WorldWideScience

Sample records for vacuum condition developpement

  1. Evaporation under vacuum condition

    International Nuclear Information System (INIS)

    Mizuta, Satoshi; Shibata, Yuki; Yuki, Kazuhisa; Hashizume, Hidetoshi; Toda, Saburo; Takase, Kazuyuki; Akimoto, Hajime

    2000-01-01

    In nuclear fusion reactor design, an event of water coolant ingress into its vacuum vessel is now being considered as one of the most probable accidents. In this report, the evaporation under vacuum condition is evaluated by using the evaporation model we have developed. The results show that shock-wave by the evaporation occurs whose behavior strongly depends on the initial conditions of vacuum. And in the case of lower initial pressure and temperature, the surface temp finally becomes higher than other conditions. (author)

  2. Initial conditioning of the TFTR vacuum vessel

    International Nuclear Information System (INIS)

    Dylla, H.F.; Blanchard, W.R.; Krawchuk, R.B.; Hawryluk, R.J.; Owens, D.K.

    1984-01-01

    We report on the initial conditioning of the Tokamak Fusion Test Reactor (TFTR) vacuum vessel prior to the initiation of first plasma discharges, and during subsequent operation with high power ohmically-heated plasmas. Following evacuation of the 86 m 3 vessel with the 10 4 1/s high vacuum pumping system, the vessel was conditioned by a 15 A dc glow discharge in H 2 at a pressure of 5 mTorr. Rapid-pulse discharge cleaning was used subsequently to preferentially condition the graphite plasma limiters. The effectiveness of the discharge cleaning was monitored by measuring the exhaust rates of the primary discharge products (CO/C 2 H 4 , CH 4 , and H 2 O). After 175 hours of glow discharge treatment, the equivalent of 50 monolayers of C and O was removed from the vessel, and the partial pressures of impurity gases were reduced to the range of 10 -9 -10 -10 Torr

  3. Conditioning of vacuum chamber by RF plasma

    International Nuclear Information System (INIS)

    Elizondo, J.I.; Nascimento, I.C. do

    1985-01-01

    A new conditioning vaccum chamber system is presented. It consists in hydrogen plasm generation by microwaves with low electronic temperature (Te approx. 5eV) and low ionization degree. The ions and neutral atoms generated in the reaction: e + H 2 -> H+ H+ e, bomb the chamber walls combinig themselves to impurities of surface and generating several compounds: H 2 O, CO, CH 4 , CO 2 etc. The vacuum system operates continuosly and remove these compounds. A microwave system using magnetron valve (f=2,45 GHz, P=800W) was constructed for TBR (Brazilian tokamak). The gas partial pressures were monitored before, during and after conditioning showing the efficiency of the process. (M.C.K.) [pt

  4. Vacuum status-display and sector-conditioning programs

    International Nuclear Information System (INIS)

    Skelly, J.; Yen, S.

    1989-01-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include these notable features: they incorporate a graphical user interface, and they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The Status Display Program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks, and posts a graphical display of their status. The Sector Conditioning Program likewise invites sector selection, produces the same status display, and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending for several hours. As additional devices are installed in the vacuum system, the devices are likewise added to the relational database; these programs then automatically include the new devices. 2 refs., 1 fig

  5. Method of radiation degradation of PTFE under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, Sergey E-mail: sergey_korenev@steris.com

    2004-10-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  6. Method of radiation degradation of PTFE under vacuum conditions

    Science.gov (United States)

    Korenev, Sergey

    2004-09-01

    A new method of radiation degradation of Polytetrafluoroethylene (PTFE) under vacuum conditions is considered in this report. The combination of glow gas discharge and electrical surface discharge (on surface and inside PTFE) increases the efficiency of thermal-radiation degradation. The main mechanism of this degradation method consists of the breaking of C-C and C-F bonds. The vacuum conditions allow decreasing of the concentration of toxic compounds, such as a HF. Experimental results for degradation of PTFE are presented.

  7. Accelerator tube vacuum conditions in the NSF tandem

    International Nuclear Information System (INIS)

    Groome, A.E.

    1979-08-01

    The Nuclear Structure Facility currently under construction at the Daresbury Laboratory contains a 30 MV tandem Van de Graaff accelerator with a modular design of accelerator tube. The vacuum system requirements are specified to limit beam loss due to charge-state-changing collisions in the residual gas. This report gives an assessment of some of the parameters affecting the vacuum pressure in an operational machine. Measurements are made of the vacuum conductance and outgassing rate of accelerator tube modules. An assessment is made of the effects of temperature rise, beam mis-steering and the presence of suppression magnets on the ultimate vacuum obtainable. Predictions are made of the pressure profile throughout the machine and consideration is given to operational problems such as tube conditioning and temporary loss of pumping. A schematic diagram of the tandem and its vacuum system is shown. (author)

  8. In situ conditioning for proton storage ring vacuum systems

    International Nuclear Information System (INIS)

    Blechschmidt, D.

    1978-01-01

    Average pressure and vacuum-stability limit as expected in the presence of a proton beam were measured after in situ treatments such as bakeout under various conditions, argon glow-discharge cleaning and sputter deposition of titanium. Measurements were carried out for test pipes made of stainless steel (untreated, electropolished, or cooled to 77 K), pure titanium and aluminum alloy. The measurement method used to obtain the vacuum-stability limit in the laboratory and in a prototype system is described. The results can be applied also to other systems of different geometry by use of scaling laws. In situ conditioning generally has a stronger influence on vacuum performance than a particular choice of material. Bakeout gives low average pressures and rather good vacuum stability. Glow discharges also increase the vacuum stability but have only a small effect on the static pressure. Coating the beam-pipe wall with titanium by in situ sputtering provides large linear pumping, thus a lower pressure and an extremely good vacuum stability

  9. Conditioning of the vacuum chamber of the Tokamak Novillo

    International Nuclear Information System (INIS)

    Valencia A, R.; Lopez C, R.; Melendez L, L.; Chavez A, E.; Colunga S, S.; Gaytan G, E.

    1992-03-01

    The obtained experimental results of the implementation of two techniques of present time for the conditioning of the internal wall of the chamber of discharges of the Tokamak Novillo are presented, which has been designed, built and put in operation in the Laboratory of Plasma Physics of the National Institute of Nuclear Research (ININ). These techniques are: the vacuum baking and the low energy pulsed discharges, which were applied after having reached an initial pressure of the order of 10 -7 Torr. with a system of turbomolecular pumping previous preparation of surfaces and vacuum seals. The analysis of residual gases was carried out with a mass spectrometer before and after conditioning. The obtained results show that the vacuum baking it was of great effectiveness to reduce the value of the initial pressure in short time, in more of a magnitude order and the low energy discharges reduced the oxygen at worthless levels with regard to the initial values. (Author)

  10. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.

    1989-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150/degree/C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and relevant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented. 5 refs., 8 figs., 3 tabs

  11. Recent results on cleaning and conditioning the ATF vacuum system

    International Nuclear Information System (INIS)

    Langley, R.A.; Clark, T.L.; Glowienka, J.C.; Goulding, R.H.; Mioduszewski, P.K.; Rasmussen, D.A.; Rayburn, T.F.; Schaich, C.R.; Shepard, T.D.; Simpkins, J.E.; Yarber, J.L.

    1990-01-01

    Techniques for cleaning and conditioning the vacuum vessel of the Advanced Toroidal Facility (ATF) and its internal components are described. The vacuum vessel cleaning technique combines baking to 150 degree C and glow discharges with hydrogen gas. Chromium gettering is used to further condition the system. The major internal components are the anodized aluminum baffles in the Thomson scattering system, a graphite-shielded ICRF antenna, two graphite limiters, and a diagnostic graphite plate. Three independent heating systems are used to bake some of the major components of the system. The major characteristics used for assessing cleanliness and conditioning progress are the maximum pressure attained during bakeout, the results of gas analysis, and revelant plasma parameters (e.g., time to radiative decay). Details of the various cleaning and conditioning procedures and results are presented

  12. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  13. Surface chemistry of tribochemical reactions explored in ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Lara-Romero, Javier; Maya-Yescas, Rafael; Rico-Cerda, Jose Luis; Rivera-Rojas, Jose Luis; Castillo, Fernando Chinas; Kaltchev, Matey; Tysoe, Wilfred T.

    2006-01-01

    The thermal decomposition of model extreme-pressure lubricant additives on clean iron was studied in ultrahigh vacuum conditions using molecular beam strategies. Methylene chloride and chloroform react to deposit a solid film consisting of FeCl 2 and carbon, and evolve only hydrogen into the gas phase. No gas-phase products and less carbon on the surface are detected in the case of carbon tetrachloride. Dimethyl and diethyl disulfide react on clean iron to deposit a saturated sulfur plus carbon layer at low temperatures (∼600 K) and an iron sulfide film onto a Fe + C underlayer at higher temperatures (∼950 K). Methane is the only gas-phase product when dimethyl disulfide reacts with iron. Ethylene and hydrogen are detected when diethyl disulfide is used

  14. Developpement D'un Modele Climatique Regional: Fizr Simulation des Conditions de Janvier de la Cote Ouest Nord Americaine

    Science.gov (United States)

    Goyette, Stephane

    1995-11-01

    Le sujet de cette these concerne la modelisation numerique du climat regional. L'objectif principal de l'exercice est de developper un modele climatique regional ayant les capacites de simuler des phenomenes de meso-echelle spatiale. Notre domaine d'etude se situe sur la Cote Ouest nord americaine. Ce dernier a retenu notre attention a cause de la complexite du relief et de son controle sur le climat. Les raisons qui motivent cette etude sont multiples: d'une part, nous ne pouvons pas augmenter, en pratique, la faible resolution spatiale des modeles de la circulation generale de l'atmosphere (MCG) sans augmenter a outrance les couts d'integration et, d'autre part, la gestion de l'environnement exige de plus en plus de donnees climatiques regionales determinees avec une meilleure resolution spatiale. Jusqu'alors, les MCG constituaient les modeles les plus estimes pour leurs aptitudes a simuler le climat ainsi que les changements climatiques mondiaux. Toutefois, les phenomenes climatiques de fine echelle echappent encore aux MCG a cause de leur faible resolution spatiale. De plus, les repercussions socio-economiques des modifications possibles des climats sont etroitement liees a des phenomenes imperceptibles par les MCG actuels. Afin de circonvenir certains problemes inherents a la resolution, une approche pratique vise a prendre un domaine spatial limite d'un MCG et a y imbriquer un autre modele numerique possedant, lui, un maillage de haute resolution spatiale. Ce processus d'imbrication implique alors une nouvelle simulation numerique. Cette "retro-simulation" est guidee dans le domaine restreint a partir de pieces d'informations fournies par le MCG et forcee par des mecanismes pris en charge uniquement par le modele imbrique. Ainsi, afin de raffiner la precision spatiale des previsions climatiques de grande echelle, nous developpons ici un modele numerique appele FIZR, permettant d'obtenir de l'information climatique regionale valide a la fine echelle spatiale

  15. TPX vacuum vessel transient thermal and stress conditions

    International Nuclear Information System (INIS)

    Feldshteyn, Y.; Dinkevich, S.; Feng, T.; Majumder, D.

    1995-01-01

    The TPX vacuum vessel provides the vacuum boundary for the plasma and the mechanical support for the internal components. Another function of the vacuum vessel is to contain neutron shielding water in the double wall space during normal operation. This double wall space serves as a heat reservoir for the entire vacuum vessel during bakeout. The vacuum vessel and the internal components are subjected to thermal stresses induced by a nonuniform temperature distribution within the structure during bakeout. A successful Conceptual Design Review in March 1993 has established superheated steam as the heating source of the vacuum vessel. A transient bakeout mode of the vacuum vessel and in-vessel components has been analyzed to evaluate transient period duration, proper temperature level, actual thermal stresses and performance of the steam equipment. Thermally, the vacuum vessel structure may be considered as an adiabatic system because it is perfectly insulated by the strong surrounding vacuum and multiple layers of superinsulation. Important aspects of the analysis are described herein

  16. Recovery process of wall condition in KSTAR vacuum vessel after temporal machine-vent for repair

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke; Hong, Suk-Ho; Lee, Hyunmyung; Song, Jae-in; Jung, Nam-Yong; Lee, Kunsu; Chu, Yong; Kim, Hakkun; Park, Kaprai; Oh, Yeong-Kook

    2015-10-15

    Highlights: • Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. • For example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, and PFC damaged by high energy plasma. • Here, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. • It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. • This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident. - Abstract: Efforts have been made to obtain vacuum condition that is essential for the plasma experiments. Under certain situations, for example, the vacuum vessel should be vented to repair in-vessel components such as diagnostic shutter, exchange of window for diagnostic equipment, and PFC damaged by high energy plasma. For the quick restart of the campaign, a recovery process was established to make the vacuum condition acceptable for the plasma experiment. In this paper, we present the recovery process of wall condition in KSTAR after temporal machine-vent for repair. It is found that an acceptable vacuum condition has been achieved only by plasma based wall conditioning techniques such as baking, GDC, and boronization. This study was that the proper recovering method of the vacuum condition should be developed according to the severity of the accident.

  17. Evaluation of supercapacitors for space applications under thermal vacuum conditions

    Science.gov (United States)

    Chin, Keith C.; Green, Nelson W.; Brandon, Erik J.

    2018-03-01

    Commercially available supercapacitor cells from three separate vendors were evaluated for use in a space environment using thermal vacuum (Tvac) testing. Standard commercial cells are not hermetically sealed, but feature crimp or double seam seals between the header and the can, which may not maintain an adequate seal under vacuum. Cells were placed in a small vacuum chamber, and cycled between three separate temperature set points. Charging and discharging of cells was executed following each temperature soak, to confirm there was no significant impact on performance. A final electrical performance check, visual inspection and mass check following testing were also performed, to confirm the integrity of the cells had not been compromised during exposure to thermal cycling under vacuum. All cells tested were found to survive this testing protocol and exhibited no significant impact on electrical performance.

  18. Electrospray ionization deposition of BSA under vacuum conditions

    Science.gov (United States)

    Hecker, Dominic; Gloess, Daniel; Frach, Peter; Gerlach, Gerald

    2015-05-01

    Vacuum deposition techniques like thermal evaporation and CVD with their precise layer control and high layer purity often cannot be applied for the deposition of chemical or biological molecules. The molecules are usually decomposed by heat. To overcome this problem, the Electrospray ionization (ESI) process known from mass spectroscopy is employed to transfer molecules into vacuum and to deposit them on a substrate. In this work, a homemade ESI tool was used to deposit BSA (Bovine serum albumin) layers with high deposition rates. Solutions with different concentrations of BSA were prepared using a methanol:water (MeOH:H2O) mixture (1:1) as solvent. The influence of the substrate distance on the deposition rate and on the transmission current was analyzed. Furthermore, the layer thickness distribution and layer adhesion were investigated.

  19. Giant Persistent Photoconductivity of the WO3 Nanowires in Vacuum Condition

    Directory of Open Access Journals (Sweden)

    Huang Kai

    2011-01-01

    Full Text Available Abstract A giant persistent photoconductivity (PPC phenomenon has been observed in vacuum condition based on a single WO3 nanowire and presents some interesting results in the experiments. With the decay time lasting for 1 × 104 s, no obvious current change can be found in vacuum, and a decreasing current can be only observed in air condition. When the WO3 nanowires were coated with 200 nm SiO2 layer, the photoresponse almost disappeared. And the high bias and high electric field effect could not reduce the current in vacuum condition. These results show that the photoconductivity of WO3 nanowires is mainly related to the oxygen adsorption and desorption, and the semiconductor photoconductivity properties are very weak. The giant PPC effect in vacuum condition was caused by the absence of oxygen molecular. And the thermal effect combining with oxygen re-adsorption can reduce the intensity of PPC.

  20. Experiences on vacuum conditioning in the cryostat of KSTAR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke [National Fusion Research Institute, Daejeon (Korea, Republic of); Woo, I.S.; Chang, Y.B.; Kwag, S.W.; Song, N.H.; Bang, E.N.; Hong, J.S.; Chu, Y.; Park, K.R. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Highlights: ► The vacuum of the cryostat has been stably maintained during the KSTAR operation. ► The detected cold leak at the PF/CS coils and CS structure. ► The present helium leak makes no issue for the cryostat operation. -- Abstract: Korea Superconducting Tokamak Advanced Research (KSTAR) device has been successfully operated for the plasma experiment from KSTAR 1st campaign to 4th campaign. The main pumping system for the cryostat has to maintain the target pressure below 1.0 × 10{sup −4} mbar at room temperature and 1.0 × 10{sup −5} mbar at extremely low temperature for the plasma experiment against the air leak coming from ports of vessel and/or the helium leak from cooling loops in the cryostat. No leak has been detected at room temperature. Unexpectedly, the cold-leak appeared in the cryostat at temperature around 50 K during the cool-down in the KSTAR 2nd campaign. We carefully analyzed the characteristics of detected cold leak because it can cause the increase of the base pressure in the cryostat. After the cool-down, the leak detection was performed to locate the position and size of the leak by the pressurizing the loops. As a result, it is found that the cold leak was located at cooling loops for PF/CS coils and CS structure. Nevertheless, the vacuum inside the cryostat was well maintained below 6.0 × 10{sup −8} mbar during the entire operation period. The impact of the He-leak in present status on the plasma operation is negligible. However, we have found that the leak rate increases as a function of time. Therefore careful monitoring on cold-leak is an important technical issue for the operation of superconducting tokamak.

  1. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Energy Technology Data Exchange (ETDEWEB)

    Chan, C.K., E-mail: ckchan@nsrrc.org.tw; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-04-11

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  2. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    Science.gov (United States)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  3. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    International Nuclear Information System (INIS)

    Chan, C.K.; Chang, C.C.; Shueh, C.; Yang, I.C.; Wu, L.H.; Chen, B.Y.; Cheng, C.M.; Huang, Y.T.; Chuang, J.Y.; Cheng, Y.T.; Hsiao, Y.M.; Sheng, Albert

    2017-01-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  4. Plasma modeling of MFTF-B and the sensitivity to vacuum conditions

    International Nuclear Information System (INIS)

    Porter, G.D.; Rensink, M.

    1984-01-01

    The Mirror Fusion Test Facility (MFTF-B) is a large tandem mirror device currently under construction at Lawrence Livermore National Laboratory. The completed facility will consist of a large variety of components. Specifically, the vacuum vessel that houses the magnetic coils is basically a cylindrical vessel 60 m long and 11 m in diameter. The magnetics system consists of some 28 superconducting coils, each of which is located within the main vacuum vessel. Twenty of these coils are relatively simple solenoidal coils, but the remaining eight are of a more complicated design to provide an octupole component to certain regions of the magnetic field. The vacuum system is composed of a rough vacuum chain, used to evacuate the vessel from atmospheric pressure, and a high vacuum system, used to maintain good vacuum conditions during a plasma shot. High vacuum pumping is accomplished primarily by cryogenic panels cooled to 4.5 0 K. The MFTF-B coil set is shown together with typical axial profiles of magnetic field (a), electrostatic potential (b), and plasma density (c). The plasma is divided into nine regions axially, as labelled on the coil set in Figure 1. The central cell, which is completely azimuthally symmetric, contains a large volume plasma that is confined by a combination of the magnetic fields and the electrostatic potentials in the yin-yang cell

  5. Pyrolysis of propane under vacuum carburizing conditions. An experimental and modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Khan, R.U.; Bajohr, S.; Buchholz, D.; Reimert, R. [Engler-Bunte-Institut, Bereich Gas, Erdoel und Kohle, Engler Bunte Ring 1, Universitaet Karlsruhe, 76131 Karlsruhe (Germany); Minh, H.D.; Norinaga, K.; Janardhanan, V.M.; Tischer, S.; Deutschmann, O. [Institute of Chemical Technology, University of Karlsruhe, 76128 Karlsruhe (Germany)

    2008-03-15

    Propane has been pyrolyzed in a flow reactor system at different temperatures ranging from 640 C to 1010 C and at 8 mbar of partial pressure which are typical vacuum carburizing conditions for steel. Nitrogen was used as a carrier gas. The products of pyrolysis were collected and analyzed by gas chromatography. The reactor was numerically simulated by 1D and 2D flow models coupled to a detailed gas phase reaction mechanism. The gas atmosphere composition has been predicted under the conditions of vacuum carburizing of steel. (author)

  6. Lipid oxidation and color changes of goose meat stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Orkusz, A; Haraf, G; Okruszek, A; Werenska-Sudnik, M

    2017-03-01

    The objective of the work was to investigate the color and lipid oxidation changes of goose breast meat packaged in vacuum and modified atmosphere (MA) conditions consisting of 80% O2, 20% CO2, and stored in refrigerated conditions at 4°C. Color stability was monitored by determining total heme pigments concentration; relative concentration of myoglobin, oxymyoglobin, and metmyoglobin; parameters of color L*, a*, b*, and sensory evaluation of the surface color. Lipid stability was measured by determining thiobarbituric acid reactive substances (TBARS). The samples were examined in 24 h after slaughter (unpacked muscles) and on d 4, 7, 9, 11 of storage (muscles packed in vacuum and in MA). Through the time of storage, samples packed in MA had higher TBARS values in comparison to the meat packed in vacuum. For samples packed in two types of atmospheres, the total pigments concentration decreased gradually within 11 d of storage. It was observed that relative metmyoglobin concentration increased whereas relative oxymyoglobin concentration decreased in total heme pigments in the MA stored muscle. The relative concentration of all three myoglobin forms sample packed in vacuum remained unchanged. The color parameters (L*, a*, b*) did not change for 11 d of storage for the vacuum packed meat. The value of the color parameter a* decreased and the value of the color parameters L* and b* increased in the samples packaged in MA. The data prove that if you store goose meat in MA (consisting of 80% O2, 20% CO2) or vacuum, the unchanged surface color is preserved for 9 and 11 day, respectively.Vacuum appears to be a better method as regards the maintaining of lipid stability in goose meat. © 2016 Poultry Science Association Inc.

  7. Fretting Wear Damage Mechanism of Uranium under Various Atmosphere and Vacuum Conditions

    Directory of Open Access Journals (Sweden)

    Zhengyang Li

    2018-04-01

    Full Text Available A fretting wear experiment with uranium has been performed on a linear reciprocating tribometer with ball-on-disk contact. This study focused on the fretting behavior of the uranium under different atmospheres (Ar, Air (21% O2 + 78% N2, and O2 and vacuum conditions (1.05 and 1 × 10−4 Pa. Evolution of friction was assessed by coefficient of friction (COF and friction-dissipated energy. The oxide of the wear surface was evaluated by Raman spectroscopy. The result shows that fretting wear behavior presents strong atmosphere and vacuum condition dependence. With increasing oxygen content, the COF decreases due to abrasive wear and formation of oxide film. The COF in the oxygen condition is at least 0.335, and it has a maximum wear volume of about 1.48 × 107 μm3. However, the COF in a high vacuum condition is maximum about 1.104, and the wear volume is 1.64 × 106 μm3. The COF in the low vacuum condition is very different: it firstly increased and then decreased rapidly to a steady value. It is caused by slight abrasive wear and the formation of tribofilm after thousands of cycles.

  8. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1998-01-01

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  9. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  10. Method and apparatus for scientific analysis under low temperature vacuum conditions

    Science.gov (United States)

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  11. Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature

    Science.gov (United States)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    The reaction between three types of commercial perfluoroalkyl polyether (PFPE) oils and stainless steel 440C was investigated experimentally during sliding under ultrahigh vacuum conditions at room temperature. It is found that the tribological reaction of PFPE is mainly affected by the activity of the mechanically formed fresh surfaces of metals rather than the heat generated at the sliding contacts. The fluorides formed on the wear track act as a boundary layer, reducing the friction coefficient.

  12. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  13. Vacuum energy and Casimir force in the presence of a dimensional parameter in the boundary condition

    International Nuclear Information System (INIS)

    Lebedev, S.L.

    2001-01-01

    The Hamiltonian for a scalar field that satisfies the boundary condition -∂ n φ=(1/δ)φ must include a surface potential energy. The corresponding term in the Casimir energy E-tilde C proves to be a leading one when the dimension of the region is l ∼ δ. The energy E-tilde C does not involve arbitrariness associated with regularization and is an unambiguously determined function of the field mass m, the size l, and the penetration depth δ. The inclusion of the surface term is of importance for ensuring that the derivative -∂ E-tilde C /∂l is equal to the ll component of the vacuum energy-momentum tensor. The Casimir energy E-tilde C is related to its volume component E C by a Legendre transformation where the quantity conjugate to 1/δ is the product of the vacuum surface energy and δ. If δ is negative and if h-bar/mc> vertical bar δ vertical bar, there exists a critical value l=l c (δ) above which (l>l c ) the vacuum is unstable; if a self-interaction of the form φ 4 is taken into account, this will lead to a phase transition accompanied by the formation of a condensate of the field φ. If δ=+0 or ∞ and if the dimensionalities are even, it is possible to construct a vacuum energy-momentum tensor (not only energy) that is finite over the entire space. Specially chosen counterterms leave unchanged the analytic dependence of the vacuum energy on the dimensionality of space and the character of the coordinate dependence of the energy density for x>h-bar/mc

  14. Registration properties of different types of CR-39 in vacuum conditions of irradiation

    International Nuclear Information System (INIS)

    Golovchenko, A.N.; Tret'yakova, S.P.

    1991-01-01

    Sensitivity change has been studied of different types of CR-39 detectors (Pershore, Tastrak, Intercast, Ma-ND/α) in dependence on holding time of detector in vacuum chamber at the residual pressure P ≅ 2x10 -2 and ≅ 5x10 -3 Pa before their irradiation with alpha particles from thin 238 Pu source and accelerated charged ions with atomic number Z=2-10 and energy of 9.1 MeV/nucleon. Polymer of Intercast Company turned out to be the most stable one to vacuum effect, and detector does not change the sensitivity up to response function REL 200 ≅ 1 MeVxcm 2 xmg -1 in the mentioned experiment conditions. 7 refs.; 3 figs

  15. Oxidation and Reduction of Liquid SnPb (60/40) under Ambient and Vacuum Conditions

    DEFF Research Database (Denmark)

    Kuhmann, Jochen Friedrich; Maly, K.; Preuss, A.

    1998-01-01

    One of the most straightforward approaches to fluxless solder bonding is using vacuum conditions to prevent further oxidation and, where needed, to reduce solder oxides by the use of molecular hydrogen (H-2).(1-3) This study On oxidation and reduction of solder oxides on SnPb (60/40) is aimed...... to provide a better understanding for fluxless solder bonding applications under controlled atmospheric conditions; By means of scanning Auger spectroscopy it is shown, that growth of oxide films on metallic SnPb above the eutectic temperature can be significantly reduced by decreasing the O-2 partial...

  16. Behaviour of gas conditions during vacuum arc discharges used for deposition of thin films

    International Nuclear Information System (INIS)

    Strzyzewski, J.; Langner, J.; Sadowski, M.; Witkowski, J.; Mirowski, R.; Catani, L.; Cianchi, A.; Russo, R.; Tazzari, S.

    2005-01-01

    The vacuum arc, which is one of the oldest techniques used for the deposition of thin films, is now widely used for the Plasma Immersion Ion Implantation and Deposition (PIII and D) in laboratory and industry. Despite of high progress in this field observed during last three decades, involving e.g. magnetic filters for the elimination of micro-droplets, some problems have not been resolved so far. The paper concerns an important problem which is connected with the inclusion of some impurities in the deposited metal film. It was found that appearance of contaminants in the film is induced mainly by water vapour remnants inside the vacuum chamber. The high adsorption of such contaminants by the deposited thin films is observed particularly in so-called getter materials, as niobium and titanium. Such materials can absorb impurities from the surrounding and dissolve them inside the layer. In order to eliminate this problem, in 2000 a new approach was proposed to perform arc discharges at the ultra-high vacuum (UHV) conditions. It was demonstrated experimentally that the deposited pure Nb-films have similar properties to the bulk-Nb samples. These results are very promising from the point of the application of such coating processes in super-conducting RF cavities of future charged-particle accelerators. The paper describes different methods used for the reduction of the background pressure in the UHV stand below 10 -10 hPa. The most important methods involve the selection of appropriate materials and the backing of whole vacuum system. In order to reduce the contaminants a laser triggering system has been applied instead of a common system, which used high-voltage discharges along the surface of an insulated trigger electrode. Particular attention is paid to a comparison of different gas conditions during arc discharges at high-vacuum conditions (background pressure in the range of 10 -8 -10 -7 hPa) and at UHV experiments (background pressure within the range of 10 -11

  17. Mercury Conditions for the MESSENGER Mission Simulated in High- Solar-Radiation Vacuum Tests

    Science.gov (United States)

    Wong, Wayne A.

    2003-01-01

    The MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) spacecraft, planned for launch in March 2004, will perform two flybys of Mercury before entering a year-long orbit of the planet in September 2009. The mission will provide opportunities for detailed characterization of the surface, interior, atmosphere, and magnetosphere of the closest planet to the Sun. The NASA Glenn Research Center and the MESSENGER spacecraft integrator, the Johns Hopkins University Applied Physics Laboratory, have partnered under a Space Act Agreement to characterize a variety of critical components and materials under simulated conditions expected near Mercury. Glenn's Vacuum Facility 6, which is equipped with a solar simulator, can simulate the vacuum and high solar radiation anticipated in Mercury orbit. The MESSENGER test hardware includes a variety of materials and components that are being characterized during the Tank 6 vacuum tests, where the hardware will be exposed to up to 11 suns insolation, simulating conditions expected in Mercury orbit. In 2002, ten solar vacuum tests were conducted, including beginning of life, end of life, backside exposure, and solar panel thermal shock cycling tests. Components tested include candidate solar array panels, sensors, thermal shielding materials, and communication devices. As an example, for the solar panel thermal shock cycling test, two candidate solar array panels were suspended on a lift mechanism that lowered the panels into a liquid-nitrogen-cooled box. After reaching -140 C, the panels were then lifted out of the box and exposed to the equivalent of 6 suns (8.1 kilowatts per square meters). After five cold soak/heating cycles were completed successfully, there was no apparent degradation in panel performance. An anticipated 100-hr thermal shield life test is planned for autumn, followed by solar panel flight qualification tests in winter. Glenn's ongoing support to the MESSENGER program has been instrumental in

  18. Development of an inspection robot under iter relevant vacuum and temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hatchressian, J-C; Bruno, V; Gargiulo, L; Bayetti, P; Cordier, J-J; Samaille, F [Association Euratom-CEA, DSM/Departement de Recherche sur la Fusion Controlee, CEA Cadarache, F-13108 Saint Paul-Lez-Durance Cedex (France); Keller, D; Perrot, Y; Friconneau, J-P [CEA, LIST, Service de Robotique Interactive, 18 route du Panorama, BP6, Fontenay aux Roses F-92265 France (France); Palmer, J D [EFDA-CSU Max-Planck-Institut fuer Plasma Physik Boltzmannstr.2, D-85748 Garching Germany (Germany)

    2008-03-15

    Robotic operations are one of the major maintenance challenges for ITER and future fusion reactors. In vessel inspection operations without loss of conditioning could be very mandatory. Within this framework, the aim of the Articulated Inspection Arm (AIA) project is to demonstrate the feasibility of a multi-purpose in-vessel Remote Handling inspection system. It is a long reach, composed of 5 segments with in all 8 degrees of freedom, limited payload carrier (up to 10kg) and a total range of 8m. The project is currently developed by the CEA within the European work program. Some tests will validate chosen concepts for operations under ITER relevant vacuum and temperature conditions. The presence of magnetic fields, radiation and neutron beams will not be considered. This paper deals with the choices of the materials to minimize the out-gassing under vacuum and high temperature during conditioning, the implantation of the electronics which are enclosed in boxes with special gaskets, the design of the first embedded process which is a viewing system.

  19. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Arenillas, M.; Mateo-Marti, E., E-mail: mateome@cab.inta-csic.es

    2015-09-08

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions.

  20. Spectroscopic study of cystine adsorption on pyrite surface: From vacuum to solution conditions

    International Nuclear Information System (INIS)

    Sanchez-Arenillas, M.; Mateo-Marti, E.

    2015-01-01

    Highlights: • Successful adsorption of cystine on pyrite surface under several conditions. • Detailed XPS spectroscopic characterization of cystine adsorption on pyrite surface. • Spectroscopy evidence, oxidation and anoxic conditions adjust molecular adsorption. • Molecular chemistry on pyrite is driven depending on the surrounding conditions. • The cystine/pyrite(100) model is in good agreement with Wächtershäuser’s theory. - Abstract: We characterized the adsorption of cystine molecules on pyrite surface via X-ray photoelectron spectroscopy. Anoxic conditions were simulated under ultra-high-vacuum conditions. In contrast, to simulate oxidation conditions, the molecules were adsorbed on pyrite surface from solution. A novel comparative analysis revealed remarkable differences with respect to molecular adsorption and surface chemistry induced by environmental conditions. Molecular adsorption under anoxic conditions was observed to be more favorable, concentrating a large number of molecules on the surface and two different chemical species. In contrast, the presence of oxygen induced an autocatalytic oxidation process on the pyrite surface, which facilitated water binding on pyrite surface and partially blocked molecular adsorption. Pyrite is a highly reactive surface and contains two crucial types of surface functional groups that drive molecular chemistry on the surface depending on the surrounding conditions. Therefore, the system explored in this study holds interesting implications for supporting catalyzed prebiotic chemistry reactions

  1. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10"–"8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m"2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H_2O) vapor by 95% and oxygen (O_2) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10"−"8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  2. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    Directory of Open Access Journals (Sweden)

    A. Descoeudres

    2009-03-01

    Full Text Available The rf accelerating structures of the Compact Linear Collider (CLIC require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultrahigh vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100  MV/m for Al to 850  MV/m for stainless steel, and is around 170  MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at the surface with a vacuum heat treatment, typically at 875°C for 2 hours. Surface finishing treatments of Cu samples only affect the very first breakdowns. More generally, surface treatments have an effect on the conditioning process itself, but not on the average breakdown field reached after the conditioning phase. In analogy to rf, the breakdown probability has been measured in dc with Cu and Mo electrodes. The dc data show similar behavior as rf as a function of the applied electric field.

  3. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.

    Science.gov (United States)

    Chayjan, Reza Amiri; Alaei, Behnam

    2016-01-01

    Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired

  4. Hydrogen poisoning of the CO oxidation reaction on Pt and Pd under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Strozier, J.A.

    1977-01-01

    The poisoning by hydrogen of the catalyzed oxidation of CO on Pt and Pd under ultrahigh vacuum conditions was investigated. ac pulsing techniques are used in which the pressure of the reactant CO in the reaction chamber is modulated periodically by means of a fast piezoelectric ultrahigh vacuum valve, and the ac component of the product CO 2 is recorded mass spectroscopically by phase-sensitive techniques. The ac CO 2 production rate is measured as a function of hydrogen pressure (1 - 10 x 10 -9 toor) at constant CO and O 2 pressures (approximately equal to 5 x 10 -8 torr), and constant temperature (approximately equal to 700 K). Exact theoretical calculations of CO 2 production rates were carried out employing several models, i.e., oxygen burn-off by hydrogen, incorporating both the Eley-Rideal and Langmuir-Hinshelwood mechanisms. From a comparison with the experimental results, the probable reaction is of the Langmuir-Hinshelwood type and the relevant rate constant is also determined. These results are compared with other results in the literature on hydrogen oxidation on the surface of Pt

  5. Mechanical properties of lunar materials under anhydrous, hard vacuum conditions: applications of lunar glass structural components

    International Nuclear Information System (INIS)

    Blacic, J.D.

    1984-01-01

    Lunar materials and derivatives such as glass may possess very high tensile strengths compared to equivalent materials on earth because of the absence of hydrolytic weakening processes on the moon and in the hard vacuum of free space. Hydrolyzation of Si-O bonds at crack tips or dislocations reduces the strength of silicates by about an order of magnitude in earth environments. However, lunar materials are extremely anhydrous and hydrolytic weakening will be suppressed in free space. Thus, the geomechanical properties of the moon and engineering properties of lunar silicate materials in space environments will be very different than equivalent materials under earth conditions where the action of water cannot be conveniently avoided. Possible substitution of lunar glass for structural metals in a variety of space engineering applications enhances the economic utilization of the moon. 26 references, 3 figures, 2 tables

  6. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  7. Developpement

    Directory of Open Access Journals (Sweden)

    Fok Michel

    2002-03-01

    Full Text Available Cette contribution souligne le fait que la plupart des innovations techniques ont bénéficié d’arrangements institutionnels adaptés qui ont favorisé l’adoption de pratiques techniques nouvelles. Elle met en exergue la nécessité de considérer conjointement les innovations techniques et institutionnelles pour aider à réaliser un gain de productivité qui permettrait de renforcer la place des pays cotonniers de l’Afrique de l’Ouest et du Centre dans le monde. Malgré leur intérêt, les nouvelles technologies ne constituent pas la réponse unique, comme ce serait le cas dans les pays économiquement développés, dans la conception de nouvelles techniques culturales pour ces pays africains. Ces techniques doivent d’abord être conformes aux contraintes des paysans, par exemple, en termes de limitation de main-d’œuvre ou de finance. Le comportement des petits paysans face à l’incertitude et la limitation de leurs moyens est brièvement étudié. Cette analyse permet de mettre en évidence les éléments de cahier des charges des nouvelles techniques destinées à soulager les contraintes des paysans. Des exemples de techniques possibles sont présentés. Des cas spécifiques d’interaction entre innovation technique et innovation institutionnelle sont examinés. La mise au point de techniques efficaces et adaptées exige un changement dans le financement et dans la réalisation de la recherche.

  8. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  9. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  10. Conditioning of the vacuum chamber of the Tokamak Novillo; Acondicionamiento de la camara de vacio del Tokamak Novillo

    Energy Technology Data Exchange (ETDEWEB)

    Valencia A, R; Lopez C, R; Melendez L, L; Chavez A, E; Colunga S, S; Gaytan G, E

    1992-03-15

    The obtained experimental results of the implementation of two techniques of present time for the conditioning of the internal wall of the chamber of discharges of the Tokamak Novillo are presented, which has been designed, built and put in operation in the Laboratory of Plasma Physics of the National Institute of Nuclear Research (ININ). These techniques are: the vacuum baking and the low energy pulsed discharges, which were applied after having reached an initial pressure of the order of 10{sup -7} Torr. with a system of turbomolecular pumping previous preparation of surfaces and vacuum seals. The analysis of residual gases was carried out with a mass spectrometer before and after conditioning. The obtained results show that the vacuum baking it was of great effectiveness to reduce the value of the initial pressure in short time, in more of a magnitude order and the low energy discharges reduced the oxygen at worthless levels with regard to the initial values. (Author)

  11. Improvement of initial vacuum condition along 2008-2010 KSTAR campaign by vessel baking

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Pyo, E-mail: kpkim@nfri.er.ke [National Fusion Research Institute, Gwahagno 113, Daejeon 305-333 (Korea, Republic of); Hong, S.H.; Jung, N.Y.; Kim, S.T.; Kim, H.T.; Lee, K.S.; Kim, K.M.; Bang, E.N.; Chang, Y.B.; Kim, H.K.; Chu, Y.; Kim, Y.O.; Park, S.H.; Woo, I.S.; Hong, J.S.; Kim, S.W.; Park, K.R.; Na, H.K.; Yang, H.L.; Kim, Y.S. [National Fusion Research Institute, Gwahagno 113, Daejeon 305-333 (Korea, Republic of)

    2011-10-15

    Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H{sub 2}O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 x 10{sup -4} mbar l s{sup -1} which is increased by a factor of 3 (6.49 x 10{sup -4} mbar l s{sup -1}) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 x 10{sup -5} mbar l m{sup -2} s{sup -1} to 1.22 x 10{sup -5} mbar l m{sup -2} s{sup -1} due to the upgrade of baking system and series of baking operation.

  12. Improvement of initial vacuum condition along 2008-2010 KSTAR campaign by vessel baking

    International Nuclear Information System (INIS)

    Kim, Kwang Pyo; Hong, S.H.; Jung, N.Y.; Kim, S.T.; Kim, H.T.; Lee, K.S.; Kim, K.M.; Bang, E.N.; Chang, Y.B.; Kim, H.K.; Chu, Y.; Kim, Y.O.; Park, S.H.; Woo, I.S.; Hong, J.S.; Kim, S.W.; Park, K.R.; Na, H.K.; Yang, H.L.; Kim, Y.S.

    2011-01-01

    Korea Superconducting Tokamak Advanced Research (KSTAR) is upgraded for its KSTAR 3rd campaign for new target mission to produce the D-shaped plasma with a target plasma current of 500 kA and/or pulse length of 5 s. New Plasma Facing Components (PFCs) are installed which leads to the increase of the surface area of the vessel by a factor of about 5. The vacuum conditioning such as the vessel baking has been performed in order to remove various kinds of impurities including H 2 O, carbon and oxygen for the plasma. The total outgassing rate in the KSTAR 1st campaign was measured as 1.5 x 10 -4 mbar l s -1 which is increased by a factor of 3 (6.49 x 10 -4 mbar l s -1 ) in the KSTAR 3rd campaign. Nevertheless, the outgassing rates per unit area have been decreased from 9.31 x 10 -5 mbar l m -2 s -1 to 1.22 x 10 -5 mbar l m -2 s -1 due to the upgrade of baking system and series of baking operation.

  13. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  14. Upgrading the lubricity of bio-oil via homogeneous catalytic esterification under vacuum distillation conditions

    International Nuclear Information System (INIS)

    Xu, Yufu; Zheng, Xiaojing; Peng, Yubin; Li, Bao; Hu, Xianguo; Yin, Yanguo

    2015-01-01

    In order to accelerate the application of bio-oil in the internal combustion engines, homogeneous catalytic esterification technology under vacuum distillation conditions was used to upgrade the crude bio-oil. The lubricities of the crude bio-oil (BO) and refined bio-oil with homogeneous catalytic esterification (RBO hce ) or refined bio-oil without catalyst but with distillation operation (RBO wc ) were evaluated by a high frequency reciprocating test rig according to the ASTM D 6079 standard. The basic physiochemical properties and components of the bio-oils were analyzed. The surface morphology, contents and chemical valence of active elements on the worn surfaces were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy, respectively. The results show that RBO hce has better lubricities than those of BO, but RBO wc has worse lubricities than those of BO. The tribological mechanisms of the bio-oils are attributed to the combined actions of lubricating films and factors that will break the film. Compared with BO, plenty of phenols in RBO wc results in corrosion of the substrate and destroys the integrity of the lubricating films, which is responsible for its corrosive wear. However, more esters and alkanes in RBO hce contribute to forming a complete boundary lubricating film on the rubbed surfaces which result in its excellent antifriction and antiwear properties. - Highlights: • Refined bio-oil was prepared through homogeneous catalytic esterification technology. • Properties of the bio-oils before and after refining were assessed by HFRR. • Refined bio-oil showed better lubricities than crude bio-oil. • More esters and alkanes in refined bio-oil contributed to forming superior boundary lubrication

  15. Quality of Meat ( from Male Fallow Deer ( Packaged and Stored under Vacuum and Modified Atmosphere Conditions

    Directory of Open Access Journals (Sweden)

    N. Piaskowska

    2016-12-01

    Full Text Available This study evaluated the effect of vacuum and modified atmosphere (40% CO2+60% N2, MA packaging on the chemical composition, physicochemical properties and sensory attributes of chill-stored meat from 10 fallow deer (Dama dama bucks at 17 to 18 months of age. The animals were hunter-harvested in the forests of north-eastern Poland. During carcass dressing (48 to 54 h post mortem, both musculus longissimus muscles were cut out. Each muscle was divided into seven sections which were allocated to three groups: 0, A, and B. Samples 0 were immediately subjected to laboratory analyses. Samples A were vacuum-packaged, and samples B were packaged in MA. Packaged samples were stored for 7, 14, and 21 days at 2°C. The results of the present study showed that the evaluated packaging systems had no significant effect on the quality of fallow deer meat during chilled storage. However, vacuum-packaged meat samples were characterised by greater drip loss. Vacuum and MA packaging contributed to preserving the desired physicochemical properties and sensory attributes of meat during 21 days of storage. Regardless of the packaging method used, undesirable changes in the colour, water-holding capacity and juiciness of meat, accompanied by tenderness improvement, were observed during chilled storage.

  16. Analysis of conditions for magnetron discharge initiation at vacuum camera testing

    International Nuclear Information System (INIS)

    Tzeneva, Raina; Dineff, Peter; Darjanova, Denitza

    2002-01-01

    Models of electric field distribution for two typical cases of vacuum camera internal pressure control are investigated. New relations between the maximum magnetron discharge current value I max and the maximum electric field strength radial component value E τ max are established. (Author)

  17. Ion effects in the SLC electron damping ring under exceptionally poor vacuum conditions

    International Nuclear Information System (INIS)

    Zimmermann, F.; Krejcik, P.; Minty, M.; Pritzkau, D.; Raubenheimer, T.; Ross, M.; Woodley, M.

    1997-10-01

    In 1996, due to a catastrophic kicker chamber failure in the SLC electron damping ring, the ring vacuum system was contamianted for several months. During this time, the vertical emittance of the beam extracted from the ring was increased by a large factor (4--20). The emittance slowly decreased as the vacuum pressure gradually improved. At the same time, an intermittent vertical instability was observed. Both the emittance blow-up and the instability behavior depended strongly on beam current, ring pressure, number of bunches in the ring (1 or 2), duty cycle, store time and betatron tunes. In this report, the authors describe the observations, and compare them with predictions from classical ion-trapping and ion-instability theories

  18. Modeling of complex gas distribution systems operating under any vacuum conditions: Simulations of the ITER divertor pumping system

    International Nuclear Information System (INIS)

    Vasileiadis, N.; Tatsios, G.; Misdanitis, S.; Valougeorgis, D.

    2016-01-01

    Highlights: • An integrated s/w for modeling complex rarefied gas distribution systems is presented. • Analysis is based on kinetic theory of gases. • Code effectiveness is demonstrated by simulating the ITER divertor pumping system. • The present s/w has the potential to support design work in large vacuum systems. - Abstract: An integrated software tool for modeling and simulation of complex gas distribution systems operating under any vacuum conditions is presented and validated. The algorithm structure includes (a) the input geometrical and operational data of the network, (b) the definition of the fundamental set of network loops and pseudoloops, (c) the formulation and solution of the mass and energy conservation equations, (d) the kinetic data base of the flow rates for channels of any length in the whole range of the Knudsen number, supporting, in an explicit manner, the solution of the conservation equations and (e) the network output data (mainly node pressures and channel flow rates/conductance). The code validity is benchmarked under rough vacuum conditions by comparison with hydrodynamic solutions in the slip regime. Then, its feasibility, effectiveness and potential are demonstrated by simulating the ITER torus vacuum system with the six direct pumps based on the 2012 design of the ITER divertor. Detailed results of the flow patterns and paths in the cassettes, in the gaps between the cassettes and along the divertor ring, as well as of the total throughput for various pumping scenarios and dome pressures are provided. A comparison with previous results available in the literature is included.

  19. Conceptual design and application studies of piezoelectric crystal motors under ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Nagler, Jens

    2009-08-01

    For the operation of accelerators it is important that motions in the vacuum occur. The here produced diploma thesis deals with the possibility to perform thes motions with piezocrystal motors in order to abandon wear-susceptible membrane bellows. For this studies have been performed, which should show for which it is useful to apply a piezocrystal motor. Limits are shown, advances and disadvantages are weighted in the thesis. Construction with with subsequent test of a tandem facility and an outlook on possible future concepts form the main content [de

  20. New method for the simultaneous condensation of complete ternary alloy systems under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Mehrtens, A.; Moske, M.; Samwer, K.

    1988-01-01

    An ultrahigh vacuum apparatus is described for the simultaneous condensation of complete ternary alloy systems. Three singly controlled electron beam evaporation sources provide a constant evaporation rate of the different elements. A specially designed rotating mask guarantees a concentration gradient on the substrate according to a ternary phase diagram. The conversion of the actual concentration profile into a standard ternary phase diagram is done by simple computer calculations. They involve corrections for the beam characteristics of the evaporation sources and for the rotating mask. As an example, measurements for the Zr--Cu--Co system are given. The concentration range for the amorphous phase is compared with thermodynamic predictions using Miedema's parameter

  1. Thermal deposition of intact tetrairon(III) single-molecule magnets in high-vacuum conditions.

    Science.gov (United States)

    Margheriti, Ludovica; Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Gatteschi, Dante; Caneschi, Andrea; Chiappe, Daniele; Moroni, Riccardo; de Mongeot, Francesco Buatier; Cornia, Andrea; Piras, Federica M; Magnani, Agnese; Sessoli, Roberta

    2009-06-01

    A tetrairon(III) single-molecule magnet is deposited using a thermal evaporation technique in high vacuum. The chemical integrity is demonstrated by time-of-flight secondary ion mass spectrometry on a film deposited on Al foil, while superconducting quantum interference device magnetometry and alternating current susceptometry of a film deposited on a kapton substrate show magnetic properties identical to the pristine powder. High-frequency electron paramagnetic resonance spectra confirm the characteristic behavior for a system with S = 5 and a large Ising-type magnetic anisotropy. All these results indicate that the molecules are not damaged during the deposition procedure keeping intact the single-molecule magnet behavior.

  2. Cold Vacuum Drying facility heating, ventilation, and Air Conditioning system design description

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    This System Design Description (SDD) addresses the HVAC system for the CVDF. The CVDF HVAC system consists of five subsystems: (1) Administration building HVAC system; (2) Process bay recirculation HVAC system; (3) Process bay local exhaust HVAC and process vent system; (4) Process general supply/exhaust HVAC system; and (5) Reference air system. The HVAC and reference air systems interface with the following systems: the fire protection control system, Monitoring and Control System (MCS), electrical power distribution system (including standby power), compressed air system, Chilled Water (CHW) system, drainage system, and other Cold Vacuum Drying (CVD) control systems not addressed in this SDD

  3. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    International Nuclear Information System (INIS)

    Gordeev, Sergej; Groeschel, Friedrich; Stieglitz, Robert

    2016-01-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10 −3 Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  4. Numerical analysis of high-speed Lithium jet flow under vacuum conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gordeev, Sergej, E-mail: sergej.gordeev@kit.edu; Groeschel, Friedrich; Stieglitz, Robert

    2016-11-01

    The EVEDA Li test loop (ELTL) [1] is aimed at validating the hydraulic stability of the Lithium (Li) target at a velocity up to 20 m/s at vacuum (≈10{sup −3} Pa). The ELTL has been designed to demonstrate the feasibility of the major components providing a neutron production liquid Li target for IFMIF. The rectangular shaped Li jet (cross-section 25 mm × 100 mm) necessitates for heat removal flow velocities of 15–20 m/s along a concave shaped back wall (curvature radius 250 mm) towards the outlet pipe, where the Li jet is subjected to vacuum before it finally enters the collecting quench tank. During the validation experiments within the ELTL acoustic waves within the target outlet pipe have been recorded, indicating potential cavitation processes in the jet impinging region, which may cause premature failures. In order to identify potential cavitation phenomena in correlation with the free jet flow in the outlet pipe a numerical study has been performed. The comparison measured and simulated acoustic emissions exhibits that experimentally deduced cavitation area coincides with the location of the jet wall impingement. The simulations further reveal that a part of the fluid after striking the wall even flows opposite to the gravity vector. This reversed flow is inherently unstable and characterized by waves at first growing and then bursting into droplets. The intense generation of small droplets increases significantly the Li free surface area and lead to a production of Li vapour, which is captured by the jet flow and reintroduced in the main flow. As the static pressure is recovered downstream due to jet impact, the vapour bubbles collapse and hence cavitation likely occurs.

  5. Ultra-High Speed Visualization of the Flashing Instability in Micron Size Nozzles under Vacuum Conditions

    KAUST Repository

    Alghamdi, Tariq A.

    2017-11-01

    I visualized the flash-boiling atomization of liquid jets released into a low pressure environment at frame rates of up to five million frames per second. Such a high temporal resolution allowed us to observe for the first time the bubble expansion mechanism that atomizes the jet. To visualize the dynamics in detail, I focused closely to the outflow of the nozzle using a long distance microscope objective. I documented an abrupt transition from a laminar to a fully external flashing jet by systematically reducing the ambient pressure. I performed experiments with different volatile liquids and using nozzles with different inner diameters. The inner diameters of the nozzles varied from 30 to 480 . Perfluorohexane (PFnH) was our main working fluid, but also methanol, ethanol and 1-bromopropane were tested. Surprisingly, minimum intensity profiles revealed spray angles close to ~360°, meaning drops are ejected in all directions. Also, I measured speeds of bubble expansion up to 140 m/s. That is 45 times faster than the upper bound for inertial growth speed in complete vacuum from the Rayleigh-Plesset equation. I also calculated the trajectories of the ejected droplets as well as the drop speed distribution using particle tracking. I expect that our results bring new insight into the flash-boiling atomization mechanism.

  6. Effects of filtered cathodic vacuum arc deposition (FCVAD) conditions on photovoltaic TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Aramwit, C. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Intarasiri, S. [Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Bootkul, D. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Supsermpol, B.; Seanphinit, N. [Department of General Science, Faculty of Science, Srinakharinwirot University, Bangkok 10110 (Thailand); Western Digital Thailand Co. Ltd., Ayutthaya 13160 (Thailand); Ruangkul, W. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2014-08-15

    Highlights: • Titanium dioxide films were synthesized using the FCVAD technique. • Various FCVAD conditions were tested. • The TiO{sub 2} films were characterized. • The FCVAD condition effects on the film characteristics were studied. • The O{sub 2} pressure had the most important effect on the film quality. - Abstract: Titanium dioxide (TiO{sub 2}) films for photovoltaic applications were synthesized using filtered cathodic vacuum arc deposition (FCVAD) technique. Various deposition conditions were tested for an optimal film formation. The conditions included the oxygen (O{sub 2}) pressure which was varied from a base pressure 10{sup −5} to 10{sup −4}, 10{sup −3}, 10{sup −2} and 10{sup −1} Torr, sample holder bias varied using 0 or −250 V, deposition time varied from 10, 20 to 30 min, and deposition distance varied from 1 to 3 cm. The deposited films were also annealed and compared with unannealed ones. The films under various conditions were characterized using optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS) and Raman spectroscopy techniques. The film transparency increased and thickness decreased to a nanoscale with increasing of the O{sub 2} pressure. The transparent deposited films contained stoichiometric titanium and oxygen under the medium O{sub 2} pressure. The as-deposited films were TiO{sub 2} containing some rutile but no anatase which needed annealing to form.

  7. INFLUENCE OF THE HIGHER ORDER DERIVATIVES ON THE PLANET PERIHELION PRECESSION IN THE EINSTEIN FIELD EQUATIONS FOR VACUUM CONDITION

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2011-04-01

    Full Text Available This paper studies the effect of higher order derivative tensor in the Einstein field equations for vacuum condition on the planet perihelion precession. This tensor was initially proposed as the space-time curvature tensor by Deser and Tekin on discussions about the energy effects caused by this tensor. However, they include this tensor to Einstein field equations as a new model in general relativity theory. This is very interesting since there are some questions in cosmology and astrophysics that have no answers. Thus, they hoped this model could solve those problems by finding analytical or perturbative solution and interpreting it. In this case, the perturbative solution was used to find the Schwarzschild solution and it was also applied to consider the planetary motion in the solar gravitational field. Furthermore, it was proven that the tensor is divergence-free in order to keep the Einstein field equations remain valid.

  8. Optimization of Vacuum Impregnation with Calcium Lactate of Minimally Processed Melon and Shelf-Life Study in Real Storage Conditions.

    Science.gov (United States)

    Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro

    2016-10-05

    Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.

  9. Domain wall network as QCD vacuum and the chromomagnetic trap formation under extreme conditions

    International Nuclear Information System (INIS)

    Nedelko, Sergei N.; Voronin, Vladimir E.

    2015-01-01

    The ensemble of Euclidean gluon field configurations represented by the domain wall network is considered. A single domain wall is given by the sine-Gordon kink for the angle between chromomagnetic and chromoelectric components of the gauge field. The domain wall separates the regions with Abelian self-dual and anti-self-dual fields. The network of the domain wall defects is introduced as a combination of multiplicative and additive superpositions of kinks. The character of the spectrum and eigenmodes of color-charged fluctuations in the presence of the domain wall network is discussed. Conditions for the formation of a stable thick domain wall junction (the chromomagnetic trap) during heavy-ion collisions are discussed, and the spectrum of color-charged quasi-particles inside the trap is evaluated. An important observation is the existence of the critical size L c of a single trap stable against gluon tachyonic modes. The size L c is related to the value of gluon condensate left angle g 2 F 2 right angle. The growth of large lumps of merged chromomagnetic traps and the concept of the confinement-deconfinement transition in terms of the ensemble of domain wall networks are outlined. (orig.)

  10. La croissance demographique et son impact sur le developpement ...

    African Journals Online (AJOL)

    La croissance demographique et son impact sur le developpement des grandes villes au ... La ville de Porto-Novo au Bénin n'est pas en marge de cette réalité que ... and the need for improving its framework of life through its development.

  11. Agence Francaise de Developpement. Strategic Orientation Plan 2012-2016

    International Nuclear Information System (INIS)

    2012-01-01

    Agence Francaise de Developpement (AFD) is a development finance institution that has been working to fight poverty and foster economic growth in developing countries and the French Overseas Communities for more than seventy years. It executes the policy defined by the French Government. AFD is present on five continents where it has an international network of 71 agencies and representation offices, including 9 in the French Overseas Communities and 1 in Brussels. It finances and supports projects that support more sustainable and shared economic growth, improve living conditions for the poorest, contribute to protecting the planet and help stabilize fragile or post-conflict states. It subsidiary, Proparco, supports private investment. AFD also works with French and international academic networks to feed into debates and forward planning on development. In 2011, AFD approved nearly euro 6.9 billion to finance activities in developing countries and the French Overseas Communities. The funds will help get 4 million children into primary school and 2 million into secondary school; they will also improve drinking water supply for 1.53 million people. Energy efficiency projects financed by AFD in 2011 will save nearly 3.8 million tons of CO_2 equivalent annually. After ten years of strong growth and substantial transformation at AFD, the third Strategic Orientation Plan (POS3) builds on the potential it has acquired. It aims to strengthen AFD and situate it within the framework of the new 'partnership for development' promoted by the French Government. In a rapidly changing international environment, AFD is underscoring its strategy to finance long-term development activities. The aim is to help communities build sustainable conditions to allow them to meet their priority needs, without compromising the ability of future generations to meet their needs. The attention given to the social and environmental dimensions of the projects it finances, along with their impact

  12. Vacuum pulse conditioning and risetime sharpening on a low nu/gamma multi-MEV electron beam accelerator

    International Nuclear Information System (INIS)

    Stringfield, R.M.; Bartsch, R.R.; Davis, H.A.; Sherwood, E.G.

    1986-01-01

    The surface flashover switch interrupts the cathode stalk of the vacuum transmission line near the load. The flashover voltage is controlled by varying the switch length, with a maximum flashover voltage of 3MV. A diode element immediately upstream of the switch allows current to build up in the inductance of the vacuum transmission line while the switch is open. Upon switch closure, the axial current flowing the the load acts as a bias current to magnetically inhibit current flow in the upstream diode. This diode serves the additional purpose, with or without the flashover switch, of diverting a controlled portion of the total machine current form the load by varying the AK spacing. This feature provides the capability to vary the current and voltage at the load outside the simple constraints of the accelerator's load line. An examination of the performance of the switch and the diode is presented

  13. Development of the control algorithm of processes of intensive hygrothermal impact on capillary and porous materials in the conditions of the vacuum

    Directory of Open Access Journals (Sweden)

    Larina Ludmila

    2017-01-01

    Full Text Available Objective of this research is creation of an algorithm of a control system of the modes of the intensive hygrothermal influence (IGI in the conditions of a vacuum when performing the corresponding operations: moistening; the subsequent, if necessary, cyclic drying from within preparation of top of footwear; damp thermal treatment on universal installation with adjustable parameters of a working environment. For assessment of quality of the intensified hygrothermal impact on preparations of top of footwear the integrated criteria of efficiency of processes were used. Ensuring automatic control of parameters of processes of IGV on preparations of top of footwear in universal vacuum installation will allow to control quality of preparations upon transition from performance of one operation to another according to standard manufacturing techniques of footwear.

  14. Thermofluid experiments for Fusion Reactor Safety. Visualization of exchange flows through breaches of a vacuum vessel in a fusion reactor under the LOVA condition

    International Nuclear Information System (INIS)

    Fujii, Sadao; Shibazaki, Hiroaki; Takase, Kazuyuki; Kunugi, Tomoaki.

    1997-01-01

    Exchange flow rates through breaches of a vacuum vessel in a fusion reactor under the LOVA (Loss of VAcuum event) conditions were measured quantitatively by using a preliminary LOVA apparatus and exchange flow patterns over the breach were visualized qualitatively by smoke. Velocity distributions in the exchange flows were predicted from the observed flow patterns by using the correlation method in the flow visualization procedures. Mean velocities calculated from the predicted velocity distributions at the outside of the breach were in good agreement with the LOVA experimental results when the exchange flow velocities were low. It was found that the present flow visualization and the image processing system might be an useful procedure to evaluate the exchange flow rates. (author)

  15. Enrollment of a population-based cohort of newborns at higher risk of developing a chronic condition: the EDEN study. Etude du Developpement des Nouveau-nés Study.

    Science.gov (United States)

    Addor, V; Santos-Eggimann, B; Fawer, C L; Paccaud, F; Calame, A

    1997-04-01

    To describe the methods used at birth to recruit a population-based cohort of newborns of all birthweights at higher risk of having a chronic condition, and to present baseline results. Screening of all newborns at hospital discharge for five non-exclusive criteria: (1) low birthweight (LBW), (2) congenital anomalies or genetic disease, (3) specified conditions associated with a high probability of chronicity, (4) referral to a neonatal intensive care unit (NICU), (5) or defined social problems. Calculation of Hobel risk scores for children satisfying > or = 1 criterion. All 6477 live births delivered in the 19 maternity hospitals of a geographically defined region (Vaud, Switzerland) to resident mothers in 1993-1994. Twelve per cent (n = 760) of newborns met > or = 1 criterion: 6.3% of all newborns had an LBW (criterion 1), 2.4% had a birth defect, 0.9% met criterion (3), 4.4% stayed in an NICU and 1.6% had serious social problems. Hobel prenatal score was high (> or = 10 points) for 41% of children with > or = 1 criterion, the intrapartum score for 87% and the neonatal score for 68%. Most newborns identified by the above simple criteria also had elevated perinatal risks. The validity of the criteria will later be tested against the results of the examinations of children with > or = 1 criterion at 18 months and 4 years of age, but the assessment at birth already shows that normal birthweight (NBW) children, in agreement with previous studies, contribute half the children at high risk perinatally.

  16. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  17. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  18. Modern vacuum physics

    CERN Document Server

    Chambers, Austin

    2005-01-01

    Modern Vacuum Physics presents the principles and practices of vacuum science and technology along with a number of applications in research and industrial production. The first half of the book builds a foundation in gases and vapors under rarefied conditions, The second half presents examples of the analysis of representative systems and describes some of the exciting developments in which vacuum plays an important role. The final chapter addresses practical matters, such as materials, components, and leak detection. Throughout the book, the author''s explanations are presented in terms of first principles and basic physics, augmented by illustrative worked examples and numerous figures.

  19. Investigations into the high temperature brazing of type NiCr20Ti nickel alloy under vacuum conditions

    International Nuclear Information System (INIS)

    Zaremba, P.

    1977-01-01

    Joints made from NiCr20Ti material brazed in a vacuum furnace (brazing gap width 10, 30 and 50 μm, brazing temperature 1,040 0 C and 1,100 0 C) were tensile tested and subjected to metallographic investigation. Furthermore, the angle of wetting and the pattern of hardness across the brazed joint was established. The results obtained showed that, amongst other things, a relationship existed between the micro-hardness at the centre of the joint and the tensile strength of the brazed joint itself. (orig.) [de

  20. Integrated enhanced bioremediation and vacuum extraction for remediation of a hydrocarbon release in response to oscillating hydrologic conditions 'Traverse Co-Bio-Vac'

    International Nuclear Information System (INIS)

    Korreck, W.M.; Armstrong, J.M.; Douglass, R.H.

    1992-01-01

    The use of enhanced in-situ biological treatment and vacuum extraction has been demonstrated to be successful in the remediation of ground water and soil contaminated with hydrocarbons. Seasonal fluctuations in the ground water causes the zone of contamination to be in the either saturated or unsaturated zone of the aquifer. In order to address these conditions, an integrated engineering design approach is being taken for the full scale remediation of an aviation of an aviation gasoline spill at the US Coast Guard Air Station at Traverse City, Township, Michigan. Enhanced aerobic biodegradation will be utilized during the periods of high water table whereby most of the contaminated interval is saturated. Carbon treated water will be utilized from the existing ground water plume. Oxygen will be injected via an oxygen generator to saturate the process stream prior to discharge to the aquifer. During low water table conditions, the same infrastructure will be utilized as a modified vacuum extraction system. The same injection wells used during the high water table would then be used during the low table condition as vapor extraction wells. The vapors will be routed to an above-ground catalytic incinerator for compound destruction. This integrated approach, entitled 'Traverse Co-Bio-Vac,' should reduce the capital costs of installing a full scale remedial system as well allowing the system to operate efficiently depending on water table conditions. The system is expected to be constructed in 1992

  1. Influence of drying conditions on the effective diffusivity and activation energy during convective air and vacuum drying of pumpkin

    Directory of Open Access Journals (Sweden)

    Liliana SEREMET (CECLU

    2015-12-01

    Full Text Available The main purpose of the work is to investigate the efficiency of convective air and vacuum processing on pumpkin drying kinetics. The pumpkin samples were of two different geometrical shapes (cylinder and cube and were dried in a laboratory scale hot air dryer using some specific parameters (constant air velocity of 1.0 m/s, three different temperatures 50, 60 and 70ºC suited to relative humidity (RH values of 9.8, 6.5, and 5.4% respectively. The vacuum drying was led at constant pressures of 5 kPa and accordance temperatures of 50, 60 and 70ºC. Moisture transfer from pumpkin slices was described by applying Fick’s diffusion model. Temperature dependence of the effective diffusivity was described by the Arrhenius-type equation. Cylindrical samples have a slightly better behaviour compared to cubic samples, due to the disposition of the tissues, and the mass and thermic transfer possibilities. Analysing the results of both drying methods, it was deduced that the most efficient method is convective air drying at 70ºC.

  2. Sports, genre et developpement durable : l'heritage d'une ...

    African Journals Online (AJOL)

    Sports, genre et developpement durable : l'heritage d'une distribution ... to new populations in situation of confrontation with the difference that Goffman (1975) ... and women (gender), maintain the sports field and behind the appearance of a ...

  3. Cosmic vacuum

    International Nuclear Information System (INIS)

    Chernin, Artur D

    2001-01-01

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  4. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  5. A surface science compatible epifluorescence microscope for inspection of samples under ultra high vacuum and cryogenic conditions.

    Science.gov (United States)

    Marquardt, Christian; Paulheim, Alexander; Rohbohm, Nils; Merkel, Rudolf; Sokolowski, Moritz

    2017-08-01

    We modified an epi-illumination light microscope and mounted it on an ultra high vacuum chamber for investigating samples used in a surface science experiment. For easy access and bake out, all optical components are placed outside the vacuum and the sample is imaged through a glass window. The microscope can be operated in reflection brightfield or epifluorescence mode to image the sample surface or fluorescent dye molecules adsorbed on it. The homemade sample mounting was made compatible for the use under the microscope; sample temperatures as low as 6 K can be achieved. The performance of the microscope is demonstrated on two model samples: Brightfield-images of a well-prepared Ag(100) surface show a macroscopic corrugation of the surface, although low energy electron diffraction data indicate a highly ordered crystalline surface. The surface shows macroscopic protrusions with flat regions, about 20-200 μm in diameter, in between. Fluorescence images of diluted 3,4,9,10-perylene tetracarboxylicacid dianhydride (PTCDA) molecules adsorbed on an ultrathin epitaxial KCl film on the Ag(100) surface show a shading effect at surface protrusions due to an inclined angle of incidence of the PTCDA beam during deposition. For some preparations, the distribution of the fluorescence intensity is inhomogeneous and shows a dense network of bright patches about 5 μm in diameter related to the macroscopic corrugation of the surface. We propose that such a light microscope can aid many surface science experiments, especially those dealing with epitaxial growth or fluorescent materials.

  6. The realm of the vacuum

    International Nuclear Information System (INIS)

    Buchholz, D.; Wanzenberg, R.

    1992-01-01

    The spacelike asymptotic structure of physical states in local quantum theory is analysed. It is shown that this structure can be described in terms of a vacuum state if the theory satisfies a condition of timelike asymptotic abelianess. Theories which violate this condition can have an involved asymptotic vacuum structure as is illustrated by a simple example. (orig.)

  7. Study of sorption behavior, shelf life and colour kinetics of vacuum puffed honey powder at accelerated storage conditions.

    Science.gov (United States)

    Devi, K Deepika; Paul, Sanjib Kr; Sahu, Jatindra K

    2016-05-01

    In the study, the storage life of vacuum puffed honey powder at accelerated storage environment (90 % relative humidity and 36 °C) was computed by determining the sticky-point moisture content as the critical parameter of the honey powder. The value of monolayer moisture content in the GAB model was calculated to be 0.081 kg water/kg dry solids by fitting water activity and moisture sorption data. Shelf life of the honey powder was predicted to be 222 days when the powder was packaged in aluminum foil-laminated polyethylene pouches with permeability value of 5.427X10(-8) kg/m(2)//day/Pa. Actual shelf life of honey powder was experimentally determined as 189 days and analysis of mean relative percent derivation modulus (Rd) and root mean square (RMS) established the accuracy and acceptability of the technique for the prediction of shelf life of honey powder. Overall colour deviation pattern followed first order reaction kinetics with rate constant (k1) as 0.037 day(-1). This study revealed overall colour difference of 18.1 till the end of shelf life with drastic change during initial storage period.

  8. Quebec energy development in a sustainable development context; Le developpement energetique du Quebec dans un contexte de developpement durable

    Energy Technology Data Exchange (ETDEWEB)

    Laplatte, Benjamin; Bourque, Francis; Granger, Francois P.

    2010-09-15

    Quebec is a net importer of oil and it is clear that the reduction of its dependence with regards to hydrocarbons must be a main preoccupation. Moreover, the energy consumption per habitant of Quebec is higher than that of the majority of the other developed countries. This analysis looks at the choice on offer to the society of the province of Quebec, in terms of energy resources and technologies of today and tomorrow, in a context of sustainable development. [French] Le Quebec est un importateur net de petrole et il est clair que la reduction de sa dependance a l'egard des hydrocarbures doit etre une preoccupation de premier plan. De plus, la consommation energetique par habitant du Quebec est plus elevee que celle de la majorite des autres pays developpes. La presente analyse adresse les choix qui s'offrent a la societe quebecoise, en matiere de ressources et de technologies de l'energie d'aujourd'hui et de demain, dans un contexte de developpement durable.

  9. Vacuum gauges

    International Nuclear Information System (INIS)

    Power, B.D.; Priestland, C.R.D.

    1978-01-01

    This invention relates to vacuum gauges, particularly of the type known as Penning gauges, which are cold cathode ionisation gauges, in which a magnetic field is used to lengthen the electron path and thereby increase the number of ions produced. (author)

  10. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  11. Conformational studies of self-organized regioregular poly(3-dodecylthiophene)s using non-contact atomic force microscopy in ultra high vacuum condition

    International Nuclear Information System (INIS)

    Tanaka, Shukichi; Grevin, Benjamin; Rannou, Patrice; Suzuki, Hitoshi; Mashiko, Shinro

    2006-01-01

    Conformations of one of the variations of π-conjugated poly-alkylthiophene, poly(3-dodecylthiophene)s (P3DDT)s on the surface in ultra high vacuum (UHV) were investigated by non-contact atomic force microscopy (NC-AFM) operated by frequency-modulation mode (FM-mode). From individual molecules to several multi-layered ones, polymer chains on the surface were clearly resolved on conducting highly oriented pyrolytic graphite (HOPG) substrates and insulating mica ones, respectively. Solvent evaporation was found to have two stages, which influenced the diffusion, ordering, and adhesion processes of polymer chains on the substrate. To keep the ordered conformations of deposited polymer chains when they are transferred from ambient condition to UHV, these evaporation processes should be carefully considered. The initial conformation of polymers on the substrate was found to depend strongly on the lattice matching conditions and interactions between polymers and substrates. Formations of stripe-like structures of P3DDT polymers were found on the mica substrates, which is promising for device application

  12. Developpement d'une methode de Monte Carlo dependante du temps et application au reacteur de type CANDU-6

    Science.gov (United States)

    Mahjoub, Mehdi

    La resolution de l'equation de Boltzmann demeure une etape importante dans la prediction du comportement d'un reacteur nucleaire. Malheureusement, la resolution de cette equation presente toujours un defi pour une geometrie complexe (reacteur) tout comme pour une geometrie simple (cellule). Ainsi, pour predire le comportement d'un reacteur nucleaire,un schema de calcul a deux etapes est necessaire. La premiere etape consiste a obtenir les parametres nucleaires d'une cellule du reacteur apres une etape d'homogeneisation et condensation. La deuxieme etape consiste en un calcul de diffusion pour tout le reacteur en utilisant les resultats de la premiere etape tout en simplifiant la geometrie du reacteur a un ensemble de cellules homogenes le tout entoure de reflecteur. Lors des transitoires (accident), ces deux etapes sont insuffisantes pour pouvoir predire le comportement du reacteur. Comme la resolution de l'equation de Boltzmann dans sa forme dependante du temps presente toujours un defi de taille pour tous types de geometries,un autre schema de calcul est necessaire. Afin de contourner cette difficulte, l'hypothese adiabatique est utilisee. Elle se concretise en un schema de calcul a quatre etapes. La premiere et deuxieme etapes demeurent les memes pour des conditions nominales du reacteur. La troisieme etape se resume a obtenir les nouvelles proprietes nucleaires de la cellule a la suite de la perturbation pour les utiliser, au niveau de la quatrieme etape, dans un nouveau calcul de reacteur et obtenir l'effet de la perturbation sur le reacteur. Ce projet vise a verifier cette hypothese. Ainsi, un nouveau schema de calcul a ete defini. La premiere etape de ce projet a ete de creer un nouveau logiciel capable de resoudre l'equation de Boltzmann dependante du temps par la methode stochastique Monte Carlo dans le but d'obtenir des sections efficaces qui evoluent dans le temps. Ce code a ete utilise pour simuler un accident LOCA dans un reacteur nucleaire de type

  13. Vacuum type D initial data

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2016-09-01

    A vacuum type D initial data set is a vacuum initial data set of the Einstein field equations whose data development contains a region where the space–time is of Petrov type D. In this paper we give a systematic characterisation of a vacuum type D initial data set. By systematic we mean that the only quantities involved are those appearing in the vacuum constraints, namely the first fundamental form (Riemannian metric) and the second fundamental form. Our characterisation is a set of conditions consisting of the vacuum constraints and some additional differential equations for the first and second fundamental forms These conditions can be regarded as a system of partial differential equations on a Riemannian manifold and the solutions of the system contain all possible regular vacuum type D initial data sets. As an application we particularise our conditions for the case of vacuum data whose data development is a subset of the Kerr solution. This has applications in the formulation of the nonlinear stability problem of the Kerr black hole.

  14. ELETTRA vacuum system

    International Nuclear Information System (INIS)

    Bernardini, M.; Daclon, F.; Giacuzzo, F.; Miertusova, J.; Pradal, F.; Kersevan, R.

    1993-01-01

    Elettra is a third-generation synchrotron light source which is being built especially for the use of high brilliance radiation from insertion devices and bending magnets. The UHV conditions in a storage ring lead to a longer beam lifetime - one of the most important criterion. The Elettra vacuum system presents some pecularities which cannot be found in any already existing machine. The final version of bending magnet vacuum chamber is presented. After chemical and thermal conditioning the specific outgassing rate of about 1.5e-12 Torr. liters sec -1 cm -2 was obtained. A microprocessor-controlled system has been developed to perform bake-out at the uniform temperature. The etched-foil type heaters are glued to the chamber and Microtherm insulation is used. UHV pumps based on standard triode sputter-ion pumps were modified with ST 707 NEG (Non Evaporable Getter) modules. A special installation enables the resistive activation of getters and significantly increases pumping speed for hydrogen and other residual gases (except methane and argon). All these technological innovations improve vacuum conditions in Elettra storage ring and consequently also the other parameters of the light source

  15. Notes on the development of the gibbs potential; Sur le developpement du potentiel de gibbs

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, C; Dominicis, C de [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A short account is given of some recent work on the perturbation expansion of the Gibbs potential of quantum statistical mechanics. (author) [French] Expose en resume de quelques travaux sur le developpement dans la theorie des perturbations du potentiel de Gibbs de la Mecanique Statistique. (auteur)

  16. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  17. A new model for friction under shock conditions

    Directory of Open Access Journals (Sweden)

    Dambakizi F.

    2011-01-01

    Full Text Available This article is aimed at the developpement of a new model for friction under shock conditions. Thanks to a subgrid model and a specific Coulomb friction law, it takes into account the interface temperature and deformation but also the influence of asperities when the contact pressure is relatively low (≤ 3 GPa.

  18. ITER diagnostic system: Vacuum interface

    International Nuclear Information System (INIS)

    Patel, K.M.; Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L.; Drevon, J.M.; Encheva, A.; Kashchuk, Y.; Maquet, Ph.; Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J.

    2013-01-01

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10 −7 Pa, irrespective of plasma operation, and a leak rate of less than 10 −10 Pa m 3 s −1 . In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions will be described

  19. ITER diagnostic system: Vacuum interface

    Energy Technology Data Exchange (ETDEWEB)

    Patel, K.M., E-mail: Kaushal.Patel@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Udintsev, V.S.; Hughes, S.; Walker, C.I.; Andrew, P.; Barnsley, R.; Bertalot, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Drevon, J.M. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Encheva, A. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France); Kashchuk, Y. [Institution “PROJECT CENTER ITER”, 1, Akademika Kurchatova pl., Moscow (Russian Federation); Maquet, Ph. [Bertin Technologies, BP 22, 13762 Aix-en Provence cedex 3 (France); Pearce, R.; Taylor, N.; Vayakis, G.; Walsh, M.J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-Lez-Durance (France)

    2013-10-15

    Diagnostics play an essential role for the successful operation of the ITER tokamak. They provide the means to observe control and to measure plasma during the operation of ITER tokamak. The components of the diagnostic system in the ITER tokamak will be installed in the vacuum vessel, in the cryostat, in the upper, equatorial and divertor ports, in the divertor cassettes and racks, as well as in various buildings. Diagnostic components that are placed in a high radiation environment are expected to operate for the life of ITER. There are approx. 45 diagnostic systems located on ITER. Some diagnostics incorporate direct or independently pumped extensions to maintain their necessary vacuum conditions. They require a base pressure less than 10{sup −7} Pa, irrespective of plasma operation, and a leak rate of less than 10{sup −10} Pa m{sup 3} s{sup −1}. In all the cases it is essential to maintain the ITER closed fuel cycle. These directly coupled diagnostic systems are an integral part of the ITER vacuum containment and are therefore subject to the same design requirements for tritium and active gas confinement, for all normal and accidental conditions. All the diagnostics, whether or not pumped, incorporate penetration of the vacuum boundary (i.e. window assembly, vacuum feedthrough etc.) and demountable joints. Monitored guard volumes are provided for all elements of the vacuum boundary that are judged to be vulnerable by virtue of their construction, material, load specification etc. Standard arrangements are made for their construction and for the monitoring, evacuating and leak testing of these volumes. Diagnostic systems are incorporated at more than 20 ports on ITER. This paper will describe typical and particular arrangements of pumped diagnostic and monitored guard volume. The status of the diagnostic vacuum systems, which are at the start of their detailed design, will be outlined and the specific features of the vacuum systems in ports and extensions

  20. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  1. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  2. Testing of improved polyimide actuator rod seals at high temperature and under vacuum conditions for use in advanced aircraft hydraulic systems

    Science.gov (United States)

    Sellereite, B. K.; Waterman, A. W.; Nelson, W. G.

    1974-01-01

    Polyimide second-stage rod seals were evaluated to determine their suitability for applications in space station environments. The 6.35-cm (2.5-in.)K-section seal was verified for thermal cycling operation between room temperature and 478 K (400 F) and for operation in a 133 micron PA(0.000001 mm Hg) vacuum environment. The test seal completed the scheduled 96 thermal cycles and 1438 hr in vacuum with external rod seal leakage well within the maximum allowable of two drops per 25 actuation cycles. At program completion, the seals showed no signs of structural degradation. Posttest inspection showed the seals retained a snug fit against the shaft and housing walls, indicating additional wear life capability. Evaluation of a molecular flow section during vacuum testing, to inhibit fluid loss through vaporization, showed it to be beneficial with MIL-H-5606, a petroleum-base fluid, in comparison with MIL-H-83282, a synthetic hydrocarbon-base fluid.

  3. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  4. Development of a vacuum superinsulation panel

    Energy Technology Data Exchange (ETDEWEB)

    Timm, H; Seefeldt, D; Nitze, C

    1983-05-01

    After completion of the investigations the vacuum-insulated panel is available as prototype. The aim of the investigations was to optimize and to finalize the vacuum superinsulation system with regard to a pressure-resistant, temperature-resistant thermal insulation of high efficiency. In this connection, particularly investigations with regard to vacuum-tight sealing, compression and evacuation of powder filling as well as special material investigations were performed. The application-specific utilization of the vacuum-insulated panel and the adjustment to special operational conditions can now be started. Application possibilities are at present seen in coverings or linings with high temperature and/or pressure requirements.

  5. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Muller, R.A.

    1987-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports

  6. Evacuation of the NET vacuum chamber

    International Nuclear Information System (INIS)

    Mueller, R.

    1986-01-01

    Parametric calculations of the evacuation process were carried out for the NET-vacuum chamber involving two blanket designs. The results show that with an acceptable vacuum pumping capacity the required start vacuum conditions can be realized within reasonable time. The two blanket concepts do not differ remarkably in their evacuation behaviour. The remaining large pressure differences between the different locations of the vacuum chamber can be reduced if approximately 30% of the total gas flow is extracted from the heads of the blanket replacement ports. (author)

  7. Vacuum-assisted delivery

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000514.htm Vacuum-assisted delivery To use the sharing features on this page, ... through the birth canal. When is Vacuum-assisted Delivery Needed? Even after your cervix is fully dilated ( ...

  8. Magnetically enhanced vacuum arc thruster

    International Nuclear Information System (INIS)

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  9. Magnetically enhanced vacuum arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  10. [Ambulant treatment of wounds by vacuum sealing].

    Science.gov (United States)

    Ziegler, U E; Schmidt, K; Breithaupt, B; Menig, R; Debus, E S; Thiede, A

    2000-01-01

    The treatment of chronic wounds by vacuum sealing as an outpatient procedure is a new method of wound conditioning before closing the defect. The quality of life for the patient in his usual surrounding is maintained. Financial aspects also play a role in this treatment since costs for the health care system can be reduced. Various vacuum pumps, drainages and polymere foams are available and suitable for the outpatient treatment. The most important condition is to regularly check the vacuum. This can performed by the patient, the relatives or nursing staff. The main complication consists in loss of vacuum but technical and local or systemic complications can also appear. Individually applied vacuum dressings (polyvinyl foam, drainage tube and polymere foil) are practical. The ideal pump systems for the outpatient treatment are still not trial.

  11. Preliminary studies for the LHCb vertex detector vacuum system

    CERN Document Server

    Doets, M; Van Bakel, N; Van den Brand, J F J; van den Brand, Jo

    2000-01-01

    We lay down some general considerations which will serve as a starting point for design studies of a realistic LHCb vertex detector vacuum system. Based on these considerations, we propose a design strategy and identify issues to be further studied. In particular we try to outline some boundary conditions imposed by LHC and LHCb on the vacuum system. We discuss two possibilities for the LHCb vertex detector vacuum system. The preferred strategy uses a differentially pumped vacuum system with the silicon detectors separated from the beam line vacuum. Some estimations on static vacuum pressures and gas flows are presented.

  12. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  13. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  14. In vitro pressure manifolding distribution evaluation of ABThera™ Active Abdominal Therapy System, V.A.C.® Abdominal Dressing System, and Barker’s vacuum packing technique conducted under dynamic conditions

    Directory of Open Access Journals (Sweden)

    Angel Delgado

    2016-01-01

    Full Text Available Objectives: Temporary abdominal closure methods allow for management of open abdomens where immediate primary closure is not possible and/or where repeat abdominal entries are necessary. We assessed pressure mapping and fluid extraction efficiency of three open abdomen dressing systems: ABThera™ Active Abdominal Therapy System, V.A.C.® Abdominal Dressing System, and Barker’s vacuum packing technique. Methods: An in vitro test model was designed to simulate physical conditions present in an open abdomen. The model consisted of a rigid rest platform with elevated central region and a flexible outer layer with centrally located incision. Constant −125 mmHg negative pressure was applied according to the type of system, under simulated dynamic conditions, using albumin-based solution with a viscosity of 14 cP. Data were collected by pressure sensors located circumferentially into three concentric zones: Zone 1 (closest to negative pressure source, Zone 2 (immediately outside of manifolding material edge, and Zone 3 (area most distal from negative pressure source. Each value was the result of approximately 100 pressure readings/zone/experiment with a total of three experiments for each system. Results: Pressure distribution of ABThera Therapy was significantly (p < 0.05 superior to Barker’s vacuum packing technique in all three evaluated zones. Similarly, V.A.C. Abdominal Dressing System pressure distribution was significantly (p < 0.05 improved compared to Barker’s vacuum packing technique in all zones. There were no pressure distribution differences in Zone 1 between ABThera Therapy and V.A.C. Abdominal Dressing System; however, in Zones 2 and 3, ABThera Therapy was significantly (p < 0.05 superior to V.A.C. Abdominal Dressing System. Conclusions: These data suggest that all approaches to negative pressure therapy for open abdomen treatment are not equal. Additional research should be conducted to elucidate clinical

  15. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    in order to show the advantages resulting from such developments in gas-graphite natural metallic uranium reactor systems; these are: a doubling of the specific and volume powers, and a three-fold reduction in the number of channels. The research now under way will make it possible to calculate the reduction in capital costs which will result from these important technical advances. (authors) [French] Le programme francais de centrales a graphite et uranium naturel s'est developpe, d'EDF 1 a EDF 4 - dans la voie d'un accroissement de la puissance unitaire des installations, de la puissance specifique et de la puissance volumique, et d'une amelioration des conditions de securite de fonctionnement. La puissance elevee d'EDF 4 (500 MWe) et l'integration du circuit primaire dans le caisson, lui-meme en beton precontraint, permettent ainsi de tirer le meilleur parti des elements combustibles tubulaires utilises des EDF 1, et d'arriver ainsi a une solution tres satisfaisante. L'emploi d'un element combustible refroidi interieurement (element annulaire) permet de faire un nouveau pas en avant: il devient alors possible d'augmenter la pression du gaz de refroidissement sans craindre le fluage du tube d'uranium. L'emploi d'un caisson en beton precontraint permet une telle augmentation de pression, et l'integration du circuit primaire elimine les risques d'une depressurisation rapide qui aurait presente dans ce cas un risque majeur. On aborde dans ce rapport les principaux problemes poses par ce nouveau type de centrale et on indique les grandes lignes des recherches et etudes effectuees en France: - Les etudes de neutronique et thermique ont permis d'envisager l'emploi d'elements combustibles de grandes dimensions (diametre interne = 77 mm, diametre externe = 95 mm), tout en conservant l'uranium naturel. - Les problemes de fabrication de ces elements, et de leur comportement en pile, font l'objet d'un programme important, tant hors pile que dans les piles de puissance (EDF 2

  16. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B. [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    in order to show the advantages resulting from such developments in gas-graphite natural metallic uranium reactor systems; these are: a doubling of the specific and volume powers, and a three-fold reduction in the number of channels. The research now under way will make it possible to calculate the reduction in capital costs which will result from these important technical advances. (authors) [French] Le programme francais de centrales a graphite et uranium naturel s'est developpe, d'EDF 1 a EDF 4 - dans la voie d'un accroissement de la puissance unitaire des installations, de la puissance specifique et de la puissance volumique, et d'une amelioration des conditions de securite de fonctionnement. La puissance elevee d'EDF 4 (500 MWe) et l'integration du circuit primaire dans le caisson, lui-meme en beton precontraint, permettent ainsi de tirer le meilleur parti des elements combustibles tubulaires utilises des EDF 1, et d'arriver ainsi a une solution tres satisfaisante. L'emploi d'un element combustible refroidi interieurement (element annulaire) permet de faire un nouveau pas en avant: il devient alors possible d'augmenter la pression du gaz de refroidissement sans craindre le fluage du tube d'uranium. L'emploi d'un caisson en beton precontraint permet une telle augmentation de pression, et l'integration du circuit primaire elimine les risques d'une depressurisation rapide qui aurait presente dans ce cas un risque majeur. On aborde dans ce rapport les principaux problemes poses par ce nouveau type de centrale et on indique les grandes lignes des recherches et etudes effectuees en France: - Les etudes de neutronique et thermique ont permis d'envisager l'emploi d'elements combustibles de grandes dimensions (diametre interne = 77 mm, diametre externe = 95 mm), tout en conservant l'uranium naturel. - Les problemes de fabrication de ces elements, et de leur comportement en pile

  17. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  18. Conceptual design and application studies of piezoelectric crystal motors under ultra-high vacuum conditions; Konzepterstellung und Verwendungsmoeglichkeiten eines Piezokristallmotors im Ultrahochvakuum

    Energy Technology Data Exchange (ETDEWEB)

    Nagler, Jens

    2009-08-15

    For the operation of accelerators it is important that motions in the vacuum occur. The here produced diploma thesis deals with the possibility to perform thes motions with piezocrystal motors in order to abandon wear-susceptible membrane bellows. For this studies have been performed, which should show for which it is useful to apply a piezocrystal motor. Limits are shown, advances and disadvantages are weighted in the thesis. Construction with with subsequent test of a tandem facility and an outlook on possible future concepts form the main content. [German] Fuer den Betrieb von Beschleunigern ist es wichtig, dass Bewegungen im Vakuum stattfinden. Die hier angefertigte Diplomarbeit befasst sich mit der Moeglichkeit, diese Bewegungen mit Piezokristallmotoren durchzufuehren, um auf verschleissanfaellige Membranbaelge zu verzichten. Hierfuer sind Studien durchgefuehrt worden, die zeigen sollen, wofuer es ratsam ist, einen Piezokristallmotor zu verwenden. Grenzen werden aufgezeigt, Vor- und Nachteile werden in der Arbeit abgewogen. Konstruktion mit anschliessenden Tests eines Tandemaufbaus und ein Ausblick auf moegliche zukuenftige Konzepte bilden den Kerninhalt. (orig.)

  19. The effect of sage, sodium erythorbate and a mixture of sage and sodium erythorbate on the quality of turkey meatballs stored under vacuum and modified atmosphere conditions.

    Science.gov (United States)

    Karpińska-Tymoszczyk, M

    2010-12-01

    1. The combined effect of sage (S), sodium erythorbate (SE), a mixture of sage and sodium erythorbate (MIX) and vacuum packaging (VP) and modified atmosphere packaging (MAP) on the quality of cooked turkey meatballs stored at 4°C was investigated. The physicochemical properties (colour, MDA, AV, pH, water activity), microbiological quality characteristics (counts of mesophilic and psychrotrophic bacteria, fungi, coliforms and Clostridium sp.) and flavour attributes of meatballs were determined. 2. The values of the colour parameters L*, a* and b* were affected by the additives and packaging method. The colour of meatballs was better protected by sodium erythorbate than by sage or a mixture of sage and sodium erythorbate. The additives effectively stabilised lipids against oxidation and slowed down hydrolytic changes in turkey meatballs. Sage and a mixture of sage and sodium erythorbate showed stronger antioxidant properties than sodium erythorbate added alone. Products with additives were characterised by better sensory quality than control samples. Sage and MIX prevented the growth of mesophilic and psychrotrophic bacteria. All additives inhibited the growth of coliforms. 3. MAP was more effective than VP in maintaining the microbial and sensory quality stability of cooked turkey meatballs. However, VP appears to be a better method as regards the maintaining of lipid stability in turkey meatballs.

  20. Change in the color of heat-treated, vacuum-packed broccoli stems and florets during storage: effects of process conditions and modeling by an artificial neural network.

    Science.gov (United States)

    Pero, Milad; Askari, Gholamreza; Skåra, Torstein; Skipnes, Dagbjørn; Kiani, Hossein

    2018-02-08

    Vacuum-packed broccoli stems and florets were subjected to heat treatment (60-99 °C) for various time intervals. The activity of peroxidase was measured after processing. Thermally processed samples were then stored at 4 °C for 35 days, and the color of the samples was measured every 7 days. Effects of parameters (heating temperature and duration, storage time) on the color of broccoli were modeled and simulated by an artificial neural network (ANN). Simulations confirmed that stems were predicted to be more prone to changes than florets. More color loss was observed with longer processing or storage combinations. The simulations also confirmed that higher temperatures during heat processing could retard color changes during storage. For stems treated at 80 °C for short durations, color loss was more predominant than both 65 and 99 °C, probably due to the incomplete inactivation of enzymes besides more tissue damage, with increased enzyme access to the substrate. The greenness of both stems and florets during storage can be better preserved at higher temperatures (99 °C) and short times. The simulation results revealed that the ANN method could be used as an effective tool for predicting and analyzing the color values of heat-treated broccoli. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Gravitation and vacuum field

    International Nuclear Information System (INIS)

    Tevikyan, R.V.

    1986-01-01

    This paper presents equations that describe particles with spins s = 0, 1/2, 1 completely and which also describe 2s + 2 limiting fields as E → ∞. It is shown that the ordinary Hilbert-Einstein action for the gravitation field must be augmented by the action for the Bose vacuum field. This means that one must introduce in the gravitational equations a cosmological term proportional to the square of the strength of the Bose vacuum field. It is shown that the theory of gravitation describes three realities: matter, field, and vacuum field. A new form of matter--the vacuum field--is introduced into field theory

  2. Influence of different salting processes on the evolution of the volatile metabolites of vacuum-packed fillets of farmed and wild sea bass (Dicentrarchus labrax) stored under refrigeration conditions: a study by SPME-GC/MS.

    Science.gov (United States)

    Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D

    2017-02-01

    Fish shelf-life extension is a topic of great interest. In this study the behaviour of salted and unsalted farmed and wild European sea bass (Dicentrarchus labrax) fillets during storage was analysed through the evolution of their volatile metabolites. Farmed and wild sea bass fillets were brine-salted for 15 or 75 min, or dry-salted, vacuum-packed and stored at 4 °C for up to 1 month, and their headspaces were studied by Solid Phase Micro extraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). At the same storage time, unsalted wild fillets contained, in general, a higher number and abundance of volatile compounds coming from microbiological or endogenous enzymatic activity than unsalted farmed ones. The more intense the salting, the lower the number and abundance of microbiological spoilage metabolites, especially in wild samples. The appearance of oxidation metabolites only in dry-salted wild samples evidences that this kind of salting provokes a certain oxidation in these samples. The better performance of farmed than wild fillets suggests that salted farmed fillets, vacuum-packed and stored under refrigeration conditions, could be a successful alternative to diversify the presence of sea bass in the market. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Vacuum evaporation of pure metals

    OpenAIRE

    Safarian, Jafar; Engh, Thorvald Abel

    2013-01-01

    Theories on the evaporation of pure substances are reviewed and applied to study vacuum evaporation of pure metals. It is shown that there is good agreement between different theories for weak evaporation, whereas there are differences under intensive evaporation conditions. For weak evaporation, the evaporation coefficient in Hertz-Knudsen equation is 1.66. Vapor velocity as a function of the pressure is calculated applying several theories. If a condensing surface is less than one collision...

  4. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  5. Compactified vacuum in ten dimensions

    International Nuclear Information System (INIS)

    Wurmser, D.

    1987-01-01

    Since the 1920's, theories which unify gravity with the other fundamental forces have called for more than the four observed dimensions of space-time. According to such a theory, the vacuum consists of flat four-dimensional space-time described by the Minkowski metric M 4 and a compactified space B. The dimensions of B are small, and the space can only be observed at distance scales smaller than the present experimental limit. These theories have had serious difficulties. The equations of gravity severely restrict the possible choices for the space B. The allowed spaces are complicated and difficult to study. The vacuum is furthermore unstable in the sense that a small perturbation causes the compactified dimensions to expand indefinitely. There is an addition a semi-classical argument which implies that the compactified vacuum by annihilated by virtual black holes. It follows that a universe with compactified extra dimensions could not have survived to the present. These results were derived by applying the equations of general relativity to spaces of more than four dimensions. The form of these equations was assumed to be unchanged by an increase in the number of dimensions. The authors illustrate the effect of such terms by considering the example B = S 6 where S 6 is the six-dimensional sphere. Only when the extra terms are included is this choice of the compactified space allowed. He explore the effect of a small perturbation on such a vacuum. The ten-dimensional spherically symmetric potential is examined, and I determine conditions under which the formation of virtual black holes is forbidden. The examples M 4 x S 6 is still plagued by the semi-classical instability, but this result does not hold in general. The requirement that virtual black holes be forbidden provides a test for any theory which predicts a compactified vacuum

  6. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    1999-01-01

    construct a pre-prototype of the nozzle, blast head with wind curtain, sensors, and dust separator and test this system to assess the performance of the new design under controlled conditions at the contractor's facility. In phase III, the Contractor shall design and construct a prototype of the High Productivity Vacuum Blasting System, based on the results of the pre-prototype design and testing performed. This unit will be a full-scale prototype and will be tested at a designated Department of Energy (DOE) facility. Based on the results, the system performance, the productivity, and the economy of the improved vacuum blasting system will be evaluated

  7. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  8. Ultra high vacuum systems for accelerators

    International Nuclear Information System (INIS)

    Loefgren, P.

    2001-01-01

    Full text: In order to perform controlled, stable, and reproducible experiments, several research areas today require very low pressures. Maybe the most important example is the research that is performed in storage rings and accelerators where the lifetime and stability of particle beams depends critically on the vacuum conditions. Although the vacuum requirements ultimately depend on the kind of experiments that is performed, the studies of more and more rare and exotic species in storage rings and accelerators today pushes the demands on the vacuum conditions towards lower and lower pressures. The final pressure obtained in the vacuum system can often be the key factor for the outcome of an experiment. Pioneering work in vacuum technology has therefore often been performed at storage rings and accelerator facilities around the world. In order to reach pressures in the low UHV regime and lower (below 10 -11 mbar), several aspects have to be considered which implies choosing the proper materials, pumps and vacuum gauges. In the absence of gases inleaking from the outside, the rate of gas entering a vacuum system is determined by the release of molecules adsorbed on the surfaces and the outgassing from the bulk of the vacuum chamber walls. This means that the choice of material and, equally important, the pre treatment of the material, must be such that these rates are minimised. Today the most widely used material for vacuum applications are stainless steel. Besides its many mechanical advantages, it is resistant to corrosion and oxidation. If treated correctly the major gas source in a stainless steel chamber is hydrogen outgassing from the chamber walls. The hydrogen outgassing can be decreased by vacuum firing at 950 deg. C under vacuum. In addition to choosing the right materials the choice of vacuum pumps is important for the final pressure. Since no vacuum pump is capable of taking care of all kinds of gases found in the rest gas at pressures below 10 -11

  9. Vacuum-plasma coverings on the aircraft

    International Nuclear Information System (INIS)

    Shvetsov, V.D.; Teksin, Eh.K.; Lysyak, A.A.

    1998-01-01

    In the article are considered the perspectives of vacuum-plasma coverings using for engine components protection. The influence of operating factors on the durability of components which has the vacuum-plasma coverings is show.Leads in using the concept of informational parameter of quality.The recommendation about organization of engine with abolished components maintenance by methods of flyable conditions or reliability level are given

  10. Vacuum decay in an interacting multiverse

    Science.gov (United States)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-08-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  11. Vacuum decay in an interacting multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Robles-Pérez, S. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado, 14, 06411 Medellín (Spain); Alonso-Serrano, A. [Centro de Física “Miguel Catalán”, Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 121, 28006 Madrid (Spain); Estación Ecológica de Biocosmología, Pedro de Alvarado, 14, 06411 Medellín (Spain); School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand); Bastos, C., E-mail: catarina.bastos@tecnico.ulisboa.pt [GoLP, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa (Portugal); Bertolami, O. [Departamento de Física e Astronomia and Centro de Física do Porto, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-10

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  12. Vacuum decay in an interacting multiverse

    Directory of Open Access Journals (Sweden)

    S. Robles-Pérez

    2016-08-01

    Full Text Available We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  13. Vacuum decay in an interacting multiverse

    International Nuclear Information System (INIS)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-01-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of “true” vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  14. Deflated-Victims of vacuum

    International Nuclear Information System (INIS)

    Sanders, Roy E.

    2007-01-01

    Atmospheric pressure combined with a partial vacuum within chemical plant or refinery tanks can result in some ego-deflating moments. This article will review three catastrophic vessel failures in detail and touch on several other incidents. A 4000-gal acid tank was destroyed by a siphoning action; a well maintained tank truck was destroyed during a routine delivery; and a large, brand new refinery mega-vessel collapsed as the steam within it condensed. Seasoned engineers are aware of the frail nature of tanks and provide safeguards or procedures to limit damages. The purpose of this paper is to ensure this new generation of chemical plant/refinery employees understand the problems of the past and take the necessary precautions to guard against tank damages created by partial vacuum conditions

  15. Conditions of vacuum physics for selection of the material of first wall and diaphragm of the demonstration thermonuclear reactor-tokamak (T-20)

    International Nuclear Information System (INIS)

    Gusev, V.M.; Guseva, M.I.; Gervids, V.I.; Kogan, V.I.; Martynenko, Yu.V.; Mirnov, S.V.

    A model is given for plasma interaction with the wall and the introduction of contaminants. The model was characterized by two kinds of uncertainty. First, the uncertain behavior of the contaminants, and second, the uncertainty of boundary conditions. Some of the conclusions from the study are described

  16. Baking results of KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported.

  17. Baking results of KSTAR vacuum vessel

    International Nuclear Information System (INIS)

    Kim, S. T.; Kim, Y. J.; Kim, K. M.; Im, D. S.; Joung, N. Y.; Yang, H. L.; Kim, Y. S.; Kwon, M.

    2009-01-01

    The Korea Superconducting Tokamak Advanced Research (KSTAR) is an advanced superconducting tokamak designed to establish a scientific and technological basis for an attractive fusion reactor. The fusion energy in the tokamak device is released through fusion reactions of light atoms such as deuterium or helium in hot plasma state, of which temperature reaches several hundreds of millions Celsius. The high temperature plasma is created in the vacuum vessel that provides ultra high vacuum status. Accordingly, it is most important for the vacuum condition to keep clean not only inner space but also surface of the vacuum vessel to make high quality plasma. There are two methods planned to clean the wall surface of the KSTAR vacuum vessel. One is surface baking and the other is glow discharge cleaning (GDC). To bake the vacuum vessel, De-Ionized (DI) water is heated to 130 .deg. C and circulated in the passage between double walls of the vacuum vessel (VV) in order to bake the surface. The GDC operation uses hydrogen and inert gas discharges. In this paper, general configuration and brief introduction of the baking result will be reported

  18. Helical type vacuum container

    International Nuclear Information System (INIS)

    Owada, Kimio.

    1989-01-01

    Helical type vacuum containers in the prior art lack in considerations for thermal expansion stresses to helical coils, and there is a possibility of coil ruptures. The object of the present invention is to avoid the rupture of helical coils wound around the outer surface of a vacuum container against heat expansion if any. That is, bellows or heat expansion absorbing means are disposed to a cross section of a helical type vacuum container. With such a constitution, thermal expansion of helical coils per se due to temperature elevation of the coils during electric supply can be absorbed by expansion of the bellows or absorption of the heat expansion absorbing means. Further, this can be attained by arranging shear pins in the direction perpendicular to the bellows axis so that the bellows are not distorted when the helical coils are wound around the helical type vacuum container. (I.S.)

  19. Vacuum considerations: summary

    International Nuclear Information System (INIS)

    Blechschmidt, D.; Halama, H.J.

    1978-01-01

    A summary is given of the efforts of a vacuum systems study group of the workshop on a Heavy Ion Demonstration Experiment (HIDE) for heavy ion fusion. An inadequate knowledge of cross-sections prevents a more concrete vacuum system design. Experiments leading to trustworthy numbers for charge exchange, stripping and capture cross-sections are badly needed and should start as soon as possible. In linacs, beam loss will be almost directly proportional to the pressure inside the tanks. The tanks should, therefore, be built in such a way that they can be baked-out in situ to improve their vacuum, especially if the cross-sections turn out to be higher than anticipated. Using standard UHV techniques and existing pumps, an even lower pressure can be achieved. The vacuum system design for circular machines will be very difficult, and in some cases, beyond the present state-of-the-art

  20. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  1. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  2. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  3. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    Science.gov (United States)

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  4. TFTR diagnostic vacuum controller

    International Nuclear Information System (INIS)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller

  5. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  6. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  7. Preparation of hydrosol suspensions of elemental and core–shell nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum conditions

    International Nuclear Information System (INIS)

    Binns, Chris; Prieto, Pilar; Baker, Stephen; Howes, Paul; Dondi, Ruggero; Burley, Glenn; Lari, Leonardo; Kröger, Roland; Pratt, Andrew; Aktas, Sitki; Mellon, John K.

    2012-01-01

    We report a new method to produce liquid suspensions of nanoparticles by co-deposition with water vapour from the gas-phase in ultra-high vacuum (UHV) conditions. The water is injected from outside the vacuum as a molecular beam onto a substrate maintained at 77 K and forms an ice layer with a UHV vapour pressure. Molecular dynamics simulations confirm that the nanoparticles are soft-landed close to the surface of the growing ice layer. We show that the un-agglomerated size distribution within the liquid is similar to the gas-phase size distribution and demonstrate that the inclusion of surfactants in the injected water prevents agglomeration. The method allows the flexibility and tight size control available with gas-phase production methods to be applied to making nanoparticle suspensions with any desired properties. This is important for practical applications, especially in medicine. We have extended the method to include core–shell nanoparticles, in which there is flexible control over the core size and shell thickness and free choice of the material in either. Here, we report the production of suspensions of Cu, Ag and Au elemental nanoparticles and Fe-Au and Fe-Fe-oxide core–shell nanoparticles with diameters in the range 5–15 nm. We demonstrate the power of the method in practical applications in the case of Fe-Fe-oxide nanoparticles, which have a specific absorption rate of an applied oscillating magnetic field that is significantly higher than available Fe-oxide nanoparticle suspensions and the highest yet reported. These will thus have a very high-performance in the treatment of tumours by magnetic nanoparticle hyperthermia.

  8. Contribution to the electrothermal simulation in power electronics. Development of a simulation methodology applied to switching circuits under variable operating conditions; Contribution a la simulation electrothermique en electronique de puissance. Developpement d`une methode de simulation pour circuits de commutation soumis a des commandes variables

    Energy Technology Data Exchange (ETDEWEB)

    Vales, P.

    1997-03-19

    In modern hybrid or monolithic integrated power circuits, electrothermal effects can no longer be ignored. A methodology is proposed in order to simulate electrothermal effects in power circuits, with a significant reduction of the computation time while taking into account electrical and thermal time constants which are usually widely different. A supervising program, written in Fortran, uses system call sequences and manages an interactive dialog between a fast thermal simulator and a general electrical simulator. This explicit coupling process between two specific simulators requires a multi-task operating system. The developed software allows for the prediction of the electrothermal power dissipation drift in the active areas of components, and the prediction of thermally-induced coupling effects between adjacent components. An application to the study of hard switching circuits working under variable operating conditions is presented

  9. Relaxed plasma-vacuum systems

    International Nuclear Information System (INIS)

    Spies, G.O.; Lortz, D.; Kaiser, R.

    2001-01-01

    Taylor's theory of relaxed toroidal plasmas (states of lowest energy with fixed total magnetic helicity) is extended to include a vacuum between the plasma and the wall. In the extended variational problem, one prescribes, in addition to the helicity and the magnetic fluxes whose conservation follows from the perfect conductivity of the wall, the fluxes whose conservation follows from the assumption that the plasma-vacuum interface is also perfectly conducting (if the wall is a magnetic surface, then one has the toroidal and the poloidal flux in the vacuum). Vanishing of the first energy variation implies a pressureless free-boundary magnetohydrostatic equilibrium with a Beltrami magnetic field in the plasma, and in general with a surface current in the interface. Positivity of the second variation implies that the equilibrium is stable according to ideal magnetohydrodynamics, that it is a relaxed state according to Taylor's theory if the interface is replaced by a wall, and that the surface current is nonzero (at least if there are no closed magnetic field lines in the interface). The plane slab, with suitable boundary conditions to simulate a genuine torus, is investigated in detail. The relaxed state has the same double symmetry as the vessel if, and only if, the prescribed helicity is in an interval that depends on the prescribed fluxes. This interval is determined in the limit of a thin slab

  10. Vacuum Baking To Remove Volatile Materials

    Science.gov (United States)

    Muscari, J. A.

    1985-01-01

    Outgassing reduced in some but not all nonmetallic materials. Eleven polymeric materials tested by determining outgassing species as temperature of conditioned and unconditioned materials raised to 300 degrees C. Conditioning process consisted of vacuum bake for 24 hours at 80 degrees C in addition to usual cure. Baking did not change residual gas percentage of water molecules.

  11. Vacuum counterexamples to the cosmic censorship hypothesis

    International Nuclear Information System (INIS)

    Miller, B.D.

    1981-01-01

    In cylindrically symmetric vacuum spacetimes it is possible to specify nonsingular initial conditions such that timelike singularities will (necessarily) evolve from these conditions. Examples are given; the spacetimes are somewhat analogous to one of the spherically symmetric counterexamples to the cosmic censorship hypothesis

  12. Performance evaluation on vacuum pumps using nanolubricants

    Energy Technology Data Exchange (ETDEWEB)

    Lue, Yeou Feng; Hsu, Yu Chun; Teng, Tun Ping [Dept. of Industrial EducationNational Taiwan Normal University, Taiwan (China)

    2016-09-15

    This study produced alumina (Al{sub 2}O{sub 3}) nanovacuum-pump lubricants (NVALs) by involving the dispersion of Al{sub 2}O{sub 3} nanoparticles in a vacuum-pump lubricant (VAL) with oleic as a dispersant. Experiments were conducted to evaluate the suspension performance, thermal conductivity, viscosity, specific heat, tribological performance and vacuum-pump performance of the NVALs. The experimental results obtained from the vacuum-pump performance tests show that the NVALs with Al{sub 2}O{sub 3} concentration of 0.2 wt.% and oleic concentration of 0.025 wt.% yielded the lowest electricity consumption, conserving 2.39% of electricity compared with the VAL. No marked difference was observed between the temperatures of the vacuum pump using VAL and NVAL. Furthermore, evacuation (i.e., the minimal pressure of -99.5 kPa) was reached faster by the vacuum pump with the NVALs, and the evacuation time could be reduced by 4.91% under optimal conditions. In addition, the vacuum pump with the NVALs exhibited superior overall effectiveness under relatively lower ambient temperatures.

  13. Vacuum arc anode phenomena

    International Nuclear Information System (INIS)

    Miller, H.C.

    1976-01-01

    A brief review of anode phenomena in vacuum arcs is presented. Discussed in succession are: the transition of the arc into the anode spot mode; the temperature of the anode before, during and after the anode spot forms; and anode ions. Characteristically the anode spot has a temperature of the order of the atmospheric boiling point of the anode material and is a copious source of vapor and energetic ions. The dominant mechanism controlling the transition of the vacuum arc into the anode spot mode appears to depend upon the electrode geometry, the electrode material, and the current waveform of the particular vacuum arc being considered. Either magnetic constriction in the gap plasma or gross anode melting can trigger the transition; indeed, a combination of the two is a common cause of anode spot formation

  14. MR findings of intravertebral vacuum cleft: Report of two cases

    International Nuclear Information System (INIS)

    Lee, Sung Moon; Suh, Soo Jhi; Suh, Kyung Jin

    1994-01-01

    Intravertebral vacuum cleft in collapsed vertebra was considered as a typical finding of avascular necrosis. However, several authors reported some cases of intravertebral vacuum cleft in primary or secondary neoplasm, or in spondylitis emphasizing the differential diagnosis. MRI is known to be a useful diagnostic modality for differentiation between benign and malignanct conditions causing vertebral collapse. We report MRI findings of two cases with intravertebral vacuum cleft diagnosed as posttraumatic collapse with avascular necrosis on radiological and clinical bases

  15. MR findings of intravertebral vacuum cleft: Report of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Moon; Suh, Soo Jhi [School of Medicine, Keimyung University, Taegu (Korea, Republic of); Suh, Kyung Jin [College of Medicine, Kyungpook National University, Taegu (Korea, Republic of)

    1994-07-15

    Intravertebral vacuum cleft in collapsed vertebra was considered as a typical finding of avascular necrosis. However, several authors reported some cases of intravertebral vacuum cleft in primary or secondary neoplasm, or in spondylitis emphasizing the differential diagnosis. MRI is known to be a useful diagnostic modality for differentiation between benign and malignanct conditions causing vertebral collapse. We report MRI findings of two cases with intravertebral vacuum cleft diagnosed as posttraumatic collapse with avascular necrosis on radiological and clinical bases.

  16. Design and Implementation of Temperature Controller for a Vacuum Distiller

    OpenAIRE

    Muslim, M. Aziz; N., Goegoes Dwi; F., Ahmad Salmi; R., Akhbar Prachaessardhi

    2014-01-01

    This paper proposed design and implementation of temperature controller for a vacuum distiller. The distiller is aimed to provide distillation process of bioethanol in nearly vacuum condition. Due to varying vacuum pressure, temperature have to be controlled by manipulating AC voltage to heating elements. Two arduino based control strategies have been implemented, PID control and Fuzzy Logic control. Control command from the controller was translated to AC drive using TRIAC based dimmer circu...

  17. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  18. Vacuum fusion of uranium

    International Nuclear Information System (INIS)

    Stohr, J.A.

    1957-01-01

    After having outlined that vacuum fusion and moulding of uranium and of its alloys have some technical and economic benefits (vacuum operations avoid uranium oxidation and result in some purification; precision moulding avoids machining, chip production and chemical reprocessing of these chips; direct production of the desired shape is possible by precision moulding), this report presents the uranium fusion unit (its low pressure enclosure and pumping device, the crucible-mould assembly, and the MF supply device). The author describes the different steps of cast production, and briefly comments the obtained results

  19. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  20. Vacuum considerations summary

    International Nuclear Information System (INIS)

    1977-01-01

    The vacuum system for Heavy Ion Fusion machines can be divided according to pressure into 4 parts: (a) Ion Sources; (b) Linear Accelerators; (c) Circular Accelerators, Accumulators and Storage Rings; and (d) Reactors. Since ion sources will need rather conventional pumping arrangements and reactors will operate with greater pressures, depending on their mode of operation, only items b and c will be treated in this report. In particular, the vacuum system design will be suggested for the machines proposed by various scenarios arrived at during the workshop. High mass numbers will be assumed

  1. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  2. Vacuum phonon tunneling.

    Science.gov (United States)

    Altfeder, Igor; Voevodin, Andrey A; Roy, Ajit K

    2010-10-15

    Field-induced phonon tunneling, a previously unknown mechanism of interfacial thermal transport, has been revealed by ultrahigh vacuum inelastic scanning tunneling microscopy (STM). Using thermally broadened Fermi-Dirac distribution in the STM tip as in situ atomic-scale thermometer we found that thermal vibrations of the last tip atom are effectively transmitted to sample surface despite few angstroms wide vacuum gap. We show that phonon tunneling is driven by interfacial electric field and thermally vibrating image charges, and its rate is enhanced by surface electron-phonon interaction.

  3. Cryosorption vacuum pumping under fusion reactor conditions

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1977-01-01

    Experiments are in progress on cryosorption pumping using a double-chevron pump with a molecular sieve pumping surface. Studies have been made with hydrogen, deuterium, helium, and deuterium-helium at 10 -7 to 3 x 10 -3 torr. Steady pumping speeds were observed for deuterium; above 10 -4 torr the speed increased with pressure until runaway occurred. At less than 10 -6 torr and low panel loading, hydrogen pumping speeds resemble those for deuterium. At higher pressures, the pump can function by condensation or sorption, and unsteady speeds are observed. Helium pumping is always by sorption, but regions of instability have been observed and defined. Deuterium-helium pumping tests showed that deuterium condensation on the panels prevents cryosorption of helium; however, compound pumps with separate panels for helium and hydrogen will be satisfactory

  4. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  5. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  6. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  7. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1970-01-01

    A pressure of 5 x 10-11 Torr has been obtained repreatedly in this pilot section of the ISR vacuum system. The pilot section is 45 m long is pumped by 9 sputter-ion pumps pf 350 l/s pumping speed, and is baked out at 200 degrees C before each pump down.

  8. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  9. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  10. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  11. On Lovelock vacuum solution

    OpenAIRE

    Dadhich, Naresh

    2010-01-01

    We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.

  12. Modification of Ultra-High Vacuum Surfaces Using Free Radicals

    CERN Document Server

    Vorlaufer, G

    2002-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption of surface adsorbates are usually the factors which determine pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchrotron radiation and bombardment by energetic ions and electrons, surface properties like the molecular desorption yield or secondary electron yield can strongly influence the performance of the accelerator. Well-established treatment methods like vacuum bake-out or glow-discharge cleaning have been successfully applied in the past to condition ultra-high vacuum surfaces, but these methods are sometimes difficult to carry out, for example if the vacuum chambers are not accessible. In this work, an alternative treatment method is investigated. This method is based on the strong chemical reactivity of free radicals, electrically neutral fragments of molecules. Free radicals (in the case of this work, nitrogen and oxygen radi...

  13. High current vacuum closing switch

    International Nuclear Information System (INIS)

    Dolgachev, G.I.; Maslennikov, D.D.; Romanov, A.S.; Ushakov, A.G.

    2005-01-01

    The paper proposes a powerful pulsed closing vacuum switch for high current commutation consisting of series of the vacuum diodes with near 1 mm gaps having closing time determined by the gaps shortening with the near-electrode plasmas [ru

  14. Maple sugaring with vacuum pumping during the fall season

    Science.gov (United States)

    H. Clay Smith; Alan G., Jr. Snow

    1971-01-01

    Vacuum pumping of sugar maple trees during the late fall and early winter months is not advisable in northern Vermont. However, fall pumping may be profitable in other areas of the sugar maple range. It is recommended that the weather pattern in a given locale be observed; and if conditions are favorable, vacuum pumping should be tried on a small scale before...

  15. Vacuum storage of yellow-poplar pollen

    Science.gov (United States)

    James R. Wilcox

    1966-01-01

    Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...

  16. The symmetries of the vacuum

    International Nuclear Information System (INIS)

    Fleming, H.

    1985-01-01

    The vacuum equation of state required by cosmological inflation is taken seriously as a general property of the cosmological vacuum. This correctly restricts the class of theories which admit inflation. A model of such a vacuum is presented that leads naturally to the cosmological principle. (Author) [pt

  17. Criteria for vacuum breakdown in rf cavities

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.; Kadish, A.; Thode, L.E.

    1983-01-01

    A new high-voltage scaling based on Kilpatrick's criterion is presented that suggests that voltages more than twice the Kilpatrick limit can be obtained with identical initial conditions of vacuum and surface cleanliness. The calculations are based on the experimentally observed decrease in secondary electron emission with increasing ion-impact energy above 100 keV. A generalized secondary-emission package has been developed to simulate actual cavity dynamics in conjunction with our 2 1/2-dimensional fully electromagnetic particle-in-cell code CEMIT. The results are discussed with application to the suppression of vacuum breakdown in rf accelerator devices

  18. Structural Analysis of the NCSX Vacuum Vessel

    International Nuclear Information System (INIS)

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-01-01

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered

  19. Thermal methodology: recent developments; Methodologie thermique: developpements recents

    Energy Technology Data Exchange (ETDEWEB)

    Jumel, J.; Lepoutre, F.; Balageas, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 75 - Paris (France)]|[Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)]|[CEA Le Ripault, 37 - Tours (France)] [and others

    2001-07-01

    This conference day organized by the French society of thermal engineering (SFT) was devoted to the recent advances in thermal instrumentation. Eight papers were presented and were dealing with: the measurement of the microscopic thermal properties of C/C and C/C-SiC composite materials; the metrology of the local probe thermal microscopy (analysis of the probe-sample thermal interaction); the emission factor of semi-transparent materials at high temperature (2000 deg.C); the study of the tungsten-rhenium couples between 1000 and 2000 deg.C; the theoretical aspects of thermocouple instrumentation in the estimation of surface or interface thermal conditions; the microscale thermo-physical characterisation of metal coatings; the thermal microscopy measurement of the contact resistance of a metal inclusion in a thermoplastic matrix; and the application of laser-induced fluorescence in thermal metrology (from turbulence to combustion). (J.S.)

  20. Study of the asymptotic expansion of multiple integrals in mathematical physics; Etudes sur les developpements asymptotiques des integrales multiples de la physique mathematique

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    , provided one interprets in a proper manner the results derived from the two methods, especially the expression of the geometrical wave. (author) [French] Nous avons applique la methode de la phase stationnaire pour evaluer les integrales doubles et multiples du type: (A) U(k) = g(x)e{sup ik{phi}}{sup (x)} d(x), (x)=(x{sub 1},..., x{sub n}) pour les grandes valeurs du parametre k. Dans la premiere partie nous avons etendu d'une maniere rigoureuse la methode de la phase stationnaire aux integrales doubles et multiples de type (A). De plus, nous avons obtenu un developpement asymptotique de (A), lorsque l'amplitude et la phase peuvent se developper sous forme canonique au voisinage de points critiques ou stationnaires de l'integrale (A). Ce developpement contient comme cas particuliers tous les cas importants dans les applications physiques et particulierement en diffraction et diffusion d'ondes electromagnetiques et corpusculaires par des systemes optiques, corps diffractants et potentiels de diffusions. Dans la seconde partie nous avons considere le probleme de la convergence du developpement de la contribution principale a l'integrale, au sens asymptotique de Poincare. La preuve est basee sur la methode des majorantes, utilisee en analyse mathematique. La troisieme partie contient la derivation des series asymptotiques diverses, due aux types varies de points critiques ou stationnaires lies aux fonctions d'amplitude et de phase. Dans la quatrieme partie nous avons generalise la methode aux integrales multiples et au cas ou le parametre k entre implicitement dans la fonction de phase. Ce dernier type d'integrales permet l'extension du premier type a de nombreux problemes physiques, par exemple a la propagation d'ondes en milieux dispersifs et absorbants. Au dernier chapitre, nous faisons l'etude des integrales doubles de diffractions (theorie de Kirchhoff) et nous comparons les resultats par l'application de la methode de la phase stationnaire et de la methode Young

  1. Nonperturbative QED vacuum birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. [Physics Department, Moscow State University,Moscow, 119991 (Russian Federation)

    2017-05-19

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  2. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  3. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  4. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  5. The JET vacuum interspace system

    International Nuclear Information System (INIS)

    Orchard, J.; Scales, S.

    1999-01-01

    In the past JET has suffered from a number of vacuum leaks on components such as bellows, windows and feedthroughs due, in part, to the adverse conditions, including high mechanical forces, which may prevail during plasma operation. Therefore before the recent Tritium experiments on JET it was deemed prudent to manufacture and install items with a secondary containment or interspace in order to minimise the effect of failure of the primary vacuum barrier on both the leak integrity of the machine and the outcome of the experiments. This paper describes the philosophy, logistics, method and implementation of an integrated connection and monitoring system on the 330 interspaces currently in position on the JET machine. Using the JET leak database comparisons are drawn of leak failure rates of the components allied to the number of operational hours, prior to the system being present and after installation and commissioning, and the case of detection compared to the previous situation. An argument is also presented on the feasibility and adaptability of this system to any large complex machine and the benefits to be obtained in reduction of leaks and operational down time. (author)

  6. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov

    2015-03-01

    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  7. Metastable electroweak vacuum. Implications for inflation

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Oleg; Westphal, Alexander [DESY Theory Group, Hamburg (Germany)

    2012-10-15

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10{sup 8} in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  8. Vacuum electron acceleration by coherent dipole radiation

    International Nuclear Information System (INIS)

    Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Hartemann, F.V.; Troha, A.L.; Van Meter, J.R.; Landahl, E.C.; Alvis, R.M.; Li, K.; Luhmann, N.C. Jr.; Hartemann, F.V.; Unterberg, Z.A.; Kerman, A.K.

    1999-01-01

    The validity of the concept of laser-driven vacuum acceleration has been questioned, based on an extrapolation of the well-known Lawson-Woodward theorem, which stipulates that plane electromagnetic waves cannot accelerate charged particles in vacuum. To formally demonstrate that electrons can indeed be accelerated in vacuum by focusing or diffracting electromagnetic waves, the interaction between a point charge and coherent dipole radiation is studied in detail. The corresponding four-potential exactly satisfies both Maxwell's equations and the Lorentz gauge condition everywhere, and is analytically tractable. It is found that in the far-field region, where the field distribution closely approximates that of a plane wave, we recover the Lawson-Woodward result, while net acceleration is obtained in the near-field region. The scaling of the energy gain with wave-front curvature and wave amplitude is studied systematically. copyright 1999 The American Physical Society

  9. Metastable electroweak vacuum. Implications for inflation

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Westphal, Alexander

    2012-10-01

    Within the Standard Model, the current Higgs and top quark data favor metastability of the electroweak vacuum, although the uncertainties are still significant. The true vacuum is many orders of magnitude deeper than ours and the barrier separating the two is tiny compared to the depth of the well. This raises a cosmological question: how did the Higgs field get trapped in the shallow minimum and why did it stay there during inflation? The Higgs initial conditions before inflation must be fine-tuned to about one part in 10 8 in order for the Higgs field to end up in the right vacuum. In this note, we show that these problems can be resolved if there is a small positive coupling between the Higgs and the inflaton.

  10. Temperature control in vacuum

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The patent concerns a method for controlling the temperature of silicon wafers (or samples), during ion beam treatment of the wafers, in a vacuum. The apparatus and method are described for irradiation and temperature control of the samples. The wafers are mounted on a drum which is rotated through the ion beam, and are additionally heated by infra-red lamps to achieve the desired temperature. (U.K.)

  11. Electroweak vacuum geometry

    International Nuclear Information System (INIS)

    Lepora, N.; Kibble, T.

    1999-01-01

    We analyse symmetry breaking in the Weinberg-Salam model paying particular attention to the underlying geometry of the theory. In this context we find two natural metrics upon the vacuum manifold: an isotropic metric associated with the scalar sector, and a squashed metric associated with the gauge sector. Physically, the interplay between these metrics gives rise to many of the non-perturbative features of Weinberg-Salam theory. (author)

  12. Vacuum inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    Hanquin, J.-L.

    1984-01-01

    The author presents some results concerning the vacuum cosmological models which admit a 2-dimensional Abelian group of isometries: classifications of these space-times based on the topological nature of their space-like hypersurfaces and on their time evolution, analysis of the asymptotical behaviours at spatial infinity for hyperbolical models as well as in the neighbourhood of the singularity for the models possessing a time singularity during their evolution. (Auth.)

  13. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  14. Vacuum system for LHC

    International Nuclear Information System (INIS)

    Groebner, O.

    1995-01-01

    The Large Hadron Collider (LHC) which is planned at CERN will be housed in the tunnel of the Large Electron Positron collider (LEP) and will store two counter-rotating proton beams with energies of up to 7 TeV in a 27 km accelerator/storage ring with superconducting magnets. The vacuum system for the LHC will be at cryogenic temperatures (between 1.9 and 20 K) and will be exposed to synchrotron radiation emitted by the protons. A stringent limitation on the vacuum is given by the energy deposition in the superconducting coils of the magnets due to nuclear scattering of the protons on residual gas molecules because this may provoke a quench. This effect imposes an upper limit to a local region of increased gas density (e.g. a leak), while considerations of beam lifetime (100 h) will determine more stringent requirements on the average gas density. The proton beam creates ions from the residual gas which may strike the vacuum chamber with sufficient energy to lead to a pressure 'run-away' when the net ion induced desorption yield exceeds a stable limit. These dynamic pressure effects will be limited to an acceptable level by installing a perforated 'beam screen' which shields the cryopumped gas molecules at 1.9 K from synchrotron radiation and which also absorbs the synchrotron radiation power at a higher and, therefore, thermodynamically more efficient temperature. (author)

  15. Anomalous vacuum expectation values

    International Nuclear Information System (INIS)

    Suzuki, H.

    1986-01-01

    The anomalous vacuum expectation value is defined as the expectation value of a quantity that vanishes by means of the field equations. Although this value is expected to vanish in quantum systems, regularization in general produces a finite value of this quantity. Calculation of this anomalous vacuum expectation value can be carried out in the general framework of field theory. The result is derived by subtraction of divergences and by zeta-function regularization. Various anomalies are included in these anomalous vacuum expectation values. This method is useful for deriving not only the conformal, chiral, and gravitational anomalies but also the supercurrent anomaly. The supercurrent anomaly is obtained in the case of N = 1 supersymmetric Yang-Mills theory in four, six, and ten dimensions. The original form of the energy-momentum tensor and the supercurrent have anomalies in their conservation laws. But the modification of these quantities to be equivalent to the original one on-shell causes no anomaly in their conservation laws and gives rise to anomalous traces

  16. P3-approximation for gaseous media and vacuum

    International Nuclear Information System (INIS)

    Raevskaya, V.E.

    1986-01-01

    The problems connected with calculation of neutron field in a fuel assembly (FA) of a gas cooled reactor are discussed. The problem of P 3 -approximation applicability for the description of neutron fields in closed vacuum and gas volumes is considered. Under the assumption of the field azimuthal symmetry derived are the formulas for determination of the field in cylindrical vacuum layer of multizone FA as well as the solution for the cluster central zone, where the rods with vacuum between them are placed. Because of the finiteness of voids surrounded by medium it is possible to use the condition of neutron flux density continuity as the boundary conditions for the interface with vacuum. For representation of boundary conditions for rod surfaces and the cluster central zone with vacuum the addition theorems for the field in vacuum between the roads are derived. The formulas for mean neutron fluxes in vacuum cylindrical layer and in vacuum between rods are derived. The numerical calculations performed according to various programs confirmed the validity of the derived formulas

  17. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  18. The Planck Vacuum and the Schwarzschild Metrics

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-07-01

    Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.

  19. Optimization of Edwards vacuum coating unit model E12E for the production of thin films

    International Nuclear Information System (INIS)

    Ruiz P, H.S.

    1995-01-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author)

  20. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  1. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  2. Development of wind energy in Morocco; Developpement de l'energie eolienne au Maroc

    Energy Technology Data Exchange (ETDEWEB)

    Enzili, M. [Centre de Developpement des Energies Renouvelables de Maroc, Rabat (Morocco)

    2008-04-15

    Morocco's national energy policy includes the use of renewable energy sources to lessen its reliance on fossil fuels such as coal and oil. Legislation was recently passed to increase the threshold of electrical power from 10 MW to 50 MW. Solar and wind energy are the most abundant renewable energy resources in the country and are recommended for exploitation on a large scale. Feasibility studies conducted by the Centre de Developpement des Energies Renouvelables have shown that Morocco has enough wind energy to produce electricity on a large scale and interconnect it with the national power grid. Wind energy in the country could also be used for on-site power generation in remote villages or for desalination of seawater, particularly in the southern regions of Morocco which are most affected by drought. Essaouira, Tangier, Tetouan, Tarfaya, Dakhla, Laayoune and Taza were among the regions identified with significant wind resources. The total wind energy potential for Morocco is estimated to be 2,650 GW, while the technical wind energy potential is estimated to be 1,600 GW. Several projects have been realized in the areas of electricity production, interconnection to the national power grid, decentralized rural electrification and eventually the introduction of water pumping. It was concluded that exporting green energy to Europe, via the Morocco-Spain route after the restructuring of Morocco's electricity sector will create a viable market for the medium and long-term. 3 figs.

  3. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  4. R and D ERL: Vacuum

    International Nuclear Information System (INIS)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the ∼10 -9 torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2 o K is reduced to low 10 -11 torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The cryostat vacuum thermally

  5. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-12-01

    The Mirror Fusion Test Facility (MFTF) vacuum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 - 6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorption pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  6. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  7. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  8. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The present paper reports the first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  9. Vacuum guidelines for ISA insertions

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1976-01-01

    Vacuum requirements place design restrictions on the ISA insertions. The vacuum tube diameter, given a distance L between pumps, is determined by the desorption of molecules from the wall under the impact of ions created by the beam, whereas the thickness of the tube must be sufficient to prevent collapse. In addition, the entire vacuum chamber must be able to be baked out at approximately 200 0 C

  10. Particle contamination in vacuum systems

    International Nuclear Information System (INIS)

    Martignac, J.; Bonin, B.; Henriot, C.; Poupeau, J.P.; Koltchakian, I.; Kocic, D.; Herbeaux, Ch.; Marx, J.P.

    1996-01-01

    Many vacuum devices, like RF cavities, are sensitive to particle contamination. This fact has motivated a considerable effort of cleanliness from the SRF community. The first results of a general study trying to identify the most contaminating steps during assembly and vacuum operation of the cavity is reported. The steps investigated here are gasket assembly, evacuation and venting of the vacuum system, and operation of sputter ion pumps. (author)

  11. Big Bang or vacuum fluctuation

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1980-01-01

    Some general properties of vacuum fluctuations in quantum field theory are described. The connection between the ''energy dominance'' of the energy density of vacuum fluctuations in curved space-time and the presence of singularity is discussed. It is pointed out that a de-Sitter space-time (with the energy density of the vacuum fluctuations in the Einstein equations) that matches the expanding Friedman solution may describe the history of the Universe before the Big Bang. (P.L.)

  12. Vacuum chamber-free centrifuge with magnetic bearings.

    Science.gov (United States)

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  13. Vacuum metastability with black holes

    Energy Technology Data Exchange (ETDEWEB)

    Burda, Philipp [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Gregory, Ruth [Centre for Particle Theory, Durham University,South Road, Durham, DH1 3LE (United Kingdom); Perimeter Institute, 31 Caroline Street North,Waterloo, ON, N2L 2Y5 (Canada); Moss, Ian G. annd [School of Mathematics and Statistics, Newcastle University,Newcastle Upon Tyne, NE1 7RU (United Kingdom)

    2015-08-24

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  14. Vacuum metastability with black holes

    International Nuclear Information System (INIS)

    Burda, Philipp; Gregory, Ruth; Moss, Ian G. annd

    2015-01-01

    We consider the possibility that small black holes can act as nucleation seeds for the decay of a metastable vacuum, focussing particularly on the Higgs potential. Using a thin-wall bubble approximation for the nucleation process, which is possible when generic quantum gravity corrections are added to the Higgs potential, we show that primordial black holes can stimulate vacuum decay. We demonstrate that for suitable parameter ranges, the vacuum decay process dominates over the Hawking evaporation process. Finally, we comment on the application of these results to vacuum decay seeded by black holes produced in particle collisions.

  15. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  16. Vacuum leak detector and method

    Science.gov (United States)

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  17. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  18. Shiva and Argus target diagnostics vacuum systems

    International Nuclear Information System (INIS)

    Glaros, S.S.; Mayo, S.E.; Campbell, D.; Holeman, D.

    1978-09-01

    The normal operation of LLL's Argus and Shiva laser irradiation facilities demand a main vacuum system for the target chamber and a separate local vacuum system for each of the larger appendage dianostics. This paper will describe the Argus and Shiva main vacuum systems, their respective auxiliary vacuum systems and the individual diagnostics with their respective special vacuum requirements and subsequent vacuum systems. Our latest approach to automatic computer-controlled vacuum systems will be presented

  19. Vacuum ultraviolet photochemistry of polymers

    International Nuclear Information System (INIS)

    Skurat, Vladimir

    2003-01-01

    under vacuum conditions. The energetic yield of erosion is intensity-dependent because of the limited rate of sublimation of polymer fragments

  20. Melting the vacuum

    International Nuclear Information System (INIS)

    Rafelski, J.

    1998-01-01

    Results presented at the Quark Matter 97 conference, held in December in Tsukuba, Japan, have provided new insights into the confinement of quarks in matter. The current physics paradigm is that the inertial masses of protons and neutrons, and hence of practically all of the matter around us, originate in the zero-point energy caused by the confinement of quarks inside the small volume of the nucleon. Today, 25 years after Harald Fritzsch, Heinrich Leutwyler and Murray Gell-Mann proposed quantum chromodynamics (QCD) as a means for understanding strongly interacting particles such as nucleons and mesons, our understanding of strong interactions and quark confinement remains incomplete. Quarks and the gluons that bind them together have a ''colour'' charge that may be red, green or blue. But quarks are seen in particles that are white: baryons such as protons and neutrons consist of three quarks with different colour charges, while mesons consist of a quark and an antiquark, and again the colour charge cancels out. To prove that confinement arises from quark-gluon fluctuations in the vacuum that quantum theories dictate exists today, we need to find a way of freeing the colour charge of quarks. Experiments must therefore ''melt'' the vacuum to deconfine quarks and the colour charge. By colliding nuclei at high energies, we hope to produce regions of space filled with free quarks and gluons. This deconfined phase is known as the quark-gluon plasma. At the Tsukuba meeting, Scott Pratt of Michigan State University in the US discussed measurements that show that the hot dense state of matter created in these collisions exists for only 2x10 -23 s. So does the quark gluon plasma exist? No-one doubts that it did at one time, before the vacuum froze into its current state about 20 into the life of the universe, causing the nucleons to form as we know them today. The issue is whether we can recreate this early stage of the universe in laboratory experiments. And if we did

  1. Baking of SST-1 vacuum vessel modules and sectors

    International Nuclear Information System (INIS)

    Pathan, Firozkhan S; Khan, Ziauddin; Yuvakiran, Paravastu; George, Siju; Ramesh, Gattu; Manthena, Himabindu; Shah, Virendrakumar; Raval, Dilip C; Thankey, Prashant L; Dhanani, Kalpesh R; Pradhan, Subrata

    2012-01-01

    SST-1 Tokamak is a steady state super-conducting tokamak for plasma discharge of 1000 sec duration. The plasma discharge of such long time duration can be obtained by reducing the impurities level, which will be possible only when SST-1 vacuum chamber is pumped to ultra high vacuum. In order to achieve UHV inside the chamber, the baking of complete vacuum chamber has to be carried out during pumping. For this purpose the C-channels are welded inside the vacuum vessel. During baking of vacuum vessel, these welded channels should be helium leak tight. Further, these U-channels will be in accessible under operational condition of SST-1. So, it will not possible to repair if any leak is developed during experiment. To avoid such circumstances, a dedicated high vacuum chamber is used for baking of the individual vacuum modules and sectors before assembly so that any fault during welding of the channels will be obtained and repaired. This paper represents the baking of vacuum vessel modules and sectors and their temperature distribution along the entire surface before assembly.

  2. ALICE's first vacuum bakeout a success

    CERN Multimedia

    2007-01-01

    At the beginning of April, the ALICE central beryllium beam pipe and absorber beam pipes were successfully conditioned. The installation and bakeout shell surround the beam pipe (lower left), running through the middle of the ITS and TPC. Notice the high-tech cooling system, an additional precaution to avoid overheating the ALICE detection equipment.One end of the vacuum sector during the bakeout and pure gas refill. It is unusual for a vacuum sector to end as it does in the middle of a non-accessible detector and made the installation and cabling of the bakeout equipment a more difficult procedure. Just before Easter, the first bakeout and NEG activation of experimental chambers in the LHC was carried out, followed by ultra pure gas refill. The bakeout consisted of externally heating the chambers under vacuum in order to lower their outgassing. This same heating process also activates the NEG, a coating on the inside surface of the beam vacuum chambers, which pumps the residual gas. ALICE's bakeout was pa...

  3. Waveguide quantum electrodynamics in squeezed vacuum

    Science.gov (United States)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  4. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.

    1980-01-01

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  5. Troubleshooting vacuum systems steam turbine surface condensers and refinery vacuum towers

    CERN Document Server

    Lieberman, Norman P

    2012-01-01

    Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor.  In this much-anticipated volume, one of the most well-respected and prolific process engineers in the world takes on troubleshooting vacuum systems, and especially steam ejectors, an extremely complex and difficult subject that greatly effects the profitability of the majority of the world'

  6. On a metastable vacuum burning phenomenon

    International Nuclear Information System (INIS)

    Berezin, V.A.; Tkachev, I.I.; Kuzmin, V.A.; AN SSSR, Moscow. Inst. Yadernykh Issledovanij)

    1983-02-01

    Equations of motion of an interface between two phases with arbitrary equations of state are obtained. It is found that there may take place a process of metastable vacuum burning. It is shown that under some conditions the process of the new phase bubble expansion is described by the detonation wave equations. Possible cosmological consequences of the metastable phase burning effect are briefly discussed. (author)

  7. Development of a large lithium coolant system for operation under vacuum

    International Nuclear Information System (INIS)

    Kolowith, R.; Schwartz, K.E.; Meadows, G.E.; Berg, J.D.

    1983-11-01

    Argon and vacuum systems for the Experimental Lithium System (ELS) were tested to demonstrate vacuum-break capability, vacuum pumping performance, and vacuum sensor compatibility with a hostile liquid metal vapor/aerosol environment. Mechanical, diffusion and cryogenic vacuum pumps were evaluated. High-vacuum levels in the 10 -3 Pa range were achieved over a 270 0 C flowing lithium system. Ionization, thermal conductivity, capacitance manometer, and compound-type pressure sensors were evaluated to determine the effects of this potentially deleterious environment. Screening elbows were evaluated as pressure sensor protective devices. A dual-purpose vacuum-level/nitrogen partial-pressure sensor was evaluated as a means of detecting air in-leakage. Several types of static mechanical vacuum seals were also evaluated. Measurements of the vapor/aerosol generation were made at several system locations and operating conditions

  8. Vacuum strings in FRW models

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C; Oattes, L M; Starkman, G D

    1988-01-01

    The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.

  9. Vacuum Technology for Ion Sources

    International Nuclear Information System (INIS)

    Chiggiato, P

    2013-01-01

    The basic notions of vacuum technology for ion sources are presented, with emphasis on pressure profile calculation and choice of pumping technique. A Monte Carlo code (Molflow+) for the evaluation of conductances and the vacuum-electrical analogy for the calculation of time-dependent pressure variations are introduced. The specific case of the Linac4 H - source is reviewed. (author)

  10. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  11. Detecting leaks in vacuum bags

    Science.gov (United States)

    Carlstrom, E. E.

    1980-01-01

    Small leaks in vacuum bag can be readily detected by eye, using simple chemical reaction: combination of ammonia and acetic acid vapors to produce cloudy white smoke. Technique has been successfully used to test seam integrity and to identify minute pinholes in vacuum bag used in assembly of ceramic-tile heat shield for Space Shuttle Orbiter.

  12. Vacuum Technology for Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiggiato, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  13. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N_...

  14. The AGS Booster vacuum systems

    International Nuclear Information System (INIS)

    Hseuh, H.C.

    1989-01-01

    The AGS Booster is a synchrotron for the acceleration of both protons and heavy ions. The design pressure of low 10 -11 mbar is required to minimize beam loss of the partially stripped heavy ions. To remove contaminants and to reduce outgassing, the vacuum chambers and the components located in them will be chemically cleaned, vacuum fired, baked then treated with nitric oxide. The vacuum sector will be insitu baked to a minimum of 200 degree C and pumped by the combination of sputter ion pumps and titanium sublimation pumps. This paper describes the design and the processing of this ultra high vacuum system, and the performance of some half-cell vacuum chambers. 9 refs., 7 figs

  15. Cosmology with decaying vacuum energy

    International Nuclear Information System (INIS)

    Freese, K.; Adams, F.; Frieman, J.; Mottola, E.

    1987-09-01

    Motivated by recent attempts to solve the cosmological constant problem, we examine the observational consequences of a vacuum energy density which decays in time. For all times later than t ∼ 1 sec, the ratio of the vacuum to the total energy density of the universe must be small. Although the vacuum cannot provide the ''missing mass'' required to close the universe today, its presence earlier in the history of the universe could have important consequences. We discuss restrictions on the vacuum energy arising from primordial nucleosynthesis, the microwave and gamma ray background spectra, and galaxy formation. A small vacuum component at the era of nucleosynthesis, 0.01 5, but in some cases would severely distort the microwave spectrum. 9 refs., 3 figs

  16. Vacuum transitions in dual models

    International Nuclear Information System (INIS)

    Pashnev, A.I.; Volkov, D.V.; Zheltukhin, A.A.

    1976-01-01

    The investigation is continued of the spontaneous vacuum transition problem in the Neview-Schwartz dual model (NSDM). It is shown that vacuum transitions allow disclosing of supplementary degeneration in the resonance state spectrum. The dual amplitudes possess an internal structure corresponding to the presence of an infinite number of quarks with increasing masses and retained charges. The Adler principle holds. Analytic continuation on the constant of induced vacuum transitions makes it possible to establish the existence of spontaneous vacuum transitions in the NSDM. The consequence of this fact is the exact SU(2) symmetry of π, rho meson trajectories and the Higgs mechanism in the model. In this case the ratios of masses of particles leading trajectories are analogous to those obtained in the current algebra. It is shown that in the NSDM there arises chiral SU(2) x SU(2) x U(1) x U(1) x ... symmetry resulting from spontaneous vacuum transitions

  17. Hadron Contribution to Vacuum Polarisation

    CERN Document Server

    Davier, M; Malaescu, B; Zhang, Z

    2016-01-01

    Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...

  18. Comprehending the structure of a vacuum vessel and in-vessel components of fusion machines. 1. Comprehending the vacuum vessel structure

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Nakahira, Masataka

    2006-01-01

    The functions, conditions and structure of vacuum vessel using tokamak fusion machines are explained. The structural standard and code of vacuum vessel, process of vacuum vessel design, and design of ITER vacuum vessel are described. Production and maintenance of ultra high vacuum, confinement of radioactive materials, support of machines in vessel and electromagnetic force, radiation shield, plasma vertical stability, one-turn electric resistance, high temperature baking heat and remove of nuclear heat, reduce of troidal ripple, structural standard, features of safety of nuclear fusion machines, subjects of structural standard of fusion vacuum vessel, design flow of vacuum vessel, establishment of radial build, selections of materials, baking and cooling method, basic structure, structure of special parts, shield structure, and of support structure, and example of design of structure, ITER, are stated. (S.Y.)

  19. Decay of the de Sitter vacuum

    Science.gov (United States)

    Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.

    2018-03-01

    The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.

  20. Electroweak vacuum stability in the Higgs-Dilaton theory

    Energy Technology Data Exchange (ETDEWEB)

    Shkerin, A. [Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL),CH-1015, Lausanne (Switzerland); Institute for Nuclear Research of the Russian Academy of Sciences,60th October Anniversary prospect 7a, 117312, Moscow (Russian Federation)

    2017-05-30

    We study the stability of the Electroweak (EW) vacuum in a scale-invariant extension of the Standard Model and General Relativity, known as a Higgs-Dilaton theory. The safety of the EW vacuum against possible transition towards another vacuum is a necessary condition for the model to be phenomenologically acceptable. We find that, within a wide range of parameters of the theory, the decay rate is significantly suppressed compared to that of the Standard Model. We also discuss properties of a tunneling solution that are specific to the Higgs-Dilaton theory.

  1. Relaxation of vacuum energy in q-theory

    Science.gov (United States)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  2. Automatic electromagnetic valve for previous vacuum

    International Nuclear Information System (INIS)

    Granados, C. E.; Martin, F.

    1959-01-01

    A valve which permits the maintenance of an installation vacuum when electric current fails is described. It also lets the air in the previous vacuum bomb to prevent the oil ascending in the vacuum tubes. (Author)

  3. Uses of the vacuum

    International Nuclear Information System (INIS)

    Rohrlich, D.M.

    1986-01-01

    Three problems in quantum field theory are analyzed. Each presents the vacuum in a different role. The connections among these significant roles are discussed in Chapter I. Chapter II contains a calculation of the zero-point energy in the Kaluza-Klein model. The zero-point fluctuations induce a potential which makes the compact dimensional contract. The effective potential is seen to be the four-dimensional version of the Casimir effect. Chapter III contains a Monte Carlo study of asymptotic freedom scales in lattice QCD. Two versions of SU(2) gauge theory, having different representations of the gauge group, are compared. A new method is used to calculate the ratio of scale parameters of the two theories. The method directly uses the weak-coupling behavior of the theories. The Monte-Carlo results are compared with perturbative calculations on the lattice, one of which is presented. They are in good agreement. Chapter IV applies the hypothesis of dimensional reduction to five-dimensional SU(2) and four-dimensional SO(3) lattice gauge theories. New analytic results for the strong- and weak-coupling limits are derived. Monte Carlo calculations show dimensional reduction in the strong coupling phases of both theories. At the phase transition, the two theories show a similar loss of dimensional reduction. An external source of random flux does not induce dimensional reduction where it is not already present

  4. Changing MFTF vacuum environment

    International Nuclear Information System (INIS)

    Margolies, D.; Valby, L.

    1982-01-01

    The Mirror Fusion Test Facility (MFTF) vaccum vessel will be about 60m long and 10m in diameter at the widest point. The allowable operating densities range from 2 x 10 9 to 5 x 10 10 particles per cc. The maximum leak rate of 10 -6 tl/sec is dominated during operation by the deliberately injected cold gas of 250 tl/sec. This gas is pumped by over 1000 square meters of cryopanels, external sorbtion pumps and getters. The design and requirements have changed radically over the past several years, and they are still not in final form. The vacuum system design has also changed, but more slowly and less radically. This paper discusses the engineering effort necessary to meet these stringent and changing requirements. Much of the analysis of the internal systems has been carried out using a 3-D Monte Carlo computer code, which can estimate time dependent operational pressures. This code and its use will also be described

  5. Minkowski vacuum transitions in (nongeometric) flux compactifications

    International Nuclear Information System (INIS)

    Herrera-Suarez, Wilberth; Loaiza-Brito, Oscar

    2010-01-01

    In this work we study the generalization of twisted homology to geometric and nongeometric backgrounds. In the process, we describe the necessary conditions to wrap a network of D-branes on twisted cycles. If the cycle is localized in time, we show how by an instantonic brane mediation, some D-branes transform into fluxes on different backgrounds, including nongeometric fluxes. As a consequence, we show that in the case of a IIB six-dimensional torus compactification on a simple orientifold, the flux superpotential is not invariant by this brane-flux transition, allowing the connection among different Minkowski vacuum solutions. For the case in which nongeometric fluxes are turned on, we also discuss some topological restrictions for the transition to occur. In this context, we show that there are some vacuum solutions protected to change by a brane-flux transition.

  6. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  7. Design of the MFTF external vacuum system

    International Nuclear Information System (INIS)

    Holl, P.M.

    1979-01-01

    As a result of major experiment success in the LLL mirror program on start-up and stabilization of plasmas in minimum-B magnetic geometry, a Mirror Fusion Test Facility (MFTF) is under construction. Completion is scheduled for September, 1981. MFTF will be used to bridge the gap between present day small mirror experiments and future fusion-reactor activity based on magnetic mirrors. The focal point of the Mirror Fusion Test Facility is the 35 foot diameter by 60 foot long vacuum vessel which encloses the superconducting magnets. High vacuum conditions in the vessel are required to establish and maintain a plasma, and to create and deliver energetic neutral atoms to heat the plasma at the central region

  8. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  9. Vacuum system for HIMAC synchrotrons

    International Nuclear Information System (INIS)

    Kanazawa, M.; Sudou, M.; Sato, K.

    1994-01-01

    HIMAC synchrotrons are now under construction, which require vacuum chambers of large aperture and high vacuum of about 10 -9 torr. Wide thin wall vacuum chamber of 0.3 mm thickness reinforced with ribs has been developed as the chamber at dipole magnet. We have just now started to evacuate the lower ring. The obtained average value was about 5x10 -8 torr with turbo-molecular and sputter ion pumps, and 1.1x10 -9 torr after baking. (author)

  10. The localized quantum vacuum field

    International Nuclear Information System (INIS)

    Dragoman, D

    2008-01-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles

  11. The localized quantum vacuum field

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, D [Physics Department, University of Bucharest, PO Box MG-11, 077125 Bucharest (Romania)], E-mail: danieladragoman@yahoo.com

    2008-03-15

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  12. Resistor cooling in a vacuum

    International Nuclear Information System (INIS)

    Crittenden, R.; Krider, J.

    1987-01-01

    This note describes thermal measurements which were done on a resistor operating both in air at one atmosphere pressure and in a vacuum of a few milliTorr. The motivation for this measurement was our interest in operating a BGO crystal-photomultiplier tube-base assembly in a vacuum, as a synchrotron radiation detector to tag electrons in the MT beam. We wished to determine what fraction of the total resistor power was dissipated by convection in air, in order to know whether there would be excessive heating of the detector assembly in a vacuum. 3 figs

  13. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  14. Design and construction of vacuum control system on EAST

    International Nuclear Information System (INIS)

    Wang, L.; Zhang, Y.; Hu, Q.S.; Wang, X.M.; Zhang, X.D.; Hu, J.S.; Yang, Y.; Gu, X.M.

    2008-01-01

    The construction of experimental advanced superconducting tokamak (EAST) was finished at the end of 2006 in Hefei, China. Its vacuum system, an important subsystem, has been commissioned in February 2006. The design and construction of this vacuum control system are described in this paper. The requirements for remote automation, distributed control and centralized management, high reliability and expansibility have been taken into account in the design. There are three levels of control in vacuum control system. The bottom level control is performed on the local instruments manually; the medium level control is based on Siemens S7-400 PLC; the top level control is conducted on IPCs with communication through profi b us network. In addition remote handling and centralized monitoring could be realized by a remote control server. The control system could achieve pumping and fueling of the whole vacuum system. Besides that, it also includes the data acquisition of the pressure and temperature. The details are discussed on the monitoring of vacuum system states including cooling water, power and compressed air, etc., safeguards of plasma chamber and cryostat chamber and vacuum equipments, choosing of control modes corresponding to the plasma discharge and wall conditioning. At the end, the parts of EAST device protection system related to vacuum and gas injection system will also be introduced

  15. Evaluation of CBA first string full cell vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10 -11 Torr and the other, known as insulating vacuum, operates at less than 10 -7 Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0 0 K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10 -11 Torr beam vacuum requirement and below 2 x 10 -7 Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing

  16. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  17. Particle creation during vacuum decay

    International Nuclear Information System (INIS)

    Rubakov, V.A.

    1984-01-01

    The hamiltonian approach is developed with regard to the problem of particle creation during the tunneling process, leading to the decay of the false vacuum in quantum field theory. It is shown that, to the lowest order in (h/2π), the particle creation is described by the euclidean Schroedinger equation in an external field of a bounce. A technique for solving this equation is developed in an analogy to the Bogoliubov transformation technique, in the theory of particle creation in the presence of classical background fields. The technique is illustrated by two examples, namely, the particle creation during homogeneous vacuum decay and during the tunneling process leading to the materialization of the thin-wall bubble of a new vacuum in the metastable one. The curious phenomenon of intensive particle annihilation during vacuum decay is discussed and explicitly illustrated within the former example. The non-unitary extension of the Bogoliubov u, v transformations is described in the appendix. (orig.)

  18. Vacuum in intensive gauge fields

    International Nuclear Information System (INIS)

    Matinian, S.G.

    1977-12-01

    The behaviour of vacuum in a covariantly constant Yang-Mills field is considered. The expressions for the effective Lagrangian in an intensive field representing the asymptotic freedom of the theory are found

  19. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  20. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  1. Vacuum energy from noncommutative models

    Science.gov (United States)

    Mignemi, S.; Samsarov, A.

    2018-04-01

    The vacuum energy is computed for a scalar field in a noncommutative background in several models of noncommutative geometry. One may expect that the noncommutativity introduces a natural cutoff on the ultraviolet divergences of field theory. Our calculations show however that this depends on the particular model considered: in some cases the divergences are suppressed and the vacuum energy is only logarithmically divergent, in other cases they are stronger than in the commutative theory.

  2. Technical specification for vacuum systems

    International Nuclear Information System (INIS)

    Khaw, J.

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10 -5 to 10 -11 Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components

  3. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Kurita, Gen-ichi; Onozuka, Masaki; Suzuki, Masaru.

    1997-01-01

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and γ rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  4. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Kurita, Gen-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masaki; Suzuki, Masaru

    1997-07-31

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and {gamma} rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  5. Vacuum system for the tokamak fusion test reactor (TFTR)

    International Nuclear Information System (INIS)

    Lange, W.J.; Green, D.; Sink, D.A.

    1976-01-01

    The vacuum system for TFTR is described. Insofar as possible, conventional and ultrahigh vacuum (UHV) components and technology will be employed. Subassemblies will be prebaked in vacuum to reduce subsequent outgassing, and assembly will employ TIG welding and metal gaskets. It is not anticipated that the totally assembled torus with its numerous diagnostic appendages will be baked in situ to a high temperature, however a lower bakeout temperature (approximately 250 0 C) is under consideration. Final vacuum conditioning will be performed using discharge cleaning to obtain a specific outgassing rate of less than or = to 10 -10 Torr liter/sec cm 2 hydrogen isotopes and less than or = to 10 -12 Torr liter/sec cm 2 of other gases, and a base pressure of less than or = to 5 x 10 -8 Torr

  6. Device for supporting the vacuum vessel of a thermonuclear device

    International Nuclear Information System (INIS)

    Sato, Hiroshi.

    1980-01-01

    Purpose: To hold a vacuum vessel securely at a predetermined position. Constitution: A vacuum vessel is supported on its one side to the standard mounting location of a support frame by way of a pin junction. The vacuum vessel is provided at its upper and lower positions with movable mounting portions, which are connected by way of connecting rods to fixed mounting locations on the upper and lower frames. The fixed mounting locations are disposed on a vertical plane including the axis of the torus center. This arrangement enables to hold even a large vacuum vessel at an exact predetermined position even under high temperature conditions without limiting the container's thermal expansion relative to the changes in temperature, thereby providing an extremely high rigidity against electromagnetic forces, earthquakes, etc. (Furukawa, Y.)

  7. The engineer, sustainable development craftsman at the center of the global energy challenge!; L'ingenieur, artisan du developpement durable au centre du defi energetique mondial!

    Energy Technology Data Exchange (ETDEWEB)

    Laplatte, Benjamin; Bourque, Francis; Granger, Francois P.; Dery, Gaston; Berube, Martin

    2010-09-15

    By its omnipresence in society, the energy question is at the heart of sustainable development issues. The engineer, as a central actor of human society development, is therefore tightly linked to the energy issue and he must actively contribute to resolve it by integrating to his practices the principles of sustainable development and by applying the solutions that arises. Part of these elements include as the main ones, listening to the consideration of citizens, becoming aware of the environment importance and reducing costs at all levels. The engineer is a social actor that cannot be ignored in the resolution of these issues. [French] Par son omnipresence dans la societe, la question energetique est au coeur des enjeux du developpement durable. L'ingenieur, etant un acteur central du developpement des societes humaines, est donc inextricablement lie a la question energetique qu'il doit contribuer activement a resoudre en integrant a sa pratique les principes du developpement durable et en appliquant les solutions qui en decoulent. Parmi ces elements, l'ecoute des considerations citoyennes, la prise de conscience de l'importance de l'environnement et la reduction des couts a tous les niveaux sont des elements centraux. L'ingenieur est un acteur social incontournable pour la resolution de ces enjeux.

  8. Structural analysis of the ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Sannazzaro, G.; Ioki, K.; Johnson, G.; Onozuka, M.; Utin, Y. [ITER Joint Work Site, Garching (Germany); Nelson, B. [Oak Ridge National Lab., TN (United States); Swanson, J. [USHT, Raytheon, Princeton (United States)

    1998-07-01

    The ITER Vacuum Vessel (VV) must withstand a large number of loading conditions including electromagnetic, seismic, operational and upset pressure, thermal and test loads. All of the loading conditions and load combinations have been categorized and classified to permit the allowable stress to be defined in accordance with the recommendations of the ASME code. The most severe loading conditions for the VV are the toroidal field coil fast discharge (TFCFD) and the load combination of seismic and electromagnetic loads due to a plasma vertical instability. The areas of high stress are the regions around the VV and the blanket supports, and the attachment of the ports to the main shell. In all of the loading conditions and load combinations the calculated stresses are below the allowable values. (authors)

  9. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  10. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Nagashima, Keisuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Suzuki, Masaru; Onozuka, Masaki

    1997-07-11

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  11. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  12. KINETIC MODELS STUDY OF HYDRODESULPHURIZATION VACUUM DISTILLATE REACTION

    Directory of Open Access Journals (Sweden)

    AbdulMunem A. Karim

    2013-05-01

    Full Text Available    This study deals with  kinetics of hydrodesulphurization (HDS reaction of vacuum gas oil (611-833 K which was distillated from Kirkuk crude oil and which was obtained by blending the fractions, light vacuum gas oil (611 - 650 K, medium vacuum gas oil (650-690 K, heavy vacuum gas oil (690-727 K and very heavy vacuum gas oil (727-833 K.   The vacuum gas oil was hydrotreated on a commercial cobalt-molybdenum alumina catalyst presulfied at specified conditions in a laboratory trickle bed reactor. The reaction temperature range (583-643 K,liquid hourly space velocity range (1.5-3.75 h-1 and hydrogen pressure was kept constant at 3.5 MPa with hydrogen to oil ratio about 250 lt/lt.           The conversion results for desulphurization reaction appeared to obey the second order reaction. According to this model, the rate constants for desulphurization reaction were determined. Finally, the apparent activation energy (Ea, enthalpy of activation ( H* and entropy ( S* were calculated based on the values of rate constant (k2 and were equal 80.3792 KJ/mole, 75.2974 KJ/mole and 197.493 J/mole, respectively.

  13. Historical evolution toward achieving ultrahigh vacuum in JEOL electron microscopes

    CERN Document Server

    Yoshimura, Nagamitsu

    2014-01-01

    This book describes the developmental history of the vacuum system of the transmission electron microscope (TEM) at the Japan Electron Optics Laboratory (JEOL) from its inception to its use in today’s high-technology microscopes. The author and his colleagues were engaged in developing vacuum technology for electron microscopes (JEM series) at JEOL for many years. This volume presents a summary and explanation of their work and the technology that makes possible a clean ultrahigh vacuum. The typical users of the TEM are top-level researchers working at the frontiers of new materials or with new biological specimens. They often use the TEM under extremely severe conditions, with problems sometimes occurring in the vacuum system of the microscopes. JEOL engineers then must work as quickly as possible to improve the vacuum evacuation system so as to prevent the recurrence of such problems. Among the wealth of explanatory material in this book are examples of users’ reports of problems in the vacuum system of...

  14. Spherical collapse model in time varying vacuum cosmologies

    International Nuclear Information System (INIS)

    Basilakos, Spyros; Plionis, Manolis; Sola, Joan

    2010-01-01

    We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.

  15. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  16. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il'in, O. I.; Il'ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  17. Quantum electrodynamics with unstable vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (P.N. Lebedev Physical Inst., USSR Academy of Sciences, Moscow (USSR)); Gitman, D.M. (Moscow Inst. of Radio Engineering Electronics and Automation (USSR)); Shvartsman, Sh.M. (Tomsk State Pedagogical Inst. (USSR))

    1991-01-01

    Intense external fields destabilize vacuum inducing the creation of particle pairs. In this book the formalism of quantum electrodynamics (QED), using a special perturbation theory with matrix propagators, is systematically analyzed for such systems. The developed approach is, however, general for any quantum field with unstable vacuum. The authors propose solutions for real pair-creating fields. They discuss the general form for the causal function and many other Green's functions, as well as methods for finding them. Analogies to the optical theorem and rules for computing total probabilities are given, as are solutions for non-Abelian theories. (orig.).

  18. QED vacuum loops and inflation

    Energy Technology Data Exchange (ETDEWEB)

    Fried, H.M. [Brown University, Department of Physics, Providence, RI (United States); Gabellini, Y. [UMR 6618 CNRS, Institut Non Lineaire de Nice, Valbonne (France)

    2015-03-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  19. QED vacuum loops and inflation

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    2015-01-01

    A QED-based model of a new version of vacuum energy has recently been suggested, which leads to a simple, finite, one parameter representation of dark energy. An elementary, obvious, but perhaps radical generalization is then able to describe both dark energy and inflation in the same framework of vacuum energy. One further, obvious generalization then leads to a relation between inflation and the big bang, to the automatic inclusion of dark matter, and to a possible understanding of the birth (and death) of a universe. (orig.)

  20. Vacuum selection on the string landscape

    International Nuclear Information System (INIS)

    Tetteh-Lartey, Edward

    2007-01-01

    I examine some nonanthropic approaches to the string landscape. These approaches are based on finding the initial conditions of the universe using the wave function of the multiverse to select the most probable vacuum out of this landscape. All approaches tackled so far seem to have their own problems and there is no clear-cut alternative to anthropic reasoning. I suggest that finding the initial conditions may be irrelevant since all possible vacua on the landscape are possible initial state conditions and eternal inflation could generate all the other vacua. We are now left to reason out why we are observing the small value of the cosmological constant. I address this issue in the context of noncritical string theory in which all values of the cosmological constant on the landscape are departures from the critical equilibrium state

  1. Electrical breakdown in vacuum

    International Nuclear Information System (INIS)

    Beukema, G.P.

    1980-01-01

    The main part of this thesis is dedicated to the field enhancement factor; in particular to the study of the origin, alteration and influence on the breakdown properties of different materials. This work required the examination of large surface areas on the same microscopic scale on which the relevant phenomena occur. (Pre)-breakdown measurements are described in which the anode condition does not play a role in the initiation of a breakdown, while the cathode can be considered as a broad-area electrode. The influence of adsorbed gases on pre-breakdown currents is investigated. It is shown that ions, released by field emission electrons from adsorbed layers on the anode change the emitting properties of a well-conditioned cathode if the current density at the anode is small. A new experimental arrangement is outlined to better distinguish between the different parameters which are important for the initiation of electrical breakdown. Comparative measurements between stainless steel and titanium electrodes are described to study the influence of either the cathode or the anode upon the initiation of a breakdown. (Auth.)

  2. Evaluation of ISABELLE full cell ultra high vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Chou, T.S.; Stattel, P.

    1980-01-01

    The ISABELLE Full Cell Vacuum System consisting of a 40 m long, by 8.8 cm diameter stainless steel tube pumped by seven pumping stations was assembled and processed for 10 -12 Torr operation. Evaluation and testing of the system and its sub-assemblies has been completed. Detail design of system components and the determination of the conditioning process was completed. The best procedure to rough pump, leak test, vacuum bake the system, condition pumps, degas gauges, turn on ion pumps and flash sublimation pumps was established. Pressures below 2 x 10 -11 Torr are now routinely achieved in normal operation of the Full Cell. This includes pump down after replacement of various components and pump down after back fill with moist unfiltered air. The techniques developed for the Full Cell will be used to build the ISABELLE Ultra High Vacuum System

  3. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  4. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  5. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the “graininess” of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  6. The Source of the Quantum Vacuum

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-01-01

    Full Text Available The quantum vacuum consists of virtual particles randomly appearing and disappearing in free space. Ordinarily the wavenumber (or frequency spectrum of the zero-point fields for these virtual particles is assumed to be unbounded. The unbounded nature of the spectrum leads in turn to an infinite energy density for the quantum vacuum and an infinite renormalization mass for the free particle. This paper argues that there is a more fundamental vacuum state, the Planck vacuum, from which the quantum vacuum emerges and that the "graininess" of this more fundamental vacuum state truncates the wavenumber spectrum and leads to a finite energy density and a finite renormalization mass.

  7. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  8. Investigations of Pulsed Vacuum Gap.

    Science.gov (United States)

    1981-02-10

    Violet Spectra of Hot Sparks in Hh’Iacua, ’ ?hys. Rev., Vol. 12, p. 167, (1913). 31A Maitland , "Spark CondiiIoning Equation for Olane ElectrodesI-in...Appl. Phys., Vol. 1, 1291 G. Thecohilus, K. Srivastava, and R. ’ ian Heeswi.k, ’tn-situ Observation of !Microparticles in a Vacuum-Tnsulated Gap Using

  9. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  10. Vacuum therapy for chronic wounds

    Directory of Open Access Journals (Sweden)

    Ekaterina Leonidovna Zaytseva

    2012-09-01

    Full Text Available Chronic wound in patients with diabetes mellitus (DM is one of the most urgent problems of modern diabetology and surgery. Numberof patients suffering from different types of chronic wounds follows increase in DM incidence. Vacuum therapy is a novel perspectivemethod of topical treatment for non-healing chronic wounds of various etiology. Current review addresses experimental and clinicalevidence for this method.

  11. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  12. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    Science.gov (United States)

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Regulating vacuum pump speed with feedback control

    International Nuclear Information System (INIS)

    Ludington, D.C.; Aneshansley, D.J.; Pellerin, R.; Guo, F.

    1992-01-01

    Considerable energy is wasted by the vacuum pump/motor on dairy farms. The output capacity (m 3 /min or cfm) of the vacuum pump always exceeds the capacity needed to milk cows and wash pipelines. Vacuum pumps run at full speed and load regardless of actual need for air. Excess air is admitted through a controller. Energy can be saved from electrical demand reduced by regulating vacuum pump speed according to air based on air usage. An adjustable speed drive (ASD) on the motor and controlled based upon air usage, can reduce the energy used by the vacuum pump. However, the ASD unit tested could not maintain vacuum levels within generally accepted guidelines when air usage changed. Adding a high vacuum reserve and a dual vacuum controller between the vacuum pump and the milking pipeline brought vacuum stability within guidelines. The ASD/dual vacuum system can reduce energy consumption and demand by at least 50 percent during milking and provide better vacuum stability than conventional systems. Tests were not run during washing cycles. Using 1990 costs and only the energy saved during milking, the simple payback on investment in new equipment for a 5 hp motor, speed controller and vacuum regulator would be about 5 years

  14. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  15. Experimental studies of self-suppression of vacuum ultraviolet generation in Xe

    International Nuclear Information System (INIS)

    Judish, J.P.; Allman, S.L.; Garrett, W.R.; Payne, M.G.

    1988-11-01

    Vacuum ultraviolet light in the range 116 nm to 117 nm was produced by using a two-photon resonant four-wave mixing scheme in Xe. The buildup of coherent cancellation of the two-photon resonant transition employed in the generation of the vacuum ultraviolet, with resulting limitations imposed on the achievable vacuum ultraviolet intensity was investigated. Under certain predicted conditions, increases in the intensity of one of the pumping beams, ∼1500 nm infrared, or tuning this beam towards resonance with the 5p 5 7s(3/2) 1 level of Xe led, not to increases, but decreases in the vacuum ultraviolet generated. 3 refs., 3 figs

  16. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  17. Characteristics of the ISABELLE vacuum system

    International Nuclear Information System (INIS)

    Aggus, J.R.; Edwards, D. Jr.; Halama, H.J.; Herrera, J.C.

    1977-01-01

    A discussion is given of the complete vacuum system of ISABELLE, emphasizing those design characteristics dictated by high vacuum, the avoidance of beam current loss, and the reduction of background. The experimental and theoretical justifications for the design are presented

  18. Molecular density modulation type ultrahigh vacuum gauge

    International Nuclear Information System (INIS)

    Horikoshi, Gen-ichi; Komada, Kazutaka; Mizuno, Hajime

    1978-01-01

    When pressure is measured in ultrahigh vacuum region, with an ionization gauge one of the causes producing the measuring limit is its dark current due to so-called soft X-ray effect and ion desorption. A kind of the modulation gauge provided with a modulation electrode is described in this paper. If a plate is vibrating perpendicularly to its surface in the sufficiently low pressure gas to satisfy molecular conditions (molecular density n), the molecular density in the space in front of the plate is expected to vary with time, affected by the vibration of the plate. When the vacuum gauge is placed in this space, the modulated current is proportional to pressure P, which is not related to the current due to soft X-ray effect and ion desorption. The other cause of determining the pressure-measuring limit is noises, among which only the noise coherent with the vibration of the plate affects the measurement. To avoid the induced current by this type of noise, it is considered to use the pulse-counting technique using an electron multiplier. It is anticipated that the induced currents generated from electrical noises and mechanical vibrations can be avoided almost completely by this method. As a result, the theoretical measuring limit may be estimated at approximately 5 x 10 -13 Torr, if the mean residence time in the collision of molecules with the plate is assumed to be 1 sec, the sensitivity of the vacuum gauge S is 20 Torr -1 , electron current Ie is 2 x 10 -3 A and modulation coefficient m is 3 x 10 -3 . (Wakatsuki, Y.)

  19. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    and inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  20. Vacuum ultraviolet photoabsorption spectroscopy of crystalline and amorphous benzene

    DEFF Research Database (Denmark)

    Dawes, Anita; Pascual, Natalia; Hoffmann, Soren V.

    2017-01-01

    We present the first high resolution vacuum ultraviolet photoabsorption study of amorphous benzene with com parisons to annealed crystalline benzene and the gas phase. Vapour deposited benzene layers w ere grow n at 25 K and annealed to 90 K under conditions pertinent to interstellaricy dust grains...

  1. Fracture peculiarities in ceramic tungsten at different temperatures in vacuum

    International Nuclear Information System (INIS)

    Uskov, E.I.; Babak, A.V.

    1981-01-01

    Stress-strain diagrams and results of metallographic analyses are presented for the ceramic tungsten samples tested for fracture toughness under conditions of eccentric tension at different temperatures (20...1600 deg C) in vacuum. The tungsten fracture is shown to be of brittle nature within the whole temperature range studied, but the fracture process has its own peculiarities at different test temperatures

  2. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  3. Color-magnetic permeability of QCD vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-03-01

    In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.

  4. 46 CFR 154.804 - Vacuum protection.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vacuum protection. 154.804 Section 154.804 Shipping... Systems § 154.804 Vacuum protection. (a) Except as allowed under paragraph (b) of this section, each cargo tank must have a vacuum protection system meeting paragraph (a)(1) of this section and either paragraph...

  5. Vacuum influence in the radurization of the Merluccius Merluccius Hubsi

    International Nuclear Information System (INIS)

    Ritacco, Miguel.

    1976-02-01

    A study was performed in order to determine the vacuum influence in the radurization of the merluce fillet in vaccum packed products irradiated at a dose of 0,5 Mrad. The product quality evaluation was performed using the periodical analysis of their organoleptic characteristics and determining the Trimetilamine values, Volatile Acid Number, Total Volatile Bases and Volatile Reducing Substances. The preservation state of the product was determined calculating the ''Edibility Index'' (Esub(I)). The results show that the vacuum packing conditions would allow to preserve at 4 deg C the merluce irradiated fillets during 48 days. (author) [es

  6. Note: Ultra-low birefringence dodecagonal vacuum glass cell

    Energy Technology Data Exchange (ETDEWEB)

    Brakhane, Stefan, E-mail: brakhane@iap.uni-bonn.de; Alt, Wolfgang; Meschede, Dieter; Robens, Carsten; Moon, Geol; Alberti, Andrea [Institut für Angewandte Physik, Universität Bonn, Wegelerstr. 8, D-53115 Bonn (Germany)

    2015-12-15

    We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10{sup −8}. After baking the cell at 150 °C, we reach a pressure below 10{sup −10} mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

  7. Cold Vacuum Drying (CVD) Facility Technical Safety Requirements

    International Nuclear Information System (INIS)

    KRAHN, D.E.

    2000-01-01

    The Technical Safety Requirements (TSRs) for the Cold Vacuum Drying Facility define acceptable conditions, safe boundaries, bases thereof, and management or administrative controls required to ensure safe operation during receipt of multi-canister overpacks (MCOs) containing spent nuclear fuel. removal of free water from the MCOs using the cold vacuum drying process, and inerting and testing of the MCOs before transport to the Canister Storage Building. Controls required for public safety, significant defense in depth, significant worker safety, and for maintaining radiological and toxicological consequences below risk evaluation guidelines are included

  8. Gauge groups and topological invariants of vacuum manifolds

    International Nuclear Information System (INIS)

    Golo, V.L.; Monastyrsky, M.I.

    1978-01-01

    The paper is concerned with topological properties of the vacuum manifolds in the theories with the broken gauge symmetry for the groups of the type SO(k) x U(n), SO(k) x SO(p) x U(r). For the Ginsburg-Landau theory of the superfluid 3 He the gauge transformations are discussed. They provide the means to indicate all possible types of the vacuum manifolds, which are likely to correspond to distinct phases of the superfluid 3 He. Conditions on the existence of the minimums of the Ginsburg-Landau functional are discussed

  9. Vacuum pumping of tritium in fusion power reactors

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    Compound cryopumps of three different designs will be tested with deuterium-tritium (DT) mixtures under simulated fusion reactor conditions at the Tritium Systems Test Assembly (TSTA) now being constructed at the Los Alamos Scientific Laboratory (LASL). The first of these pumps is already in operation, and its preliminary performance is presented. The supporting vacuum facility necessary to regenerate these fusion facility cryopumps is also described. The next generation of fusion system vacuum pumps may include non-cryogenic or conventional-cryogenic hybrid systems, several of which are discussed

  10. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  11. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  12. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    International Nuclear Information System (INIS)

    McPhee, William S.

    2001-01-01

    The Department of Energy (DOE) needs improved technologies to decontaminate large areas of both concrete and steel surfaces. The technology should have high operational efficiency, minimize exposures to workers, and produce low levels of secondary waste. In order to meet the DOE's needs, an applied research and development project for the improvement of a current decontamination technology, Vacuum Blasting, is proposed. The objective of this project is to improve the productivity and lower the expense of the existing vacuum blasting technology which has been widely used in DOE sites for removing radioactive contamination, PCBs, and lead-based paint. The proposed work would increase the productivity rate and provide safe and cost-effective decontamination of the DOE sites

  13. Mirror Fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  14. Mirror fusion vacuum technology developments

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  15. Vacuum polarization on black hole space times

    International Nuclear Information System (INIS)

    Jensen, B.P.

    1985-01-01

    The effects of vacuum polarization in black hole space times are examined. Particular attention is given to the vacuum physics inside the event horizon. The analytic properties of the solutions to the radial wave equation in Schwarzs child space time as functions of argument, frequency, and angular momentum are given. These functions are employed to define the Feynmann Green function (G/sub F/(x,x') for a scalar field subject to the Hartle-Hawking boundary conditions. An examination of the Schwarzschild mode functions near r = 0 is provided. This work is necessary background for a future calculation of 2 > and the quantum stress-energy tensor for small r. Some opinions are given on how this calculation might be performed. A solution of the one-loop Einstein equations for Schwarzs child Anti-deSitter (SAdS) space time is presented, using Page's approximation to the quantum stress tensor. The resulting perturbed metric is shown to be unphysical, as it leads to a system of fields with infinite total energy. This problem is believed to be due to a failure of Page's method in SAdS. Suggestions are given on how one might correct the method

  16. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    Energy Technology Data Exchange (ETDEWEB)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  17. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-01-01

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  18. Experiments with background gas in a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    1996-01-01

    Since promising isotope separation results were first reported by Krishnan et al. in 1981, a range of vacuum arc centrifuge experiments have been conducted in laboratories around the world. The PCEN (Plasma CENtrifuge) vacuum arc centrifuge at the Brazilian National Institute for Space Research has been used for isotope separation studies with cathode materials of carbon and magnesium and also to investigate the performance in terms of the rotational velocity attained for different cathode materials. Here, a vacuum arc centrifuge has been operated with an initial filling gas of either argon or hydrogen for pressures ranging from 10 -3 to 10 -1 Pa. The angular velocity ω of the plasma has been determined by cross-correlating the signals from potential probes, and the electron temperature T has been deduced from Langmuir probe data. At high gas pressures and early times during the 14 ms plasma lifetime, high-frequency nonuniformities frequently observed in the vacuum discharge disappear, suggesting that the associated instability is suppressed. Under the same conditions, nonuniformities rotating with much lower angular velocities are observed in the plasma. Temperatures are reduced in the presence of the background gas, and the theoretical figure of merit for separation proportional to ω 2 /T is increased compared to its value in the vacuum discharge for both argon and hydrogen gas fillings

  19. Removal of salt from rare earth precipitates by vacuum distillation

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Eun, Hee-Chul; Cho, Yong-Zun; Park, Hwan-Seo; Kim, In-Tae

    2008-01-01

    This study investigated the distillation rates of LiCl-KCl eutectic salt from the rare earth (RE) precipitates originating from the oxygen-sparging RE precipitation process. The first part study investigated distillation rates of eutectic salt under different vacuums at high temperatures by using thermo-gravimetric furnace system. The second part study tested the removal efficiency of eutectic salt from RE precipitates by using the laboratory vacuum distillation furnace system. Investigated variables were the temperature, the degree of vacuum and the time. Salt distillation operation with a moderated distillation rate of 10 -4 - 10 -5 mole sec -1 cm -2 is possible at temperature less than 1300 K and vacuums of 5-50 Torr, by minimizing the potentials of the RE particle entrainment. An increase in the vaporizing surface area is relatively effective for removing the residual salt in pores of bulk of the precipitated RE particles, when compared to that for the vaporizing time. Over 99.9% of the salt removal from the salt-RE precipitate mixture could be achieved by increasing the vaporizing surface area under moderate vacuum conditions of 50 Torr at 1200 K. (author)

  20. Quantum friction across the vacuum

    International Nuclear Information System (INIS)

    Ebelein, C.

    1998-01-01

    Friction is so ubiquitous that it seems to be almost trivially familiar. The rubbing of two solid surfaces is opposed by a resistance and accompanied by the production of heat. Engineers still dream of perfectly smooth surfaces that can be moved against each other without any friction. However, this dream has now been shattered by John Pendry of Imperial College, London, who has published a theory that shows that even two perfectly smooth surfaces can experience an appreciable friction when moved relative to each other (J. Phys.: Condens. Matter 1997 9 10301-10320). Moreover, the two surfaces he considers are not even in contact but separated by a gap a lattice constant or so wide. The explanation of this lies in what Pendry calls the shearing of the vacuum in the gap. In quantum physics the vacuum is not just empty nothingness; it is full of virtually everything. The vacuum abounds with virtual photons. These zero-point fluctuations cannot normally be seen, but they give the vacuum a structure that manifests itself in a variety of effects (for example, the Casimir effect). A more subtle, yet more familiar, manifestation of these zero-point fluctuations is the van der Waals force. The effect described by Pendry can be understood as a van der Waals interaction between two infinite slabs of dielectric material moving relative to each other. Each slab will be aware of the motion of the other because the virtual photons reflected from the moving surface are Doppler-shifted up or down, depending on the direction of the photon wave vector relative to the motion. Pendry shows that this asymmetry in the exchange of virtual photons can lead to an appreciable effect for materials of reasonably strong dispersion. (author)

  1. Random numbers from vacuum fluctuations

    International Nuclear Information System (INIS)

    Shi, Yicheng; Kurtsiefer, Christian; Chng, Brenda

    2016-01-01

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  2. Acceleration of plasma into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.

  3. Random numbers from vacuum fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yicheng; Kurtsiefer, Christian, E-mail: christian.kurtsiefer@gmail.com [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore); Chng, Brenda [Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543 (Singapore)

    2016-07-25

    We implement a quantum random number generator based on a balanced homodyne measurement of vacuum fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

  4. Vacuum mammotomy under ultrasound guidance

    International Nuclear Information System (INIS)

    Luczynska, E.; Kocurek, A.; Pawlik, T.; Aniol, J.; Herman, K.; Skotnicki, P.

    2007-01-01

    Breast ultrasound is a non-invasive method of breast examination. You can use it also for fine needle biopsy, core needle biopsy, vacuum mammotomy and for placing the '' wire '' before open surgical biopsy. 106 patients (105 women and 1 man) aged 20-71 years (mean age 46.9) were treated in Cancer Institute in Cracow by vacuum mammotomy under ultrasound guidance. The lesions found in ultrasonography were divided into three groups: benign lesions (BI RADS II), ambiguous lesions (BI RADS 0, III and IVa), and suspicious lesions (BI RADS IV B, IV C and V). Then lesions were qualified to vacuum mammotomy. According to USG, fibroadenoma or '' fibroadenoma-like '' lesions were found in 75 women, in 6 women complicated cysts, in 6 women cyst with dense fluid (to differentiate with FA), and in 19 patients undefined lesions. Fibroadenoma was confirmed in histopathology in 74% patients among patients with fibroadenoma or '' fibroadenoma-like '' lesions in ultrasound (in others also benign lesions were found). Among lesions undefined after ultrasound examination (total 27 patients) cancer was confirmed in 6 % (DCIS and IDC). In 6 patients with complicated cysts in ultrasound examination, histopathology confirmed fibroadenoma in 4 women, an intraductal lesion in 1 woman and inflamatory process in 1 woman. Also in 6 women with a dense cyst or fibroadenoma seen in ultrasound, histopathology confirmed fibroadenoma in 3 women and fibrosclerosis in 3 women. Any breast lesions undefined or suspicious after ultrasound examination should be verified. The method of verification or kind of operation of the whole lesion (vacuum mammotomy or '' wire '') depends on many factors, for example: lesion localization; lesion size; BI RADS category. (author)

  5. QCD contributions to vacuum polarization

    International Nuclear Information System (INIS)

    Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.

    1980-01-01

    We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)

  6. Vacuum vessel for plasma devices

    International Nuclear Information System (INIS)

    Yamada, Masao; Taguchi, Masami.

    1975-01-01

    Object: To permit effective utility of the space in the inner and outer sides of the container wall and also permit repeated assembly for use. Structure: Vacuum vessel wall sections are sealed together by means of welding bellows, and also flange portions formed at the end of the wall sections are coupled together by bolts and are sealed together with a seal ring and a seal cap secured by welding. (Nakamura, S.)

  7. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, Marian; Culcer, Mihai; Brandea, Iulian; Anghel, Mihai

    2001-01-01

    The monitoring of industrial plants by virtual instrumentation represents the most modern trend in the domain of electronic equipment. The integrated vacuum system presented here has several facilities, including the automated data storing of measurement results on hard disk and providing warning messages for operators when the measured parameters are lower or higher upper than the fixed values. The system can also work stand-alone, receiving the commands from the keyboards placed on his front panel but, when it is included in a automation complex system, a remote control from PC is necessary . Both parts of the system, power supply unit for turbo-molecular pump and the vacuum gage, are controlled by an 80C31 microcontroller. Because this microcontroller has a built-in circuitry for a serial communication, we established a serial communication between the PC and the power supply unit for turbo-molecular pump and the vacuum gage, according to the RS-232 hardware standard. As software, after careful evaluation of several options, we chose to develop a hybrid software packing using two different software development tools: LabVIEW, and assembly language. We chose LabVIEW because it is dedicated to data acquisition and communications, containing libraries for data collection, analysis, display and storage. (authors)

  8. Running jobs in the vacuum

    International Nuclear Information System (INIS)

    McNab, A; Stagni, F; Garcia, M Ubeda

    2014-01-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously 'in the vacuum' rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  9. Vacuum Exhaust Process in Pilot-Scale Vacuum Pressure Swing Adsorption for Coal Mine Ventilation Air Methane Enrichment

    Directory of Open Access Journals (Sweden)

    Xiong Yang

    2018-04-01

    Full Text Available Recovery and treatment of methane from coal mine ventilation air methane (VAM with cost-effective technologies have been an ongoing challenge due to low methane concentrations. In this study, a type of coconut shell-based active carbon was employed to enrich VAM with a three-bed vacuum pressure swing adsorption unit. A new vacuum exhaust step for the VPSA process was introduced. The results show that the vacuum exhaust step can increase the methane concentration of the product without changing adsorption and desorption pressure. Under laboratory conditions, the concentration of product increased from 0.4% to 0.69% as the vacuum exhaust ratio increased from 0 to 3.1 when the feed gas concentration was 0.2%. A 500 m³/h pilot-scale test system for VAM enrichment was built rendering good correlation with the laboratory results in terms of the vacuum exhaust step. By using a two-stage three-bed separation unit, the VAM was enriched from 0.2% to over 1.2%.

  10. CAS CERN Accelerator School vacuum technology. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1999-01-01

    These proceedings present the lectures given at the twelfth specialized course organized by the CERN Accelerator School (CAS), the topic this time being 'Vacuum Technology'. Despite the importance of vacuum technology in the design and operation of particle accelerators at CERN and at the many other accelerators already installed around the world, this was the first time that CAS has organized a course devoted entirely to this topic. Perhaps this reflects the facts that vacuum has become one of the more critical aspects of future accelerators, and that many of the pioneers in the accelerator field are being replaced by new, younger personnel. The lectures start with the basic concepts of the physics and technology of vacuum followed by detailed descriptions of the many different types of gas-pumping devices and methods to measure the pressures achieved. The outgassing characteristics of the different materials used in the construction of vacuum systems and the optimisation of cleaning methods to reduce this outgassing are then explained together with the effects of the residual gases on the particle beams. Then follow chapters on leak detection, materials and vacuum system engineering. Finally, seminars are presented on designing vacuum systems, the history of vacuum devices, the LHC (large hadron collider) vacuum system, vacuum systems for electron storage rings, and quality assurance for vacuum. (orig.)

  11. Factors Related to Adoption and Non-Adoption of Technical and Organizational Recommendations by Farmers Involved with Societe de Developpement du Cacao (SO.DE.CAO) in Cameroon. A Research Summary.

    Science.gov (United States)

    Kamga, Andre; Cheek, Jimmy G.

    In order to promote cocoa production and assist cocoa farmers in overcoming diseases in this crop, the government of Cameroon created an experimental corporation called Societe de Developpement du Cacao (SO.DE.CAO) in 1974. This organization functioned much like an extension service to provide information about crop production and disease control.…

  12. Fundamentals of a moderate thermocracking-deep deasphalting combined process of Karamay vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Zhiming, X; Tonghua, L.; Suogi, Z.; Renan, W. [University of Petroleum, State Key Laboratory of Heavy Oil Processing, Beijing (China); Lailong, L.; Zhen, L. [Karamay Petrochemical Company, Petrochemical Research Institute, Karamay (China)

    2004-07-01

    Thermocracking of heavy oil vacuum residue was carried out to determine the optimum conditions for the thermal cracking of Karamay vacuum residue prior to coke formation. The vacuum residue and the cracked residue after distillation were separated using supercritical fluid extraction and fractionation techniques. Sixteen and thirteen fractions and non-extractable end cuts respectively were separated, and their properties, compositions and average structures determined. Solubility parameters of the end cuts were measured, and those of the fractions calculated. The solubility parameter of the end cut of distilled residue was found to have greatly increased. It was determined that when the difference of the end cut and the extractable fractions amounts to 6.37MPa1/2, in the case of Karamay vacuum residue coke will deposit under thermocracking conditions. Based on the results of a series of solvent deep deasphalting experiments, a scheme for vacuum residue thermocracking and deasphalting of the cracked residue was proposed.

  13. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1993-07-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1-1/2 in. inner pipe size, 3 in. vacuum jacket, and 4 in. inner pipe size, 6 in. vacuum jacket The single wall vacuum service bayonets are in 4 in. and 6 in. pipe sizes. The bayonets have successfully been in active service for over one year

  14. Rotary bayonets for cryogenic and vacuum service

    International Nuclear Information System (INIS)

    Rucinski, R.A.; Dixon, K.D.; Krasa, R.; Krempetz, K.J.; Mulholland, G.T.; Trotter, G.R.; Urbin, J.B.

    1994-01-01

    Rotary bayonets were designed, tested, and installed for liquid nitrogen, liquid argon, and vacuum service. This paper will present the design, testing, and service record for two sizes of vacuum jacketed cryogenic rotary bayonets and two sizes of vacuum service rotary bayonets. Materials used in construction provide electrical isolation across the bayonet joint. The joint permits 360 degrees of rotation between the male and female pipe sections while maintaining integrity of service. Assemblies using three such joints were built to allow end connection points to be translated through at least 1 meter of horizontal travel while kept in service. Vacuum jacketed sizes built in-house at Fermi National Accelerator Laboratory are 1 1/2 inches inner pipe size, 3 inches vacuum jacket, and 4 inches inner pipe size, 6 inches vacuum jacket. The single wall vacuum service bayonets are in 4 inch and 6 inch pipe sizes. The bayonets have successfully been in active service for over one year

  15. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H; Bonnet, A; Cohen, J [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui empeche toute observation. (M.B.)

  16. Quantum tunneling from vacuum in multidimensions

    International Nuclear Information System (INIS)

    Akal, Ibrahim; Moortgat-Pick, Gudrid

    2017-10-01

    The tunnelling of virtual matter-antimatter pairs from the quantum vacuum in multidimensions is studied. We consider electric backgrounds as a linear combination of a spatial Sauter field and, interchangeably, certain weaker time dependent fields without poles in the complex plane such as the sinusoidal and Gaussian cases. Based on recent geometric considerations within the worldline formalism, we employ the relevant critical points in order to analytically estimate a characteristic threshold for the temporal inhomogeneity. We set appropriate initial conditions and apply additional symmetry constraints in order to determine the classical periodic paths in spacetime. Using these worldline instantons, we compute the corresponding leading order exponential factors showing large dynamical enhancement in general. We work out the main differences caused by the analytic structure of such composite backgrounds and also discuss the case with a strong temporal variation of Sauter-type.

  17. Vacuum technology Practice for scientific instruments

    CERN Document Server

    Yoshimura, Nagamitsu

    2008-01-01

    Nanotechnology has reached a level where almost every new development and even every new product uses features of nanoscopic properties of materials. As a consequence, an enormous amount of scientific instruments is used in order to synthesize and analyze new structures and materials. Due to the surface sensitivity of such materials, many of these instruments require ultrahigh vacuum that has to be provided under extreme conditions like very high voltages. In this book, Yoshimura provides a review of the UHV related development during the last decades. His very broad experience in the design enables him to present us this detailed reference. After a general description how to design UHV systems, he covers all important issue in detail, like pumps, outgasing, Gauges, and Electrodes for high voltages. Thus, this book serves as reference for everybody using UVH in his scientific equipment

  18. High temperature high vacuum creep testing facilities

    International Nuclear Information System (INIS)

    Matta, M.K.

    1985-01-01

    Creep is the term used to describe time-dependent plastic flow of metals under conditions of constant load or stress at constant high temperature. Creep has an important considerations for materials operating under stresses at high temperatures for long time such as cladding materials, pressure vessels, steam turbines, boilers,...etc. These two creep machines measures the creep of materials and alloys at high temperature under high vacuum at constant stress. By the two chart recorders attached to the system one could register time and temperature versus strain during the test . This report consists of three chapters, chapter I is the introduction, chapter II is the technical description of the creep machines while chapter III discuss some experimental data on the creep behaviour. Of helium implanted stainless steel. 13 fig., 3 tab

  19. Treatment of uranium-bearing wastewater by vacuum membrane distillation

    International Nuclear Information System (INIS)

    Duan Xiaolin; Li Qicheng; Chen Bingbing

    2006-01-01

    The removal of uranium from wastewater was carried out by vacuum membrane distillation (VMD) using microporous polypropylene membrane. The effects of feed temperature, mass concentration of U, flow rate and vacuum-side pressure on permeation flux and rejection were studied. The optimum experimental conditions are as follows: feed flow rate is 0.5 m/s, feed temperature is 55 degree C, vacuum-side pressure is 2.66 kPa. When the mass concentrations of U in the feed solution range from 1 mg/L to 9 mg/L, the membrane flux is 3.5 kg/(m 2 ·h) and the rejection rate is 99.1% under the optimum conditions. The water separated from uranium solution by vacuum membrane distillation could meet the state-controlled discharge standard 0.05 mg/L. The VMD as a novel technology will play an important role in the treatment of uranium-bearing wastewater. (authors)

  20. Running vacuum cosmological models: linear scalar perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Perico, E.L.D. [Instituto de Física, Universidade de São Paulo, Rua do Matão 1371, CEP 05508-090, São Paulo, SP (Brazil); Tamayo, D.A., E-mail: elduartep@usp.br, E-mail: tamayo@if.usp.br [Departamento de Astronomia, Universidade de São Paulo, Rua do Matão 1226, CEP 05508-900, São Paulo, SP (Brazil)

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ( H {sup 2}) or Λ( R ). Such models assume an equation of state for the vacuum given by P-bar {sub Λ} = - ρ-bar {sub Λ}, relating its background pressure P-bar {sub Λ} with its mean energy density ρ-bar {sub Λ} ≡ Λ/8π G . This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely ρ-bar {sub Λ} = Σ {sub i} ρ-bar {sub Λ} {sub i} . Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ( H {sup 2}) scenario the vacuum is coupled with every matter component, whereas the Λ( R ) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  1. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  2. Machine for extrusion under vacuum

    International Nuclear Information System (INIS)

    Gautier, A.

    1958-01-01

    In a study of the behaviour of easily oxidised metals during the extrusion process, it is first necessary to find an effective mean of fighting corrosion, since this, even when barely detectable, has an important influence on the validity of the results recorded. The neatest and also the most efficient of all the methods tried consists in creating a vacuum around the test piece. Working on this principle, and at the same time respecting the conventional rules for extrusion tests (loading the sample after stabilisation at the testing temperature, differential measurements of lengthening, etc.) we found it necessary to construct an original machine. (author) [fr

  3. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... of the geometry of the configuration and the strength of the interactions. As our measure of entanglement we use the logarithmic negativity, supplemented by an algorithmic check for bound entanglement where appropiate. The short-range entanglement is found to grow approximately linearly with the group sizes...

  4. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    International Nuclear Information System (INIS)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; Bradley, Craig; Stone, Chris

    2017-01-01

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breaking vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.

  5. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  6. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  7. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  8. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  9. A Study on the Development of Nonglass Solar Vacuum Tube Collector

    International Nuclear Information System (INIS)

    Oh, Seung Jin

    2008-02-01

    the ambient and gas emissions from the materials they were made of. The effect of vacuum levels inside a vacuum tube on the absorber plate were investigated in different conditions. Due to less heat losses to the ambient, the non-glass vacuum tube at vacuum level 10 -2 torr kept more heat at higher temperatures compared to the non-glass vacuum tube collectors whose vacuum levels were at 5 torr. However, the temperature was not linearly proportional to the vacuum level. Two types of solar collectors were used to investigate the ability of non-glass solar vacuum tube: one single glass evacuated tube and one non-glass vacuum tubes(10 -2 torr). The efficiency of a non-glass vacuum tube with 10 -2 torr was different from that of a single glass evacuated tube in which vacuum level is 10 -4 ∼10 -5 torr due to the transmittance of ZnO. Unlike glass evacuated tubes, non-glass solar vacuum tubes generally require some measures to prevent air infiltration through invisible pores of the tube wall and gas emission from the materials. If the problems related with vacuum inside a tube are solved, the non-glass vacuum collector will work more efficiently

  10. Advanced Photon Source accelerator ultrahigh vacuum guide

    International Nuclear Information System (INIS)

    Liu, C.; Noonan, J.

    1994-03-01

    In this document the authors summarize the following: (1) an overview of basic concepts of ultrahigh vacuum needed for the APS project, (2) a description of vacuum design and calculations for major parts of APS, including linac, linac waveguide, low energy undulator test line, positron accumulator ring (PAR), booster synchrotron ring, storage ring, and insertion devices, and (3) cleaning procedures of ultrahigh vacuum (UHV) components presently used at APS

  11. TORE SUPRA vacuum vessel and shield manufacturing

    International Nuclear Information System (INIS)

    Blateyron, J.; Lepez, R.

    1984-01-01

    TORE SUPRA vacuum vessel and vacuum chamber shield manufacturing in progress at Jeumont-Schneider consists of three main phases: - Detail engineering and manufacturing fixture construction; - Prototype section manufacturing and process preparation; - Construction of the 6 production modules. The welding techniques adopted, call for three special automatic processes: TIG, MIG and PLASMA welding which guarantee mechanical strength, vacuum tightness and absence of distortion. Production of the modules began July 1984. (author)

  12. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    Science.gov (United States)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  13. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  14. Dynamical effects of QCD vacuum structure

    International Nuclear Information System (INIS)

    Ferreira, Erasmo

    1994-01-01

    The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig

  15. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified

  16. Vacuum exhaust duct used for thermonuclear device

    International Nuclear Information System (INIS)

    Tachikawa, Nobuo; Kondo, Mitsuaki; Honda, Tsutomu.

    1990-01-01

    The present invention concerns a vacuum exhaust duct used for a thermonuclear device. A cylindrical metal liners is lined with a gap to the inside of a vacuum exhaust duct main body. Bellows are connected to both ends of the metal liners and the end of the bellows is welded to the vacuum exhaust duct main body. Futher, a heater is mounted to the metal liner on the side of the vacuum exhaust duct main body, and the metal liner is heated by the heater to conduct baking for the vacuum exhaust duct main body. Accordingly, since there is no requirement for elevating the temperature of the vacuum exhaust duct upon conducting baking, the vacuum exhaust duct scarcely suffers substantial deformation due to heat expansion. Further, there is also no substantial deformation for the bellows disposed between the outer circumference of the vacuum vessel and a portion of a vacuum exhaust duct, so that the durability of the bellows is greatly improved. (I.S.)

  17. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  18. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  19. TFCX pumped limiter and vacuum pumping system design and analysis

    International Nuclear Information System (INIS)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs

  20. Distributed remote temperature monitoring system for INDUS-2 vacuum chambers

    International Nuclear Information System (INIS)

    Bhange, N.J.; Gothwal, P.; Fatnani, P.; Shukla, S.K.

    2011-01-01

    Indus-2, a 2.5 GeV Synchrotron Radiation Source (SRS) at Indore has a large vacuum system. The vacuum envelope of Indus-2 ring comprises of 16 dipole chambers as vital parts. Each chamber has 4 photon absorbers and three beam line ports blanked with end flanges. Temperature monitoring of critical vacuum components during operation of Indus-2 ring is an important requirement. The paper discusses a distributed, 160 channel remote temperature monitoring system developed and deployed for this purpose using microcontroller based, modular Temperature Monitoring Units (TMU). The cabling has been extensively minimized using RS485 system and keeping trip relay contacts of all units in series. For ensuring proper signal conditioning of thermocouple outputs (K-type) and successful operation over RS485 bus, many precautions were taken considering the close proximity to the storage ring. We also discuss the software for vacuum chamber temperature monitoring and safety system. The software developed using LabVIEW, has important features like modularity, client-server architecture, local and global database logging, alarms and trips, event and error logging, provision of various important configurations, communications handling etc. (author)

  1. Fusion reactor high vacuum pumping

    International Nuclear Information System (INIS)

    Sedgley, D.W.; Walthers, C.R.; Jenkins, E.M.

    1992-01-01

    This paper reports on recent experiments which have shown the practicality of using activated carbon (coconut charcoal) at 4K to pump helium and hydrogen isotopes for a fusion reactor. Both speed and capacity for deuterium/helium and tritium/helium-3 mixtures were satisfactory. The long-term effects of tritium on the charcoal/cement system developed by Grumman and LLNL was now known; therefore a program was undertaken to see what, if any, effect long-term tritium exposure has on the cryosorber. Several charcoal on aluminum test samples were subjected to six months exposure of tritium at approximately 77 K. The tritium was scanned several times with a residual gas analyzer and the speed-capacity performance of the samples was measured before, approximately one-third way through, and after the exposure. Modest effects were noted which would not seriously restrict the use of charcoal as a cryosorber for fusion reactor high-vacuum pumping applications

  2. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  3. The physics of ''vacuum'' breakdown

    International Nuclear Information System (INIS)

    Schwirzke, F.

    1993-01-01

    Many discharges form small cathode spots which provide such a high energy density that the cathode material explodes into a dense plasma cloud within a very short time. Despite the fundamental importance of cathode spots for the breakdown process and the formation of a discharge, the structure of the cathode spot plasma and the source of the high energy density were not yet well defined. One model, the whisker explosive emission model, assumes that joule heating by field emitted electrons provides the energy. Current densities of j FE = 10 12 - 10 13 A/m 2 would be required. However, the pre-breakdown j FE is self-limiting. The negative space charge caused by j FE in the cathode-anode gap reduces the effective electric field E on the cathode surface. The maximum current density j CL is space charge limited by Child-Langmuir's law. The field emitting spot cannot deliver j CL without turning itself off, since the negative space charge caused by j CL reduces E congruent 0 at the cathode surface. Hence, it must be that the vacuum j FE CL . The development of a current with j > j FE (vacuum) requires that ions exist in front of the electron emitting spot. Ions cannot be emitted from the surface of the field emitting spot, the enhanced electric field would hold them back. The initial ionization must occur in the cathode-anode gap near the electron emitting spot. Ionization of desorbed neutrals provides the mechanism. This ionization process requires considerably less current than the ionization of solid material by joule heating. Field emission and the impact of ions stimulate desorption of weakly bound adsorbates from the surface of the electron emitting spot. The cross section for ionization of the neutrals has a maximum for ∼ 100 eV electrons

  4. Progress of ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Bayon, A.; Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B.; Kim, B.C.; Kuzmin, E.; Le Barbier, R.; Martinez, J.-M.; Pathak, H.; Preble, J.; Sa, J.W.; Terasawa, A.; Utin, Yu.

    2013-01-01

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure

  5. Safety Analysis in Large Volume Vacuum Systems Like Tokamak: Experiments and Numerical Simulation to Analyze Vacuum Ruptures Consequences

    Directory of Open Access Journals (Sweden)

    A. Malizia

    2014-01-01

    Full Text Available The large volume vacuum systems are used in many industrial operations and research laboratories. Accidents in these systems should have a relevant economical and safety impact. A loss of vacuum accident (LOVA due to a failure of the main vacuum vessel can result in a fast pressurization of the vessel and consequent mobilization dispersion of hazardous internal material through the braches. It is clear that the influence of flow fields, consequence of accidents like LOVA, on dust resuspension is a key safety issue. In order to develop this analysis an experimental facility is been developed: STARDUST. This last facility has been used to improve the knowledge about LOVA to replicate a condition more similar to appropriate operative condition like to kamaks. By the experimental data the boundary conditions have been extrapolated to give the proper input for the 2D thermofluid-dynamics numerical simulations, developed by the commercial CFD numerical code. The benchmark of numerical simulation results with the experimental ones has been used to validate and tune the 2D thermofluid-dynamics numerical model that has been developed by the authors to replicate the LOVA conditions inside STARDUST. In present work, the facility, materials, numerical model, and relevant results will be presented.

  6. Commissioning of the diamond light source storage ring vacuum system

    International Nuclear Information System (INIS)

    Cox, M P; Boussier, B; Bryan, S; Macdonald, B F; Shiers, H S

    2008-01-01

    The Diamond storage ring has been operating with a 3 GeV electron beam since September 2006 and 190 A.h of beam dose have been accumulated. The pressure in the storage ring is 4.2 10 -10 mbar without beam, rising to 7.9 10 -10 mbar with 125 mA of stored beam. Data on the storage ring vacuum performance and experience from commissioning and beam conditioning are presented

  7. Closed Timelike Curves in Type II Non-Vacuum Spacetime

    International Nuclear Information System (INIS)

    Ahmed, Faizuddin

    2017-01-01

    Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves (CTCs) which appear after a certain instant of time, i.e., a time-machine spacetime. The spacetime is asymptotically flat, free-from curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type II in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition. (paper)

  8. Cold Vacuum Drying facility deionized water system design description

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) de-ionized water system. The de-ionized water system is used to provide clean, conditioned water, free from contaminants, chlorides and iron for the CVD Facility. Potable water is supplied to the deionized water system, isolated by a backflow prevention device. After the de-ionization process is complete, via a packaged de-ionization unit, de-ionized water is supplied to the process deionization unit

  9. Separation of tritium from heavy water by vacuum distillation

    International Nuclear Information System (INIS)

    Vidal, M.I.; Cabrera, C.A.

    1996-01-01

    In this report the feasibility of using vacuum distillation to detriate the moderator of a HWR nuclear power plant is studied. It is intended to use, for this purpose, the Atucha I nuclear power plant present facilities. The physical-chemistry of the system is described and the most appropriate range of operating conditions is examined. The availability of data to make use of the present equipment is also analyzed. (author). 20 refs., 3 figs., 1 tab

  10. Vacuum state supersymmetry in d=11 supergravity

    International Nuclear Information System (INIS)

    Vasilevich, D.V.

    1987-01-01

    Supersymmetry of vacuum state in d=11 supergravity is considered. Proceeding on sufficiently general assumptions relatively superformation parameter only Freud-Rubin type solutions may possess supersymmetries. To obtain this result no restrictions on the form of superformation parameter, supealgebra of vacuum global supersymmetry and the form of boson fields were imposed

  11. VACUUM ASSISTED CLOSURE IN DIABETIC FOOT MANAGEMENT

    OpenAIRE

    Moganakannan; `Prema; Arun Sundara Rajan

    2014-01-01

    Comparision of vacuum assisted closure vs conventional dressing in management of diabetic foot patients. 30 patients were taken in that 15 underwent vacuum therapy and remaining 15 underwent conventional dressing.They were analysed by the development of granulation tissue and wound healing.The study showed Vac therapy is the best modality for management of diabetic foot patients.

  12. AA, vacuum tank for stochastic precooling

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The vaccum tank in which the fast stochastic precooling kicker was installed. It is clad with heating jackets for bake-out to 200 deg C, indispensable for reaching the operational vacuum of 7E-11 Torr. Alain Poncet, responsible for AA vacuum, is looking on. See also 7910268, 8002234.

  13. Quality Management of CERN Vacuum Controls

    CERN Document Server

    Antoniotti, F; Fortescue-Beck, E; Gama, J; Gomes, P; Le Roux, P; Pereira, H F; Pigny, G

    2014-01-01

    The vacuum controls Section (TE-VSC-ICM) is in charge of the monitoring, maintenance and consolidation of the control systems of all accelerators and detectors in CERN; this represents 6 000 instruments distributed along 128 km of vacuum chambers, often of heterogeneous architectures and of diverse

  14. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  15. The probability of the false vacuum decay

    International Nuclear Information System (INIS)

    Kiselev, V.; Selivanov, K.

    1983-01-01

    The closed expession for the probability of the false vacuum decay in (1+1) dimensions is given. The probability of false vacuum decay is expessed as the product of exponential quasiclassical factor and a functional determinant of the given form. The method for calcutation of this determinant is developed and a complete answer for (1+1) dimensions is given

  16. Optimization of frozen wild blueberry vacuum drying process

    Directory of Open Access Journals (Sweden)

    Šumić Zdravko M.

    2015-01-01

    Full Text Available The objective of this research was to optimize the vacuum drying of frozen blueberries in order to preserve health benefits phytochemicals using response surface methodology. The drying was performed in a new design of vacuum dryer equipment. Investigated range of temperature was 46-74°C and of pressure 38-464 mbar. Total solids, total phenolics, vitamin C, anthocyanin content and total color change were used as quality indicators of dried blueberries. Within the experimental range of studied variables, the optimum conditions of 60 °C and 100 mbar were established for vacuum drying of blueberries. Separate validation experiments were conducted at optimum conditions to verify predictions and adequacy of the second-order polynomial models. Under these optimal conditions, the predicted amount of total phenolics was 3.70 mgCAE/100dw, vitamin C 59.79 mg/100gdw, anthocyanin content 2746.33 mg/100gdw, total solids 89.50% and total color change 88.83. [Projekat Ministarstva nauke Republike Srbije, br. TR 31044

  17. Evaluation of local tensions through finite elements applied to a large diameter pipe subjected to vacuum condition of a petroleum refinery; Avaliacao das tensoes locais atraves de elementos finitos aplicada a uma tubulacao de grande diametro sujeita a condicao de vacuo de uma dada refinaria de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Julio C. Goes; Balbi, Diego J. G. [Promom Engenharia, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The objective of this paper is to present an evaluation of the results obtained in the study of local stress in wall of large diameter pipe. The case study consists of to analyze a pipeline system with 66 inch, which is responsible for transporting oil, oven to the Tower of vacuum distillation unit in a petroleum refining. The absence of internal pressure leads to a critical with respect to the collapse of the walls of the tube in long sections, without the presence of additional elements increase the rigidity of the geometry. The ASME Section VIII Division 1 advocates the use of additional plates, called stiffeners, which aim to curb the efforts from this condition. Thus, it is necessary structural assessment of critical portions of the system in implementing this solution. Therefore, complementary approaches have been proposed, passing by ASME B31.3, Section VIII Division 1, moreover, a computer simulation of stresses through the finite element method, which the results were analyzed according to criteria of tensions presents in ASME Code Section VIII Division 2. (author)

  18. A new vacuum for loop quantum gravity

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Geiller, Marc

    2015-01-01

    We construct a new vacuum and representation for loop quantum gravity. Because the new vacuum is based on BF theory, it is physical for (2+1)-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy–flux algebra that is cylindrically consistent with respect to the notion of refinement by time evolution suggested in Dittrich and Steinhaus (2013 arXiv:1311.7565). This supports the proposal for a construction of the physical vacuum made in Dittrich and Steinhaus (2013 arXiv:1311.7565) and Dittrich (2012 New J. Phys. 14 123004), and for (3+1)-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity. (fast track communication)

  19. Vacuum and ultravacuum physics and technology

    CERN Document Server

    Bello, Igor

    2018-01-01

    Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily products—including shiny decorative papers, the surface finish of watches, and light fixtures—are made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analyses—all of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.

  20. Maxwell electrodynamics subjected to quantum vacuum fluctuations

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) equations. For a model of “white noise” fluctuations, using ML equations, a second order partial differential equation is found which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the “ground state” energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of the vacuum quantum field fluctuations may be constructed on a 6D space-time continuum with a 2D compactified subspace. Their influence on the refraction indexes of vacuum is studied.

  1. Mechanics and Physics of Precise Vacuum Mechanisms

    CERN Document Server

    Deulin, E. A; Panfilov, Yu V; Nevshupa, R. A

    2010-01-01

    In this book the Russian expertise in the field of the design of precise vacuum mechanics is summarized. A wide range of physical applications of mechanism design in electronic, optical-electronic, chemical, and aerospace industries is presented in a comprehensible way. Topics treated include the method of microparticles flow regulation and its determination in vacuum equipment and mechanisms of electronics; precise mechanisms of nanoscale precision based on magnetic and electric rheology; precise harmonic rotary and not-coaxial nut-screw linear motion vacuum feedthroughs with technical parameters considered the best in the world; elastically deformed vacuum motion feedthroughs without friction couples usage; the computer system of vacuum mechanisms failure predicting. This English edition incorporates a number of features which should improve its usefulness as a textbook without changing the basic organization or the general philosophy of presentation of the subject matter of the original Russian work. Exper...

  2. Approximated calculation of the vacuum wave function and vacuum energy of the LGT with RPA method

    International Nuclear Information System (INIS)

    Hui Ping

    2004-01-01

    The coupled cluster method is improved with the random phase approximation (RPA) to calculate vacuum wave function and vacuum energy of 2 + 1 - D SU(2) lattice gauge theory. In this calculating, the trial wave function composes of single-hollow graphs. The calculated results of vacuum wave functions show very good scaling behaviors at weak coupling region l/g 2 >1.2 from the third order to the sixth order, and the vacuum energy obtained with RPA method is lower than the vacuum energy obtained without RPA method, which means that this method is a more efficient one

  3. Nuclear criticality safety calculations for a K-25 site vacuum cleaner

    International Nuclear Information System (INIS)

    Shor, J.T.; Haire, M.J.

    1997-02-01

    A modified Nilfisk model GSJ dry vacuum cleaner is used throughout the K-25 Site to collect dry forms of highly enriched uranium (HEU). When vacuuming, solids are collected in a cyclone-type separator vacuum cleaner body. Calculations were done with the SCALE (KENO V.a) computer code to establish conditions at which a nuclear criticality event might occur if the vacuum cleaner was filled with fissile solution. Conditions evaluated included full (12-in. water) reflection and nominal (1-in. water) reflection, and full (100%) and 20% 235 U enrichment. Validation analyses of SCALE/KENO and the SCALE 27-group cross sections for nuclear criticality safety applications indicate that a calculated k eff + 2σ eff + 2σ ≥ 0.9605 is considered unsafe and may be critical. Critical conditions were calculated to be 70 g U/L for 100% 235 U and full 12-in. water reflection. This corresponds to a minimum critical mass of approximately 1,400 g 235 U for the approximate 20.0-L volume of the vacuum cleaner. The actual volume of the vacuum cleaner is smaller than the modeled volume because some internal materials of construction were assumed to be fissile solution. The model was an overestimate, for conservatism, of fissile solution occupancy. At nominal reflection conditions, the critical concentration in a vacuum cleaner full of UO 2 F 2 solution was calculated to be 100 g 235 U/L, or 2,000 g mass of 100% 235 U. At 20% 235 U for the 20.0-L volume of the vacuum cleaner. At 15% 235 U enrichment and full reflection, critical conditions were not reached at any possible concentration of uranium as a uranyl fluoride solution. At 17.5% 235 U enrichment, criticality was reached at approximately 1,300 g U/L which is beyond saturation at 25 C

  4. Preparation of DNA films for studies under vacuum conditions

    DEFF Research Database (Denmark)

    Smialek, M. A.; Balog, Richard; Jones, N. C.

    2010-01-01

    process. Using a transmission electron microscope we also examined the structure of the DNA films which are formed upon evacuation and how the proposed adducts influence the preparation process. It was found that the addition of bases cause the DNA to aggregate, noting that a base is required...

  5. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    International Nuclear Information System (INIS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-01-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry

  6. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  7. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  8. Influence of Gap Distance on Vacuum Arc Characteristics of Cup Type AMF Electrode in Vacuum Interrupters

    International Nuclear Information System (INIS)

    Cheng Shaoyong; Xiu Shixin; Wang Jimei; Shen Zhengchao

    2006-01-01

    The greenhouse effect of SF 6 is a great concern today. The development of high voltage vacuum circuit breakers becomes more important. The vacuum circuit breaker has minimum pollution to the environment. The vacuum interrupter is the key part of a vacuum circuit breaker. The interrupting characteristics in vacuum and arc-controlling technique are the main problems to be solved for a longer gap distance in developing high voltage vacuum interrupters. To understand the vacuum arc characteristics and provide effective technique to control vacuum arc in a long gap distance, the arc mode transition of a cup-type axial magnetic field electrode is observed by a high-speed charge coupled device (CCD) video camera under different gap distances while the arc voltage and arc current are recorded. The controlling ability of the axial magnetic field on vacuum arc obviously decreases when the gap distance is longer than 40 mm. The noise components and mean value of the arc voltage significantly increase. The effective method for controlling the vacuum arc characteristics is provided by long gap distances based on the test results. The test results can be used as a reference to develop high voltage and large capacity vacuum interrupters

  9. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  10. Definition and means of maintaining the process vacuum liquid detection interlock systems portion of the PFP safety envelope

    International Nuclear Information System (INIS)

    THOMAS, R.J.

    1999-01-01

    The Process Vacuum Liquid Detection interlock systems prevent intrusion of process liquids into the HEPA filters downstream of demisters No.6 and No.7 during Process Vacuum System operation. This prevents liquid intrusion into the filters, which could cause a criticality. The Safety Envelope (SE) includes the equipment, which detects the presence of liquids in the vacuum headers; isolates the filters; shuts down the vacuum pumps; and alarms the condition. This report identifies the equipment in the SE operating, maintenance, and surveillance procedures needed to maintain the SE equipment; and rationale for exclusion of some equipment and testing from the SE

  11. Empirical Formulas for Calculation of Negative Pressure Difference in Vacuum Pipelines

    Directory of Open Access Journals (Sweden)

    Marek Kalenik

    2015-10-01

    Full Text Available The paper presents the analysis of results of empirical investigations of a negative pressure difference in vacuum pipelines with internal diameters of 57, 81, 102 mm. The investigations were performed in an experimental installation of a vacuum sewage system, built in a laboratory hall on a scale of 1:1. The paper contains a review of the literature concerning two-phase flows (liquid-gas in horizontal, vertical and diagonal pipelines. It presents the construction and working principles of the experimental installation of vacuum sewage system in steady and unsteady conditions during a two-phase flow of water and air. It also presents a methodology for determination of formula for calculation of a negative pressure difference in vacuum pipelines. The results obtained from the measurements of the negative pressure difference Δpvr in the vacuum pipelines were analyzed and compared with the results of calculations of the negative pressure difference Δpvr, obtained from the determined formula. The values of the negative pressure difference Δpvr calculated for the vacuum pipelines with internal diameters of 57, 81, and 102 mm with the use of Formula (19 coincide with the values of Δpvr measured in the experimental installation of a vacuum sewage system. The dependence of the negative pressure difference Δpvr along the length of the vacuum pipelines on the set negative pressure in the vacuum container pvzp is linear. The smaller the vacuum pipeline diameter, the greater the negative pressure difference Δpvr is along its length.

  12. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  13. Awareness of households to the development of wind energy sites - Reporting on a survey; Receptivite des menages au developpement des sites eoliens. Rapport d'enquete

    Energy Technology Data Exchange (ETDEWEB)

    Voisard, M.

    2000-07-01

    This report for the Swiss Federal Office of Energy presents in tables and diagrams the results of a survey involving 421 households in Switzerland, about their awareness to energy issues and, in particular, to all what regards wind energy and wind power plants. Globally, 80% of the persons asked for their opinion believe that electric power demand will continue to increase. 66% of them are in favour of increased use of renewable energy sources and would consequently agree with a 10% more expensive end-user energy price. 89% of the persons taking part to the survey approve the installation of wind energy farms in Switzerland. Moreover, statistics indicates that the households living in regions already equipped with wind farms are significantly more favorable to the creation of new wind energy sites than those not living in these regions. By the end of the day, it turns out that the main reasons for accepting wind energy are environmental concerns as well as the fear of being obliged to use nuclear power. [French] Ce rapport presente par des graphiques et des tableaux le resultat d'un sondage d'opinion aupres de 421 menages en Suisse, sur la sensibilite du public aux problemes de l'energie et plus particulierement sur sa perception de tout ce qui concerne l'energie du vent et son exploitation par l'implantation d'eoliennes. Globalement, 80% des menages pensent que la demande d'energie electrique va poursuivre sa croissance. 66% d'entre eux sont favorables au developpement des energies renouvelables et prets a accepter en consequence une augmentation du prix de l'energie allant jusqu'a 10%. 89% des personnes interrogees sont favorables au developpement des eoliennes en Suisse. De plus, la statistique montre de maniere significative que les menages des regions dans lesquelles sont deja implantes des sites eoliens sont plus favorables au developpement des eoliennes que les autres. Finalement, le respect de l

  14. Awareness of households to the development of wind energy sites - Reporting on a survey; Receptivite des menages au developpement des sites eoliens. Rapport d'enquete

    Energy Technology Data Exchange (ETDEWEB)

    Voisard, M

    2000-07-01

    This report for the Swiss Federal Office of Energy presents in tables and diagrams the results of a survey involving 421 households in Switzerland, about their awareness to energy issues and, in particular, to all what regards wind energy and wind power plants. Globally, 80% of the persons asked for their opinion believe that electric power demand will continue to increase. 66% of them are in favour of increased use of renewable energy sources and would consequently agree with a 10% more expensive end-user energy price. 89% of the persons taking part to the survey approve the installation of wind energy farms in Switzerland. Moreover, statistics indicates that the households living in regions already equipped with wind farms are significantly more favorable to the creation of new wind energy sites than those not living in these regions. By the end of the day, it turns out that the main reasons for accepting wind energy are environmental concerns as well as the fear of being obliged to use nuclear power. [French] Ce rapport presente par des graphiques et des tableaux le resultat d'un sondage d'opinion aupres de 421 menages en Suisse, sur la sensibilite du public aux problemes de l'energie et plus particulierement sur sa perception de tout ce qui concerne l'energie du vent et son exploitation par l'implantation d'eoliennes. Globalement, 80% des menages pensent que la demande d'energie electrique va poursuivre sa croissance. 66% d'entre eux sont favorables au developpement des energies renouvelables et prets a accepter en consequence une augmentation du prix de l'energie allant jusqu'a 10%. 89% des personnes interrogees sont favorables au developpement des eoliennes en Suisse. De plus, la statistique montre de maniere significative que les menages des regions dans lesquelles sont deja implantes des sites eoliens sont plus favorables au developpement des eoliennes que les autres. Finalement, le respect de l'environnement et la crainte d'avoir a recourir a l

  15. The electric dipole moment of the nucleon from simulations at imaginary vacuum angle theta

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, S. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Tsukuba Univ. (Japan). Graduate School of Pure and Applied Sciences; Horsley, R.; Zanotti, J. [Edinburgh Univ. (United Kingdom). School of Physics; Izubuchi, T. [RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton (United States)]|[Kanazawa Univ. (Japan). Inst. for Theoretical Physics; Nakamura, Y.; Pleiter, D.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division. Dept. of Mathematical Sciences

    2008-07-15

    We compute the electric dipole moment of proton and neutron from lattice QCD simulations with N{sub f}=2 flavors of dynamical quarks at imaginary vacuum angle {theta}. The calculation proceeds via the CP odd form factor F{sub 3}. A novel feature of our calculation is that we use partially twisted boundary conditions to extract F{sub 3} at zero momentum transfer. As a byproduct, we test the QCD vacuum at nonvanishing {theta}. (orig.)

  16. Specification for the delivery of special sections made of aluminum alloy for use as vacuum chambers

    International Nuclear Information System (INIS)

    Possible extension of the research facility by a large storage-ring facility is presently being planned at DESY. For preliminary engineering tests concerning the dimensions of the vacuum system, there is a need for two extruded special sections made of an aluminum alloy, which are to be fabricated as vacuum chambers in deflecting magnets and in focussing magnets. Conditions of the contract and technical requirements of the special sections are given

  17. Vacuum-Ultraviolet Photovoltaic Detector.

    Science.gov (United States)

    Zheng, Wei; Lin, Richeng; Ran, Junxue; Zhang, Zhaojun; Ji, Xu; Huang, Feng

    2018-01-23

    Over the past two decades, solar- and astrophysicists and material scientists have been researching and developing new-generation semiconductor-based vacuum ultraviolet (VUV) detectors with low power consumption and small size for replacing traditional heavy and high-energy-consuming microchannel-detection systems, to study the formation and evolution of stars. However, the most desirable semiconductor-based VUV photovoltaic detector capable of achieving zero power consumption has not yet been achieved. With high-crystallinity multistep epitaxial grown AlN as a VUV-absorbing layer for photogenerated carriers and p-type graphene (with unexpected VUV transmittance >96%) as a transparent electrode to collect excited holes, we constructed a heterojunction device with photovoltaic detection for VUV light. The device exhibits an encouraging VUV photoresponse, high external quantum efficiency (EQE) and extremely fast tempera response (80 ns, 10 4 -10 6 times faster than that of the currently reported VUV photoconductive devices). This work has provided an idea for developing zero power consumption and integrated VUV photovoltaic detectors with ultrafast and high-sensitivity VUV detection capability, which not only allows future spacecraft to operate with longer service time and lower launching cost but also ensures an ultrafast evolution of interstellar objects.

  18. Vacuum control system of VEC

    International Nuclear Information System (INIS)

    Roy, Anindya; Bhole, R.B.; Bandopadhyay, D.L.; Mukhopadhyay, B.; Pal, Sarbajit; Sarkar, D.

    2009-01-01

    As a part of modernization of VEC (Variable Energy Cyclotron), the Vacuum Control System is being upgraded to PLC based automated system from initial Relay based Manual system. EPICS (Experimental Physics and Industrial Control System), a standard open source software tool for designing distributed control system, is chosen for developing the supervisory control software layer, leading towards a unified distributed control architecture of VEC Control System. A Modbus - TCP based IOC (I/O Controller) has been developed to communicate control data to PLC using Ethernet-TCP LAN. Keeping in mind, the operators' familiarity with MS-Windows, a MS-Windows based operator interface is developed using VB6. It is also used to test and evaluate EPICS compatibility to MS Windows. Several MS Windows ActiveX components e.g. text display, image display, alarm window, set-point input etc. have been developed incorporating Channel Access library of EPICS. Use of such components ease the programming complexity and reduce developmental time of the operator interface. The system is in the final phase of commissioning. (author)

  19. Quark and gluon condensate in vacuum

    International Nuclear Information System (INIS)

    Vajnshtejn, A.I.; Zakharov, V.I.; Shifman, M.A.

    1979-01-01

    The mechanism of quark confinement has been reviewed. The fact that coloured particles in a free state cannot be observed is connected with specific properties of vacuum in quantum chromodynamics. The basic hypothesis consists in the existence of vacuum fields, quark and gluon condensates, which affect the coloured objects. The vacuum transparent relative to noncharged ''white'' states serves as a source of the force acting upon the coloured particles. It has been a sucess to examine strictly the action of the vacuum fields on quarks when the distance between them is relatively small and the force of the vacuum fields on quarks is relatively small too. It is shown that the interaction with the vacuum fields manifests itself earlier than the forces connected with the gluon exchange do. It is assumed that the vacuum condensate of quarks and gluons and its relation to properties of resonances and to the bag model exist in reality. The dispersion sum rules are used for calculating masses and lepton widths of resonances

  20. Vacuum stability of a general scalar potential of a few fields

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, Kristjan [NICPB, Tallinn (Estonia)

    2016-06-15

    We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)

  1. Computer controlled vacuum control system for synchrotron radiation beam lines

    International Nuclear Information System (INIS)

    Goldberg, S.M.; Wang, C.; Yang, J.

    1983-01-01

    The increasing number and complexity of vacuum control systems at the Stanford Synchrotron Radiation Laboratory has resulted in the need to computerize its operations in order to lower costs and increase efficiency of operation. Status signals are transmitted through digital and analog serial data links which use microprocessors to monitor vacuum status continuously. Each microprocessor has a unique address and up to 256 can be connected to the host computer over a single RS232 data line. A FORTRAN program on the host computer will request status messages and send control messages via only one RS232 line per beam line, signal the operator when a fault condition occurs, take automatic corrective actions, warn of impending valve failure, and keep a running log of all changes in vacuum status for later recall. Wiring costs are thus greatly reduced and more status conditions can be monitored without adding excessively to the complexity of the system. Operators can then obtain status reports at various locations in the lab quickly without having to read a large number of meter and LED's

  2. Vacuum seeding and secondary growth route to sodalite membrane

    International Nuclear Information System (INIS)

    Lee, Sung-Reol; Son, You-Hwan; Julbe, Anne; Choy, Jin-Ho

    2006-01-01

    Sodalite membrane has been successfully fabricated on tubular porous α-Al 2 O 3 supports by secondary growth method with vacuum seeding. In the seeding process, the colloidal seeding particles were agglutinated not only onto the surface of alumina support but also within the pores by vacuum sucking method. To obtain defect-free sodalite membrane, the sodalite crystals were grown directly on the alumina support in a mixture solution containing alumina and silica species under the hydrothermal reaction condition. The as-synthesized sodalite membranes were characterized by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). The thickness and the quality of sodalite membrane could be controlled by the hydrothermal reaction time (12∼24 h) and temperature (100∼150 deg. C) under the mother solution of 5Na 2 O : 2SiO 2 : Al 2 O 3 : 1000H 2 O

  3. Ultra high vacuum system for Isabelle full cell

    International Nuclear Information System (INIS)

    Skelton, R.; Briggs, J.; Chou, T.S.; Foerster, C.; Stattel, P.

    1979-01-01

    A vacuum system consisting of a 40 m long 8.8 cm diameter stainless steel tube, pumped by 7 pumping stations, has been assembled using automatic welding methods. All components have been fired at 950 0 C in a vacuum furnace at a pressure -4 Torr. Each pumping station contains a Ti-sublimator, a 30 liter/s ion pump and an UHV gauge. After assembly, the entire system was baked out at 250 0 C for 24 hours. A pressure -11 Torr was reached after titanium flash. Surface treatment of stainless for 10 -11 Torr operation, bake out and conditioning cycle to read 1 x 10 -11 Torr, and leak checking at low pressures are discussed

  4. Functional aluminum alloys for ultra high vacuum use

    International Nuclear Information System (INIS)

    Kato, Yutaka; Tsukamoto, Kenji; Isoyama, Eizo

    1985-01-01

    Ultra high vacuum systems made of aluminum alloys are actively developed. The reasons for using aluminum alloys are low residual radioactivity, light weight, good machinability, good thermal conductivity, non-magnetism. The important function required for ultra high vacuum materials is low outgassing rate, but surface gas on ordinary aluminum is much. Then the research on aluminum surface structure with low outgassing rate has been made and the special extrusion method, that is, extrusion method with the conditions of preventing air from entering inside of pipe and of taking in mixture gas of Ar + O 2 , was developed. 6063 alloy obtained by special extrusion method showed low outgassing rate (2 x 10 -13 Torr. 1/s. cm 2 ) by only 150 deg C, 24 h baking. For the future it will be important to develop aluminum alloys with low dynamic outgassing rate as well as low static outgassing rate. (author)

  5. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  6. Sequestration of vacuum energy and the end of the universe.

    Science.gov (United States)

    Kaloper, Nemanja; Padilla, Antonio

    2015-03-13

    Recently, we proposed a mechanism for sequestering the standard model vacuum energy that predicts that the Universe will collapse. Here we present a simple mechanism for bringing about this collapse, employing a scalar field whose potential is linear and becomes negative, providing the negative energy density required to end the expansion. The slope of the potential is chosen to allow for the expansion to last until the current Hubble time, about 10^{10} years, to accommodate our Universe. Crucially, this choice is technically natural due to a shift symmetry. Moreover, vacuum energy sequestering selects radiatively stable initial conditions for the collapse, which guarantee that immediately before the turnaround the Universe is dominated by the linear potential which drives an epoch of accelerated expansion for at least an e fold. Thus, a single, technically natural choice for the slope ensures that the collapse is imminent and is preceded by the current stage of cosmic acceleration, giving a new answer to the "why now?"

  7. EAST-AIA deployment under vacuum: Calibration of laser diagnostic system using computer vision

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyang@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Song, Yuntao; Cheng, Yong; Feng, Hansheng; Wu, Zhenwei; Li, Yingying; Sun, Yongjun; Zheng, Lei [Institute of Plasma Physics, Chinese Academy of Sciences, 350 Shushanhu Rd, Hefei, Anhui (China); Bruno, Vincent; Eric, Villedieu [CEA-IRFM, F-13108 Saint-Paul-Lez-Durance (France)

    2016-11-15

    Highlights: • The first deployment of the EAST articulated inspection arm robot under vacuum is presented. • A computer vision based approach to measure the laser spot displacement is proposed. • An experiment on the real EAST tokamak is performed to validate the proposed measure approach, and the results shows that the measurement accuracy satisfies the requirement. - Abstract: For the operation of EAST tokamak, it is crucial to ensure that all the diagnostic systems are in the good condition in order to reflect the plasma status properly. However, most of the diagnostic systems are mounted inside the tokamak vacuum vessel, which makes them extremely difficult to maintain under high vacuum condition during the tokamak operation. Thanks to a system called EAST articulated inspection arm robot (EAST-AIA), the examination of these in-vessel diagnostic systems can be performed by an embedded camera carried by the robot. In this paper, a computer vision algorithm has been developed to calibrate a laser diagnostic system with the help of a monocular camera at the robot end. In order to estimate the displacement of the laser diagnostic system with respect to the vacuum vessel, several visual markers were attached to the inner wall. This experiment was conducted both on the EAST vacuum vessel mock-up and the real EAST tokamak under vacuum condition. As a result, the accuracy of the displacement measurement was within 3 mm under the current camera resolution, which satisfied the laser diagnostic system calibration.

  8. Is the Free Vacuum Energy Infinite?

    International Nuclear Information System (INIS)

    Shirazi, S. M.; Razmi, H.

    2015-01-01

    Considering the fundamental cutoff applied by the uncertainty relations’ limit on virtual particles’ frequency in the quantum vacuum, it is shown that the vacuum energy density is proportional to the inverse of the fourth power of the dimensional distance of the space under consideration and thus the corresponding vacuum energy automatically regularized to zero value for an infinitely large free space. This can be used in regularizing a number of unwanted infinities that happen in the Casimir effect, the cosmological constant problem, and so on without using already known mathematical (not so reasonable) techniques and tricks

  9. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua presents three major topics, which are the fourth to sixth parts of this volume. These topics are the remarks on units of physical quantities; kinetic theory of gases and gaseous flow; and theory of vacuum diffusion pumps. The first topic aims to present concisely the significance of units of physical quantities, catering the need and interest of those who take measurements and make calculations in different fields of vacuum sciences. The technique and applications of this particular topic are also provided. The second main topic focuses sp

  10. Plasma instability of a vacuum arc centrifuge

    International Nuclear Information System (INIS)

    Hole, M.J.; Dallaqua, R.S.; Simpson, S.W.; Del Bosco, E.

    2002-01-01

    Ever since conception of the vacuum arc centrifuge in 1980, periodic fluctuations in the ion saturation current and floating potential have been observed in Langmuir probe measurements in the rotation region of a vacuum arc centrifuge. In this work we develop a linearized theoretical model to describe a range of instabilities in the vacuum arc centrifuge plasma column, and then test the validity of the description through comparison with experiment. We conclude that the observed instability is a 'universal' instability, driven by the density gradient, in a plasma with finite conductivity

  11. Cold vacuum drying facility site evaluation report

    International Nuclear Information System (INIS)

    Diebel, J.A.

    1996-01-01

    In order to transport Multi-Canister Overpacks to the Canister Storage Building they must first undergo the Cold Vacuum Drying process. This puts the design, construction and start-up of the Cold Vacuum Drying facility on the critical path of the K Basin fuel removal schedule. This schedule is driven by a Tri-Party Agreement (TPA) milestone requiring all of the spent nuclear fuel to be removed from the K Basins by December, 1999. This site evaluation is an integral part of the Cold Vacuum Drying design process and must be completed expeditiously in order to stay on track for meeting the milestone

  12. Report of the Synchrotron Radiation Vacuum Workshop

    International Nuclear Information System (INIS)

    Avery, R.T.

    1984-06-01

    The Synchrotron Radiation Vacuum Workshop was held to consider two vacuum-related problems that bear on the design of storage rings and beam lines for synchrotron radiation facilities. These problems are gas desorption from the vacuum chamber walls and carbon deposition on optical components. Participants surveyed existing knowledge on these topics and recommended studies that should be performed as soon as possible to provide more definitive experimental data on these topics. This data will permit optimization of the final design of the Advanced Light Source (ALS) and its associated beam lines. It also should prove useful for other synchrotron radiation facilities as well

  13. Ultra-high vacuum technology for accelerators

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Hilleret, Noël; Strubin, Pierre M

    2002-01-01

    The lectures will start with a review of the basics of vacuum physics required to build Ultra High Vacuum (UHV) systems, such as static and dynamic outgassing. Before reviewing the various pumping and measurement devices, including the most modern one like Non Evaporable Getter (NEG) coatings, an overview of adequate materials to be used in UHV systems will be given together with their treatment (e.g. cleaning procedures and bake out). Practical examples based on existing or future accelerators will be used to illustrate the topics. Finally, a short overview of modern vacuum controls and interlocks will be given.

  14. Vacuum anti-shielding of monopoles

    International Nuclear Information System (INIS)

    Goebel, D.J.

    1984-01-01

    This chapter examines the difficulties in calculating the vacuum polarization, or magnetization, induced in the vacuum by a monopole. The usual Lagrangian formalism and consequent Feynman rules do not apply. Another problem is that the interaction strength between the monopole and a charge is not small (unless it vanishes exactly) because it is quantized to half integer values. Perturbation theory is therefore not applicable. The discussed problems are solved by using the old fashioned method of calculating a vacuum expectation value as a sum over single particle modes

  15. Quark virtuality and QCD vacuum condensates

    International Nuclear Information System (INIS)

    Zhou Lijuan; Ma Weixing

    2004-01-01

    Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions

  16. Vacuum engineering, calculations, formulas, and solved exercises

    CERN Document Server

    Berman, Armand

    1992-01-01

    This book was written with two main objectives in mind-to summarize and organize the vast material of vacuum technology in sets of useful formulas, and to provide a collection of worked out exercises showing how to use these formulas for solving technological problems. It is an ideal reference source for those with little time to devote to a full mathematical treatment of the many problems issued in vacuum practice, but who have a working knowledge of the essentials of vacuum technology, elementary physics, and mathematics. This time saving book employs a problem-solving approach throughout, p

  17. The fine art of preparing a vacuum

    CERN Multimedia

    2006-01-01

    The vacuum chambers, or beam pipes, of the LHC experiments are located right at the interface between the detectors and the accelerator, and are therefore crucial to the LHC project as a whole. In this domain, the ALICE and CMS experiments have just passed an important milestone, with the completion of the first of CMS's two end-cap vacuum chambers, together with the completion and bakeout of an 18-metre section of the ALICE vacuum chamber. These complex projects, for which CERN's AT/VAC Group is responsible, involved dozens of people over a number of years.

  18. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  19. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  20. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Joong-Won, E-mail: jshin@govst.edu [Division of Science, Governors State University, University Park, Illinois 60484-0975 (United States); Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States); Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu [Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872 (United States)

    2014-01-28

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5{sup ′}-monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results.

  1. Vacuum ultraviolet photoionization of carbohydrates and nucleotides

    International Nuclear Information System (INIS)

    Shin, Joong-Won; Bernstein, Elliot R.

    2014-01-01

    Carbohydrates (2-deoxyribose, ribose, and xylose) and nucleotides (adenosine-, cytidine-, guanosine-, and uridine-5 ′ -monophosphate) are generated in the gas phase, and ionized with vacuum ultraviolet photons (VUV, 118.2 nm). The observed time of flight mass spectra of the carbohydrate fragmentation are similar to those observed [J.-W. Shin, F. Dong, M. Grisham, J. J. Rocca, and E. R. Bernstein, Chem. Phys. Lett. 506, 161 (2011)] for 46.9 nm photon ionization, but with more intensity in higher mass fragment ions. The tendency of carbohydrate ions to fragment extensively following ionization seemingly suggests that nucleic acids might undergo radiation damage as a result of carbohydrate, rather than nucleobase fragmentation. VUV photoionization of nucleotides (monophosphate-carbohydrate-nucleobase), however, shows that the carbohydrate-nucleobase bond is the primary fragmentation site for these species. Density functional theory (DFT) calculations indicate that the removed carbohydrate electrons by the 118.2 nm photons are associated with endocyclic C–C and C–O ring centered orbitals: loss of electron density in the ring bonds of the nascent ion can thus account for the observed fragmentation patterns following carbohydrate ionization. DFT calculations also indicate that electrons removed from nucleotides under these same conditions are associated with orbitals involved with the nucleobase-saccharide linkage electron density. The calculations give a general mechanism and explanation of the experimental results

  2. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  3. Ultra high vacuum system of the 3 MeV electron beam accelerator

    International Nuclear Information System (INIS)

    Puthran, G.P.; Jayaprakash, D.; Mishra, R.L.; Ghodke, S.R.; Majumder, R.; Mittal, K.C.; Sethi, R.C.

    2003-01-01

    Full text: A 3 MeV electron beam accelerator is coming up at the electron beam centre, Kharghar, Navi Mumbai. A vacuum of the order of 1x10 -7 mbar is desired in the beam line of the accelerator. The UHV system is spread over a height of 6 meters. The total surface area exposed to vacuum is 65,000 cm 2 and the volume is 200 litres. Distributed pumping is planned, to avoid undesirable vacuum gradient between any two sections of the beam-line. The electron beam is scanned in an area of 6 cms x 100 cms and it comes out of the scan-horn through a titanium foil of 50 micron thick. Hence the vacuum system is designed in such a way that, in the event of foil rupture during beam extraction, the electron gun, accelerating column and the pumps can be protected from sudden air rush. The vacuum in the beam-line can also be maintained in this condition. After changing the foil, scan-horn area can be separately pumped to bring the vacuum level as desired and can be opened to the beam-line. The design, vacuum pumping scheme and the safety aspects are discussed in this paper

  4. Local effects of the quantum vacuum in Lorentz-violating electrodynamics

    Science.gov (United States)

    Martín-Ruiz, A.; Escobar, C. A.

    2017-02-01

    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.

  5. High vacuum test of the dynamic components of the cyclotron dee chamber at the 224 cm variable energy cyclotron

    International Nuclear Information System (INIS)

    Chintalapudi, S.N.; Bandopadhyay, D.K.; Ghosh, D.K.; Gowariker, S.R.

    1979-01-01

    The 224 cm Variable Energy Cyclotron constructed and commissioned at Calcutta comprises a number of dynamic components in the high vacuum Dee Chamber. The static and dynamic conditions of these components have to be tested for high vacuum worthiness prior to their installation in the Dee Tank. A special set up was fabricated and used for simulating the Dee Chamber conditions and testing the components. A high vacuum of the order of 1 x 10 -5 torr was achieved under both dynamic and static conditions with and without coolant hydraulic pressures. The details of the set up, methods employed for the various tests carried out and the results obtained are described. (auth.)

  6. Nuclear developments at the international inter govern mental level (1961); Developpements nucleaires sur le plan international intergouvernemental (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Waynbaum, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The United Nations organisation and nuclear energy rose simultaneously, in 1945, to occupy an important place in the public eye. The spiritual succession of the League of Nations which had foundered during the war was taken up by the new organisation which sought to implant its political ideal in a more tangible reality, so that it might thereby be inspired by concrete and substantial objectives. This is one of the reasons for the existence of the dozen specialized agencies created by the family of the United Nations and dealing with Health, Culture, Agriculture, Finance, etc. Nuclear energy is one of these techniques. Becoming suddenly an important power factor and exploiting for itself the prestige of Science, it became the favorite domain for the growth of this new spirit, as much in its universal form in 1945 as in its more regional form which it was later to adopt. The achievements are numerous and of varying importance; they deserve te be studied carefully. (author) [French] L'organisation des Nations Unies et le nucleaire ont ete places simultanement, en 1945, au premier plan de la scene mondiale. La Societe des Nations ayant sombre pendant la guerre, son heritage spirituel fut recueilli par la nouvelle organisation qui chercha a enraciner son ideal politique dans une realite plus materielle, de facon a y puiser une nourriture concrete et substantielle. C'est une des raisons d'existence de la douzaine d'institutions specialisees gravitant dans la famille des Nations Unies et s'occupant de Sante, de Culture, d'Agriculture, de Finances, etc. Le nucleaire est l'une de ces techniques. Devenu soudainement un facteur primordial de puissance, Cristallisant a son benefice le prestige de la Science, c'etait un terrain de predilection pour le developpement du nouvel esprit, aussi bien sous la forme universelle de 1945, que sous les formes regionales qui ont vu le jour ensuite. Les travaux realises que nombreux, d'importance tres inegale. Ils meritent qu'on les examine

  7. Nuclear developments at the international inter govern mental level (1961); Developpements nucleaires sur le plan international intergouvernemental (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Waynbaum, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The United Nations organisation and nuclear energy rose simultaneously, in 1945, to occupy an important place in the public eye. The spiritual succession of the League of Nations which had foundered during the war was taken up by the new organisation which sought to implant its political ideal in a more tangible reality, so that it might thereby be inspired by concrete and substantial objectives. This is one of the reasons for the existence of the dozen specialized agencies created by the family of the United Nations and dealing with Health, Culture, Agriculture, Finance, etc. Nuclear energy is one of these techniques. Becoming suddenly an important power factor and exploiting for itself the prestige of Science, it became the favorite domain for the growth of this new spirit, as much in its universal form in 1945 as in its more regional form which it was later to adopt. The achievements are numerous and of varying importance; they deserve te be studied carefully. (author) [French] L'organisation des Nations Unies et le nucleaire ont ete places simultanement, en 1945, au premier plan de la scene mondiale. La Societe des Nations ayant sombre pendant la guerre, son heritage spirituel fut recueilli par la nouvelle organisation qui chercha a enraciner son ideal politique dans une realite plus materielle, de facon a y puiser une nourriture concrete et substantielle. C'est une des raisons d'existence de la douzaine d'institutions specialisees gravitant dans la famille des Nations Unies et s'occupant de Sante, de Culture, d'Agriculture, de Finances, etc. Le nucleaire est l'une de ces techniques. Devenu soudainement un facteur primordial de puissance, Cristallisant a son benefice le prestige de la Science, c'etait un terrain de predilection pour le developpement du nouvel esprit, aussi bien sous la forme universelle de 1945, que sous les formes regionales qui ont vu le jour ensuite. Les travaux realises que nombreux, d

  8. Is there vacuum when there is mass? Vacuum and non-vacuum solutions for massive gravity

    International Nuclear Information System (INIS)

    Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    Massive gravity is a theory which has a tremendous amount of freedom to describe different cosmologies, but at the same time, the various solutions one encounters must fulfil some rather nontrivial constraints. Most of the freedom comes not from the Lagrangian, which contains only a small number of free parameters (typically three depending on counting conventions), but from the fact that one is in principle free to choose the reference metric almost arbitrarily—which effectively introduces a non-denumerable infinity of free parameters. In the current paper, we stress that although changing the reference metric would lead to a different cosmological model, this does not mean that the dynamics of the universe can be entirely divorced from its matter content. That is, while the choice of reference metric certainly influences the evolution of the physically observable foreground metric, the effect of matter cannot be neglected. Indeed the interplay between matter and geometry can be significantly changed in some specific models; effectively since the graviton would be able to curve the spacetime by itself, without the need of matter. Thus, even the set of vacuum solutions for massive gravity can have significant structure. In some cases, the effect of the reference metric could be so strong that no conceivable material content would be able to drastically affect the cosmological evolution. Dedicated to the memory of Professor Pedro F González–Díaz (paper)

  9. High vacuum tribology of polycrystalline diamond coatings

    Indian Academy of Sciences (India)

    Polycrystalline diamond coatings; hot filament CVD; high vacuum tribology. 1. Introduction .... is a characteristic of graphite. We mark the (diamond ... coefficient of friction due to changes in substrate temperature. The average coefficient of.

  10. Gravitational collapse and the vacuum energy

    International Nuclear Information System (INIS)

    Campos, M

    2014-01-01

    To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.

  11. Analytical and numerical tools for vacuum systems

    CERN Document Server

    Kersevan, R

    2007-01-01

    Modern particle accelerators have reached a level of sophistication which require a thorough analysis of all their sub-systems. Among the latter, the vacuum system is often a major contributor to the operating performance of a particle accelerator. The vacuum engineer has nowadays a large choice of computational schemes and tools for the correct analysis, design, and engineering of the vacuum system. This paper is a review of the different type of algorithms and methodologies which have been developed and employed in the field since the birth of vacuum technology. The different level of detail between simple back-of-the-envelope calculations and more complex numerical analysis is discussed by means of comparisons. The domain of applicability of each method is discussed, together with its pros and cons.

  12. Exact vacuum energy of orbifold lattice theories

    International Nuclear Information System (INIS)

    Matsuura, So

    2007-01-01

    We investigate the orbifold lattice theories constructed from supersymmetric Yang-Mills matrix theories (mother theories) with four and eight supercharges. We show that the vacuum energy of these theories does not receive any quantum correction perturbatively

  13. Design of the ZTH vacuum liner

    International Nuclear Information System (INIS)

    Prince, P.P.; Dike, R.S.

    1987-01-01

    The current status of the ZTh vacuum liner design is covered by this report. ZTH will be the first experiment to be installed in the CPRF (Confinement Physics Research Facility) at the Los Alamos National Laboratory and is scheduled to be operational at the rated current of 4 MA in 1992. The vacuum vessel has a 2.4m major radius and a 40 cm minor radius. Operating parameters which drive the vacuum vessel mechanical design include a 300 C bakeout temperature, an armour support system capable of withstanding 25 kV, a high toroidal resistance, 1250 kPa magnetic loading, a 10 minute cycle time, and high positional accuracy with respect to the conducting shell. The vacuum vessel design features which satisfy the operating parameters are defined

  14. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.J.

    1997-09-24

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility.

  15. Cold vacuum drying facility design requirements

    International Nuclear Information System (INIS)

    Irwin, J.J.

    1997-01-01

    This release of the Design Requirements Document is a complete restructuring and rewrite to the document previously prepared and released for project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility

  16. Topology of classical vacuum space-time

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2007-04-01

    We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)

  17. 2XIIB vacuum vessel: a unique design

    International Nuclear Information System (INIS)

    Hibbs, S.M.; Calderon, M.O.

    1975-01-01

    The 2XIIB mirror confinement experiment makes unique demands on its vacuum system. The confinement coil set encloses a cavity whose surface is comprised of both simple and compound curves. Within this cavity and at the core of the machine is the operating vacuum which is on the order of 10 -9 Torr. The vacuum container fits inside the cavity, presenting an inside surface suitable for titanium getter pumping and a means of removing the heat load imposed by incandescent sublimator wires. In addition, the cavity is constructed of nonmagnetic and nonconducting materials (nonmetals) to avoid distortion of the pulsed confinement field. It is also isolated from mechanical shocks induced in the machine's main structure when the coils are pulsed. This paper describes the design, construction, and operation of the 2XIIB high-vacuum vessel that has been performing successfully since early 1974

  18. Production of Lunar Oxygen Through Vacuum Pyrolysis

    National Research Council Canada - National Science Library

    Matchett, John

    2006-01-01

    .... The vacuum pyrolysis method of oxygen production from lunar regolith presents a viable option for in situ propellant production because of its simple operation involving limited resources from earth...

  19. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  20. Theorem on axially symmetric gravitational vacuum configurations

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, A; Le Denmat, G [Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1977-01-24

    A theorem is proved which asserts the non-existence of axially symmetric gravitational vacuum configurations with non-stationary rotation only. The eventual consequences in black-hole physics are suggested.

  1. Re-circulating linac vacuum system

    International Nuclear Information System (INIS)

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-01-01

    The vacuum system for a proposed 2.5 GeV, 10ΜA recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10ΜA average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing

  2. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  3. Vacuum ultraviolet photochemistry of tetrahydrothiophene and sulfolane

    International Nuclear Information System (INIS)

    Scala, A.A.; Colon, I.

    1979-01-01

    The vacuum uv photolysis of tetrahydrothiophene (THT) involves the breaking of the S to α-C bond. Besides ethylene, C 3 H 6 and 1,3-butadiene are also formed. Photolyses of THT, tetrahydrofuran, and pyrrolidine are similar. The vacuum uv photolysis of tetramethylene sulfone (sulfolane) was also studied; products are SO 2 , cyclobutane, 1-butene, and ethylene. No cis-2-butene was observed

  4. The Effect of Forcing on Vacuum Radiation

    OpenAIRE

    Jones-Smith, Katherine; Mathur, Harsh; Lowenstein, Ashton

    2018-01-01

    Vacuum radiation has been the subject of theoretical study in both cosmology and condensed matter physics for many decades. Recently there has been impressive progress in experimental realizations as well. Here we study vacuum radiation when a field mode is driven both parametrically and by a classical source. We find that in the Heisenberg picture the field operators of the mode undergo a Bogolyubov transformation combined with a displacement, in the Schr\\"odinger picture the oscillator evol...

  5. Cluster expansion for vacuum confining fields

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    1987-01-01

    Colored particle Green functions in vacuum background random fields are written as path integrals. Averaging over random fields is done using the cluster (cumulant) expansion. The existence of a finite correlation length for vacuum background fields is shown to produce the linear confinement, in agreement with the results, obtained with the help of averaged Hamiltonians. A modified form of cluster expansion for nonabelian fields is introduced using the path-ordered cumulants

  6. On microscopic structure of the QCD vacuum

    Science.gov (United States)

    Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.

    2018-05-01

    We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.

  7. Constrained potential method for false vacuum decays

    International Nuclear Information System (INIS)

    Park, Jae-hyeon

    2010-11-01

    A procedure is reported for numerical analysis of false vacuum transition in a model with multiple scalar fields. It is a refined version of the approach by Konstandin and Huber. The alteration makes it possible to tackle a class of problems that was difficult or unsolvable with the original method, i.e. those with a distant or nonexistent true vacuum. An example with an unbounded-from-below direction is presented. (orig.)

  8. Vacuum level effects on gait characteristics for unilateral transtibial amputees with elevated vacuum suspension.

    Science.gov (United States)

    Xu, Hang; Greenland, Kasey; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew

    2017-03-01

    The elevated vacuum suspension system has demonstrated unique health benefits for amputees, but the effect of vacuum pressure values on gait characteristics is still unclear. The purpose of this study was to investigate the effects of elevated vacuum levels on temporal parameters, kinematics and kinetics for unilateral transtibial amputees. Three-dimensional gait analysis was conducted in 9 unilateral transtibial amputees walking at a controlled speed with five vacuum levels ranging from 0 to 20inHg, and also in 9 able-bodied subjects walking at self-preferred speed. Repeated ANOVA and Dunnett's t-test were performed to determine the effect of vacuum level and limb for within subject and between groups. The effect of vacuum level significantly affected peak hip external rotation and external knee adduction moment. Maximum braking and propulsive ground reaction forces generally increased for the residual limb and decreased for the intact limb with increasing vacuum. Additionally, the intact limb experienced an increased loading due to gait asymmetry for several variables. There was no systematic vacuum level effect on gait. Higher vacuum levels, such as 15 and 20inHg, were more comfortable and provided some relief to the intact limb, but may also increase the risk of osteoarthritis of the residual limb due to the increased peak external hip and knee adduction moments. Very low vacuum should be avoided because of the negative effects on gait symmetry. A moderate vacuum level at 15inHg is suggested for unilateral transtibial amputees with elevated vacuum suspension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden?

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Michael, E-mail: Michael.schroeder@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany); Biedermann, Christoph; Vilbrandt, Reinhard [Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: The study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. The results show, that the PT application on components for use under vacuum conditions can in general be allowed. The test surface should have a simple geometry. No gaps or holes. An efficient cleaning after PT is necessary. If PT is foreseen TIG should used as the welding procedure. PT tested components should be baked out after the cleaning in a vacuum chamber at min 150 °C. -- Abstract: The penetrant testing (PT) is a common non-destructive procedure for the testing of components and in particular of welds. With PT it is possible to detect surface imperfections (e.g. cracks) which have a special potential to lead to the failure of the component or of the weld. PT is substantially more sensitive than a purely visual examination. Because the complicated geometries of fusion experiments make the accessibility for repairs during the operation extremely difficult, very high efforts on testing with sensitive procedures, for instance with dye penetrant testing during assembly is required. In contrast to this desire for widespread penetrant testing, however, is the general fear that dye penetrant tested components or welds, which are used in the vacuum, are contaminated by the dye in such a way that they do not fulfill the cleanliness requirements for vacuum components. Therefore dye penetrant testing of such vacuum components is usually considered problematic. This study aims to clarify the applicability of dye penetrant tests on components exposed to high-vacuum. Recommendations are formulated concerning the PT procedure of vacuum components and the cleaning procedures for penetrant tested areas under vacuum necessary after a dye penetrant test.

  10. A Gibbs potential expansion with a quantic system made up of a large number of particles; Un developpement du potentiel de Gibbs d'un systeme compose d'un grand nombre de particules

    Energy Technology Data Exchange (ETDEWEB)

    Bloch, Claude; Dominicis, Cyrano de [Commissariat a l' energie atomique et aux energies alternatives - CEA, Centre d' Etudes Nucleaires de Saclay, Gif-sur-Yvette (France)

    1959-07-01

    Starting from an expansion derived in a previous work, we study the contribution to the Gibbs potential of the two-body dynamical correlations, taking into account the statistical correlations. Such a contribution is of interest for low density systems at low temperature. In the zero density limit, it reduces to the Beth Uhlenbeck expression of the second virial coefficient. For a system of fermions in the zero temperature limit, it yields the contribution of the Brueckner reaction matrix to the ground state energy, plus, under certain conditions, additional terms of the form exp. (β |Δ|), where the Δ are the binding energies of 'bound states' of the type first discussed by L. Cooper. Finally, we study the wave function of two particles immersed in a medium (defined by its temperature and chemical potential). lt satisfies an equation generalizing the Bethe Goldstone equation for an arbitrary temperature. Reprint of a paper published in 'Nuclear Physics' 10, 1959, p. 181-196 [French] Partant d'un developpement extrait d'un precedent travail, nous etudions la contribution au potentiel de Gibbs des relations dynamiques du systeme de deux corps, en tenant compte des relations statistiques. Une telle contribution presente de l'interet pour les systemes a densite faible et a basse temperature. A la densite limite zero, elle se ramene a l'expression de Beth Uhlenbeck du second coefficient virial. Pour un systeme de fermions a la temperature limite zero, il produit la contribution de la matrice de reaction de Brueckner au niveau fondamental, plus, dans certaines conditions, des termes additionnels de la forme exp. (β |Δ|), ou les Δ sont les energies de liaison des 'etats lies' du premier type, discutes auparavant par L. Cooper. Finalement, on etudie la fonction d'onde de deux particules immerges dans un milieu (definie par sa temperature et son potentiel chimique). Il satisfait a une equation generalisant l'equation de Bethe Goldstone pour une temperature arbitraire

  11. Irradiation and development of the nuclear emulsions exposed to intense fluxes of thermal neutrons with {gamma} rays; Irradiation et developpement des emulsions nucleaires exposees a des flux intenses de neutrons thermiques, accompagnes de rayons {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, H.; Bonnet, A.; Cohen, J. [Commissariat a l' Energie Atomique, Lab. du Fort de Chatillon, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1952-07-01

    The thermal neutron fluxes provided by nuclear reactors permit the survey of relatively rare phenomenons, and dosage of very weak quantities of some elements. One of the most favorable detection technique are constituted by the use of the nuclear emulsions. one can mention: - the dosage of uranium by counting in the emulsion the number of traces due to fission fragments after irradiation. - The dosage of the lithium and the boron as trace amounts with the help of nuclear reactions (n, {alpha}) and thermal neutrons. - The research of reactions (n, {alpha}) or (n, p) of very weak cross section for middle or heavy elements. These different applications require however important neutrons fluxes. It had therefore obliged us to search for the most favorable irradiation and development of the emulsions conditions, to get the best visibility of the trajectories and decrease the phenomena of fog on the emulsion, which prevents any observation. (M.B.) [French] Les flux de neutrons thermiques fournis par les reacteurs nucleaires permettent l'etude de phenomenes relativement rares, et le dosage de tres faibles quantites de certains elements. Un des moyens de detection les plus favorables est constitue par l'utilisation des emulsions nucleaires. on peut citer: - le dosage de l'uranium par comptage dans l'emulsion du nombre de traces dues aux fragments de fission apres irradiation. - Le dosage du lithium et du bore a l'etat de traces a l'aide des reactions (n, {alpha}) sous l'action des neutrons thermiques. - La recherche de reactions (n,{alpha}) ou (n,p) de tres faible section efficace pour des elements moyens ou lourds. Ces differentes applications necessite cependant des flux de neutrons important. On a donc ete amene a rechercher les conditions les plus favorables d'irradiation et de developpement des emulsions, de maniere a obtenir la meilleure visibilite des trajectoires et diminuer les phenomenes de voile de l'emulsion, qui

  12. Manufacture of superhigh vacuum testing tank

    International Nuclear Information System (INIS)

    Sakai, Kusuo; Suzui, Koichi; Horigome, Toshio

    1981-01-01

    This apparatus is one of the preliminary experiment equipments for the vacuum system of a UVSOR, and the main objective is to obtain the clean vacuum below 10 - 10 Torr. From the viewpoint of manufacture, there is no problem, but all the works from the design through manufacture, assembling and adjustment of the apparatus, to the obtaining of required vacuum were carried out by the authors themselves. The design and its points, and manufacture are described. In order to obtain clean vacuum and maintain it for long period, the surface cleaning of vacuum tanks is very important. Therefore the method of electrolytic polishing was adopted for the purpose, and its effectiveness was examined. After the surface treatment by two methods, the evacuation test was carried out, and the attained pressure was compared. Electrolytic polishing seemed to be effective. As the method of suppressing surface degasification, there is argon bombardment method. It was attempted to improve the pressure attained by baking only further by this method. By baking at 250 deg C for 30 hr only, the final pressure attained was 1.7 x 10 - 10 Torr, and by making argon bombardment twice during baking, it was 0.9 x 10 - 10 Torr, thus slight improvement was obtained. The main objective to obtain vacuum below 10 - 10 Torr was accomplished, but surface treatment requires more experience. (Kako, I.)

  13. Cosmological evolution of vacuum and cosmic acceleration

    International Nuclear Information System (INIS)

    Kaya, Ali

    2010-01-01

    It is known that the unregularized expressions for the stress-energy tensor components corresponding to subhorizon and superhorizon vacuum fluctuations of a massless scalar field in a Friedmann-Robertson-Walker background are characterized by the equation of state parameters ω = 1/3 and ω = -1/3, which are not sufficient to produce cosmological acceleration. However, the form of the adiabatically regularized finite stress-energy tensor turns out to be completely different. By using the fact that vacuum subhorizon modes evolve nearly adiabatically and superhorizon modes have ω = -1/3, we approximately determine the regularized stress-energy tensor, whose conservation is utilized to fix the time dependence of the vacuum energy density. We then show that vacuum energy density grows from zero up to H 4 in about one Hubble time, vacuum fluctuations give positive acceleration of the order of H 4 /M 2 p and they can completely alter the cosmic evolution of the universe dominated otherwise by the cosmological constant, radiation or pressureless dust. Although the magnitude of the acceleration is tiny to explain the observed value today, our findings indicate that the cosmological backreaction of vacuum fluctuations must be taken into account in early stages of cosmic evolution.

  14. Use of vacuum in processing of uranium

    International Nuclear Information System (INIS)

    Saify, M.T.; Rai, C.B.; Singh, S.P.; Singh, R.P.

    2003-01-01

    Full text: Natural uranium in the form of metal and alloys with suitable heat treatment are being used as fuel in research and some of the power reactors. The fuel is required to satisfy the purity specification from the criteria of neutron economy, corrosion resistance and fabricability. Uranium and its alloys fall under the category of reactive materials. They readily react with atmospheric air to form oxides. If molten uranium is exposed to atmosphere, it reacts violently with atmospheric gases and moisture, leading to explosion in extreme cases. Hence, protective inert atmosphere or high vacuum is required in processing of the materials especially during the melting and casting operation. Vacuum is preferred for melting and remelting of metals and alloys to remove the gaseous and high volatile impurities, to improve the mechanical properties of the material. Also, under vacuum sound castings are produced for further processing by mechanical working or use in casting forms. The addition of reactive alloying elements in uranium is efficiently carried out under vacuum. The paper highlights vacuum systems deployed and applications of vacuum in various operations involved in the processing of uranium and its alloys

  15. Vacuum leak test technique of JT-60

    International Nuclear Information System (INIS)

    Kaminaga, Atsushi; Arai, Takashi; Kodama, Kozo; Sasaki, Noboru; Saidoh, Masahiro

    1998-01-01

    Since a vacuum vessel of JT-60 is very large (167 m 3 ) and is combined with many components, such as magnetic coils, neutral beam injection systems and RF heating systems, etc., the position of leak testing exceeds 700. The two kind of techniques for vacuum leak test used in JT-60 has been described. Firstly the probe helium gas can be fed remotely in the three-dimensionally sectioned 54 regions of the JT-60 torus. The leak test was very rapidly performed by using this method. Secondly the helium detector system has been modified by the additional installation of the cryopump, which reduced the background level of the deuterium gas. The sensitivity of vacuum leak test with the cryopump was two orders of magnitude larger than that of without it. The examples of the performed vacuum leak test are stated. The vacuum leaks during experiments were 9 times. They were caused by thermal strain and plasma discharge. The vacuum leaks just after maintenance are 36 times which mainly caused by mis-installation. (author)

  16. Optimization of Edwards vacuum coating unit model E12E for the production of thin films.; Optimizacion de la evaporadora Edwards modelo E12E para la fabricacion de peliculas delgadas.

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz P, H S

    1995-10-01

    This work is about an Edwards vacuum coating unit model E12E, it shows the principle of vacuum thermal evaporation, some observations in the operation of vacuum diffusion pumps, mechanical pumps, vacuum gauge, Penning and Pirani, and some equations of leak vacuum, after the modifications and additions of Edwards vacuum coating unit for optimization, the last part contains a concise introduction about thin films and one specific application, it also contains the recommendations and requirements to keep the system in good conditions. (Author).

  17. Introduction to vacuum technology: supplementary study material developed for IVS sponsored vacuum courses

    International Nuclear Information System (INIS)

    Bhusan, K.G.

    2008-01-01

    Vacuum technology has advanced to a large extent mainly from the demands of experimental research scientists who have more than ever understood the need for clean very low pressure environments. This need only seems to increase as the lowest pressures achievable in a laboratory setup are dropping down by the decade. What is not usually said is that conventional techniques of producing ultrahigh vacuum have also undergone a metamorphosis in order to cater to the multitude of restrictions in modern day scientific research. This book aims to give that practical approach to vacuum technology. The basics are given in the first chapter with more of a definition oriented approach - which is practically useful. The second chapter deals with the production of vacuum and ultrahigh vacuum with an emphasis on the working principles of several pumps and their working pressure ranges. Measurement of low pressures, both total and partial is presented in the third chapter with a note on leak detection and mass spectrometric techniques. Chapter 4 gives an overview of the materials that are vacuum compatible and their material properties. Chapter 5 gives the necessary methods to be followed for cleaning of vacuum components especially critical if ultrahigh vacuum environment is required. The practical use of a ultrahigh vacuum environment is demonstrated in Chapter 6 for production of high quality thin films through vapour deposition

  18. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor.

    Science.gov (United States)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  19. Influence of a high vacuum on the precise positioning using an ultrasonic linear motor

    International Nuclear Information System (INIS)

    Kim, Wan-Soo; Lee, Dong-Jin; Lee, Sun-Kyu

    2011-01-01

    This paper presents an investigation of the ultrasonic linear motor stage for use in a high vacuum environment. The slider table is driven by the hybrid bolt-clamped Langevin-type ultrasonic linear motor, which is excited with its different modes of natural frequencies in both lateral and longitudinal directions. In general, the friction behavior in a vacuum environment becomes different from that in an environment of atmospheric pressure and this difference significantly affects the performance of the ultrasonic linear motor. In this paper, to consistently provide stable and high power of output in a high vacuum, frequency matching was conducted. Moreover, to achieve the fine control performance in the vacuum environment, a modified nominal characteristic trajectory following control method was adopted. Finally, the stage was operated under high vacuum condition, and the operating performances were investigated compared with that of a conventional PI compensator. As a result, robustness of positioning was accomplished in a high vacuum condition with nanometer-level accuracy.

  20. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  1. Depressurization as a means of leak checking large vacuum vessels

    International Nuclear Information System (INIS)

    Callis, R.W.; Langhorn, A.; Petersen, P.I.; Ward, C.; Wesley, J.

    1985-01-01

    A common problem associated with large vacuum vessels used in magnetic confinement fusion experiments is that leak checking is hampered by the inaccessibility to most of the vacuum vessel surface. This inaccessibility is caused by the close proximity of magnetic coils, diagnostics and, for those vessels that are baked, the need to completely surround the vessel with a thermal insulation blanket. These obstructions reduce the effectiveness of the standard leak checking method of using a mass spectrometer and spraying a search gas such as helium on the vessel exterior. Even when the presence of helium is detected, its entry point into the vessel cannot always be pinpointed. This paper will describe a method of overcoming this problem. By slightly depressurizing the vessel, an influx of helium through the leak is created. The leak site can then be identified by personnel within the vessel using standard sniffing procedures. There are two conditions which make this method of leak checking practical. First, the vessel need only be depressurized 2 psi, thus allowing personnel inside to perform the sniffing operation. Second, the sniffing probe used (Leybold--Heraus ''Quick Test'') could detect a change in helium concentration as small as 100 ppb, which allows for faster scanning of the vessel inferior. Use of this technique to find an elusive 10 -3 Torrxl/s leak in the Doublet III tokamak vacuum vessel will be presented

  2. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    Science.gov (United States)

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  3. Reactivity study on thermal cracking of vacuum residues

    Science.gov (United States)

    León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.

    2016-02-01

    This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.

  4. Development and Testing of an ISRU Soil Mechanics Vacuum Test Facility

    Science.gov (United States)

    Kleinhenz, Julie E.; Wilkinson, R. Allen

    2014-01-01

    For extraterrestrial missions, earth based testing in relevant environments is key to successful hardware development. This is true for both early component level development and system level integration. For In-Situ Resource Utilization (ISRU) on the moon, hardware must interface with the surface material, or regolith, in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, properly conditioned bed of lunar regolith simulant. However, in earth-based granular media, such as lunar regolith simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. A mid-size chamber (3.66 m tall, 1.5 m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64 m deep by 0.914 m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types were used. Data obtained from an electric cone penetrometer can be used to determine strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off-gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5 Torr, regardless of the pump rate. The slow off-gassing of the soil at low pressure lead to long test times; a full week to reach 10(exp -5) Torr. Robotic soil manipulation would enable multiple ISRU hardware test within the same vacuum cycle. The feasibility of a robotically controlled auger and tamper was explored at vacuum conditions.

  5. Vacuum Energy and Inflation: 4. An Inflationary Universe

    Science.gov (United States)

    Huggins, Elisha

    2013-01-01

    This is the fourth paper in a series of four. The first paper in the series, "Vacuum Energy and Inflation: 1. A Liter of Vacuum Energy" [EJ1024183] discusses an example of vacuum energy. Vacuum energy is explained as an energy with a negative pressure whose energy density remains constant in an expanding space. Paper 2, "Vacuum…

  6. Vacuum system of SST-1 Tokamak

    International Nuclear Information System (INIS)

    Khan, Ziauddin; Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata

    2013-01-01

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N 2 and O 2 gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N 2 gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN 2 cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10 −4 mbar and 1.0 × 10 −5 mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10 −6 mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10 −5 mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10 −5 mbar is achieved inside the cryostat. Baking of the vacuum vessel up to 110 °C with ±10

  7. Vacuum system of SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India); Pathan, Firozkhan; George, Siju; Semwal, Pratibha; Dhanani, Kalpesh; Paravastu, Yuvakiran; Thankey, Prashant; Ramesh, Gattu; Himabindu, Manthena; Pradhan, Subrata [Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar 382 428 (India)

    2013-10-15

    Highlights: ► Air leaks developed during ongoing SST-1 cooldown campaign were detected online using RGA. ► The presence of N{sub 2} and O{sub 2} gases with the ratio of their partial pressures with ∼3.81:1 confirmed the air leaks. ► Baking of SST-1 was done efficiently by flowing hot N{sub 2} gas in C-channels welded on inner surfaces without any problem. ► In-house fabricated demountable bull nose couplers were demonstrated for high temperature and pressure applications. ► Cryopumping effect was observed when liquid helium cooled superconducting magnets reached below 63 K. -- Abstract: Vacuum chambers of Steady State Superconducting (SST-1) Tokamak comprises of the vacuum vessel and the cryostat. The plasma will be confined inside the vacuum vessel while the cryostat houses the superconducting magnet systems (TF and PF coils), LN{sub 2} cooled thermal shields and hydraulics for these circuits. The vacuum vessel is an ultra-high (UHV) vacuum chamber while the cryostat is a high-vacuum (HV) chamber. In order to achieve UHV inside the vacuum vessel, it would be baked at 150 °C for longer duration. For this purpose, U-shaped baking channels are welded inside the vacuum vessel. The baking will be carried out by flowing hot nitrogen gas through these channels at 250 °C at 4.5 bar gauge pressure. During plasma operation, the pressure inside the vacuum vessel will be raised between 1.0 × 10{sup −4} mbar and 1.0 × 10{sup −5} mbar using piezoelectric valves and control system. An ultimate pressure of 4.78 × 10{sup −6} mbar is achieved inside the vacuum vessel after 100 h of pumping. The limitation is due to the development of few leaks of the order of 10{sup −5} mbar l/s at the critical locations of the vacuum vessel during baking which was confirmed with the presence of nitrogen gas and oxygen gas with the ratio of ∼3.81:1 indicating air leak. Similarly an ultimate vacuum of 2.24 × 10{sup −5} mbar is achieved inside the cryostat. Baking of the

  8. Design consideration on the synchrotron ultrahigh vacuum system

    International Nuclear Information System (INIS)

    Tsujikawa, H.; Chida, K.; Mizobuchi, A.; Miyahara, A.

    1982-01-01

    Ultrahigh vacuum production for the high-energy heavy-ion accelerator poses special problems concerning beam-gas molecule and beam-wall interactions. In this paper, summary of the TARN ultrahigh vacuum system and design criteria of the synchrotron ultrahigh vacuum system are presented. On-beam pressure of 4 x 10 -11 Torr is achieved in the TARN ultrahigh vacuum system, of which experiences through the construction and the operation are described and discussed. With emphasis on the application of newly developed technique in the fabrication of vacuum chamber and ultrahigh vacuum pump for the synchrotron ultrahigh vacuum system. (author)

  9. Modelling vacuum arcs : from plasma initiation to surface interactions

    International Nuclear Information System (INIS)

    Timko, H.

    2011-01-01

    A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering.The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early

  10. Design foundation of vacuum system for electron beam machine

    International Nuclear Information System (INIS)

    Darsono; Suprapto; Djasiman

    1999-01-01

    Vacuum system is a main part of electron beam Machine because (EBM) the electron can not be produced without this vacuum. Vacuum system consists of vacuum pump, connecting pipe, valve, and vacuum gauge. The design vacuum system of EBM, basis knowledge and technology of vacuum is needed. The paper describes types of vacuum pump, calculation of pipe conductance and pumping time of vacuum system then there are used as consideration of criteria to choose vacuum pump for EBM. From the result of study, it is concluded that for EBM of 500 keV/10 mA which is going to use for wood coating and with consideration of economic and technic factor it is better to use diffusion pump. (author)

  11. RELATION BETWEEN FUNCTION AND FORM IN VACUUM CLEANERS DESIGN

    Directory of Open Access Journals (Sweden)

    RADU Ștefan

    2015-11-01

    Full Text Available The paper analyses how robotic vacuum cleaner works, describing their cleaning capabilities and additional features. The paper illustrates advantages of using robotic vacuum cleaners that have intelligent programming and a vacuum cleaning system, the components of a robotic vacuum cleaner. The paper develops aspects concerning to create 2D scale models for the evaluation of specific features of the new components for a prototype robotic vacuum cleaner.

  12. Structural analysis of the KSTAR vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    In, Sang Ryul; Yoon, Byeong Joo [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    Structure analysis of the vacuum vessel for the KSTAR tokamak which, is in the end phase of the conceptual design have been performed. Mechanical stresses and deformations of the vessel produced by constant forces due to atmospheric pressure, dead weight, fluid pressure, etc and various transient electromagnetic forces induced during tokamak operations were calculated as well as modal characteristics and buckling properties were investigated. Influences of the temperature gradient and the constraint condition of the support on the thermal stress and deformation of the vessel were analyzed. The thermal stress due to the temperature distribution on the vessel as supplying the N{sub 2} gas of 400 deg C through poloidal channels according to the recent baking concept were calculated. No severe problem in the robustness of the vessel was found when applying the constant pressures on the vessel. However the mechanical stress due to the EM force induced by halo currents flowing on the vessel and the plasma facing components (PFCs) far exceeded the allowable limit. Some reinforcing components should be added on the boundary of the PFC support and the vessel, and that of the vessel support and the vessel. A steep temperature gradient in the vicinity of the inlet and oulet of the heating gas produced a thermal stress much higher than allowable. It is necessary to make the temperature of the vessel as uniform as possible and to develop a new support concept which is flexible enough to accommodate a thermal expansion of a few cm while sufficiently strong to resist mechanical impacts. (author). 5 refs., 41 figs., 9 tabs.

  13. Design of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Ioki, K.; Johnson, G.; Shimizu, K.; Williamson, D.

    1995-01-01

    The ITER vacuum vessel is a major safety barrier and must support electromagnetic loads during plasma disruptions and vertical displacement events (VDE) and withstand plausible accidents without losing confinement.The vacuum vessel has a double wall structure to provide structural and electrical continuity in the toroidal direction. The inner and outer shells and poloidal stiffening ribs between them are joined by welding, which gives the vessel the required mechanical strength. The space between the shells will be filled with steel balls and plate inserts to provide additional nuclear shielding. Water flowing in this space is required to remove nuclear heat deposition, which is 0.2-2.5% of the total fusion power. The minor and major radii of the tokamak are 3.9 m and 13 m respectively, and the overall height is 15 m. The total thickness of the vessel wall structure is 0.4-0.7 m.The inboard and outboard blanket segments are supported from the vacuum vessel. The support structure is required to withstand a large total vertical force of 200-300 MN due to VDE and to allow for differential thermal expansion.The first candidate for the vacuum vessel material is Inconel 625, due to its higher electric resistivity and higher yield strength, even at high temperatures. Type 316 stainless steel is also considered a vacuum vessel material candidate, owing to its large database and because it is supported by more conventional fabrication technology. (orig.)

  14. Compressed Air/Vacuum Transportation Techniques

    Science.gov (United States)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  15. Quantum vacuum energy in graphs and billiards

    International Nuclear Information System (INIS)

    Kaplan, L.

    2010-01-01

    The vacuum (Casimir) energy in quantum field theory is a problem relevant both to new nanotechnology devices and to dark energy in cosmology. The crucial question is the dependence of the energy on the system geometry. Despite much progress since the first prediction of the Casimir effect in 1948 and its subsequent experimental verification in simple geometries, even the sign of the force in nontrivial situations is still a matter of controversy. Mathematically, vacuum energy fits squarely into the spectral theory of second-order self-adjoint elliptic linear differential operators. Specifically one promising approach is based on the small-t asymptotics of the cylinder kernel e -t√(H) , where H is the self-adjoint operator under study. In contrast with the well-studied heat kernel e -tH , the cylinder kernel depends in a non-local way on the geometry of the problem. We discuss some results by the Louisiana-Oklahoma-Texas collaboration on vacuum energy in model systems, including quantum graphs and two-dimensional cavities. The results may shed light on general questions, including the relationship between vacuum energy and periodic or closed classical orbits, and the contribution to vacuum energy of boundaries, edges, and corners.

  16. Vacuum pumping for controlled thermonuclear reactors

    International Nuclear Information System (INIS)

    Watson, J.S.; Fisher, P.W.

    1976-01-01

    Thermonuclear reactors impose unique vacuum pumping problems involving very high pumping speeds, handling of hazardous materials (tritium), extreme cleanliness requirements, and quantitative recovery of pumped materials. Two principal pumping systems are required for a fusion reactor, a main vacuum system for evacuating the torus and a vacuum system for removing unaccelerated deuterium from neutral beam injectors. The first system must pump hydrogen isotopes and helium while the neutral beam system can operate by pumping only hydrogen isotopes (perhaps only deuterium). The most promising pumping techniques for both systems appear to be cryopumps, but different cryopumping techniques can be considered for each system. The main vacuum system will have to include cryosorption pumps cooled to 4.2 0 K to pump helium, but the unburned deuterium-tritium and other impurities could be pumped with cryocondensation panels (4.2 0 K) or cryosorption panels at higher temperatures. Since pumping speeds will be limited by conductance through the ducts and thermal shields, the pumping performance for both systems will be similar, and other factors such as refrigeration costs are likely to determine the choice. The vacuum pumping system for neutral beam injectors probably will not need to pump helium, and either condensation or higher temperature sorption pumps can be used

  17. Rising hopes for vacuum tube collectors

    Energy Technology Data Exchange (ETDEWEB)

    Godolphin, D.

    1982-06-01

    The performance, feasibility and use of vacuum tube solar collectors for domestic hot water (DHW) systems are discussed. An introduction to the design of vacuum tube collectors is presented and comparisons are made with flat plate collectors in terms of effectiveness in DHW applications and cost. The use of vacuum tube collectors is well established for high temperature use such as process heat and absorption cooling applications; there is considerable debate concerning their use in DHW and these arguments are presented. It is pointed out that the accepted standardized comparison test (ASHRAE 93-77) is apparently biased towards the flat plate collectors in direct comparisons of collector efficiencies. Recent developments among manufacturers with regard to vacuum tube collectors and their thinking (pro and con) are discussed in some detail. Breakage and other problems are pointed out although advocates look ahead to lower costs, higher efficiencies, and broader markets (particularly in DHW). It is concluded by some that flat plate collector technology has reached its peak and that vacuum tube collectors will be very prominent in the future. (MJJ)

  18. CERN Vacuum-System Activities during the Long Shutdown 1: The LHC Beam Vacuum

    CERN Document Server

    Baglin, V; Chiggiato, P; Jimenez, JM; Lanza, G

    2014-01-01

    After the Long Shutdown 1 (LS1) and the consolidation of the magnet bus bars, the CERN Large Hadron Collider (LHC) will operate with nominal beam parameters. Larger beam energy, beam intensities and luminosity are expected. Despite the very good performance of the beam vacuum system during the 2010-12 physics run (Run 1), some particular areas require attention for repair, consolidation and upgrade. Among the main activities, a large campaign aiming at the repair of the RF bridges of some vacuum modules is conducted. Moreover, consolidation of the cryogenic beam vacuum systems with burst disk for safety reasons is implemented. In addition, NEG cartridges, NEG coated inserts and new instruments for the vacuum system upgrade are installed. Besides these activities, repair, consolidation and upgrades of other beam equipment such as collimators, kickers and beam instrumentations are carried out. In this paper, the motivation and the description for such activities, together with the expected beam vacuum performa...

  19. Vacuum Bellows, Vacuum Piping, Cryogenic Break, and Copper Joint Failure Rate Estimates for ITER Design Use

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2010-06-01

    The ITER international project design teams are working to produce an engineering design in preparation for construction of the International Thermonuclear Experimental Reactor (ITER) tokamak. During the course of this work, questions have arisen in regard to safety barriers and equipment reliability as important facets of system design. The vacuum system designers have asked several questions about the reliability of vacuum bellows and vacuum piping. The vessel design team has asked about the reliability of electrical breaks and copper-copper joints used in cryogenic piping. Research into operating experiences of similar equipment has been performed to determine representative failure rates for these components. The following chapters give the research results and the findings for vacuum system bellows, power plant stainless steel piping (amended to represent vacuum system piping), cryogenic system electrical insulating breaks, and copper joints.

  20. Thin-wall approximation in vacuum decay: A lemma

    Science.gov (United States)

    Brown, Adam R.

    2018-05-01

    The "thin-wall approximation" gives a simple estimate of the decay rate of an unstable quantum field. Unfortunately, the approximation is uncontrolled. In this paper I show that there are actually two different thin-wall approximations and that they bracket the true decay rate: I prove that one is an upper bound and the other a lower bound. In the thin-wall limit, the two approximations converge. In the presence of gravity, a generalization of this lemma provides a simple sufficient condition for nonperturbative vacuum instability.

  1. Manufacture, testing and assembly preparation of the JET vacuum vessel

    International Nuclear Information System (INIS)

    Arbez, J.; Baeumel, S.; Dean, J.R.; Duesling, G.; Froger, C.; Hemmerich, J.L.; Walravens, M.; Walter, K.; Winkel, T.

    1983-01-01

    To reach the target pressure of 10 -9 mbar, JET's double-walled Inconel vacuum vessel is being manufactured and assembled in clean conditions and with meticulous leak detection. Each octant (1/8 of the torus) is baked in an oven to 520 0 C and leak tested at 350 0 C to reveal leaks as small as 10 -9 mbar l/s, which are repaired. In service the vessel will be baked periodically to 500 0 C by CO 2 passing between its walls. The single-walled ports will be electrically heated. (author)

  2. TV borehole inspection and vacuum testing of roof strata

    International Nuclear Information System (INIS)

    Herget, G.

    1982-01-01

    To improve quality control of roof conditions, a program was carried out at Elliot Lake uranium mines in Ontario, Canada to test a portable TV camera system. This camera has a 29 mm diameter probe and is capable of identifying crack locations, crack width and approximate dip direction. The extent of fractures in the roof was checked with the aid of a vacuum system by placing packers in various boreholes and checking for communication. The removal of some rock bolts indicated an increase in fracture extent

  3. Dust mobilization and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Sharpe, J.P.

    2007-01-01

    We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization

  4. Cold vacuum drying residual free water test description

    International Nuclear Information System (INIS)

    Pajunen, A.L.

    1997-01-01

    Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C

  5. Dust mobilization and transport modeling for loss of vacuum accidents

    International Nuclear Information System (INIS)

    Humrickhouse, P.W.; Sharpe, J.P.

    2008-01-01

    We develop a general continuum fluid dynamic model for dust transport in loss of vacuum accidents in fusion energy systems. The relationship between this general approach and established particle transport methods is clarified, in particular the relationship between the seemingly disparate treatments of aerosol dynamics and Lagrangian particle tracking. Constitutive equations for granular flow are found to be inadequate for prediction of mobilization, as these models essentially impose a condition of flow from the outset. Experiments confirm that at low shear, settled dust piles behave more like a continuum solid, and suitable solid models will be required to predict the onset of dust mobilization

  6. Integration of cooking and vacuum cooling of carrots in a same vessel

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Gonçalves Rodrigues

    2012-03-01

    Full Text Available Cooked vegetables are commonly used in the preparation of ready-to-eat foods. The integration of cooking and cooling of carrots and vacuum cooling in a single vessel is described in this paper. The combination of different methods of cooking and vacuum cooling was investigated. Integrated processes of cooking and vacuum cooling in a same vessel enabled obtaining cooked and cooled carrots at the final temperature of 10 ºC, which is adequate for preparing ready-to-eat foods safely. When cooking and cooling steps were performed with the samples immersed in boiling water, the effective weight loss was approximately 3.6%. When the cooking step was performed with the samples in boiling water or steamed, and the vacuum cooling was applied after draining the boiling water, water loss ranged between 15 and 20%, which caused changes in the product texture. This problem can be solved with rehydration using a small amount of sterile cold water. The instrumental textural properties of carrots samples rehydrated at both vacuum and atmospheric conditions were very similar. Therefore, the integrated process of cooking and vacuum cooling of carrots in a single vessel is a feasible alternative for processing such kind of foods.

  7. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  8. Assessment of differences between products obtained in conventional and vacuum spray dryer

    Directory of Open Access Journals (Sweden)

    Fernanda de Melo RAMOS

    Full Text Available Abstract In this work, an experimental unit of a vacuum spray dryer was built. This prototype attempted to combine the advantages of freeze-drying (drying at low temperatures due to vacuum and spray drying (increase of surface area aiming the improvement of heat transfer efficiency. Maltodextrin solutions were dried in the vacuum operated equipment and in conventional spray dryer. The vacuum spray dryer system allowed obtaining powder at low temperatures due to the lowering of pressure conditions (2-5 kPa inside the drying chamber. The products obtained in the two systems were characterized and compared for particle size distribution, moisture content, water activity, bulk density and solubility in water. The processes yields were also evaluated and compared. The vacuum spray dryer system allowed the production of larger, more soluble and less dense particles than those obtained in the conventional configuration of the equipment, resulting in drier and, therefore, with lower water activity particles. Thus, the use of the vacuum spray dryer as a drying technique may be an alternative for the production of powder rich in thermosensitive compounds.

  9. Engineering Sensitivity Improvement of Helium Mass Spectrometer Leak Detection System by Means Global Hard Vacuum Test

    International Nuclear Information System (INIS)

    Sigit Asmara Santa

    2006-01-01

    The engineering sensitivity improvement of Helium mass spectrometer leak detection using global hard vacuum test configuration has been done. The purpose of this work is to enhance the sensitivity of the current leak detection of pressurized method (sniffer method) with the sensitivity of 10 -3 ∼ 10 -5 std cm 3 /s, to the global hard vacuum test configuration method which can be achieved of up to 10 -8 std cm 3 /s. The goal of this research and development is to obtain a Helium leak test configuration which is suitable and can be used as routine bases in the quality control tests of FPM capsule and AgInCd safety control rod products. The result is an additional instrumented vacuum tube connected with conventional Helium mass spectrometer. The pressure and temperature of the test object during the leak measurement are simulated by means of a 4.1 kW capacity heater and Helium injection to test object, respectively. The addition of auxiliary mechanical vacuum pump of 2.4 l/s pumping speed which is directly connected to the vacuum tube, will reduce 86 % of evacuation time. The reduction of the measured sensitivity due to the auxiliary mechanical vacuum pump can be overcome by shutting off the pump soon after Helium mass spectrometer reaches its operating pressure condition. (author)

  10. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  11. Three-dimensional analysis of a vacuum window connected to waveguide

    International Nuclear Information System (INIS)

    Nakatsuka, H.; Yoshida, N.

    1988-01-01

    Recently, as the experimental tokamak-type system for nuclear fusion has become larger, the additional heating system by microwave power has become more and more important. In this heating system the pillbox-type vacuum window is arranged for isolation, but discharge by local concentration of the electric field and destruction by local heating in this window are becoming serious problems. So far designing the system of the vacuum window and deciding on the matching condition, it is indispensable to know exactly the characteristics of the electromagnetic field. But the electromagnetic field inside such a system is very complicated because of its three-dimensional structure with various medium conditions. For the analysis of this complicated field numerical methods are generally known to be useful. The analysis by Bergeron's method has been shown to be effective for problems of this type involving complex boundary and medium conditions in three-dimensional space. In this paper, the authors show Bergeron's formulation of the pillbox-type vacuum window system and the fundamental characteristics of the electromagnetic field within this system. For an effective additional heating system in the experimental tokamak-type system the pillbox-type vacuum window is proposed to isolate each part. In this paper, the authors describe Bergeron's formulation of the pillbox-type vacuum window connected to cylindrical waveguides and show the fundamental characteristics of the electromagnetic field within this system

  12. Plasma expansion into a vacuum with an arbitrarily oriented external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    García-Rubio, F., E-mail: fernando.garcia.rubio@upm.es; Sanz, J. [E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Madrid 28040 (Spain); Ruocco, A. [Universitá degli studi di Napoli Federico II, 80138 Napoli (Italy)

    2016-01-15

    Plasma expansion into a vacuum with an external magnetic field is studied under the ideal magnetohydrodynamic hypothesis. The inclination of the magnetic field with respect to the expansion direction is arbitrary, and both the perpendicular and the oblique cases are separately analyzed. A self-similar solution satisfying the boundary conditions is obtained. The interface with the vacuum is treated as a fluid surface, and jump conditions concerning the momentum conservation are imposed. The effect of the intensity of the magnetic field and its inclination is thoroughly studied, and the consistency of the solution for small and large inclinations is investigated.

  13. Thin walls in regions with vacuum energy

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D [Florida Univ., Gainesville, FL (USA). Dept. of Physics; Vuille, C [Embry-Riddle Aeronautical Univ., Prescott, AZ (USA). Dept. of Math/Physical Science

    1989-12-01

    The motion of a thin wall is treated in the case where the regions on either side of the wall have vacuum energy. This treatment generalises previous results involving domain walls in vacuum and also previous results involving the properties of false vacuum bubbles. The equation of state for a domain wall is{tau} = {sigma} where {tau} is the tension in the wall and {sigma} is the energy density. We consider the motion of a more general class of walls having equation of state {tau}{Gamma}{sigma} with 0{le}{Gamma}{le}1. Spherically symmetric and planar symmetric walls are examined. We also find the global structure of the wall spacetime. (author).

  14. Vacuum instability in scalar field theories

    International Nuclear Information System (INIS)

    McKane, A.J.

    1978-09-01

    Scalar field theories with an interaction of the form gphisup(N) have no stable vacuum state for some range of values of their coupling constant, g. This thesis reports calculations of vacuum instability in such theories. Using the idea that the tunnelling out of the vacuum state is described by the instanton solutions of the theory, the imaginary part of the vertex functions is calculated for the massless theory in the one-loop approximation, near the dimension dsub(c) = 2N/N-2, where the theory is just renormalisable. The calculation differs from previous treatments in that dimensional regularisation is used to control the ultra-violet divergences of the theory. In this way previous analytic calculations in conformally invariant field theories are extended to the case where the theory is almost conformally invariant, since it is now defined in dsub(c) - epsilon dimensions (epsilon > 0). (author)

  15. Quality Management of CERN Vacuum Controls

    CERN Document Server

    Antoniotti, F; Fortescue-Beck, E; Gama, J; Gomes, P; Le Roux, P; Pereira, H; Pigny, G

    2014-01-01

    The vacuum controls Section (TE-VSC-ICM) is in charge of the monitoring, maintenance and consolidation of the control systems of all accelerators and detectors in CERN; this represents 6 000 instruments distributed along 128 km of vacuum chambers, often of heterogeneous architectures and of diverse technical generations. In order to improve the efficiency of the services provided by ICM, to vacuum experts and to accelerator operators, a Quality Management Plan is being put into place. The first step was the standardization of the naming convention across different accelerators. The traceability of problems, requests, repairs, and other actions, has also been put into place (VTL). This was combined with the effort to identify each individual device by a coded label, and register it in a central database (MTF). Occurring in parallel, was the gathering of old documents and the centralization of information concerning architectures, procedures, equipment and settings (EDMS). To describe the topology of control c...

  16. Venturi vacuum systems for hypobaric chamber operations.

    Science.gov (United States)

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  17. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  18. Extremal vacuum black holes in higher dimensions

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Rangamani, Mukund; Kunduri, Hari K.

    2008-01-01

    We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number of rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact 'phase diagram' of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.

  19. Can vacuum decay in our universe?

    International Nuclear Information System (INIS)

    Wang Peng; Meng Xinhe

    2005-01-01

    We take a phenomenological approach to the study of the cosmological evolution of decaying vacuum cosmology (Λ(t)CDM) based on a simple assumption about the form of the modified matter expansion rate. In this framework, almost all current vacuum decaying models can be unified in a simple manner. We argue that the idea of letting vacuum decay to resolve the fine-tuning problem is inconsistent with cosmological observations. We also discuss some issues in confronting Λ(t)CDM with observation. Using the effective equation-of-state formalism, we indicate that Λ(t)CDM is a possible candidate for phantom cosmology. Moreover, confronted with a possible problem with the effective equation-of-state formalism, we construct the effective dark energy density. Finally, we discuss the evolution of linear perturbation

  20. Materials for high vacuum technology, an overview

    CERN Document Server

    Sgobba, Stefano

    2007-01-01

    In modern accelerators stringent requirements are placed on materials of vacuum systems. Their physical and mechanical properties, machinability, weldability or brazeability are key parameters. Adequate strength, ductility, magnetic properties at room as well as low temperatures are important factors for vacuum systems of accelerators working at cryogenic temperatures, such as the Large Hadron Collider (LHC) under construction at CERN. In addition, baking or activation of Non-Evaporable Getters (NEG) at high temperatures impose specific choices of material grades of suitable tensile and creep properties in a large temperature range. Today, stainless steels are the dominant materials of vacuum constructions. Their metallurgy is extensively treated. The reasons for specific requirements in terms of metallurgical processes are detailed, in view of obtaining adequate purity, inclusion cleanliness, and fineness of the microstructure. In many cases these requirements are crucial to guarantee the final leak tightnes...