of ∼0.6 MW for both heating and current drive in torus plasma. - Abstract: A 10 m s-pulsed NBI (Neutral Beam Injection) system for VEST (Versatile Experiment Spherical Torus) plasma heating is designed to provide a beam power of more than 0.6 MW with 20 keV H° neutrals. The VEST NBI injector is composed of 2 sets of 20 keV/25A magnetic cusp type bucket ion source, neutralizer ducts, residual ion dump, NB vessel with a cryopump, and rotating calorimeter. The position and size of these beamline components are roughly determined with geometric

  6. Electronic excitation of carbonyl sulphide (COS) by high-resolution vacuum ultraviolet photoabsorption and electron-impact spectroscopy in the energy region from 4 to 11 eV

    Energy Technology Data Exchange (ETDEWEB)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferreira da Silva, F.; Almeida, D. [Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Hoshino, M.; Tanaka, H. [Department of Physics, Sophia University, Tokyo 102-8554 (Japan); Mogi, D. [Development and Marketing Department, New Products Development Division, Kanto Denka, Kogyo Co., Ltd., Chiyoda-ku, Tokyo 101-0063 (Japan); Tanioka, T. [Shibukawa Development Research Laboratory, New Products Development Division, Kanto Denka Kogyo Co., Ltd., Shibukawa City, Gunma 377-8513 (Japan); Mason, N. J. [Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Århus C (Denmark); Hubin-Franskin, M.-J.; Delwiche, J. [Départment de Chimie, Université de Liège, Institut de Chimie-Bât. B6C, allée de la Chimie 3, B-4000 Liège 1 (Belgium)

    2015-02-14

    The electronic state spectroscopy of carbonyl sulphide, COS, has been investigated using high resolution vacuum ultraviolet photoabsorption spectroscopy and electron energy loss spectroscopy in the energy range of 4.0–10.8 eV. The spectrum reveals several new features not previously reported in the literature. Vibronic structure has been observed, notably in the low energy absorption dipole forbidden band assigned to the (4π←3π) ({sup 1}Δ←{sup 1}Σ{sup +}) transition, with a new weak transition assigned to ({sup 1}Σ{sup −}←{sup 1}Σ{sup +}) reported here for the first time. The absolute optical oscillator strengths are determined for ground state to {sup 1}Σ{sup +} and {sup 1}Π transitions. Based on our recent measurements of differential cross sections for the optically allowed ({sup 1}Σ{sup +} and {sup 1}Π) transitions of COS by electron impact, the optical oscillator strength f{sub 0} value and integral cross sections (ICSs) are derived by applying a generalized oscillator strength analysis. Subsequently, ICSs predicted by the scaling are confirmed down to 60 eV in the intermediate energy region. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of carbonyl sulphide in the upper stratosphere (20–50 km)

  7. Vacuum ultraviolet excited luminescence properties of Ca3Gd7(SiO4)5(PO4)O2:Re3+ (Re3+=Tb3+, Dy3+) phosphors

    Science.gov (United States)

    Zhang, Feng; Wang, Yuhua; Huang, Yan; Tao, Ye

    2013-10-01

    A series of Ca3Gd7(SiO4)5(PO4)O2:Re3+ (Re3+=Tb3+, Dy3+) phosphors were synthesized by a solid-state reaction, and their vacuum ultraviolet excitation and emission characteristics were measured. All the excitation spectra show a broad band in the region of 140-210 nm, which can be mainly assigned to the host absorption. For Tb3+-doped sample, the absorption bands at 230 nm and 281 nm are respectively ascribed to the f-d spin-allowed and spin-forbidden transitions of Tb3+. In Dy3+-doped sample, the f-d spin-allowed transitions of Dy3+ and O2-→Dy3+ charge transfer band have not been clearly distinguished probably because of the overlapping with the strong host absorption band. The weak bands at 267 and 288 nm are attributed to be the f-d spin-forbidden transitions of Dy3+. The concentration dependence of the emission intensity upon the excitation at 172 nm indicates that the optimal doping concentrations of Tb3+ and Dy3+ are 11 mol% and 5 mol%, respectively. The optimal Tb3+ and Dy3+-activated samples respectively exhibit yellowish green and white emitting colors due to their characteristic emissions.

  8. Deciphering the structure of isomeric oligosaccharides in a complex mixture by tandem mass spectrometry: photon activation with vacuum ultra-violet brings unique information and enables definitive structure assignment.

    Science.gov (United States)

    Ropartz, David; Lemoine, Jérôme; Giuliani, Alexandre; Bittebière, Yann; Enjalbert, Quentin; Antoine, Rodolphe; Dugourd, Philippe; Ralet, Marie-Christine; Rogniaux, Hélène

    2014-01-07

    Carbohydrates have a wide variety of structures whose complexity and heterogeneity challenge the field of analytical chemistry. Tandem mass spectrometry, with its remarkable sensitivity and high information content, provides key advantages to addressing the structural elucidation of polysaccharides. Yet, classical fragmentation by collision-activated dissociation (CAD) in many cases fails to reach a comprehensive structural determination, especially when isomers have to be differentiated. In this work, for the first time, vacuum ultra-violet (VUV) synchrotron radiation is used as the activation process in tandem mass spectrometry of large oligosaccharides. Compared to low energy CAD (LE-CAD), photon activated dissociation brought more straightforward and valuable structural information. The outstanding feature was that complete series of informative ions were produced, with only minor neutral losses. Moreover, systematic fragmentation rules could be drawn thus facilitating the definitive assignments of fragment identities. As a result, most of the structures present in a complex mixture of oligogalacturonans could be comprehensively resolved, including many isomers differing in the position of methyl groups along the galacturonic acid backbone. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  9. Limiting effects in double EEX beamline

    Science.gov (United States)

    Ha, G.; Power, J. G.; Conde, M.; Doran, D. S.; Gai, W.

    2017-07-01

    The double emittance exchange (EEX) beamline is suggested to overcome the large horizontal emittance and transverse jitter issues associated with the single EEX beamline while preserving its powerful phase-space manipulation capability. However, the double EEX beamline also has potential limitations due to coherent synchrotron radiation (CSR) and transverse jitter. The former limitation arises because double EEX uses twice as many bending magnets as single EEX which means stronger CSR effects degrading the beam quality. The latter limitation arises because a longitudinal jitter in front of the first EEX beamline is converted into a transverse jitter in the middle section (between the EEX beamlines) which can cause beam loss or beam degradation. In this paper, we numerically explore the effects of these two limitations on the emittance and beam transport.

  10. High-throughput beamline for attosecond pulses based on toroidal mirrors with microfocusing capabilities.

    Science.gov (United States)

    Frassetto, F; Trabattoni, A; Anumula, S; Sansone, G; Calegari, F; Nisoli, M; Poletto, L

    2014-10-01

    We have developed a novel attosecond beamline designed for attosecond-pump/attosecond probe experiments. Microfocusing of the Extreme-ultraviolet (XUV) radiation is obtained by using a coma-compensated optical configuration based on the use of three toroidal mirrors controlled by a genetic algorithm. Trains of attosecond pulses are generated with a measured peak intensity of about 3 × 10(11) W/cm(2).

  11. Diagnostic X-Multi-Axis Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Paul, A C

    2000-04-05

    Tomographic reconstruction of explosive events require time resolved multipal lines of sight. Considered here is a four (or eight) line of sight beam layout for a nominal 20 MeV 2000 Ampere 2 microsecond electron beam for generation of x-rays 0.9 to 5 meters from a given point, the ''firing point''. The requirement of a millimeter spatial x-ray source requires that the electron beam be delivered to the converter targets with sub-millimeter precision independent of small variations in beam energy and initial conditions. The 2 usec electron beam pulse allows for four bursts in each line, separated in time by about 500 microseconds. Each burst is divided by a electro-magnetic kicker into four (or eight) pulses, one for each beamline. The arrival time of the four (or eight) beam pulses at the x-ray target can be adjusted by the kicker timing and the sequence that the beams of each burst are switched into the different beamlines. There exists a simple conceptual path from a four beamline to a eight beamline upgrade. The eight line beamline is built up from seven unique types of sub-systems or ''blocks''. The beamline consists of 22 of these functional blocks and contains a total of 455 individual magnets, figure 1. The 22 blocks are inter-connected by a total of 30 straight line inter-block sections (IBS). Beamlines 1-4 are built from 12 blocks with conceptual layout structure shown in figure 2. Beamlines 5-8 are built with an additional 10 blocks with conceptual layout structure shown in figure 3. This beamline can be thought of as looking like a lollipop consisting of a 42 meter long stick leading to a 60 by 70 meter rectangular candy blob consisting of the eight lines of sight. The accelerator providing the electron beam is at the end of the stick and the firing point is at the center of the blob. The design allows for a two stage implementation. Beamlines 1-3 can be installed to provide a tomographic azimuthal resolution of 45

  12. Comparison of vacuum ultra-violet emission of Ar/CF4 and Ar/CF3I capacitively coupled plasmas

    Science.gov (United States)

    Zotovich, A.; Proshina, O.; el Otell, Z.; Lopaev, D.; Rakhimova, T.; Rakhimov, A.; de Marneffe, J.-F.; Baklanov, M. R.

    2016-10-01

    Spectra in the vacuum-ultra violet range (VUV, 30 nm-200 nm) as well as in the ultra-violet(UV) and visible ranges (UV+vis, 200 nm-800 nm) were measured from Ar/CF3I and Ar/CF4 discharges. The discharges were generated in an industrial 300 mm capacitively coupled plasma source with 27 MHz radio-frequency power. It was seen that the measured spectra were strongly modified. This is mainly due to absorption, especially by CF3I, and Ar self-trapping along the line of sight, towards the detector and in the plasma itself. The estimated unabsorbed VUV spectra were revealed from the spectra of mixtures with low fluorocarbon gas content by means of normalization with unabsorbed I* emission, at 206 nm, and CF2\\ast band (1B1(0,v‧,0){{\\to}1} A1(0,{{\\text{v}}\\prime \\prime} ,0)) emission between 230 nm and 430 nm. Absolute fluences of UV CF2\\ast emission were derived using hybrid 1-dimensional (1D) particle-in-cell (PIC) Monte-Carlo (MC) model calculations. Absolute calibration of the VUV emission was performed using these calculated values from the model, which has never been done previously for real etch conditions in an industrial chamber. It was seen that the argon resonant lines play a significant role in the VUV spectra. These lines are dominant in the case of etching recipes close to the standard ones. The restored unabsorbed spectra confirm that replacement of conventional CF4 etchant gas with CF3I in low-k etching recipes leads to an increase in the overall VUV emission intensity. However, emission from Ar exhibited the most intense peaks. Damage to low-k SiCOH glasses by the estimated VUV was calculated for blanket samples with pristine k-value of 2.2. The calculations were then compared with Fourier transform infrared (FTIR) data for samples exposed to the similar experimental conditions in the same reactor. It was shown that Ar emission plays the most significant role in VUV-induced damage.

  13. Toyota beamline (BL33XU) at SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T., E-mail: nonaka@mosk.tytlabs.co.jp; Dohmae, K.; Hayashi, Y.; Yamaguchi, S.; Nagai, Y.; Hirose, Y. [Toyota Central R& D Labs., Inc., 41-1 Nagakute Aichi 480-1192 Japan (Japan); Araki, T. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE UK (United Kingdom); Tanaka, T.; Kitamura, H. [RIKEN Harima Institute 1-1-1 Koto Sayo, Hyogo 679-5148 (Japan); Uruga, T.; Yamazaki, H.; Yumoto, H.; Ohashi, H.; Goto, S. [JASRI/SPring-8 1-1-1 Koto Sayo, Hyogo 679-5148 (Japan)

    2016-07-27

    The Toyota beamline (BL33XU) at SPring-8 is an undulator beamline developed to assist in the study of various automotive-related materials. The light source is a tapered in-vacuum undulator that provides a variable energy band width as well as a high brilliance X-ray beam. Two different optical arrangements are available: Optics 1 and Optics 2. Optics 1 is dedicated to time-resolved X-ray absorption spectroscopy (XAFS), and consists of two channel-cut crystal monochromators and four water-cooled flat Si mirrors. The Si(111) and Si(220) monochromator crystals cover an energy range of 4.0–46.0 keV and are driven by high-speed AC servo motors. These monochromators, in conjunction with the tapered undulator, enable high-quality XAFS data acquisition with a temporal resolution of 10 ms. Optics 2 is optimized for X-ray diffraction, scattering and imaging and includes a recently installed double crystal monochromator, two water-cooled flat Si mirrors and Kirkpatrick-Baez (KB) focusing mirrors. The monochromator incorporates parallel mounted Si(111) and Si(311) crystals and covers an energy range of 4.5–70 keV. The beamline provides two experimental stations: Exp. Hutch 2 and Exp. Hutch 3. The gas supply system and mass spectrometers installed in Exp. Hutch 2 allow in-operando measurements under various atmospheres. The scanning three-dimensional X-ray diffraction (scanning 3DXRD) microscopy instrumentation developed and installed in Exp. Hutch 3 enables non-destructive orientation and stress mapping of 1 mm-thick steel specimens using a high energy microbeam.

  14. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...

  15. In situ beamline analysis and correction of active optics.

    Science.gov (United States)

    Sutter, John; Alcock, Simon; Sawhney, Kawal

    2012-11-01

    At the Diamond Light Source, pencil-beam measurements have enabled long-wavelength slope errors on X-ray mirror surfaces to be examined under ultra-high vacuum and beamline mounting without the need to remove the mirror from the beamline. For an active mirror an automated procedure has been implemented to calculate the actuator settings that optimize its figure. More recently, this in situ pencil-beam method has been applied to additional uses for which ex situ measurements would be inconvenient or simply impossible. First, it has been used to check the stability of the slope errors of several bimorph mirrors at intervals of several weeks or months. Then, it also proved useful for the adjustment of bender and sag compensation actuators on mechanically bent mirrors. Fits to the bending of ideal beams have been performed on the slope errors of a mechanically bent mirror in order to distinguish curvatures introduced by the bending actuators from gravitational distortion. Application of the optimization procedure to another mechanically bent mirror led to an improvement of its sag compensation mechanism.

  16. Vacuum induced photoresist outgassing

    Science.gov (United States)

    Waterman, Justin; Mbanaso, Chimaobi; Denbeaux, Gregory

    2008-03-01

    In order to continue the trend toward smaller feature sizes in lithography, new methods of lithography will be needed. A likely method for printing features 32 nm and smaller is extreme ultraviolet (EUV) lithography. EUV allows for features to be printed that are smaller than the current methods can achieve. However, outgassing of the photoresist is a concern for EUV lithography. The outgassed components can lead to contamination of the optics, degrading the reflectivity and hence lowering throughput of the exposure tools. Outgassing due to EUV exposure has been investigated by many groups. However, there were no complete investigations available of vacuum induced outgassing. In this paper, several methods were employed to investigate the outgassing due to vacuum. It was found that the vacuum induced outgassing outgassed a similar number of molecules as the outgassing due to EUV exposure. Furthermore, almost all of the outgassing was completed after about two minutes in vacuum. To mitigate the potential concern of outgassing due to vacuum causing contamination of optics, this work shows that photoresist coated silicon wafers only require about two minutes of pumping prior to insertion near the optics within EUV lithography tools.

  17. Beamlines for Iranian Light Source Facility

    Directory of Open Access Journals (Sweden)

    A Gholampour Azhir

    2015-09-01

    Full Text Available This paper describes day-one beamlines of the Iranian Light Source Facility and design concept of powder diffraction and spectromicroscopy beamlines as the most priorities of each synchrotron that cover the research requirements in the fields of physics, chemistry, nano-science, etc. For powder diffraction beamline energy range is 6-30 keV, resolution: 10-4, flux: 1012(ph/s/0.1%B.W. and spot size at sample is 0.1×0.1-1×10 mm2. For spectromicroscopy beamline energy range is 90-2500 eV, flux: 3×1015(ph/s/0.1%B.W.@96eV, resolving power of 1820 at 1000 eV and spot size at sample is 4×2-27×74 µm2

  18. CNRS joins in on muon neutrino beamline

    CERN Multimedia

    2000-01-01

    The Centre National de la Recherche Scientifique, France, has announced it will contribute to the construction of the neutrino beamline being built from Geneva to Gran Sasso, near Rome (3 paragraphs).

  19. Ultraviolet Waves

    Science.gov (United States)

    Molde, Trevor

    1973-01-01

    Outlines the discovery and nature of ultraviolet light, discusses some applications for these wavelengths, and describes a number of experiments with ultraviolet radiation suitable for secondary school science classes. (JR)

  20. An in-vacuum diffractometer for resonant elastic soft x-ray scattering

    NARCIS (Netherlands)

    Hawthorn, D. G.; He, F.; Davis, H.; Achkar, A. J.; Zhang, J.; Sutarto, R.; Wadati, H.; Radi, A.; Wilson, T.; Wright, G.; Shen, K. M.; Geck, J.; Zhang, H.; Novak, V.; Sawatzky, G. A.; Venema, L.C.

    We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by

  1. Compact IR synchrotron beamline design.

    Science.gov (United States)

    Moreno, Thierry

    2017-03-01

    Third-generation storage rings are massively evolving due to the very compact nature of the multi-bend achromat (MBA) lattice which allows amazing decreases of the horizontal electron beam emittance, but leaves very little place for infrared (IR) extraction mirrors to be placed, thus prohibiting traditional IR beamlines. In order to circumvent this apparent restriction, an optimized optical layout directly integrated inside a SOLEIL synchrotron dipole chamber that delivers intense and almost aberration-free beams in the near- to mid-IR domain (1-30 µm) is proposed and analyzed, and which can be integrated into space-restricted MBA rings. Since the optics and chamber are interdependent, the feasibility of this approach depends on a large part on the technical ability to assemble mechanically the optics inside the dipole chamber and control their resulting stability and thermo-mechanical deformation. Acquiring this expertise should allow dipole chambers to provide almost aberration-free IR synchrotron sources on current and `ultimate' MBA storage rings.

  2. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  3. Soft matter interfaces beamline at NSLS-II: geometrical ray-tracing vs. wavefront propagation simulations

    Science.gov (United States)

    Zhernenkov, Mikhail; Canestrari, Niccolo; Chubar, Oleg; DiMasi, Elaine

    2014-09-01

    We report on the implications of the design of a Soft Matter Interfaces beamline, a long energy range canted in-vacuum undulator (IVU) beamline at National Synchrotron Light Source II, based on comparison of geometrical ray-tracing and partially coherent x-ray wavefront propagation simulation software packages, namely, SHADOW and Synchrotron Radiation Workshop (SRW). For SHADOW, we employed an SRW-generated source file which simulated spectralangular distribution and apparent source characteristics of radiation produced by a 2.8 m long IVU with a 23 mm period and allowed us to realistically estimate the beam intensity at the sample positions. We highlight the necessity to use realistic mirror surface profiles with expected slope errors as opposed to "standard" built-in SHADOW surface error options. The beamline performances at three different x-ray photon energies: 20358 eV, 10778 eV, and 2101 eV, under different focusing conditions, have been studied. We compare beamline simulations performed with both software packages. In particular, we stress that the neglect of wavefront diffraction effects in geometrical ray-tracing approach results in significant discrepancies in beam spot size and beam shape, the correct assessments of which are crucial in determining the future performance of an instrument.

  4. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  5. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  6. State-to-state vacuum ultraviolet photodissociation study of CO2 on the formation of state-correlated CO(X1Σ+; V) with O(1D) and O(1S) photoproducts at 11.95-12.22 eV

    OpenAIRE

    Lu, Z; Chang, YC; Benitez, Y; Luo, Z; Houria, AB; Ayari, T; Al Mogren, MM; Hochlaf, M; Jackson, WM; Ng, CY

    2015-01-01

    © the Owner Societies 2015. The state-to-state photodissociation of CO 2 is investigated in the VUV range of 11.94-12.20 eV by using two independently tunable vacuum ultraviolet (VUV) lasers and the time-sliced velocity-map-imaging-photoion (VMI-PI) method. The spin-allowed CO(X 1 Σ + ; v = 0-18) + O( 1 D) and CO(X 1 Σ + ; v = 0-9) + O( 1 S) photoproduct channels are directl...

  7. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA.

    Science.gov (United States)

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S

    2015-05-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality dichroism artifacts.

  8. A Superbend X-Ray Microdiffraction Beamline at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; Kunz, M.; Chen, K.; Celestre, R.S.; MacDowell, A.A.; Warwick, T.

    2009-03-10

    Beamline 12.3.2 at the Advanced Light Source is a newly commissioned beamline dedicated to x-ray microdiffraction. It operates in both monochromatic and polychromatic radiation mode. The facility uses a superconducting bending magnet source to deliver an X-ray spectrum ranging from 5 to 22 keV. The beam is focused down to {approx} 1 um size at the sample position using a pair of elliptically bent Kirkpatrick-Baez mirrors enclosed in a vacuum box. The sample placed on high precision stages can be raster-scanned under the microbeam while a diffraction pattern is taken at each step. The arrays of diffraction patterns are then analyzed to derive distribution maps of phases, strain/stress and/or plastic deformation inside the sample.

  9. Invariant vacuum

    Science.gov (United States)

    Robles-Pérez, Salvador

    2017-11-01

    We apply the Lewis-Riesenfeld invariant method for the harmonic oscillator with time dependent mass and frequency to the modes of a charged scalar field that propagates in a curved, homogeneous and isotropic spacetime. We recover the Bunch-Davies vacuum in the case of a flat DeSitter spacetime, the equivalent one in the case of a closed DeSitter spacetime and the invariant vacuum in a curved spacetime that evolves adiabatically. In the three cases, it is computed the thermodynamical magnitudes of entanglement between the modes of the particles and antiparticles of the invariant vacuum, and the modification of the Friedmann equation caused by the existence of the energy density of entanglement. The amplitude of the vacuum fluctuations are also computed.

  10. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  11. Vacuum II

    CERN Document Server

    Franchetti, G

    2013-01-01

    This paper continues the presentation of pumps begun in ‘Vacuum I’. The main topic here is gauges and partial-pressure measurements. Starting from the kinetics of gases, the various strategies for measuring vacuum pressures are presented at an introductory level, with some reference to hardware devices. Partial-pressure measurement techniques are introduced, showing that the principles of ion selection have a direct similarity to particle dynamics in accelerators.

  12. Beamline for schools beam line training day

    CERN Multimedia

    Photo Service, CERN

    2014-01-01

    The first two teams to participate in CERN's Beamline for Schools project spent their second day at CERN learning the basics of beam physics, and visiting their experimental setup at the T9 beam line in CERN's East Hall on the Meyrin site.

  13. MSFC ESL Facility and Beamline Studies

    Science.gov (United States)

    Rogers, J. R.; Hyers, R. W.; Rathz, T. J.; Robinson, M. B.; Kelton, K. F.; Gangopadhyay, A. K.; Woo, G. L.; Fountain, G.; Huie, D.; Allen, T.; hide

    2002-01-01

    The poster presentation provides an overview of the MSFC ESL facility. The technical capabilities and accomplishments of the facility are summarized. Future plans including the development of a pressurized processing chamber and additional high-energy X-ray beamline studies are outlined.

  14. Neutral beamline with improved ion energy recovery

    Science.gov (United States)

    Dagenhart, William K.; Haselton, Halsey H.; Stirling, William L.; Whealton, John H.

    1984-01-01

    A neutral beamline generator with unneutralized ion energy recovery is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell of the beamline. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beamline in the cell exit region. The ions, which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage, are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be closely coupled. As a result, the fractional energy ions exiting the cell with the full energy ions are reflected back into the gas cell. Thus, the fractional energy ions do not detract from the energy recovery efficiency of full energy ions exiting the cell which can reach the ground potential interior surfaces of the beamline housing.

  15. Mass dependence of vacuum energy

    OpenAIRE

    Fulling, S. A.

    2005-01-01

    The regularized vacuum energy (or energy density) of a quantum field subjected to static external conditions is shown to satisfy a certain partial differential equation with respect to two variables, the mass and the "time" (ultraviolet cutoff parameter). The equation is solved to provide integral expressions for the regularized energy (more precisely, the cylinder kernel) at positive mass in terms of that for zero mass. Alternatively, for fixed positive mass all coefficients in the short-tim...

  16. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar.

    Science.gov (United States)

    Chang, Yih Chung; Xu, Yuntao; Lu, Zhou; Xu, Hong; Ng, C Y

    2012-09-14

    We have developed an ion-molecule reaction apparatus for state-selected absolute total cross section measurements by implementing a high-resolution molecular beam vacuum ultraviolet (VUV) laser pulsed field ionization-photoion (PFI-PI) ion source to a double-quadrupole double-octopole ion-guide mass spectrometer. Using the total cross section measurement of the state-selected N(2)(+)(v(+), N(+)) + Ar charge transfer (CT) reaction as an example, we describe in detail the design of the VUV laser PFI-PI ion source used, which has made possible the preparation of reactant N(2)(+)(X (2)Σ(g)(+), v(+) = 0-2, N(+) = 0-9) PFI-PIs with high quantum state purity, high intensity, and high kinetic energy resolution. The PFI-PIs and prompt ions produced in the ion source are shown to have different kinetic energies, allowing the clean rejection of prompt ions from the PFI-PI beam by applying a retarding potential barrier upstream of the PFI-PI source. By optimizing the width and amplitude of the pulsed electric fields employed to the VUV-PFI-PI source, we show that the reactant N(2)(+) PFI-PI beam can be formed with a laboratory kinetic energy resolution of ΔE(lab) = ± 50 meV. As a result, the total cross section measurement can be conducted at center-of-mass kinetic energies (E(cm)'s) down to thermal energies. Absolute total rovibrationally selected cross sections σ(v(+) = 0-2, N(+) = 0-9) for the N(2)(+)(X (2)Σ(g)(+); v(+) = 0-2, N(+) = 0-9) + Ar CT reaction have been measured in the E(cm) range of 0.04-10.0 eV, revealing strong vibrational enhancements and E(cm)-dependencies of σ(v(+) = 0-2, N(+) = 0-9). The thermochemical threshold at E(cm) = 0.179 eV for the formation of Ar(+) from N(2)(+)(X; v(+) = 0, N(+)) + Ar was observed by the measured σ(v(+) = 0), confirming the narrow ΔE(cm) spread achieved in the present study. The σ(v(+) = 0-2; N(+)) values obtained here are compared with previous experimental and theoretical results. The theoretical predictions

  17. The Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2003/04

    Energy Technology Data Exchange (ETDEWEB)

    Scheinost, A.C.; Schell, N. (eds.)

    2005-01-01

    In this report the work performed at the Rossendorf beam-line at the ESRF is described. It concerns neptunium (IV) uptake by iron metalloproteins, in-situ speciation of actinides using a newly developed spectro-electrochemical cell, quantitative antimony speciation in Swiss shooting-range soils, in-situ studies of ITO film properties and structure during annealing in vacuum, high-temperature investigations of Si/SiGe based quantum cascade structures using X-ray diffraction and reflectivity, and in-situ characterization of stress states in copper dual inlaid interconnects at high temperatures by synchrotron X-ray diffraction. (HSI)

  18. Beamline I11 at Diamond: a new instrument for high resolution powder diffraction.

    Science.gov (United States)

    Thompson, S P; Parker, J E; Potter, J; Hill, T P; Birt, A; Cobb, T M; Yuan, F; Tang, C C

    2009-07-01

    The performance characteristics of a new synchrotron x-ray powder diffraction beamline (I11) at the Diamond Light Source are presented. Using an in-vacuum undulator for photon production and deploying simple x-ray optics centered around a double-crystal monochromator and a pair of harmonic rejection mirrors, a high brightness and low bandpass x-ray beam is delivered at the sample. To provide fast data collection, 45 Si(111) analyzing crystals and detectors are installed onto a large and high precision diffractometer. High resolution powder diffraction data from standard reference materials of Si, alpha-quartz, and LaB6 are used to characterize instrumental performance.

  19. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  20. Blade-type X-ray beam position monitors for SPring-8 undulator beamlines

    CERN Document Server

    Aoyagi, H; Kitamura, H

    2001-01-01

    The X-ray beam position monitors had been designed and installed for SPring-8 insertion device beamlines. These monitors are being utilized for photon beam diagnostics. The beam from the standard undulator in SPring-8 has the total power of 11 kW and the power density of 470 kW/mrad sup 2 , typically. Each monitor has four CVD diamond blades coated with metal for detector heads. We have already introduced three styles of monitors to match various insertion devices in SPring-8. A standard style, or a fixed-blade style, is used mainly for a standard in-vacuum undulator beamlines. A horizontal-blade-drive style and a four-blade-drive style are used for beamlines of a wiggler and a twin helical undulator that have wide power distributions, and for figure-8 undulators that have asymmetric power distributions, respectively. This report describes the design and the structure of these monitors and the beam-tests for the photon beam diagnostics in detail.

  1. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  2. 1993 CAT workshop on beamline optical designs

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    An Advanced Photon Source (APS) Collaborative Access Team (CAT) Workshop on Beamline Optical Designs was held at Argonne National Laboratory on July 26--27, 1993. The goal of this workshop was to bring together experts from various synchrotron sources to provide status reports on crystal, reflecting, and polarizing optics as a baseline for discussions of issues facing optical designers for CAT beamlines at the APS. Speakers from the European Synchrotron Radiation Facility (ESRF), the University of Chicago, the National Synchrotron Light Source, and the University of Manchester (England) described single- and double-crystal monochromators, mirrors, glass capillaries, and polarizing optics. Following these presentations, the 90 participants divided into three working groups: Crystal Optics Design, Reflecting Optics, and Optics for Polarization Studies. This volume contains copies of the presentation materials from all speakers, summaries of the three working groups, and a ``catalog`` of various monochromator designs.

  3. The tomography beamline ANATOMIX at Synchrotron SOLEIL

    Science.gov (United States)

    Weitkamp, T.; Scheel, M.; Giorgetta, JL; Joyet, V.; Le Roux, V.; Cauchon, G.; Moreno, T.; Polack, F.; Thompson, A.; Samama, JP

    2017-06-01

    ANATOMIX is a 200-m-long undulator beamline for full-field tomography techniques at photon energies from 5 to 25 keV. It is currently under construction at Synchrotron SOLEIL, the French national light source near Paris. ANATOMIX will feature experimental stations both for parallel-beam microtomography (with a beam of up to 40 mm width) and for zone-plate transmission X-ray microscopy (down to pixel sizes of 30 nm) in absorption and phase contrast. The location of ANATOMIX on a canted straight section of the SOLEIL storage ring implies specific challenges for the design and operation conditions of the beamline. In this paper we present general design aspects and the status of construction.

  4. Performance measurements at the SLS SIM beamline

    Science.gov (United States)

    Flechsig, U.; Nolting, F.; Fraile Rodríguez, A.; Krempaský, J.; Quitmann, C.; Schmidt, T.; Spielmann, S.; Zimoch, D.

    2010-06-01

    The Surface/Interface: Microscopy beamline of the Swiss Light Source started operation in 2001. In 2007 the beamline has been significantly upgraded with a second refocusing section and a blazed grating optimized for high photon flux. Two Apple II type undulators with a plane grating monochromator using the collimated light scheme deliver photons with an energy from 90eV to about 2keV with variable polarization for the photoemission electron microscope (PEEM) as the primary user station. We measured a focus of (45×60) μm(ν×h) and a photon flux > 1012 photon/s for all gratings. Polarization switching within a few seconds is realized with the small bandpass of the monochromator and a slight detuning of the undulator.

  5. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    Science.gov (United States)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of

  6. G4beamline Simulations for H8

    CERN Document Server

    Thoresen, Freja

    2015-01-01

    Detailed simulations of the H8 beam line at the North Area, using the G4beamline software were performed in the framework of this study. The conventions used by the program are analysed. Having modelled precisely the beam line, several studies examining the beam transmission and composition were performed. The results were compared with measurements, where a satisfactory agreement was found. The muon production and transport is studied in details throughout the beam line.

  7. Design of the LBNF Beamline Target Station

    OpenAIRE

    Tariq, S.; Ammigan, K.; Anderson, K.; Buccellato, S. A.; Crowley, C. F.; Hartsell, B. D.; Hurh, P.; Hylen, J.; Kasper, P.; Krafczyk, G. E.; Lee, A.; Lundberg, B.; Marchionni, A; Mokhov, N. V.; Moore, C. D.

    2016-01-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-fil...

  8. Macromolecular crystallography beamline X25 at the NSLS.

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L; Dvorak, Joseph; Flaks, Leon; Lamarra, Steven; Myers, Stuart F; Orville, Allen M; Robinson, Howard H; Roessler, Christian G; Schneider, Dieter K; Shea-McCarthy, Grace; Skinner, John M; Skinner, Michael; Soares, Alexei S; Sweet, Robert M; Berman, Lonny E

    2014-05-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community.

  9. Macromolecular crystallography beamline X25 at the NSLS

    Science.gov (United States)

    Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.

    2014-01-01

    Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654

  10. Coherence techniques at extreme ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chang [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The renaissance of Extreme Ultraviolet (EUV) and soft x-ray (SXR) optics in recent years is mainly driven by the desire of printing and observing ever smaller features, as in lithography and microscopy. This attribute is complemented by the unique opportunity for element specific identification presented by the large number of atomic resonances, essentially for all materials in this range of photon energies. Together, these have driven the need for new short-wavelength radiation sources (e.g. third generation synchrotron radiation facilities), and novel optical components, that in turn permit new research in areas that have not yet been fully explored. This dissertation is directed towards advancing this new field by contributing to the characterization of spatial coherence properties of undulator radiation and, for the first time, introducing Fourier optical elements to this short-wavelength spectral region. The first experiment in this dissertation uses the Thompson-Wolf two-pinhole method to characterize the spatial coherence properties of the undulator radiation at Beamline 12 of the Advanced Light Source. High spatial coherence EUV radiation is demonstrated with appropriate spatial filtering. The effects of small vertical source size and beamline apertures are observed. The difference in the measured horizontal and vertical coherence profile evokes further theoretical studies on coherence propagation of an EUV undulator beamline. A numerical simulation based on the Huygens-Fresnel principle is performed.

  11. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Feit, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozlowski, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitman, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  12. Measuring circular dichroism in a capillary cell using the b23 synchrotron radiation CD beamline at diamond light source.

    Science.gov (United States)

    Jávorfi, Tamás; Hussain, Rohanah; Myatt, Daniel; Siligardi, Giuliano

    2010-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline. © 2010 Wiley-Liss, Inc.

  13. The UE49 SGM RICXS beamline at BESSY II

    Directory of Open Access Journals (Sweden)

    Annette Pietzsch

    2016-03-01

    Full Text Available Beamline UE49-SGM is a dedicated high-flux soft x-ray beamline, spanning the energy range of 95 eV to 1400 eV. Its micrometer focus makes it ideally suitable for investigation of small or inhomogeneous samples both with spectroscopic methods and coherent scattering as well as imaging techniques with full polarization control.

  14. The IRIS THz/Infrared beamline at BESSY II

    Directory of Open Access Journals (Sweden)

    Ljiljana Puskar

    2016-11-01

    Full Text Available At BESSY II a large acceptance angle, multipurpose infrared beamline is available, comprising several end stations suitable for material and life science investigations. The beamline provides highly brilliant infrared radiation over the energy range from about 20,000 down to 30 cm-1 and even lower when BESSY II is run in the so-called low-a mode.

  15. Neutral beamline with improved ion energy recovery

    Science.gov (United States)

    Kim, Jinchoon

    1984-01-01

    A neutral beamline employing direct energy recovery of unneutralized residual ions is provided which enhances the energy recovery of the full energy ion component of the beam exiting the neutralizer cell, and thus improves the overall neutral beamline efficiency. The unneutralized full energy ions exiting the neutralizer are deflected from the beam path and the electrons in the cell are blocked by a magnetic field applied transverse to the beam direction in the neutral izer exit region. The ions which are generated at essentially ground potential and accelerated through the neutralizer cell by a negative acceleration voltage are collected at ground potential. A neutralizer cell exit end region is provided which allows the magnetic and electric fields acting on the exiting ions to be loosely coupled. As a result, the fractional energy ions exiting the cell are reflected onto and collected at an interior wall of the neutralizer formed by the modified end geometry, and thus do not detract from the energy recovery efficiency of full energy ions exiting the cell. Electrons within the neutralizer are prevented from exiting the neutralizer end opening by the action of crossed fields drift (ExB) and are terminated to a collector collar around the downstream opening of the neutralizer. The correct combination of the extended neutralizer end structure and the magnet region is designed so as to maximize the exit of full energy ions and to contain the fractional energy ions.

  16. Diagnostics Beamline for the SRF Gun Project

    CERN Document Server

    Kamps, T; Goldammer, K; Krämer, Dietrich; Kuske, P; Kuszynski, J; Lipka, D; Marhauser, F; Quast, T; Richter, R

    2005-01-01

    A superconducting rf photo electron injector (SRF gun) is currently under construction by a collaboration between BESSY, DESY, FZR and MBI. The project aims at the design and setup of an CW SRF gun including a diagnostics beamline for the ELBE FEL and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development serving a multitude of operation settings ranging from low-charge (77pC), low-emittance (1 pi mm mrad) mode to high-charge (2.5nC) operation of the gun. For these operation modes beam dynamics simulations are resulting in boundary conditions for the beam instrumentation. Proven and mature technology is projected wherever possible, for example for current and beam position monitoring. The layout of the beam profile and emittance measurement systems is described. For the bunch length, which varies be...

  17. Developments in optics and performance at BL13-XALOC, the macromolecular crystallography beamline at the ALBA synchrotron.

    Science.gov (United States)

    Juanhuix, Jordi; Gil-Ortiz, Fernando; Cuní, Guifré; Colldelram, Carles; Nicolás, Josep; Lidón, Julio; Boter, Eva; Ruget, Claude; Ferrer, Salvador; Benach, Jordi

    2014-07-01

    BL13-XALOC is currently the only macromolecular crystallography beamline at the 3 GeV ALBA synchrotron near Barcelona, Spain. The optics design is based on an in-vacuum undulator, a Si(111) channel-cut crystal monochromator and a pair of KB mirrors. It allows three main operation modes: a focused configuration, where both mirrors can focus the beam at the sample position to 52 µm × 5.5 µm FWHM (H × V); a defocused configuration that can match the size of the beam to the dimensions of the crystals or to focus the beam at the detector; and an unfocused configuration, where one or both mirrors are removed from the photon beam path. To achieve a uniform defocused beam, the slope errors of the mirrors were reduced down to 55 nrad RMS by employing a novel method that has been developed at the ALBA high-accuracy metrology laboratory. Thorough commissioning with X-ray beam and user operation has demonstrated an excellent energy and spatial stability of the beamline. The end-station includes a high-accuracy single-axis diffractometer, a removable mini-kappa stage, an automated sample-mounting robot and a photon-counting detector that allows shutterless operation. The positioning tables of the diffractometer and the detector are based on a novel and highly stable design. This equipment, together with the operation flexibility of the beamline, allows a large variety of types of crystals to be tackled, from medium-sized crystals with large unit-cell parameters to microcrystals. Several examples of data collections measured during beamline commissioning are described. The beamline started user operation on 18 July 2012.

  18. Generic radiation safety design for SSRL synchrotron radiation beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Liu, James C. [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)]. E-mail: james@slac.stanford.edu; Fasso, Alberto [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Khater, Hesham [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Prinz, Alyssa [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States); Rokni, Sayed [Radiation Protection Department, Stanford Linear Accelerator Center (SLAC), MS 48, P.O. Box 20450, Stanford, CA 94309 (United States)

    2006-12-15

    To allow for a conservative, simple, uniform, consistent, efficient radiation safety design for all SSRL beamlines, a generic approach has been developed, considering both synchrotron radiation (SR) and gas bremsstrahlung (GB) hazards. To develop the methodology and rules needed for generic beamline design, analytic models, the STAC8 code, and the FLUKA Monte Carlo code were used to pre-calculate sets of curves and tables that can be looked up for each beamline safety design. Conservative beam parameters and standard targets and geometries were used in the calculations. This paper presents the SPEAR3 beamline parameters that were considered in the design, the safety design considerations, and the main pre-calculated results that are needed for generic shielding design. In the end, the rules and practices for generic SSRL beamline design are summarized.

  19. The ACCM Beamlines For Bioscience Studies

    Science.gov (United States)

    Ma, C. I.; Chang, S. H.; Liu, C. Y.; Juang, J. M.; Chang, C. H.; Tsang, K. L.

    2007-01-01

    To meet the increasing demand of X-ray beamlines for bioscience research, we have designed two high-performance, side-branch, asymmetric-cut curved crystal monochromator (ACCM) beamlines to fully utilize the sideway output of the superconducting wiggler SW6 at NSRRC. Each of these two beamlines (BL13A and BL13C) collects 1 mrad of the radiation fan in the horizontal direction, one centered at 3 mrad and the other at 4 mrad away from the central line of the wiggler output. The newly designed ACCMs are capable of energy scanning from 12 keV to 14 keV and offer good performances in terms of flux, resolution and stability. The ACCMs are designed and built in-house, combining efficient cooling and bending mechanisms in a compact unit that allows precise adjustments on a goniometer assembly. The bender is specially designed with symmetrically driven piezo-actuators that minimize center displacement during bending. Both direct and indirect cooling methods were tested; the former using Ga/In directly under the beam footprint and the latter using both sides of the crystal clamping area for cooling. Performance of the beamlines employing both cooling methods has been measured. The indirect cooling method provides 4.9 × 1010 photons/sec through a pair of 100 μm slits (H × V) with energy resolution of 5.3 × 10-3 (ΔE/E) at 12.7 keV. Higher energy resolution in the 10-4 range can be achieved by adjusting the horizontal source fan or the crystal radius at the expense of flux. The direct cooling method provides 1.4 × 1010 photons/sec through a pair of 100 μm slits (H × V) with energy resolution of 1.2 × 10-3 (ΔE/E) at 12.7 keV. The FWHM of the focused beam profile in the indirect cooling mode is 800 × 109 μm (H × V), and 800 × 283 μm (H × V) in the direct cooling mode with some horizontal tail, the latter being larger due to influence of the Ga/In layer on the crystal shape. Cooling efficiency is excellent in the direct cooling mode, in which the performance

  20. Vacuum phenomenon.

    Science.gov (United States)

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  1. A small and robust active beamstop for scattering experiments on high-brilliance undulator beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Blanchet, Clement E., E-mail: clement.blanchet@embl-hamburg.de; Hermes, Christoph; Svergun, Dmitri I.; Fiedler, Stefan, E-mail: clement.blanchet@embl-hamburg.de [European Molecular Biology Laboratory, Hamburg Outstation c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany)

    2015-02-04

    Using an indirect detection scheme, a small-size beamstop was developed to accurately measure X-ray beam flux in a wide energy range with reduced radiation level on the electronics and significantly increased in-beam lifetime. A small active in-vacuum beamstop has been developed to monitor the flux of intense third-generation synchrotron X-ray beams protecting the downstream detector from the direct beam. Standard active beamstops, where a built-in diode directly absorbs the beam, have limitations in size and lifetime. In the present design, a silicon PIN diode detects the photons back-scattered from a cavity in the beamstop. This approach drastically reduces the radiation dose on the diode and thus increases its lifetime. The beamstop with a diameter of 2 mm has been fabricated to meet the requirements for the P12 bioSAXS beamline of EMBL Hamburg at PETRA III (DESY). The beamstop is in regular user operation at the beamline and displays a good response over the range of energies tested (6–20 keV). Further miniaturization of the diode is easily possible as its size is not limited by the PIN diode used.

  2. SPring-8 BL41XU, a high-flux macromolecular crystallography beamline

    Science.gov (United States)

    Hasegawa, Kazuya; Shimizu, Nobutaka; Okumura, Hideo; Mizuno, Nobuhiro; Baba, Seiki; Hirata, Kunio; Takeuchi, Tomoyuki; Yamazaki, Hiroshi; Senba, Yasunori; Ohashi, Haruhiko; Yamamoto, Masaki; Kumasaka, Takashi

    2013-01-01

    SPring-8 BL41XU is a high-flux macromolecular crystallography beamline using an in-vacuum undulator as a light source. The X-rays are monochromated by a liquid-nitrogen-cooling Si double-crystal monochromator, and focused by Kirkpatrick–Baez mirror optics. The focused beam size at the sample is 80 µm (H) × 22 µm (V) with a photon flux of 1.1 × 1013 photons s−1. A pinhole aperture is used to collimate the beam in the range 10–50 µm. This high-flux beam with variable size provides opportunities not only for micro-crystallography but also for data collection effectively making use of crystal volume. The beamline also provides high-energy X-rays covering 20.6–35.4 keV which allows ultra-high-resolution data to be obtained and anomalous diffraction using the K-edge of Xe and I. Upgrade of BL41XU for more rapid and accurate data collection is proceeding. Here, details of BL41XU are given and an outline of the upgrade project is documented. PMID:24121338

  3. UV-CD12: synchrotron radiation circular dichroism beamline at ANKA

    Science.gov (United States)

    Bürck, Jochen; Roth, Siegmar; Windisch, Dirk; Wadhwani, Parvesh; Moss, David; Ulrich, Anne S.

    2015-01-01

    Synchrotron radiation circular dichroism (SRCD) is a rapidly growing technique for structure analysis of proteins and other chiral biomaterials. UV-CD12 is a high-flux SRCD beamline installed at the ANKA synchrotron, to which it had been transferred after the closure of the SRS Daresbury. The beamline covers an extended vacuum-UV to near-UV spectral range and has been open for users since October 2011. The current end-station allows for temperature-controlled steady-state SRCD spectroscopy, including routine automated thermal scans of microlitre volumes of water-soluble proteins down to 170 nm. It offers an excellent signal-to-noise ratio over the whole accessible spectral range. The technique of oriented circular dichroism (OCD) was recently implemented for determining the membrane alignment of α-helical peptides and proteins in macroscopically oriented lipid bilayers as mimics of cellular membranes. It offers improved spectral quality <200 nm compared with an OCD setup adapted to a bench-top instrument, and accelerated data collection by a factor of ∼3. In addition, it permits investigations of low hydrated protein films down to 130 nm using a rotatable sample cell that avoids linear dichroism artifacts. PMID:25931105

  4. Moly99 Production Facility: Report on Beamline Components, Requirements, Costs

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-23

    In FY14 we completed the design of the beam line for the linear accelerator production design concept. This design included a set of three bending magnets, quadrupole focusing magnets, and octopoles to flatten the beam on target. This design was generic and applicable to multiple different accelerators if necessary. In FY15 we built on that work to create specifications for the individual beam optic elements, including power supply requirements. This report captures the specification of beam line components with initial cost estimates for the NorthStar production facility.This report is organized as follows: The motivation of the beamline design is introduced briefly, along with renderings of the design. After that, a specific list is provided, which accounts for each beamline component, including part numbers and costs, to construct the beamline. After that, this report details the important sections of the beamline and individual components. A final summary and list of follow-on activities completes this report.

  5. Designing a synchrotron micro-focusing beamline for macromolecular crystallography.

    Science.gov (United States)

    Grochulski, Paweł; Cygler, Mirosław; Yates, Brian

    After a successful 10 years of operation, the Canadian Macromolecular Crystallography Facility 08ID-1 beamline will undergo an upgrade to establish micro-beam capability. This paper is mostly focussed on optics and computer simulations for ray tracing of the beamline. After completion, the focussed beam at the sample will have a much smaller size of 50 × 5 µm2 (H x V), allowing measurement of X-ray diffraction patterns from much smaller crystals than possible presently. The beamline will be equipped with a fast sample changer and an ultra-low noise photon counting detector, allowing shutter-less operation of the beamline. Additionally, it will be possible to perform in-situ room-temperature experiments.

  6. TREFF: Reflectometer and instrument component test beamline at MLZ

    Directory of Open Access Journals (Sweden)

    Peter Link

    2017-11-01

    Full Text Available TREFF is a high resolution polarized neutron reflectometer and instrument component test beamline resulting in a highly modular instrument providing a flexible beam line for various applications.

  7. A hard X-ray nanoprobe beamline for nanoscale microscopy.

    Science.gov (United States)

    Winarski, Robert P; Holt, Martin V; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G Brian; McNulty, Ian; Maser, Jörg

    2012-11-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals.

  8. Small angle X-ray scattering beamline at SSRF

    National Research Council Canada - National Science Library

    田丰 李秀宏 王玉柱 杨春明 周平 林金友 曾建荣 洪春霞 滑文强 李小芸 缪夏然 边风刚 王劼

    2015-01-01

    Beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF) is dedicated to studying the microstructure and dynamic processes of polymers, nanomaterials, mesoporous materials, colloids, liquid crystals,metal materials, etc...

  9. The crystal monochromator beamline KMC-1 at BESSY II

    Directory of Open Access Journals (Sweden)

    Franz Schäfers

    2016-11-01

    Full Text Available The KMC-1 is a soft x-ray double crystal monochromator beamline for the energy range between 2 and 12 keV. The bending magnet beamline as well as the experiment are under UHV-condition. It incorporates high indexed Si-crystals for high resolution and it is primarily used for HAXPES experiments employing the HIKE (High Kinetic Energy Photoelectron Spectroscopy chamber.

  10. Experimental stations at I13 beamline at Diamond Light Source

    Science.gov (United States)

    Pešić, Z. D.; De Fanis, A.; Wagner, U.; Rau, C.

    2013-03-01

    The I13 beamline of Diamond Light Source has been operational since December 2011. The beamline encompass two fully independent branches devoted to coherent imaging experiments (coherent x-ray diffraction, coherent diffraction imaging and ptychography) and x-ray imaging (in-line phase contrast imaging, tomography and full-field microscopy). This paper gives an overview of the current status of experimental stations on both branches and outlines planned developments.

  11. Circular dichroism beamline B23 at the Diamond Light Source.

    Science.gov (United States)

    Hussain, Rohanah; Jávorfi, Tamás; Siligardi, Giuliano

    2012-01-01

    Synchrotron radiation circular dichroism (SRCD) is a well established technique in structural biology. The first UV-VIS beamline, dedicated to circular dichroism, at Diamond Light Source Ltd, a third-generation synchrotron facility in south Oxfordshire, UK, has recently become operational and it is now available for the user community. Herein the main characteristics of the B23 SRCD beamline, the ancillary facilities available for users, and some of the recent advances achieved are summarized.

  12. Resonance absorption measurements of atom concentrations in reacting gas mixtures. VI. Shapes of the vacuum ultraviolet oxygen (3S-3P) resonance triplet from microwave sources and empirical calibration in a shock tube

    Science.gov (United States)

    Pamidimukkala, Krishna M.; Lifshitz, Assa; Skinner, Gordon B.; Wood, David R.

    1981-08-01

    Spectral line profiles of the atomic oxygen triplet 3S1-3P2,1,0 emitted from microwave discharges in O2-He mixtures containing 0.1% O2 were measured in the 43rd order using a 2 m vacuum Czerny-Turner scanning spectrometer under three different lamp conditions. The profiles varied from nearly Gaussian to highly self-absorbed. The line shapes were accounted for by the amount of light absorbed by ground state oxygen atoms within the lamp. Experiments were carried out to calibrate the microwave discharge lamp for analysis of oxygen atoms using oxygen resonance triplet absorption. Known concentration of O atoms were produced in the temperature range 1950-2600 K in a shock tube by the complete dissociation of dilute (1-20 ppm) mixtures of N2O in Ar and related to the fraction of light absorbed. It was found that the ratios of the intensities of the oxygen components, measured using a low-resolution monochromator, can be used to obtain resonably accurate calibration curves. Kinetic data obtained on N2O dissociation as a part of our calibration experiments in the temperature range 1519-2408 K are also presented; the results are consistent with the correlations of Baulch et al. It was confirmed that O atom concentrations during calibration experiments were determined by stoichiometry, and not by the kinetics of N2O dissociation.

  13. Beamline for Schools 2016: How to be a CERN scientist

    CERN Multimedia

    2016-01-01

    Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline.   Students from the 2016 Beamline for Schools competition working on their experiment. (Image: Noemí Carabán Gonzalez/CERN) Two teams of high-school students from the UK and Poland had the opportunity to conduct their own experiments at a fully equipped CERN beamline, after winning the Beamline for Schools competition. The teams, ”Pyramid Hunters” from Poland and “Relatively Special” from the United Kingdom, spent 10 days at CERN conducting the experiments they had dreamt up in their winning proposals. The Beamline for Schools competition gives high-school students the chance to run an experiment on a fully equipped CERN beamline, in the same way researchers do at the Large Hadron Collider and other CERN facilities every day. To know more about their stay at CERN and the experiments they&r...

  14. Design of the LBNF Beamline Target Station

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, S. [Fermilab; Ammigan, K. [Fermilab; Anderson, K.; ; Buccellato, S. A. [Fermilab; Crowley, C. F. [Fermilab; Hartsell, B. D. [Fermilab; Hurh, P. [Fermilab; Hylen, J. [Fermilab; Kasper, P. [Fermilab; Krafczyk, G. E. [Fermilab; Lee, A. [Fermilab; Lundberg, B. [Fermilab; Reitzner, S. D. [Fermilab; Sidorov, V. [Fermilab; Stefanik, A. M. [Fermilab; Tropin, I. S. [Fermilab; Vaziri, K. [Fermilab; Williams, K. [Fermilab; Zwaska, R. M. [Fermilab; Densham, C. [RAL, Didcot

    2016-10-01

    The Long Baseline Neutrino Facility (LBNF) project will build a beamline located at Fermilab to create and aim an intense neutrino beam of appropriate energy range toward the DUNE detectors at the SURF facility in Lead, South Dakota. Neutrino production starts in the Target Station, which consists of a solid target, magnetic focusing horns, and the associated sub-systems and shielding infrastructure. Protons hit the target producing mesons which are then focused by the horns into a helium-filled decay pipe where they decay into muons and neutrinos. The target and horns are encased in actively cooled steel and concrete shielding in a chamber called the target chase. The reference design chase is filled with air, but nitrogen and helium are being evaluated as alternatives. A replaceable beam window separates the decay pipe from the target chase. The facility is designed for initial operation at 1.2 MW, with the ability to upgrade to 2.4 MW, and is taking advantage of the experience gained by operating Fermilab’s NuMI facility. We discuss here the design status, associated challenges, and ongoing R&D and physics-driven component optimization of the Target Station.

  15. Achievement of the bio-crystallography beamline (BL41XU) and structural biology exploited with undulator X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, Masahide [Japan Synchrotron Radiation Research Institute, Mikazuki, Hyogo (Japan); Kawano, Yoshiaki; Kamiya, Nobuo [RIKEN Harima Institute, The Institute of Physical and Chemical Research, Mikazuki, Hyogo (Japan); Yamane, Takashi [Department of Biotechnology, Graduate School of Engineering, Nagoya University, Nagoya (Japan); Miki, Kunio [Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto (Japan); Morimoto, Yukio [Himeji Institute of Technology, Faculty of Science, Kamigori, Hyogo (Japan)

    2000-02-01

    The Bio-Crystallography beamline (BL41XU) dedicated for X-ray crystallography of biological macromolecules is a public beamline opened from October, 1997. The X-ray source in an in-vacuum type standard undulator at SPring-8, and a rotated inclined double-crystal monochromator includes a pin-post water cooling silicon crystal on which a tremendous heat load from the undulator deposits. The focal spot in an experimental station has a size of 200 micron and 300 micron in horizontal and vertical directions, respectively. The flux is 5 x 10{sup 12} photons/sec for 12.4 keV X-rays at a storage ring current of 100 mA. In order to align optical elements and a diffractometer after every changes of X-ray energy and sample-detector distance, and automated procedure has been developed within the energy range from 6.5 keV to 37.5 keV. The diffractometer specially designed for macromolecular crystallography at BL41XU is working with a CCD detector and imaging plate detectors. BL41XU has been constructed for two scientific targets: (1) routine structure analyses of biological macromolecules on the MIR-OAS technique and (2) X-ray crystallography on biologically significant supra-complexes and macromolecules crystallized only into a small size less than 50 micron. Almost of beamline commissioning required for the first target have been completed and many crystal structure have already been reported. For the second target of beamline construction, the commissioning will be continued to open the frontier of structural biology. (author)

  16. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, P.M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Bogovac, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Sghaier, H. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Institut Superieur d’Informatique et de Mathematiques de Monastir (ISIMM), Departement de technologie, 5000 Monastir (Tunisia); Leani, J.J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); IFEG – CONICET, Facultad de Matematica Astronomia y Fisica, Universidad Nacional de Cordoba, 5000 Cordoba (Argentina); Migliori, A.; Padilla-Alvarez, R. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Czyzycki, M. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059 Krakow (Poland); Osan, J. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); Environmental Physics Department, Hungarian Academy of Sciences Centre for Energy Research, Konkoly-Thege M. út 29-33., H-1121 Budapest (Hungary); Kaiser, R.B. [Physics Section, Nuclear Science and Instrumentation Laboratory (NSIL), IAEA Laboratories, A-2444 Seibersdorf (Austria); and others

    2016-10-11

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (µXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools. - Highlights: • A new methodology for control of a synchrotron beamline end-station is shown. • The new control system comprises a novel binding of Tango control system with LabVIEW interface. • The reliability of the control system is demonstrated by examples of analytical applications.

  17. Upgrade of Spring-8 Beamline Network with Vlan Technology Over Gigabit Ethernet

    OpenAIRE

    Ishii, M; Fukui, T.; Furukawa, Y.; Nakatani, T; Ohata, T.; Tanaka, R.

    2001-01-01

    The beamline network system at SPring-8 consists of three LANs; a BL-LAN for beamline component control, a BL-USER-LAN for beamline experimental users and an OA-LAN for the information services. These LANs are interconnected by a firewall system. Since the network traffic and the number of beamlines have increased, we upgraded the backbone of BL-USER-LAN from Fast Ethernet to Gigabit Ethernet. And then, to establish the independency of a beamline and to raise flexibility of every beamline, we...

  18. Emittance Measurement for Beamline Extension at the PET Cyclotron

    Directory of Open Access Journals (Sweden)

    Sae-Hoon Park

    2016-01-01

    Full Text Available Particle-induced X-ray emission is used for determining the elemental composition of materials. This method uses low-energy protons (of several MeV, which can be obtained from high-energy (of tens MeV accelerators. Instead of manufacturing an accelerator for generating the MeV protons, the use of a PET cyclotron has been suggested for designing the beamline for multipurpose applications, especially for the PIXE experiment, which has a dedicated high-energy (of tens MeV accelerator. The beam properties of the cyclotron were determined at this experimental facility by using an external beamline before transferring the ion beam to the experimental chamber. We measured the beam profile and calculated the emittance using the pepper-pot method. The beam profile was measured as the beam current using a wire scanner, and the emittance was measured as the beam distribution at the beam dump using a radiochromic film. We analyzed the measurement results and are planning to use the results obtained in the simulations of external beamline and aligned beamline components. We will consider energy degradation after computing the beamline simulation. The experimental study focused on measuring the emittance from the cyclotron, and the results of this study are presented in this paper.

  19. 08B1-1: an automated beamline for macromolecular crystallography experiments at the Canadian Light Source.

    Science.gov (United States)

    Fodje, Michel; Grochulski, Pawel; Janzen, Kathryn; Labiuk, Shaunivan; Gorin, James; Berg, Russ

    2014-05-01

    Beamline 08B1-1 is a recently commissioned bending-magnet beamline at the Canadian Light Source. The beamline is designed for automation and remote access. Together with the undulator-based beamline 08ID-1, they constitute the Canadian Macromolecular Crystallography Facility. This paper describes the design, specifications, hardware and software of beamline 08B1-1. A few scientific results using data obtained at the beamline will be highlighted.

  20. Simulating the Beam-line at CERN's ISOLDE Experiment

    CERN Document Server

    McGrath, Casey

    2013-01-01

    Maximizing the optical matching along portions of the ISOLDE beam-line and automating this procedure will make it easier for scientists to determine what the strengths of the electrical elds of each beam-line element should be in order to reduce particle loss. Simulations are run using a program called MAD-X, however, certain issues were discovered that hindered an immediate success of the simulations. Specifically, the transfer matrices for electrostatic components like the switchyards, kickers, and electric quadrupoles were missing from the original coding. The primary aim of this project was to design these components using AutoCAD and then extract the transfer matrices using SIMION. Future work will then implement these transfer matrices into the MAD-X code to make the simulations of the beam-line more accurate.

  1. The development of W-PBPM at diagnostic beamline

    Science.gov (United States)

    Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun

    2017-12-01

    The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.

  2. Laser-induced damage threshold tests of ultrafast multilayer dielectric coatings in various environmental conditions relevant for operation of ELI beamlines laser systems

    Czech Academy of Sciences Publication Activity Database

    Ďurák, Michal; Velpula, Praveen K.; Kramer, Daniel; Cupal, Josef; Medřík, Tomáš; Hřebíček, Jan; Golasowski, Jiří; Peceli, Davorin; Kozlová, Michaela; Rus, Bedřich

    2017-01-01

    Roč. 56, č. 1 (2017), s. 1-6, č. článku 011024. ISSN 0091-3286 R&D Projects: GA MŠk LQ1606; GA MŠk LM2015065; GA MŠk ED1.1.00/02.0061; GA MŠk EE.2.3.20.0091; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061; OP VK 1 LaserSys(XE) CZ.1.07/2.3.00/20.0091; ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : Peta-watt class lasers * ultrafast lasers * behavior at different vacuum levels * cleaning treatment Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.082, year: 2016

  3. Confocal microscopy on the beamline: novel three-dimensional imaging and sample positioning

    OpenAIRE

    Khan, I.; Gillilan, R; Kriksunov, I.; Williams, R.; Zipfel, W.R.; Englich, U.

    2012-01-01

    Possibilities of applying confocal microscopy on an X-ray beamline have been explored. Confocal microscopy images have the potential to give detailed, on-axis and three-dimensional views of protein crystals on a synchrotron beamline.

  4. Quantum yields of decomposition and homo-dimerization of solid L-alanine induced by 7.2 eV Vacuum ultraviolet light irradiation: an estimate of the half-life of L-alanine on the surface of space objects.

    Science.gov (United States)

    Izumi, Yudai; Nakagawa, Kazumichi

    2011-08-01

    One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10(-2) photon(-1)) and homo-dimerization ((1.2 ± 0.3) × 10(-3) photon(-1)) and decomposition of the dimer (0.24 ± 0.06 photon(-1)) of solid L-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of L-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid L-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that L-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth.

  5. Current schemes for National Synchrotron Light Source UV beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Williams, G.P.; Howells, M.R.; McKinney, W.R.

    1979-01-01

    We describe in some detail four beamlines proposed for the National Synchrotron Light Source uv ring at Brookhaven National Laboratory. Three grazing-incidence instruments, one of the plane grating Mijake type and two with toroidal gratings at grazing angles of 2-1/2/sup 0/ and 15/sup 0/ are described. Two normal incidence instruments, one using the source as entrance slit and accepting 75 milliradians horizontally are also discussed. In each case we have estimated the output fluxes expected from such beamlines.

  6. The Materials Science beamline upgrade at the Swiss Light Source.

    Science.gov (United States)

    Willmott, P R; Meister, D; Leake, S J; Lange, M; Bergamaschi, A; Böge, M; Calvi, M; Cancellieri, C; Casati, N; Cervellino, A; Chen, Q; David, C; Flechsig, U; Gozzo, F; Henrich, B; Jäggi-Spielmann, S; Jakob, B; Kalichava, I; Karvinen, P; Krempasky, J; Lüdeke, A; Lüscher, R; Maag, S; Quitmann, C; Reinle-Schmitt, M L; Schmidt, T; Schmitt, B; Streun, A; Vartiainen, I; Vitins, M; Wang, X; Wullschleger, R

    2013-09-01

    The Materials Science beamline at the Swiss Light Source has been operational since 2001. In late 2010, the original wiggler source was replaced with a novel insertion device, which allows unprecedented access to high photon energies from an undulator installed in a medium-energy storage ring. In order to best exploit the increased brilliance of this new source, the entire front-end and optics had to be redesigned. In this work, the upgrade of the beamline is described in detail. The tone is didactic, from which it is hoped the reader can adapt the concepts and ideas to his or her needs.

  7. The mySpot beamline at BESSY II

    Directory of Open Access Journals (Sweden)

    Ivo Zizak

    2016-12-01

    Full Text Available mySpot beamline is used to provide stable beam especially tuned for the mySpot experiment. Depending on the experiment requirements, different optical devices are used. The schematic view shows two different configurations, one tuned for low divergence, and one for narrow energy band width, as required for the scattering and spectroscopy experiments respectively. Since the goal of the experiment is to provide several methods at the same time, beamline properties can be tuned to provide the optimal beam for a given combination of experiments. Total intensity, divergence, energy resolution, high harmonics suppression, and stability in scans can be tuned to match the requirements (Erko & Zizak, 2009.

  8. Biological applications of ultraviolet free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated.

  9. The Pharmaceutical Industry Beamline of Pharmaceutical Consortium for Protein Structure Analysis

    CERN Document Server

    Nishijima, K

    2002-01-01

    The Pharmaceutical Industry Beamline was constructed by the Pharmaceutical Consortium for Protein Structure Analysis which was established in April 2001. The consortium is composed of 22 pharmaceutical companies affiliating with the Japan Pharmaceutical Manufacturers Association. The beamline is the first exclusive on that is owned by pharmaceutical enterprises at SPring-8. The specification and equipments of the Pharmaceutical Industry Beamline is almost same as that of RIKEN Structural Genomics Beamline I and II. (author)

  10. Distributed control of protein crystallography beamline 5.0 using CORBA

    OpenAIRE

    Timossi, Chris

    1999-01-01

    The Protein Crystallography Beamline at Berkeley Lab's Advanced Light Source is a facility that is being used to solve the structure of proteins. The software that is being used to control this beamline uses Java for user interface applications which communicate via CORBA with workstations that control the beamline hardware. We describe the software architecture for the beamline and our experiences after two years of operation.

  11. Using macromolecular-crystallography beamline and microfluidic platform for small-angle diffraction studies of lipidic matrices for membrane-protein crystallization

    Science.gov (United States)

    Kondrashkina, E.; Khvostichenko, D. S.; Perry, S. L.; Von Osinski, J.; Kenis, P. J. A.; Brister, K.

    2013-03-01

    Macromolecular-crystallography (MX) beamlines routinely provide a possibility to change X-ray beam energy, focus the beam to a size of tens of microns, align a sample on a microdiffractometer using on-axis video microscope, and collect data with an area-detector positioned in three dimensions. These capabilities allow for running complementary measurements of small-angle X-ray scattering and diffraction (SAXS) at the same beamline with such additions to the standard MX setup as a vacuum path between the sample and the detector, a modified beam stop, and a custom sample cell. On the 21-ID-D MX beamline at the Advanced Photon Source we attach a vacuum flight tube to the area detector support and use the support motion for aligning a beam stop built into the rear end of the flight tube. At 8 KeV energy and 1 m sample-to-detector distance we can achieve a small-angle resolution of 0.01A-1 in the reciprocal space. Measuring SAXS with this setup, we have studied phase diagrams of lipidic mesophases used as matrices for membrane-protein crystallization. The outcome of crystallization trials is significantly affected by the structure of the lipidic mesophases, which is determined by the composition of the crystallization mixture. We use a microfluidic chip for the mesophase formulation and in situ SAXS data collection. Using the MX beamline and the microfluidic platform we have demonstrated the viability of the high-throughput SAXS studies facilitating screening of lipidic matrices for membrane-protein crystallization.

  12. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  13. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  14. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications.

    Energy Technology Data Exchange (ETDEWEB)

    Gog, T.; Casa, D. M.; Kuzmenko, I.; Krakora, R. J.; Bolin, T. B.; X-Ray Science Division

    2007-07-01

    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering.

  15. The Nanoscience Beamline (I06) at Diamond Light Source

    Science.gov (United States)

    Dhesi, S. S.; Cavill, S. A.; Potenza, A.; Marchetto, H.; Mott, R. A.; Steadman, P.; Peach, A.; Shepherd, E. L.; Ren, X.; Wagner, U. H.; Reininger, R.

    2010-06-01

    The Nanoscience beamline (I06) is one of seven Diamond Phase-I beamlines which has been operational since January 2007 delivering polarised soft x-rays, for a PhotoEmission Electron Microscope (PEEM) and branchline, in the energy range 80-2100 eV. The beamline is based on a collimated plane grating monochromator with sagittal focusing elements, utilising two APPLE II helical undulator sources, and has been designed for high flux density at the PEEM sample position. A ˜5 μm (σ) diameter beam is focussed onto the sample in the PEEM allowing a range of experiments using x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD) and x-ray magnetic linear dichroism (XMLD) as contrast mechanisms. The beamline is also equipped with a branchline housing a 6T superconducting magnet for XMCD and XMLD experiments. The magnet is designed to move on and off the branchline which allows a diverse range of experiments.

  16. Optical design study of the PEARL beamline at SLS

    Czech Academy of Sciences Publication Activity Database

    Oberta, Peter; Flechsig, U.; Muntwiler, M.; Quitmann, C.

    2011-01-01

    Roč. 635, č. 1 (2011), s. 116-120 ISSN 0168-9002 Institutional research plan: CEZ:AV0Z10100522 Keywords : PGM * beamline design * photo-emision Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  17. New X-ray emission spectrometer at the Rossendorf Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina O.; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Molecular Structures

    2016-07-01

    A preliminary Johann-type X-ray emission spectrometer has recently been installed and tested at the Rossendorf Beamline (ROBL). The spectrometer consists of a single spherically bent crystal analyzer and an avalanche photodiode detector positioned on the vertical Rowland cycle with 1 m diameter. The instrument has been tested at the Zr-K edge.

  18. Remote access and automation of SPring-8 MX beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Go, E-mail: ueno@spring8.or.jp; Hikima, Takaaki; Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 JAPAN (Japan); Hasegawa, Kazuya; Murakami, Hironori; Furukawa, Yukito; Mizuno, Nobuhiro; Kumasaka, Takashi [SPring-8/JASRI, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 JAPAN (Japan)

    2016-07-27

    At SPring-8 MX beamlines, a remote access system has been developed and started user operation in 2010. The system has been developed based on an automated data collection and data management architecture utilized for the confirmed scheme of SPring-8 mail-in data collection. Currently, further improvement to the remote access and automation which covers data processing and analysis are being developed.

  19. The UE46 PGM-1 beamline at BESSY II

    Directory of Open Access Journals (Sweden)

    Eugen Weschke

    2018-01-01

    Full Text Available The UE46 PGM-1 undulator beamline at the BESSY II storage ring provides soft x-rays of tunable polarization, linear and circular. With two permanent endstations, a versatile XUV diffractometer and a 7-Tesla High-Field diffractometer, the setup is dedicated to both, resonant spectroscopy and scattering/diffraction.

  20. The KMC-3 XPP beamline at BESSY II

    Directory of Open Access Journals (Sweden)

    Ivo Zizak

    2017-11-01

    Full Text Available The KMC-3 beamline is installed at teh bending magnet of the BESSY II synchrotron light source. It provides focused beam of monochromatic X-ray light at energies between 2.2 and 14 keV. It is dedicated to two experiments: X-ray Pump Probe (XPP and CryoEXAFS.

  1. The ID23-2 structural biology microfocus beamline at the ESRF

    OpenAIRE

    Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward

    2009-01-01

    The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick–Baez geometry to focus the X-ray beam. A major design goal of...

  2. The INE-Beamline for actinide science at ANKA.

    Science.gov (United States)

    Rothe, J; Butorin, S; Dardenne, K; Denecke, M A; Kienzler, B; Löble, M; Metz, V; Seibert, A; Steppert, M; Vitova, T; Walther, C; Geckeis, H

    2012-04-01

    Since its inauguration in 2005, the INE-Beamline for actinide research at the synchrotron source ANKA (KIT North Campus) provides dedicated instrumentation for x-ray spectroscopic characterization of actinide samples and other radioactive materials. R&D work at the beamline focuses on various aspects of nuclear waste disposal within INE's mission to provide the scientific basis for assessing long-term safety of a final nuclear waste repository. The INE-Beamline is accessible for the actinide and radiochemistry community through the ANKA proposal system and the European Union Integrated Infrastructure Initiative ACTINET-I3. Experiments with activities up to 1 × 10(+6) times the European exemption limit are feasible within a safe but flexible containment concept. Measurements with monochromatic radiation are performed at photon energies varying between ~2.1 keV (P K-edge) and ~25 keV (Pd K-edge), including the lanthanide L-edges and the actinide M- and L3-edges up to Cf. The close proximity of the INE-Beamline to INE controlled area labs offers infrastructure unique in Europe for the spectroscopic and microscopic characterization of actinide samples. The modular beamline design enables sufficient flexibility to adapt sample environments and detection systems to many scientific questions. The well-established bulk techniques x-ray absorption fine structure (XAFS) spectroscopy in transmission and fluorescence mode have been augmented by advanced methods using a microfocused beam, including (confocal) XAFS/x-ray fluorescence detection and a combination of (micro-)XAFS and (micro-)x-ray diffraction. Additional instrumentation for high energy-resolution x-ray emission spectroscopy has been successfully developed and tested. © 2012 American Institute of Physics

  3. The vacuum disconnector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, H.

    1989-05-01

    After showing the extended experience of Holec with vacuum disconnectors, the difficulties encountered in developing the type SVS vacuum bottle are indicated. The implications of demands imposed on price and dimensions are translated into design features. The function and the design of the getter is explained to show how Holec guarantees a 20 year approved vacuum in the bottle. Finally, the results of switching tests are mentioned to explain the reliability and capability of the new disconnector. 12 figs.

  4. General method for automatic on-line beamline optimization based on genetic algorithm.

    Science.gov (United States)

    Xi, Shibo; Borgna, Lucas Santiago; Du, Yonghua

    2015-05-01

    It is essential but inconvenient to perform high-quality on-line optimization for synchrotron radiation beamlines. Usually, synchrotron radiation beamlines are optimized manually, which is time-consuming and difficult to obtain global optimization for all optical elements of the beamline. In this contribution a general method based on the genetic algorithm for automatic beamline optimization is introduced. This method can optimize all optical components of any beamline simultaneously and efficiently. To test this method, a program developed using LabVIEW is examined at the XAFCA beamline of the Singapore Synchrotron Light Source to optimize the beam flux at the sample position. The results demonstrate that the beamline can be optimized within 17 generations even when the initial flux is as low as 4% of its maximum value.

  5. Effects of Vacuum Ultraviolet Radiation on Thin Polyimide Films Evaluated

    Science.gov (United States)

    Dever, Joyce A.; Messer, Russell K.; Powers, Charles; Townsend, Jacqueline A.; Wooldridge, Eve

    2001-01-01

    NASA anticipates launching the Next Generation Space Telescope (NGST) mission-- whose purpose is to examine the origins of our universe by making measurements in the infrared portion of the spectrum--in 2009. So that the telescope can operate at very low temperatures (less than 100 K), a halo orbit about the second Lagrangian point (L2) is being considered because it is far from Earth and its reflected sunlight. The Sun-Earth L2 point is located 1.53 10(exp 6) km from the Earth in the direction away from the Sun. This mission presents new challenges in many areas of technology, including the development of a multilayer insulation sunshield for the telescope. This sunshield is required to be large (proposed dimensions of approximately 33 by 14 m), storable, deployable, and lightweight. In addition, its polymer film layers must be seamable, foldable, and resistant to tearing and creep, with low outgassing. The sunshield must maintain its structural integrity and its Sun-facing side must maintain a low solar absorptance to thermal emittance ratio (alpha/epsilon) over the planned 10-yr mission duration including over 80,000 hr facing constant sunlight.

  6. Vacuum ultraviolet photoionization and photodissociation of polyatomic molecules and radicals

    Energy Technology Data Exchange (ETDEWEB)

    Ng, C.Y. [Iowa State Univ., Ames (United States)

    1993-12-01

    In the past decade, tremendous progress has been made in understanding the photodissociation (PD) dynamics of triatomic molecules. However, the PD study of radicals, especially polyatomic radicals, has remained essentially an unexplored research area. Detailed state-to-state PD cross sections for radicals in the UV and VUV provide challenges not only for dynamical calculations, but also for ab initio quantum chemical studies. The authors have developed a laser based pump-probe apparatus for the measurement of absolute PD cross sections for CH{sub 3}S and HS is summarized.

  7. Vacuum polarization in Coulomb field revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zamastil, J., E-mail: zamastil@karlov.mff.cuni.cz; Šimsa, D.

    2017-04-15

    Simplified derivation of Wichmann–Kroll term is presented. The derivation uses two formulas for hypergeometric functions, but otherwise is elementary. It is found that Laplace transform of the vacuum charge density diverges at zero momentum transfer. This divergence has nothing to do with known ultraviolet divergence. The latter is related to the large momentum behavior of the pertinent integral, while the former to the small momentum behavior. When these divergences are removed, the energy shift caused by vacuum polarization for an ordinary hydrogen obtained here is in an exact agreement with the result obtained by Wichmann and Kroll. Also, for muonic hydrogen the result obtained here reasonably agrees with that given in literature.

  8. Summer student project report - A versatile ion source for improving the sensitivity and resolution of the CRIS beamline at ISOLDE

    CERN Document Server

    AUTHOR|(CDS)2156312

    2016-01-01

    The main part of my project involved working on the independent ion source attached to the collinear resonance ionisation spectroscopy experiment at ISOLDE. The primary aim was to increase the maximum accelerating potential from 5 kV to 30 kV, to become comparable to ion beams from the ISOLDE High Resolution Separator and to improve the resolution of hyperfine structure measurements. The new ion source allows for easy exchange between surface and plasma ion sources, as well as use as a laser ion source. The work included disassembling and rebuilding the ion optics, electronics and vacuum systems, adding new features such as a laser window. This was done in parallel with simulations of other parts of the beamline and in- volvement in online experiments. We were successful in reaching 30 kV and plan to produce beams of ions in the near future to investigate the sensitivity of various ionisation schemes.

  9. Microfabricated triggered vacuum switch

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  10. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  11. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, N.A.; Kelton, K.F. (WU)

    2011-10-27

    High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

  12. LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    Science.gov (United States)

    Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.

    2016-10-01

    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.

  13. The ID23-2 structural biology microfocus beamline at the ESRF.

    Science.gov (United States)

    Flot, David; Mairs, Trevor; Giraud, Thierry; Guijarro, Matias; Lesourd, Marc; Rey, Vicente; van Brussel, Denis; Morawe, Christian; Borel, Christine; Hignette, Olivier; Chavanne, Joel; Nurizzo, Didier; McSweeney, Sean; Mitchell, Edward

    2010-01-01

    The first phase of the ESRF beamline ID23 to be constructed was ID23-1, a tunable MAD-capable beamline which opened to users in early 2004. The second phase of the beamline to be constructed is ID23-2, a monochromatic microfocus beamline dedicated to macromolecular crystallography experiments. Beamline ID23-2 makes use of well characterized optical elements: a single-bounce silicon (111) monochromator and two mirrors in Kirkpatrick-Baez geometry to focus the X-ray beam. A major design goal of the ID23-2 beamline is to provide a reliable, easy-to-use and routine microfocus beam. ID23-2 started operation in November 2005, as the first beamline dedicated to microfocus macromolecular crystallography. The beamline has taken the standard automated ESRF macromolecular crystallography environment (both hardware and software), allowing users of ID23-2 to be rapidly familiar with the microfocus environment. This paper describes the beamline design, the special considerations taken into account given the microfocus beam, and summarizes the results of the first years of the beamline operation.

  14. The Nanoscience Beamline at Diamond, Optical Design Considerations

    Science.gov (United States)

    Reininger, Ruben; Dhesi, Sarnjeet

    2007-01-01

    The main requirement of the Nanoscience Beamline at Diamond is to deliver the highest possible flux at the sample position of a PEEM with a resolving power of about 5000 in the energy range 80-2000 eV. The source of the beamline is a couple of APPLE II helical undulators in tandem that can also be used separately to allow for faster switching of the circular polarization. Based on its versatility, a collimated plane grating monochromator using sagittally focusing elements was chosen to cover the required energy range with three gratings. The operation of this monochromator requires a collimated beam incident on the grating along the dispersion direction. This can be achieved either with a toroid, focusing with its major radius along the non-dispersive direction at the exit slit, or with a sagittal cylinder. The former option uses a sagittal cylinder after the grating to focus the collimated beam at the exit slit. In the latter case, a toroid after the grating is used to focus in both directions at the exit slit. The advantage of the toroid downstream the grating is the higher horizontal demagnification. This configuration fulfills the Nanoscience Beamline's required resolving power but cannot be used to achieve very high resolution due to the astigmatic coma aberration of the toroidal mirror. The focusing at the sample position is performed with a KB pair of plane elliptical mirrors. Assuming achievable values for the errors on all the optical surfaces, the expected spots FWHW in the horizontal and vertical directions are 10 μm and 3 μm, respectively. The calculated photon flux at this spot at 5000 resolving power is >1012 photons/sec between 80 and 1600 eV for linearly polarized light and between 106 and 1200 eV for circularly polarized light. The beamline is expected to be operational in January 2007.

  15. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  16. Successful test of SPS-to-LHC beamline

    CERN Multimedia

    2004-01-01

    On 23 October there was great excitement in the Prevessin control room when, on the first attempt, a beam passed over 2.5 km down the new SPS-to-LHC transfer line, TI8, to within a few metres of the LHC tunnel. Above: members of the AB, AT and TS departments involved in the beamline and its test, celebrate their success with the Director General, Robert Aymar, and the LHC Project Leader, Lyn Evans.

  17. Far-infrared Beamline at the Canadian Light Source

    Science.gov (United States)

    Zhao, Jianbao; Billinghurst, Brant

    2017-06-01

    Far-infrared is a particularly useful technique for studies on lattice modes as they generally appear in the Far-infrared region. Far-infrared is also an important tool for gathering information on the electrical transport properties of metallic materials and the band gap of semiconductors. This poster will describe the horizontal microscope that has recently been built in the Far-infrared beamline at the Canadian Light Source Inc. (CLS). This microscope is specially designed for high-pressure Far-infrared absorbance and reflectance spectroscopic studies. The numerical aperture (0.5) and the long working distance (82.1 mm) in the microscope are good fits for Diamond Anvil Cell (DAC). The spectra are recorded using liquid helium cooled Si bolometer or Ge:Cu detector. The pressure in the DAC can be determined by using the fluorescence spectrometer available onsite. The Far-infrared beamline at CLS is a state-of-the-art synchrotron facility, offering significantly more brightness than conventional sources. Because of the high brightness of the synchrotron radiation, we can obtain the Far-infrared reflectance/absorbance spectra on the small samples with more throughput than with a conventional source. The Far-infrared beamline is open to users through peer review.

  18. Performance of a novel VUV bending magnet beamline

    CERN Document Server

    Song, Y F; Hsieh, T F; Huang, L R; Chung, S C; Cheng, N F; Hsiung, G Y; Wang, D J; Chen, C T; Tsang, K L

    2001-01-01

    A novel high resolution, high flux bending magnet beamline with an energy range from 5 to 40 eV has been constructed at SRRC. This Dragon-like beamline, which horizontally collects 50 mrad of synchrotron radiation from a bending magnet source, uses four cylindrical gratings with an included angle of 140 deg. and a movable curved exit slit. The average photon flux with an energy resolving power of 1000 is about 2x10 sup 1 sup 2 photons/s, which is among the highest of all existing VUV bending magnet beamlines. An energy resolving power of 24,000 at 6.8 eV has been obtained from the Schumann-Runge bands (B sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction u lower limit End limit End sup - /leftarrow/gets A: =leftward arrow X sup 3 limit construction operator in a limit construction/sum L: summation operator operator End lower limit of a limit construction g lower limit End limit End sup -) absorption spectra of O sub 2 gas. A pho...

  19. Confining continuous manipulations of accelerator beam-line optics

    Science.gov (United States)

    Amstutz, Ph.; Plath, T.; Ackermann, S.; Bödewadt, J.; Lechner, C.; Vogt, M.

    2017-04-01

    Altering the optics in one section of a linear accelerator beam line will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beam-line element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beam-line section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beam-line elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper, we present an approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its demonstration at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg.

  20. Confining continuous manipulations of accelerator beam-line optics

    Directory of Open Access Journals (Sweden)

    Ph. Amstutz

    2017-04-01

    Full Text Available Altering the optics in one section of a linear accelerator beam line will in general cause an alteration of the optics in all downstream sections. In circular accelerators, changing the optical properties of any beam-line element will have an impact on the optical functions throughout the whole machine. In many cases, however, it is desirable to change the optics in a certain beam-line section without disturbing any other parts of the machine. Such a local optics manipulation can be achieved by adjusting a number of additional corrector magnets that restore the initial optics after the manipulated section. In that case, the effect of the manipulation is confined in the region between the manipulated and the correcting beam-line elements. Introducing a manipulation continuously, while the machine is operating, therefore requires continuous correction functions to be applied to the correcting quadrupole magnets. In this paper, we present an approach to calculate such continuous correction functions for six quadrupole magnets by means of a homotopy method. Besides a detailed derivation of the method, we present its application to an algebraic example, as well as its demonstration at the seeding experiment sFLASH at the free-electron laser FLASH located at DESY in Hamburg.

  1. Pulsed beam tests at the SANAEM RFQ beamline

    Science.gov (United States)

    Turemen, G.; Akgun, Y.; Alacakir, A.; Kilic, I.; Yasatekin, B.; Ergenlik, E.; Ogur, S.; Sunar, E.; Yildiz, V.; Ahiska, F.; Cicek, E.; Unel, G.

    2017-07-01

    A proton beamline consisting of an inductively coupled plasma (ICP) source, two solenoid magnets, two steerer magnets and a radio frequency quadrupole (RFQ) is developed at the Turkish Atomic Energy Authority’s (TAEA) Saraykoy Nuclear Research and Training Center (SNRTC-SANAEM) in Ankara. In Q4 of 2016, the RFQ was installed in the beamline. The high power tests of the RF power supply and the RF transmission line were done successfully. The high power RF conditioning of the RFQ was performed recently. The 13.56 MHz ICP source was tested in two different conditions, CW and pulsed. The characterization of the proton beam was done with ACCTs, Faraday cups and a pepper-pot emittance meter. Beam transverse emittance was measured in between the two solenoids of the LEBT. The measured beam is then reconstructed at the entrance of the RFQ by using computer simulations to determine the optimum solenoid currents for acceptance matching of the beam. This paper will introduce the pulsed beam test results at the SANAEM RFQ beamline. In addition, the high power RF conditioning of the RFQ will be discussed.

  2. Photodiode-Based, Passive Ultraviolet Dosimeters

    Science.gov (United States)

    Vaughn, Jason A.; Gray, Perry

    2004-01-01

    Simple, passive instruments have been developed for measuring the exposure of material specimens to vacuum ultraviolet (VUV) radiation from the Sun. Each instrument contains a silicon photodiode and a coulometer. The photocharge generated in the photodiode is stored in the coulometer. The accumulated electric charge measured by use of the coulometer is assumed to be proportional to the cumulative dose of VUV radiation expressed in such convenient units as equivalent Sun hours (ESH) [defined as the number of hours of exposure to sunlight at normal incidence]. Intended originally for use aboard spacecraft, these instruments could also be adapted to such terrestrial uses as monitoring the curing of ultraviolet-curable epoxies. Each instrument includes a photodiode and a coulometer assembly mounted on an interface plate (see figure). The photodiode assembly includes an aluminum housing that holds the photodiode, a poly(tetrafluoroehylene) cosine receptor, and a narrow-band optical filter. The cosine receptor ensures that the angular response of the instrument approximates the ideal angular response (proportional to the cosine of the angle of incidence). The filter is chosen to pass the ultraviolet wavelength of interest in a specific experiment. The photodiode is electrically connected to the coulometer. The factor of proportionality between the charge stored in the coulometer and ultraviolet dosage (in units of ESH) is established, prior to use, in calibration experiments that involve the use of lamps and current sources traceable to the National Institute of Standards and Technology.

  3. Vacuum spin squeezing

    Science.gov (United States)

    Hu, Jiazhong; Chen, Wenlan; Vendeiro, Zachary; Urvoy, Alban; Braverman, Boris; Vuletić, Vladan

    2017-11-01

    We investigate the generation of entanglement (spin squeezing) in an optical-transition atomic clock through the coupling to an optical cavity in its vacuum state. We show that if each atom is prepared in a superposition of the ground state and a long-lived electronic excited state, and viewed as a spin-1/2 system, then the collective vacuum light shift entangles the atoms, resulting in a squeezed distribution of the ensemble collective spin, without any light applied. This scheme reveals that even an electromagnetic vacuum can constitute a useful resource for entanglement and quantum manipulation. By rotating the spin direction while coupling to the vacuum, the scheme can be extended to implement two-axis twisting resulting in stronger squeezing.

  4. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  5. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  6. Vacuum-assisted delivery

    Science.gov (United States)

    ... the birth canal. The vacuum uses a soft plastic cup that attaches to the baby's head with suction. ... a numbing medicine placed in the vagina. The plastic cup will be placed on the baby's head. Then, ...

  7. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  8. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  9. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  10. BL2D-SMC, the supramolecular crystallography beamline at the Pohang Light Source II, Korea.

    Science.gov (United States)

    Shin, Jong Won; Eom, Kisu; Moon, Dohyun

    2016-01-01

    BL2D-SMC at the Pohang Light Source II is a supramolecular crystallography beamline based on a bending magnet. The beamline delivers high-flux tunable X-rays with energies from 8.3 to 20.7 keV and a 100 µm (horizontal) × 85 µm (vertical) full width at half-maximum focal spot. Experiments involving variable temperature, photo-excitation and gas sorption are supported by ancillary equipment and software in the beamline. The design of the beamline, its role and the main components are described.

  11. HERMES: a soft X-ray beamline dedicated to X-ray microscopy.

    Science.gov (United States)

    Belkhou, Rachid; Stanescu, Stefan; Swaraj, Sufal; Besson, Adrien; Ledoux, Milena; Hajlaoui, Mahdi; Dalle, Didier

    2015-07-01

    The HERMES beamline (High Efficiency and Resolution beamline dedicated to X-ray Microscopy and Electron Spectroscopy), built at Synchrotron SOLEIL (Saint-Auban, France), is dedicated to soft X-ray microscopy. The beamline combines two complementary microscopy methods: XPEEM (X-ray Photo Emitted Electron Microscopy) and STXM (Scanning Transmission X-ray Microscopy) with an aim to reach spatial resolution below 20 nm and to fully exploit the local spectroscopic capabilities of the two microscopes. The availability of the two methods within the same beamline enables the users to select the appropriate approach to study their specific case in terms of sample environment, spectroscopy methods, probing depth etc. In this paper a general description of the beamline and its design are presented. The performance and specifications of the beamline will be reviewed in detail. Moreover, the article is aiming to demonstrate how the beamline performances have been specifically optimized to fulfill the specific requirements of a soft X-ray microscopy beamline in terms of flux, resolution, beam size etc. Special attention has been dedicated to overcome some limiting and hindering problems that are usually encountered on soft X-ray beamlines such as carbon contamination, thermal stability and spectral purity.

  12. Design and R&D for manufacturing the beamline components of MITICA and ITER HNBs

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M., E-mail: mauro.dallapalma@igi.cnr.it [Consorzio RFX, Padova (Italy); Sartori, E. [Consorzio RFX, Padova (Italy); Blatchford, P.; Chuilon, B. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Graceffa, J. [ITER Organization, St Paul Lez Durance (France); Hanke, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Hardie, C. [CCFE, Culham Science Centre, Oxfordshire (United Kingdom); Masiello, A. [F4E, Barcelona (Spain); Muraro, A. [Consorzio RFX, Padova (Italy); Ochoa, S. [KIT, Institute for Technical Physics, Eggenstein-Leopoldshafen (Germany); Shah, D. [ITER Organization, St Paul Lez Durance (France); Veltri, P.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Padova (Italy)

    2015-10-15

    Highlights: • Particle beam-component interaction was analysed developing and applying numerical codes. • Gas density distribution was calculated with AVOCADO code and applied for electrical analyses. • High heat flux components were designed, analysed with subcooled boiling, verified for fatigue. • Fracture behaviour of ceramics was analysed by finite element modelling and was verified. • R&D supports the design of the beamline components, especially for water-vacuum barriers. - Abstract: The design of the beamline components of MITICA, the full prototype of the ITER heating neutral beam injectors, is almost finalised and technical specifications for the procurement are under preparation. These components are the gas neutraliser, the electrostatic residual ion dump, and the calorimeter. Electron dump panels are foreseen each side of the upstream end of the neutraliser to protect the cryo-panels from electrons, created by stripping and other processes, that exit the 1 MeV accelerator. As the design of the components must fulfil requirements on the beam physics, insight on physical processes is required to identify performance trade-offs and constraints. The spatial gas distribution was simulated to verify the pumping requirements with electron dump panels and local conditions for breakdown voltage. Electrostatic analyses were carried out for the insulating elements of the RID to verify the limits of the electric field intensity. Different criteria were approached to investigate the fracture behaviour of ceramics considering the manufacturing implications and extrapolating the conditions for proof testing. Severe heating conditions will be applied steadily, as the maximum pulse duration is 1 h, and cyclically so requiring to fulfil fatigue and ratcheting verifications. High heat fluxes, up to 13 MW/m{sup 2} on the calorimeter, with enhanced heat transfer in subcooled boiling conditions will occur in the actively cooled CuCr1Zr panel elements provided with

  13. State-to-state vacuum ultraviolet photodissociation study of CO2 on the formation of state-correlated CO(X(1)Σ(+); v) with O((1)D) and O((1)S) photoproducts at 11.95-12.22 eV.

    Science.gov (United States)

    Lu, Zhou; Chang, Yih Chung; Benitez, Yanice; Luo, Zhihong; Houria, Adel Ben; Ayari, Tarek; Al Mogren, Muneerah Mogren; Hochlaf, M; Jackson, W M; Ng, C Y

    2015-05-07

    The state-to-state photodissociation of CO2 is investigated in the VUV range of 11.94-12.20 eV by using two independently tunable vacuum ultraviolet (VUV) lasers and the time-sliced velocity-map-imaging-photoion (VMI-PI) method. The spin-allowed CO(X(1)Σ(+); v = 0-18) + O((1)D) and CO(X(1)Σ(+); v = 0-9) + O((1)S) photoproduct channels are directly observed from the measurement of time-sliced VMI-PI images of O((1)D) and O((1)S). The total kinetic energy release (TKER) spectra obtained based on these VMI-PI images shows that the observed energetic thresholds for both the O((1)D) and O((1)S) channels are consistent with the thermochemical thresholds. Furthermore, the nascent vibrational distributions of CO(X(1)Σ(+); v) photoproducts formed in correlation with O((1)D) differ significantly from that produced in correlation with O((1)S), indicating that the dissociation pathways for the O((1)D) and O((1)S) channels are distinctly different. For the O((1)S) channel, CO(X(1)Σ(+); v) photoproducts are formed mostly in low vibrational states (v = 0-2), whereas for the O((1)D) channel, CO(X(1)Σ(+); v) photoproducts are found to have significant populations in high vibrationally excited states (v = 10-16). The anisotropy β parameters for the O((1)D) + CO(X(1)Σ(+); v = 0-18) and O((1)S) + CO(X(1)Σ(+); v = 0-9) channels have also been determined from the VMI-PI measurements, indicating that CO2 dissociation to form the O((1)D) and O((1)S) channels is faster than the rotational periods of the VUV excited CO2 molecules. We have also calculated the excited singlet potential energy surfaces (PESs) of CO2, which are directly accessible by VUV excitation, at the ab initio quantum multi-reference configuration interaction level of theory. These calculated PESs suggest that the formation of CO(X(1)Σ(+)) + O((1)S) photoproducts occurs nearly exclusively on the 4(1)A' PES, which is generally repulsive with minor potential energy ripples along the OC-O stretching coordinate. The

  14. Automatic crystal centring procedure at the SSRF macromolecular crystallography beamline.

    Science.gov (United States)

    Wang, Zhijun; Pan, Qiangyan; Yang, Lifeng; Zhou, Huan; Xu, Chunyan; Yu, Feng; Wang, Qisheng; Huang, Sheng; He, Jianhua

    2016-11-01

    X-ray diffraction is a common technique for determining crystal structures. The average time needed for the solution of a protein structure has been drastically reduced by a number of recent experimental and theoretical developments. Since high-throughput protein crystallography benefits from full automation of all steps that are carried out on a synchrotron beamline, an automatic crystal centring procedure is important for crystallographic beamlines. Fully automatic crystal alignment involves the application of optical methods to identify the crystal and move it onto the rotation axis and into the X-ray beam. Crystal recognition has complex dependencies on the illumination, crystal size and viewing angles due to effects such as local shading, inter-reflections and the presence of antifreezing elements. Here, a rapid procedure for crystal centring with multiple cameras using region segment thresholding is reported. Firstly, a simple illumination-invariant loop recognition and classification model is used by slicing a low-magnification loop image into small region segments, then classifying the loop into different types and aligning it to the beam position using feature vectors of the region segments. Secondly, an edge detection algorithm is used to find the crystal sample in a high-magnification image using region segment thresholding. Results show that this crystal centring method is extremely successful under fluctuating light states as well as for poorly frozen and opaque samples. Moreover, this crystal centring procedure is successfully integrated into the enhanced Blu-Ice data collection system at beamline BL17U1 at the Shanghai Synchrotron Radiation Facility as a routine method for an automatic crystal screening procedure.

  15. ELIMED, MEDical and multidisciplinary applications at ELI-Beamlines

    Science.gov (United States)

    Schillaci, F.; Anzalone, A.; Cirrone, G. A. P.; Carpinelli, M.; Cuttone, G.; Cutroneo, M.; De Martinis, C.; Giove, D.; Korn, G.; Maggiore, M.; Manti, L.; Margarone, D.; Musumarra, A.; Perozziello, F. M.; Petrovic, I.; Pisciotta, P.; Renis, M.; Ristic-Fira, A.; Romano, F.; Romano, F. P.; Schettino, G.; Scuderi, V.; Torrisi, L.; Tramontana, A.; Tudisco, S.

    2014-04-01

    ELI-Beamlines is one of the pillars of the pan-European project ELI (Extreme Light Infrastructure). It will be an ultra high-intensity, high repetition-rate, femtosecond laser facility whose main goal is generation and applications of high-brightness X-ray sources and accelerated charged particles in different fields. Particular care will be devoted to the potential applicability of laser-driven ion beams for medical treatments of tumors. Indeed, such kind of beams show very interesting peculiarities and, moreover, laser-driven based accelerators can really represent a competitive alternative to conventional machines since they are expected to be more compact in size and less expensive. The ELIMED project was launched thanks to a collaboration established between FZU-ASCR (ELI-Beamlines) and INFN-LNS researchers. Several European institutes have already shown a great interest in the project aiming to explore the possibility to use laser-driven ion (mostly proton) beams for several applications with a particular regard for medical ones. To reach the project goal several tasks need to be fulfilled, starting from the optimization of laser-target interaction to dosimetric studies at the irradiation point at the end of a proper designed transport beam-line. Researchers from LNS have already developed and successfully tested a high-dispersive power Thomson Parabola Spectrometer, which is the first prototype of a more performing device to be used within the ELIMED project. Also a Magnetic Selection System able to produce a small pencil beam out of a wide energy distribution of ions produced in laser-target interaction has been realized and some preliminary work for its testing and characterization is in progress. In this contribution the status of the project will be reported together with a short description of the of the features of device recently developed.

  16. Considerations for a soft x-ray spectromicroscopy beamline

    Science.gov (United States)

    Winn, Barry L.; Hao, X.; Jacobsen, Chris J.; Kirz, Janos; Miao, J.; Wirick, Sue; Ade, Harald; Buckley, Christopher J.; Howells, Malcolm R.; Hulbert, Steven L.; McNulty, Ian; Oversluizen, Tom

    1996-11-01

    The X-1A soft x-ray undulator at the NSLS is the source for our experimental programs in spectromicroscopy. We require both spatial and temporal coherence. Due to the relatively large horizontal divergence of the electron beam in the low (beta) straight section of the x-ray storage ring, it has been possible to split the beam using a scraping mirror into two branches: X-1A used by our program and X-1B used for high resolution spectroscopy. We are now rebuilding the X-1A beamline to provide improved resolving power and essentially linear trade-off between photon rate at the zone plate and resolving power for the soft x-ray spectromicroscopy experiments. This new beamline will exploit both additional floorspace due to the NSLS building expansion and increases in the brightness of the x-ray ring. Our beam will be further split into two separate beamlines, both of which will use toroidal mirrors to focus the source on the monochromator entrance slits horizontally and to focus on the monochromator exit slits vertically. This separation comes at no loss of coherent flux and permits low thermal loading on the optics, since we need little more than the coherent fraction of the beam at the Fresnel zone plate for microfocusing. Because of the small angular acceptance for spatially coherent illumination of the zone plates and the use of an approximately satisfied Rowland condition, our monochromators have sufficient resolving power with fixed exit arms. Experiments can then be placed near the exit slits, with spatial coherence established by the exit slit size. Resolving power will be controlled by adjusting the entrance slit alone with no change of spatial coherence. The zone plates will be overfilled to be less sensitive to beam vibration and drift.

  17. Monte Carlo simulation of the ELIMED beamline using Geant4

    Czech Academy of Sciences Publication Activity Database

    Pipek, J.; Romano, F.; Milluzzo, G.; Cirrone, G.A.P.; Cuttone, G.; Amico, A.G.; Margarone, Daniele; Larosa, G.; Leanza, R.; Petringa, G.; Schillaci, Francesco; Scuderi, Valentina

    2017-01-01

    Roč. 12, Mar (2017), s. 1-5, č. článku C03027. ISSN 1748-0221 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : models and simulations * accelerator applications * beam dynamics * software architectures * event data models * frameworks and databases Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.220, year: 2016

  18. Monitoring the KATRIN source properties within the beamline

    Science.gov (United States)

    Ellinger, E.; Haußmann, N.; Helbing, K.; Hickford, S.; Klein, M.; Naumann, U.

    2017-09-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment will measure the mass of the neutrino with a sensitivity of 0.2 eV (90 % CL). The Forward Beam Monitor (FBM) is a monitoring system which comprises of a complex mechanical setup capable of inserting a detector board into the KATRIN beamline at the end of the source and transport section. The detector board contains a Hall sensor, a temperature gauge, and two PIN diodes which can detect electrons from the source with a precision of 0.1 % in less than a minute within an electron flux density of 106 s-1mm-2.

  19. GIXRD measurements at EDXRD beamline at INDUS-2 synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K. K.; Kumar, Dileep; Dwivedi, Abhilash; Gupta, Ajay; Sharma, Surinder M. [Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India) and UGC-DAE Consortium for Scientific Research, Indore, University Campus, Khandwa Road, Indore-452 017 (India); Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India); UGC-DAE Consortium for Scientific Research, Indore, University Campus, Khandwa Road, Indore-452 017 (India); Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 (India)

    2012-06-05

    The energy dispersive x-ray diffraction (EDXRD) beam line at beam port no. BL-11, INDUS-2, RRCAT (Indore) has been adapted for grazing incidence x-ray diffraction (GIXRD) measurements in both out-of plane and in-plane geometry. With the help of energy sensitive high resolution HPGe detector, we have been able to record diffraction data from thin films of thicknesses ranging from few nanometers to hundreds of nanometers. We are presenting here a few demonstrative examples to illustrate the capabilities and possible implications of EDXRD beamline in carrying out structural investigations of thin films.

  20. Exploring the structure of the quenched QCD vacuum with overlap fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Koller, K. [Muenchen Univ. (Germany). Sektion Physik; Koma, Y. [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Streuer, T. [Kentucky Univ., Lexington, KY (United States). Dept. of Physics and Astronomy; Weinberg, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik

    2007-05-15

    Overlap fermions have an exact chiral symmetry on the lattice and are thus an appropriate tool for investigating the chiral and topological structure of the QCD vacuum. We study various chiral and topological aspects of quenched gauge field configurations. This includes the localization and chiral properties of the eigenmodes, the local structure of the ultraviolet filtered field strength tensor, as well as the structure of topological charge fluctuations. We conclude that the vacuum has a multifractal structure. (orig.)

  1. Improving Vacuum Cleaners

    Science.gov (United States)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  2. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    Abstract. An energy-dispersive X-ray diffraction beamline has been designed, developed and commissioned at BL-11 bending magnet port of the Indian synchrotron source, Indus-2. The performance of this beamline has been benchmarked by measuring diffraction patterns from var- ious elemental metals and standard ...

  3. The Low Density Matter (LDM) beamline at FERMI: optical layout and first commissioning.

    Science.gov (United States)

    Svetina, Cristian; Grazioli, Cesare; Mahne, Nicola; Raimondi, Lorenzo; Fava, Claudio; Zangrando, Marco; Gerusina, Simone; Alagia, Michele; Avaldi, Lorenzo; Cautero, Giuseppe; de Simone, Monica; Devetta, Michele; Di Fraia, Michele; Drabbels, Marcel; Feyer, Vitaliy; Finetti, Paola; Katzy, Raphael; Kivimäki, Antti; Lyamayev, Viktor; Mazza, Tommaso; Moise, Angelica; Möller, Thomas; O'Keeffe, Patrick; Ovcharenko, Yevheniy; Piseri, Paolo; Plekan, Oksana; Prince, Kevin C; Sergo, Rudi; Stienkemeier, Frank; Stranges, Stefano; Coreno, Marcello; Callegari, Carlo

    2015-05-01

    The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

  4. SPring-8 BL44XU, beamline designed for structure analysis of large biological macromolecular assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Higashiura, Akifumi, E-mail: hgsur-a@protein.osaka-u.ac.jp; Yamashita, Eiki [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 (Japan); Yoshimura, Masato [Taiwan NSRRC, Taiwan Beamline Office at SPring-8, 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198 (Japan); Hasegawa, Kazuya; Furukawa, Yukito; Kumasaka, Takashi [JASRI/SPring-8, 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198 (Japan); Ueno, Go; Yamamoto, Masaki [RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Hyogo 679-5198 (Japan); Tsukihara, Tomitake [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 (Japan); Gradual School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Nakagawa, Atsushi, E-mail: atsushi@protein.osaka-u.ac.jp [Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871 (Japan); CREST, Japan Science and Technology Agency (Japan)

    2016-07-27

    Beamline BL44XU at SPring-8 is operated by the Institute for Protein Research of Osaka University. The beamline is designed for X-ray crystallography of large biological macromolecular assemblies. Here we show its detailed performances, results, and the ongoing upgrade plans.

  5. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  6. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  7. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  8. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  9. CERN announces the fourth annual Beamline for Schools competition

    CERN Multimedia

    BL4S team

    2016-01-01

    CERN is pleased to announce the fourth annual Beamline for Schools (BL4S) competition. Once again, in 2017, a fully equipped beamline will be made available at CERN for students. As in previous years, two teams will be invited to the Laboratory to execute the experiments they proposed in their applications. The 2017 competition is being made possible thanks to support from the Alcoa Foundation for the second consecutive year.   The competition is open to teams of high-school students aged 16 or older who, if they win, are invited (with two supervisors) to CERN to carry out their experiment. Teams must have at least five students but there is no upper limit to a team’s size (although just nine students per winning team will be invited to CERN). Teams may be composed of pupils from a single school, or from a number of schools working together. As science-loving mega-celebrity Will.I.Am told us: “If you’re interested in science, technology, engineering or ...

  10. Dedicated Beamline Facilities for Catalytic Research. Synchrotron Catalysis Consortium (SCC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang [Columbia Univ., New York, NY; Frenkel, Anatoly [Yeshiva Univ., New York, NY (United States); Rodriguez, Jose [Brookhaven National Lab. (BNL), Upton, NY (United States); Adzic, Radoslav [Brookhaven National Lab. (BNL), Upton, NY (United States); Bare, Simon R. [UOP LLC, Des Plaines, IL (United States); Hulbert, Steve L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Karim, Ayman [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mullins, David R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Overbury, Steve [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-03-04

    Synchrotron spectroscopies offer unique advantages over conventional techniques, including higher detection sensitivity and molecular specificity, faster detection rate, and more in-depth information regarding the structural, electronic and catalytic properties under in-situ reaction conditions. Despite these advantages, synchrotron techniques are often underutilized or unexplored by the catalysis community due to various perceived and real barriers, which will be addressed in the current proposal. Since its establishment in 2005, the Synchrotron Catalysis Consortium (SCC) has coordinated significant efforts to promote the utilization of cutting-edge catalytic research under in-situ conditions. The purpose of the current renewal proposal is aimed to provide assistance, and to develop new sciences/techniques, for the catalysis community through the following concerted efforts: Coordinating the implementation of a suite of beamlines for catalysis studies at the new NSLS-II synchrotron source; Providing assistance and coordination for catalysis users at an SSRL catalysis beamline during the initial period of NSLS to NSLS II transition; Designing in-situ reactors for a variety of catalytic and electrocatalytic studies; Assisting experimental set-up and data analysis by a dedicated research scientist; Offering training courses and help sessions by the PIs and co-PIs.

  11. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  12. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    Science.gov (United States)

    Poswal, A. K.; Agrawal, A.; Yadav, A. K.; Nayak, C.; Basu, S.; Kane, S. R.; Garg, C. K.; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K.

    2014-04-01

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  13. Commissioning and first results of scanning type EXAFS beamline (BL-09) at INDUS-2 synchrotron source

    Energy Technology Data Exchange (ETDEWEB)

    Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, A., E-mail: poswalashwini@gmail.com; Yadav, A. K., E-mail: poswalashwini@gmail.com; Nayak, C., E-mail: poswalashwini@gmail.com; Basu, S., E-mail: poswalashwini@gmail.com; Bhattachryya, D.; Jha, S. N.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai -400085 (India); Kane, S. R.; Garg, C. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore- 452013 (India)

    2014-04-24

    An Energy Scanning X-ray Absorption Fine Structure spectroscopy beamline has recently been installed and commissioned at BL-09 bending magnet port of INDUS-2 synchrotron source, Indore. The beamline uses an UHV compatible fixed exit double crystal monochromator (DCM) with two Si (111) crystals. Two grazing incidence cylindrical mirrors are also used in this beamline; the pre-mirror is used as a collimating mirror while the post mirror is used for vertical focusing and higher harmonic rejection. In this beamline it is possible to carry out EXAFS measurements both in transmission and fluorescence mode on various types of samples, using Ionization chamber detectors and solid state drift detector respectively. In this paper, results from first experiments of the Energy Scanning EXAFS beamline are presented.

  14. WIFIP: a web-based user interface for automated synchrotron beamlines.

    Science.gov (United States)

    Sallaz-Damaz, Yoann; Ferrer, Jean Luc

    2017-09-01

    The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.

  15. Performance and capabilities of the Canadian Dragon: The SGM beamline at the Canadian Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Regier, T. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada)], E-mail: tom.regier@lightsource.ca; Krochak, J. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada); Sham, T.K. [Department of Chemistry, University of Western Ontario, London, ON (Canada); Hu, Y.F. [Canadian Light Source, Inc. (CLSI), University of Saskatchewan, Saskatoon, SK (Canada); Thompson, J. [Department of Chemistry, University of Western Ontario, London, ON (Canada); Blyth, R.I.R. [Canadian Light Source, Inc.(CLSI), University of Saskatchewan, Saskatoon, SK (Canada)

    2007-11-11

    The Canadian Dragon is a Spherical Grating Monochromator (SGM) beamline for the photon energy range between 250 and 2000 eV. The high flux from the source, a 45 mm planar undulator, allows for excellent performance in the difficult 1-2 keV range. Resolving powers comparable to those of the leading spectroscopy beamlines are routinely available. The beamline design employs toroidal refocusing optics to allow for two in-line endstation areas. The upstream experimental area hosts a dedicated UHV endstation with a Scienta SES-100 photoelectron energy analyzer. The downstream experimental area is primarily used for solid sample X-ray absorption studies, but can be fitted with a number of different endstations. A 1 metre long differential pumping section between the beamline optics and the second endstation area permits the analysis of non-UHV compatible samples, making the beamline suitable for many environmental or biological experiments.

  16. A microfocus X-ray fluorescence beamline at Indus-2 synchrotron radiation facility.

    Science.gov (United States)

    Tiwari, M K; Gupta, P; Sinha, A K; Kane, S R; Singh, A K; Garg, S R; Garg, C K; Lodha, G S; Deb, S K

    2013-03-01

    A microfocus X-ray fluorescence spectroscopy beamline (BL-16) at the Indian synchrotron radiation facility Indus-2 has been constructed with an experimental emphasis on environmental, archaeological, biomedical and material science applications involving heavy metal speciation and their localization. The beamline offers a combination of different analytical probes, e.g. X-ray fluorescence mapping, X-ray microspectroscopy and total-external-reflection fluorescence characterization. The beamline is installed on a bending-magnet source with a working X-ray energy range of 4-20 keV, enabling it to excite K-edges of all elements from S to Nb and L-edges from Ag to U. The optics of the beamline comprises of a double-crystal monochromator with Si(111) symmetric and asymmetric crystals and a pair of Kirkpatrick-Baez focusing mirrors. This paper describes the performance of the beamline and its capabilities with examples of measured results.

  17. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory.

    Science.gov (United States)

    Ursby, Thomas; Unge, Johan; Appio, Roberto; Logan, Derek T; Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana; Thunnissen, Marjolein M G M

    2013-07-01

    The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010-2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines.

  18. The macromolecular crystallography beamline I911-3 at the MAX IV laboratory

    Science.gov (United States)

    Ursby, Thomas; Unge, Johan; Appio, Roberto; Logan, Derek T.; Fredslund, Folmer; Svensson, Christer; Larsson, Krister; Labrador, Ana; Thunnissen, Marjolein M. G. M.

    2013-01-01

    The macromolecular crystallography beamline I911-3, part of the Cassiopeia/I911 suite of beamlines, is based on a superconducting wiggler at the MAX II ring of the MAX IV Laboratory in Lund, Sweden. The beamline is energy-tunable within a range between 6 and 18 keV. I911-3 opened for users in 2005. In 2010–2011 the experimental station was completely rebuilt and refurbished such that it has become a state-of-the-art experimental station with better possibilities for rapid throughput, crystal screening and work with smaller samples. This paper describes the complete I911-3 beamline and how it is embedded in the Cassiopeia suite of beamlines. PMID:23765310

  19. Performance of beamline 9.3.1 at the ALS: Flux and resolution measurements

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Univ. of Nevada, Las Vegas, NV (United States); Fischer, G.; Kring, J.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Beamline 9.3.1 at the ALS is a windowless beamline, covering the 1-6 keV photon-energy range. This beamline is the first monochromatic hard x-ray beamline in the ALS, and designed to achieve the goals of high energy resolution, and preservation of the high brightness from the ALS. It consists of a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator and two toroidal mirrors which are positioned before and after the monochromator. The construction of the beamline was completed in December of 1995, with imperfect mirrors. In this report, the authors describe the experimental results of absolute flux measurements and x-ray absorption measurements of gases and solid samples using the present set of mirrors.

  20. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  1. The vacuum strikes back

    CERN Multimedia

    2007-01-01

    "Modern physics has shown that the vacuum, previously thought of as a stated of total nothingness, is really a seething background of virtual particles springing in and out of eixstence until they can seize enough energy to materialize as "real" particles." (1,5 page)

  2. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  3. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  4. Furnace brazing under partial vacuum

    Science.gov (United States)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  5. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  6. Shielding Design Aspects of SR Beamlines for 3-GeV And 8-GeV Class Synchrotron Radiation Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Yoshihiro; /JAERI-RIKEN, Hyogo; Liu, James C.; Rokni, Sayed; /SLAC

    2007-09-24

    Differences in synchrotron radiation beamline shielding design between the facilities of 3 GeV class and 8 GeV class are discussed with regard to SLAC SSRL and SPring-8 beamlines. Requirements of beamline shielding as well as the accelerator shielding depend on the stored electron energy, and here some factors in beamline shielding depending on the stored energy in particular, are clarified, namely the effect of build up, the effect of double scattering of photons at branch beamlines, and the spread of gas bremsstrahlung.

  7. MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron.

    Science.gov (United States)

    Cowieson, Nathan Philip; Aragao, David; Clift, Mark; Ericsson, Daniel J; Gee, Christine; Harrop, Stephen J; Mudie, Nathan; Panjikar, Santosh; Price, Jason R; Riboldi-Tunnicliffe, Alan; Williamson, Rachel; Caradoc-Davies, Tom

    2015-01-01

    MX1 is a bending-magnet crystallography beamline at the 3 GeV Australian Synchrotron. The beamline delivers hard X-rays in the energy range from 8 to 18 keV to a focal spot at the sample position of 120 µm FWHM. The beamline endstation and ancillary equipment facilitate local and remote access for both chemical and biological macromolecular crystallography. Here, the design of the beamline and endstation are discussed. The beamline has enjoyed a full user program for the last seven years and scientific highlights from the user program are also presented.

  8. Depolarization in the ILC Linac-To-Ring Positron beamline

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, Valentyn; Ushakov, Andriy [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moortgat-Pick, Gudrid [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Riemann, Sabine [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-02-15

    To achieve the physics goals of future Linear Colliders, it is important that electron and positron beams are polarized. The positron source planned for the International Linear Collider (ILC) is based on a helical undulator system and can deliver a polarised beam with vertical stroke Pe{sup +} vertical stroke {>=} 60%. To ensure that no significant polarization is lost during the transport of the electron and positron beams from the source to the interaction region, spin tracking has to be included in all transport elements which can contribute to a loss of polarization. These are the positron source, the damping ring, the spin rotators, the main linac and the beam delivery system. In particular, the dynamics of the polarized positron beam is required to be investigated. The results of positron spin tracking and depolarization study at the Positron-Linac-To-Ring (PLTR) beamline are presented. (orig.)

  9. High-intensity research infrastructure at ELI Beamlines

    Science.gov (United States)

    Klimo, Ondrej

    2017-10-01

    The L4 laser (10 PW, 150 fs) at ELI Beamlines is expected to provide focused intensities approaching 1023 W /cm2 and thus herald a new era of research in ultra-high intensity laser matter interaction. This talk will describe the progress in enabling the associated technological infrastructure - including the laser system, beam transport, diagnostics and the experimental chamber. Synergistic experimental and theoretical programs are also developing tools for such research. The talk will also briefly describe these research areas like development of dedicated diagnostic equipment, efforts toward obtaining ultra-high intensities using tight-focusing and theoretical modeling toward future experiments where radiation reaction in the classical and quantum regime and pair production start to play an important role. Supported from European Regional Development Funds - projects High Field Initiative (CZ.02.1.01/0.0/0.0/15_003/0000449) and ELI - phase 2 (CZ.02.1.01/0.0/0.0/15_008/0000162).

  10. J-PARC accelerator and neutrino beamline upgrade programme

    Science.gov (United States)

    Friend, M.

    2017-09-01

    The 30 GeV proton beam from the J-PARC Main Ring (MR) accelerator is used to produce a world-class conventional neutrino beam - the neutrino source for the J-PARC long-baseline neutrino programme, including the current T2K experiment and proposed future experiments. Planned upgrades to increase the beam power of the MR from the current ˜400 kW to the design power of 750 kW and beyond, to 1.3+ MW, are underway. These include hardware modifications, such as upgrades of the MR magnet power supplies, RF systems, and feedback systems, as well as a change of the MR beam betatron tune point. Upgrades to the neutrino beamline, such as to the proton beam monitoring, horns, and radioactive material handling, will also be required to accommodate the increased proton beam power. An overview of planned J-PARC MR and neutrino facility upgrades is given.

  11. XAFCA: a new XAFS beamline for catalysis research.

    Science.gov (United States)

    Du, Yonghua; Zhu, Yi; Xi, Shibo; Yang, Ping; Moser, Herbert O; Breese, Mark B H; Borgna, Armando

    2015-05-01

    A new X-ray absorption fine-structure (XAFS) spectroscopy beamline for fundamental and applied catalysis research, called XAFCA, has been built by the Institute of Chemical and Engineering Sciences, and the Singapore Synchrotron Light Source. XAFCA covers the photon energy range from 1.2 to 12.8 keV, making use of two sets of monochromator crystals, an Si (111) crystal for the range from 2.1 to 12.8 keV and a KTiOPO4 crystal [KTP (011)] for the range between 1.2 and 2.8 keV. Experiments can be carried out in the temperature range from 4.2 to 1000 K and pressures up to 30 bar for catalysis research. A safety system has been incorporated, allowing the use of flammable and toxic gases such as H2 and CO.

  12. Undulator beamline of the Brockhouse sector at the Canadian Light Source.

    Science.gov (United States)

    Diaz, B; Gomez, A; Meyer, B; Duffy, A; Hallin, E; Kycia, S

    2014-08-01

    The Brockhouse project at the Canadian Light Source plans the construction of three beamlines, two wiggler beamlines, and one undulator beamline, that will be dedicated to x-ray diffraction and scattering. In this work, we will describe the undulator beamline main components and performance parameters, obtained from ray tracing using XOP-SHADOW codes. The undulator beamline will operate from 4.95 to 21 keV, using a 20 mm period hybrid undulator placed upstream of the wiggler in the same straight section. The beamline optics design was developed in cooperation with the Brazilian Synchrotron - LNLS. The beamline will have a double crystal monochromator with the options of Si(111) or Si(311) crystal pairs followed by two mirrors in the KB configuration to focus the beam at the sample position. The high brilliance of the undulator source will produce a very high flux of ~10(13) photons/s and high energy resolution into a small focus of 170 μm horizontal and 20-60 μm vertical, depending on the optical configuration and energy chosen. Two multi-axis goniometer experimental stations with area detectors and analyzers are foreseen to enable diffraction, resonant and inelastic scattering experiments, and SAXS/WAXS experiments with high resolution and time resolving capabilities.

  13. Nonperturbative QED vacuum birefringence

    Science.gov (United States)

    Denisov, V. I.; Dolgaya, E. E.; Sokolov, V. A.

    2017-05-01

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  14. Vacuum distillation device

    Energy Technology Data Exchange (ETDEWEB)

    Hamer, J.A.; Burg, C.J. Van Der; Kanbier, D.; Heijden, P. Van Der.

    1990-09-18

    This invention relates to a vacuum distillation device comprising a vacuum distillation column, a furnace provided with a heat exchange tube, and a connecting conduit between the column and the heat exchange tube. Such a device is used to fractionate a hydrocarbon-containing feed sometimes referred to as long residue. An object of this invention is to provide a vacuum distillation device which allows vaporization of a major part of the feed upstream of the column inlet. To this end, the device according to the invention comprises a vacuum distillation device as described above, in which the inner diameter of the heat exchange tube increases along its length to between 2.4 and 3 times the inner diameter of the tube inlet, and in which the inner diameter of the connecting conduit gradually increases along its length to between 2.5 and 5.4 times the inner diameter of the tube outlet. During normal operation of the device of the invention, only less than 50 wt % of the feed is vaporized in the heat exchange tube in the furnace, and more feed is vaporized in the connecting conduit, so that at the outlet end of the conduit the feed comprises about 0.9 kg vapor per kg of feed. The invention provides improved heat transfer in the heat exchange tubes such that fouling is reduced, consequently more heat can be applied per unit of time in the heat exchange tube. This allows either heating of the feed to a higher temperature or increasing the throughput for the same temperature.

  15. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  16. Hard X-ray nanotomography beamline 7C XNI at PLS-II.

    Science.gov (United States)

    Lim, Jun; Kim, Hyounggyu; Park, So Yeong

    2014-07-01

    The synchrotron-based hard X-ray nanotomography beamline, named 7C X-ray Nano Imaging (XNI), was recently established at Pohang Light Source II. This beamline was constructed primarily for full-field imaging of the inner structures of biological and material samples. The beamline normally provides 46 nm resolution for still images and 100 nm resolution for tomographic images, with a 40 µm field of view. Additionally, for large-scale application, it is capable of a 110 µm field of view with an intermediate resolution.

  17. Gas bremsstrahlung shielding calculation for first optic enclosure of ILSF XPD beamline.

    Science.gov (United States)

    Beigzadeh Jalali, H; Salimi, E; Rahighi, J

    2017-11-01

    Gas bremsstrahlung is generated in high energy electron storage ring and accompanies the synchrotron radiation into the beamlines, where both strike the various components of the beamline. In this paper, radiation shielding calculations for secondary gas bremsstrahlung are performed for the First Optics Enclosure (FOE) of X-ray powder diffraction (XPD) beamline of the Iranian Light Source Facility. Dose equivalent rate (DER) calculations are accomplished using FLUKA Monte Carlo code. A comprehensive study of DER distribution at the back wall, sides and roof are given. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Imaging in real and reciprocal space at the Diamond beamline I13

    Energy Technology Data Exchange (ETDEWEB)

    Rau, C., E-mail: Christoph.rau@diamond.ac.uk [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); University of Manchester, School of Materials Grosvenor St., Manchester, M1 7HS (United Kingdom); Northwestern University School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611-3008 (United States); Wagner, U. H.; Vila-Comamala, J.; Bodey, A.; Parson, A.; García-Fernández, M.; Pešić, Z. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); De Fanis, A. [Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, OX 11 0DE (United Kingdom); European XFEL GmbH, Notkestraße 85, 22607 Hamburg (Germany)

    2016-01-28

    The Diamond Imaging and Coherence beamline I13 consists of two independent branchlines for imaging in real and reciprocal space. Different microscopies are available providing a range of spatial resolution from 5µm to potentially 5nm. The beamline operates in the energy range of 6-35keV covering different scientific areas such as biomedicine, materials science and geophysics. Several original devices have been developed at the beamline, such as the EXCALIBUR photon counting detector and the combined robot arms for coherent X-ray diffraction.

  19. First results from the high-brightness x-ray spectroscopy beamline at ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Ng, W.; Jones, G. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goal of high brightness at the sample for use in the X-ray Atomic and Molecular Spectroscopy (XAMS) science, surface and interface science, biology and x-ray optical development programs at ALS. X-ray absorption and time of flight photo emission measurements in 2 - 5 keV photon energy in argon along with the flux, resolution, spot size and stability of the beamline will be discussed. Prospects for future XAMS measurements will also be presented.

  20. Development of the multicell SDD for Elettra and SESAME XAFS beamlines

    Science.gov (United States)

    Fabiani, S.

    2017-03-01

    We report on the first tests of a new prototype fluorescence detector in development for the XAFS beamlines at Elettra (Trieste, Italy) and SESAME (Amman, Jordan) synchrotrons. The beamlines operate in the energy ranges 2-27keV and 4-30keV, respectively. The new detector system is based on Silicon Drift Detector (SDD) and SIRIO ultra-low-noise front-end ASIC. The custom-made detector, front-end and back-end electronics system are designed specifically on the beamlines requirements and developed within the framework of the INFN ReDSoX collaboration. The SDD sensors are produced in collaboration with FBK.

  1. Ultraviolet radiation and immunosuppression.

    LENUS (Irish Health Repository)

    Murphy, G M

    2009-11-01

    Ultraviolet (UV) radiation is a complete carcinogen. The effects of UV radiation are mediated via direct damage to cellular DNA in the skin and suppression of image surveillance mechanisms. In the context of organ transplantation, addiction of drugs which suppress the immune system add greatly to the carcinogenicity of UV radiation. This review considers the mechanisms of such effects.

  2. Ultraviolet fire detector

    Science.gov (United States)

    Turnage, J. E.; Linford, R. M. F.; Cornish, S. D.

    1976-01-01

    System is capable of detecting ultraviolet light emitted by match size flame at distance of 10 ft. System is not affected by high energy or particulate radiation and is therefore particularly suited for applications around nuclear plants and X-ray equipment.

  3. In vacuum undulator task force report

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Kao, C.C.; Stefan, P. [and others

    1998-06-01

    Historically the NSLS has been active in R&D for state-of-the-art electron beams, photon beams and x-ray optics. One of the available straight sections has therefore been dedicated to insertion device R&D. Over the past five to seven years a program aimed at exploiting the very small vertical {beta} function in the straight sections has yielded first a prototype small gap undulator (PSGU) and then an in-vacuum undulator (IVUN). The IVUN sources attain a brightness similar to the existing hybrid wigglers in X21 and X25. They radiate significantly lower total power than the wigglers but produce higher power densities. They provide undulator rather than wiggler spectra. Because of the small gaps and small periods there is not much tunability in these devices and they will have to be purpose-built for a specific scientific program. The original IVUN parameters were chosen for in-elastic x-ray scattering, similar to the scientific program on X21. This put the fundamental at 4.6 keV and the third harmonic at 13.8 keV. The question that this new possible insertion device poses is what science programs can best take advantage of this new insertion device source? To answer this, a task force was formed by M. Hart, NSLS Department Chair and charged with identifying viable scientific programs that could seek outside funding to construct IVUN beamlines. The task force concentrated on experimental programs that are presently being pursued on new insertion devices worldwide. For example, x-ray photon correlation spectroscopy, which takes advantage of the large coherent flux from undulator sources, was considered. However, this program was not considered as the highest priority. The general area of protein crystallography, however, is ideal for the IVUN source. The unique electron beam optics that makes the IVUN possible in the first place also makes the IVUN ideal as a source for microdiffraction.

  4. Soft-X-ray ARPES facility at the ADRESS beamline of the SLS: concepts, technical realisation and scientific applications.

    Science.gov (United States)

    Strocov, V N; Wang, X; Shi, M; Kobayashi, M; Krempasky, J; Hess, C; Schmitt, T; Patthey, L

    2014-01-01

    Soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) with photon energies around 1 keV combines the momentum space resolution with increasing probing depth. The concepts and technical realisation of the new soft-X-ray ARPES endstation at the ADRESS beamline of SLS are described. The experimental geometry of the endstation is characterized by grazing X-ray incidence on the sample to increase the photoyield and vertical orientation of the measurement plane. The vacuum chambers adopt a radial layout allowing most efficient sample transfer. High accuracy of the angular resolution is ensured by alignment strategies focused on precise matching of the X-ray beam and optical axis of the analyzer. The high photon flux of up to 10(13) photons s(-1) (0.01% bandwidth)(-1) delivered by the beamline combined with the optimized experimental geometry break through the dramatic loss of the valence band photoexcitation cross section at soft-X-ray energies. ARPES images with energy resolution up to a few tens of meV are typically acquired on the time scale of minutes. A few application examples illustrate the power of our advanced soft-X-ray ARPES instrumentation to explore the electronic structure of bulk crystals with resolution in three-dimensional momentum, access buried heterostructures and study elemental composition of the valence states using resonant excitation.

  5. The high-field magnet endstation for X-ray magnetic dichroism experiments at ESRF soft X-ray beamline ID32

    Science.gov (United States)

    Kummer, K.; Fondacaro, A.; Jimenez, E.; Velez-Fort, E.; Amorese, A.; Aspbury, M.; Yakhou-Harris, F.; van der Linden, P.; Brookes, N. B.

    2016-01-01

    A new high-field magnet endstation for X-ray magnetic dichroism experiments has been installed and commissioned at the ESRF soft X-ray beamline ID32. The magnet consists of two split-pairs of superconducting coils which can generate up to 9 T along the beam and up to 4 T orthogonal to the beam. It is connected to a cluster of ultra-high-vacuum chambers that offer a comprehensive set of surface preparation and characterization techniques. The endstation and the beam properties have been designed to provide optimum experimental conditions for X-ray magnetic linear and circular dichroism experiments in the soft X-ray range between 400 and 1600 eV photon energy. User operation started in November 2014. PMID:26917134

  6. Safety Analysis Report: X17B2 beamline Synchrotron Medical Research Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F.; Thomlinson, W.

    1990-02-01

    This report contains a safety analysis for the X17B2 beamline synchrotron medical research facility. Health hazards, risk assessment and building systems are discussed. Reference is made to transvenous coronary angiography. (LSP)

  7. New soft X-ray beamline BL07LSU at SPring-8.

    Science.gov (United States)

    Yamamoto, Susumu; Senba, Yasunori; Tanaka, Takashi; Ohashi, Haruhiko; Hirono, Toko; Kimura, Hiroaki; Fujisawa, Masami; Miyawaki, Jun; Harasawa, Ayumi; Seike, Takamitsu; Takahashi, Sunao; Nariyama, Nobuteru; Matsushita, Tomohiro; Takeuchi, Masao; Ohata, Toru; Furukawa, Yukito; Takeshita, Kunikazu; Goto, Shunji; Harada, Yoshihisa; Shin, Shik; Kitamura, Hideo; Kakizaki, Akito; Oshima, Masaharu; Matsuda, Iwao

    2014-03-01

    A new soft X-ray beamline, BL07LSU, has been constructed at SPring-8 to perform advanced soft X-ray spectroscopy for materials science. The beamline is designed to achieve high energy resolution (E/ΔE> 10000) and high photon flux [>10(12) photons s(-1) (0.01% bandwidth)(-1)] in the photon energy range 250-2000 eV with controllable polarization. To realise this state-of-the-art performance, a novel segmented cross undulator was developed and adopted as a light source. The details of the undulator light source and beamline monochromator design are described. The achieved performance of the beamline, such as the photon flux, energy resolution and the state of polarization, is reported.

  8. I18--the microfocus spectroscopy beamline at the Diamond Light Source.

    Science.gov (United States)

    Mosselmans, J Frederick W; Quinn, Paul D; Dent, Andrew J; Cavill, Stuart A; Moreno, Sofia Diaz; Peach, Andrew; Leicester, Peter J; Keylock, Stephen J; Gregory, Simon R; Atkinson, Kirk D; Rosell, Josep Roque

    2009-11-01

    The design and performance of the microfocus spectroscopy beamline at the Diamond Light Source are described. The beamline is based on a 27 mm-period undulator to give an operable energy range between 2 and 20.7 keV, enabling it to cover the K-edges of the elements from P to Mo and the L(3)-edges from Sr to Pu. Micro-X-ray fluorescence, micro-EXAFS and micro-X-ray diffraction have all been achieved on the beamline with a spot size of approximately 3 microm. The principal optical elements of the beamline consist of a toroid mirror, a liquid-nitrogen-cooled double-crystal monochromator and a pair of bimorph Kirkpatrick-Baez mirrors. The performance of the optics is compared with theoretical values and a few of the early experimental results are summarized.

  9. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  10. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  11. The design of the beamline for magnetic circular dichroism study at HNSRL

    CERN Document Server

    ShengWeiFan; Li Da Shi; Yan Yong Lia

    2000-01-01

    A synchrotron radiation beamline for MCD study is being developed at Hefei National Synchrotron Radiation Laboratory (HNSRL) in the P. R. China. As a key component on the beamline, the varied line-spacing plane grating (VLSPG) monochromator is designed to cover a broad photon energy range from 100 to 1000 eV with a medium energy resolving power of 2000. The design is analyzed and optimized to meet the high requirements of MCD studying.

  12. The plane grating monochromator beamline U49-2 PGM-1 at BESSY II

    Directory of Open Access Journals (Sweden)

    Torsten Kachel

    2016-05-01

    Full Text Available U49/2 PGM1 is one of HZB open-port VUV beamlines. Therefore and due to the fact that it delivers highest flux with very acceptable energy resolution it is the most heavily booked BESSY II beamline. Earlier work has largely focused on surface science and catalysis. After shut down of the former U41 PGM an increasing number of experiments on liquids and solutions are carried out.

  13. VUV Fourier-Transform absorption study of the np pi (1)Pi(-)(u) nu,N

    NARCIS (Netherlands)

    Glass-Maujean, M.; Jungen, C.; Dickenson, G.D.; Ubachs, W.M.G.; de Oliveira, N.; Joyeux, D.

    2015-01-01

    Abstract The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q(N″)(N-N″=0) absorption transitions of the D

  14. Performance calculations of the X-ray powder diffraction beamline at NSLS-II.

    Science.gov (United States)

    Shi, Xianbo; Ghose, Sanjit; Dooryhee, Eric

    2013-03-01

    The X-ray Powder Diffraction (XPD) beamline at the National Synchrotron Light Source II is a multi-purpose high-energy X-ray diffraction beamline with high throughput and high resolution. The beamline uses a sagittally bent double-Laue crystal monochromator to provide X-rays over a large energy range (30-70 keV). In this paper the optical design and the calculated performance of the XPD beamline are presented. The damping wiggler source is simulated by the SRW code and a filter system is designed to optimize the photon flux as well as to reduce the heat load on the first optics. The final beamline performance under two operation modes is simulated using the SHADOW program. For the first time a multi-lamellar model is introduced and implemented in the ray tracing of the bent Laue crystal monochromator. The optimization and the optical properties of the vertical focusing mirror are also discussed. Finally, the instrumental resolution function of the XPD beamline is described in an analytical method.

  15. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments.

    Science.gov (United States)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren; Bowler, Matthew W; Brockhauser, Sandor; Flot, David; Gordon, Elspeth J; Hall, David R; Lavault, Bernard; McCarthy, Andrew A; McCarthy, Joanne; Mitchell, Edward; Monaco, Stéphanie; Mueller-Dieckmann, Christoph; Nurizzo, Didier; Ravelli, Raimond B G; Thibault, Xavier; Walsh, Martin A; Leonard, Gordon A; McSweeney, Sean M

    2010-09-01

    The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1.

  16. Mini-beam modes on standard MX beamline BL17U at SSRF.

    Science.gov (United States)

    Wang, Qisheng; Yu, Feng; Cui, Ying; Zhang, Kunhao; Pan, Qiangyan; Zhong, Changyou; Liu, Ke; Zhou, Huan; Sun, Bo; He, Jianhua

    2017-07-01

    The macromolecular crystallography beamlines at third-generation synchrotron facilities play a central role in solving macromolecular crystal structures and also in understanding the biological function at molecular levels. The MX beamline BL17U at Shanghai Synchrotron Radiation Facility is a typical standard MX beamline with a focused beam size (H × V) of FWHM around 80 μm × 45 μm. However the protein samples brought to the beamline are down to 5-10 m from the important and challenging science project now. These samples require smaller size beam. In order to achieve the mini-size beamline, two mini-beam modes have been developed on BL17U: the pinhole-based mini-beam and the focused mini-beam by compound refractive lens (CRL). Compared to the pinhole-based mode, three times increase in flux is obtained by the CRL mode at a similar beam size. The flux gain obtained by the CRL needs to be considered for data collection strategies. It takes few minutes to switch the beamline from the normal to CRL mini-beam mode.

  17. The MX2 macromolecular crystallography beamline: a wiggler X-ray source at the LNLS.

    Science.gov (United States)

    Guimarães, Beatriz G; Sanfelici, Lucas; Neuenschwander, Regis T; Rodrigues, Flávio; Grizolli, Walan C; Raulik, Marco A; Piton, James R; Meyer, Bernd C; Nascimento, Alessandro S; Polikarpov, Igor

    2009-01-01

    The Brazilian Synchrotron Light Laboratory [Laboratório Nacional de Luz Síncrotron (LNLS), Campinas, SP, Brazil] is the first commissioned synchrotron light source in the southern hemisphere. The first wiggler macromolecular crystallography beamline (MX2) at the LNLS has been recently constructed and brought into operation. Here the technical design, experimental set-up, parameters of the beamline and the first experimental results obtained at MX2 are described. The beamline operates on a 2.0 T hybrid 30-pole wiggler, and its optical layout includes collimating mirror, Si(111) double-crystal monochromator and toroidal bendable mirror. The measured flux density at the sample position at 8.7 eV reaches 4.8 x 10(11) photons s(-1) mm(-2) (100 mA)(-1). The beamline is equipped with a MarResearch Desktop Beamline Goniostat (MarDTB) and 3 x 3 MarMosaic225 CCD detector, and is controlled by a customized version of the Blu-Ice software. A description of the first X-ray diffraction data sets collected at the MX2 LNLS beamline and used for macromolecular crystal structure solution is also provided.

  18. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  19. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  20. Beamline electrostatic levitator for in situ high energy x-ray diffraction studies of levitated solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, A.K.; Lee, G.W.; Kelto, K.F.; Rogers, J.R.; Goldman, A.I.; Robinson, D.S.; Rathz, T.J.; Hyers, R.W. (WU); (UAB); (NASA); (UMASS, Amherst)

    2010-07-19

    Determinations of the phase formation sequence, crystal structures and the thermo-physical properties of materials at high temperatures are hampered by contamination from the sample container and environment. Containerless processing techniques, such as electrostatic (ESL), electromagnetic, aerodynamic, and acoustic levitation, are most suitable for these studies. An adaptation of ESL for in situ structural studies of a wide range of materials using high energy (30-130 keV) x rays at a synchrotron source is described here. This beamline ESL (BESL) allows the in situ determination of the atomic structures of equilibrium solid and liquid phases, undercooled liquids and time-resolved studies of solid-solid and liquid-solid phase transformations. The use of area detectors enables the rapid acquisition of complete diffraction patterns over a wide range (0.5-14 {angstrom}{sup -1}) of reciprocal space. The wide temperature range (300-2500 K), containerless processing environment under high vacuum (10{sup -7}-10{sup -8} Torr), and fast data acquisition capability, make BESL particularly well suited for phase stability studies of high temperature solids and liquids. An additional, but important, feature of BESL is the capability for simultaneous measurements of a host of thermo-physical properties including the specific heat, enthalpy of transformation, solidus and liquidus temperatures, density, viscosity, and surface tension, all on the same sample during the structural measurements.

  1. Far ultraviolet instrument technology

    Science.gov (United States)

    Paxton, Larry J.; Schaefer, Robert K.; Zhang, Yongliang; Kil, Hyosub

    2017-02-01

    The far ultraviolet (FUV) spectral range (from about 115 nm to 180 nm) is one of the most useful spectral regions for characterizing the upper atmosphere (thermosphere and ionosphere). The principal advantages are that there are FUV signatures of the major constituents of the upper atmosphere as well as the signatures of the high-latitude energy inputs. Because of the absorption by thermospheric O2, the FUV signatures are seen against a "black" background, i.e., one that is not affected by ground albedo or clouds and, as a consequence, can make useful observations of the aurora during the day or when the Moon is above the horizon. In this paper we discuss the uses of FUV remote sensing, summarize the various techniques, and discuss the technological challenges. Our focus is on a particular type of FUV instrument, the scanning imaging spectrograph or SIS: an instrument exemplified by the Defense Meteorological Satellite Program Special Sensor Ultraviolet Imager and Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager. The SIS combines spatial imaging of the disk with limb profiles as well as spectral information at each point in the scan.

  2. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  3. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Soplin, Leonidas Aliaga [Coll. William and Mary

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the flux for the upcoming DUNE experiment.

  4. Neutrino Flux Prediction for the NuMI Beamline

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga Soplin, Leonidas [William-Mary Coll.

    2016-01-01

    The determination of the neutrino flux in any conventional neutrino beam presents a challenge for the current and future short and long baseline neutrino experiments. The uncertainties associated with the production and attenuation of the hadrons in the beamline materials along with those associated with the beam optics have a big effect in the flux spectrum knowledge. For experiments like MINERvA, understanding the flux is crucial since it enters directly into every neutrino-nucleus cross-sections measurements. The foundation of this work is predicting the neutrino flux at MINERvA using dedicated measurements of hadron production in hadron-nucleus collisions and incorporating in-situ MINERvA data that can provide additional constraints. This work also includes the prospect for predicting the flux at other detectors like the NOvA Near detector. The procedure and conclusions of this thesis will have a big impact on future hadron production experiments and on determining the fl ux for the upcoming DUNE experiment.

  5. DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL.

    Science.gov (United States)

    Giuliani, Alexandre; Jamme, Frédéric; Rouam, Valérie; Wien, Frank; Giorgetta, Jean-Luc; Lagarde, Bruno; Chubar, Oleg; Bac, Stéphane; Yao, Isabelle; Rey, Solène; Herbeaux, Christian; Marlats, Jean-Louis; Zerbib, Daniel; Polack, François; Réfrégiers, Matthieu

    2009-11-01

    DISCO, a novel low-energy beamline covering the spectrum range from the VUV to the visible, has received its first photons at the French synchrotron SOLEIL. In this article the DISCO design and concept of three experimental stations serving research communities in biology and chemistry are described. Emphasis has been put on high flux generation and preservation of polarization at variable energy resolutions. The three experiments include a completely new approach for microscopy and atmospheric pressure experiments as well as a ;classical' synchrotron radiation circular dichroism station. Preliminary tests of the optical design and technical concept have been made. Theoretical predictions of the beam have been compared with the first images produced by the first photons originating from the large-aperture bending-magnet source. Results are also reported concerning the cold finger used to absorb hard X-ray radiation in the central part of the synchrotron beam and to avoid heavy thermal load on the following optics. Wavelength selection using monochromators with different gratings for each experimental set-up as well as beam propagation and conditioning throughout the optical system are detailed. First photons comply very well with the theoretical calculations.

  6. Students on the Beamline: classroom, research, and discovery

    Science.gov (United States)

    Patry, J.; Walker, T.

    2012-12-01

    High level research is mainly the focus of trained scientists who possess a science specific background. The Canadian Light Source outreach service has developed a two stage research immersion approach which brings together students, teachers, and renowned scientists: Students on the Beamline. The first stage offers a training session for teachers to develop their professional competencies in regards to authentic science research and the synchrotron facility. During the second stage, students from classrooms apply a research protocol of their own design with the help of their teacher and synchrotron scientists. During this presentation, we will first explain the professional approach of the training. In the second part, two experiments designed by students will be presented which are geophysically based so to speak: Study of the Meteoritic Melt Sheet of the Manicouagan Basin and Effects of Olivine on the capture of NOx. Results have shown that teachers bring in the classroom a more authentic and new experience in research application. As for the students, their unique research has contributed to the increase of our knowledge and a better understanding of the scientific inquiry process.Scientist and teacher working together on the synchrotron

  7. Efficient high-order suppression system for a metrology beamline.

    Science.gov (United States)

    Sokolov, A; Sertsu, M G; Gaupp, A; Lüttecke, M; Schäfers, F

    2018-01-01

    High-quality metrology with synchrotron radiation requires in particular a very high spectral purity of the incident beam. This is usually achieved by a set of transmission filters with suitable absorption edges to suppress high-order radiation of the monochromator. The at-wavelength metrology station at a BESSY-II bending-magnet collimated plane-grating monochromator (c-PGM) beamline has recently commissioned a high-order suppression system (HiOS) based on four reflections from mirrors which can be inserted into the beam path. Two pairs of mirrors are aligned parallel so as not to disturb the original beam path and are rotated clockwise and counter-clockwise. Three sets of coatings are available for the different energy ranges and the incidence angle is freely tunable to find the optimum figure of merit for maximum suppression at maximum transmission for each photon energy required. Measured performance results of the HiOS for the EUV and XUV range are compared with simulations, and applications are discussed.

  8. Laser target using continuous supersonic jet in vacuum

    OpenAIRE

    Ogata Yujin; Takahashi Kazumasa; Kuwabara Hajime; Nakajima Mitsuo; Horioka Kazuhiko

    2013-01-01

    For an extreme ultraviolet (EUV) light source, Sn plasmas, which can produce a strong radiation with high conversion efficiency at 13.5 nm, attract attention. The purpose of this study is to establish technology to form and recover a tin vapor supersonic jet in vacuum and to make clear the interaction between the supersonic free jet and an incident laser. In order to make the tin vapor, a tantalum crucible is inductively heated up and the radiation loss is compared with the input energy. We o...

  9. Sealing Materials for Use in Vacuum at High Temperatures

    Science.gov (United States)

    Pettit, Donald R.; Camarda, Charles J.; Lee Vaughn, Wallace

    2012-01-01

    Sealing materials that can be applied and left in place in vacuum over a wide range of temperatures (especially temperatures of a few thousand degrees Celsius) have been conceived and investigated for potential utility in repairing thermal-protection tiles on the space shuttles in orbit before returning to Earth. These materials are also adaptable to numerous terrestrial applications that involve vacuum processing and/or repair of structures that must withstand high temperatures. These materials can be formulated to have mechanical handling characteristics ranging from almost freely flowing liquid-like consistency through paste-like consistency to stiff puttylike consistency, and to retain these characteristics in vacuum until heated to high curing temperatures. A sealing material of this type can be formulated to be used in any of several different ways for example, to be impregnated into a high-temperature-fabric patch, impregnated into a high-temperature-fabric gasket for sealing a patch, applied under a patch, or applied alone in the manner of putty or wallboard compound. The sealing material must be formulated to be compatible with, and adhere to, the structural material(s) to be repaired. In general, the material consists of a vacuum-compatible liquid containing one or more dissolved compound(s) and/or mixed with suspended solid particles. Depending on the intended application, the liquid can be chosen to be of a compound that can remain in place in vacuum for a time long enough to be useful, and/or to evaporate or decompose in a controlled way to leave a useful solid residue behind. The evaporation rate is determined by proper choice of vapor pressure, application of heat, and/or application of ultraviolet light or other optical radiation. The liquid chosen for the original space shuttle application is a commercial silicone vacuum-pump oil.

  10. Vacuum deposited polymer/metal films for optical applications

    Science.gov (United States)

    Affinito, J. D.; Martin, P. M.; Gross, M. E.; Coronado, C.; Greenwell, E.

    1995-04-01

    Vacuum deposited Polymer/Silver/Polymer reflectors and Tantalum/Polymer/Aluminum Fabry-Perot interference filters were fabricated in a vacuun web coating operation on polyester substrates with a new, high speed deposition process. Reflectivities were measured in the wavelength range from 0.3 to 0.8(mu)m. This new vacuum processing technique has been shown to be capable of deposition line speeds in excess of 500 linear meters/minute. Central to this technique is a new position process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process -- for Polymer Multi-Layer. Also, vacuum deposited, index matched, polymer/CaF(sub 2) composites were fabricated from monomer slurries that were subsequently cured with LTV light. This second technique is called the Liquid Multi-Layer (or LML) process. Each of these polymer processes is compatible with each other and with conventional vacuum deposition processes such as sputtering or evaporation.

  11. Vacuum energy sequestering and graviton loops

    OpenAIRE

    Kaloper, Nemanja; Padilla, Antonio

    2017-01-01

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  12. THERMOCOUPLE VACUUM GAUGE

    Science.gov (United States)

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  13. AI-BL1.0: a program for automatic on-line beamline optimization using the evolutionary algorithm.

    Science.gov (United States)

    Xi, Shibo; Borgna, Lucas Santiago; Zheng, Lirong; Du, Yonghua; Hu, Tiandou

    2017-01-01

    In this report, AI-BL1.0, an open-source Labview-based program for automatic on-line beamline optimization, is presented. The optimization algorithms used in the program are Genetic Algorithm and Differential Evolution. Efficiency was improved by use of a strategy known as Observer Mode for Evolutionary Algorithm. The program was constructed and validated at the XAFCA beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the Beijing Synchrotron Radiation Facility.

  14. Coherent X-ray scattering beamline at port 9C of Pohang Light Source II.

    Science.gov (United States)

    Yu, Chung-Jong; Lee, Hae Cheol; Kim, Chan; Cha, Wonsuk; Carnis, Jerome; Kim, Yoonhee; Noh, Do Young; Kim, Hyunjung

    2014-01-01

    The coherent X-ray scattering beamline at the 9C port of the upgraded Pohang Light Source (PLS-II) at Pohang Accelerator Laboratory in Korea is introduced. This beamline provides X-rays of 5-20 keV, and targets coherent X-ray experiments such as coherent diffraction imaging and X-ray photon correlation spectroscopy. The main parameters of the beamline are summarized, and some preliminary experimental results are described.

  15. Abdominal intrauterine vacuum aspiration.

    Science.gov (United States)

    Tjalma, W A A

    2014-01-01

    Evaluating and "cleaning" of the uterine cavity is probably the most performed operation in women. It is done for several reasons: abortion, evaluation of irregular bleeding in premenopausal period, and postmenopausal bleeding. Abortion is undoubtedly the number one procedure with more than 44 million pregnancies terminated every year. This procedure should not be underestimated and a careful preoperative evaluation is needed. Ideally a sensitive pregnancy test should be done together with an ultrasound in order to confirm a uterine pregnancy, excluding extra-uterine pregnancy, and to detect genital and/or uterine malformations. Three out of four abortions are performed by surgical methods. Surgical methods include a sharp, blunt, and suction curettage. Suction curettage or vacuum aspiration is the preferred method. Despite the fact that it is a relative safe procedure with major complications in less than one percent of cases, it is still responsible for 13% of all maternal deaths. All the figures have not declined in the last decade. Trauma, perforation, and bleeding are a danger triage. When there is a perforation, a laparoscopy should be performed immediately, in order to detect intra-abdominal lacerations and bleeding. The bleeding should be stopped as soon as possible in order to not destabilize the patient. When there is a perforation in the uterus, this "entrance" can be used to perform the curettage. This is particularly useful if there is trauma of the isthmus and uterine wall, and it is difficult to identify the uterine canal. A curettage is a frequent performed procedure, which should not be underestimated. If there is a perforation in the uterus, then this opening can safely be used for vacuum aspiration.

  16. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  17. Vacuum Technology for Superconducting Devices

    CERN Document Server

    Chiggiato, P

    2014-01-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  18. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    AWARD NUMBER: W81XWH-12-C-0043 TITLE: Ultraviolet Communication for Medical Applications PRINCIPAL INVESTIGATOR: Lee Cross CONTRACTING...5a. CONTRACT NUMBER W81XWH-12-C-0043 Ultraviolet Communication for Medical Applications 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet (UV) emitters and the best

  19. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules

    Energy Technology Data Exchange (ETDEWEB)

    Bowler, Matthew W., E-mail: mbowler@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 avenue des Martyrs, F-38042 Grenoble (France); Université Grenoble Alpes-EMBL-CNRS, 71 avenue des Martyrs, F-38042 Grenoble (France); Nurizzo, Didier, E-mail: mbowler@embl.fr; Barrett, Ray; Beteva, Antonia; Bodin, Marjolaine [European Synchrotron Radiation Facility, 71 avenue des Martyrs, F-38043 Grenoble (France)

    2015-10-03

    MASSIF-1 (ID30A-1) is a new beamline dedicated to the completely automatic characterization and data collection from crystals of biological macromolecules. MASSIF-1 (ID30A-1) is an ESRF undulator beamline operating at a fixed wavelength of 0.969 Å (12.8 keV) that is dedicated to the completely automatic characterization of and data collection from crystals of biological macromolecules. The first of the ESRF Upgrade MASSIF beamlines to be commissioned, it has been open since September 2014, providing a unique automated data collection service to academic and industrial users. Here, the beamline characteristics and details of the new service are outlined.

  20. Status of the hard X-ray microprobe beamline ID22 of the European Synchrotron Radiation Facility.

    Science.gov (United States)

    Martínez-Criado, Gema; Tucoulou, Rémi; Cloetens, Peter; Bleuet, Pierre; Bohic, Sylvain; Cauzid, Jean; Kieffer, Isabelle; Kosior, Ewelina; Labouré, Sylvain; Petitgirard, Sylvain; Rack, Alexander; Sans, Juan Angel; Segura-Ruiz, Jaime; Suhonen, Heikki; Susini, Jean; Villanova, Julie

    2012-01-01

    The ESRF synchrotron beamline ID22, dedicated to hard X-ray microanalysis and consisting of the combination of X-ray fluorescence, X-ray absorption spectroscopy, diffraction and 2D/3D X-ray imaging techniques, is one of the most versatile instruments in hard X-ray microscopy science. This paper describes the present beamline characteristics, recent technical developments, as well as a few scientific examples from recent years of the beamline operation. The upgrade plans to adapt the beamline to the growing needs of the user community are briefly discussed.

  1. Vacuum fiber-fiber coupler

    Science.gov (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  2. Transparent ultraviolet photovoltaic cells.

    Science.gov (United States)

    Yang, Xun; Shan, Chong-Xin; Lu, Ying-Jie; Xie, Xiu-Hua; Li, Bing-Hui; Wang, Shuang-Peng; Jiang, Ming-Ming; Shen, De-Zhen

    2016-02-15

    Photovoltaic cells have been fabricated from p-GaN/MgO/n-ZnO structures. The photovoltaic cells are transparent to visible light and can transform ultraviolet irradiation into electrical signals. The efficiency of the photovoltaic cells is 0.025% under simulated AM 1.5 illumination conditions, while it can reach 0.46% under UV illumination. By connecting several such photovoltaic cells in a series, light-emitting devices can be lighting. The photovoltaic cells reported in this Letter may promise the applications in glass of buildings to prevent UV irradiation and produce power for household appliances in the future.

  3. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems...

  4. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Science.gov (United States)

    Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Yashchuk, Valeriy V.; Padmore, Howard A.; Ustundag, Ersan

    2009-03-01

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend). This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 μm spot of ˜5×109 photons/s (0.1% bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored by two pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 μm are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (˜0.2 μm) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5×10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  5. A dedicated superbend x-ray microdiffraction beamline for materials, geo-, and environmental sciences at the advanced light source

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Kunz, Martin; Tamura, Nobumichi; Chen, Kai; MacDowell, Alastair A.; Celestre, Richard S.; Church, Matthew M.; Fakra, Sirine; Domning, Edward E.; Glossinger, James M.; Kirschman, Jonathan L.; Morrison, Gregory Y.; Plate, Dave W.; Smith, Brian V.; Warwick, Tony; Padmore, Howard A.; Ustundag, Ersan; Yashchuk, Valeriy V.

    2009-03-24

    A new facility for microdiffraction strain measurements and microfluorescence mapping has been built on beamline 12.3.2 at the advanced light source of the Lawrence Berkeley National Laboratory. This beamline benefits from the hard x-radiation generated by a 6 T superconducting bending magnet (superbend) This provides a hard x-ray spectrum from 5 to 22 keV and a flux within a 1 mu m spot of ~;;5x109 photons/ s (0.1percent bandwidth at 8 keV). The radiation is relayed from the superbend source to a focus in the experimental hutch by a toroidal mirror. The focus spot is tailored bytwo pairs of adjustable slits, which serve as secondary source point. Inside the lead hutch, a pair of Kirkpatrick-Baez (KB) mirrors placed in a vacuum tank refocuses the secondary slit source onto the sample position. A new KB-bending mechanism with active temperature stabilization allows for more reproducible and stable mirror bending and thus mirror focusing. Focus spots around 1 um are routinely achieved and allow a variety of experiments, which have in common the need of spatial resolution. The effective spatial resolution (~;;0.2 mu m) is limited by a convolution of beam size, scan-stage resolution, and stage stability. A four-bounce monochromator consisting of two channel-cut Si(111) crystals placed between the secondary source and KB-mirrors allows for easy changes between white-beam and monochromatic experiments while maintaining a fixed beam position. High resolution stage scans are performed while recording a fluorescence emission signal or an x-ray diffraction signal coming from either a monochromatic or a white focused beam. The former allows for elemental mapping, whereas the latter is used to produce two-dimensional maps of crystal-phases, -orientation, -texture, and -strain/stress. Typically achieved strain resolution is in the order of 5x10-5 strain units. Accurate sample positioning in the x-ray focus spot is achieved with a commercial laser-triangulation unit. A Si

  6. Ultraviolet damage in solar cell assemblies with various UV filters

    Science.gov (United States)

    Meulenberg, A., Jr.

    1977-01-01

    Ultraviolet damage to the new violet and non-reflective type solar cell assemblies, was studied, and potential advantages of using coverslides with no filters or filters with cut-off wavelengths below 0.35 micron were determined. The experiments consisted of three types of tests on fused silica coverslides with 0.35- and 0.30-micron cut-off filters and no cut-off filters, as well as on ceria-doped microsheet coverslides. Ultraviolet irradiation for over 1500 hours at one sun conditions (AMO) was carried out under vacuum of about 1 million torr. Nearly identical results for non-reflective type cells with 0.35-micro cut-off filters or ceria-doped coverslides were obtained. The 0.30-um filtered cell shows greater than average degradation. The unfiltered cell shows an abrupt drop in the first 20 UVSH and very little subsequent degradation.

  7. SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Klysubun, Wantana; Kidkhunthod, Pinit; Tarawarakarn, Pongjakr; Sombunchoo, Panidtha; Kongmark, Chanapa; Limpijumnong, Sukit; Rujirawat, Saroj; Yimnirun, Rattikorn; Tumcharern, Gamolwan; Faungnawakij, Kajornsak

    2017-04-04

    The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25–10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108to 2 × 1010 photons s-1(100 mA)-1varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance,K-edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.

  8. CAT Guide and Beamline Directory. A key to APS Collaborative Access Teams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-08

    The Advanced Photon Source (APS), a national user facility for synchrotrons radiation research, is located at Argonne National Laboratory, approximately 25 miles southwest of Chicago, Illinois. The APS is considered a third-generation synchrotrons radiation facility (specifically designed to accommodate insertion devices to serve as radiation sources) and is one of three such facilities in the world. Currently, it is the most brilliant source in the United States for research in such diverse fields as biology, medicine, materials science, chemistry, geology, agriculture and soil science, physics, and manufacturing technology. Researchers use the APS either as members of Collaborative Access Teams (CATS) or as Independent Investigators (IIs). CATS are responsible for designing, building, and operating beamlines in one or more sectors, each sector consisting of an insertion-device (ID) beamline and a bending-magnet (BM) beamline. Each beamline is designed to accommodate a specific type of research program(s) and is optimized accordingly. CAT members are entitled to use 75% of the available beam time to pursue CAT research goals. The remaining 25% of the available beam time must be made available to IIs. This document was written to help prospective IIs determine which beamlines are suitable for their specific experiments.

  9. Numerical analysis of partially coherent radiation at soft x-ray beamline.

    Science.gov (United States)

    Meng, Xiangyu; Xue, Chaofan; Yu, Huaina; Wang, Yong; Wu, Yanqing; Tai, Renzhong

    2015-11-16

    A new model for numerical analysis of partially coherent x-ray at synchrotron beamlines is presented. The model is based on statistical optics. Four-dimensional coherence function, Mutual Optical Intensity (MOI), is applied to describe the wavefront of the partially coherent light. The propagation of MOI through optical elements in the beamline is deduced with numerical calculation. The coherence of x-ray through beamlines can be acquired. We applied the model to analyze the coherence in the STXM beamline at SSRF, and got the coherence length of the beam at the endstation. To verify the theoretical results, the diffraction experiment of a single slit was performed and the diffraction pattern was simulated to get the coherence length, (31 ± 3.0) µm × (25 ± 2.1) µm (H × V), which had a good agreement with the theoretical results, (30.7 ± 0.6) µm × (31 ± 5.3) µm (H × V). The model is applicable to analyze the coherence in synchrotron beamlines.

  10. Optimization of the design for beamline with fast polarization switching elliptically polarized undulators.

    Science.gov (United States)

    Cao, Jiefeng; Wang, Yong; Zou, Ying; Zhang, Xiangzhi; Wu, Yanqing; Tai, Renzhong

    2016-03-01

    Fast switching of X-ray polarization with a lock-in amplifier is a good method for acquiring weak signals from background noise for X-ray magnetic circular dichroism (XMCD) experiments. The usual way to obtain a beam with fast polarization switching is to use two series of elliptically polarized undulators (tandem twin EPUs). The two EPUs generate two individual beams. Each beam has a different polarization and is fast switched into the beamline. It is very important to ensure that the energy resolution, the flux and the spot size at the sample of the two beams are equal in XMCD experiments. However, it is difficult in beamline design because the distances from the two EPUs to the beamline optics are different and the beamline is not switchable. In this work, a beamline design without an entrance slit for fast polarization switching EPUs is discussed. The energy resolution of the two beams can be tuned to be equal by minor rotation of the optics in the monochromator. The flux of the two beams can be balanced through separation blades X, Y in the exit slit, and by adjusting the position of the X blades along the beam. The spot size of the two beams can be adjusted to be equal by shifting the sample as well.

  11. SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy.

    Science.gov (United States)

    Klysubun, Wantana; Kidkhunthod, Pinit; Tarawarakarn, Pongjakr; Sombunchoo, Panidtha; Kongmark, Chanapa; Limpijumnong, Sukit; Rujirawat, Saroj; Yimnirun, Rattikorn; Tumcharern, Gamolwan; Faungnawakij, Kajornsak

    2017-05-01

    The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25-10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s-1 (100 mA)-1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K-edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.

  12. XDS: a flexible beamline for X-ray diffraction and spectroscopy at the Brazilian synchrotron.

    Science.gov (United States)

    Lima, F A; Saleta, M E; Pagliuca, R J S; Eleotério, M A; Reis, R D; Fonseca Júnior, J; Meyer, B; Bittar, E M; Souza-Neto, N M; Granado, E

    2016-11-01

    The majority of the beamlines at the Brazilian Synchrotron Light Source Laboratory (LNLS) use radiation produced in the storage-ring bending magnets and are therefore currently limited in the flux that can be used in the harder part of the X-ray spectrum (above ∼10 keV). A 4 T superconducting multipolar wiggler (SCW) was recently installed at LNLS in order to improve the photon flux above 10 keV and fulfill the demands set by the materials science community. A new multi-purpose beamline was then installed at the LNLS using the SCW as a photon source. The XDS is a flexible beamline operating in the energy range between 5 and 30 keV, designed to perform experiments using absorption, diffraction and scattering techniques. Most of the work performed at the XDS beamline concentrates on X-ray absorption spectroscopy at energies above 18 keV and high-resolution diffraction experiments. More recently, new setups and photon-hungry experiments such as total X-ray scattering, X-ray diffraction under high pressures, resonant X-ray emission spectroscopy, among others, have started to become routine at XDS. Here, the XDS beamline characteristics, performance and a few new experimental possibilities are described.

  13. Calibration of windowless photodiode for extreme ultraviolet pulse energy measurement.

    Science.gov (United States)

    Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Frolov, Oleksandr

    2015-12-10

    For energy measurement of extreme ultraviolet pulses, no universal commercially available device is available. Therefore, a co-axial setup of a vacuum photodiode was developed and tested. First its unsuccessful calibration at the National Institute of Standards and Technology (USA) is mentioned. Then our own single-wavelength (46.9 nm) calibration procedure is described in detail. It is based on tabulated photoemission efficiency and on measured (1) anode collection efficiency, (2) attenuation of Al filters, and (3) attenuation of measuring cables. Some other relevant attenuating factors are also taken into account.

  14. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  15. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  16. Development and Application of the STARS-based Beamline Control System at the Photon Factory

    Science.gov (United States)

    Kosuge, Takashi; Nigorikawa, Kazuyuki; Nagatani, Yasuko; Saito, Yuuki

    2010-06-01

    STARS[1-2] (Simple Transmission and Retrieval System) is a message transferring software for small-scale control systems with TCP/IP sockets, originally developed at the Photon Factory (PF). Because it has a server-client architecture using TCP/IP sockets and can work on various types of operating systems, the design and application are quite flexible. We have developed a common low-level beamline control system based on the STARS technology. Many kinds of useful STARS clients (device drivers, data acquisitions, user interfaces etc.) are available now, and so far, the system has been installed at 22 PF beamlines. We will describe the development and generalize of the STARS-based beamline control system at the PF.

  17. DA+ data acquisition and analysis software at the Swiss Light Source macromolecular crystallography beamlines.

    Science.gov (United States)

    Wojdyla, Justyna Aleksandra; Kaminski, Jakub W; Panepucci, Ezequiel; Ebner, Simon; Wang, Xiaoqiang; Gabadinho, Jose; Wang, Meitian

    2018-01-01

    Data acquisition software is an essential component of modern macromolecular crystallography (MX) beamlines, enabling efficient use of beam time at synchrotron facilities. Developed at the Paul Scherrer Institute, the DA+ data acquisition software is implemented at all three Swiss Light Source (SLS) MX beamlines. DA+ consists of distributed services and components written in Python and Java, which communicate via messaging and streaming technologies. The major components of DA+ are the user interface, acquisition engine, online processing and database. Immediate data quality feedback is achieved with distributed automatic data analysis routines. The software architecture enables exploration of the full potential of the latest instrumentation at the SLS MX beamlines, such as the SmarGon goniometer and the EIGER X 16M detector, and development of new data collection methods.

  18. A double multilayer monochromator for the B16 Test beamline at the Diamond Light Source

    Science.gov (United States)

    Sawhney, K. J. S.; Dolbnya, I. P.; Scott, S. M.; Tiwari, M. K.; Preece, G. M.; Alcock, S. G.; Malandain, A. W.

    2011-09-01

    The B16 Test beamline at the Diamond Light Source is in user operation. It has been recently upgraded with the addition of a double multilayer monochromator (DMM), which provides further functionality and versatility to the beamline. The multilayer monochromator is equipped with two pairs of multilayer optics (Ni/B4C and Ru/B4C) to cover the wide photon energy range of 2 - 20 keV, with good efficiency. The DMM provides a broad bandpass / high flux operational mode for the beamline and, when used in tandem with the Si (111) double crystal monochromator, it gives a very high higher-order harmonics suppression. The design details of the DMM and the first commissioning results obtained using the DMM are presented.

  19. BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Emery, L.; Fystro, G.; Shang, H.; Smith, M.

    2017-06-25

    An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinement of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.

  20. Improvements toward highly accurate diffraction experiments at the macromolecular micro-crystallography beamline BL-17A.

    Science.gov (United States)

    Yamada, Yusuke; Chavas, Leonard M G; Igarashi, Noriyuki; Hiraki, Masahiko; Wakatsuki, Soichi; Matsugaki, Naohiro

    2013-11-01

    BL-17A is a macromolecular crystallography beamline dedicated to diffraction experiments conducted using micro-crystals and structure determination studies using a lower energy X-ray beam. In these experiments, highly accurate diffraction intensity measurements are definitively important. Since this beamline was constructed, the beamline apparatus has been improved in several ways to enable the collection of accurate diffraction data. The stability of the beam intensities at the sample position was recently improved by modifying the monochromator. The diffractometer has also been improved. A new detector table was installed to prevent distortions in the diffractometer's base during the repositioning of the diffractometer detector. A new pinhole system and an on-axis viewing system were installed to improve the X-ray beam profile at the sample position and the centering of tiny crystal samples.

  1. High-brightness beamline for x-ray spectroscopy at the ALS

    Energy Technology Data Exchange (ETDEWEB)

    Perera, R.C.C.; Jones, G. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States); Lindle, D.W. [Univ. of Nevada, Las Vegas, NV (United States)

    1997-04-01

    Beamline 9.3.1 at the Advanced Light Source (ALS) is a windowless beamline, covering the 1-6 keV photon-energy range, designed to achieve the goals of high energy resolution, high flux, and high brightness at the sample. When completed later this year, it will be the first ALS monochromatic hard x-ray beamline, and its brightness will be an order of magnitude higher than presently available in this energy range. In addition, it will provide flux and resolution comparable to any other beamline now in operation. To achieve these goals, two technical improvements, relative to existing x-ray beamlines, were incorporated. First, a somewhat novel optical design for x-rays, in which matched toroidal mirrors are positioned before and after the double-crystal monochromator, was adopted. This configuration allows for high resolution by passing a collimated beam through the monochromator, and for high brightness by focusing the ALS source on the sample with unit magnification. Second, a new {open_quotes}Cowan type{close_quotes} double-crystal monochromator based on the design used at NSLS beamline X-24A was developed. The measured mechanical precision of this new monochromator shows significant improvement over existing designs, without using positional feedback available with piezoelectric devices. Such precision is essential because of the high brightness of the radiation and the long distance (12 m) from the source (sample) to the collimating (focusing) mirror. This combination of features will provide a bright, high resolution, and stable x-ray beam for use in the x-ray spectroscopy program at the ALS.

  2. Alumina barrier for vacuum brazing

    Science.gov (United States)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  3. [Endoscopic vacuum-assisted closure].

    Science.gov (United States)

    Wedemeyer, J; Lankisch, T

    2013-03-01

    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis.

  4. SILICON REFINING BY VACUUM TREATMENT

    Directory of Open Access Journals (Sweden)

    André Alexandrino Lotto

    2014-12-01

    Full Text Available This work aims to investigate the phosphorus removal by vacuum from metallurgical grade silicon (MGSi (98.5% to 99% Si. Melting experiments were carried out in a vacuum induction furnace, varying parameters such as temperature, time and relation area exposed to the vacuum / volume of molten silicon. The results of chemical analysis were obtained by inductively coupled plasma (ICP, and evaluated based on thermodynamic and kinetic aspects of the reaction of vaporization of the phosphorus in the silicon. The phosphorus was decreased from 33 to approximately 1.5 ppm after three hours of vacuum treatment, concluding that the evaporation step is the controlling step of the process for parameters of temperature, pressure and agitation used and refining by this process is technically feasible.

  5. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  6. Results from the photoemission spectroscopy beamline 2B1 at Pohang Light Source

    CERN Document Server

    Chung, Y H; Kim, D Y; Kim, H J; Kim, J M; Kim, T S; Ro, C; Raza, H; Thornton, G; Kim, B S; Kim, K J; Kang, T H

    1999-01-01

    The results of photoemission spectroscopy using molybdenum and tantalum samples have been obtained from the new beamline 2B1 at Pohang Light Source. Beamline 2B1 is based on a spherical grating monochromator (SGM) which is equipped with five gratings. The photon energy range from 184 to 1100 eV was covered in this work using two gratings (Gratings 4 and 5). The photon energy resolution has been deduced from Ta Fermi-level spectra and 3d spectra of Mo.

  7. Motion control system of MAX IV Laboratory soft x-ray beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Sjöblom, Peter, E-mail: peter.sjoblom@maxlab.lu.se; Lindberg, Mirjam, E-mail: mirjam.lindberg@maxlab.lu.se; Forsberg, Johan, E-mail: johan.forsberg@maxlab.lu.se; Persson, Andreas G., E-mail: andreas-g.persson@maxlab.lu.se; Urpelainen, Samuli, E-mail: samuli.urpelainen@maxlab.lu.se; Såthe, Conny, E-mail: conny.sathe@maxlab.lu.se [MAX IV Laboratory, Photongatan 2, 225 92 Lund (Sweden)

    2016-07-27

    At the MAX IV Laboratory, five new soft x-ray beamlines are under development. The first is Species and it will be used to develop and set the standard of the control system, which will be common across the facility. All motion axes at MAX IV will be motorized using stepper motors steered by the IcePAP motion controller and a mixture of absolute and incremental encoders following a predefined coordinate system. The control system software is built in Tango and uses the Python-based Sardana framework. The user controls the entire beamline through a synoptic overview and Sardana is used to run the scans.

  8. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team.

    Science.gov (United States)

    Xiao, Y M; Chow, P; Boman, G; Bai, L G; Rod, E; Bommannavar, A; Kenney-Benson, C; Sinogeikin, S; Shen, G Y

    2015-07-01

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  9. The 7BM beamline at the APS: a facility for time-resolved fluid dynamics measurements

    Science.gov (United States)

    Kastengren, Alan; Powell, Christopher F.; Arms, Dohn; Dufresne, Eric M.; Gibson, Harold; Wang, Jin

    2012-01-01

    In recent years, X-ray radiography has been used to probe the internal structure of dense sprays with microsecond time resolution and a spatial resolution of 15 µm even in high-pressure environments. Recently, the 7BM beamline at the Advanced Photon Source (APS) has been commissioned to focus on the needs of X-ray spray radiography measurements. The spatial resolution and X-ray intensity at this beamline represent a significant improvement over previous time-resolved X-ray radiography measurements at the APS. PMID:22713903

  10. High-accuracy detector calibration at the PTB four-crystal monochromator beamline

    CERN Document Server

    Krumrey, M

    2001-01-01

    A four-crystal monochromator beamline has been installed by the Physikalisch-Technische Bundesanstalt at a bending magnet of the electron storage ring BESSY II. The monochromatic radiation with very high spectral purity and high spectral resolution in the photon energy range from 1.75 to 10 keV is used to calibrate detectors by comparison to a cryogenic electrical substitution radiometer as primary detector standard with relative uncertainties well below 1%. This is one order of magnitude better than all calibrations of non-energy-dispersive detectors in this spectral range previously performed. The beamline is also used for the characterization of optical components.

  11. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  12. Vacuum-assisted cesarean section

    Directory of Open Access Journals (Sweden)

    McQuivey RW

    2017-03-01

    Full Text Available Ross W McQuivey,1 Jon E Block2 1Clinical Innovations, Salt Lake City, UT, 2Independent consultant, San Francisco, CA, USA Abstract: There has been a dramatic rise in the frequency of cesarean sections, surpassing 30% of all deliveries in the US. This upsurge, coupled with a decreasing willingness to allow vaginal birth after cesarean section, has resulted in an expansion of the use of vacuum assistance to safely extract the fetal head. By avoiding the use of a delivering hand or forceps blade, the volume being delivered through the uterine incision can be decreased when the vacuum is used properly. Reducing uterine extensions with their associated complications (eg, excessive blood loss in difficult cases is also a theoretical advantage of vacuum delivery. Maternal discomfort related to excessive fundal pressure may also be lessened. To minimize the risk of neonatal morbidity, proper cup placement over the “flexion point” remains essential to maintain vacuum integrity and reduce the chance of inadvertent detachment and uterine extensions. Based on the published literature and pragmatic clinical experience, utilization of the vacuum device is a safe and effective technique to assist delivery during cesarean section. Keywords: cesarean section, vacuum, forceps, birth, delivery

  13. Technical specification for vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, J. (ed.)

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  14. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C.

    Science.gov (United States)

    Orville, Allen M; Buono, Richard; Cowan, Matt; Héroux, Annie; Shea-McCarthy, Grace; Schneider, Dieter K; Skinner, John M; Skinner, Michael J; Stoner-Ma, Deborah; Sweet, Robert M

    2011-05-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  15. Note: Construction of x-ray scattering and x-ray absorption fine structure beamline at the Pohang Light Source.

    Science.gov (United States)

    Lee, Ik-Jae; Yu, Chung-Jong; Yun, Young-Duck; Lee, Chae-Soon; Seo, In Deuk; Kim, Hyo-Yun; Lee, Woul-Woo; Chae, Keun Hwa

    2010-02-01

    A new hard x-ray beamline, 10B KIST-PAL beamline (BL10B), has been designed and constructed at the Pohang Light Source (PLS) in Korea. The beamline, operated by Pohang Accelerator Laboratory-Korean Institute of Science and Technology consortium, is dedicated to x-ray scattering (XRS) and x-ray absorption fine structure (XAFS) experiments. X rays with photon energies from 4.0 to 16.0 keV are delivered to the experimental station passing a collimating mirror, a fixed-exit double-crystal Si(111) monochromator, and a toroidal mirror. Basic experimental equipment for XAFS measurement, a high resolution diffractometry, an image plate detector system, and a hot stage have been prepared for the station. From our initial commissioning and performance testing of the beamline, it is observed that BL10B beamline can perform XRS and XAFS measurements successfully.

  16. Versatile sample environments and automation for biological solution X-ray scattering experiments at the P12 beamline (PETRA III, DESY).

    Science.gov (United States)

    Blanchet, Clement E; Spilotros, Alessandro; Schwemmer, Frank; Graewert, Melissa A; Kikhney, Alexey; Jeffries, Cy M; Franke, Daniel; Mark, Daniel; Zengerle, Roland; Cipriani, Florent; Fiedler, Stefan; Roessle, Manfred; Svergun, Dmitri I

    2015-04-01

    A high-brilliance synchrotron P12 beamline of the EMBL located at the PETRA III storage ring (DESY, Hamburg) is dedicated to biological small-angle X-ray scattering (SAXS) and has been designed and optimized for scattering experiments on macromolecular solutions. Scatterless slits reduce the parasitic scattering, a custom-designed miniature active beamstop ensures accurate data normalization and the photon-counting PILATUS 2M detector enables the background-free detection of weak scattering signals. The high flux and small beam size allow for rapid experiments with exposure time down to 30-50 ms covering the resolution range from about 300 to 0.5 nm. P12 possesses a versatile and flexible sample environment system that caters for the diverse experimental needs required to study macromolecular solutions. These include an in-vacuum capillary mode for standard batch sample analyses with robotic sample delivery and for continuous-flow in-line sample purification and characterization, as well as an in-air capillary time-resolved stopped-flow setup. A novel microfluidic centrifugal mixing device (SAXS disc) is developed for a high-throughput screening mode using sub-microlitre sample volumes. Automation is a key feature of P12; it is controlled by a beamline meta server, which coordinates and schedules experiments from either standard or nonstandard operational setups. The integrated SASFLOW pipeline automatically checks for consistency, and processes and analyses the data, providing near real-time assessments of overall parameters and the generation of low-resolution models within minutes of data collection. These advances, combined with a remote access option, allow for rapid high-throughput analysis, as well as time-resolved and screening experiments for novice and expert biological SAXS users.

  17. ULTRAVIOLET PROTECTIVE COMPOUNDS AS A RESPONSE TO ULTRAVIOLET RADIATION EXPOSURE

    Science.gov (United States)

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet radiation. In response to UVR organisms have adapted myriad responses; behavioral, morphological and physiological. Behaviorally, some orga...

  18. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  19. LCLS XTOD Tunnel Vacuum Transport System (XVTS) Final Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S

    2006-10-16

    The design of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. A preliminary design review was held on 11/14/05 [1][2]. This FDR (Final Design Report) presents system configuration, detailed analyses and selection of the mechanical and electrical components for the XTOD tunnel section, as well as the response to all issues raised in the review committee report. Also included are the plans for procurement, mechanical integration, schedule and the cost estimates. It should be noticed that, after the XVTS PDR, LCLS management has decided to lower the number of beamlines from three to one, and shorten the tunnel length from 212 m to 184 m. [3][4] The final design of XVTS system is completed. The major subjects presented in this report are: (1) Design of the complete system. (2) System analysis results. (3) ES&H issues and plan. (4) Project cost estimates and schedule.

  20. Vacuum-deposited polymer/silver reflector material

    Science.gov (United States)

    Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.

    1994-09-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.

  1. Stable, high quantum efficiency silicon photodiodes for vacuum-UV applications

    Science.gov (United States)

    Korde, Raj; Canfield, L. Randall; Wallis, Brad

    1988-01-01

    Silicon photodiodes have been developed by defect-free phosphorus diffusion having practically no carrier recombination at the SiSiO2 interface or in the front diffused region. The quantum efficiency of these photodiodes was found to be around 120 percent at 100 nm. Unlike the previously tested silicon photodiodes, the developed photodiodes exhibit extremely stable quantum efficiency over extended periods of time. The possibility of using these photodiodes as vacuum ultraviolet detector standards is being currently investigated.

  2. Accurate Lifetimes and Absolute Transition Rates for Ultraviolet Transitions from 3D5(4G) 4P and 3D5(4P) 4P levels in MN II

    Science.gov (United States)

    Kling, Rainer; Schnabel, Roman; Griesmann, Ulf

    2001-05-01

    A recently developed, laser-induced fluorescence technique was used to measure the lifetimes of 14 3d5(4G)4p and 3d5(4P)4p levels in the Mn+ ion. Branching fractions for electric dipole transitions from these levels were measured with a vacuum ultraviolet Fourier transform spectrometer, using a hollow-cathode lamp and a Penning discharge source. Based on these new measurements, absolute electric dipole transition rates for about 170 spectral lines in the ultraviolet and vacuum ultraviolet were determined. The uncertainty of the transition rates is less than 5% for the strong transitions.

  3. 21 CFR 872.6350 - Ultraviolet detector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet detector. 872.6350 Section 872.6350...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6350 Ultraviolet detector. (a) Identification. An ultraviolet detector is a device intended to provide a source of ultraviolet light which is used...

  4. CERN’s 2016 Beamline for Schools competition starts on 17 November

    CERN Multimedia

    2015-01-01

    Spread the word: CERN is offering high-school students from around the world the chance to create and perform a scientific experiment on a CERN accelerator beamline. What better way to learn about physics?    (Video: Noemi Caraban​/CERN ) Now in its third year, the Beamline for Schools competition is open to teams of at least five students aged 16 and with at least one adult supervisor or “coach”. Students can find out about the beamline and facilities via http://cern.ch/bl4s, then think of a simple, creative experiment. They can register their team from 17 November to start receiving e-mail updates. They then submit a written proposal and a short video by 31 March 2016. The winners will be announced in June and will come to CERN, preferably in September 2016. Previous winners have tested webcams and classroom-grown crystals at the beamline, others have studied how particles decay and investigated high-energy gamma rays. All participants will receive...

  5. Heat transfer studies for a crystal in a synchrotron radiation beamline

    Indian Academy of Sciences (India)

    MS received 14 August 2007; revised 11 November 2008. Abstract. Heat load studies have been performed for the first crystal of a double crystal monochromator to be installed in a beamline of the 2·5 GeV syn- chrotron radiation source Indus-2. Finite element analysis (FEA) has been used to calculate the temperature ...

  6. Installation of an IR microscope at the nuclear resonance beamline ID18 of ESRF

    Energy Technology Data Exchange (ETDEWEB)

    Rackwitz, Sergej, E-mail: rackwitz@physik.uni-kl.de; Wolny, Juliusz A.; Muffler, Kai [University of Kaiserslautern, Department of Physics (Germany); Krueger, Hans-Joerg; Reh, Sabine; Kelm, Harald [University of Kaiserslautern, Department of Chemistry (Germany); Chumakov, Alexander I. [ESRF (France); Schuenemann, Volker [University of Kaiserslautern, Department of Physics (Germany)

    2012-03-15

    An IR microscope has been installed at the beamline ID18 at the ESRF in Grenoble, France in order to obtain nuclear inelastic scattering (NIS) data and IR spectra simultaneously. This setup combines the advantages of both spectroscopic methods. The applicability of the installed setup to the study of the spin crossover (SCO) phenomenon in polynuclear iron complexes has been shown.

  7. Protein crystallography beamline BL2S1 at the Aichi synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao (Nagoya); (Photon)

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7–17 keV (1.8–0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. Lastly, high-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  8. The protein crystallography beamline BW6 at DORIS - automatic operation and high-throughput data collection

    CERN Document Server

    Blume, H; Bourenkov, G P; Kosciesza, D; Bartunik, H D

    2001-01-01

    The wiggler beamline BW6 at DORIS has been optimized for de-novo solution of protein structures on the basis of MAD phasing. Facilities for automatic data collection, rapid data transfer and storage, and online processing have been developed which provide adequate conditions for high-throughput applications, e.g., in structural genomics.

  9. PMT electronics for high-resolution powder diffraction of CRISTAL and MARS beamlines

    Science.gov (United States)

    Bordessoule, M.; Bucaille, T.; Elkaïm, E.; Sitaud, B.

    2013-03-01

    The design and performance characterization of a multi-crystal X-ray scintillation detector are presented. These set-ups are used on the CRISTAL and MARS beam-lines of SOLEIL. Main topics, such as the measurement of the dead-time of the amplifier, the compromise between the energy resolution and the dead-time, are addressed in this article.

  10. Energy-dispersive X-ray diffraction beamline at Indus-2 synchrotron ...

    Indian Academy of Sciences (India)

    The performance of this beamline has been benchmarked by measuring diffraction patterns from various elemental metals and standard inorganic powdered samples. A few recent ... M Sharma1. High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India ...

  11. Protein crystallography beamline BL2S1 at the Aichi synchrotron.

    Science.gov (United States)

    Watanabe, Nobuhisa; Nagae, Takayuki; Yamada, Yusuke; Tomita, Ayana; Matsugaki, Naohiro; Tabuchi, Masao

    2017-01-01

    The protein crystallography beamline BL2S1, constructed at one of the 5 T superconducting bending-magnet ports of the Aichi synchrotron, is available to users associated with academic and industrial organizations. The beamline is mainly intended for use in X-ray diffraction measurements of single-crystals of macromolecules such as proteins and nucleic acids. Diffraction measurements for crystals of other materials are also possible, such as inorganic and organic compounds. BL2S1 covers the energy range 7-17 keV (1.8-0.7 Å) with an asymmetric-cut curved single-crystal monochromator [Ge(111) or Ge(220)], and a platinum-coated Si mirror is used for vertical focusing and as a higher-order cutoff filter. The beamline is equipped with a single-axis goniometer, a CCD detector, and an open-flow cryogenic sample cooler. High-pressure protein crystallography with a diamond anvil cell can also be performed using this beamline.

  12. X-ray powder diffraction at the XRD1 beamline at LNLS.

    Science.gov (United States)

    Carvalho, A M G; Araújo, D H C; Canova, H F; Rodella, C B; Barrett, D H; Cuffini, S L; Costa, R N; Nunes, R S

    2016-11-01

    Various upgrades have been completed at the XRD1 beamline at the Brazilian synchrotron light source (LNLS). The upgrades are comprehensive, with changes to both hardware and software, now allowing users of the beamline to conduct X-ray powder diffraction experiments with faster data acquisition times and improved quality. The main beamline parameters and the results obtained for different standards are presented, showing the beamline ability of performing high-quality experiments in transmission geometry. XRD1 operates in the 5.5-14 keV range and has a photon flux of 7.8 × 109 photons s-1 (with 100 mA) at 12 keV, which is one of the typical working energies. At 8 keV (the other typical working energy) the photon flux at the sample position is 3.4 × 1010 photons s-1 and the energy resolution ΔE/E = 3 × 10-4.

  13. The multi-purpose hard X-ray beamline BL10 at the DELTA storage ring.

    Science.gov (United States)

    Lützenkirchen-Hecht, D; Wagner, R; Szillat, S; Hüsecken, A K; Istomin, K; Pietsch, U; Frahm, Ronald

    2014-07-01

    The layout and the characteristics of the hard X-ray beamline BL10 at the superconducting asymmetric wiggler at the 1.5 GeV Dortmund Electron Accelerator DELTA are described. This beamline is equipped with a Si(111) channel-cut monochromator and is dedicated to X-ray studies in the spectral range from ∼4 keV to ∼16 keV photon energy. There are two different endstations available. While X-ray absorption studies in different detection modes (transmission, fluorescence, reflectivity) can be performed on a designated table, a six-axis kappa diffractometer is installed for X-ray scattering and reflectivity experiments. Different detector set-ups are integrated into the beamline control software, i.e. gas-filled ionization chambers, different photodiodes, as well as a Pilatus 2D-detector are permanently available. The performance of the beamline is illustrated by high-quality X-ray absorption spectra from several reference compounds. First applications include temperature-dependent EXAFS experiments from liquid-nitrogen temperature in a bath cryostat up to ∼660 K by using a dedicated furnace. Besides transmission measurements, fluorescence detection for dilute sample systems as well as surface-sensitive reflection-mode experiments are presented.

  14. Protein crystallography beamline (PX-BL21) at Indus-2 synchrotron.

    Science.gov (United States)

    Kumar, Ashwani; Ghosh, Biplab; Poswal, H K; Pandey, K K; Hosur, M V; Dwivedi, Abhilash; Makde, Ravindra D; Sharma, Surinder M

    2016-03-01

    The protein crystallography beamline (PX-BL21), installed at the 1.5 T bending-magnet port at the Indian synchrotron (Indus-2), is now available to users. The beamline can be used for X-ray diffraction measurements on a single crystal of macromolecules such as proteins, nucleic acids and their complexes. PX-BL21 has a working energy range of 5-20 keV for accessing the absorption edges of heavy elements commonly used for phasing. A double-crystal monochromator [Si(111) and Si(220)] and a pair of rhodium-coated X-ray mirrors are used for beam monochromatization and manipulation, respectively. This beamline is equipped with a single-axis goniometer, Rayonix MX225 CCD detector, fluorescence detector, cryogenic sample cooler and automated sample changer. Additional user facilities include a workstation for on-site data processing and a biochemistry laboratory for sample preparation. In this article the beamline, other facilities and some recent scientific results are briefly described.

  15. The variable polarization undulator beamline UE52 PGM nanocluster trap at BESSY II

    Directory of Open Access Journals (Sweden)

    Ruslan Ovsyannikov

    2017-02-01

    Full Text Available UE52 PGM nanocluster trap is a soft x-ray beamline at BESSY II that delivers an unfocussed low-divergence beam of variable polarization. Its characteristics are ideally suited for ion trap studies of magnetic properties.

  16. Characteristics and performance of the Los Alamos VUV beamline at the NSLS

    Science.gov (United States)

    Bartlett, R. J.; Trela, W. J.; Michaud, F. D.; Southworth, S. H.; Alkire, R. W.; Roy, P.; Rothe, R.; Walsh, P. J.; Shinn, N.

    1988-04-01

    We describe the design and performance of the Los Alamos VUV synchrotron radiation beamline, U3C, on the VUV ring of the National Synchrotron Light Source at Brookhaven National Laboratory. The beamline uses separate function optics to collect and focus the horizontally and vertically diverging beam. The monochromator is a grazing incidence Rowland circle instrument of the extended grasshopper design (ERG). A postmonochromator refocusing mirror is used to focus or collimate the diverging beam from the monochromator. The beamline control and diagnostics systems are also discussed. Particular emphasis in the design has been placed on the reduction of stray and harmonic light. Higher order light is reduced by a grazing angle mirror low pass filter installed immediately downstream from the monochromator while stray light is reduced through the use of baffles and thin film filters. Also included in the line is a differential pumping section that permits gas phase and other experiments requiring pressures in the 10 -5 to 10 -4 Torr range to be coupled to the beamline.

  17. Ultraviolet photovoltaics: Share the spectrum

    Science.gov (United States)

    Milliron, Delia J.

    2017-08-01

    Electrically controlled windows require power to switch between transparent and tinted states. Now, an ultraviolet light-harvesting solar cell can power smart windows without compromising their control over heat and light.

  18. Ultraviolet radiation in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Taalas, P.; Koskela, T.; Damski, J.; Supperi, A. [Finnish Meteorological Inst., Helsinki (Finland). Section of Ozone and UV Research; Kyroe, E. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Solar ultraviolet radiation is damaging for living organisms due to its high energy pro each photon. The UV radiation is often separated into three regions according to the wavelength: UVC (200-280 nm), UVB (280-320 nm) and UVA (320-400 nm). The most hazardous part, UVC is absorbed completely in the upper atmosphere by molecular oxygen. UVB radiation is absorbed by atmospheric ozone partly, and it is reaching Earth`s surface, as UVA radiation. Besides atmospheric ozone, very important factors in determining the intensity of UVB radiation globally are the solar zenith angle and cloudiness. It may be calculated from global ozone changes that the clear-sky UVB doses may have enhanced by 10-15 % during spring and 5-10 % during summer at the latitudes of Finland, following the decrease of total ozone between 1979-90. The Finnish ozone and UV monitoring activities have become a part of international activities, especially the EU Environment and Climate Programme`s research projects. The main national level effort has been the Finnish Academy`s climatic change programme, SILMU 1990-95. This presentation summarises the scientific results reached during the SILMU project

  19. Solar ultraviolet radiation cataract.

    Science.gov (United States)

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  20. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S

    2008-01-01

    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  1. Measurement of partial pressures in vacuum technology and vacuum physics

    Science.gov (United States)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  2. Rossendorf Beamline at ESRF (ROBL-CRG). Bi-annual report 2009/2010

    Energy Technology Data Exchange (ETDEWEB)

    Scheinost, Andreas C.; Baehtz, Carsten (eds.)

    2011-07-01

    The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit. The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will

  3. Development of the XFP beamline for x-ray footprinting at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Bohon, Jen, E-mail: jbohon@bnl.gov; Sullivan, Michael; Abel, Don; Toomey, John; Chance, Mark R., E-mail: mark.chance@case.edu [Case Center for Synchrotron Biosciences, Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH (United States); Dvorak, Joseph [Brookhaven National Laboratory, Upton, NY (United States)

    2016-07-27

    For over a decade, synchrotron-based footprinting studies at the NSLS X28C beamline have provided unique insights and approaches for examining the solution-state structures of large macromolecular assemblies, membrane proteins, and soluble proteins, for time-resolved studies of macromolecular dynamics, and most recently for in vivo studies of RNA-protein complexes. The transition from NSLS to NSLS-II has provided the opportunity to create an upgraded facility for the study of increasingly complex systems; progress on the development of the XFP (X-ray Footprinting for In Vitro and In Vivo Structural Studies of Biological Macromolecules) beamline at NSLS-II is presented here. The XFP beamline will utilize a focused 3-pole wiggler source to deliver a high flux density x-ray beam, where dynamics can be studied on the microsecond to millisecond timescales appropriate for probing biological macromolecules while minimizing sample perturbation. The beamline optics and diagnostics enable adaptation of the beam size and shape to accommodate a variety of sample morphologies with accurate measurement of the incident beam, and the upgrades in sample handling and environment control will allow study of highly sensitive or unstable samples. The XFP beamline is expected to enhance relevant flux densities more than an order of magnitude from that previously available at X28C, allowing static and time-resolved structural analysis of highly complex samples that have previously pushed the boundaries of x-ray footprinting technology. XFP, located at NSLS-II 17-BM, is anticipated to become available for users in 2016.

  4. Microscale Digital Vacuum Electronic Gates

    Science.gov (United States)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  5. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  6. X-ray optical simulations supporting advanced commissioning of the coherent hard x-ray beamline at NSLS-II

    Science.gov (United States)

    Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.

    2017-08-01

    We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.

  7. Focusing, collimation and flux throughput at the IMCA-CAT bending-magnet beamline at the Advanced Photon Source.

    Science.gov (United States)

    Koshelev, Irina; Huang, Rong; Graber, Timothy; Meron, Mati; Muir, J Lewis; Lavender, William; Battaile, Kevin; Mulichak, Anne M; Keefe, Lisa J

    2009-09-01

    The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10(11) photons s(-1) at 1 A wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 microrad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) deltaE/E = 1.5 x 10(-4) (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and delivers to the sample focused beam of size (FWHM) 240 microm (horizontally) x 160 microm (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.

  8. The SPECIES beamline at the MAX IV Laboratory: a facility for soft X-ray RIXS and APXPS.

    Science.gov (United States)

    Urpelainen, Samuli; Såthe, Conny; Grizolli, Walan; Agåker, Marcus; Head, Ashley R; Andersson, Margit; Huang, Shih Wen; Jensen, Brian N; Wallén, Erik; Tarawneh, Hamed; Sankari, Rami; Nyholm, Ralf; Lindberg, Mirjam; Sjöblom, Peter; Johansson, Niclas; Reinecke, Benjamin N; Arman, M Alif; Merte, Lindsay R; Knudsen, Jan; Schnadt, Joachim; Andersen, Jesper N; Hennies, Franz

    2017-01-01

    SPECIES is an undulator-based soft X-ray beamline that replaced the old I511 beamline at the MAX II storage ring. SPECIES is aimed at high-resolution ambient-pressure X-ray photoelectron spectroscopy (APXPS), near-edge X-ray absorption fine-structure (NEXAFS), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) experiments. The beamline has two branches that use a common elliptically polarizing undulator and monochromator. The beam is switched between the two branches by changing the focusing optics after the monochromator. Both branches have separate exit slits, refocusing optics and dedicated permanent endstations. This allows very fast switching between two types of experiments and offers a unique combination of the surface-sensitive XPS and bulk-sensitive RIXS techniques both in UHV and at elevated ambient-pressure conditions on a single beamline. Another unique property of the beamline is that it reaches energies down to approximately 27 eV, which is not obtainable on other current APXPS beamlines. This allows, for instance, valence band studies under ambient-pressure conditions. In this article the main properties and performance of the beamline are presented, together with selected showcase experiments performed on the new setup.

  9. Vacuum Cleaner Fan Being Improved

    Science.gov (United States)

    Tweedt, Daniel L.

    1997-01-01

    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  10. Ultraviolet emission properties of ZnO film with zinc deficiency by SS CVD

    Science.gov (United States)

    Dai, Liping; Deng, Hong; Chen, Geng; Chen, Jinju

    2008-01-01

    A- b axis orientation ZnO film on silicon (1 0 0) substrate has been prepared by a single source chemical vapor deposition technique. X-ray photoelectron spectroscopy results revealed that the film was very close to stoichiometry but with a small amount of zinc deficiency. Temperature-dependent (10-300 K) ultraviolet photoluminescence of the film was presented. Comparing the photon energy separation of the several groups in the near band edge ultraviolet luminescence bands, as well as the variation of the relative intensities and the shift of the luminescence lines at different temperatures, free-, bound-exciton and its assisted phonon emission were observed, which corresponded to the mechanism of the ultraviolet emission properties. A strong ultraviolet emission resulting from the recombination of free-exciton was observed at 300 K photoluminescence spectrum examined in atmosphere environment. Contrasted to the relatively weak ultraviolet emission of the film in vacuum, atmosphere environment was found to be an important contribution to the strong ultraviolet emission of the film.

  11. Measurement of the polarization for soft x-ray magnetic circular dichroism at the BSRF beamline 4B7B

    CERN Document Server

    Zhi-Ying, Guo; Jing-Tao, Zhu; YI-Dong, Zhao; Lei, Zheng; Cai-Hao, Hong; Kun, Tang; Dong-Liang, Yang; Ming-Qi, Cui

    2012-01-01

    Three ultra-short-period W/B4C multilayers (1.244nm, 1.235nm and 1.034nm) have been fabricated and used for polarization measurement at the 4B7B Beamline of Beijing Synchrotron Radiation Facility (BSRF). By rotating analyzer ellipsometry method, the linear polarization degree of light emerging from this beamline has been measured and the circular polarization evaluated for 700eV-860eV. The first soft x-ray magnetic circular dichroism measurements are carried out at BSRF by positioning the beamline aperture out of the plane of the electron storage ring.

  12. MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules.

    Science.gov (United States)

    Bowler, Matthew W; Nurizzo, Didier; Barrett, Ray; Beteva, Antonia; Bodin, Marjolaine; Caserotto, Hugo; Delagenière, Solange; Dobias, Fabian; Flot, David; Giraud, Thierry; Guichard, Nicolas; Guijarro, Mattias; Lentini, Mario; Leonard, Gordon A; McSweeney, Sean; Oskarsson, Marcus; Schmidt, Werner; Snigirev, Anatoli; von Stetten, David; Surr, John; Svensson, Olof; Theveneau, Pascal; Mueller-Dieckmann, Christoph

    2015-11-01

    MASSIF-1 (ID30A-1) is an ESRF undulator beamline operating at a fixed wavelength of 0.969 Å (12.8 keV) that is dedicated to the completely automatic characterization of and data collection from crystals of biological macromolecules. The first of the ESRF Upgrade MASSIF beamlines to be commissioned, it has been open since September 2014, providing a unique automated data collection service to academic and industrial users. Here, the beamline characteristics and details of the new service are outlined.

  13. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  14. Cleaner Vacuum-Bag Curing

    Science.gov (United States)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.

    1987-01-01

    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  15. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  16. Quantum Vacuum Structure and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; /Arizona U. /Munich U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  17. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The same vacuum chamber as in 7810256, read the detailed description there. Here, the 4 strip-shaped ion-getter pumps are poised at the entrance to their slots. Ion-getter pumps were not retained, thermal getter pumps were chosen instead (see 8301153 and 8305170).

  18. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  19. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2013-01-01

    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  20. Vacuum assisted closure in coloproctology

    NARCIS (Netherlands)

    Bemelman, W.A.

    2009-01-01

    Vacuum-assisted closure has earned its indications in coloproctology. It has been described with variable results in the treatment of large perineal defects after abdominoperineal excision, in the treatment of stoma dehiscence and perirectal abscesses. The most promising indication for

  1. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  2. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  3. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  4. National Synchrotron Light Source user`s manual: Guide to the VUV and x-ray beamlines. Fifth edition

    Energy Technology Data Exchange (ETDEWEB)

    Gmuer, N.F. [ed.

    1993-04-01

    The success of the National Synchrotron Light Source is based, in large part, on the size of the user community and the diversity of the scientific and technical disciplines represented by these users. As evidence of this success, the VUV Ring has just celebrated its 10th anniversary and the X-ray Ring will do the same in 1995. In order to enhance this success, the NSLS User`s Manual: Guide to the VUV and X-Ray Beamlines - Fifth Edition, is being published. This Manual presents to the scientific community-at-large the current and projected architecture, capabilities and research programs of the various VUV and X-ray beamlines. Also detailed is the research and computer equipment a General User can expect to find and use at each beamline when working at the NSLS. The Manual is updated periodically in order to keep pace with the constant changes on these beamlines.

  5. The Extreme Conditions Beamline P02.2 and the Extreme Conditions Science Infrastructure at PETRA III.

    Science.gov (United States)

    Liermann, H P; Konôpková, Z; Morgenroth, W; Glazyrin, K; Bednarčik, J; McBride, E E; Petitgirard, S; Delitz, J T; Wendt, M; Bican, Y; Ehnes, A; Schwark, I; Rothkirch, A; Tischer, M; Heuer, J; Schulte-Schrepping, H; Kracht, T; Franz, H

    2015-07-01

    A detailed description is presented of the Extreme Conditions Beamline P02.2 for micro X-ray diffraction studies of matter at simultaneous high pressure and high/low temperatures at PETRA III, in Hamburg, Germany. This includes performance of the X-ray optics and instrumental resolution as well as an overview of the different sample environments available for high-pressure studies in the diamond anvil cell. Particularly emphasized are the high-brilliance and high-energy X-ray diffraction capabilities of the beamline in conjunction with the use of fast area detectors to conduct time-resolved compression studies in the millisecond time regime. Finally, the current capability of the Extreme Conditions Science Infrastructure to support high-pressure research at the Extreme Conditions Beamline and other PETRA III beamlines is described.

  6. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  7. Ultraviolet-radiation-curable paints

    Energy Technology Data Exchange (ETDEWEB)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  8. Gravitational Waves in Decaying Vacuum Cosmologies

    OpenAIRE

    David Alejandro Tamayo Ramirez

    2015-01-01

    In the present monograph we study in detail the primordial gravitational waves in cosmologies with a decaying vacuum. The decaying vacuum models are an alternative to solve the cosmological constant problem attributing a dynamic to the vacuum energy. The problem of primordial gravitational waves is discussed in the framework of an expanding, flat, spatially homogeneous and isotropic FLRW Universe described by General Relativity theory with decaying vacuum energy density of the type $\\\\Lambda ...

  9. Robot Vacuum Cleaner Personality and Behavior

    OpenAIRE

    Hendriks, A.F.M.; Meerbeek, B.W.; Boess, S.; Pauws, S.C.; Sonneveld, M.

    2011-01-01

    In this paper we report our study on the user experience of robot vacuum cleaner behavior. How do people want to experience this new type of cleaning appliance? Interviews were conducted to elicit a desired robot vacuum cleaner personality. With this knowledge in mind, behavior was designed for a future robot vacuum cleaner. A video prototype was used to evaluate how people experienced the behavior of this robot vacuum cleaner. The results indicate that people recognizedthe intended personali...

  10. Laser target using continuous supersonic jet in vacuum

    Directory of Open Access Journals (Sweden)

    Ogata Yujin

    2013-11-01

    Full Text Available For an extreme ultraviolet (EUV light source, Sn plasmas, which can produce a strong radiation with high conversion efficiency at 13.5 nm, attract attention. The purpose of this study is to establish technology to form and recover a tin vapor supersonic jet in vacuum and to make clear the interaction between the supersonic free jet and an incident laser. In order to make the tin vapor, a tantalum crucible is inductively heated up and the radiation loss is compared with the input energy. We observe the shock waves in argon jet emitted from a supersonic nozzle by a Schlieren image. In the future, we will increase the number of shields and heat the tantalum crucible to the boiling point of tin. We are planning to make a study on the interaction process between laser and the free jet.

  11. Laser target using continuous supersonic jet in vacuum

    Science.gov (United States)

    Ogata, Yujin; Takahashi, Kazumasa; Kuwabara, Hajime; Nakajima, Mitsuo; Horioka, Kazuhiko

    2013-11-01

    For an extreme ultraviolet (EUV) light source, Sn plasmas, which can produce a strong radiation with high conversion efficiency at 13.5 nm, attract attention. The purpose of this study is to establish technology to form and recover a tin vapor supersonic jet in vacuum and to make clear the interaction between the supersonic free jet and an incident laser. In order to make the tin vapor, a tantalum crucible is inductively heated up and the radiation loss is compared with the input energy. We observe the shock waves in argon jet emitted from a supersonic nozzle by a Schlieren image. In the future, we will increase the number of shields and heat the tantalum crucible to the boiling point of tin. We are planning to make a study on the interaction process between laser and the free jet.

  12. 14 CFR 29.1433 - Vacuum systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe...

  13. Utilize Vacuum Forming to Make Interdisciplinary Connections

    Science.gov (United States)

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  14. 14 CFR 25.1433 - Vacuum systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. ...

  15. The Dirac-Electron Vacuum Wave

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2016-07-01

    Full Text Available This paper argues that the Dirac equation can be interpreted as an interaction between the electron core and the Planck vacuum state, where the positive and negative solutions represent respectively the dynamics of the electron core and a vacuum wave propagating within the vacuum state. Results show that the nonrelativistic positive solution reduces to the Schrödinger wave equation

  16. Soft X-ray spectromicroscopy beamline at the CLS: Commissioning results

    Energy Technology Data Exchange (ETDEWEB)

    Kaznatcheev, K.V. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N OX4 (Canada)], E-mail: kkaznatcheev@lightsource.ca; Karunakaran, Ch. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N OX4 (Canada); Lanke, U.D.; Urquhart, S.G. [Chemistry Department, University of Saskatchewan, Saskatoon, SK S7N 5C9 (Canada); Obst, M. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N OX4 (Canada); Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, A.P. [Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON L8S 4M1 (Canada)

    2007-11-11

    The soft X-ray spectromicroscopy beamline (SM) at the Canadian Light Source (CLS) is a dedicated spectromicroscopy facility, consisting of an elliptically polarized undulator (EPU), a beamline based on a collimated PGM optimized for 100-2000 eV range and two end stations: scanning transmission X-ray microscope (STXM) and roll-in X-ray photoemission electron microscope (X-PEEM, from Elmitec GmbH). The overall system has achieved its design parameters with an on-sample flux of {approx}10{sup 8} ph/s at R=3000, 0.5 A in STXM and {approx}10{sup 12} ph/s at R=3000, 0.5 A in the PEEM, in each case at a spatial resolution exceeding 40 nm. It can also provide an energy resolving power above 10,000. A careful EPU calibration procedure enables advanced polarization measurements.

  17. Design of the soft x-ray tomography beamline at Taiwan photon source

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yi-Jr, E-mail: su.yj@nsrrc.org.tw; Fu, Huang-Wen; Chung, Shih-Chun; Fung, Hok-Sum; Liu, Din-Goa; Huang, Liang-Jen; Yan, Hong-Yi; Chou, Yu-Ching; Yin, Gung-Chian; Lai, Lee-Jene [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China)

    2016-07-27

    The optical design of the varied-line-spacing plane-grating monochromator for transmission full-field imaging of frozen-hydrated biological samples at NSRRC is presented. This monochromator consists of a plane mirror and three interchangeable gratings with groove densities 600, 1200 and 2400 l/mm to cover the energy range 260 – 2600 eV. The groove parameters of the varied-line-spacing plane gratings are designed to minimize the effect of coma and spherical aberration to maintain the exit slit in focus for any value of incident angle. All parameters of optical components at the beamline are verified with a ray-tracing method. In the beamline design, the calculated results from the ray-tracing codes and the expected performances are discussed.

  18. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  19. Interoperability and complementarity of simulation tools for beamline design in the OASYS environment

    Science.gov (United States)

    Rebuffi, Luca; Sanchez del Rio, Manuel

    2017-08-01

    In the next years most of the major synchrotron radiation facilities around the world will upgrade to 4th-generation Diffraction Limited Storage Rings using multi-bend-achromat technology. Moreover, several Free Electron Lasers are ready-to-go or in phase of completion. These events represent a huge challenge for the optics physicists responsible of designing and calculating optical systems capable to exploit the revolutionary characteristics of the new photon beams. Reliable and robust beamline design is nowadays based on sophisticated computer simulations only possible by lumping together different simulation tools. The OASYS (OrAnge SYnchrotron Suite) suite drives several simulation tools providing new mechanisms of interoperability and communication within the same software environment. OASYS has been successfully used during the conceptual design of many beamline and optical designs for the ESRF and Elettra- Sincrotrone Trieste upgrades. Some examples are presented showing comparisons and benchmarking of simulations against calculated and experimental data.

  20. Design and analysis of a Be window for the APS diagnostics undulator beamline

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, I.C.; Yang, B.X.; Sharma, S. [Argonne National Lab., IL (United States). Advanced Photon Source

    1997-06-01

    The design of a beryllium (Be) window for use under the extremely high heat load of an undulator beam is one of the challenges for third-generation synchrotron radiation beamlines. A novel design of a Be window is presented for the Advanced Photon Source (APS) diagnostics undulator beamline, whose beam has a peak power density of 150 W/mm{sup 2} (7 GeV/100 mA stored beam). The window has a double concave profile with a thickness of 0.5 mm at the center and is brazed to a water-cooled oxygen-free, high-conductivity (OFHC) copper manifold. Finite-element thermal analysis of the Be window is also presented.