WorldWideScience

Sample records for vacuum cathodic arc

  1. Vacuum arc on the polycrystalline silica cathode

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Thin films of silica and its compounds are used in modern technology to produce Li-ion batteries, wear-resistant and protective coatings, thin-films insulators, etc. This coating is produced with CVD methods, with magnetron sputtering systems or with electron-beam evaporation. The vacuum arc evaporation method, presently, is not used.The paper demonstrates a possibility for a long-term operation of vacuum arc evaporator with polycrystalline silica-aluminum alloy (90% of silica cathode and with magnetic system to create a variable form of arch-like magnetic field on the cathode surface. It was shown that archlike configuration of magnetic field provides a stable discharge and uniform cathode spots moving with the velocities up to 5 m/s with magnetic fields induction about 10 mT. Thus, there is no local melting of the cathode, and this provides its long-term work without chips, cracks and destruction. Cathodes spots move over the cathode surface leaving t big craters with melted edges on its surface. The craters size was 150-450μm. The cathode spot movement character and the craters on the cathode surface were like the spots movement, when working on the copper or aluminum cathodes. With the magnetic field induction less than 1 mT, the cathode spots movement was the same as that of on the silica mono-crystal without magnetic field. Thus, the discharge volt-ampere characteristics for different values of magnetic fields were obtained. Voltampere characteristics were increasing and were shifted to the higher voltage with increasing magnetic field. The voltage was 18.7-26.5 V for the arc current 30-140 A.So, it was confirmed that vacuum arc evaporation method could be used for effective evaporation of silica and silica-based alloys and for thin films deposition of this materials.

  2. Characteristic of a triple-cathode vacuum arc plasma source.

    Science.gov (United States)

    Xiang, W; Li, M; Chen, L

    2012-02-01

    In order to generate a better ion beam, a triple-cathode vacuum arc plasma source has been developed. Three plasma generators in the vacuum arc plasma source are equally located on a circle. Each generator initiated by means of a high-voltage breakdown between the cathode and the anode could be operated separately or simultaneously. The arc plasma expands from the cathode spot region in vacuum. In order to study the behaviors of expanding plasma plume generated in the vacuum arc plasma source, a Langmuir probe array is employed to measure the saturated ion current of the vacuum arc plasma source. The time-dependence profiles of the saturated current density of the triple vacuum arc plasma source operated separately and simultaneously are given. Furthermore, the plasma characteristic of this vacuum arc plasma source is also presented in the paper.

  3. Diffuse vacuum arc with cerium oxide hot cathode

    Science.gov (United States)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.; Ivanov, A. S.

    2016-11-01

    Diffuse vacuum arc with hot cathode is one of the perspective plasma sources for the development of spent nuclear fuel plasma reprocessing technology. Experimental data is known for such type of discharges on metal cathodes. In this work discharge with cerium dioxide hot cathode was studied. Cerium dioxide properties are similar to uranium dioxide. Its feature as dielectric is that it becomes conductive in oxygen-free atmosphere. Vacuum arc was studied at following parameters: cathode temperatures were between 2.0 and 2.2 kK, discharge currents was between 30 and 65 A and voltages was in range from 15 to 25 V. Power flows from plasma to cathode were estimated in achieved regimes. Analysis of generated plasma component composition was made by radiation spectrum diagnostics. These results were compared with calculations of equilibrium gaseous phase above solid sample of cerium dioxide in close to experimental conditions. Cerium dioxide vacuum evaporation rate and evaporation rate in arc were measured.

  4. The stationary vacuum arc on non-thermionic hot cathode

    Science.gov (United States)

    Amirov, R. Kh; Antonov, N. N.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-11-01

    Experimental study of vacuum arc with distributed spot on plumbum cathode at temperatures 1.25-1.45 kK has been presented. At these conditions current density of thermionic emission from cathode was less than 1 μA/cm2, while the mean current density on the cathode was about 10 A/cm2. Plumbum was placed in heat-insulated crucible (cathode) with external diameter 25 mm. Electron-beam heater was situated under the crucible. Arc current was changed in the range 20-70 A, arc voltage was about 15 V. The studied arc is characterized by the absence of the random voltage fluctuations; the micro particles of cathode erosion products were observed only in transition regimes. Spectral data of plasma radiation and values of the heat flow from plasma to cathode were obtained. It has been experimentally established that the evaporation rate in arc approximately two times less than without discharge. The average charge of plumbum particles in the cathode jet was in range 0.2-0.3e. Comparison of the characteristics of studied discharge on thermionic gadolinium cathode and non-thermionic cathodes was fulfilled. One can assume that ions provide the charge transfer on the cathode in the studied discharge.

  5. An interchangeable-cathode vacuum arc plasma source.

    Science.gov (United States)

    Olson, David K; Peterson, Bryan G; Hart, Grant W

    2010-01-01

    A simplified vacuum arc design [based on metal vapor vacuum arc (MeVVA) concepts] is employed as a plasma source for a study of a (7)Be non-neutral plasma. The design includes a mechanism for interchanging the cathode source. Testing of the plasma source showed that it is capable of producing on the order of 10(12) charges at confinable energies using a boron-carbide disk as the cathode target. The design is simplified from typical designs for lower energy and lower density applications by using only the trigger spark rather than the full vacuum arc in high current ion beam designs. The interchangeability of the cathode design gives the source the ability to replace only the source sample, simplifying use of radioactive materials in the plasma source. The sample can also be replaced with a completely different conductive material. The design can be easily modified for use in other plasma confinement or full MeVVA applications.

  6. Plasma jet characteristics in vacuum arc with diffused cathode spot

    Science.gov (United States)

    Amirov, R. Kh; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2017-05-01

    Diffused vacuum arc, which is characterized by the absence of microparticles in cathode erosion products and by the irregular voltage oscillations, is considered to be a perspective plasma source for plasma reprocessing technology of spent nuclear fuel (SNF). The development of this technology requires data on ions energy in plasma jet. In this work parameters of plasma jet in diffused vacuum arc with a gadolinium cathode were studied by a retarding field analyzer, Langmuir and condensation probes. Gadolinium is regarded as a substance simulating SNF plasma. Ion energy spectrum was studied at arc currents of 30-75 A and voltages of 4-15 V at the distance of 20 cm above the arc anode. Dependencies of spectrum widths and most possible ion energies on arc voltages were obtained. The measured electron temperature was 2 eV, the maximum ion energy reached 70 eV. Experimental data were used to calculate adiabatic plasma expansion through the anode outlet.

  7. Investigation of plasma flow in vacuum arc with hot cathode

    Science.gov (United States)

    Amirov, R.; Vorona, N.; Gavrikov, A.; Lizyakin, G.; Polistchook, V.; Samoylov, I.; Smirnov, V.; Usmanov, R.; Yartsev, I.

    2014-11-01

    One of the crucial problems which appear under development of plasma technology processing of spent nuclear fuel (SNF) is the design of plasma source. The plasma source must use solid SNF as a raw material. This article is devoted to experimental study of vacuum arc with hot cathode made of gadolinium that may consider as the simple model of SNF. This vacuum discharge was investigated in wide range of parameters. During the experiments arc current and voltage, cathode temperature, and heat flux to the cathode were measured. The data on plasma spectrum and electron temperature were obtained. It was shown that external heating of the cathode allows change significantly the main parameters of plasma. It was established by spectral and probe methods that plasma jet in studied discharge may completely consist of single charged ions.

  8. Cathodic arcs

    Energy Technology Data Exchange (ETDEWEB)

    Anders, Andre

    2003-10-29

    Cathodic arc plasma deposition has become the technology of choice for hard, wear and corrosion resistant coatings for a variety of applications. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions, and emerging high-tech applications are briefly reviewed. Cathodic arc plasmas standout due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. Industrial processes often use cathodic arc plasma in reactive mode. In contrast, the science of arcs has focused on the case of vacuum arcs. Future research directions include closing the knowledge gap for reactive mode, large area coating, linear sources and filters, metal plasma immersion process, with application in high-tech and biomedical fields.

  9. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    Science.gov (United States)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  10. Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization.

    Science.gov (United States)

    Zhang, H-S; Komvopoulos, K

    2008-07-01

    Filtered cathodic vacuum arc (FCVA) deposition is characterized by plasma beam directionality, plasma energy adjustment via substrate biasing, macroparticle filtering, and independent substrate temperature control. Between the two modes of FCVA deposition, namely, direct current (dc) and pulsed arc, the dc mode yields higher deposition rates than the pulsed mode. However, maintaining the dc arc discharge is challenging because of its inherent plasma instabilities. A system generating a special configuration of magnetic field that stabilizes the dc arc discharge during film deposition is presented. This magnetic field is also part of the out-of-plane magnetic filter used to focus the plasma beam and prevent macroparticle film contamination. The efficiency of the plasma-stabilizing magnetic-field mechanism is demonstrated by the deposition of amorphous carbon (a-C) films exhibiting significantly high hardness and tetrahedral carbon hybridization (sp3) contents higher than 70%. Such high-quality films cannot be produced by dc arc deposition without the plasma-stabilizing mechanism presented in this study.

  11. Modeling of cathode spot crater formation and development in vacuum arc

    Science.gov (United States)

    Zhang, Xiao; Wang, Lijun; Jia, Shenli; Shmelev, D. L.

    2017-11-01

    A two-dimensional (2D) rotary axisymmetric model has been developed to describe the formation and development of cathode spot in vacuum arc. The model includes hydrodynamic equations and heat transfer equation which considers surface evaporation and Joule heating. Parameters used in this model, such as the distributions of pressure, energy flux density, and current density, come from experiments and other researchers’ work. In this model, cathode spot maintains 30 ns and during this time, all parameters are fixed. The simulation results show that when the energy flux density is 1.5–3  ×  1012 W, discharge current is 1–6 A and the pressure is 1–3  ×  108 Pa, the crater radius is 1.4–4.1 µm, the crater depth is 1.4–2.1 µm, the velocity of liquid metal is 154–428 m s‑1 and the maximum temperature is 2145–5342 K which is located in the area with radius 0.5–1.5 µm. Besides, on the chromium cathode, the maximum temperature is higher mainly because of the lower thermal conductivity.

  12. Model of liquid-metal splashing in the cathode spot of a vacuum arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Gashkov, M. A.; Zubarev, N. M., E-mail: nick@iep.uran.ru; Zubareva, O. V.; Mesyats, G. A.; Uimanov, I. V. [Russian Academy of Sciences, Institute of Electrophysics, Ural Branch (Russian Federation)

    2016-04-15

    The formation of microjets is studied during the extrusion of a melted metal by the plasma pressure from craters formed on a cathode in a burning vacuum arc. An analytic model of liquid-metal splashing that includes two stages is proposed. At the first stage, the liquid motion has the axial symmetry and a liquid-metal wall surrounding the crater is formed. At the second stage, the axial symmetry is broken due to the development of the Plateau–Rayleigh instability in the upper part of the wall. The wall breakup process is shown to have a threshold. The minimal plasma pressure and the minimal electric current flowing through the crater required for obtaining the liquid-metal splashing regime are found. The basic spatial and temporal characteristics of the jet formation process are found using the analytic model.

  13. Detailed numerical simulation of cathode spots in vacuum arcs: Interplay of different mechanisms and ejection of droplets

    Science.gov (United States)

    Kaufmann, H. T. C.; Cunha, M. D.; Benilov, M. S.; Hartmann, W.; Wenzel, N.

    2017-10-01

    A model of cathode spots in high-current vacuum arcs is developed with account of all the potentially relevant mechanisms: the bombardment of the cathode surface by ions coming from a pre-existing plasma cloud; vaporization of the cathode material in the spot, its ionization, and the interaction of the produced plasma with the cathode; the Joule heat generation in the cathode body; melting of the cathode material and motion of the melt under the effect of the plasma pressure and the Lorentz force and related phenomena. After the spot has been ignited by the action of the cloud (which takes a few nanoseconds), the metal in the spot is melted and accelerated toward the periphery of the spot, with the main driving force being the pressure due to incident ions. Electron emission cooling and convective heat transfer are dominant mechanisms of cooling in the spot, limiting the maximum temperature of the cathode to approximately 4700-4800 K. A crater is formed on the cathode surface in this way. After the plasma cloud has been extinguished, a liquid-metal jet is formed and a droplet is ejected. No explosions have been observed. The modeling results conform to estimates of different mechanisms of cathode erosion derived from the experimental data on the net and ion erosion of copper cathodes.

  14. Ion angular distribution in plasma of vacuum arc ion source with composite cathode and elevated gas pressure.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Yushkov, G Yu; Oks, E M

    2014-02-01

    The Metal Vapor Vacuum Arc (MEVVA) ion sources are capable of generating ion beams of almost all metals of the periodic table. For this kind of ion source, a combination of gas feeding with magnetic field allows the simultaneous generation of both metal and gaseous ions. That makes the MEVVA ion source an excellent instrument for science and application. This work presents results of investigation for ion angular distributions in vacuum arc plasma of Mevva-V.Ru ion source for composite cathodes and for elevated gas pressure. It was shown that for all the cathode materials, singly charged ions have wider angular distribution than multiply charged ions. Increasing the working gas pressure leads to a significant change in the angular distribution of gaseous ions, while with the distribution of metal ions gas remains practically unchanged. The reasons for such different influences are discussed.

  15. Microstructure Changes of Ti-Al-C Films Deposited by Filtered Cathodic Vacuum Arc

    Directory of Open Access Journals (Sweden)

    Xianjuan Pang

    2014-01-01

    Full Text Available Nanocomposite Ti-Al-C films were deposited by filtered cathodic vacuum arc (FCVA at different CH4 flows. The deposited films were characterized in terms of elemental and phase compositions, chemical bonds, and texture as a function of CH4 flow rate by XRD, XPS, HRTEM, Raman spectroscopy, and IR spectroscopy. The results show that the TiC grain size decreases from 4.2 to 2.9 nm as the CH4 flow rate increases from 30 to 80 sccm. The analysis of XPS, HRTEM, and Raman spectroscopy shows that the microstructure of deposited films turns from a TiC dominant TiC-C film to a carbon network dominant TiAl-doped a-C film structure as the CH4 flow increases from 30 sccm to 80 sccm. IR spectroscopy shows that most of the hydrogen atoms in the deposited films are bonded to the sp3-hybridized C atoms. All the composition and microstructure change can be explained by considering the plasma conditions and the effect of CH4 flow.

  16. Energetic deposition of carbon in a cathodic vacuum arc with a biased mesh

    Science.gov (United States)

    Moafi, A.; Lau, D. W. M.; Sadek, A. Z.; Partridge, J. G.; McKenzie, D. R.; McCulloch, D. G.

    2011-04-01

    Carbon films were deposited in a filtered cathodic vacuum arc with a bias potential applied to a conducting mesh mounted in the plasma stream between the source and the substrate. We determined the stress and microstructural properties of the resulting carbon films and compared the results with those obtained using direct substrate bias with no mesh. Since the relationship between deposition energy and the stress, sp2 fraction and density of carbon are well known, measuring these film properties enabled us to investigate the effect of the mesh on the energy and composition of the depositing flux. When a mesh was used, the film stress showed a monotonic decrease for negative mesh bias voltages greater than 400V, even though the floating potential of the substrate did not vary. We explain this result by the neutralization of some ions when they are near to or passing through the negatively biased mesh. The microstructure of the films showed a change from amorphous to glassy carbonlike with increasing bias. Potential applications for this method include the deposition of carbon films with controlled stress on low conductivity substrates to form rectifying or ohmic contacts.

  17. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na

    2013-08-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy. Results of the plasmon excitation energy shift and through-thickness elemental concentration show a multilayered a-C film structure comprising an interface layer consisting of C, Si, and, possibly, SiC, a buffer layer with continuously increasing sp 3 fraction, a relatively thicker layer (bulk film) of constant sp 3 content, and an ultrathin surface layer rich in sp 2 hybridization. A detailed study of the C K-edge spectrum indicates that the buffer layer between the interface layer and the bulk film is due to the partial backscattering of C+ ions interacting with the heavy atoms of the silicon substrate. The results of this study provide insight into the minimum thickness of a-C films deposited by FCVA under optimum substrate bias conditions. Copyright © 2013 Materials Research Society.

  18. The modelling of the cathode sheath of an electrical arc in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Rossignol, J [Laboratoire de Recherches sur la Reactivite des Solides, UMR 5613 CNRS, Universite de Bourgogne 21078 Dijon (France); Clain, S [Laboratoire de Mathematiques Appliquees, UMR 6620 CNRS, Universite Blaise Pascal, 63177 Aubiere (France); Abbaoui, M [Laboratoire Arc Electrique et Plasmas Thermiques, CNRS UPES-A 6069, Universite Blaise Pascal 63177 Aubiere (France)

    2003-07-07

    This paper presents a simple model of the fragment in the cathode electrical arc root taking into account the physical phenomena occurring on the cathode surface and the sheath. The goal is the obtainment of characteristics values of the heat flux, the electrons, and atoms density in the sheath. Computation is carried out on a one-dimensional model with a coupling between the equation obtained in the sheath and an enthalpy model of the cathode to describe the temperature evolution. In the modelling, we introduce a friction zone above the sheath edge to characterize the heavy particle interactions. Numerical simulation shows that the ionic friction phenomenon deriving from ion-atom collision regulates the heat flux lightening the surface, and the crucial necessity to obtain a good evaluation of the cross section of the charge exchange.

  19. Control of vacuum arc source cathode spots contraction motion by changing electromagnetic field

    Science.gov (United States)

    Xin, SONG; Qing, WANG; Zeng, LIN; Puhui, ZHANG; Shuhao, WANG

    2018-02-01

    This paper investigates the magnetic field component impact on cathode spots motion trajectory and the mechanism of periodic contraction. Electromagnetic coils and permanent magnets were installed at the different sides of cathode surface, the photographs of cathode spots motion trajectory were captured by a camera. Increasing the number of magnets and decreasing the distance between magnets and cathode both lead to enhancing cathode spots motion velocity. Radii of cathode spots trajectory decrease gradually with the increasing of electromagnetic coil’s current, from 40 mm at 0 A to 10 mm at 2.7 A. Parallel magnetic field component intensity influence the speed of cathode spots rotate motion, and perpendicular magnetic field component drives spots drift in the radial direction. Cathode spot’s radial drift is controlled by changing the location of the ‘zero line’ where perpendicular magnetic component shifts direction and the radius of cathode spots trajectory almost equal to ‘zero line’.

  20. The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes

    Directory of Open Access Journals (Sweden)

    Ivan A. Shulepov

    2017-11-01

    Full Text Available Ti-Al-N coatings were deposited on high-speed steel substrates by filtered vacuum arc deposition (FVAD during evaporation of aluminum and titanium cathodes. Distribution of elements, phase composition, and mechanical properties of Ti-Al-N coatings were investigated using Auger electron spectroscopy (AES, X-ray diffraction (XRD, transmission electron microscopy (TEM and nanoindentation, respectively. Additionally, tribological tests and scratch tests of the coatings were performed. The stoichiometry of the coating changes from Ti0.6Al0.4N to Ti0.48Al0.52N with increasing aluminum arc current from 70 A to 90 A, respectively. XRD and TEM showed only face-centered cubic Ti-Al-N phase with preferred orientation of the crystallites in (220 direction with respect to the sample normal and without precipitates of AlN or intermetallics inside the coatings. Incorporation of Al into the TiN lattice caused shifting of the (220 reflex to a higher 2θ angle with increasing Al content. Low content and size of microdroplets were obtained using coaxial plasma filters, which provides good mechanical and tribological properties of the coatings. The highest value of microhardness (36 GPa and the best wear-resistance were achieved for the coating with higher Al content, thus for Ti0.48Al0.52N. These coatings exhibit good adhesive properties up to 30 N load in the scratch tests.

  1. Research of influence of mobile cathodic stains of the vacuum arc for reception of the adjustable roughness of metal surfaces

    Science.gov (United States)

    Anikeev, V. N.; Dokukin, M. Yu

    2017-05-01

    In the modern technics there is a requirement in micro- and macrorough surfaces of products for improvement of their operational characteristics (improvement of adhesive properties of various coverings, decrease in deterioration of rubbing details because of the best deduction of greasing, increase of the heat exchanging coefficient from a surface, stimulation of adhesive processes on sites of contact to a bone fabric of medical implants in stomatology and orthopedy etc.). In the given work the modes of reception regulated micro- and macrorough surfaces on samples from a titanic alloy and stainless steel by electrothermal influence of moving cathodic stains in the vacuum arc discharge are investigated. Chaotically moving stains, possessing high specific power allocation (∼ 107 W/cm2), “scan” the difficult design of a product, including “shadow” sites, doing rough its blanket. The sizes of roughnesses are regulated by a current and time of influence of the discharge, pressure in the vacuum chamber and a number of other parameters. The scheme of experimental device, photo and the characteristic of rough surfaces and technological modes of their reception are resulted.

  2. Arc initiation in cathodic arc plasma sources

    Science.gov (United States)

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  3. Vacuum Arc Ion Sources

    CERN Document Server

    Brown, I.

    2013-12-16

    The vacuum arc ion source has evolved into a more or less standard laboratory tool for the production of high-current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. Applications include primarily ion implantation for material surface modification research, and good performance has been obtained for the injection of high-current beams of heavy-metal ions, in particular uranium, into particle accelerators. As the use of the source has grown, so also have the operational characteristics been improved in a variety of different ways. Here we review the principles, design, and performance of vacuum arc ion sources.

  4. Miniaturized cathodic arc plasma source

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.

    2003-04-15

    A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  5. Filters for cathodic arc plasmas

    Science.gov (United States)

    Anders, Andre; MacGill, Robert A.; Bilek, Marcela M. M.; Brown, Ian G.

    2002-01-01

    Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

  6. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.

    2012-07-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical and experimental results. The thickness of a-C films deposited at different incidence angles was investigated in the light of Monte Carlo simulations, and the calculated depth profiles were compared with those obtained from high-resolution transmission electron microscopy (TEM). The topography and structure of the a-C films were studied by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively. The film thickness decreased with the increase of the incidence angle, while the surface roughness increased and the content of tetrahedral carbon hybridization (sp 3) decreased significantly with the increase of the incidence angle above 45° , measured from the surface normal. TEM, AFM, and XPS results indicate that the smoothest and thinnest a-C films with the highest content of sp 3 carbon bonding were produced for an incidence angle of 45°. The findings of this study have direct implications in ultrahigh-density magnetic recording, where ultrathin and smooth a-C films with high sp 3 contents are of critical importance. © 2012 IEEE.

  7. Effect of O2/Ar Gas Flow Ratios on Properties of Cathodic Vacuum Arc Deposited ZnO Thin Films on Polyethylene Terephthalate Substrate

    Directory of Open Access Journals (Sweden)

    Chien-Wei Huang

    2016-01-01

    Full Text Available Cathodic vacuum arc deposition (CVAD can obtain a good quality thin film with a low growth temperature and a high deposition rate, thus matching the requirement of film deposition on flexible electronics. This paper reported the room-temperature deposition of zinc oxide (ZnO thin films deposited by CVAD on polyethylene terephthalate (PET substrate. Microstructure, optical, and electrical measurements of the deposited ZnO thin films were investigated with various O2/Ar gas flow ratios from 6 : 1 to 10 : 1. The films showed hexagonal wurtzite crystal structure. With increasing the O2/Ar gas flow ratios, the c-axis (002 oriented intensity decreased. The crystal sizes were around 16.03 nm to 23.42 nm. The average transmittance values in the visible range of all deposited ZnO films were higher than 83% and the calculated band gaps from the absorption data were found to be around 3.1 to 3.2 eV. The resistivity had a minimum value in the 3.65 × 10−3 Ω·cm under the O2/Ar gas flow ratio of 8 : 1. The luminescence mechanisms of the deposited film were also investigated to understand the defect types of room-temperature grown ZnO films.

  8. Phase transitions of doped carbon in CrCN coatings with modified mechanical and tribological properties via filtered cathodic vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Guan, J.J. [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Wang, H.Q. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Qin, L.Z., E-mail: qin8394@163.com [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China); Liao, B.; Liang, H. [College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Li, B. [Faculty of Materials and Energy, Southwest University, Chongqing 400715 (China)

    2017-04-15

    The CrCN coatings were fabricated onto Si (1 1 1) wafers and SUS304 stainless steel plates using filtered cathodic vacuum arc deposition (FCVAD) technique under different flow ratios of N{sub 2}/C{sub 2}H{sub 2} gas mixture. The morphology, crystalline structure and chemical composition of the coatings were characterized. It was found that the grain size reduce with increasing carbon content, which makes the CrCN coatings refined and smooth. The quasi-one-dimensional carbolite phase was also found in CrN host lattice with C{sub 2}H{sub 2} content ranging from 5% to 20%, and it will be evolved into amorphous carbon and amorphous CN{sub x} phases as C{sub 2}H{sub 2} content exceeds 20%. Moreover, we examined the mechanical and tribological properties of the CrCN coatings, and the experimental results confirmed that the friction coefficient of the coatings descend to the lowest value as 0.39 with 30% C{sub 2}H{sub 2} content, due to the graphite (sp{sup 2} C−C) phase embed in CrN host lattice; while the chromium carbon (Cr{sub 3}C{sub 2}) and diamond (sp{sup 3} C−C) phases may give rise to the increase of the coating hardness with the highest value at 23.97 GPa under 20% C{sub 2}H{sub 2} content.

  9. Synthesis of Ti-doped DLC film on SS304 steels by Filtered Cathodic Vacuum Arc (FCVA) technique for tribological improvement

    Science.gov (United States)

    Bootkul, D.; Saenphinit, N.; Supsermpol, B.; Aramwit, C.; Intarasiri, S.

    2014-08-01

    Currently, stainless steels are widely used in various industrial applications due to their excellence in toughness and corrosion resistance. But their resistance to wear needs to be improved for appropriate use in tribological applications. The Filtered Cathodic Vacuum Arc (FCVA) is a superior technique for forming a high-density film structure of amorphous carbon, especially for a tetrahedral amorphous carbon (ta-C) type, because it can produce a plasma of highly energetic ions that can penetrate into a growing coating, resulting in densification of the film. However, this technique tends to generate high internal stress, due to serious accumulation of energy in the film structure that then leads to film delamination. In general, there are numerous solutions that have been used to reduce the internal stress. DLC with various additive elements such as Ti, Cr or W as strong-carbide-forming (SCF) metals is one of the popular methods to provide attractive combinations of properties of wear resistance and film adhesion as well as reducing the internal stress. The present study was focused on investigation of titanium-doped DLC coating on SS304 steel, mainly for adhesion improvement in optimizing for tribological applications. The synthesized films were formed by the FCVA technique at normal substrate temperature. In the experimental set-up, the films were produced by mixing the titanium and carbon ions generated by dual cathode plasma source operating in synchronous pulsed mode. Their compositions were adjusted by varying the relative duration of the pulse length from each cathode. Titanium doping concentration was varied from pure DLC deposition as the control group to titanium and graphite trigger pulses ratios of 1:16, 1:12, 1:10, 1:8 and 1:4, as the Ti-doped DLC group. The results showed that by increasing titanium trigger pulses ratio from 1:16, 1:12, 1:10 and 1:8, respectively, the film adhesion was increased while the wear rate did not change significantly as

  10. Angular distribution of plasma in the vacuum arc ion source.

    Science.gov (United States)

    Nikolaev, A G; Yushkov, G Yu; Savkin, K P; Oks, E M

    2012-02-01

    This paper presents measurements of the angular distribution of the plasma components and different charge states of metal ions generated by a MEVVA-type ion source and measured by a time-of-flight mass-spectrometer. The experiments were performed for different cathode materials (Al, Cu, and Ti) and for different parameters of the vacuum arc discharge. The results are compared with prior results reported by other authors. The influence of different discharge parameters on the angular distribution in a vacuum arc source is discussed.

  11. Simple filtered repetitively pulsed vacuum arc plasma source.

    Science.gov (United States)

    Chekh, Yu; Zhirkov, I S; Delplancke-Ogletree, M P

    2010-02-01

    A very simple design of cathodic filtered vacuum arc plasma source is proposed. The source without filter has only four components and none of them require precise machining. The source operates in a repetitively pulsed regime, and for laboratory experiments it can be used without water cooling. Despite the simple construction, the source provides high ion current at the filter outlet reaching 2.5% of 400 A arc current, revealing stable operation in a wide pressure range from high vacuum to oxygen pressure up to more than 10(-2) mbar. There is no need in complicated power supply system for this plasma source, only one power supply can be used to ignite the arc, to provide the current for the arc itself, to generate the magnetic field in the filter, and provide its positive electric biasing without any additional high power resistance.

  12. Note: Triggering behavior of a vacuum arc plasma source.

    Science.gov (United States)

    Lan, C H; Long, J D; Zheng, L; Dong, P; Yang, Z; Li, J; Wang, T; He, J L

    2016-08-01

    Axial symmetry of discharge is very important for application of vacuum arc plasma. It is discovered that the triggering method is a significant factor that would influence the symmetry of arc discharge at the final stable stage. Using high-speed multiframe photography, the transition processes from cathode-trigger discharge to cathode-anode discharge were observed. It is shown that the performances of the two triggering methods investigated are quite different. Arc discharge triggered by independent electric source can be stabilized at the center of anode grid, but it is difficult to achieve such good symmetry through resistance triggering. It is also found that the triggering process is highly correlated to the behavior of emitted electrons.

  13. Technological ion sources based on the vacuum arc discharge

    CERN Document Server

    Bugaev, S P; Oks, E M; Yushkov, G Y; Shchanin, P M; Braun, Y

    2001-01-01

    The Titan service ion sources are designed to generate wide-aperture high-current ion beams of gases or metals, as well as, mixed two-component gas and metal ion beams with the controllable ratio of components in a beam. This possibility is achieved via integration of two discharge systems in a source discharge system. To generate metal ions one uses a vacuum, arc discharge, while gas ions are generated by a low pressure contracted arc discharge with cold cathodes. The paper describes operation of these sources, their design, technical characteristics, peculiarities of their operation and application fields

  14. The influence of cathode excavation of cathodic arc evaporator on thickness uniformity and erosion products angle distribution

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2014-01-01

    Full Text Available Cathodic arc evaporators are used for coating with functional films. Prolonged or buttend evaporators may be used for this purposes. In butt-end evaporator the cathode spots move continuously on the cathode work surface and evaporate cathode material. High depth excavation profile forms on the cathode work surface while the thick coating precipitation (tens or hundreds of microns. The cathode excavation profile is shaped like a “cup” with high walls for electrostatic discharge stabilization systems with axial magnetic fields. Cathode spots move on the bottom of the “cup”. It is very likely that high “cup” walls are formed as a result of lasting work time influence on the uniformity of precipitated films.In the present work the influence of excavation profile walls height on the uniformity of precipitated coating was carried out. The high profile walls are formed due to lasting work of DC vacuum arc evaporator. The cathode material used for tests was 3003 aluminum alloy. The extended substrate was placed parallel to the cathode work surface. Thickness distribution along the substrate length with the new cathode was obtained after 6 hours and after 12 hours of continuous operation.The thickness distribution of precipitated coating showed that the cathode excavation has an influence on the angular distribution of the matter escaping the cathode. It can be clearly seen from the normalized dependence coating thickness vs the distance from the substrate center. Also the angular distribution of the matter flow from the cathode depending on the cathode working time was obtained. It was shown that matter flow from the cathode differs from the LambertKnudsen law. The more the cathode excavation the more this difference.So, cathode excavation profile has an influence on the uniformity of precipitated coating and it is necessary to take in account the cathode excavation profile while coating the thick films.

  15. High thrust-to-power ratio micro-cathode arc thruster

    OpenAIRE

    Joseph Lukas; George Teel; Jonathan Kolbeck; Michael Keidar

    2016-01-01

    The Micro-Cathode Arc Thruster (μCAT) is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that,...

  16. Regression Analysis of the Effect of Bias Voltage on Nano- and Macrotribological Properties of Diamond-Like Carbon Films Deposited by a Filtered Cathodic Vacuum Arc Ion-Plating Method

    Directory of Open Access Journals (Sweden)

    Shojiro Miyake

    2014-01-01

    Full Text Available Diamond-like carbon (DLC films are deposited by bend filtered cathodic vacuum arc (FCVA technique with DC and pulsed bias voltage. The effects of varying bias voltage on nanoindentation and nanowear properties were evaluated by atomic force microscopy. DLC films deposited with DC bias voltage of −50 V exhibited the greatest hardness at approximately 50 GPa, a low modulus of dissipation, low elastic modulus to nanoindentation hardness ratio, and high nanowear resistance. Nanoindentation hardness was positively correlated with the Raman peak ratio Id/Ig, whereas wear depth was negatively correlated with this ratio. These nanotribological properties highly depend on the films’ nanostructures. The tribological properties of the FCVA-DLC films were also investigated using a ball-on-disk test. The average friction coefficient of DLC films deposited with DC bias voltage was lower than that of DLC films deposited with pulse bias voltage. The friction coefficient calculated from the ball-on-disk test was correlated with the nanoindentation hardness in dry conditions. However, under boundary lubrication conditions, the friction coefficient and specific wear rate had little correlation with nanoindentation hardness, and wear behavior seemed to be influenced by other factors such as adhesion strength between the film and substrate.

  17. A novel post-arc current measuring equipment based on vacuum arc commutation and arc blow

    Science.gov (United States)

    Liao, Minfu; Ge, Guowei; Duan, Xiongying; Huang, Zhihui

    2017-07-01

    The paper proposes a novel post-arc current measuring equipment (NPACME), which is based on the vacuum arc commutation and magnetic arc blow. The NPACME is composed of the vacuum circuit breaker (VCB), shunt resistor, protective gap, high-precision current sensor and externally applied transverse magnetic field (ETMF). The prototype of the NPACME is designed and controlled by optical fiber communications. The vacuum arc commutation between the vacuum arc and the shunt resistor with ETMF is investigated. The test platform is established in the synthetic short-circuit test and the vacuum arc is observed by the high speed CMOS camera. The mathematic description of the vacuum arc commutation is obtained. Based on the current commutation characteristic, the parameters of the NPACME are optimized and the post-arc current is measured. The measuring result of the post-arc current is accurate with small interference and the post-arc charge is obtained. The experimental results verify that the NPACME is correct and accurate, which can be used to measure the post-arc characteristic in breaking test.

  18. Experimental investigation and numerical simulation of triggered vacuum arc behavior under TMF/RMF-AMF contact

    Science.gov (United States)

    Wang, Lijun; Deng, Jie; Qin, Kang; Zhang, Xiao; Jia, Shenli

    2016-06-01

    A series of triggering experiments was carried out to investigate the characteristics of vacuum arc controlled by TMF/RMF-AMF contacts. During all the experiments, the current ranged from 5-20 kA (rms) and both the arc appearance and behavior of cathode spots were captured by high-speed camera with corresponding arc current and arc voltage. A 3D steady magnetohydrodynamics (MHD) model was built to simulate and analyze the vacuum arc behavior under TMF/RMF-AMF contacts, and arc plasma parameters were calculated based on the above model. The experimental results showed that arc deflection was visible under both low and high current. Under high current, arc core formed, which meant the arc contracted significantly. In addition, the anode became much more active under high current. The behavior of the cathode spots showed that they split themselves into other new cathode spots. Under high current, the bulk of the spots rotated along a clockwise direction on a transverse magnetic field (TMF) plate, which caused much noise and oscillation in the arc voltage. The simulation results show that ions are likely to gather on the branches of the TMF plate on the anode plane, as a result of the effects between the electromagnetic force and pressure gradient of the arc plasma. The current contracts in the center of the TMF plate on the cathode which was due to the thin connecting rod there. The anode contraction of the current is caused by the Hall effect. Ions move along a clockwise direction on the TMF plate, which is driven by Ampere force. The current contraction resulted in significant melting in the center of the cathode surface while the other region suffered from uniform melting. The melting caused by the anode contraction is more significant than that of the cathode.

  19. Investigating Discharge Ignition Fundamentals of Micro-Cathode Arc Thrusters

    Science.gov (United States)

    Teel, George Lewis

    This dissertation is a compilation of studies of the volatile process that vacuum arcs undergo, known as breakdown. Breakdown is a transfer of electrons from one electrode to another. These electrons typically bombard the electrode surfaces causing secondary electron emission and ionization. This expulsion of ions and electrons then proceed to cause arc discharge, is what most people associate as ``the spark.'' This field-emission to breakdown process induces localized heating, which then causes this explosive ionization to occur. Once plasma is formed, high temperatures and pressures are forced on the surrounding surfaces. This initiation process, the effects of this process, and the manipulation of these effects have all been studied and described in this work. A series of initial observations of the before and after effects of discharge have been made through various equipment such as a Scanning Electron Microscope, Energy Dispersive X-Ray, and Confocal Microscope. Methods to develop a resistance measurement scheme provided a means to characterize the thruster's operation over its lifetime. Further characterization of the plasma plume was done through the use of Langmuir probes. Temperature and density distributions were also measured. An entirely new and miniaturized design of the thrusters were developed and initially tested. Last, a new application for these vacuum arc thrusters was studied for use in an underwater environment. The purpose of this work was to further develop a vacuum arc thruster, known as the Micro-Cathode Arc Thruster (muCAT), which has been developed at the George Washington University's Micro Propulsion and Nanotechnology Lab. The muCAT has been developed over the past decade, and in the last 5 years has gone from simple lab circuitry to space flown hardware. Therefore it is imperative to fully understand every aspect of this technology to achieve precisely what missions require. The results of this dissertation have allowed a new

  20. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  1. Unusual Cathode Erosion Patterns Observed for Steered Arc Sources

    CERN Document Server

    Kolbeck, Jonathan

    2014-01-01

    A cathodic arc source with a magnetron-type magnetic field was investigated for stability, erosion, and compatibility with a linear macroparticle filter. Here we report about unusual arc spot erosion patterns, which were narrow (~ 2 mm) with periodic pits when operating in argon, and broad (~ 10 mm) with periodic groves and ridges when operating in an argon and oxygen mixtures. These observations can be correlated with the ignition probability for type 2 and type 1 arc spots, respectively.

  2. Influence of Magnetic Field on Vacuum Arc Discharge Volt-Ampere Characteristics

    Directory of Open Access Journals (Sweden)

    D. V. Duhopel'nikov

    2015-01-01

    Full Text Available The vacuum arc evaporation technology was developed in the 70-s in the USSR and widely used nowadays for deposition of various functional coatings. Magnetic field provides stabilization of the discharge and cathode spot movement in arc evaporators. Usually, are used two types of magnetic systems: with divergent axisymmetrical magnetic field and with an arch-like magnetic field. The systems with the arch-like magnetic field allow a flexible control of the trajectory and the speed of the moving cathode spot and, recently, have been increasingly frequently used in facilities of vacuum arc deposition of coatings.Since the plasma of vacuum arc discharge is almost in completely ionized state even the weak magnetic fields have a significant influence on the vacuum arc discharge volt-ampere characteristics (VAC. Unfortunately, with a wealth of materials concerning the vacuum arc discharge there is still insufficient information about the influence of magnetic field magnitude and shape on the arc discharge VAC of the industrial arc evaporators.This work studies the effect of magnetic fields on VAC of two different arc evaporators with a titanium cathode, which possess axial and arch-like magnetic field.It was shown that the magnetic field significantly affects the VAC behavior changing it from increasing to descending one. The transition of VAC curves behavior from growing to descending one occurs at magnetic field values of 4.4 mT and 6.5 mT for axial and arch-like magnetic field, respectively.Voltage at fixed discharge current linearly increases with raising magnetic field induction. The discharge voltage growth with the arch-like magnetic field is greater than with its axial configuration.At the same time in the work the analytical expressions are given. These equations show that the VAC shape modification of the vacuum arc discharge in an external magnetic field may be explained by the inverse proportionality of the Hall parameter on its

  3. Cathode erosion in high-current high-pressure arc

    CERN Document Server

    Nemchinsky, V A

    2003-01-01

    Cathode erosion rate was experimentally investigated for two types of arcs: one with tungsten cathode in nitrogen atmosphere and one with hafnium cathode in oxygen atmosphere. Conditions were typical for plasma arc cutting systems: gas pressure from 2 to 5 atm, arc current from 200 to 400 A, gas flow rate from 50 to 130 litre min sup - sup 1. It was found that the actual cathode evaporation rate G is much lower than G sub 0 , the evaporation rate that follows from the Hertz-Knudsen formula: G = nu G sub 0. The difference is because some of the evaporated particles return back to the cathode. For conditions of our experiments, the factor nu could be as low as 0.01. It was shown experimentally that nu depends strongly on the gas flow pattern close to the cathode. In particular, swirling the gas increases nu many times. To explain the influence of gas swirling, model calculations of gas flows were performed. These calculations revealed difference between swirling and non-swirling flows: swirling the gas enhances...

  4. Influence of discharge gap on the discharge stability in a short vacuum arc ion sourcea)

    Science.gov (United States)

    Chen, L.; Zhang, G. L.; Jin, D. Z.; Yang, L.; Dai, J. Y.

    2012-02-01

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  5. Influence of discharge gap on the discharge stability in a short vacuum arc ion source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L. [Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Zhang, G. L.; Jin, D. Z.; Dai, J. Y. [Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Yang, L. [Institute of Nuclear Science and Technology, Louzhou University, Lanzhou, Gansu 730000 (China)

    2012-02-15

    The influence of the discharge gap between cathode and anode on the discharge stability in a short vacuum arc (SVA) ion source is presented in this paper. Planar cathode and cylindrical hollow anode made of titanium are investigated. There is a great need in present accelerator injection research for SVA source to produce the small deviation of the ion current beam. Current research shows that increasing the short discharge gap can reduce the level of ion current deviation and ion charge deviation from 29% and 31% to 15% and 17%, respectively. A microplasma plume generation mechanism in SVA and scanning electron microscopic results can be used to explain this interesting phenomenon.

  6. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    Science.gov (United States)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  7. Cathodic Arcs From Fractal Spots to Energetic Condensation

    CERN Document Server

    Anders, Andre

    2009-01-01

    Emphasizes the fractal character of cathode spots, and describes strongly fluctuating plasma properties such as the presence of multiply charged ions that move with supersonic velocity. This book also deals with issues, such as arc source construction, and macroparticle removal. It is intended for scientists, practitioners, and students alike

  8. A comparative study of the structural, mechanical and tribological characteristics of TiSiC-Cr coatings prepared in CH4 and C2H2 reactive atmosphere by cathodic vacuum arc

    Science.gov (United States)

    Braic, Mariana; Vladescu, Alina; Balaceanu, Mihai; Luculescu, Catalin; Padmanabhan, Sibu C.; Constantin, Lidia; Morris, Michael A.; Braic, Viorel; Ana Grigorescu, Cristiana Eugenia; Ionescu, Paul; Dracea, Maria Diana; Logofatu, Constantin

    2017-04-01

    TiSiC-Cr coatings, with Cr and Si as additional elements, were deposited on Si, C 45 and 316 L steel substrates via cathodic arc evaporation. Two series of coatings with thicknesses in the range of 3.6-3.9 μm were produced, using either CH4 or C2H2 as carbon containing gas. For each series, different coatings were prepared by varying the carbon rich gas flow rate between 90 and 130 sccm, while maintaining constant cathode currents (110 and 100 A at TiSi and Cr cathodes, respectively), substrate bias (-200 V) and substrate temperature (∼320 °C). The coatings were analyzed for their mechanical characteristics (hardness, adhesion) and tribological performance (friction, wear), along with their elemental and phase composition, chemical bonds, crystalline structure and cross-sectional morphology. The coatings were found to be formed with nano-scale composite structures consisting of carbide crystallites (grain size of 3.1-8.2 nm) and amorphous hydrogenated carbon. The experimental results showed significant differences between the two coating series, where the films formed from C2H2 exhibited markedly superior characteristics in terms of microstructure, morphology, hardness, friction behaviour and wear resistance. For the coatings prepared using CH4, the measured values of crystallite size, hardness, friction coefficient and wear rate were in the ranges of 7.2-8.2 nm, 26-30 GPa, 0.3-0.4 and 2.1-4.8 × 10-6 mm3 N-1 m-1, respectively, while for the coatings grown in C2H2, the values of these characteristics were found to be in the ranges of 3.1-3.7 nm, 41-45 GPa, 0.1-0.2 and 1.4-3.0 × 10-6 mm3 N-1 m-1, respectively. Among the investigated coatings, the one produced using C2H2 at the highest flow rate (130 sccm) exhibited the highest hardness (45.1 GPa), the lowest friction coefficient (0.10) and the best wear resistance (wear rate of 1.4 × 10-6 mm3 N-1 m-1).

  9. Amorphous boron coatings produced with vacuum arc deposition technology

    CERN Document Server

    Klepper, C C; Yadlowsky, E J; Carlson, E P; Keitz, M D; Williams, J M; Zuhr, R A; Poker, D B

    2002-01-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresp...

  10. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    Science.gov (United States)

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  11. Monochromatic imaging studies of a low pressure arc burning on molten Inconel 718 alloy electrodes during vacuum arc remelting

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, R.L.; Zanner, F.J.; Hareland, W.A.

    1988-01-01

    Vacuum arc remelting (VAR) is a melting and solidification process used to produce high quality ingots of chemically reactive or segregation sensitive alloys. Melting is accomplished through the use of a sustained high current (several kiloamperes) dc arc. Energy from the arc is used to melt a consumable electrode (cathode) which is cast from the alloy to be remelted. The molten material drips down into a water-cooled copper crucible (anode) where it solidifies as a larger diameter, homogeneous, porosity-free, cylindrical ingot. Solidification is driven mainly by radial heat extraction from the molten pool atop the ingot and is influenced by magnetically and buoyancy driven fluid flows that are coupled to the arc behavior. The paper reports the initial results of efforts to characterize the VAR furnace arc during remelting of Inconel 718 alloy using monochromatic imaging. This technique allows one to examine how individual atomic species are distributed throughout the arc plasma in the electrode gap. Because only species existing in excited electronic states are able to emit light, the images also give insight into the energy distribution in the gap. Chromium and manganese distributions were investigated. Chromium was chosen to represent one of the major alloy constituents, while manganese represents a highly volatile trace component. 13 refs., 7 figs.

  12. Protective coating of inner surface of steel tubes via vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Maile, K.; Roos, E.; Lyutovich, A.; Boese, J.; Itskov, M. [Stuttgart Univ. (DE). Materialpruefungsanstalt (MPA); Ashurov, Kh.; Mirkarimov, A.; Kazantsev, S.; Kadirov, Kh. [Uzbek Academy of Science, Tashkent (Uzbekistan). Arifov Inst. of Electronics

    2010-07-01

    The Vacuum Arc Deposition (VAD) technique based on sputtering a chosen electrode material and its deposition via plasma allows highly-productive technology for creating a wide class of protecting coatings on complex structures. In this work, VAD was applied as a method for the protection of the inner surface of tubes for power-plant boilers against steam oxidation. For this aim, a source cathode of an alloy with high chromium and nickel content was employed in two different VAD treatment systems: a horizontal vacuum chamber (MPA) and a vertical system where the work-piece of the tubes to be protected served as a vacuum changer (Arifov Institute of Electronics). Surface coating with variation of deposition parameters and layer thickness was performed. Characterisation of coated tubes has shown that the method realised in this work allows attainment of material transfer from the cathode to the inner surface with nearly equal chemical composition. It was demonstrated that the initial martensitic structure of the tubes was kept after the vacuum-arc treatment which can provide for both the high mechanical robustness and the corrosion-resistance of the final material. (orig.)

  13. High thrust-to-power ratio micro-cathode arc thruster

    Directory of Open Access Journals (Sweden)

    Joseph Lukas

    2016-02-01

    Full Text Available The Micro-Cathode Arc Thruster (μCAT is an electric propulsion device that ablates solid cathode material, through an electrical vacuum arc discharge, to create plasma and ultimately produce thrust in the μN to mN range. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. A preliminary set of experiments were conducted to show that, at the same power level, thrust may increase by utilizing an ablative anode. It was shown that ablative anode particles were found on a collection plate, compared to no particles from a non-ablative anode, while another experiment showed an increase in ion-to-arc current by approximately 40% at low frequencies compared to the non-ablative anode. Utilizing anode ablation leads to an increase in thrust-to-power ratio in the case of the μCAT.

  14. Fully kinetic model of breakdown during sheath expansion after interruption of vacuum arcs

    Science.gov (United States)

    Wang, Zhenxing; Wang, Haoran; Zhou, Zhipeng; Tian, Yunbo; Geng, Yingsan; Wang, Jianhua; Liu, Zhiyuan

    2016-08-01

    Research on sheath expansion is critical to the understanding of the dielectric recovery process in a vacuum interrupter after interruption of vacuum arcs. In this paper, we investigated how residual plasma affects breakdown in the sheath expansion period after the current zero. To simulate sheath expansion and breakdown, we developed a fully kinetic particle-in-cell Monte Carlo collision model with one spatial dimension and three velocity dimensions. The model accounted for various collisions, including ionization, excitation, elastic collisions, charge exchange, and momentum exchange, and we added an external circuit to the model to make the calculations self-consistent. The existence of metal vapor slowed the sheath expansion in the gap and caused high electric field formation in front of the cathode surface. The initial residual plasma, which was at sufficiently low density, seemed to have a limited impact on breakdown, and the metal vapor dominated the breakdown in this case. Additionally, the breakdown probability was sensitive to the initial plasma density if the value exceeded a specific threshold, and plasma at sufficiently high density could mean that breakdown would occur more easily. We found that if the simulation does not take the residual plasma into account, it could overestimate the critical value of the metal vapor density, which is always used to describe the boundary of breakdown after interruption of vacuum arcs. We discussed the breakdown mechanism in sheath expansion, and the breakdown is determined by a combination of metal vapor, residual plasma, and the electric field in front of the cathode surface.

  15. Ion velocities in a micro-cathode arc thruster

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Taisen; Shashurin, Alexey; Keidar, Michael [The George Washington University, Washington, DC 22202 (United States); Beilis, Isak [Tel Aviv University, Tel Aviv (Israel)

    2012-06-15

    Ion velocities in the plasma jet generated by the micro-cathode arc thruster are studied by means of time-of-flight method using enhanced ion detection system (EIDS). The EIDS triggers perturbations (spikes) on arc current waveform, and the larger current in the spike generates denser plasma bunches propagating along with the mainstream plasma. The EIDS utilizes double electrostatic probes rather than single probes. The average Ti ion velocity is measured to be around 2 Multiplication-Sign 10{sup 4} m/s without a magnetic field. It was found that the application of a magnetic field does not change ion velocities in the interelectrode region while leads to ion acceleration in the free expanding plasma plume by a factor of about 2. Ion velocities of about 3.5 Multiplication-Sign 10{sup 4} m/s were detected for the magnetic field of about 300 mT at distance of about 100-200 mm from the cathode. It is proposed that plasma is accelerated due to Lorentz force. The average thrust is calculated using the ion velocity measurements and the cathode mass consumption rate, and its increase with the magnetic field is demonstrated.

  16. Wall interactions with plasma generated by vacuum arcs and targets irradiated by intense laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Beilis, Isak I [Electrical Discharge and Plasma Laboratory, School of Electrical Engineering, Fleischman Faculty of Engineering Tel Aviv University, PO Box 39040, Tel Aviv 69978 (Israel)

    2009-02-01

    The theory of plasma-wall interactions in vacuum arc spots and in laser irradiated spots is reviewed in light of Langmuir's fundamental contributions to the theory of plasmas, sheaths, evaporation and electron emission. The mechanisms of plasma generation in the electrode and laser-target vapors are described. Models of sheath structures at surfaces which emit vapor and electrons are presented and the influence of the relation between the rates of electron and vapor emission on the electrical current continuity at the plasma-electrode boundary is discussed. The mechanisms of current continuity in the vacuum arc anode region, in the short vacuum arc, and in transient cathode spots are described. The important role of the near-target sheath in laser generated plasma is shown, indicating the effect of converting laser radiation absorbed in plasma into kinetic and potential energy of charged particles that impinge on the target. The description is summarized showing that understanding these phenomena relies on Langmuir's pioneering work.

  17. Orbitron-type vacuum gauge with nanocarbon field cathode

    Directory of Open Access Journals (Sweden)

    Alexander V. Arkhipov

    2015-03-01

    Full Text Available A novel electron–optical scheme of ionization-type vacuum gauge is proposed that allows the use of field-emission nanocarbon cathodes. The developed gauge satisfies the requirements imposed by possible utilization in on-board satellite equipment: low mass, size and energy consumption, low turn-on time, etc. High efficiency and sensitivity of the sensor are achieved by the use of an electrostatic trap for accumulation of electrons ionizing the gas molecules. Magnetic field was not used for mass economy reason and to avoid possible influence onto other on-board equipment. The main problem solved in the work originated from the intrinsic contradiction between the aims of achieving long-term confinement of electrons in the trap and focusing of the applied electric field at the cathode, the latter being necessary to utilize the phenomenon of field-induced emission. Experimental tests were performed with two prototype devices realizing different versions the electron-scheme design, viability of both developed schemes has been confirmed.

  18. Methods for batch fabrication of cold cathode vacuum switch tubes

    Science.gov (United States)

    Walker, Charles A [Albuquerque, NM; Trowbridge, Frank R [Albuquerque, NM

    2011-05-10

    Methods are disclosed for batch fabrication of vacuum switch tubes that reduce manufacturing costs and improve tube to tube uniformity. The disclosed methods comprise creating a stacked assembly of layers containing a plurality of adjacently spaced switch tube sub-assemblies aligned and registered through common layers. The layers include trigger electrode layer, cathode layer including a metallic support/contact with graphite cathode inserts, trigger probe sub-assembly layer, ceramic (e.g. tube body) insulator layer, and metallic anode sub-assembly layer. Braze alloy layers are incorporated into the stacked assembly of layers, and can include active metal braze alloys or direct braze alloys, to eliminate costs associated with traditional metallization of the ceramic insulator layers. The entire stacked assembly is then heated to braze/join/bond the stack-up into a cohesive body, after which individual switch tubes are singulated by methods such as sawing. The inventive methods provide for simultaneously fabricating a plurality of devices as opposed to traditional methods that rely on skilled craftsman to essentially hand build individual devices.

  19. Vacuum Switches Arc Images Pre–processing Based on MATLAB

    Directory of Open Access Journals (Sweden)

    Huajun Dong

    2015-01-01

    Full Text Available In order to filter out the noise effects of Vacuum Switches Arc(VSAimages, enhance the characteristic details of the VSA images, and improve the visual effects of VSA images, in this paper, the VSA images were implemented pre-processing such as noise removal, edge detection, processing of image’s pseudo color and false color, and morphological processing by MATLAB software. Furthermore, the morphological characteristics of the VSA images were extracted, including isopleths of the gray value, arc area and perimeter.

  20. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  1. Vacuum Arc Ion Sources: Recent Developments and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Ian; Oks, Efim

    2005-05-01

    The vacuum arc ion source has evolved over the past twenty years into a standard laboratory tool for the production of high current beams of metal ions, and is now used in a number of different embodiments at many laboratories around the world. The primary application of this kind of source has evolved to be ion implantation for material surface modification. Another important use is for injection of high current beams of heavy metal ions into the front ends of particle accelerators, and much excellent work has been carried out in recent years in optimizing the source for reliable accelerator application. The source also provides a valuable tool for the investigation of the fundamental plasma physics of vacuum arc plasma discharges. As the use of the source has grown and diversified, at the same time the ion source performance and operational characteristics have been improved in a variety of different ways also. Here we review the growth and status of vacuum arc ion sources around the world, and summarize some of the applications for which the sources have been used.

  2. Beam Vacuum Interconnects for the LHC Cold Arcs

    CERN Document Server

    Veness, R J M; Gröbner, Oswald; Lepeule, P; Reymermier, C; Schneider, G; Skoczen, Blazej; Kleimenok, V; Nikitin, I N

    1999-01-01

    The design of the beam vacuum interconnect is described in this paper. Features include a novel RF bridge design to maximise lateral flexibility during cryostat Cold arcs of the LHC will consist of twin aperture dipole, quadrupole and corrector magnets in cryostats, operating at 1.9 K. Beam vacuum chambers, along with all connecting elements require flexible 'interconnects' between adjacent cryostats to allow for thermal and mechanical offsets foreseen during machine operation and alignment. In addition, the beam vacuum chambers contain perforated beam screens to intercept beam induced heat loads at an intermediate temperature. These must also be connected with low impedance RF bridges in the interconnect zones.alignment and so-called 'nested' bellows to minimise the required length of the assembly.

  3. Interaction of a vacuum arc plasma beam with an obstacle positioned normal to the plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Zarchin, O [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Zhitomirsky, V N [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Goldsmith, S [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel); Boxman, R L [Electrical Discharge and Plasma Laboratory, Tel-Aviv University, POB 39040, Tel-Aviv 69978 (Israel)

    2003-09-21

    The effect of an obstacle positioned normal to a plasma jet produced by a vacuum arc plasma source on the radial distribution of ion flux in the vicinity of the obstacle was studied. This study was motivated by interest in the mutual influence of tightly packed substrates on coatings in industrial vacuum arc deposition systems. The experimental system consisted of a vacuum arc plasma source, a straight plasma duct, and a multi-probe consisting of a removable disc obstacle and a set of ring probes for measuring the radial ion flux. A dc arc discharge was ignited in vacuum between a truncated cone-shaped Cu cathode and an annular anode. The plasma jet produced by cathode spots passed through the anode aperture into the straight plasma duct. An axial magnetic field guided the plasma jet in the duct. The multi-probe consisted of a removable disc obstacle and a set of five ring probes for measuring the radial plasma flux as a function of distance from the disc obstacle. The rings and the disc probes were coaxially arranged on the multi-probe assembly and positioned so that plasma from the source passed through the ring probes and then encountered the disc. The influence of the obstacle was determined by measuring the ring ion currents, both in the presence of the obstacle, and when the disc obstacle was removed. The difference between the measured ion currents with and without the obstacle was interpreted to be the contribution of reflected or sputtered particles from the obstacle to the radial ion flux. The ring probes were biased by -60 V with respect to the grounded anode, to collect the saturated ion current. The multi-probe was connected to a movable stem, and positioned at different distances from the plasma source. A plasma density of {approx}6 x 10{sup 17} m{sup -3} was estimated in this study based on the ion current to the obstacle. The radial ion flux collected by the ring probes increased by 20-25% due to the presence of the obstacle. As the calculated mean

  4. Vacuum encapsulated hermetically sealed diamond amplified cathode capsule and method for making same

    Science.gov (United States)

    Rao, Triveni; Walsh, John; Gangone, Elizabeth

    2014-12-30

    A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.

  5. A Vacuum Encapsulated Lateral FED with Various Cathode Materials

    Science.gov (United States)

    Park, Cheol-Min; Lim, Moo-Sup; Han, Min-Koo

    We have fabricated poly-Si, Si, and Ti-silicide field emitter arrays employing in-situ vacuum encapsulated lateral field emitter structures and investigated the field emission characteristics such as turn-on voltage, emission current density, and the stability of the emission current. Although poly-Si and Si emitter exhibit almost identical turn-on voltages, the Si emitter shows a sharp turn-on characteristic compared with the poly-Si emitter. It may be caused by the uniform surface of the Si emitter. The current densities of poly-Si, and Si emitter are 0.47, 0.43μA/tip respectively when the anode to cathode voltage is 90V. The turn-on voltage and current density of the Ti-silicide emitter are about 31V, and 1.81μA/tip at a VAK of 90V. The normalized current fluctuations shows that the Ti-silicide emitter exhibits the most stable current.

  6. [Preliminary study of atomic emission spectrometry of Ti (H) plasma produced by vacuum arc ion source].

    Science.gov (United States)

    Deng, Chun-Feng; Wu, Chun-Lei; Wang, Yi-Fu; Lu, Biao; Wen, Zhong-Wei

    2014-03-01

    In order to study the discharge process of vacuum arc ion source, make a detail description of the discharge plasma, and lay the foundation for further research on ion source, atomic emission spectrometry was used to diagnose the parameters of plasma produced by vaccum arc ion source. In the present paper, two kinds of analysis method for the emission spectra data collected by a spectrometer were developed. Those were based in the stark broadening of spectral lines and Saba-Boltzmann equation. Using those two methods, the electron temperature, electron number density and the ion temperature of the plasma can be determined. The emission spectroscopy data used in this paper was collected from the plasma produced by a vacuum are ion source whose cathode was made by Ti material (which adsorbed hydrogen during storage procedure). Both of the two methods were used to diagnose the plasma parameters and judge the thermal motion state of the plasma. Otherwise, the validity of the diagnostic results by the two methods were analyzed and compared. In addition, the affection from laboratory background radiation during the spectral acquisition process was discussed.

  7. Ion charge state distributions of vacuum arc plasmas: The origin of species

    Energy Technology Data Exchange (ETDEWEB)

    Anders, A. [Ernest O. Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    1997-01-01

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD{close_quote}s) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD{close_quote}s of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. {open_quotes}Frozen{close_quotes} CSD{close_quote}s have been calculated using Saha equations in the Debye-H{umlt u}ckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a {open_quotes}periodic table of CSD.{close_quotes} The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of {open_quotes}instantaneous freezing{close_quotes} and {open_quotes}effective temperature and density{close_quotes} is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD{close_quote}s. {copyright} {ital 1997} {ital The American Physical Society}

  8. Ion charge state distributions of vacuum arc plasmas: The origin of species

    Science.gov (United States)

    Anders, André

    1997-01-01

    Vacuum arc plasmas are produced at micrometer-size, nonstationary cathode spots. Ion charge state distributions (CSD's) are experimentally known for 50 elements, but the theoretical understanding is unsatisfactory. In this paper, CSD's of vacuum arc plasmas are calculated under the assumption that the spot plasma experiences an instantaneous transition from equilibrium to nonequilibrium while expanding. Observable charge state distributions are the result of a freezing process at this transition. ``Frozen'' CSD's have been calculated using Saha equations in the Debye-Hüautckel approximation of the nonideal plasma for all metals of the Periodic Table and for boron, carbon, silicon, and germanium. The results are presented in a ``periodic table of CSD.'' The table contains also the mean ion charge state, the neutral vapor fraction, and the effective plasma temperature and density at the freezing point for each element. The validity of the concepts of ``instantaneous freezing'' and ``effective temperature and density'' is discussed for low and high currents and for the presence of a magnetic field. Temperature fluctuations have been identified to cause broadening of CSD's.

  9. Identification by force modulation microscopy of nanoparticles generated in vacuum arcs Identification by force modulation microscopy of nanoparticles generated in vacuum arcs

    Directory of Open Access Journals (Sweden)

    M. Arroyave Franco

    2006-06-01

    Full Text Available An alternative method based on force modulation microscopy (FMM for identification of nanoparticles produced in the plasma generated by the cathode spots of vacuum arcs is presented. FMM technique is enabled for the detection of variations in the mechanical properties of a surface with high sensitiveness. Titanium nitride (TiN coatings deposited on oriented silicon by pulsed vacuum arc process have been analyzed. AFM (Atomic Force Microscopy and FMM images were simultaneously obtained, and in all cases it was possible to identify nanoparticle presence. Further X-ray Diffraction spectra of sample coating were taken. Existence of contaminant particles of 47 nanometers in diameter was reported.En este trabajo se presenta un método alternativo basado en microscopia de modulación de fuerza (FMM, para la identificación de nanogotas producidas en el plasma generado por los spots catódicos de los arcos en vacío. La técnica FMM esta habilitada para la detección de variaciones en las propiedades mecánicas de una superficie, con alta sensibilidad. Se han analizado recubrimientos de nitruro de titanio (TiN depositados sobre Silicio orientado por el proceso de arco en vacío pulsado. Se han obtenido simultáneamente imágenes de microscopia de fuerza atómica (AFM y de microscopia FMM mediante las cuales se ha podido identificar la presencia de nanogotas. Adicionalmente se han tomado espectros de difracción de rayos X (XRD de las muestras recubiertas. Se ha reportado la existencia de partículas contaminantes de 47 nanómetros de diámetro sobre los recubrimientos.

  10. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  11. Behavior of sustained high-current arcs on molten-alloy electrodes during vacuum consumable-arc remelting

    Science.gov (United States)

    Zanner, F. J.; Bertram, L. A.

    Vacuum consumable arc remelting is a casting process carried out in a vacuum with the aim of remelting the consumable electrode in such a way that the new ingot has improved chemical and physical homogeneity. The power which causes the melting is supplied by a vacuum arc burning between the electrodes. In order to determine the furnace partitions of electrical power and current, experiments were conducted on molten faced round electrodes. The quasi-steady melt rate was determined for both horizontally opposed 15 cm dia. Ni electrodes and for vertically suspended 40 cm dia. Inconel 718 electrodes.

  12. Fabrication of graphene from graphite by a thermal assisted vacuum arc discharge system

    Science.gov (United States)

    Cheng, Guo-Wei; Chu, Kevin; Chen, Jeng Shiung; Tsai, Jeff T. H.

    2017-04-01

    In this study, graphene was fabricated on copper foils using a high temperature furnace embedded in a vacuum arc discharge method. Combining the advantages of chemical vapor deposition and vacuum arc discharge, single-layer graphene can be fabricated at 600 °C base temperature from the mini furnace embedded with a fast heating via the photon radiation from the vacuum arc to 1100 °C on the substrates' surface. The optimal fabrication condition was determined through a series of experiments on ambient pressure, processing time, arc currents, and the cooling process. Observations by scanning electron microscopy, Raman spectroscopy, and optical microscopy showed that the main products were single-layer graphene, which has a uniform thickness across the entire substrate. The results demonstrated that the combination of a vacuum arc with a thermal method that uses graphite as a carbon source provides a low-cost and straight forward method to synthesize graphene films for graphene-based applications.

  13. 1020 steel coated with Ti/TiN by Cathodic Arc and Ion Implantation

    Science.gov (United States)

    Bermeo, F.; Quintana, J. P.; Kleiman, A.; Sequeda, F.; Márquez, A.

    2017-01-01

    TiN coatings have been widely studied in order to improve mechanical properties of steels. In this work, thin Ti/TiN films were prepared by plasma based immersion ion implantation and deposition (PBII&D) with a cathodic arc on AISI 1020 steel substrates. Substrates were exposed to the discharge during 1 min in vacuum for the deposition of a Tiunderlayer with the aim of improving the adhesion to the substrate. Then, a TiN layer was deposited during 6 min in a nitrogen environment at a pressure of 3xl0-4 mbar. Samples were obtained at room temperature and at 300 °C, and with or without ion implantation in order to analyze differences between the effects of each treatment on the tribological properties. The mechanical and tribological properties of the films were characterized. The coatings deposited by PBII&D at 300 °C presented the highest hardness and young modulus, the best wear resistance and corrosion performance.

  14. Morphology and microstructure evolution of Ti-50 at.% Al cathodes during cathodic arc deposition of Ti-Al-N coatings

    Science.gov (United States)

    Syed, Bilal; Zhu, Jianqiang; Polcik, Peter; Kolozsvari, Szilard; Hâkansson, Greger; Johnson, Lars; Ahlgren, Mats; Jöesaar, Mats; Odén, Magnus

    2017-06-01

    Today's research on the cathodic arc deposition technique and coatings therefrom primarily focuses on the effects of, e.g., nitrogen partial pressure, growth temperature, and substrate bias. Detailed studies on the morphology and structure of the starting material—the cathode—during film growth and its influence on coating properties at different process conditions are rare. This work aims to study the evolution of the converted layer, its morphology, and microstructure, as a function of the cathode material grain size during deposition of Ti-Al-N coatings. The coatings were reactively grown in pure N2 discharges from powder metallurgically manufactured Ti-50 at.% Al cathodes with grain size distribution averages close to 1800, 100, 50, and 10 μm, respectively, and characterized with respect to microstructure, composition, and mechanical properties. The results indicate that for the cathode of 1800 μm grain size the disparity in the work function among parent phases plays a dominant role in the pronounced erosion of Al, which yields the coatings rich in macro-particles and of high Al content. We further observed that a reduction in the grain size of Ti-50 at.% Al cathodes to 10 μm provides favorable conditions for self-sustaining reactions between Ti and Al phases upon arcing to form γ phase. The combination of self-sustaining reaction and the arc process not only result in the formation of hole-like and sub-hole features on the converted layer but also generate coatings of high Al content and laden with macro-particles.

  15. Note: Arc discharge plasma source with plane segmented LaB6 cathode.

    Science.gov (United States)

    Akhmetov, T D; Davydenko, V I; Ivanov, A A; Kreter, A; Mishagin, V V; Savkin, V Ya; Shulzhenko, G I; Unterberg, B

    2016-05-01

    A plane cathode composed of close-packed hexagonal LaB6 (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  16. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  17. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  18. Advances in high voltage insulation and arc interruption in SF6 and vacuum

    CERN Document Server

    Maller, V N

    1982-01-01

    Advances in High Voltage Insulation and Arc Interruption in SF6 and Vacuum deals with high voltage breakdown and arc extinction in sulfur hexafluoride (SF6) and high vacuum, with special emphasis on the application of these insulating media in high voltage power apparatus and devices. The design and developmental aspects of various high voltage power apparatus using SF6 and high vacuum are highlighted. This book is comprised of eight chapters and opens with a discussion on electrical discharges in SF6 and high vacuum, along with the properties and handling of SF6 gas. The following chapters fo

  19. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  20. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Science.gov (United States)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A.; Yartsev, I. M.

    2015-12-01

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  1. Study of the feasibility of distributed cathodic arc as a plasma source for development of the technology for plasma separation of SNF and radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Amirov, R. Kh.; Vorona, N. A.; Gavrikov, A. V.; Liziakin, G. D.; Polistchook, V. P.; Samoylov, I. S.; Smirnov, V. P.; Usmanov, R. A., E-mail: ravus46@yandex.ru; Yartsev, I. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-12-15

    One of the key problems in the development of plasma separation technology is designing a plasma source which uses condensed spent nuclear fuel (SNF) or nuclear wastes as a raw material. This paper covers the experimental study of the evaporation and ionization of model materials (gadolinium, niobium oxide, and titanium oxide). For these purposes, a vacuum arc with a heated cathode on the studied material was initiated and its parameters in different regimes were studied. During the experiment, the cathode temperature, arc current, arc voltage, and plasma radiation spectra were measured, and also probe measurements were carried out. It was found that the increase in the cathode heating power leads to the decrease in the arc voltage (to 3 V). This fact makes it possible to reduce the electron energy and achieve singly ionized plasma with a high degree of ionization to fulfill one of the requirements for plasma separation of SNF. This finding is supported by the analysis of the plasma radiation spectrum and the results of the probe diagnostics.

  2. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan, E-mail: liuzy@mail.xjtu.edu.cn; Geng, Yingsan; Wang, Zhenxing; Yan, Jing [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-06-15

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B{sub AMF} can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  3. Effect of Focussed Vacuum ARC Plasma Deposition on the Properties of Tetrahedral Amorphous Carbon Films

    Science.gov (United States)

    Chua, Daniel H. C.; Teo, K. B. K.; Tsai, T. H.; Robertson, J.; Milne, W. I.

    We have investigated the effect of using a magnetic field to confine and focus the plasma in a Filtered Cathodic Vacuum Arc (FCVA) deposition system used for the preparation of tetrahedrally bonded amorphous carbon (ta-C) thin films. The design of the magnetic field is such that the plasma can be confined into a high-density focussed spot or de-focussed into a lower density wide beam. Increasing the magnetic field directly increases the plasma density and thus increases the deposition rate. The ta-C films grown in the magnetic field were subsequently characterised. EELS and Raman measurement were used to measure the sp3/sp2 ratio and UV-vis spectroscopy for optical bandgap studies. The intrinsic stress and I-V characteristics of the thin films were also studied. The results show that it is possible to deposit the films at rates as high as 2.5 nm/sec without adversely affecting the material properties.

  4. Method and apparatus for controlling electrode gap during vacuum consumable arc remelting

    Science.gov (United States)

    Fisher, R.W.; Maroone, J.P.; Tipping, D.W.; Zanner, F.J.

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  5. Efficient vacuum-free-processed quantum dot light-emitting diodes with printable liquid metal cathodes.

    Science.gov (United States)

    Peng, Huiren; Jiang, Yibin; Chen, Shuming

    2016-10-20

    Colloidal quantum dot light-emitting diodes (QLEDs) are recognized as promising candidates for next generation displays. QLEDs can be fabricated by low-cost solution processing except for the metal electrodes, which, in general, are deposited by costly vacuum evaporation. To be fully compatible with the low-cost solution process, we herein demonstrate vacuum-free and solvent-free fabrication of electrodes using a printable liquid metal. With eutectic gallium-indium (EGaIn) based liquid metal cathodes, vacuum-free-processed QLEDs are demonstrated with superior external quantum efficiencies of 11.51%, 12.85% and 5.03% for red, green and blue devices, respectively, which are about 2-, 1.5- and 1.1-fold higher than those of the devices with thermally evaporated Al cathodes. The improved performance is attributable to the reduction of electron injection by the native oxide of EGaIn, which serves as an electron-blocking layer for the devices and thus improves the balance of carrier injection. Also, the T50 half-lifetime of the vacuum-free-processed QLEDs is about 2-fold longer than that of the devices with Al cathodes. Our results demonstrate that EGaIn-based solvent-free liquid metals are promising printable electrodes for realizing efficient, low-cost and vacuum-free-processed QLEDs. The elimination of vacuum and high-temperature processes significantly reduces the production cost and paves the way for industrial roll-to-roll manufacturing of large area displays.

  6. Optical absorption spectroscopy of metallic (Cr) vapor in a vacuum arc

    Science.gov (United States)

    Wang, Haoran; Wang, Zhenxing; Liu, Jiankun; Zhou, Zhewei; Wang, Jianhua; Geng, Yingsan; Liu, Zhiyuan

    2018-01-01

    The measurement of the metallic vapor density in a vacuum arc is crucial to acquire a better understanding of both the anodic activity and the dielectric recovery process in vacuum interrupters. The objective of this study was to measure the chromium vapor density and its axial distribution within the gap between the chromium contacts. Optical absorption spectroscopy (OAS) with a broadband light-source is adopted for this investigation. The results show that when the vacuum arc burns in the diffuse mode, the metallic vapor density maxima occur near the electrodes during the arcing period. At the peak current, the vapor density near the electrodes can be as high as 2.5  ×  1018 m‑3. With the decrease of the arc current, the metallic vapor density near the electrodes decreases as well, while the vapor density in the center of the gap remains nearly constant during the arcing period. At current zero, the metallic vapor in the gap has a nearly uniform distribution of about 3  ×  1017 m‑3. When the vacuum arc burns in the high-current mode, the metallic vapor density near the anode is lower than that in other areas until the vacuum arc becomes diffuse. Then, the evaporation process of the anodic molten region starts to play an important role and the metallic vapor density near the anode increases. At current zero, the metallic vapor has a density of about 4  ×  1018 m‑3 near the anode, which is much higher than anywhere else. Because the metallic vapor density at current zero is too low to cause a Townsend avalanche, extra factors are needed for initiating the breakdown in the post-arc phase. These factors could include a residual plasma within the gap and the behavior of the liquid metal in the molten anodic region.

  7. Analysis of the Vacuum Arc Interruption Process in Aviation Intermediate-Frequency Power Supply Systems

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2017-03-01

    Full Text Available In this paper, we present our research into the interruption performance of vacuum circuit breakers in aviation intermediate-frequency (360 Hz to 800 Hz power supply systems. Intermediate-frequency vacuum arc experiments were carried out in interrupters with a diameter of 41 mm and CuCr50 alloy contact material. The results show that, as the frequency and peak value of the current increase, both the peak value and rise rate of the intermediate-frequency vacuum arc voltage also increase, and the interruption ability decreases. However, compared to the power frequency current at the same value, the erosion of the contacts is weaker over a shorter arc period. When the vacuum arc reignites, metal droplets are emitted from the contacts. The drive force is from the center of the contact to the edge. If the density of the plasmas and metal vapors and the number of the metal droplets reaches a certain level, the arc may break down, which will cause the interruption to fail.

  8. Miniature pulsed vacuum arc plasma gun and apparatus for thin-film fabrication

    Science.gov (United States)

    Brown, Ian G.; MacGill, Robert A.; Galvin, James E.; Ogletree, David F.; Salmeron, Miquel

    1998-01-01

    A miniature (dime-size in cross-section) vapor vacuum arc plasma gun is described for use in an apparatus to produce thin films. Any conductive material can be layered as a film on virtually any substrate. Because the entire apparatus can easily be contained in a small vacuum chamber, multiple dissimilar layers can be applied without risk of additional contamination. The invention has special applications in semiconductor manufacturing.

  9. Effect of deposition conditions on the characteristics of ZnO-SnO{sub 2} thin films deposited by filtered vacuum arc

    Energy Technology Data Exchange (ETDEWEB)

    Cetinoergue, E. [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB39040, Tel Aviv 69978 (Israel) and Cukurova University, Physics Department 01330 Adana (Turkey)]. E-mail: eda@eng.tau.ac.il; Goldsmith, S. [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB39040, Tel Aviv 69978 (Israel); School of Physics and Astronomy, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Boxman, R.L. [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB39040, Tel Aviv 69978 (Israel); Fleischman Faculty of Engineering, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel)

    2006-11-23

    ZnO-SnO{sub 2} thin films were deposited on microscope glass substrates by filtered vacuum arc deposition system. The effects of deposition conditions on film characteristics were studied using cathodes prepared with three different ratios of atomic concentrations of Zn to Sn. The micro and the macro properties of the films were investigated as a function of cathode composition, arc current, background oxygen deposition pressure, and deposition time. X-ray diffraction analysis indicated that deposited films were amorphous, independent of the cathode composition. The atomic concentration ratio of Zn to Sn in the film as determined by XPS analysis were 33.9%: 10.6%, 43.9%: 3.8%, 44.7%: 4.7% for 50%: 50%, 70%: 30% and 90%: 10% Zn-Sn alloy cathodes, respectively. Film transmission in the visible was 70 to 90%, affected by interference effects. The maximal and minimal values of the refractive index n and the absorption coefficient k in the visible were 2.11 to 1.94 and 0.07 to 0.001, respectively. The optical band gap was in the range of 3.13 to 3.59 eV. All films were highly resistive independent of deposition conditions used.

  10. Novel in situ method (vacuum assisted electroless plating) modified porous cathode for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Ren; Lue, Zhe; Chen, Kongfa; Ai, Na; Li, Shuyan; Wei, Bo [Center for the Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Su, Wenhui [Center for the Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Department of Condensed Matter Physics, Jilin University, Changchun 130023 (China); International Centre for Materials Physics, Academia Sinica, Shenyang 110015 (China)

    2008-06-15

    A novel in situ method - vacuum assisted electroless plating (VA-EP) is developed to modify the porous structure of various materials. The advantage of this method is that it can form a metal network based on the already-given structure. We utilize this method to deposit silver (VA-EPA) in porous perovskite cathode Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF) for an intermediate temperature solid oxide fuel cell (IT-SOFC) in the present research. The results of investigation show the performance of the modified cathode (VA-EPA-BSCF) enhances greatly, for example, the polarization resistance of VA-EPA-BSCF decreases by 60% at 600 C compared to BSCF. (author)

  11. Generation of high charge state platinum ions on vacuum arc plasma heated by gyrotron radiation.

    Science.gov (United States)

    Yushkov, G Yu; Vodopyanov, A V; Nikolaev, A G; Izotov, I V; Savkin, K P; Golubev, S V; Oks, E M

    2014-02-01

    The hybrid high charge metal ion source based on vacuum arc plasma heated by gyrotron radiation into simple magnetic trap has been developed. Two types of magnetic traps were used: a mirror configuration and a cusp one with inherent "minimum-B" structure. Pulsed high power (>100 kW) gyrotrons with frequency 37.5 GHz and 75 GHz were used for heating the vacuum arc plasma injected into the traps. Two different ways were used for injecting the metal plasma-axial injection by a miniature arc source located on-axis near the microwave window, and simultaneous radial injection by a number of sources mounted radially at the midplane of the traps. This article represents all data gathered for platinum ions, thus making comparison of the experimental results obtained with different traps and injections convenient and accurate.

  12. Experimental observation of high-voltage, low-current vacuum arcs

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, R.Y.; Puzanov, S.V.; Yashnov, Y.M. [Scientific-Research Inst. Titan, Moscow (Russian Federation)

    1995-12-01

    A poorly explored type of discharge has been investigated in high vacuum (10{sup {minus}7} to 10{sup {minus}6} torr), with a DC high voltage across 0.2- to 0.8-mm gaps. The discharge has been found to be quite different from other widely known types of vacuum and gas discharges by the combination of its voltage-current characteristics (hyperbola-type), source and carriers of current (mostly electrons), and spatial potential distribution (a considerable electric field across the gap and a steep potential fall near the cathode).

  13. Development of cold cathode arc discharge filament based multi-cusp H- ion source

    Science.gov (United States)

    Kumar, Rajnish; Ghodke, Dharmraj V.; Senecha, Vinod K.

    2017-08-01

    A cold cathode arc discharge filament based multicusp H- ion source (HNIS) has been developed using an innovative low power igniter system working in a glow discharge regime to achieve a longer lifetime of the filament. This HNIS is cesium-free and its experimental prototype generates a maximum H- ion beam (HNIB) current of 12 mA at 50 keV beam energy in pulse mode with a peak arc power of 27 kW using the triode extraction system. This article presents the results of initial commissioning of the HNIS and steering magnetic field used to separate out the co-extracted electrons from HNIB, verified through experiments and 3-D ion beam simulations.

  14. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres.

    Science.gov (United States)

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-25

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr2+ ions were dominating in Ar and N2 and Cr+ in O2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.

  15. The improvement of all-solid-state electrochromic devices fabricated with the reactive sputter and cathodic arc technology

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2016-11-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and cathodic vacuum arc plasma (CVAP technology has been developed for smart electrochromic (EC glass application. The EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The ion conductor layer Ta2O5 deposited by the CVAP technology has provided the better porous material structure for ion transportation and showed 1.76 times ion conductivity than devices with all sputtering process. At the same time, the EC layer WO3 and NiO deposited by the reactive DCMS have also provided the high quality and uniform characteristic to overcome the surface roughness effect of the CVAP ion conductor layer in multilayer device structure. The all-solid-state ECD with the CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 55% at 550nm and a faster-switching speed. Furthermore, the lower equipment cost and higher deposition rate could be achieved by the application of CVAP technology.

  16. Thick CrN/NbN multilayer coating deposited by cathodic arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Juliano Avelar; Tschiptschin, Andre Paulo; Souza, Roberto Martins, E-mail: antschip@usp.br [Universidade de Sao Paulo (USP), SP (Brazil); Lima, Nelson Batista de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-01-15

    The production of tribological nanoscale multilayer CrN/NbN coatings up to 6 μm thick by Sputtering/HIPIMS has been reported in literature. However, high demanding applications, such as internal combustion engine parts, need thicker coatings (>30 μm). The production of such parts by sputtering would be economically restrictive due to low deposition rates. In this work, nanoscale multilayer CrN/NbN coatings were produced in a high-deposition rate, industrial-size, Cathodic Arc Physical Vapor Deposition (ARC-PVD) chamber, containing three cathodes in alternate positions (Cr/ Nb/Cr). Four 30 μm thick NbN/CrN multilayer coatings with different periodicities (20, 10, 7.5 and 4 nm) were produced. The coatings were characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The multilayer coating system was composed of alternate cubic rock salt CrN and NbN layers, coherently strained due to lattice mismatch. The film grew with columnar morphology through the entire stratified structure. The periodicities adopted were maintained throughout the entire coating. The 20 nm periodicity coating showed separate NbN and CrN peaks in the XRD patterns, while for the lower periodicity (≤10nm) coatings, just one intermediate lattice (d-spacing) was detected. An almost linear increase of hardness with decreasing bilayer period indicates that interfacial effects can dominate the hardening mechanisms. (author)

  17. Modification of anti-bacterial surface properties of textile polymers by vacuum arc ion source implantation

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaev, A.G., E-mail: nik@opee.hcei.tsc.ru [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Yushkov, G.Yu.; Oks, E.M. [High Current Electronics Institute, Siberian Branch of the Russian Academy of Sciences, Tomsk 634055 (Russian Federation); Oztarhan, A. [Izmir University, Izmir 35140 (Turkey); Akpek, A.; Hames-Kocabas, E.; Urkac, E.S. [Bioengineering Department, Ege University, Bornova 35100, Izmir (Turkey); Brown, I.G. [Lawrence Berkeley National Laboratory, Berkeley, CA 94708 (United States)

    2014-08-15

    Highlights: • Ion implantation. • Anti-bacterial properties. • Textile polymer. • Vacuum arc ion source. - Abstract: Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal–gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the “inverse” concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.

  18. An ionization gauge for ultrahigh vacuum measurement based on a carbon nanotube cathode

    Science.gov (United States)

    Zhang, Huzhong; Cheng, Yongjun; Sun, Jian; Wang, Yongjun; Xi, Zhenhua; Dong, Meng; Li, Detian

    2017-10-01

    This work reports on the complete design and the properties of an ionization gauge based on a carbon nanotube cathode, which can measure ultrahigh vacuum without thermal effects. The gauge is composed of a pressure sensor and an electronic controller. This pressure sensor is constructed based on a hot-cathode ionization gauge, where the traditional hot filament is replaced by an electron source prepared with multi-wall nanotubes. Besides, an electronic controller was developed for bias voltage supply, low current detection, and pressure indication. The gauge was calibrated in the pressure range of 10-8 to 10-4 Pa in a XHV/UHV calibration apparatus. The gauge shows good linear characteristics in different gases. The calibrated sensitivity is 0.035 Pa-1 in N2, and the standard deviation of the sensitivity is about 1.1%. In addition, the stability of the sensitivity was learned in a long period. The standard deviation of the sensitivity factor "S" during one year is 2.0% for Ar and 1.6% for N2.

  19. CrAlN coatings deposited by cathodic arc evaporation at different substrate bias

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Gomez, M.A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Grupo de Corrosion y Proteccion, Universidad de Antioquia, A.A. 1226 Medellin (Colombia); Esteve, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain); Montala, F. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Carreras, L. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Grifol, M. [Tratamientos Termicos Carreras, TTC S.A., C/Doctor Almera 85, E-08205 Sabadell, Catalunya (Spain); Lousa, A. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona, Catalunya (Spain)]. E-mail: alousa@ub.edu

    2006-09-25

    CrAlN is a good candidate as an alternative to conventional CrN coatings especially for high temperature oxidation-resistance applications. Different CrAlN coatings were deposited on hardened steel substrates by cathodic arc evaporation (CAE) from chromium-aluminum targets in a reactive nitrogen atmosphere at negative substrate bias between - 50 and - 400 V. The negative substrate bias has important effects on the deposition growth rate and crystalline structure. All our coatings presented hardness higher than conventional CrN coatings. The friction coefficient against alumina and tungsten carbide balls was around 0.6. The sliding wear coefficient of the CrAlN coatings was very low while an important wear was observed in the balls before a measurable wear were produced in the coatings. This effect was more pronounced as the negative substrate bias was increased.

  20. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition

    Science.gov (United States)

    Vukoman, JOKANOVIĆ; Božana, ČOLOVIĆ; Anka TRAJKOVSKA, PETKOSKA; Ana, MRAKOVIĆ; Bojan, JOKANOVIĆ; Miloš, NENADOVIĆ; Manuela, FERRARA; Ilija, NASOV

    2017-12-01

    Structural and optical properties of nanometric titanium oxide (Ti x O y ) films obtained by cathodic arc plasma deposition were investigated. Phase analysis by x-ray diffraction and Fourier-transform infrared spectroscopy showed the presence of anatase, rutile, Ti2O3, Ti4O7 and amorphous phases. Scanning electron microscopy images showed well-developed surface morphology with nano-patterns. Spectroscopic ellipsometry revealed film thicknesses of 53 and 50 nm, variable refractive indices dependent on the light wavelength and close to zero extinction coefficients for wavelengths higher than 500 nm. On the basis of ultraviolet–visible spectroscopy data and using the Tauc equation, band gap values for direct and indirect electron transitions were determined.

  1. Low-frequency flute instabilities of a hollow cathode arc discharge - Theory and experiment.

    Science.gov (United States)

    Ilic, D. B.; Rognlien, T. D.; Self, S. A.; Crawford, F. W.

    1973-01-01

    The characteristics of two low-frequency electrostatic flute instabilities of a low-pressure hollow cathode arc discharge are reported. Mode I has azimuthal mode number m = 1, and occurs when the radial electric field is negative (directed inward), while mode II has m = - 1 and occurs when the field is positive. The radial electric field is controlled by varying the potential of a secondary anode cylinder located close to the outer discharge radius. A linear perturbation analysis, based on the two-fluid equations, is given for a low-beta, collisionless, cylindrical plasma column, immersed in a uniform axial magnetic field, having a Gaussian density profile and an arbitrary radial electric field profile. Reasonable correlation between theory and experiment is demonstrated for both modes.

  2. Coupling boundary condition for high-intensity electric arc attached on a non-homogeneous refractory cathode

    Science.gov (United States)

    Javidi Shirvan, Alireza; Choquet, Isabelle; Nilsson, Håkan; Jasak, Hrvoje

    2018-01-01

    The boundary coupling high-intensity electric arc and refractory cathode is characterized by three sub-layers: the cathode sheath, the Knudsen layer and the pre-sheath. A self-consistent coupling boundary condition accounting for these three sub-layers is presented; its novel property is to take into account a non-uniform distribution of electron emitters on the surface of the refractory cathode. This non-uniformity is due to cathode non-homogeneity induced by arcing. The computational model is applied to a one-dimensional test case to evaluate the validity of different modeling assumptions. It is also applied coupling a thoriated tungsten cathode with an argon plasma (assumed to be in local thermal equilibrium) to compare the calculation results with uniform and non-uniform distribution of the electron emitters to experimental measurements. The results show that the non-uniformity of the electron emitters' distribution has a significant effect on the calculated properties. It leads to good agreement with the cathode surface temperature, and with the plasma temperature in the hottest region. Some differences are observed in colder plasma regions, where deviation from local thermal equilibrium is known to occur.

  3. Vacuum arc plasma deposition of thin titanium dioxide films on silicone elastomer as a functional coating for medical applications.

    Science.gov (United States)

    Boudot, Cécile; Kühn, Marvin; Kühn-Kauffeldt, Marina; Schein, Jochen

    2017-05-01

    Silicone elastomer is a promising material for medical applications and is widely used for implants with blood and tissue contact. However, its strong hydrophobicity limits adhesion of tissue cells to silicone surfaces, which can impair the healing process. To improve the biological properties of silicone, a triggerless pulsed vacuum cathodic arc plasma deposition technique was applied to deposit titanium dioxide (TiO2) films onto the surface. Scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and contact angle measurements were used for coating characterization. Deposited films were about 150nm thick and exhibited good adhesion to the underlying silicone substrate. Surface wettability and roughness both increased after deposition of the TiO2 layer. In addition, cell-biological investigations demonstrated that the in-vitro cytocompatibility of TiO2-coated samples was greatly improved without impacting silicone's nontoxicity. For validation of use in medical devices, further investigations were conducted and demonstrated stability of surface properties in an aqueous environment for a period of 68days and the coating's resistance to several sterilization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    Science.gov (United States)

    Valderrama, Enrique Francisco; James, Colt; Krishnan, Mahadevan; Zhao, Xin; Phillips, Larry; Reece, Charles; Seo, Kang

    2012-06-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (600°C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields. This research was supported by Department of Energy grants DE-SC0004994 and DE-FG02-08ER85162.

  5. Correlation study of nanocrystalline carbon doped thin films prepared by a thermionic vacuum arc deposition technique

    Science.gov (United States)

    Dinca-Balan, Virginia; Vladoiu, Rodica; Mandes, Aurelia; Prodan, Gabriel

    2017-11-01

    The synthesis of Ag, Mg and Si nanocrystalline, embedded in a hydrogen-free amorphous carbon (a-C) matrix, deposited by a high vacuum and free buffer gas technique, were investigated. The films with compact structures and extremely smooth surfaces were prepared using the thermionic vacuum arc method in one electron gun configuration, on glass and silicon substrates. The surface morphology and wettability of the obtained multifunctional thin films were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and free surface energy (FSE) by See System. The results from the TEM measurements show how the Ag, Mg and Si interacted with carbon and the influence these materials have on the thin film structure formation and the grain size distribution. SEM correlated with EDX results reveal a very precise comparative study, regarding the quantity of the elements that morphed into carbides nanostructures. Also, the FSE results prove how different materials in combination with carbon can make changes to the surface properties.

  6. Plasma of a vacuum-arc discharge for obtaining carbon-based coatings

    Science.gov (United States)

    Pikus, M. I.; Lisenkov, A. A.; Kostrin, D. K.; Trifonov, S. A.

    2017-11-01

    Formation of the carbon films and coatings of different structural modifications can be efficiently achieved by sputtering graphite in a vacuum-arc plasma source. In this case the plasma flux is shaped in a form of a current-carrying jet with fairly distinct lateral borders. Spectral analysis shows that this plasma flux contains positively charged, excited and neutral carbon particles. In this paper is shown that for a technological cycle of deposition of a carbon-based coating it is possible to form a sublayer of the substrate material carbide, providing a possibility for the later growth of a well-formed coating.

  7. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  8. Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium.

    Science.gov (United States)

    Zhu, Wei; Teel, George; O'Brien, Christopher M; Zhuang, Taisen; Keidar, Michael; Zhang, Lijie Grace

    2015-01-01

    Surface modification of titanium for use in orthopedics has been explored for years; however, an ideal method of integrating titanium with native bone is still required to this day. Since human bone cells directly interact with nanostructured extracellular matrices, one of the most promising methods of improving titanium's osseointegration involves inducing bio-mimetic nanotopography to enhance cell-implant interaction. In this regard, we explored an approach to functionalize the surface of titanium by depositing a thin film of textured titanium nanoparticles via a cathodic arc discharge plasma. The aim is to improve human bone marrow mesenchymal stem cell (MSC) attachment and differentiation and to reduce deleterious effects of more complex surface modification methods. Surface functionalization was analyzed by scanning electron microscopy, atomic force microscopy, contact angle testing, and specific protein adsorption. Scanning electron microscopy and atomic force microscopy examination demonstrate the deposition of titanium nanoparticles and the surface roughness change after coating. The specific fibronectin adsorption was enhanced on the modified titanium surface that associates with the improved hydrophilicity. MSC adhesion and proliferation were significantly promoted on the nanocoated surface. More importantly, compared to bare titanium, greater production of total protein, deposition of calcium mineral, and synthesis of alkaline phosphatase were observed from MSCs on nanocoated titanium after 21 days. The method described herein presents a promising alternative method for inducing more cell favorable nanosurface for improved orthopedic applications.

  9. The approach of in-situ doping ion conductor fabricated with the cathodic arc plasma for all-solid-state electrochromic devices

    Directory of Open Access Journals (Sweden)

    Min-Chuan Wang

    2018-01-01

    Full Text Available The all-solid-state electrochromic device (ECD with the one substrate structure fabricated by the reactive dc magnetron sputtering (DCMS and in-situ doping cathodic vacuum arc plasma (CVAP technology has been developed. The electrochromic (EC layer and ion conductor layer were deposited by reactive DCMS and CVAP technology, respectively. The in-situ doping ion conductor Ta2O5 deposited by the CVAP technology has provided the better material structure for ion transportation and showed about 2 times ion conductivity than the external doping process. The all-solid-state ECD with the in-situ doping CVAP ion conductor layer has demonstrated a maximum transmittance variation (ΔT of 71% at 550 nm, and a faster switching speed. The lower production cost and higher process stability could be achieved by the application of in-situ doping CVAP technology without breaking the vacuum process. Furthermore, the ion doping process with the reuse of energy during the CVAP process is not only decreasing the process steps, but also reducing the process energy consumption.

  10. Characterisation of cathodic arc evaporated CrTiAlN coatings: Tribological response at room temperature and at 400 °C

    Energy Technology Data Exchange (ETDEWEB)

    Georgiadis, Argyrios; Fuentes, Gonzalo G., E-mail: gfuentes@ain.es; Almandoz, Eluxka; Medrano, Angel; Palacio, José F.; Miguel, Adrián

    2017-04-01

    In this work, cathodic arc evaporation CrTiAlN coatings have been deposited on H13 hot work steel and the tribological behavior investigated at room temperature and at 400 °C. The microstructure, composition, roughness, indentation hardness and lattice parameter have been measured as a function of the deposition conditions, mainly given by the different Cr and TiAl vapour fluxes coming from the cathode arrangement in the vacuum reactor. The coating microstructures showed dense, compact columnar growth and a good film adhesion. The lattice parameter measured over the (002) diffraction peaks exhibited a quasi lineal correlation with the Ti/Cr+Al atomic ratio of the samples. In addition, the indentation hardness also increased as the lattice parameter increased. The coefficients of friction unveiled the different tribological behavior of the samples depending on the stoichiomentry and the temperature. At 400 °C, the coefficients of friction showed high dispersion, in contrast to the coherent evolution observed at room temperature. The wear damage at 400 °C was more intense than that observed at room temperature in agreement with the friction evolution observed. The coating with a stoichiometry of Cr{sub 0.23}Ti{sub 0.13}Al{sub 0.22}N{sub 0.42} showed a good wear performance at 400 °C. - Highlights: • CrTiAlN arc coatings deposited on hot work steel using different Cr and TiAl vapour fluxes. • Found correlation between Ti/Cr+Al atomic ratio, hardness and lattice parameters. • COF and wear show coherent evolution and low damage level at room temperature. • COF and wear at 400 °C exhibit higher level of damage than at room temperature. • Cr{sub 0.23}Ti{sub 0.13}Al{sub 0.22}N{sub 0.42} showed a good wear performance at 400 °C.

  11. X-ray reflectivity analysis of titanium dioxide thin films grown by cathodic arc deposition.

    Science.gov (United States)

    Kleiman, A; Lamas, D G; Craievich, A F; Márquez, A

    2014-05-01

    TiO2 thin films deposited by a vacuum arc on a glass substrate were characterized by X-ray reflectivity (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Several thin films with different amounts of deposited TiO2 mass and different deposition and annealing temperatures were studied. A qualitative analysis of the XRD patterns indicated the presence of the anatase and/or rutile crystalline phases in most of the studied samples. From the analysis of the experimental XRR curves--which exhibited a wide angular range of oscillatory behavior--the thickness, mass density and interface roughness were determined. All XRR patterns were well fitted by modeled curves that assume the presence of a single and homogeneous TiO2 layer over which a very thin H2O layer is adsorbed. The thickest H2O adsorption layers were developed in films with the highest anatase content. Our overall results of the XRR analyses are consistent with those derived from the imaging techniques (SEM and AFM).

  12. Elastic modulus of diamond-like carbon films prepared by pulsed vacuum arc

    Science.gov (United States)

    Schultrich, B.; Scheibe, H.-J.; Grandremy, G.; Schneider, D.; Siemroth, P.

    1994-12-01

    Amorphous carbon films have been prepared by special pulsed vacuum arc depositon methods allowing high currents up to 1 kA and more. The Young's modulus of these films has been determined with respect to various technological parameters. For these measurements a method based on the propagation of ultrasonic surface waves has been applied which has been specially designed for the investigation of thin films below one micrometer. Large changes of the elastic modulus, depending on the technology, have been observed, contrasting with the common understanding of invariability of the elastic behavior. Reflecting the large structural variations possible in amorphous carbon, the elastic modulus represents a suitable parameter for characterizing the carbon-carbon network. Furthermore, the elastic modulus of amorphous carbon films may be used for a first estimation of film hardness because of the strong correlation of these two quantities.

  13. Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation

    Science.gov (United States)

    Miyata, Toshihiro; Minamino, Youhei; Ida, Satoshi; Minami, Tadatsugu

    2004-07-01

    A vacuum arc plasma evaporation (VAPE) method using both oxide fragments and gas sources as the source materials is demonstrated to be very effective for the preparation of multicomponent oxide thin films. Highly transparent and conductive Al-doped ZnO (AZO) thin films were prepared by the VAPE method using a ZnO fragment target and a gas source Al dopant, aluminum acethylacetonate (Al(C5H7O2)3) contained in a stainless steel vessel. The Al content in the AZO films was altered by controlling the partial pressure (or flow rate) of the Al dopant gas. High deposition rates as well as uniform distributions of resistivity and thickness on the substrate surface were obtained on large area glass substrates. A low resistivity on the order of 10-4 Ω cm and an average transmittance above 80% in the visible range were obtained in AZO thin films deposited on glass substrates. .

  14. Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Amini, S. [School of Materials Science and Engineering. Nanyang Technological University, 50 Nanyang Avenue, Singapore (Singapore); Khosravian, N.; Cheong, J.Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Tay, B.K. [School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); CINTRA-CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore 637553 (Singapore)

    2013-06-30

    A series of physical vapour deposition titanium aluminum silicon nitride nanocomposite coating with a different (Al + Si)/Ti atomic ratio, with a thickness of around 2.5 μm were deposited on stainless steel substrate by a lateral rotating cathode arc process in a flowing nitrogen atmosphere. The composition and microstructure of the as-deposited coatings were analyzed by energy dispersive X-ray spectroscopy, and X-ray diffraction, and cross-sectional scanning electron microscopy observation. The titanium nitride (TiN) coating shows a clear columnar structure with a predominant (111) preferential orientation. With the incorporation of Al and Si, the crystallite size in the coatings decreased gradually, and the columnar structure and (111) preferred orientation disappeared. Thermal conductivity of the as-deposited coating samples at room temperature was measured by using pulsed photothermal reflectance technique. Thermal conductivity of the pure TiN coating is about 11.9 W/mK. With increasing the (Al + Si)/Ti atomic ratio, the coatings' thermal conductivity decreased monotonously. This reduction of thermal conductivity could be ascribed to the variation of coatings' microstructure, including the decrease of grain size and the resultant increase of grain boundaries, the disruption of columnar structure, and the reduced preferential orientation. - Highlights: • A series of titanium aluminum silicon nitride with different (Al + Si)/Ti atomic ratio were deposited on Fe304. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the samples was measured by pulsed photothermal reflectance. • With increasing the (Al + Si)/Ti atomic ratio, thermal conductivity decreased. • Reduction of thermal conductivity is ascribed to the variation of its microstructure.

  15. Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap.

    Science.gov (United States)

    Nikolaev, A G; Savkin, K P; Oks, E M; Vizir, A V; Yushkov, G Yu; Vodopyanov, A V; Izotov, I V; Mansfeld, D A

    2012-02-01

    A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent "minimum-B" structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap--axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 μs) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

  16. On the Dissolution of Nitrided Titanium Defects During Vacuum Arc Remelting of Ti Alloys

    Science.gov (United States)

    Ghazal, G.; Jardy, A.; Chapelle, P.; Millet, Y.

    2010-06-01

    The elimination of high interstitial defects (also known as hard-α inclusions) is of great importance to the titanium industry. This article presents a model capable of simulating the motion and dissolution of such defects during their residence in the pool of a vacuum arc remelted (VAR) ingot. To predict the complete history of that inclusion, the study couples a dissolution model of the defect and a Lagrangian particle-tracking model. This numerical tool is implemented in SOLAR (solidification during arc remelting), a computational fluid dynamics code developed at the Nancy School of Mines in the framework of an important research project conducted during the last 15 years, which aims to study and optimize the VAR process. The dissolution model numerically solves the nitrogen diffusion equation in a spherical inclusion and in thermal equilibrium with the surrounding fluid. The computational domain is divided into a central zone (α phase) and a surrounding layer (β phase), which appears because the diffusion of nitrogen into the liquid pool causes some solidification. The dissolution kinetics strongly depend on the liquid temperature and velocity of the inclusion. The model can compute the nitrogen profile in the defect at each moment as well as the thickness of the different layers; therefore, it can compute the overall size of the inclusion. The trajectory model consists of solving Newton’s law of motion. Because the inclusion size is large, the consequence of fluid-flow turbulence is to modify the local flow around the inclusion so that the drag is affected. Results presented and discussed in this article include a parametric study of the influence of the pool thermohydrodynamics, the relative inclusion-fluid density, and the initial diameter of the defect as it enters the melt pool. Finally, an example of the full history of an inclusion during triple VAR illustrates the possibility to remove such a defect effectively by dissolving it in the liquid phase.

  17. Ion sources with arc-discharge plasma box driven by directly heated LaB(6) electron emitter or cold cathode.

    Science.gov (United States)

    Ivanov, Alexander A; Davydenko, Vladimir I; Deichuli, Petr P; Shulzhenko, Grigori I; Stupishin, Nikolay V

    2008-02-01

    In the Budker Institute, Novosibirsk, an ion source with arc-discharge plasma box has been developed in the recent years for application in thermonuclear devices for plasma diagnostics. Several modifications of the ion source were provided with extracted current ranging from 1 to 7 A and pulse duration of up to 4 s. Initially, the arc-discharge plasma box with cold cathode was used, with which pulse duration is limited to 2 s by the cathode overheating and sputtering in local arc spots. Recently, a directly heated LaB(6) electron emitter was employed instead, which has extended lifetime compared to the cold cathode. In the paper, characteristics of the beam produced with both arrangements of the plasma box are presented.

  18. Tailored SERS substrates obtained with cathodic arc plasma ion implantation of gold nanoparticles into a polymer matrix.

    Science.gov (United States)

    Ferreira, Jacqueline; Teixeira, Fernanda S; Zanatta, Antonio R; Salvadori, Maria C; Gordon, Reuven; Oliveira, Osvaldo N

    2012-02-14

    This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.

  19. METALLIC CATHODE SURFACE MODIFICATION BY USING LOW-PRESSURE PULSED VACUUM ARC DISCHARGE

    Directory of Open Access Journals (Sweden)

    LUIS ALPIDIO GARCIA

    2012-01-01

    Full Text Available Se produjeron descargas eléctricas en un sistema de arco pulsado a baja presión, con una corriente máxima de 100 A con pulsos de 30 ms. Las descargas se llevaron a cabo aplicando un voltaje de 104 V entre los electrodos. Los materiales utilizados como cátodo fueron Ti, Zr, Ni, Cu, Mo y W. La morfología de cátodos después de la descarga fue estudiada mediante la técnica de microscopía electrónica de barrido (SEM. Los cátodos de Ti y Zr presentaron la mayor erosión. Por otra parte, se observaron cráteres circulares sobre cátodos de Ni y Mo y se analizó una región del cátodo Zr, con alta erosión y gran cantidad de cráteres. Se midió el voltaje de descarga para cada material, obteniendo valores de voltaje del arco. Finalmente, se observaron las relaciones entre los voltajes de arco y algunas características del material como punto de fusión y de ebullición, presentando una tendencia exponencial.

  20. High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Minami, Tadatsugu; Ida, Satoshi; Miyata, Toshihiro

    2002-09-02

    Transparent conducting oxide (TCO) thin films have been deposited at a high rate above 370 nm/min by vacuum arc plasma evaporation (VAPE) using sintered oxide fragments as the source material. It was found that the deposition rate of TCO films was strongly dependent on the deposition pressure, whereas the obtained electrical properties were relatively independent of the pressure. Resistivities of 5.6x10{sup -4} and 2.3x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% (with substrate included) in the visible range were obtained in Ga-doped ZnO (GZO) thin films deposited at 100 and 350 deg. C, respectively. In addition, a resistivity as low as 1.4x10{sup -4} {omega}{center_dot}cm and an average transmittance above 80% were also obtained in indium-tin-oxide (ITO) films deposited at 300 deg. C. The deposited TCO films exhibited uniform distributions of resistivity and thickness on large area substrates.

  1. Preparation of anatase TiO{sub 2} thin films by vacuum arc plasma evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Toshihiro [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)]. E-mail: tmiyata@neptune.kanazawa-it.ac.jp; Tsukada, Satoshi [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan); Minami, Tadatsugu [Optoelectronic Device System R and D Center, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501 (Japan)

    2006-02-01

    Anatase titanium dioxide (TiO{sub 2}) thin films with high photocatalytic activity have been prepared with deposition rates as high as 16 nm/min by a newly developed vacuum arc plasma evaporation (VAPE) method using sintered TiO{sub 2} pellets as the source material. Highly transparent TiO{sub 2} thin films prepared at substrate temperatures from room temperature to 400 deg. C exhibited photocatalytic activity, regardless whether oxygen (O{sub 2}) gas was introduced during the VAPE deposition. The highest photocatalytic activity and photo-induced hydrophilicity were obtained in anatase TiO{sub 2} thin films prepared at 300 deg. C, which correlated to the best crystallinity of the films, as evidenced from X-ray diffraction. In addition, a transparent and conductive anatase TiO{sub 2} thin film with a resistivity of 2.6 x 10{sup -1} {omega} cm was prepared at a substrate temperature of 400 deg. C without the introduction of O{sub 2} gas.

  2. The determination of micro-arc plasma composition and properties of nanoparticles formed during cathodic plasma electrolysis of 304 stainless steel

    Science.gov (United States)

    Jovović, Jovica; Stojadinović, Stevan; Vasilić, Rastko; Tadić, Nenad; Šišović, Nikola M.

    2017-05-01

    This paper presents the research focused on the determination of micro-arc plasma composition during cathodic plasma electrolysis of AISI304 stainless steel in water solution of sodium hydroxide. The complex line shape of several Fe I spectral lines was observed and, by means of a dedicated fitting procedure based on the spectral line broadening theory and H2O thermal decomposition data, the mole fraction of micro-arc plasma constituents (H2, Fe, O, H, H2O, and OH) was determined. Subsequent characterization of the cathodic plasma electrolysis product formed during the process revealed that it consists of Fe-nanoparticles with median diameter of approximately 60 nm.

  3. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail: salihokur@iyte.edu.tr; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)

    2007-11-01

    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.

  4. Current characteristics of quasi-planar vacuum diodes with explosive-emission cathodes made of various materials at a high-voltage pulse duration of a few nanoseconds

    Science.gov (United States)

    Afanas'ev, K. V.; Vagner, M. I.; Kutenkov, O. P.; Pegel, I. V.; Pribytkov, G. A.; Rostov, V. V.; Tarakanov, V. P.

    2012-12-01

    The currents of 5-ns pulsed high-current electron beams produced in a planar vacuum diode with explosive-emission cathodes made of various materials with no external magnetic field at an average electric field strength in the gap of about 300 kV/cm have been measured and time-integrated observation of the optical luminescence of the cathode surface have been performed. Cathodes with a ceramic bushing and spring metal contacts, with ceramic plates set in a magnetic iron matrix, with blades made of stamped exfoliated graphite (Graflex), with blades made of foil fiberglass plastic, and a composite cathode made of crystalline boron and copper powders were tested. The current carried by one emission center has been estimated to range between 5 and 20 A for various cathodes. For the metal-dielectric cathode, the velocity of expansion of the cathode plasma over the ceramic surface has been estimated as 2·107 cm/s. The lifetimes of the cathodes at a pulse repetition rate of 50 Hz have been investigated.

  5. Investigation on the properties of nano copper matrix composite via vacuum arc melting method

    Science.gov (United States)

    Liu, Yi; Leng, Jinfeng; Wu, Qirui; Zhang, Shaochen; Teng, Xinying

    2017-10-01

    Copper and copper matrix composites (CMCs) are widely used as electrical contact materials in electrical switch systems due to their excellent electrical properties. Graphene has great mechanical, physical and electrical properties, which is competent as an attractive reinforcing material for fabricating CMCs. Therefore, graphene was added to CMCs to improve the mechanical properties. In this study, graphene-reinforced copper matrix composites (Gr/Cu composites) were obtained. The xGr/Cu (x  =  0, 0.1, 0.3 and 0.5 wt.%) composites were fabricated via the vacuum arc melting method and compared the performance of them. The mechanical properties and electrical properties were obtained by measuring the hardness and conductivity. The microstructure of Gr/Cu composites was observed by optical microscopy (OM) and scanning electron microscopy (SEM). With the addition of graphene from 0 wt.% to 0.5 wt.%, the densities of materials decreased from 97.0% to 95.7%. With the increasing of graphene content, the hardness of composites increased at beginning and then decreased. In this range of adding amount, the hardness of 0.3Gr/Cu composite was up to 66.8 HB and increased by 15.4% compared to Al2O3/Cu composites without graphene. With the addition of graphene powder, the international annealing copper standard IACS% of Gr/Cu composites decreased from 86.16 to 69.86. The range of decline and the percentage of decline range are middle and 18.9%, respectively.

  6. Synthesis and characterization of AlTiSiN/CrSiN multilayer coatings by cathodic arc ion-plating

    Science.gov (United States)

    Yang, B.; Tian, C. X.; Wan, Q.; Yan, S. J.; Liu, H. D.; Wang, R. Y.; Li, Z. G.; Chen, Y. M.; Fu, D. J.

    2014-09-01

    AlTiSiN/CrSiN multilayer coatings were deposited on Si (1 0 0) and cemented carbide substrates using Cr, AlTi cathodes and SiH4 gases by cathodic arc ion plating system. The influences of SiH4 gases flowrate on the structural and mechanical properties of the coatings were investigated, systematically. AlTiSiN/CrSiN coatings exhibit a B1 NaCl-type nano-multilayered structure in which the CrSiN nano-layers alternate with AlTiSiN nano-layers with multiple orientations of crystal planes indicated by XRD patterns and TEM. Si contents of the coatings increase with increasing SiH4 flowrate. The hardness of the coatings increases to the maximum value of 3500 Hv0.05 with increasing SiH4 flowrate from 20 to 40 sccm and then decreases with further addition of SiH4 gases. A higher adhesive force of 73 N is obtained at the flowrate of 48 sccm. The coatings exhibit different tribological performance when the mating materials were varied from Si3N4 to cemented carbide balls and the variation of friction coefficients of the coatings against Si3N4 influenced by SiH4 flowrate are not obvious as against cemented carbide balls.

  7. Study of electron beam uniformity in large-area multi-aperture diode with arc plasma cathode

    Science.gov (United States)

    Kandaurov, I. V.; Kurkuchekov, V. V.; Trunev, Yu A.

    2017-05-01

    The use of plasma emission cathode in the conjunction with a multiple apertured electron optical system (EOS) is promising for the multi-MW class electron beams of a large cross-sectional area. In a multi-aperture source, the beam parameters could be raised simply due to increase of the number of apertures (i.e. an effective emission area), if a uniformity of the electron emission over a large-area plasma cathode is ensured. In the presented paper, the cross-sectional distribution of the emission current density was investigated using the X-ray diagnostic technique for two versions of the diode-type EOS, with electrodes performed as flat molybdenum “grids”. The first one had 241 apertures arranged hexagonally inside a circle with a diameter of 8.3 cm and the second had 499 apertures within a circle of 11.8cm diameter. The emission plasma is produced using a single arc-discharge plasma generator placed on the axis at 20 cm from the EOS. It was demonstrated that multi-aperture systems with a single on-axis plasma generator can be effectively employed to obtain large-area beams, even in the presence of the guiding magnetic field. All apertures are emitting in the 499-apertured EOS. The beam current density is quite uniform up to the radius 2.5cm and gradually decreases to the periphery.

  8. Electron emission of cathode holder of vacuum diode of an intense electron-beam accelerator and its effect on the output voltage

    Directory of Open Access Journals (Sweden)

    Xin-Bing Cheng

    2011-04-01

    Full Text Available The vacuum diode which is used to generate relativistic electron beams is one of the most important parts of a pulsed-power modulator. In this paper, the electron emission of cathode holder of a vacuum diode and its effect on the output voltage is investigated by experiments on an intense electron-beam accelerator with 180 ns full width at half maximum and 200–500 kV output voltage. First, the field emission is analyzed and the electric field of the vacuum chamber is calculated. Then, the flatness of the output voltage is discussed before and after adding an insulation plate when a water load is used. It is found that the electron emission at the edges of the cathode holder is the main reason to cause the change of the flatness. Last, a piece of polyester film is used as a target to further show the electron emission of the cathode holder. This analysis shows that decreasing the electron emission of the cathode holder in such a pulse power modulator could be a good way to improve the quality of the output voltage.

  9. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    Science.gov (United States)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  10. Development of plasma cathode electron guns

    Science.gov (United States)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  11. Recent experimental study of DD fusion in the potential well of a virtual cathode at nanosecond vacuum discharge

    Science.gov (United States)

    Oginov, A. V.; Kurilenkov, Yu K.; Samoylov, I. S.; Shpakov, K. V.; Tarakanov, V. P.; Ostashev, V. E.; Rodionov, A. A.; Karpukhin, V. T.

    2016-11-01

    Processes of nuclear burning of various elements in the scheme of a compact inertial electrostatic confinement implemented on the basis of a nanosecond vacuum discharge (NVD) with low-energy hollow cathode were investigated experimentally earlier. This paper presents the results of a recent series of DD fusion experiments on the newly created experimental set-up NVD-2 combined with x-ray and neutron yield diagnostics. The voltage-current (VA) characteristics of the discharge, and the regimes of generation of x-ray and DD neutrons realized experimentally are presented and discussed. The experimental results are compared with the results of particle-in-cell simulation of the nuclear DD fusion processes in NVD using electrodynamic code KARAT. Recent series of DD fusion experiments have reproducing in TOF scheme some basic features of DD neutrons yield observed earlier. Meanwhile, the analysis of V-A characteristics and anode erosion shows that efficiency of energy deposition at initial stage of discharge is still insufficient, and the ways to optimize the electrophysical processes at NVD-2 are clarified.

  12. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    Science.gov (United States)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  13. Osteoblast Adhesion on Cathodic Arc Plasma Deposited Nano-Multilayered TiCrAlSiN Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Kyu [University of Ulsan, Ulsan (Korea, Republic of); Pham, Vuong Hung [Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam)

    2014-03-15

    Adhesion of osteoblast cells to TiCrAlSiN thin films was evaluated in vitro. Ti and TiCrAlSiN thin films were deposited on glass substrates by cathodic arc deposition. Surface roughness and chemistry of the TiCrAlSiN thin films was characterized by AFM and EPMA, respectively. Ti and TiCrAlSiN thin films and glass coverslips were cultured with human osteoblast cells (hFOB 1.19). The cell cytoskeleton was analyzed by observing the organization of actin stress fibers and microtubules. Cell proliferation was investigated by MTT assay and visualization. Focal contact adhesion was studied by observing the vinculin density. The results indicated that the TiCrAlSiN coating significantly influenced the actin cytoskeleton and microtubule organization. Human osteoblasts hFOB attached and proliferated better on TiCrAlSiN thin films with more focal contact adhesions than on Ti thin films or glass surfaces. These results suggest that TiCrAlSiN thin films can be an implantable material where the maximum cell adhesion is required.

  14. Adhesion of osteoblast-like cell on silicon-doped TiO2 film prepared by cathodic arc deposition.

    Science.gov (United States)

    Wang, Bing; Sun, Jun-Ying; Qian, Shi; Liu, Xuan-Yong; Zhang, Shai-Lin; Dong, Sheng-Jie; Zha, Guo-Chun

    2013-06-01

    Silicon-doped TiO2 (Si-TiO2) and pure TiO2 films were deposited on titanium substrates by cathodic arc deposition technique. The surface characteristics of the films, such as surface topography, elemental composition and wettability, were studied. About 4.6 % Si was incorporated into the Si-TiO2 films with a water contact angle of about 83°. The adhesive behaviors of osteoblast-like MG63 cells on both films were investigated through cell counting assay, immunocytochemistry, real-time PCR and western blotting analysis. Cells cultured on the Si-TiO2 films had a greater cellular viability, stronger cytoskeleton and focal adhesion, and more cellular spreading than those on the pure TiO2 films. Moreover, the expression levels of integrin β1 and focal adhesion kinase (FAK) genes, FAK and the phosphorylation of FAK proteins were up-regulated in cells cultured on the Si-TiO2 films. These results indicated that the Si-TiO2 films possess significantly enhanced cytocompatibility and provide potential solutions for the surface modification of implants in the future.

  15. Refusion of zircaloy scraps by VAR (vacuum arc remelting): preliminary results; Fusao de cavacos de zircaloy por VAR: resultados preliminares

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.A.T.; Mucsi, C.S.; Sato, I.M.; Rossi, J.L.; Martinez, L.G., E-mail: lgallego@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Correa, H.P.S. [Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Orlando, M.T.D. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)

    2010-07-01

    Fuel elements and structural components of the core of PWR nuclear reactors are made in zirconium alloys known as Zircaloy. Machining chips and shavings resulting from the manufacturing of these components can not be discarded as scrap, once these alloys are strategic materials for the nuclear area, have high costs and are not produced in Brazil on an industrial bases and, consequently, are imported for the manufacture of nuclear fuel. The reuse of Zircaloy chips has economic, strategic and environmental aspects. In this work is proposed a process for recycling Zircaloy scraps using a VAR (vacuum arc remelting) furnace in order to obtain ingots suitable for the manufacture of components of the reactors. The ingots obtained are being studied in order to verify the influence of processing on composition and microstructure of the remelted material. In this work are presented preliminary results of the composition of obtained ingots compared to start material and the resulting microstructure. (author)

  16. Investigation on the physical properties of C-doped ZnO thin films deposited by the thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Hakan Yudar, H.; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan

    2017-01-01

    The aim of this study is to determine some physical properties of C-doped ZnO coated on a glass substrate by using the thermionic vacuum arc method. The produced C-doped ZnO thin film is characterized by using several analysis techniques. The produced thin film has a cubic crystal structure, high transmittance in the visible region, symmetrical surface distribution, and optical band gap energy of 3.34 eV. According to the XRD analysis of the produced thin film, it is a fullerene (C60)-doped polycrystalline ZnO. Hardness value and Young's modulus value were determined as 8 GPa and 140 GPa, respectively. These physical properties are adequate for future transparent electrode applications.

  17. Al-Co Alloys Prepared by Vacuum Arc Melting: Correlating Microstructure Evolution and Aqueous Corrosion Behavior with Co Content

    Directory of Open Access Journals (Sweden)

    Angeliki Lekatou

    2016-02-01

    Full Text Available Hypereutectic Al-Co alloys of various Co contents (7–20 weight % (wt.% Co were prepared by vacuum arc melting, aiming at investigating the influence of the cobalt content on the microstructure and corrosion behavior. Quite uniform and directional microstructures were attained. The obtained microstructures depended on the Co content, ranging from fully eutectic growth (7 wt.% and 10 wt.% Co to coarse primary Al9Co2 predominance (20 wt.% Co. Co dissolution in Al far exceeded the negligible equilibrium solubility of Co in Al; however, it was hardly uniform. By increasing the cobalt content, the fraction and coarseness of Al9Co2, the content of Co dissolved in the Al matrix, and the hardness and porosity of the alloy increased. All alloys exhibited similar corrosion behavior in 3.5 wt.% NaCl with high resistance to localized corrosion. Al-7 wt.% Co showed slightly superior corrosion resistance than the other compositions in terms of relatively low corrosion rate, relatively low passivation current density and scarcity of stress corrosion cracking indications. All Al-Co compositions demonstrated substantially higher resistance to localized corrosion than commercially pure Al produced by casting, cold rolling and arc melting. A corrosion mechanism was formulated. Surface films were identified.

  18. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  19. Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc

    Energy Technology Data Exchange (ETDEWEB)

    Samani, M.K., E-mail: majid1@e.ntu.edu.sg [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Ding, X.Z. [Surface Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Khosravian, N. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Amin-Ahmadi, B. [Electron Microscopy for materials Science (EMAT), Department of Physics, University of Antwerpen, Groenenborgerlan 171, B-2020 Antwerpen (Belgium); Yi, Yang [Data Storage Institute, A*STAR (Agency for Science, Technology and Research), 117608 (Singapore); Chen, G. [BC Photonics Technological Company, 5255 Woodwards Rd., Richmond, BC V7E 1G9 (Canada); Neyts, E.C.; Bogaerts, A. [Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp (Belgium); Tay, B.K. [Novitas, Nanoelectronics Centre of Excellence, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2015-03-02

    A series of [TiN/TiAlN]{sub n} multilayer coatings with different bilayer numbers n = 5, 10, 25, 50, and 100 were deposited on stainless steel substrate AISI 304 by a lateral rotating cathode arc technique in a flowing nitrogen atmosphere. The composition and microstructure of the coatings have been analyzed by using energy dispersive X-ray spectroscopy, X-ray diffraction (XRD), and conventional and high-resolution transmission electron microscopy (HRTEM). XRD analysis shows that the preferential orientation growth along the (111) direction is reduced in the multilayer coatings. TEM analysis reveals that the grain size of the coatings decreases with increasing bilayer number. HRTEM imaging of the multilayer coatings shows a high density misfit dislocation between the TiN and TiAlN layers. The cross-plane thermal conductivity of the coatings was measured by a pulsed photothermal reflectance technique. With increasing bilayer number, the multilayer coatings' thermal conductivity decreases gradually. This reduction of thermal conductivity can be ascribed to increased phonon scattering due to the disruption of columnar structure, reduced preferential orientation, decreased grain size of the coatings and present misfit dislocations at the interfaces. - Highlights: • TiN/TiAlN multilayer coatings with different bilayer number were deposited on SS. • The composition and microstructure of the as-deposited coatings were analyzed. • Thermal conductivity of the coatings was measured by pulsed photothermal reflectance. • Thermal conductivity depends on the coatings' microstructure and number of layers. • With increasing the bilayer number, thermal conductivity decreased.

  20. Detection efficiency vs. cathode and anode separation in cylindrical vacuum photodiodes used for measuring x-rays from plasma focus device

    Science.gov (United States)

    Borthakur, T. K.; Talukdar, N.; Neog, N. K.; Rao, C. V. S.; Shyam, A.

    2011-10-01

    A qualitative study on the performance of cylindrical vacuum photodiodes (VPDs) for x-ray detection in plasma focus device has been carried out. Various parameters of VPD such as electrode's diameter, electrode's separation, and its sensitivity are experimentally tested in plasma focus environment. For the first time it is found experimentally that the electrode-separation in the lateral direction of the two coaxial electrodes of cylindrical VPD also plays an important role to increase the efficiency of the detector. The efficiency is found to be highest for the detector with smaller cathode-anode lateral gap (1.5 mm) with smaller photo cathode diameter (10 mm). A comparison between our VPD with PIN (BPX-65) diode as an x-ray detector has also been made.

  1. Investigation of micro-structure and micro-hardness properties of 304L stainless steel treated in a hot cathode arc discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in [Department of Physics, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Singh, Omveer [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Dahiya, Raj P. [Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi – 110016 (India); Deenbandhu Chhotu Ram University of Science and Technology, Murthal–131039 (India)

    2015-08-28

    We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.

  2. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  3. Hydrogenation behavior of Ti-implanted Zr-1Nb alloy with TiN films deposited using filtered vacuum arc and magnetron sputtering

    Science.gov (United States)

    Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.

    2018-02-01

    More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti

  4. Macrosegregation Behavior of Ti-10V-2Fe-3Al Alloy During Vacuum Consumable Arc Remelting Process

    Science.gov (United States)

    Yang, Zhijun; Kou, Hongchao; Li, Jinshan; Hu, Rui; Chang, Hui; Zhou, Lian

    2011-02-01

    The effects of melting current and magnetic field in vacuum consumable arc remelting (VAR) process on the macrosegregation of Ti-10V-2Fe-3Al ingot are investigated in this paper. The results show that Fe content increases gradually from the bottom to the top of ingots along axial direction and the degree of macrosegregation is greater in the radial direction in the middle of the ingot versus the top and bottom. The macrosegregation rate of Fe element is higher with melting current of 2.6 kA than that of 1.7 kA in Ti-10V-2Al-3Fe ingot. There are two forces, buoyancy and Lorentz forces which arise from the flow of current through the pool of VAR when without magnetic stirring, but a new Lorentz force arising from the presence of external inductors occurs with adding magnetic stirring which decreases the macrosegregation rate of Fe element in Ti-10V-2Fe-3Al.

  5. Preparation of transparent and conductive multicomponent Zn-In-Sn oxide thin films by vacuum arc plasma evaporation

    Science.gov (United States)

    Minami, Tadatsugu; Tsukada, Satoshi; Minamino, Youhei; Miyata, Toshihiro

    2005-07-01

    This article describes the preparation of transparent conducting oxide (TCO) thin films by a vacuum arc plasma evaporation (VAPE) method using multicomponent oxide materials composed of any combination of two of the following binary compounds: ZnO, In2O3, and SnO2. The resulting TCO thin films were prepared with high deposition rates with the desired chemical composition in the ZnO-In2O3, In2O3-SnO2, and SnO2-ZnO systems by altering the composition of the sintered oxide fragments used as the source materials. Minimum resistivities were obtained in amorphous In2O3-ZnO, SnO2-In2O3, and ZnO-SnO2 thin films that were prepared with a Zn content of about 8.5 at. %, an In content of about 46 at. %, and a Sn content of about 78 at. %, respectively. It was found that the electrical, optical and chemical properties in ZnO-SnO2 thin films prepared using the VAPE method could be controlled by altering the Sn content.

  6. Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air

    Energy Technology Data Exchange (ETDEWEB)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N., E-mail: voyev@kipt.kharkov.ua; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Reshetnyak, E.N.; Tolmachova, G.N.; V' yugov, P.N.

    2015-10-15

    Multilayer Cr–Zr/Cr/Cr–N coatings for protection of zirconium alloys from the high-temperature oxidation in air have been obtained by the vacuum-arc evaporation technique with application of filters for plasma cleaning from macroparticles. The effect of the coatings on the corrosion resistance of zirconium alloys at test temperatures between 660 and 1100 °C for 3600 s has been investigated. The thickness, structure, phase composition, mechanical properties of the coatings and oxide layers before and after oxidation tests were examined by scanning electron microscopy, X-ray diffraction analysis and nanoindentation technique. It is shown that the hard multilayer coating effectively protects zirconium from the oxidation in air for 1 h at test temperatures. As a result of the oxidation in the coating the CrO and Cr{sub 2}O{sub 3} oxides are formed which reduce the oxygen penetration through the coating. At maximum test temperature of 1100 °C the oxide layer thickness in the coating is about 5 μm. The tube shape remains unchanged independent of alloy type. It has been found that uncoated zirconium oxidizes rapidly throughout the temperature range under study. At 1100 °C a porous monoclinic ZrO{sub 2} oxide layer of ≥120 μm is formed that leads to the deformation of the samples, cracking and spalling of the oxide layer.

  7. Enhancing Micro-Cathode Arc Thruster (muCAT) Plasma Generation to Analyze Magnetic Field Angle Effects on Sheath Formation in Hall Thrusters

    Science.gov (United States)

    Lukas, Joseph Nicholas

    Using a Delta IV or Atlas V launch vehicle to send a payload into Low Earth Orbit can cost between 13,000 and 14,000 per kilogram. With payloads that utilize a propulsion system, maximizing the efficiency of that propulsion system would not only be financially beneficial, but could also increase the range of possible missions and allow for a longer mission lifetime. This dissertation looks into efficiency increases in the Micro-Cathode Arc Thruster (muCAT) and Hall Thruster. The muCAT is an electric propulsion device that ablates solid cathode material, through an electrical arc discharge, to create plasma and ultimately produce thrust. About 90% of the arc discharge current is conducted by electrons, which go toward heating the anode and contribute very little to thrust, with only the remaining 10% going toward thrust in the form of ion current. I will discuss the results of an experiment in which electron heating on a low melting point anode was shown to increase ion current, which theoretically should increase thrust levels at low frequencies. Another feature of the muCAT is the use of an external magnetic solenoid which increases thrust, ion current, and causes uniform cathode erosion. An experiment has shown that efficiency can also be increased by removing the external magnetic field power supply and, instead, utilizing the residual arc current to power the magnetic solenoid. A Hall Thruster is a type of electric propulsion device that accelerates ions across an electric potential between an anode and magnetically trapped electrons. The limiting factor in Hall Thruster operation is the lifetime of the wall material. During operation, a positively charged layer forms over the surface of the walls, known as a plasma sheath, which contributes to wall erosion. Therefore, by reducing or eliminating the sheath layer, Hall Thruster operational lifetime can increase. Computational modeling has shown that large magnetic field angles and large perpendicular electric

  8. The dependence of filtered vacuum arc deposited ZnO-SnO{sub 2} thin films characteristics on substrate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cetinorgue, E [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Goldsmith, S [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Barkay, Z [Fleischman Faculty of Engineering, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Boxman, R L [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel)

    2006-12-21

    ZnO-SnO{sub 2} thin films were deposited by filtered vacuum arc deposition system and characterized using x-ray diffraction (XRD), energy dispersive spectroscopy, atomic force microscopy (AFM), spectrophotometer and ex situ variable angle spectroscopic ellipsometry. According to the XRD analysis the films were amorphous, independent of the deposition conditions. The root-mean-squares (RMS) of surface roughness and the average grain size obtained from the AFM images were 0.2-0.8 nm and 15-20 nm, respectively. Averaged optical transmission was 85%, and the refractive index and extinction coefficient of the films were in the range 2.05-2.28 and 0.001-0.044 at 500 nm wavelength, respectively. The range of the optical band gap of the films was 3.43-3.70 eV, depending on deposition conditions. The lowest resistivity was of the order of 10{sup -2} {omega} cm for films deposited on 400 {sup 0}C heated substrates, while films deposited on substrates at room temperature were non-conducting, and films on 200 {sup 0}C heated substrates were weakly conducting({approx}10{sup 1-2} {omega} cm). The resistivity of films decreased with increasing pressure for 200 and 400 {sup 0}C heated substrates relative to RT deposited films. The effect of deposition conditions on the optical constants was analysed statistically by single and two sided variance analysis, using the analysis code 'Analysis Of Variance' to determine the significance of the differences between sets.

  9. Structural and optical characteristics of filtered vacuum arc deposited N:TiO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Çetinörgü-Goldenberg, E., E-mail: edacetinorgu@gmail.com [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Burstein, L. [Wolfson Applied Materials Research Center, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel); Chayun-Zucker, I.; Avni, R.; Boxman, R.L. [Electrical Discharge and Plasma Laboratory, Tel Aviv University, POB 39040, Tel Aviv 69978 (Israel)

    2013-06-30

    Nitrogen doped titanium oxide (N:TiO{sub x}) thin films were deposited using filtered vacuum arc deposition. The X-ray diffraction patterns of the TiO{sub 2} thin films deposited in a pure oxygen environment indicated that films were polycrystalline in the anatase phase, while films deposited in an atmosphere in which the N{sub 2} fraction was greater than 9% were amorphous, for substrate temperatures up to 500 °C. Annealing at 400 °C in N{sub 2} for 1 h generated polycrystalline films with anatase phase, independent of %N{sub 2} during deposition. Film surface roughness increased from 0.5 up to 3.2 nm when the substrate temperature was increased from room temperature to 500 °C for films deposited in a 41%N{sub 2}. X-ray photoelectron spectroscopy analysis indicated that all films deposited in pure oxygen were stoichiometric TiO{sub 2}. N content in the films increased with %N{sub 2} in the deposition atmosphere, however the N-content in the film, 1-5 at.% N, was much less than that in the gas mixture (9–69%N{sub 2}). Annealing decreased the N-content in these films to < 1 at.%. In addition, the data revealed that all N:TiO{sub x} films had two main N 1s components, at 396–397 eV and at 399–400 eV, associated with substitutional and interstitial nitrogen, respectively. Transmission data indicated that the average transmission of films deposited at lower N{sub 2} partial pressures (< 41%) was approximately 80%, and it decreased to ∼ 50% for higher %N{sub 2}. The absorption edge of the films shifted to longer wavelengths with increased substrate temperature and %N{sub 2}, from ∼ 380 nm up to ∼ 485 nm for films deposited with 41%N{sub 2} and a substrate temperature of 500 °C. - Highlights: • Amorphous films were deposited in N{sub 2} atmosphere (> 9%). • Film surface roughness decreased with %N{sub 2} in the total deposition pressure. • Two main N 1s peaks associated with substitutional and interstitial nitrogen. • Absorption edge shifted to

  10. Optimization of the Cathode Arc Plasma Deposition Processing Parameters of ZnO Film Using the Grey-Relational Taguchi Method

    Directory of Open Access Journals (Sweden)

    Shuo-Fu Hsu

    2014-01-01

    Full Text Available We deposited undoped ZnO films on the glass substrate at a low temperature (<70°C using cathode arc plasma deposition (CAPD and the grey-relational Taguchi method was used to determine the processing parameters of ZnO thin films. The Taguchi method with an L9 orthogonal array, signal-to-noise (S/N ratio, and analysis of variance (ANOVA is employed to investigate the performances in the deposition operations. The effect and optimization of deposition parameters, comprising the Ar : O2 gas flow ratio of 1 : 6, 1 : 8, and 1 : 10, the arc current of 50 A, 60 A, and 70 A, and the deposition time of 5 min, 10 min, and 15 min, on the electrical resistivity and optical transmittance of the ZnO films are studied. The results indicate that, by using the grey-relational Taguchi method, the optical transmittance of ZnO thin films increases from 88.17% to 88.82% and the electrical resistivity decreases from 5.12×10-3Ω-cm to 4.38×10-3Ω-cm, respectively.

  11. Calculation of a vacuum system of the installation for cleaning the surface of metal rolling by a cathode spot of a vacuum arc

    Science.gov (United States)

    Kuznetsov, V. G.; Kurbanov, T. A.; Kostrin, D. K.

    2017-07-01

    In this work are presented the installations for cleaning the surface of rolled products (wire and ribbon) from scale and technological lubricant with gateway systems of open type. The calculation of gateway devices and the optimal selection of pumping systems are shown.

  12. Experimental Test Of Whether Electrostatically Charged Micro-organisms And Their Spores Contribute To The Onset Of Arcs Across Vacuum Gaps

    Energy Technology Data Exchange (ETDEWEB)

    none,; Grisham, Larry R.

    2014-02-24

    Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance

  13. The optimization of molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells by the cathodic arc ion plating method

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki, E-mail: choyk@kitech.re.kr [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Gang Sam; Song, Young Sik; Lim, Tae Hong [Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Jung, Donggeun [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2013-12-02

    Molybdenum back contact films for Cu(In,Ga)Se{sub 2} (CIGS) solar cells have been deposited using DC magnetron sputtering methods. The electronic pathway properties of the molybdenum film have been highly dependent on the working gas pressure in magnetron sputtering, which should be carefully controlled to obtain high conductivity and adhesion. A coating method, cathodic arc ion plating, was used for molybdenum back contact electrode fabrication. The aim of this work was to find a metallization method for CIGS solar cells, which has less sensitivity on the working pressure. The resistivity, grain size, growth structures, stress, and efficiency of the films in CIGS solar cells were investigated. The results reveal that the growth structures of the molybdenum films mainly affect the conductivity. The lowest electrical resistivity of the ion-plated molybdenum films was 6.9 μΩ-cm at a pressure of 0.7 Pa. The electrical resistivity variation showed a gently increasing slope with linearity under a working gas pressure of 13.3 Pa. However, a high value of the residual stress of over 1.3 GPa was measured. In order to reduce stress, titanium film was selected as the buffer layer material, and the back contact films were optimized by double-layer coating of two kinds of hetero-materials with arc ion plating. CIGS solar cells prepared molybdenum films to measure the efficiency and to examine the effects of the back contact electrode. The resistivity, grain size, and surface morphology of molybdenum films were measured by four-point probe, X-ray diffraction, and a scanning electron microscope. The residual stress of the films was calculated from differences in bending curvatures measured using a laser beam. - Highlights: • Molybdenum back contact films for Cu(In,Ga)Se{sub 2} solar cells were prepared by the cathodic arc ion plating. • The lowest electrical resistivity of molybdenum film was 6.9 μΩ-cm. • Titanium buffer layer reduced the compressive residual stress

  14. On the features of bursts of neutrons, hard x-rays and alpha-particles in the pulse vacuum discharge with a virtual cathode and self-organization

    Science.gov (United States)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu; Samoylov, I. S.; Ostashev, V. E.

    2015-11-01

    In this paper, we continue the discussion of the experimental results on the yield of DD neutrons and hard x-rays in the nanosecond vacuum discharge (NVD) with a virtual cathode, which was started in the previous article of this issue, and previously (Kurilenkov Y K et al 2006 J. Phys. A: Math. Gen. 39 4375). We have considered here the regimes of very dense interelectrode aerosol ensembles, in which diffusion of even hard x-rays is found. The yield of DD neutrons in these regimes is conditioned not only by the head-on deuteron-deuteron collisions in the potential well of virtual cathode, but also by the channel of “deuteron-deuterium cluster” reaction, which exceeds overall yield of neutrons per a shot by more than an order of magnitude, bringing it up to ∼ 107/(4π). Very bright bursts of hard x-rays are also represented and discussed here. Presumably, their nature may be associated with the appearance in the NVD of some properties of random laser in the x-ray spectrum. Good preceding agreeing of the experiment on the DD fusion in the NVD with its particle-in-cell (PIC) simulations provides a basis to begin consideration of nuclear burning “proton-boron” in the NVD, which will be accompanied by the release of alpha particles only. With this objective in view, there has been started the PIC-simulation of aneutronic burning of p-B11, and its preliminary results are presented.

  15. Analysis of the aging/stability process of organic solar cells based on PTB7:[70]PCBM and an alternative free-vacuum deposited cathode: the effect of active layer scaling

    Science.gov (United States)

    Barreiro-Argüelles, Denisse; Ramos-Ortiz, Gabriel; Maldonado, José-Luis L.; Romero-Borja, Daniel; Meneses-Nava, Marco-Antonio; Pérez-Gutiérrez, Enrique

    2017-08-01

    The PV performance and aging/stability of organic photovoltaic (OPV) devices based on the well-known system PTB7:[70]PCBM and an alternative air-stable electrode deposited at room conditions are fully studied when the active area is scaled by a factor of 25. On the other hand, the aging/stability processes were also studied through single diode model, impedance spectroscopy and light-beam induced current (LBIC) measurements in accordance with the established ISOS-D1 (dark storage) and ISOS-L1 (illumination conditions) protocols. Results are a good indication that the alternative cathode Field's metal (FM) cathode works as an encapsulating material and provides excellent PV performance comparable with the common and costly high-vacuum evaporated Al cathode.

  16. Growth feature of ionic nitrogen doped CN{sub x} bilayer films with Ti and TiN interlayer by pulse cathode arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Bing, E-mail: zhoubing@tyut.edu.cn [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Zhubo [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Piliptsou, D.G., E-mail: pdg_@mail.ru [International Chinese–Belarusian Scientific Laboratory on Vacuum-Plasma Technology, Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Nanjing University of Science and Technology, Nanjing 210094 (China); Rogachev, A.V. [International Chinese–Belarusian Scientific Laboratory on Vacuum-Plasma Technology, Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Nanjing University of Science and Technology, Nanjing 210094 (China); Yu, Shengwang; Wu, Yanxia; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Rudenkov, A.S. [International Chinese–Belarusian Scientific Laboratory on Vacuum-Plasma Technology, Francisk Skorina Gomel State University, Gomel 246019 (Belarus); Nanjing University of Science and Technology, Nanjing 210094 (China)

    2016-01-15

    Graphical abstract: - Highlights: • Ti/ and TiN/CN{sub x} (N{sup +}) bilayers are prepared at various frequencies by pulse cathode arc. • Ti interlayer facilitates the introduction of N atoms into the CN{sub x} (N{sup +}) films. • The most N-sp{sup 2}C bonds (mainly graphite-like N) present in the TiN/CN{sub x} (N{sup +}, 3 Hz) film. • Ti/CN{sub x} (N{sup +}, 3 Hz) bilayer possesses small size and disordering of Csp{sup 2} clusters. • The higher hardness and the lower stress presents in the TiN/CN{sub x} (N{sup +}, 10 Hz) bilayer. - Abstract: Using nano-scaled Ti and TiN as interlayer, ionic nitrogen doped carbon (CN{sub x} (N{sup +})) bilayer films were prepared at various pulse frequencies by cathode arc technique. Elemental distribution at the interface, bonding compositions, microstructure, and mechanical properties of CN{sub x} (N{sup +}) bilayer films were investigated in dependence of interlayer and pulse frequency by Auger electron spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, nanoindentation, and surface profilometer. The results showed that the diffusion extent of C atoms at the interface of CN{sub x} (N{sup +}) bilayers is higher than for the α-C and CN{sub x} (N{sub 2}) bilayers with the same interlayer. Nitrogen atoms could diffuse throughout the pre-deposited Ti and TiN layers into the Si substrate for all CN{sub x} (N{sup +}) bilayers. Ti interlayer facilitates the introduction of N atoms into the CN{sub x} (N{sup +}) films and exhibits a certain catalytic effect on the coordination of N atoms with sp{sup 2}- and sp{sup 3}-C binding. More nitrogenated and intense CN bonding configurations (mainly graphite-like N) form in the TiN/CN{sub x} (N{sup +}) bilayer. Ti/CN{sub x} (N{sup +}) bilayer prepared at low frequency possesses small size and disordering of Csp{sup 2} clusters but TiN interlayer weakens the formation of Csp{sup 2} bonding and increases the disordering of Csp{sup 2} clusters in the films. The residual

  17. Synthesis method for ultrananocrystalline diamond in powder employing a coaxial arc plasma gun

    Science.gov (United States)

    Naragino, Hiroshi; Tominaga, Aki; Hanada, Kenji; Yoshitake, Tsuyoshi

    2015-07-01

    A new method that enables us to synthesize ultrananocrystalline diamond (UNCD) in powder is proposed. Highly energetic carbon species ejected from a graphite cathode of a coaxial arc plasma gun were provided on a quartz plate at a high density by repeated arc discharge in a compact vacuum chamber, and resultant films automatically peeled from the plate were aggregated and powdered. The grain size was easily controlled from 2.4 to 15.0 nm by changing the arc discharge energy. It was experimentally demonstrated that the proposed method is a new and promising method that enables us to synthesize UNCD in powder easily and controllably.

  18. Effect of oxygen incorporation on the structure and elasticity of Ti-Al-O-N coatings synthesized by cathodic arc and high power pulsed magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.; Ebenhöch, J.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Primetzhofer, D. [Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, S-75120 Uppsala (Sweden); Kurapov, D.; Arndt, M.; Rudigier, H. [Oerlikon Balzers Coating AG, Iramali 18, LI-9496 Balzers, Principality of Liechtenstein (Liechtenstein)

    2014-09-07

    Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies. Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.

  19. Ion confinement in laser-initiated vacuum arcs and advanced thermonuclear fuel studies. Final report, April 15, 1977-February 15, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, J L

    1981-03-01

    Experimental investigations were carried out of magneto-electrostatic confinement in laser-initiated vacuum arcs. Over a range of laser powers and discharge currents, inhibition in escape of energetic C/sup +/-C/sup 4 +/ ions was observed simultaneously in several directions. The ion confinement was observed to scale with the energy of the laser produced ions and the discharge voltage (i.e. anode sheath voltage). A numerical code was developed for determining fast proton coulomb slowing in a hot target plasma of lithium, boron, or berillium. This code showed that, under very optimistc conditions, F values in excess of unity appear possible for a catalyzed p-/sup 6/Li two component reactor.

  20. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  1. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Helge, E-mail: lux@th-wildau.de; Schrader, Sigurd [Technical University of Applied Sciences Wildau, Hochschulring 1, Wildau 15745 (Germany); Siemroth, Peter [Arc Precision GmbH, Schwartzkopffstraße 2, Wildau 15745 (Germany); Sgarlata, Anna [Department of Physics, University of Roma - Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133 (Italy); Prosposito, Paolo; Casalboni, Mauro [Department of Industrial Engineering, University of Roma - Tor Vergata, and Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata Via del Politecnico 1, Roma 00133 (Italy); Schubert, Markus Andreas [IHP Innovations for High Performance Microelectronics, Im Technologiepark 25, Frankfurt (Oder) 15236 (Germany)

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  2. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    Science.gov (United States)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  3. Microfabricated triggered vacuum switch

    Science.gov (United States)

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  4. Opening Electrical Contacts: The Transition from the Molten Metal Bridge to the Electric Arc

    Science.gov (United States)

    Slade, Paul G.

    This paper presents a comprehensive explanation of the formation of the electric arc between opening contacts in a current carrying electric circuit. As the contacts begin to open a molten metal bridge forms between them. The rupture of this bridge and the initial formation of the electric arc are studied in both atmospheric air and vacuum using experiments to determine the direction of metal transfer between the contacts as a function of time after the rupture of the molten metal bridge. High speed streak photography is also used to show the rupture of the molten metal bridge and the initial formation of the electric arc. Analysis of these data show that a very high-pressure, high-temperature metal vapor zone exists between the contacts after the rupture of the molten metal bridge. Under this condition a pseudo-arc forms where current is carried by metal ions and an anomalous, high net transfer of metal to the cathodic contact occurs. The pressure in this region decreases rapidly and there is a transition to the usual electric arc, which still operates in the metal vapor. In this arc the current is now mostly carried by electrons. The data shows that there is still a net transfer of metal to the cathode, but now its volume is a function of the arcing time.

  5. The electrical, elemental, optical, and surface properties of Si-doped ZnO thin films prepared by thermionic vacuum arc

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Özen, Soner; Yudar, Hafizittin Hakan; Pat, Suat; Korkmaz, Şadan

    2017-09-01

    The purpose of this work is to study the properties of Si-doped ZnO (SZO) thin films, which were prepared using the non-reactive thermionic vacuum arc technique. The analysis of the elemental, optical, and surface properties of ZnO:Si thin films was carried out using energy dispersive x-ray spectroscopy, UV-VIS spectrophotometry, atomic force microscopy, and scanning electron microscopy, respectively. The current-voltage measurement was employed in order to study the electrical properties of the films. The effect of Si doping on the physical properties of ZnO films was investigated. The film thicknesses were measured as 55 and 35 nm for glass and PET substrates, respectively. It was clearly observed from the x-ray diffraction results that the Si and ZnO peaks were present in the coated SZO films for all samples. The morphological studies showed that the deposited surfaces are homogenous, dense, and have a uniform surface, with the existence of some cracks only on the glass substrate. The elemental composition has confirmed the existence of Zn, Si, and O elements within the prepared films. Using a UV-VIS spectrophotometer, the optical parameters such as transmittance, absorbance, refractive index, and reflectance were calculated. It should be noted that the transparency and refractive indices obtained from the measurements decrease with increasing Si concentration. The obtained optical bandgap values using transmittance spectra were determined to be 3.74 and 3.84 eV for the glass and PET substrates, respectively. An increase in the bandgap results demonstrates that the Si doping concentration is comparable to the pure ZnO thin films. The current versus voltage curves revealed the ohmic nature of the films. Subsequently, the development and fabrication of excellent transparent conducting electrodes enabled the appropriate use of Si-doped ZnO thin films.

  6. Arc model for slag coated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Satheesh Kumar, A.; Gupta, B.; Tewari, D.P. [Department of Physics, IIT, New Delhi (India)

    1998-12-31

    A model for arcs in the cathode region in the presence of a slag layer is given. The arc has been assumed to be comprised of two sections; one in the slag layer and the other in the plasma boundary layer. A model for the arc consisting of an arc column, a spreading region and a diffuse region has been considered. The dimensions of the arc, such as arc height and diameter, have been obtained. The boundary layer voltage drop, comprised of the arc column voltage drop, spreading region voltage drop and diffuse region drop, and the arc current have also been obtained. (Author)

  7. Vacuum electronics

    CERN Document Server

    Eichmeier, Joseph A

    2008-01-01

    Nineteen experts from the electronics industry, research institutes and universities have joined forces to prepare this book. ""Vacuum Electronics"" covers the electrophysical fundamentals, the present state of the art and applications, as well as the future prospects of microwave tubes and systems, optoelectronics vacuum devices, electron and ion beam devices, light and X-ray emitters, particle accelerators and vacuum interrupters. These topics are supplemented by useful information about the materials and technologies of vacuum electronics and vacuum technology.

  8. Atmospheric pressure arc discharge with ablating graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Nemchinsky, V. A. [Keiser University, Fort Lauderdale Campus, FL, 33309, USA; Raitses, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  9. ???????? ??????? ???????? ????? ?? ?????? ArcGIS ??? ?????? ??????????????? ?????????? ????? ???????????? ?????????? ???????????

    OpenAIRE

    ?????, ?.; ???????????, ?.; ????????, ?.

    2016-01-01

    ?????????? ?????? ????????? ???????????????? ??????? ??? ???????? ????? ??? ???????????? ????????? ????? ?????? ?? ????????? ???????????? ?????????? ???????????. ??????? ??????? ??????? ???????, ???????????? ?? ???? ??????????? ???????????? ArcGIS. ?????????? ?????????? ?????????? ???????? ?? ??????????? ?????????? ? ????????????? ??????? ArcGIS Online ?? ??????? Collector for ArcGIS. ???????? ???? ???????? ????????????????? ??????? ??? ????? ?????? ? ?????????????? ?????? ????? ???????? ?? ?...

  10. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validationof the developed OSATS scale for vacuum...

  11. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    Science.gov (United States)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  12. Influence of N{sub 2} partial pressure on structural and microhardness properties of TiN/ZrN multilayers deposited by Ar/N{sub 2} vacuum arc discharge

    Energy Technology Data Exchange (ETDEWEB)

    Naddaf, M., E-mail: ascientific24@aec.org.sy [Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus (Syrian Arab Republic); Abdallah, B. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); Ahmad, M. [IBA Laboratory, Department of Chemistry, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic); A-Kharroub, M. [Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2016-08-15

    The influence of N{sub 2} partial pressure on structural, mechanical and wetting properties of multilayered TiN/ZrN thin films deposited on silicon substrates by vacuum arc discharge of (N{sub 2} + Ar) gas mixtures is investigated. X-ray diffraction (XRD) results show that the average texturing coefficient of (1 1 1) orientation and the grain size of both TiN and ZrN individual layers increase with increasing the N{sub 2} partial pressure. The Rutherford back scattering (RBS) measurements and analysis reveal that incorporation of the nitrogen in the film increases with increasing the N{sub 2} partial pressure and both TiN and ZrN individual layers have a nitrogen over-stoichiometry for N{sub 2} partial pressure ⩾50%. The change in the film micro-hardness is correlated to the changes in crystallographic texture, grain size, stoichiometry and the residual stress in the film as a function of the N{sub 2} partial pressure. In particular, stoichiometry of ZrN and TiN individual is found to play the vital role in determining the multilayer hardness. The multilayer film deposited at N{sub 2} partial pressure of 25% has the best stoichiometric ratio of both TiN and ZrN layers and the highest micro-hardness of about 32 GPa. In addition, water contact angle (WCA) measurements and analysis show a decrease in the work of adhesion on increasing the N{sub 2} partial pressure.

  13. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  14. VACUUM TRAP

    Science.gov (United States)

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  15. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  16. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  17. Elastomeric Cathode Binder

    Science.gov (United States)

    Yen, S. P. S.; Shen, D. S.; Somoano, R. B.

    1985-01-01

    Soluble copolymer binder mixed with cathode material and solvent forms flexible porous cathode used in lithium and Ni/Cd batteries. Cathodes prepared by this process have lower density due to expanding rubbery binder and greater flexibility than conventional cathodes. Fabrication procedure readily adaptable to scaled-up processes.

  18. Microscale Digital Vacuum Electronic Gates

    Science.gov (United States)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  19. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    Science.gov (United States)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  20. Nanotube cathodes.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Lockner, Thomas Ramsbeck; Siegal, Michael P.; Miller, Paul Albert

    2006-11-01

    Carbon nanotubes have shown promise for applications in many diverse areas of technology. In this report we describe our efforts to develop high-current cathodes from a variety of nanotubes deposited under a variety of conditions. Our goal was to develop a one-inch-diameter cathode capable of emitting 10 amperes of electron current for one second with an applied potential of 50 kV. This combination of current and pulse duration significantly exceeds previously reported nanotube-cathode performance. This project was planned for two years duration. In the first year, we tested the electron-emission characteristics of nanotube arrays fabricated under a variety of conditions. In the second year, we planned to select the best processing conditions, to fabricate larger cathode samples, and to test them on a high-power relativistic electron beam generator. In the first year, much effort was made to control nanotube arrays in terms of nanotube diameter and average spacing apart. When the project began, we believed that nanotubes approximately 10 nm in diameter would yield sufficient electron emission properties, based on the work of others in the field. Therefore, much of our focus was placed on measured field emission from such nanotubes grown on a variety of metallized surfaces and with varying average spacing between individual nanotubes. We easily reproduced the field emission properties typically measured by others from multi-wall carbon nanotube arrays. Interestingly, we did this without having the helpful vertical alignment to enhance emission; our nanotubes were randomly oriented. The good emission was most likely possible due to the improved crystallinity, and therefore, electrical conductivity, of our nanotubes compared to those in the literature. However, toward the end of the project, we learned that while these 10-nm-diameter CNTs had superior crystalline structure to the work of others studying field emission from multi-wall CNT arrays, these nanotubes still

  1. Invariant vacuum

    Science.gov (United States)

    Robles-Pérez, Salvador

    2017-11-01

    We apply the Lewis-Riesenfeld invariant method for the harmonic oscillator with time dependent mass and frequency to the modes of a charged scalar field that propagates in a curved, homogeneous and isotropic spacetime. We recover the Bunch-Davies vacuum in the case of a flat DeSitter spacetime, the equivalent one in the case of a closed DeSitter spacetime and the invariant vacuum in a curved spacetime that evolves adiabatically. In the three cases, it is computed the thermodynamical magnitudes of entanglement between the modes of the particles and antiparticles of the invariant vacuum, and the modification of the Friedmann equation caused by the existence of the energy density of entanglement. The amplitude of the vacuum fluctuations are also computed.

  2. Cosmic vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Chernin, Artur D [P.K. Shternberg State Astronomical Institute at the M.V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2001-11-30

    Recent observational studies of distant supernovae have suggested the existence of cosmic vacuum whose energy density exceeds the total density of all the other energy components in the Universe. The vacuum produces the field of antigravity that causes the cosmological expansion to accelerate. It is this accelerated expansion that has been discovered in the observations. The discovery of cosmic vacuum radically changes our current understanding of the present state of the Universe. It also poses new challenges to both cosmology and fundamental physics. Why is the density of vacuum what it is? Why do the densities of the cosmic energy components differ in exact value but agree in order of magnitude? On the other hand, the discovery made at large cosmological distances of hundreds and thousands Mpc provides new insights into the dynamics of the nearby Universe, the motions of galaxies in the local volume of 10 - 20 Mpc where the cosmological expansion was originally discovered. (reviews of topical problems)

  3. Vacuum II

    CERN Document Server

    Franchetti, G

    2013-01-01

    This paper continues the presentation of pumps begun in ‘Vacuum I’. The main topic here is gauges and partial-pressure measurements. Starting from the kinetics of gases, the various strategies for measuring vacuum pressures are presented at an introductory level, with some reference to hardware devices. Partial-pressure measurement techniques are introduced, showing that the principles of ion selection have a direct similarity to particle dynamics in accelerators.

  4. Driven Motion and Instability of an Atmospheric Pressure Arc

    Energy Technology Data Exchange (ETDEWEB)

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  5. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  6. PRODUCTION OF CATHODES AND HIGH PURITY TARGETS OF CHEMICALLY ACTIVE METALS BY MEANS OF ELECTRONIC-RAY MELTING

    Directory of Open Access Journals (Sweden)

    A. V. Alifanov

    2007-01-01

    Full Text Available The technical process of production and restoration of worn cathodes and targets of chemically active metals (Ti, Zr, V and others with the help of cathode ray in vacuum is developed. Regenerating of worn cathodes, targets is carried out by means of insertion in chill of worn base and successive cathode ray deposition on certain places of required quantity of metal (from 2 till 50mm.

  7. Vacuum Valve

    CERN Multimedia

    1974-01-01

    This valve was used in the Intersecting Storage Rings (ISR) to protect against the shock waves that would be caused if air were to enter the vacuum tube. Some of the ISR chambers were very fragile, with very thin walls - a design required by physicists on the lookout for new particles.

  8. DARHT 2 kA Cathode Development

    Energy Technology Data Exchange (ETDEWEB)

    Henestroza, E.; Houck, T.; Kwan, J.W.; Leitner, M.; Miram, G.; Prichard, B.; Roy, P.K.; Waldron, W.; Westenskow, G.; Yu, S.; Bieniosek, F.M.

    2009-03-09

    In the campaign to achieve 2 kA of electron beam current, we have made several changes to the DARHT-II injector during 2006-2007. These changes resulted in a significant increase in the beam current, achieving the 2 kA milestone. Until recently (before 2007), the maximum beam current that was produced from the 6.5-inch diameter (612M) cathode was about 1300 A when the cathode was operating at a maximum temperature of 1140 C. At this temperature level, the heat loss was dominated by radiation which is proportional to temperature to the fourth power. The maximum operating temperature was limited by the damage threshold of the potted filament and the capacity of the filament heater power supply, as well as the shortening of the cathode life time. There were also signs of overheating at other components in the cathode assembly. Thus it was clear that our approach to increase beam current could not be simply trying to run at a higher temperature and the preferred way was to operate with a cathode that has a lower work function. The dispenser cathode initially used was the type 612M made by SpectraMat. According to the manufacturer's bulletin, this cathode should be able to produce more than 10 A/cm{sup 2} of current density (corresponding to 2 kA of total beam current) at our operating conditions. Instead the measured emission (space charge limited) was 6 A/cm{sup 2}. The result was similar even after we had revised the activation and handling procedures to adhere more closely to the recommend steps (taking longer time and nonstop to do the out-gassing). Vacuum was a major concern in considering the cathode's performance. Although the vacuum gauges at the injector vessel indicated 10{sup -8} Torr, the actual vacuum condition near the cathode in the central region of the vessel, where there might be significant out-gassing from the heater region, was never determined. Poor vacuum at the surface of the cathode degraded the emission (by raising the work function

  9. Driven motion and instability of an atmospheric pressure arc

    Science.gov (United States)

    Karasik, Max

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental are furnace is constructed and operated in air with graphite cathode and steel anode at currents 100--250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes. Experiments are carried out on the response of the are to applied transverse DC and AC (up to ≈1 kHz) magnetic fields. The arc is found to deflect parabolically for DC field and assumes a growing sinusoidal structure for AC field. A simple analytic two-parameter fluid model of the are dynamics is derived, in which the inertia of the magnetically pumped cathode jet balances the applied J⃗xB⃗ force. Time variation of the applied field allows evaluation of the parameters individually. A fit of the model to the experimental data gives a value for the average jet speed an order of magnitude below Maecker's estimate of the maximum jet speed. A spontaneous instability of the same arc is investigated experimentally and modeled analytically. The presence of the instability is found to depend critically on cathode dimensions. For cylindrical cathodes, instability occurs only for a narrow range of cathode diameters. Cathode spot motion is proposed as the mechanism of the instability. A simple fluid model combining the effect of the cathode spot motion and the inertia of the cathode jet successfully describes the arc shape during low amplitude instability. The amplitude of cathode spot motion required by the model is in agreement with measurements. The average jet velocity required is approximately equal to that inferred from the transverse magnetic field experiments. Reasons for spot motion and for cathode

  10. Electrode voltage fall and total voltage of a transient arc

    Science.gov (United States)

    Valensi, F.; Ratovoson, L.; Razafinimanana, M.; Masquère, M.; Freton, P.; Gleizes, A.

    2016-06-01

    This paper deals with an experimental study of the components of a transient arc total voltage with duration of a few tens of ms and a current peak close to 1000 A. The cathode tip is made of graphite whereas the flat anode is made either of copper or of graphite; the electrodes gap is a few mm. The analysis of the electrical parameters is supported and validated by fast imaging and by two models: the first one is a 2D physical model of the arc allowing to calculate both the plasma temperature field and the arc voltage; the second model is able to estimate the transient heating of the graphite electrode. The main aim of the study was to detect the possible change of the cathode voltage fall (CVF) during the first instants of the arc. Indeed it is expected that during the first ms the graphite cathode is rather cool and the main mechanism of the electron emission should be the field effect emission, whereas after several tens of ms the cathode is strongly heated and thermionic emission should be predominant. We have observed some change in the apparent CVF but we have shown that this apparent change can be attributed to the variation of the solid cathode resistance. On the other hand, the possible change of CVF corresponding to the transition between a ‘cold’ and a ‘hot’ cathode should be weak and could not be characterized considering our measurement uncertainty of about 2 V. The arc column voltage (ACV) was estimated by subtracting the electrode voltage fall from the total arc voltage. The experimental transient evolution of the ACV is in very good agreement with the theoretical variation predicted by the model, showing the good ability of the model to study this kind of transient arc.

  11. Phenomenology of plasma engine cathodes at high current rates and low pressures

    Science.gov (United States)

    Huegel, H.; Kruelle, G.

    1984-01-01

    The effects of low surrounding pressures on cathodes of arc jet engines with electromagnetic acceleration are investigated for pressure and current energies of 20 to 100 Torr. and 400 to 1000 A. Experiments with 50 mm long and 8 mm diameter tungsten-thorium cathode in a coaxial gas flow show that pre-heating of the cathode reduces the duration of the instable arc discharge and thus material loss. The use of lighter gases also reduces instability effects, as well as the use of increased pressures and a massive gas influx.

  12. Cathodic Protection Model Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs Navy design and engineering of ship and submarine impressed current cathodic protection (ICCP) systems for underwater hull corrosion control and...

  13. Testing Iodine as a New Fuel for Cathodes

    Science.gov (United States)

    Glad, Harley; Branam, Richard; Rogers, Jim; Warren, Matthew; Burleson, Connor; Siy, Grace

    2017-11-01

    The objective of this research is to demonstrate the viability of using iodine as an alternative space propulsion propellant. The demonstration requires the testing of a cathode with xenon and then the desired element iodine. Currently, cathodes run on noble gases such as xenon which must be stored in high pressure canisters and is very expensive. These shortcomings have led to researching possible substitutes. Iodine was decided as a suitable candidate because it's cheaper, can be stored as a solid, and has similar mass properties as xenon. In this research, cathodes will be placed in a vacuum chamber and operated on both gases to observe their performance, allowing us to gain a better understanding of iodine's behavior. Several planned projects depend on the knowledge gained from this project, such as larger scaled tests and iodine fed hall thrusters. The tasks of this project included protecting the stainless-steel vacuum chamber by gold plating and Teflon® coating, building a stand to hold the cathode, creating an anode resistant to iodine, and testing the cathode once setup was complete. The successful operation of the cathode was demonstrated. However, the experimental setup proved ineffective at controlling the iodine flow. Current efforts are focused on this problem. REU Site: Fluid Mechanics with Analysis using Computations and Experiments NSF Grant EEC 1659710.

  14. Compact Rare Earth Emitter Hollow Cathode

    Science.gov (United States)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    A compact, high-current, hollow cathode utilizing a lanthanum hexaboride (LaB6) thermionic electron emitter has been developed for use with high-power Hall thrusters and ion thrusters. LaB6 cathodes are being investigated due to their long life, high current capabilities, and less stringent xenon purity and handling requirements compared to conventional barium oxide (BaO) dispenser cathodes. The new cathode features a much smaller diameter than previously developed versions that permit it to be mounted on axis of a Hall thruster ( internally mounted ), as opposed to the conventional side-mount position external to the outer magnetic circuit ("externally mounted"). The cathode has also been reconfigured to be capable of surviving vibrational loads during launch and is designed to solve the significant heater and materials compatibility problems associated with the use of this emitter material. This has been accomplished in a compact design with the capability of high-emission current (10 to 60 A). The compact, high-current design has a keeper diameter that allows the cathode to be mounted on the centerline of a 6- kW Hall thruster, inside the iron core of the inner electromagnetic coil. Although designed for electric propulsion thrusters in spacecraft station- keeping, orbit transfer, and interplanetary applications, the LaB6 cathodes are applicable to the plasma processing industry in applications such as optical coatings and semiconductor processing where reactive gases are used. Where current electrical propulsion thrusters with BaO emitters have limited life and need extremely clean propellant feed systems at a significant cost, these LaB6 cathodes can run on the crudest-grade xenon propellant available without impact. Moreover, in a laboratory environment, LaB6 cathodes reduce testing costs because they do not require extended conditioning periods under hard vacuum. Alternative rare earth emitters, such as cerium hexaboride (CeB6) can be used in this

  15. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel

    Science.gov (United States)

    Park, Hunkwan; Trautmann, Marcus; Tanaka, Keigo; Tanaka, Manabu; Murphy, Anthony B.

    2017-11-01

    A computational model of the mixing of multiple metal vapours, formed by vaporization of the surface of an alloy workpiece, into the thermal arc plasma in gas tungsten arc welding (GTAW) is presented. The model incorporates the combined diffusion coefficient method extended to allow treatment of three gases, and is applied to treat the transport of both chromium and iron vapour in the helium arc plasma. In contrast to previous models of GTAW, which predict that metal vapours are swept away to the edge of the arc by the plasma flow, it is found that the metal vapours penetrate strongly into the arc plasma, reaching the cathode region. The predicted results are consistent with published measurements of the intensity of atomic line radiation from the metal vapours. The concentration of chromium vapour is predicted to be higher than that of iron vapour due to its larger vaporization rate. An accumulation of chromium vapour is predicted to occur on the cathode at about 1.5 mm from the cathode tip, in agreement with published measurements. The arc temperature is predicted to be strongly reduced due to the strong radiative emission from the metal vapours. The driving forces causing the diffusion of metal vapours into the helium arc are examined, and it is found that diffusion due to the applied electric field (cataphoresis) is dominant. This is explained in terms of large ionization energies and the small mass of helium compared to those of the metal vapours.

  16. Fluid simulation of carbon arc plasma

    Science.gov (United States)

    Hara, Kentaro; Raitses, Yevgeny; Kaganovich, Igor

    2016-09-01

    An arc discharge using graphite electrodes is known to produce carbon nanomaterials, e.g. nanotubes and fullerenes. In order to understand where and how such nanomaterials are synthesized, the plasma properties inside the arc discharge must be characterized. The mechanism of the carbon arc plasma is as follows. Carbon particles evaporate from the graphite anode, which is mainly heated by the electrons. Carbon atoms and ions condensate and form a deposit on the cathode, from which the electrons are thermionically emitted. A one-dimensional fluid model is developed to study the characteristics of the carbon arc plasma in atmospheric pressures. Sheath models for the anode and cathode are coupled to the fluid simulation to obtain the material temperature and sheath potential. In the model, thermal nonequilibrium is assumed and atomic carbon, dimer, and trimer are considered. A typical operating condition of a carbon arc plasma is discharge voltage of 20 V, discharge current of 60 A, the electron radius of 6 to 12 mm, and background pressure of 500 Torr. Transition from low to high ablation mode is obtained from the simulations with a smaller electrode radius and with a larger discharge current, which agrees with experimental observations. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  17. Influence of a Scanning Radial Magnetic Field on Macroparticle Reduction of Arc Ion-Plated Films

    Directory of Open Access Journals (Sweden)

    Shuhao Wang

    2018-01-01

    Full Text Available Cathode spot motion influences the physical characteristics of arc plasma and the related macroparticles (MPs in resultant films; these MPs limit the application of arc ion plating (AIP. In this paper, a scanning radial magnetic field (SRMF was applied to the cathode surface to control the cathode spot motion and reduce the MP contamination in the deposited films. It was shown that film surface morphologies prepared using SRMF were better than those using a static radial magnetic field (RMF. The improvement was greater with increased scanning range and frequency. Using SRMF, cathode spot motion was confined to a spiral trajectory on the cathode surface and the spots moved over a large area and at a fast-moving velocity. Both the large moving area and the fast velocity decreased the temperature on the cathode surface and thus reduced the emission of the MPs.

  18. Testing a GaAs cathode in SRF gun

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.; Kewisch, J.; Ben-Zvi, I.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2011-03-28

    RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1/2 cell SRF gun, the vacuum can be maintained at nearly 10{sup -12} Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun. Future particle accelerators, such as eRHIC and the ILC require high-brightness, high-current polarized electrons. Strained superlattice GaAs:Cs has been shown to be an efficient cathode for producing polarized electrons. Activation of GaAs with Cs,O(F) lowers the electron affinity and makes it energetically possible for all the electrons, excited into the conduction band that drift or diffuse to the emission surface, to escape into the vacuum. Presently, all operating polarized electron sources, such as the CEBAF, are DC guns. In these devices, the excellent ultra-high vacuum extends the lifetime of the cathode. However, the low field gradient on the photocathode's emission surface of the DC guns limits the beam quality. The higher accelerating gradients, possible in the RF guns, generate a far better beam. Until recently, most RF guns operated at room temperature, limiting the vacuum to {approx}10{sup -9} Torr. This destroys the GaAs's NEA surface. The SRF guns combine the excellent vacuum conditions of DC guns and

  19. Methods and apparatuses for making cathodes for high-temperature, rechargeable batteries

    Science.gov (United States)

    Meinhardt, Kerry D; Sprenkle, Vincent L; Coffey, Gregory W

    2014-05-20

    The approaches for fabricating cathodes can be adapted to improve control over cathode composition and to better accommodate batteries of any shape and their assembly. For example, a first solid having an alkali metal halide, a second solid having a transition metal, and a third solid having an alkali metal aluminum halide are combined into a mixture. The mixture can be heated in a vacuum to a temperature that is greater than or equal to the melting point of the third solid. When the third solid is substantially molten liquid, the mixture is compressed into a desired cathode shape and then cooled to solidify the mixture in the desired cathode shape.

  20. Mechanical properties and scratch resistance of filtered-arc-deposited titanium oxide thin films on glass

    Energy Technology Data Exchange (ETDEWEB)

    Borrero-Lopez, Oscar, E-mail: oborlop@unex.es [Departamento de Ingenieria Mecanica, Energetica y de los Materiales, Universidad de Extremadura, 06071, Badajoz (Spain); School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Hoffman, Mark [School of Materials Science and Engineering, University of New South Wales NSW 2052, Sydney (Australia); Bendavid, Avi; Martin, Phil J. [CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield NSW 2070 (Australia)

    2011-09-01

    The mechanical properties and the scratch resistance of titanium oxide (TiO{sub 2}) thin films on a glass substrate have been investigated. Three films, with crystalline (rutile and anatase) and amorphous structures, were deposited by the filtered cathodic vacuum arc deposition technique on glass, and characterized by means of nanoindentation and scratch tests. The different damage modes (arc-like, longitudinal and channel cracks in the crystalline films; Hertzian cracks in the amorphous film) were assessed by means of optical and focused ion beam microscopy. In all cases, the deposition of the TiO{sub 2} film improved the contact-mechanical properties of uncoated glass. Crystalline films were found to possess a better combination of mechanical properties (i.e. elastic modulus up to 221 GPa, hardness up to 21 GPa, and fracture strength up to 3.6 GPa) than the amorphous film. However, under cyclic sliding contact above the critical fracture load, the amorphous film was found to withstand a higher number of cycles. The results are expected to provide useful insight for the design of optical coatings with improved contact-damage resistance.

  1. Ferroelectric Cathodes in Transverse Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  2. Design of the Vacuum Feedthrough for the EAST ICRF Antenna

    Science.gov (United States)

    Yang, Qingxi; Song, Yuntao; Wu, Songtao; Zhao, Yanping

    2011-04-01

    Detailed design of the vacuum feedthrough for the ion cyclotron radio frequency (ICRF) antenna in EAST, along with an electro-analysis and thermal structural analysis, is presented. The electric field, the voltage standing wave ratio (VSWR) and the stresses in the vacuum feedthrough are studied. A method using the rings of oxygen-free copper as the cushion and macro-beam plasma arc welding is applied in the assembly to protect the ceramic from being damaged during welding. The vacuum leak test on the prototype of vacuum feedthrough is introduced.

  3. Vacuum phenomenon.

    Science.gov (United States)

    Yanagawa, Youichi; Ohsaka, Hiromichi; Jitsuiki, Kei; Yoshizawa, Toshihiko; Takeuchi, Ikuto; Omori, Kazuhiko; Oode, Yasumasa; Ishikawa, Kouhei

    2016-08-01

    This article describes the theory of the formation of the vacuum phenomenon (VP), the detection of the VP, the different medical causes, the different locations of the presentation of the VP, and the differential diagnoses. In the human body, the cavitation effect is recognized on radiological studies; it is called the VP. The mechanism responsible for the formation of the VP is as follows: if an enclosed tissue space is allowed to expand as a rebound phenomenon after an external impact, the volume within the enclosed space will increase. In the setting of expanding volume, the pressure within the space will decrease. The solubility of the gas in the enclosed space will decrease as the pressure of the space decreases. Decreased solubility allows a gas to leave a solution. Clinically, the pathologies associated with the VP have been reported to mainly include the normal joint motion, degeneration of the intervertebral discs or joints, and trauma. The frequent use of CT for trauma patients and the high spatial resolution of CT images might produce the greatest number of chances to detect the VP in trauma patients. The VP is observed at locations that experience a traumatic impact; thus, an analysis of the VP may be useful for elucidating the mechanism of an injury. When the VP is located in the abdomen, it is important to include perforation of the digestive tract in the differential diagnosis. The presence of the VP in trauma patients does not itself influence the final outcome.

  4. Lanthanum Manganate Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Jørgensen, Mette Juhl

    medium frequency process in the impedance spectra, were observed. A low frequency arc related to gas diffusion limitation in a stagnant gas layer above the composite structure was detected. Finally, an inductive process, assumed to be connected to an activation process involving segregates at the triple......Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained...... phase boundary between electrode, electrolyte and gas phase, was found. Suggestions for further experiments and for modelling of the oxygen reduction mechanism are given....

  5. The use of hollow cathodes in deposition processes: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Muhl, Stephen, E-mail: muhl@unam.mx; Pérez, Argelia

    2015-03-31

    The first report of a discharge in a hollow cathode was by F. Paschen in 1916. That study showed that such a system was capable of producing a high electron flux and relatively low ion and neutral temperatures. About 40 years later, the work of Lidsky and others showed that hollow cathode arc discharges were one of the best plasma sources available at that time. The term “hollow cathode discharges” has commonly been used in reference to almost any discharge in a cathode with a cavity-like geometry, such that the plasma was enclosed or partially bound by the electrode walls that were at the cathode potential. Just as the magnetic field trapping of the electrons in a magnetron cathode results in an increase in the plasma density, in the hollow cathode, the reduced electron loss due to the geometry of the cathode also results in a higher plasma density. At least three types of discharge can be established in a hollow cathode. At low power and/or at relatively low gas pressures, the plasma is a “conventional” discharge characterized by low currents and medium to high voltages (we will call this a discharge in a hollow cathode or D-HC). Even this type of plasma has a higher density than a normal planar parallel-plate or magnetron system because the hollow geometry strongly reduces the loss of electrons. Using an adequate combination of gas pressure and applied power with a given hollow cathode diameter, or separation of the cathode surface, the negative glow of the plasma can expand to occupy the majority of the interior volume of the cathode. Under this condition the plasma current can, for the same voltage, be 100 to 1000 times the value of the “simple” D-HC discharge, and the plasma density is correspondingly larger (we call this a hollow cathode discharge or HCD). If the cathode is not cooled, the discharge can transform into a dispersed arc as the electrode temperature increases and thermal-field electron emission becomes an important additional source

  6. HIGH TEMPERATURE VACUUM MIXER

    Directory of Open Access Journals (Sweden)

    E. D. Chertov

    2015-01-01

    Full Text Available The work is devoted to the creation of a new type of mixer to produce homogeneous mixtures of dissimilar materials applied to recycling of housing and communal services waste. The article describes the design of a dual-chamber device of the original high-temperature vacuum mixer, there investigated the processes occurring in the chambers of such devices. The results of theoretical and experimental research of the process of mixing recycled polyethylene with a mixture of "grinded food waste – Eco wool” are presented. The problem of the optimum choice of bending the curvilinear blades in the working volume of the seal, which is achieved by setting their profile in the form of involute arc of several circles of different radii, is examined . The dependences, allowing to define the limits of the changes of the main mode parameters the angular velocity of rotation of the working body of the mixer using two ways of setting the profile of the curvilinear blade mixer are obtained. Represented design of the mixer is proposed to use for a wide range of tasks associated with the mixing of the components with a strongly pronounced difference of physic al chemical properties and, in particular, in the production of composites out of housing and communal services waste.

  7. Nanostructured sulfur cathodes

    KAUST Repository

    Yang, Yuan

    2013-01-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. © 2013 The Royal Society of Chemistry.

  8. Nanostructured sulfur cathodes.

    Science.gov (United States)

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-07

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes.

  9. Overvoltages during switching operations of vacuum switching devices

    Directory of Open Access Journals (Sweden)

    Vukelja Petar

    2013-01-01

    Full Text Available This paper presents the results of experimental studies of voltage phenomena in the switching operations of vacuum switching devices made by various manufacturers in several different configurations of 6 kV, 10 kV, 20 kV and 35 kV networks. During switching-on operations of the inductive loads, re-ignition of the electric arc between the contacts of the vacuum switching devices appears. Each arc ignition appearance leads to overvoltages with gradients close to those of lightning overvoltages. Switching-off operations of the inductive loads with vacuum switching devices leads to the cutting of the current before it passed through a natural zero and the appearance of multiple re-ignition of the arc between their contacts. All this leads to significant overvoltages on the equipment insulation. The analysis of surges in the studied networks, and the measures and means to reduce the stress of isolation are proposed.

  10. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    Science.gov (United States)

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically.

  11. Advanced structure of cathode for gas discharge lamp of super high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kruglenya, P.A.; Maslennikov, O.Y

    2003-06-15

    This paper presents a new cathode structure for short length arc-plasma circular lamp DRKs2-1500 filled with mercury-xenon of super high pressure. A conventional cathode of thoriated tungsten was replaced by a new structure of tungsten-barium. This cathode has emitting surface of cavity form which enables to reduce active material evaporation from the surface and to increase emission stability. It was found that light parameters of the lamp depend on the geometry of its electrodes. Fusing and evaporation of the cathode material result in a cathode size change and lead to changes of arc-plasma parameters, blackening of the lamp envelope and decreasing luminous flux intensity. The tests showed that the lamp service life with the new cathode grows as much as 2-3 times. Optimization of the cathode cavity geometric size is expected to enlarge the lamp service life up to 3000-5000 h (guaranteed service life of a lamp with usual structure of cathode is 500 h)

  12. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    Science.gov (United States)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  13. Suppression of shunting current in a magnetically insulated coaxial vacuum diode

    Science.gov (United States)

    Yalandin, M. I.; Mesyats, G. A.; Rostov, V. V.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ulmaskulov, M. R.

    2015-06-01

    Real-time investigations of the dynamics of explosive electron emission from a high-voltage cathode holder made of nonmagnetic stainless steel in a magnetically insulated coaxial vacuum diode have been performed. It has been shown that aging the cathode with several tens of voltage pulses at a field of 1-2 MV/cm provides a stray emission delay ranging from hundreds of picoseconds to a nanosecond or more. In addition, the magnetic field must be configured so that the magnetic lines would not cross the vacuum gap between the diode case and the cathode holder in the region behind the emitting edge of the cathode. These efforts provide conditions for stable emission of the working beam from a graphite cathode with a sharp emitting edge.

  14. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis.

    Science.gov (United States)

    Raniszewski, Grzegorz; Wiak, Slawomir; Pietrzak, Lukasz; Szymanski, Lukasz; Kolacinski, Zbigniew

    2017-02-23

    One of the most common methods of carbon nanotubes (CNTs) synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon-plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs). It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  15. Influence of Plasma Jet Temperature Profiles in Arc Discharge Methods of Carbon Nanotubes Synthesis

    Directory of Open Access Journals (Sweden)

    Grzegorz Raniszewski

    2017-02-01

    Full Text Available One of the most common methods of carbon nanotubes (CNTs synthesis is application of an electric-arc plasma. However, the final product in the form of cathode deposit is composed of carbon nanotubes and a variety of carbon impurities. An assay of carbon nanotubes produced in arc discharge systems available on the market shows that commercial cathode deposits contain about 10% CNTs. Given that the quality of the final product depends on carbon–plasma jet parameters, it is possible to increase the yield of the synthesis by plasma jet control. Most of the carbon nanotubes are multiwall carbon nanotubes (MWCNTs. It was observed that the addition of catalysts significantly changes the plasma composition, effective ionization potential, the arc channel conductance, and in effect temperature of the arc and carbon elements flux. This paper focuses on the influence of metal components on plasma-jet forming containing carbon nanotubes cathode deposit. The plasma jet temperature control system is presented.

  16. Effect of cathode configuration on 30 kWe arcjet electrical characteristics

    Science.gov (United States)

    Chopra, A.; Deininger, W. D.; King, D. Q.

    1989-01-01

    This paper compares the electrical characteristics of a 30 kWe arcjet for four cathode tip geometries. The electrical behavior of various cathode configurations is characterized by examining engine operation over a range of power levels (20 kWe - 30 kWe), current levels (200 A - 300 A) and geometric arc lengths (0.85 cm - 1.81 cm). Preliminary results indicate that tip geometry does not affect arc current or engine power when plotted as a function of geometric arc length, that at a fixed power the current level can be expected to drop as the arc grows in length due to erosion, and that any long duration test will require adjustment of the power source to maintain a constant power level.

  17. Highly Efficient Micro Cathode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Company, Inc. proposes to develop a micro thermionic cathode that requires extremely low power and provides long lifetime. The basis for the cathode is a...

  18. Advanced Cathode Electrolyzer (ACE) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a static, cathode-fed, 2000 psi, balanced-pressure Advanced Cathode Electrolyzer (ACE) based on PEM electrolysis technology. It...

  19. Barium Depletion in Hollow Cathode Emitters

    Science.gov (United States)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  20. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    .... The vacuum are plasma deposition gun developed at Lawrence Berkeley National Laboratory (LBNL) has been used to deposit oxides and nitrides with very precise control over deposition rate and composition.

  1. Cathode material for lithium batteries

    Science.gov (United States)

    Park, Sang-Ho; Amine, Khalil

    2013-07-23

    A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

  2. Measurement of the electron charge by a vacuum diode

    Science.gov (United States)

    Lacsný, Boris; Štubňa, Igor

    2016-03-01

    The measurement of the electron charge is a suitable experimental assignment for high-school and undergraduate courses of physics. We used two vacuum electron-tubes: (a) a double rectifying modern diode with an indirectly heated cathode and (b) a specially prepared double diode with a directly heated cathode and thermocouple. There was a small retarding potential between the cathode and anode, which gave an opportunity to assume Maxwell’s distribution of the velocities of the emitted electrons for the measurement of the electron charge. The electrical scheme for this measurement is simple and common electronic devices can be used. We obtained the value for the electron charge (1.491 ± 0.036) × 10-19 C if measured on the common commercial double diode vacuum-tube with the use of an optical pyrometer and (1.611 ± 0074) × 10-19 C if measured on the specially prepared double diode vacuum-tube using a thermocouple to determine the cathode temperature. The obtained values of the electron charge differs 0.11 × 10-19 C and 0.01 × 10-19 C from the currently accepted value e = 1.6021766208(98) × 10-19 C.

  3. High-power, NH3 arcjet cathode lifetime evaluation experiments and plans

    Science.gov (United States)

    Deininger, William D.; Pivirotto, Thomas J.

    1988-01-01

    Preliminary experimental investigations were conducted to evaluate the effects of a modified cathode shape on ammonia arcjet engine performance. The experiments were conducted with a contoured nozzle arcjet in a fully-instrumented facility which included a thrust stand. The modified cathode tip had a reduced diameter and more acute conical tip with respect to the baseline cathode design. A uniform 15 percent decrease in arc voltage was demonstrated over a mass flow range of 0.175 to 0.350 g/s. A 4 percent improvement in thrust efficiency was noted at 22.0 kW. Plans for future cathode testing are discussed with the aim of developing a long-life, high-performance arcjet cathode.

  4. Fast turn-on characteristics of tungsten-based dispenser cathodes following gas exposures

    Science.gov (United States)

    Marrian, C. R. K.; Haas, G. A.; Shih, A.

    The problems associated with the reactivation following shelf storage of different types of tungsten-based dispenser cathodes have been investigated. Reactivation times were found to be severely limited by repoisoning processes, which have been isolated and identified. Data are presented, indicating the finite times (in the absence of repoisoning), which are required to reactivate the cathodes following exposure to various gases. Of the gases studied, exposure to oxygen and water vapour caused the slowest reactivations. Water vapour was the component of the vacuum system ambient responsible for the poisoning caused by exposure to the ambient. Following exposure to each of the gases studied, the "M" type cathode reactivated slower than the "B" type cathode. The results have shown that both the choice of cathode and the design of the microwave tube are important if a fast turn-on following shelf storage is to be achieved.

  5. Gas arc constriction for plasma arc welding

    Science.gov (United States)

    McGee, William F. (Inventor); Rybicki, Daniel J. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has an inert gas applied circumferentially about the arc column externally of the constricting nozzle so as to apply a constricting force on the arc after it has exited the nozzle orifice and downstream of the auxiliary shielding gas. The constricting inert gas is supplied to a plenum chamber about the body of the torch and exits through a series of circumferentially disposed orifices in an annular wall forming a closure at the forward end of the constricting gas plenum chamber. The constricting force of the circumferential gas flow about the arc concentrates and focuses the arc column into a more narrow and dense column of energy after exiting the nozzle orifice so that the arc better retains its energy density prior to contacting the workpiece.

  6. Characteristics of a miniature vacuum spark

    Science.gov (United States)

    Wong, C. S.; Ong, C. X.; Chin, O. H.; Lee, S.; Choi, P.

    1989-12-01

    The characteristics of a miniature vacuum spark device are investigated. It is powered by a 2-stage 50 kV Marx and operated without an external triggering source. Discharge initiation is effected by an electron beam produced by the Pseudospark effect behind the hollow cathode. For discharges performed in air at a pressure of below 10-2 mbar, intense X-ray is detected. Although this X-ray has been found to consist of predominantly the Fe-Kα line produced by the electron beam bombardment of the stainless steel anode, its high intensity, singly-pulsed short-duration temporal structure and nearly monochromatic spectrum make the present vacuum spark an ideal pulsed X-ray source for many applications. The device is also compact, low cost and easy to operate. As an example of its applications, the contact radiography of a living lizard has been obtained using this X-ray source.

  7. ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN

    Energy Technology Data Exchange (ETDEWEB)

    Lauer, E J

    2007-02-21

    The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.

  8. Nanoscale Vacuum Channel Transistor.

    Science.gov (United States)

    Han, Jin-Woo; Moon, Dong-Il; Meyyappan, M

    2017-04-12

    Vacuum tubes that sparked the electronics era had given way to semiconductor transistors. Despite their faster operation and better immunity to noise and radiation compared to the transistors, the vacuum device technology became extinct due to the high power consumption, integration difficulties, and short lifetime of the vacuum tubes. We combine the best of vacuum tubes and modern silicon nanofabrication technology here. The surround gate nanoscale vacuum channel transistor consists of sharp source and drain electrodes separated by sub-50 nm vacuum channel with a source to gate distance of 10 nm. This transistor performs at a low voltage (3 microamperes). The nanoscale vacuum channel transistor can be a possible alternative to semiconductor transistors beyond Moore's law.

  9. Bibliography and author index for electrical discharges in vacuum (1897 to 1980)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, H.C.

    1982-01-29

    This bibliography covers the field of electrical discharges in vacuum, comprising both electrical breakdown in vacuum and vacuum arcs. A brief review section lists some review papers which would be helpful to the novice in this field. The bulk of the paper consists of bibliographic listings, arranged by year of publication and within each year, alphabetically by first author. An author index refers one to all papers authored or coauthored by a particular person. There are 2450 papers listed through December 1980.

  10. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  11. Microminiature thermionic vacuum flat panel display prototype

    Energy Technology Data Exchange (ETDEWEB)

    Sadwick, L.P.; Baker, B.; Chen, C.C.; Petersen, R.; Johnson, S.; Hwu, R.J. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Electrical Engineering

    1996-12-31

    The authors report on the fabrication and electrical characteristics of low work microminiature thermionic vacuum (MTV) diodes for use in flat panel display applications. In this work advances in the technology and performance of a novel thermionic analog to field emission vacuum microelectronic emitters that will be referred to by the descriptive name microminiature thermionic vacuum (MTV) emitters will be presented. The salient feature of MTV emitter technology is the use of an air-bridge (suspended) filament that greatly reduces the thermal load and stress on the system. MTV devices can be fabricated using conventional semiconductor and micromachining processing techniques on any thermally stable, vacuum compatible substrate for which a high temperature stable insulating layer can be grown or deposited on. In addition, the small (micron to sub-micron) distances between the cathode and anode allow the possibility of intrinsic operation to high frequencies comparable to that of field emitters since these devices will not suffer from solid-state electron transport effects that limit the upper frequency of operation for all semiconductor devices.

  12. The HIE-ISOLDE Vacuum System

    CERN Document Server

    Vandoni, G; Radwan, K; Chiggiato, P

    2014-01-01

    The High Intensity and Energy Isolde (HIE-Isolde) project aims at increasing the energy and intensity of the radioactive ion beams (RIB) delivered by the present Rex-Isolde facility. Energy up to 10MeV/amu will be reached by a new post-accelerating, superconducting (SC) linac. Beam will be delivered via a HEBT to three experimental stations for nuclear physics. To keep the SC linac compact and avoid cold-warm transitions, the cryomodules feature a common beam and insulation vacuum. Radioactive ion beams require a hermetically sealed vacuum, with transfer of the effluents to the nuclear ventilation chimney. Hermetically sealed, dry, gas transfer vacuum pumps are preferred to gas binding pumps, for an optimized management of radioactive contamination risk during maintenance and intervention. The vacuum system of the SC-linac is isolated by two fast valves, triggered by fast reacting cold cathode gauges installed on the warm linac, the HEBT and the experimental stations. Rough pumping is distributed, while the H...

  13. SOFC LSM:YSZ cathode degradation induced by moisture: An impedance spectroscopy study

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Mogensen, Mogens Bjerg

    2011-01-01

    in the serial resistance and the high and low frequency cathode arcs. On the basis of these results and reports within literature a mechanism for the effect of moisture was proposed, which attribute to moisture the role of participating in an enhanced removal of manganese from the LSM/YSZ interface and thus...

  14. Investigation of the Effects of Cathode Flow Fraction and Position on the Performance and Operation of the High Voltage Hall Accelerator

    Science.gov (United States)

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In- Space Propulsion Technology office is sponsoring NASA Glenn Research Center (GRC) to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. Tests were performed within NASA GRC Vacuum Facility 5 at background pressure levels that were six times lower than what has previously been attained in other vacuum facilities. A study was conducted to assess the impact of varying the cathode-to-anode flow fraction and cathode position on the performance and operational characteristics of the High Voltage Hall Accelerator (HiVHAc) thruster. In addition, the impact of injecting additional xenon propellant in the vicinity of the cathode was also assessed. Cathode-to-anode flow fraction sensitivity tests were performed for power levels between 1.0 and 3.9 kW. It was found that varying the cathode flow fraction from 5 to approximately 10% of the anode flow resulted in the cathode-to-ground voltage becoming more positive. For an operating condition of 3.8 kW and 500 V, varying the cathode position from a distance of closest approach to 600 mm away did not result in any substantial variation in thrust but resulted in the cathode-to-ground changing from -17 to -4 V. The change in the cathode-to-ground voltage along with visual observations indicated a change in how the cathode plume was coupling to the thruster discharge. Finally, the injection of secondary xenon flow in the vicinity of the cathode had an impact similar to increasing the cathode-to-anode flow fraction, where the cathode-to-ground voltage became more positive and discharge current and thrust increased slightly. Future tests of the HiVHAc thruster are planned with a centrally mounted cathode in order to further assess the impact of cathode position on thruster performance.

  15. DC arc weld starter

    Science.gov (United States)

    Campiotti, Richard H.; Hopwood, James E.

    1990-01-01

    A system for starting an arc for welding uses three DC power supplies, a high voltage supply for initiating the arc, an intermediate voltage supply for sustaining the arc, and a low voltage welding supply directly connected across the gap after the high voltage supply is disconnected.

  16. The vacuum disconnector

    Energy Technology Data Exchange (ETDEWEB)

    Schellekens, H.

    1989-05-01

    After showing the extended experience of Holec with vacuum disconnectors, the difficulties encountered in developing the type SVS vacuum bottle are indicated. The implications of demands imposed on price and dimensions are translated into design features. The function and the design of the getter is explained to show how Holec guarantees a 20 year approved vacuum in the bottle. Finally, the results of switching tests are mentioned to explain the reliability and capability of the new disconnector. 12 figs.

  17. Synthesis of aluminium nanoparticles by arc evaporation of an ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Aluminium nanoparticles (Al Nps) are synthesized using arc discharge method by applying direct current between aluminium electrodes in liquid environment without any use of vacuum equipment, heat exchangers, high temperatures furnaces and inert gases. After synthesis of Al Nps, in situ coating process on.

  18. Vacuum Large Current Parallel Transfer Numerical Analysis

    Directory of Open Access Journals (Sweden)

    Enyuan Dong

    2014-01-01

    Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.

  19. Pressure measurement of the synchrotron light source PF-AR by cold cathode gauges

    Energy Technology Data Exchange (ETDEWEB)

    Tanimoto, Yasunori; Uchiyama, Takashi; Hori, Yoichiro [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2003-05-01

    Synchrotron light source PF-AR was improved to realize higher performance in 2001. This improvement involved the renewal of the entire vacuum system to attain lower vacuum pressure for required beam lifetime. Thermal cathode ionization gauges, the most suitable gauges for the pressure measurement in the new system, were unacceptable because of both possible radiation damage to the controllers and the restriction of the budget. Cold cathode gauges (CCGs) were then chosen for the new system, while they usually have instability in the pressure range of 10{sup -7} Pa and lower. For the solution of this problem, we adopted the improved cold cathode gauges that hold the Penning discharge even at 10{sup -8} Pa and acquired calibration data with a pre-calibrated B-A gauge. We have originally designed CCG controllers using the calibration data, which enabled the reliable measurement in 10{sup -8} Pa range. (author)

  20. Pressure measurement of the synchrotron light source PF-AR by cold cathode gauges

    CERN Document Server

    Tanimoto, Y; Hori, Y

    2003-01-01

    Synchrotron light source PF-AR was improved to realize higher performance in 2001. This improvement involved the renewal of the entire vacuum system to attain lower vacuum pressure for required beam lifetime. Thermal cathode ionization gauges, the most suitable gauges for the pressure measurement in the new system, were unacceptable because of both possible radiation damage to the controllers and the restriction of the budget. Cold cathode gauges (CCGs) were then chosen for the new system, while they usually have instability in the pressure range of 10 sup - sup 7 Pa and lower. For the solution of this problem, we adopted the improved cold cathode gauges that hold the Penning discharge even at 10 sup - sup 8 Pa and acquired calibration data with a pre-calibrated B-A gauge. We have originally designed CCG controllers using the calibration data, which enabled the reliable measurement in 10 sup - sup 8 Pa range. (author)

  1. Investigation of a Gallium MPD Thruster with an Ablating Cathode

    Science.gov (United States)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2010-01-01

    Arc impedance, exhaust velocity, and plasma probe measurements are presented. The thruster is driven by a 50 microsecond pulse from a 6.2 milliohm pulse forming network, and gallium is supplied to the discharge by evaporation of the cathode. The arc voltage is found to vary linearly with the discharge current with an arc impedance of 6.5 milliohms. Electrostatic probes yield an exhaust velocity that is invariant with the discharge current and has a peak value of 20 kilometers per second, which is in reasonable agreement with the value (16 plus or minus 1 kilometer per second) calculated from the mass bit and discharge current data. Triple probe measurements yield on axis electron temperatures in the range of 0.8-3.8 eV, electron densities in the range of 1.6 x 10(exp 21) to 2.1 x 10(exp 22) per cubic meter, and a divergence half angle of 16 degrees. Measurements within the interelectrode region yield a peak magnetic field of 0.8 T, and the observed radial trends are consistent with an azimuthally symmetric current distribution. A cathode power balance model is coupled with an ablative heat conduction model predicting mass bit values that are within 20% of the experimental values.

  2. Some features of horizontally oriented low-current electric arc in air

    Energy Technology Data Exchange (ETDEWEB)

    Tazmeev, Kh. K., E-mail: tazmeevh@mail.ru [Kazan (Volga Region) Federal University, Naberezhnye Chelny Institute (Russian Federation); Tazmeev, B. Kh., E-mail: tazmeevb@mail.ru [National Research Technical University, Naberezhnye Chelny Branch (Russian Federation)

    2016-01-15

    The properties of an electric arc operating in open air at currents of lower than 1 A were studied experimentally. The rod cathode was oriented horizontally. Cylindrical rods and plane plates either installed strictly vertically in front of the cathode end or tilted at a certain angle served as the anode. It is shown that, with such an electrode configuration, it is possible to form a discharge channel much longer than the electrode gap length. Regimes of regular oscillations are revealed, and conditions for their appearance are established. The electric field strength in the arc column and the electron temperature near the anode are calculated.

  3. Vacuum arc plasma thrusters with inductive energy storage driver

    Science.gov (United States)

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  4. Ablation and deposition processes in carbon arc discharge for nanosynthesis

    Science.gov (United States)

    Raitses, Yevgeny; Ng, Jonathan; Nemchinsky, Valerian; Yeh, Yao-Wen; Gershman, Sophia; Vekselman, Vlad

    2015-09-01

    The anodic arc discharges with consumed anodes are used to produce various nanoparticles, including carbon nanotubes. Our experiments with the carbon arc at atmospheric pressure helium demonstrate the dependence of the anode ablation rate on the anode diameter, which cannot be explained by changes of the current density at the anode. In particular, the anode ablation rate for narrow graphite anodes is significantly enhanced resulting in high deposition rates of carbonaceous products on the copper cathode. The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. Results of experimental validation of this model are presented. This work was supported by U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. Impedance of porous IT-SOFC LSCF:CGO composite cathodes

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben; Wandel, Marie

    2011-01-01

    performing cathodes showed a slightly suppressed Gerischer impedance, while the impedance spectra of the well performing cathodes showed the presence of an arc due to oxygen gas diffusion. The overall impedance of the well performing cathodes could be described with a slightly suppressed Gerischer impedance......The impedance of technological relevant LSCF:CGO composite IT-SOFC cathodes was studied over a very wide performance range. This was experimentally achieved by impedance measurements on symmetrical cells with three different microstructures in the temperature range 550–850 °C. In order to account...... element in series with a Finite-Length-Warburg (FLW) impedance element. Finally, the origin to a suppression or distortion of the FLG and the Gerischer impedance was discussed and explored in relation to e.g. numerical simulations on the effect of a slightly distributed diffusion length in the FLG, due...

  6. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  7. Rethinking Recycling in Arcs

    Science.gov (United States)

    Kelemen, P.; Behn, M. D.; Jagoutz, O.

    2012-12-01

    Hacker et al EPSL 2011 and Behn et al Nature Geosci 2011 investigated pathways for return of buoyant, subducted material to arc crust. These include (1) diapirs rising into the hot mantle wedge, with extensive melts adding a component to arc magmas, (2) flow of material back up a relatively cold "subduction channel", adding solids to the lower crust and small-degree partial melts to the upper crust, (3) flow from the forearc along the base of arc crust, and (4) imbrication of forearc material into arc crust. These processes add felsic, incompatible-element-rich components to arc crust. The flux of incompatible elements such as Th in arc lavas, thought to be mainly recycled from subducted sediments, is > sediment subduction flux. There are large uncertainties: arc crustal growth rates are imprecise; young, primitive arc lavas may not be representative of magmatic flux into arc crust; sediment subduction flux may have varied. Nevertheless, this result is found for all arcs examined, using recently published growth rates. Perhaps arc growth rates that include subduction erosion are systematically overestimated. Instead or in addition, maybe significant Th comes from material other than sediments. Here, we consider the implications of pathways 1-4 for arc growth rates and incompatible element enrichment, in the context of subduction erosion and arc-arc collision. Subducting arc lithologies can become separated, with only felsic components returned to arc crust. Buoyant lithologies are mobile in viscous instabilities at > 700-800°C. Whereas thin layers such as sediments may become mobile all at once, instabilities may periodically strip the hottest parts from the top of thick buoyant layers, replacing them with hot mantle. In arc-arc collision, the top of a subducting plate starts at about 0°C on the seafloor, so heating is slow. In subduction erosion, forearc material in the subducting package can be > 200°C before erosion so buoyant lithologies reach 700-800

  8. Nanostructured lanthanum manganate composite cathode

    DEFF Research Database (Denmark)

    Wang, Wei Guo; Liu, Yi-Lin; Barfod, Rasmus

    2005-01-01

    that the (La1-xSrx)(y)MnO3 +/-delta (LSM) composite cathodes consist of a network of homogenously distributed LSM, yttria-stabilized zirconia (YSZ), and pores. The individual grain size of LSM or YSZ is approximately 100 nm. The degree of contact between cathode and electrolyte is 39% on average. (c) 2005...

  9. Heat and metal transfer in gas metal arc welding using argon and helium

    Energy Technology Data Exchange (ETDEWEB)

    Joensson, P.G.; Eagar, T.W.; Szekely, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Materials Science and Engineering

    1995-04-01

    This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that the tapering of t electrode in an argon arc is caused by electron condensation on the side of the electrode.

  10. Heat and metal transfer in gas metal arc welding using argon and helium

    Science.gov (United States)

    Jönsson, P. G.; Eagar, T. W.; Szekely, J.

    1995-04-01

    This article describes a theoretical investigation on the arc parameters and metal transfer in gas metal arc welding (GMAW) of mild steel using argon and helium shielding gases. Major differences in the predicted arc parameters were determined to be due to large differences in thermophysical properties. Various findings from the study include that an arc cannot be struck in a pure helium atmosphere without the assistance of metal vapor, that a strong electromagnetic cathode force affects the fluid flow and heat transfer in the helium arc, providing a possible explanation for the experimentally observed globular transfer mode and that the tapering of the electrode in an argon arc is caused by electron condensation on the side of the electrode.

  11. MODELLING OF A HIGH-POWER TRANSFERRED ARC. PART I : THE PLASMA JET

    OpenAIRE

    Gonzalez, J.; Gleizes, A.; Vacquie, S.; Brunelot, P.

    1990-01-01

    A physical modelling of the cathode jet zone of a 1 MW transferred arc, in air, is presented. We show the influence of several parameters on plasma jet properties : current intensity between 500 and 1500 A ; gas mass flow rate between (0 and 50 g/s) ; vortex injection. Through a few examples we explain the role of various physical mechanisms (radiation, turbulence) on arc characteristics.

  12. Wire + Arc Additive Manufacturing

    OpenAIRE

    Williams, Stewart W.; Martina, Filomeno; Addison, Adrian C.; Ding, Jialuo; Pardal, Goncalo; Colegrove, Paul A.

    2016-01-01

    Depositing large components (>10 kg) in titanium, aluminium, steel and other metals is possible using Wire + Arc Additive Manufacturing. This technology adopts arc welding tools and wire as feedstock for additive manufacturing purposes. High deposition rates, low material and equipment costs, and good structural integrity make Wire+Arc Additive Manufacturing a suitable candidate for replacing the current method of manufacturing from solid billets or large forgings, especially with regards to ...

  13. Investigation of the flickering of La{sub 2}O{sub 3} and ThO{sub 2} doped tungsten cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hoebing, T.; Hermanns, P.; Bergner, A.; Ruhrmann, C.; Mentel, J.; Awakowicz, P. [Ruhr University Bochum, Electrical Engineering and Plasma Technology, 44780 Bochum (Germany); Traxler, H.; Wesemann, I.; Knabl, W. [Plansee SE, Metallwerk-Plansee-Str. 71, 6600 Reutte (Austria)

    2015-07-14

    Short-arc lamps are equipped with tungsten electrodes due to their ability to withstand a high thermal load during operation. Nominal currents of more than one hundred amperes lead to a cathode tip temperature near the melting point of tungsten. To reduce the electrode temperature and, thereby, to increase the maintenance of such lamps, ThO{sub 2} or tentatively La{sub 2}O{sub 3} are added to the electrode material. They generate a reduced work function by establishing a monolayer of emitter atoms on the tungsten surface. Emitter enrichments on the lateral surface of doped cathodes are formed. They are traced back to transport mechanisms of emitter oxides in the interior of the electrode and on the electrode surface in dependence of the electrode temperature and to the redeposition of vaporized and ionized emitter atoms onto the cathode tip by the electric field in front. The investigation is undertaken by means of glow discharge mass spectrometry, scanning electron microscope images, energy dispersive x-ray spectroscopy, and through measurements of the optical surface emissivity. The effect of emitter enrichments on the stability of the arc attachment is presented by means of temporally resolved electrode temperature measurements and by measurements of the luminous flux from the cathode-near plasma. They show that the emitter enrichments on the lateral surface of the cathode are attractive for the arc attachment if the emitter at the cathode tip is depleted. In this case, it moves along the lateral surface from the cathode tip to sections of the cathode with a reduced work function. It induces a temporary variation of the cathode tip temperature and of the light intensity from the cathode-near plasma, a so-called flickering. In particular, in case of lanthanated cathodes, strong flickering is observed.

  14. Welding arc plasma physics

    Science.gov (United States)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  15. Theoretical investigation of aluminum gallium nitride cathodes and their use in microminiature microwave triodes

    Science.gov (United States)

    Hatfield, Christopher William

    The purpose of the research was to theoretically investigate Al xGa1 - xN cathodes and their use in microminiature microwave triodes. The use of AlxGa1 - xN as a cathode material was investigated due to that material's unique combination of physical properties. Research was directed toward the simulation of a variety of AlxGa1 - xN cathode structures operating at various temperatures. The cathode simulations were accomplished with semiconductor device theory. Poisson's equation was solved using a Runge-Kutta numerical method to determine the emission barrier. The thermionic emission theory of metal-semiconductor junctions was used to compute the emitted current density. The results for n-type doped, compositionally-graded AlxGa 1 - xN cathodes indicate that very high current densities may be emitted from these cathodes at relatively low temperatures, compared to conventional thermionic cathodes. However, electron diffusion limits the current density for certain cathode structures. Microminiature microwave triodes utilizing high-current-density AlxGa1 - xN cathodes were investigated using vacuum tube theory and electron optics software. The results of the investigation into microminiature microwave triodes indicate that these triodes enjoy an enhanced cutoff frequency compared to larger triodes with conventional thermionic cathodes. However, these devices do not appear to be competitive with commercially available solid state devices at room temperature, for similar device size and biasing conditions. It is concluded in the study that these microminiature triodes might find use in harsh environments, involving high temperature and radiation.

  16. Vacuum spin squeezing

    Science.gov (United States)

    Hu, Jiazhong; Chen, Wenlan; Vendeiro, Zachary; Urvoy, Alban; Braverman, Boris; Vuletić, Vladan

    2017-11-01

    We investigate the generation of entanglement (spin squeezing) in an optical-transition atomic clock through the coupling to an optical cavity in its vacuum state. We show that if each atom is prepared in a superposition of the ground state and a long-lived electronic excited state, and viewed as a spin-1/2 system, then the collective vacuum light shift entangles the atoms, resulting in a squeezed distribution of the ensemble collective spin, without any light applied. This scheme reveals that even an electromagnetic vacuum can constitute a useful resource for entanglement and quantum manipulation. By rotating the spin direction while coupling to the vacuum, the scheme can be extended to implement two-axis twisting resulting in stronger squeezing.

  17. Handbook of vacuum technology

    CERN Document Server

    2016-01-01

    This comprehensive, standard work has been updated to remain an important resource for all those needing detailed knowledge of the theory and applications of vacuum technology. With many numerical examples and illustrations to visualize the theoretical issues.

  18. Cold Vacuum Drying Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the K-Basins (see K-Basins link) in Hanford's 100 Area is a facility called the Cold Vacuum Drying Facility (CVDF).Between 2000 and 2004, workers at the...

  19. Vacuum-assisted delivery

    Science.gov (United States)

    ... the birth canal. The vacuum uses a soft plastic cup that attaches to the baby's head with suction. ... a numbing medicine placed in the vagina. The plastic cup will be placed on the baby's head. Then, ...

  20. Ultra high vacuum technology

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    A short introduction for some basic facts and equations. Subsquently, discussion about: Building blocks of an ultrahigh vacuum system - Various types of pumps required to reach uhv and methods to reduce these effects - Outgassing phenomena induced by the presence of a particle beam and the most common methods to reduce these effects It will be given some practical examples from existing CERN accelerators and discuss the novel features of the future LHC vacuum system.

  1. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  2. A Planck Vacuum Cosmology

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-04-01

    Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.

  3. Magnetron priming by multiple cathodes

    Science.gov (United States)

    Jones, M. C.; Neculaes, V. B.; Lau, Y. Y.; Gilgenbach, R. M.; White, W. M.; Hoff, B. W.; Jordan, N. M.

    2005-08-01

    A relativistic magnetron priming technique using multiple cathodes is simulated with a three-dimensional, fully electromagnetic, particle-in-cell code. This technique is based on electron emission from N /2 individual cathodes in an N-cavity magnetron to prime the π mode. In the case of the six-cavity relativistic magnetron, π-mode start-oscillation times are reduced up to a factor of 4, and mode competition is suppressed. Most significantly, the highest microwave field power is observed by utilizing three cathodes compared to other recently explored priming techniques.

  4. Automatic Control of Arc Process for Making Carbon Nanotubes

    Science.gov (United States)

    Scott, Carl D.; Pulumbarit, Robert B.; Victor, Joe

    2004-01-01

    An automatic-control system has been devised for a process in which carbon nanotubes are produced in an arc between a catalyst-filled carbon anode and a graphite cathode. The control system includes a motor-driven screw that adjusts the distance between the electrodes. The system also includes a bridge circuit that puts out a voltage proportional to the difference between (1) the actual value of potential drop across the arc and (2) a reference value between 38 and 40 V (corresponding to a current of about 100 A) at which the yield of carbon nanotubes is maximized. Utilizing the fact that the potential drop across the arc increases with the interelectrode gap, the output of the bridge circuit is fed to a motor-control circuit that causes the motor to move the anode toward or away from the cathode if the actual potential drop is more or less, respectively, than the reference potential. Thus, the system regulates the interelectrode gap to maintain the optimum potential drop. The system also includes circuitry that records the potential drop across the arc and the relative position of the anode holder as function of time.

  5. Cold Beam Vacuum Interconnects for the LHC Insertion Regions

    CERN Document Server

    Ramos, D; Knaster, J R; Veness, R J M

    2004-01-01

    The LHC machine is composed of arcs and insertion regions where superconducting magnets, working at temperatures of 1.9 K and 4.5 K, have flexibly interconnected beam vacuum chambers. These interconnects must respect strict requirements in terms of impedance, aperture, space optimization and reliability. A complete interconnect design was first developed for the arc regions, and from which a total of 20 variants have been created according to the different functional requirements of each pair of cryostats along the machine. All design features and manufacture processes were validated through extensive testing. Manufacture and assembly cost was minimised by using a modular interconnect design, with common components shared among different design variants. A detailed quality assurance structure was implemented in order to achieve the high level of reliability required. This paper presents the layout of cold beam vacuum interconnects along with details of development and testing performed to validate design and ...

  6. The vacuum system for technological unit development and design

    Science.gov (United States)

    Zhukeshov, A. M.; Gabdullina, A. T.; Amrenova, A. U.; Giniyatova, Sh G.; Kaibar, A.; Sundetov, A.; Fermakhan, K.

    2015-11-01

    The paper shows results of development of plasma technological unit on the basis of accelerator of vacuum arc and automated system. During the previous years, the authors investigated the operation of pulsed plasma accelerator and developed unique technologies for hardening of materials. Principles of plasma formation in pulsed plasma accelerator were put into basis of the developed unit. Operation of the pulsed arc accelerator was investigated at different parameters of the charge. The developed vacuum system is designed for production of hi-tech plasma units in high technologies in fields of nanomaterials, mechanical and power engineering and production with high added value. Unlike integrated solutions, the system is a module one to allow its low cost, high reliability and simple maintenance. The problems of use of robots are discussed to modernize the technological process.

  7. Purging means and method for Xenon arc lamps

    Science.gov (United States)

    Miller, C. G. (Inventor)

    1973-01-01

    High pressure Xenon short-arc lamp with two reservoirs which are selectively connectable to the lamp's envelope is described. One reservoir contains an absorbent which will absorb both Xenon and contaminant gases such as CO2 and O2. The absorbent temperature is controlled to evacuate the envelope of both the Xenon and the contaminant gases. The temperature of the absorbent is then raised to desorb only clean Xenon while retaining the contaminant gases, thereby clearing the envelope of the contaminant gases. The second reservoir contains a gas whose specific purpose is, to remove the objectional metal film which deposits gradually on the interior surface of the lamp envelope during normal arc operation. The origin of the film is metal transferred from the cathode of the arc lamp by sputtering or other gas transfer processes.

  8. TWIN CARBON ARC TORCH

    African Journals Online (AJOL)

    its predominate applications in heating, brazing, and welding have been supplanted by the highly developed oxyacetylene torch. As seen in Fig. l, the twin carbon arc torch (henceforth referred to in this article as simply the carbon-arc torch) consists of a hand held apparatus made of two ('twin') carbon or graphite electrodes ...

  9. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon

    Science.gov (United States)

    2013-06-01

    shall be briefly presented in the following. A tungsten inert gas ( TIG ) arc at normal pressure is burning between a tungsten cathode with a...temperature Te (Te≠T). Melting effects and metal vapor from the weld pool are not included. In the hydrodynamic model, the Navier-Stokes equations provide

  10. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  11. Busbar arcs at large fusion magnets: Conductor to feeder tube arcing model experiments with the LONGARC device

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, Dmitry, E-mail: dmitry.klimenko@kit.edu; Pasler, Volker

    2014-10-15

    Highlights: •The LONGARC device was successfully implemented for busbar to feeder tubes arcing model experiments. •Arcing at an ITER busbar inside its feeder tube was simulated in scaled model experiments. •The narrower half tubes imply a slight increase of the arc propagation speed in compare to full tube experiments. •All simulated half tubes experiments show severe damage indicating that the ITER inner feeder tube will not withstand a busbar arc. -- Abstract: Electric arcs moving along the power cables (the so-called busbars) of the toroidal field (TF) coils of ITER may reach and penetrate the cryostat wall. Model experiments with the new LONGARC device continue the VACARC (VACuum ARC) experiments that were initiated to investigate the propagation and destruction mechanisms of busbar arcs in small scale [1]. The experiments are intended to support the development and validation of a numerical model. LONGARC overcomes the space limitations inside VACARC and allows also for advanced 1:3 (vs. ITER full scale) model setups. The LONGARC device and first results are presented below.

  12. Vacuum induced photoresist outgassing

    Science.gov (United States)

    Waterman, Justin; Mbanaso, Chimaobi; Denbeaux, Gregory

    2008-03-01

    In order to continue the trend toward smaller feature sizes in lithography, new methods of lithography will be needed. A likely method for printing features 32 nm and smaller is extreme ultraviolet (EUV) lithography. EUV allows for features to be printed that are smaller than the current methods can achieve. However, outgassing of the photoresist is a concern for EUV lithography. The outgassed components can lead to contamination of the optics, degrading the reflectivity and hence lowering throughput of the exposure tools. Outgassing due to EUV exposure has been investigated by many groups. However, there were no complete investigations available of vacuum induced outgassing. In this paper, several methods were employed to investigate the outgassing due to vacuum. It was found that the vacuum induced outgassing outgassed a similar number of molecules as the outgassing due to EUV exposure. Furthermore, almost all of the outgassing was completed after about two minutes in vacuum. To mitigate the potential concern of outgassing due to vacuum causing contamination of optics, this work shows that photoresist coated silicon wafers only require about two minutes of pumping prior to insertion near the optics within EUV lithography tools.

  13. Emission properties of different cathodes at E<=105 V/cm

    Science.gov (United States)

    Krasik, Ya. E.; Dunaevsky, A.; Krokhmal, A.; Felsteiner, J.; Gunin, A. V.; Pegel, I. V.; Korovin, S. D.

    2001-02-01

    We present results of the investigation of different types of cathodes operating in an electron diode powered by a high-voltage generator (300 kV, 250 ns, 84 Ω, ⩽5 Hz). The cathodes which have the same emitting area of 100 cm2 are made of metal-ceramic, carbon fibers, carbon fabric, velvet, or corduroy. We also tested carbon fibers and carbon fabric cathodes coated by CsI. It was shown that for all types of cathodes the electron emission occurs from the plasma which is formed as a result of a flashover of separate emitting centers. The amount of the emitting centers and the time delay in the electron emission were found to depend strongly on the accelerating electric field growth rate. Experimental data concerning the uniformity of the light emission from the cathode surface and divergence of the generated electron beams are presented. Data related to the general parameters of the diode, namely its impedance, power, and energy are given as well. For all the cathodes investigated the observed diode impedance indicated the existence of a quasistationary cathode plasma boundary for electron current density ⩽20 A/cm2. We present the dependencies of the average emitted electron current density and of the time delay in the electron emission on the number of generator shots. We also present data of the vacuum deterioration as a result of the tested cathodes operation. The obtained data are discussed within the framework of plasma formation as a result of cathode surface flashover.

  14. Improving Vacuum Cleaners

    Science.gov (United States)

    1997-01-01

    Under a Space Act Agreement between the Kirby company and Lewis Research Center, NASA technology was applied to a commercial vacuum cleaner product line. Kirby engineers were interested in advanced operational concepts, such as particle flow behavior and vibration, critical factors to improve vacuum cleaner performance. An evaluation of the company 1994 home care system, the Kirby G4, led to the refinement of the new G5 and future models. Under the cooperative agreement, Kirby had access to Lewis' holography equipment, which added insight into how long a vacuum cleaner fan would perform, as well as advanced computer software that can simulate the flow of air through fans. The collaboration resulted in several successes including fan blade redesign and continuing dialogue on how to improve air-flow traits in various nozzle designs.

  15. Baryogenesis in false vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuta [KEK Theory Center, IPNS, KEK, Tsukuba, Ibaraki (Japan); Yamada, Masatoshi [Kanazawa University, Institute for Theoretical Physics, Kanazawa (Japan)

    2017-09-15

    The null result in the LHC may indicate that the standard model is not drastically modified up to very high scales, such as the GUT/string scale. Having this in the mind, we suggest a novel leptogenesis scenario realized in the false vacuum of the Higgs field. If the Higgs field develops a large vacuum expectation value in the early universe, a lepton number violating process is enhanced, which we use for baryogenesis. To demonstrate the scenario, several models are discussed. For example, we show that the observed baryon asymmetry is successfully generated in the standard model with higher-dimensional operators. (orig.)

  16. A rotating quantum vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Lorenci, V.A. de; Svaiter, N.F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was investigated which mapping has to be used to compare measurements made in a rotating frame to those made in an inertial frame. Using a non-Galilean coordinate transformation, the creation-annihilation operators of a massive scalar field in the rotating frame are not the same as those of an inertial observer. This leads to a new vacuum state(a rotating vacuum) which is a superposition of positive and negative frequency Minkowski particles. Polarization effects in circular accelerators in the proper frame of the electron making a connection with the inertial frame point of view were analysed. 65 refs.

  17. Handbook of vacuum physics

    CERN Document Server

    1964-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is a handbook of vacuum physics, with emphasis on the properties of miscellaneous materials such as mica, oils, greases, waxes, and rubber. Accurate modern tables of physical constants, properties of materials, laboratory techniques, and properties of commercial pumps, gauges, and leak detectors are presented. This volume is comprised of 12 chapters and begins with a discussion on pump oils, divided into rotary pump oils and vapor pump oils. The next chapter deals with the properties and applications of greases, including outgassing and vapor pr

  18. Technology handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 3: Technology is part of a series of publications that presents articles featuring the whole spectrum of vacuum physics. This particular volume presents materials that deal with technology concerns in vacuum mechanics. The first material talks about the utilization of ceramic materials in the construction of vacuum devices. The next paper details the application of vacuum physics in soldering and brazing process. The last article deals with the utilization of vacuum technology in high frequency heating. The book will be of great use to professionals involved

  19. Freestanding graphene/MnO2 cathodes for Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Şeyma Özcan

    2017-09-01

    Full Text Available Different polymorphs of MnO2 (α-, β-, and γ- were produced by microwave hydrothermal synthesis, and graphene oxide (GO nanosheets were prepared by oxidation of graphite using a modified Hummers’ method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X-ray diffraction (XRD and Raman spectroscopy. The surface and cross-sectional morphologies of freestanding cathodes were investigated by scanning electron microcopy (SEM. The charge–discharge profile of the cathodes was tested between 1.5 V and 4.5 V at a constant current of 0.1 mA cm−2 using CR2016 coin cells. The initial specific capacity of graphene/α-, β-, and γ-MnO2 freestanding cathodes was found to be 321 mAhg−1, 198 mAhg−1, and 251 mAhg−1, respectively. Finally, the graphene/α-MnO2 cathode displayed the best cycling performance due to the low charge transfer resistance and higher electrochemical reaction behavior. Graphene/α-MnO2 freestanding cathodes exhibited a specific capacity of 229 mAhg−1 after 200 cycles with 72% capacity retention.

  20. LEP Vacuum Chamber

    CERN Multimedia

    1983-01-01

    This is a cut-out of a LEP vacuum chamber for dipole magnets showing the beam channel and the pumping channel with the getter (NEG) strip and its insulating supports. A water pipe connected to the cooling channel can also be seen at the back.The lead radiation shield lining is also shown. See also 8305563X.

  1. The vacuum strikes back

    CERN Multimedia

    2007-01-01

    "Modern physics has shown that the vacuum, previously thought of as a stated of total nothingness, is really a seething background of virtual particles springing in and out of eixstence until they can seize enough energy to materialize as "real" particles." (1,5 page)

  2. LEP vacuum chamber, prototype

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Final prototype for the LEP vacuum chamber, see 8305170 for more details. Here we see the strips of the NEG pump, providing "distributed pumping". The strips are made from a Zr-Ti-Fe alloy. By passing an electrical current, they were heated to 700 deg C.

  3. ISR vacuum system

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    Some of the most important components of the vacuum system are shown. At the left, the rectangular box is a sputter-ion pump inside its bake-out oven. The assembly in the centre includes a sector valve, three roughing valves, a turbomolecular pump, a rotary backing pump and auxiliary equipment. At the right, the small elbow houses a Bayard-

  4. Synthesis of carbon nanotubes by arc discharge in open air.

    Science.gov (United States)

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.

  5. Furnace brazing under partial vacuum

    Science.gov (United States)

    Mckown, R. D.

    1979-01-01

    Brazing furnace utilizing partial-vacuum technique reduces tooling requirements and produces better bond. Benefit in that partial vacuum helps to dissociate metal oxides that inhibit metal flow and eliminates heavy tooling required to hold parts together during brazing.

  6. Tritium handling in vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Gill, J.T. [Monsanto Research Corp., Miamisburg, OH (United States). Mound Facility; Coffin, D.O. [Los Alamos National Lab., NM (United States)

    1986-10-01

    This report provides a course in Tritium handling in vacuum systems. Topics presented are: Properties of Tritium; Tritium compatibility of materials; Tritium-compatible vacuum equipment; and Tritium waste treatment.

  7. Vacuum-integrated electrospray deposition for highly reliable polymer thin film.

    Science.gov (United States)

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin

    2012-10-01

    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.

  8. Advanced Cathodes for Next Generation Electric Propulsion Technology

    Science.gov (United States)

    2008-03-01

    28 Boride Cathodes...45 Figure 15. Molybdenum Hollow Cathode Tube .............................................................. 46...CeB6 as a hollow cathode electron emitter. Additionally, all work in the US published on boride hollow cathodes are for high-current applications

  9. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a reservoir cathode to improve performance in both ion and Hall-effect thrusters. We propose to adapt our existing reservoir cathode technology to this...

  10. Reservoir Cathode for Electric Space Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode to improve performance in ion and Hall thrusters. We will adapt our existing reservoir cathode technology to this purpose....

  11. Fractional-dimensional Child-Langmuir law for a rough cathode

    Energy Technology Data Exchange (ETDEWEB)

    Zubair, M., E-mail: muhammad-zubair@sutd.edu.sg; Ang, L. K., E-mail: ricky-ang@sutd.edu.sg [SUTD-MIT International Design Centre, Singapore University of Technology and Design, Singapore 487372 and Engineering Product Development, Singapore University of Technology and Design, Singapore 487372 (Singapore)

    2016-07-15

    This work presents a self-consistent model of space charge limited current transport in a gap combined of free-space and fractional-dimensional space (F{sup α}), where α is the fractional dimension in the range 0 < α ≤ 1. In this approach, a closed-form fractional-dimensional generalization of Child-Langmuir (CL) law is derived in classical regime which is then used to model the effect of cathode surface roughness in a vacuum diode by replacing the rough cathode with a smooth cathode placed in a layer of effective fractional-dimensional space. Smooth transition of CL law from the fractional-dimensional to integer-dimensional space is also demonstrated. The model has been validated by comparing results with an experiment.

  12. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Holmes, D.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in the preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is

  13. Mechanistic Enhancement of SOFC Cathode Durability

    Energy Technology Data Exchange (ETDEWEB)

    Wachsman, Eric [Univ. of Maryland, College Park, MD (United States)

    2016-02-01

    Durability of solid oxide fuel cells (SOFC) under “real world” conditions is an issue for commercial deployment. In particular cathode exposure to moisture, CO2, Cr vapor (from interconnects and BOP), and particulates results in long-term performance degradation issues. Here, we have conducted a multi-faceted fundamental investigation of the effect of these contaminants on cathode performance degradation mechanisms in order to establish cathode composition/structures and operational conditions to enhance cathode durability.

  14. Poisoning and reactivation processes in oxide-type cathodes: Part I. Polycrystalline mixed oxides

    Science.gov (United States)

    Shih, A.; Haas, G. A.

    A study has been made of the poisoning and reactivation characteristics of alkaline earth oxide-type cathodes after extended periods of shelf storage. Both emitted and incident electrons were used to measure changes in the electronics properties, i.e. work function. The variations in work function over the surface were obtained in both distribution form as well as topographic presentation using a scanning low energy electron probe (SLEEP). These measurements were correlated with simultaneously occurring compositional changes using Auger, gas desorption and ion scattering techniques. Measurements were made on realistic cathodes in actual vacuum tube ambients. The results showed that oxide-type cathodes poison within a few hours after shut-down by the adsorption of residual gases contained in the vacuum ambient. (The effects of CO 2 were specifically demonstrated.) These adsorbates are, however, desorbed upon heating and in combination with other reactivation processes (such as formation of surface Ba layers when using reducing substrates), the cathode can reach full activation again by the time the temperature reaches the normal operating temperature. The poisoning and reactivation phenomena are a combination of a number of simultaneous processes, and studies to separate and identify these is the objective of part II of this paper.

  15. MODELING PARAMETERS OF ARC OF ELECTRIC ARC FURNACE

    Directory of Open Access Journals (Sweden)

    R.N. Khrestin

    2015-08-01

    Full Text Available Purpose. The aim is to build a mathematical model of the electric arc of arc furnace (EAF. The model should clearly show the relationship between the main parameters of the arc. These parameters determine the properties of the arc and the possibility of optimization of melting mode. Methodology. We have built a fairly simple model of the arc, which satisfies the above requirements. The model is designed for the analysis of electromagnetic processes arc of varying length. We have compared the results obtained when testing the model with the results obtained on actual furnaces. Results. During melting in real chipboard under the influence of changes in temperature changes its properties arc plasma. The proposed model takes into account these changes. Adjusting the length of the arc is the main way to regulate the mode of smelting chipboard. The arc length is controlled by the movement of the drive electrode. The model reflects the dynamic changes in the parameters of the arc when changing her length. We got the dynamic current-voltage characteristics (CVC of the arc for the different stages of melting. We got the arc voltage waveform and identified criteria by which possible identified stage of smelting. Originality. In contrast to the previously known models, this model clearly shows the relationship between the main parameters of the arc EAF: arc voltage Ud, amperage arc id and length arc d. Comparison of the simulation results and experimental data obtained from real particleboard showed the adequacy of the constructed model. It was found that character of change of magnitude Md, helps determine the stage of melting. Practical value. It turned out that the model can be used to simulate smelting in EAF any capacity. Thus, when designing the system of control mechanism for moving the electrode, the model takes into account changes in the parameters of the arc and it can significantly reduce electrode material consumption and energy consumption

  16. Novel Cathodes Prepared by Impregnation Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Eduardo Paz

    2006-09-30

    (1) We showed that similar results were obtained when using various LSM precursors to produce LSM-YSZ cathodes. (2) We showed that enhanced performance could be achieved by adding LSCo to LSMYSZ cathodes. (3) We have preliminary results showing that there is a slow deactivation with LSFYSZ cathodes.

  17. Measured cathode fall characteristics depending on the diameter of a hydrogen hollow cathode discharge

    Science.gov (United States)

    Gonzalez-Fernandez, V.; Grützmacher, K.; Steiger, A.; Pérez, C.; de la Rosa, M. I.

    2017-10-01

    In this work, Doppler-free two photon optogalvanic spectroscopy is used to measure the electric field strength in the cathode fall region of a hollow cathode discharge, operated in pure hydrogen, via the Stark splitting of the 2S level of atomic hydrogen. The cathode fall characteristics are analysed for various pressures and in a wide range of discharge currents. Tungsten is used as the cathode material, because it allows for reliable measurements in a fairly wide range of discharge conditions and because of its minimal sputtering. Two cathode diameters (10 mm and 15 mm) are used to study the dependence of the cathode fall on discharge geometry. The measurements reveal that the cathode fall characteristics are quite independent on the cathode diameter for equal cathode current density; hence the measurements can be used to test one dimensional modelling of the cathode fall region for low pressure hydrogen discharges using e.g. plane parallel electrodes.

  18. Nonperturbative QED vacuum birefringence

    Science.gov (United States)

    Denisov, V. I.; Dolgaya, E. E.; Sokolov, V. A.

    2017-05-01

    In this paper we represent nonperturbative calculation for one-loop Quantum Electrodynamics (QED) vacuum birefringence in presence of strong magnetic field. The dispersion relations for electromagnetic wave propagating in strong magnetic field point to retention of vacuum birefringence even in case when the field strength greatly exceeds Sauter-Schwinger limit. This gives a possibility to extend some predictions of perturbative QED such as electromagnetic waves delay in pulsars neighbourhood or wave polarization state changing (tested in PVLAS) to arbitrary magnetic field values. Such expansion is especially important in astrophysics because magnetic fields of some pulsars and magnetars greatly exceed quantum magnetic field limit, so the estimates of perturbative QED effects in this case require clarification.

  19. Using of fiber-array diagnostic to measure the propagation of fast axial ionization wave during breakdown of electrically exploding tungsten wire in vacuum

    Science.gov (United States)

    Shi, Huantong; Zou, Xiaobing; Wang, Xinxin

    2017-12-01

    The physical process of electrical explosion of wires in vacuum is featured with the surface discharge along the wire, which generates the corona plasma layer and terminates the Joule heating of the wire core. In this paper, a fiber-array probe was designed to directly measure the radiation of surface arc with spatial and temporal resolution. The radiation of the exploding wire was casted to the section of an optical-fiber-array by a lens and transmitted to PIN diodes and finally collected with an oscilloscope. This probe enables direct diagnostics of the evolution of surface discharge with high temporal resolution and certain spatial resolution. The radiation of a tungsten wire driven by a positive current pulse was measured, and results showed that surface discharge initiates near the cathode and propagates toward the anode with a speed of 7.7 ± 1.6 mm/ns; further estimations showed that this process is responsible for the "conical" structure of the exploding wire.

  20. Vacuum distillation device

    Energy Technology Data Exchange (ETDEWEB)

    Hamer, J.A.; Burg, C.J. Van Der; Kanbier, D.; Heijden, P. Van Der.

    1990-09-18

    This invention relates to a vacuum distillation device comprising a vacuum distillation column, a furnace provided with a heat exchange tube, and a connecting conduit between the column and the heat exchange tube. Such a device is used to fractionate a hydrocarbon-containing feed sometimes referred to as long residue. An object of this invention is to provide a vacuum distillation device which allows vaporization of a major part of the feed upstream of the column inlet. To this end, the device according to the invention comprises a vacuum distillation device as described above, in which the inner diameter of the heat exchange tube increases along its length to between 2.4 and 3 times the inner diameter of the tube inlet, and in which the inner diameter of the connecting conduit gradually increases along its length to between 2.5 and 5.4 times the inner diameter of the tube outlet. During normal operation of the device of the invention, only less than 50 wt % of the feed is vaporized in the heat exchange tube in the furnace, and more feed is vaporized in the connecting conduit, so that at the outlet end of the conduit the feed comprises about 0.9 kg vapor per kg of feed. The invention provides improved heat transfer in the heat exchange tubes such that fouling is reduced, consequently more heat can be applied per unit of time in the heat exchange tube. This allows either heating of the feed to a higher temperature or increasing the throughput for the same temperature.

  1. PARAFFIN SEPARATION VACUUM DISTILLATION

    Directory of Open Access Journals (Sweden)

    Zaid A. Abdulrahman

    2013-05-01

    Full Text Available Simulated column performance curves were constructed for existing paraffin separation vacuum distillation column in LAB plant (Arab Detergent Company/Baiji-Iraq. The variables considered in this study are the thermodynamic model option, top vacuum pressure, top and bottom temperatures, feed temperature, feed composition & reflux ratio. Also simulated columns profiles for the temperature, vapor & liquid flow rates composition were constructed. Four different thermodynamic model options (SRK, TSRK, PR, and ESSO were used, affecting the results within 1-25% variation for the most cases.The simulated results show that about 2% to 8 % of paraffin (C10, C11, C12, & C13 present at the bottom stream which may cause a problem in the LAB plant. The major variations were noticed for the top temperature & the  paraffin weight fractions at bottom section with top vacuum pressure. The bottom temperature above 240 oC is not recommended because the total bottom flow rate decreases sharply, where as  the weight fraction of paraffins decrease slightly. The study gives evidence about a successful simulation with CHEMCAD

  2. Arc characteristics of submerged arc welding with stainless steel wire

    Science.gov (United States)

    Li, Ke; Wu, Zhi-sheng; Liu, Cui-rong; Chen, Feng-hua

    2014-08-01

    The arc characteristics of submerged arc welding (SAW) with stainless steel wire were studied by using Analysator Hannover (AH). The tests were carried out under the same preset arc voltage combined with different welding currents. By comparing the probability density distribution (PDD) curves of arc voltage and welding current, the changes were analyzed, the metal transfer mode in SAW was deduced, and the characteristics of a stable arc were summarized. The analysis results show that, with an increase of welding parameters, the short-circuiting peak in the PDD curves of arc voltage decreases gradually until it disappears, and the dominant metal transfer mode changes from flux-wall guided transfer to projected transfer and then to streaming transfer. Moreover, when the PDD curves of arc voltage are both unimodal and generally symmetrical, the greater the peak probability and the smaller the peak span, the more stable the arc becomes.

  3. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    Science.gov (United States)

    Ji, Zengchao; Chen, Shixiu; Gao, Shen

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  4. An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum.

    Science.gov (United States)

    West, Adam D; Lasner, Zack; DeMille, David; West, Elizabeth P; Panda, Cristian D; Doyle, John M; Gabrielse, Gerald; Kryskow, Adam; Mitchell, Corinne

    2017-01-01

    The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung x rays; indeed, this is the basic principle behind the operation of standard x-ray sources. However, in laboratory setups where x-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce x rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. The authors present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. They describe the characterization of the observed x-ray radiation, its relation to the observed leakage current in the device, the steps taken to contain and mitigate the radiation hazard, and suggested safety guidelines.

  5. An Underappreciated Radiation Hazard from High Voltage Electrodes in Vacuum

    CERN Document Server

    West, Adam; DeMille, David; West, Elizabeth; Panda, Cristian; Doyle, John; Gabrielse, Gerald; Kryskow, Adam; Mitchell, Corinne

    2016-01-01

    The use of high voltage (HV) electrodes in vacuum is commonplace in physics laboratories. In such systems, it has long been known that electron emission from an HV cathode can lead to bremsstrahlung X-rays; indeed, this is the basic principle behind the operation of standard X-ray sources. However, in laboratory setups where X-ray production is not the goal and no electron source is deliberately introduced, field-emitted electrons accelerated by HV can produce X-rays as an unintended hazardous byproduct. Both the level of hazard and the safe operating regimes for HV vacuum electrode systems are not widely appreciated, at least in university laboratories. A reinforced awareness of the radiation hazards associated with vacuum HV setups would be beneficial. We present a case study of a HV vacuum electrode device operated in a university atomic physics laboratory. We describe the characterisation of the observed X-ray radiation, its relation to the observed leakage current in the device, the steps taken to contai...

  6. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  7. Atomic Oscillator Strengths In The Vacuum Ultraviolet

    Science.gov (United States)

    Nave, Gillian; Sansonetti, C. J.; Szabo, C. I.

    2008-05-01

    Transitionsin singly-ionized and doubly-ionized iron-group elements give rise to prominent emission lines from a wide variety of astrophysical objects. Although the database of experimental oscillator strengths of Fe II has also been greatly extended by the FERRUM project, few experimental oscillator strengths are available in the region below 1600 Å, where many levels that give rise to emission lines at longer wavelengths have their dominant decays. The established way to measure accurate oscillator strengths for atomic lines combines the measurement of a lifetime of an upper energy level with a separate measurement of the branching fractions of all the lines emitted from that level. This technique relies on being able to observe all the spectral lines emitted by the upper level, which range down to Ly-α or below for many fluorescence lines. We have developed techniques to measure branching fractions in the vacuum ultraviolet using our 10.7-m normal incidence grating spectrograph. For this we use phosphor image plates as replacements for the photographic plates previously used on this instrument. Image plates are sensitive to wavelengths from the X-ray region to 2200 Å, and have a linear intensity response with a dynamic range of at least 10000. We have recorded spectra of iron-neon hollow cathode and Penning discharges, using a deuterium standard lamp for radiometric calibration. We will present the first measurements of oscillator strengths using this technique. We are also investigating methods of radiometric calibration below 1150 Å using hollow cathode standard lamps. This will enable us to measure branching ratios down to 800 Å or below. This work is partially funded by NASA under the inter-agency agreement W-10,255.

  8. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is

  9. Efficient micro-cavity top emission OLED with optimized Mg:Ag ratio cathode.

    Science.gov (United States)

    Kwon, Sun-Kap; Lee, Eun-Hyung; Kim, Kwan-Soo; Choi, Hyun-Chul; Park, Mi Jin; Kim, Seong Keun; Pode, Ramchandra; Kwon, Jang Hyuk

    2017-11-27

    Micro-cavity top-emitting organic light emitting diodes (TEOLEDs) are now receiving prominence as a technology for the active matrix display applications. The semi-transparent metal cathode plays the crucial role in realizing TEOLEDs structure. Here, we report the optimization results on Mg:Ag ratio as the semitransparent cathode deposited by vacuum thermal evaporation. The optimized Mg:Ag cathode with 1:10 ratio (wt %) shows a sheet resistance value as low as 5.2 Ω/□, an average transmittance of 49.7%, reflectance of 41.4%, and absorbance of 8.9% over the visible spectral region (400~700 nm). The fabricated red TEOLEDs device implemented using LiF (1nm)/Mg:Ag (1:10) cathode shows the voltage value of 4.17 V at a current density of 10.00 mA/cm2, and current efficiencies variation from 55.3 to 50.1 cd/A over the brightness range 2,000 - 12,000 cd/m2. The electroluminescence (EL) spectrum displays the light emission at 608 nm wavelength with a half width of 29.5 nm. The narrow half-width of red light emission is attributed to the micro-cavity effects due to the semitransparent cathode.

  10. In-Situ Cleaning of Metal Cathodes Using a Hydrogen Ion Beam

    CERN Document Server

    Dowell, D H; Kirby, R E; Schmerge, J F

    2005-01-01

    Improving and maintaining the quantum efficiency (qe) of a metal photocathode in an s-band RF gun requires a process for cleaning the surface. In this type of gun, the cathode is typically installed and the system is vacuum baked to ~200°C. If the qe is too low, the cathode is cleaned with the UV-drive laser. While laser cleaning does increase the cathode qe, it requires fluences close to the damage threshold and rastering the small diameter beam, both of which can produce non-uniform electron emission and potentially damage the cathode. This paper investigates the efficacy of a low-energy hydrogen ion beam to produce high-qe metal cathodes. Measurements of the qe vs. wavelength, surface contaminants using x-ray photoelectron spectroscopy and surface roughness were performed on copper samples, and the results showed a significant increase in qe after cleaning with a 1keV hydrogen ion beam. The H-ion beam cleans an area approximately 1cm in diameter and has no effect on the surface roughness while ...

  11. In situ cleaning of metal cathodes using a hydrogen ion beam

    Directory of Open Access Journals (Sweden)

    D. H. Dowell

    2006-06-01

    Full Text Available Metal photocathodes are commonly used in high-field rf guns because they are robust, straightforward to implement, and tolerate relatively poor vacuum compared to semiconductor cathodes. However, these cathodes have low quantum efficiency (QE even at UV wavelengths, and still require some form of cleaning after installation in the gun. A commonly used process for improving the QE is laser cleaning. In this technique the UV-drive laser is focused to a small diameter close to the metal’s damage threshold and then moved across the surface to remove contaminants. This method does improve the QE, but can produce nonuniform emission and potentially damage the cathode. Ideally, an alternative process which produces an atomically clean, but unaltered, surface is needed. In this paper we explore using a hydrogen ion (H-ion beam to clean a copper cathode. We describe QE measurements over the wavelength range of interest as a function of integrated exposure to an H-ion beam. We also describe the data analysis to obtain the work function and derive a formula of the QE for metal cathodes. Our measured work function for the cleaned sample is in good agreement with published values, and the theoretical QE as a function of photon wavelength is in excellent agreement with the cleaned copper experimental results. Finally, we propose an in situ installation of an H-ion gun compatible with existing s-band rf guns.

  12. ALICE-ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva

    2008-01-01

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  13. ALICE - ARC integration

    DEFF Research Database (Denmark)

    Anderlik, Csaba; Gregersen, Anders Rhod; Kleist, Josva

    Data Grid Facility (NDGF). In this paper we will present our approach to integrate AliEn and ARC, in the sense that ALICE data management and job processing can be carried out on the NDGF infrastructure, using the client tools available in AliEn. The interoperation has two aspects, one is the data...

  14. Jeanne d'Arc

    CERN Document Server

    Guillemin,H

    1970-01-01

    L'historien H.Guillemin a fouillé pendant des nombreux mois tous les documents qu'il a pu trouver concernant ce fameux énigme qui était Jeanne d'Arc. Le résultat de ses recherches il a écrit dans un merveilleux livre pour dire la vérité sur Jeanne

  15. The vacuum platform

    Science.gov (United States)

    McNab, A.

    2017-10-01

    This paper describes GridPP’s Vacuum Platform for managing virtual machines (VMs), which has been used to run production workloads for WLCG and other HEP experiments. The platform provides a uniform interface between VMs and the sites they run at, whether the site is organised as an Infrastructure-as-a-Service cloud system such as OpenStack, or an Infrastructure-as-a-Client system such as Vac. The paper describes our experience in using this platform, in developing and operating VM lifecycle managers Vac and Vcycle, and in interacting with VMs provided by LHCb, ATLAS, ALICE, CMS, and the GridPP DIRAC service to run production workloads.

  16. Vacuum ultraviolet spectroscopy I

    CERN Document Server

    Samson, James A; Lucatorto, Thomas

    1998-01-01

    This volume is for practitioners, experimentalists, and graduate students in applied physics, particularly in the fields of atomic and molecular physics, who work with vacuum ultraviolet applications and are in need of choosing the best type of modern instrumentation. It provides first-hand knowledge of the state-of-the-art equipment sources and gives technical information on how to use it, along with a broad reference bibliography.Key Features* Aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field* Contains a detailed chapter on la

  17. Barium-Dispenser Thermionic Cathode

    Science.gov (United States)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  18. Of vacuum and gas

    CERN Multimedia

    Katarina Anthony

    2015-01-01

    A new LHCb programme is delving into uncharted waters for the LHC: exploring how protons interact with noble gases inside the machine pipe. While, at first glance, it may sound risky for the overall quality of the vacuum in the machine, the procedure is safe and potentially very rich in rewards. The results could uncover the high-energy helium-proton cross-section (with all the implications thereof), explore new boundaries of the quark-gluon plasma and much more.   As the beam passes through LHCb, interactions with neon gas allow the experiment to measure the full beam profile. In this diagram, beam 1 (blue) and beam 2 (red) are measured by the surrounding VELO detector. It all begins with luminosity. In 2011, LHCb set out to further improve its notoriously precise measurements of the beam profile, using the so-called Beam-Gas Imaging (BGI) method. BGI does exactly what it says on the tin: a small amount of gas is inserted into the vacuum, increasing the rate of collisions around the interaction ...

  19. LHC vacuum system

    CERN Document Server

    Gröbner, Oswald

    1999-01-01

    The Large Hadron Collider (LHC) project, now in the advanced construction phase at CERN, comprises two proton storage rings with colliding beams of 7-TeV energy. The machine is housed in the existing LEP tunnel with a circumference of 26.7 km and requires a bending magnetic field of 8.4 T with 14-m long superconducting magnets. The beam vacuum chambers comprise the inner 'cold bore' walls of the magnets. These magnets operate at 1.9 K, and thus serve as very good cryo-pumps. In order to reduce the cryogenic power consumption, both the heat load from synchrotron radiation emitted by the proton beams and the resistive power dissipation by the beam image currents have to be absorbed on a 'beam screen', which operates between 5 and 20 K and is inserted inside the vacuum chamber. The design of this beam screen represents a technological challenge in view of the numerous and often conflicting requirements and the very tight mechanical tolerances imposed. The synchrotron radiation produces strong outgassing from the...

  20. Contribution to the assessment of the power balance at the electrodes of an electric arc in air

    Energy Technology Data Exchange (ETDEWEB)

    Teste, Ph; Leblanc, T; Andlauer, R [Laboratoire de Genie Electrique de Paris, Plateau de Moulon, 11 rue Joliot Curie, SUPELEC, CNRS, 91192 Gif sur Yvette (France); Rossignol, J [Institut Carnot de Bourgogne, Batiment Mirande-chimie, 9, avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2008-08-01

    The aim of this paper is to improve our knowledge concerning the power balance at the electrode surfaces in the case of an electric arc of short duration with a small electrode gap burning in air at atmospheric pressure. With this aim in view, we propose a simple method using the experimental results obtained through the observation of the tracks left by the arc and a numerical simulation of the thermal phenomena occurring in the electrode during the arc heating. This method, based on the analysis of the compatibility between experimental results and modelling results, allows us to assess a zone of possible values for the main parameters of the arc root (power and surface power density brought by the arc to the electrodes). A simple usual volt equivalent approach of the power balance is proposed. Calculations and experiments have been conducted for several copper anodes and cathodes. The values for the volt equivalent at the anode are found in the range 9-12.6 V, for the cathode 5.4-9 V. The values for the surface power density are found to be near 6.5 x 10{sup 9} W m{sup -2} at the cathode and 6 x 10{sup 9} W m{sup -2} for the anode.

  1. Experimental assessment of the surface temperature of copper electrodes submitted to an electric arc in air at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Landfried, R; Leblanc, T; Andlauer, R; Teste, Ph, E-mail: teste@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris : SUPELEC - CNRS - Universites Paris VI et Paris XI - Plateau de Moulon - 91192 Gif sur Yvette Cedex (France)

    2011-01-01

    This paper concerns the assessment of the surface temperature of copper electrodes submitted to an electric arc in a non stationary regime in air. An infrared camera is used to measure the decrease of the temperature surface just after a controlled and very fast arc extinction. In the first part, the experimental method is described. In the second part, results are presented for 60-70 A with an electric arc duration in the range 3-4 ms. The temperature decrease after the arc extinction allows to reach an assessment of the surface temperature just at the arc switching off. In the present experimental conditions the mean temperatures reached for copper cathodes and anodes are in the range 750-850 deg. C.

  2. Influence of the applied power on the barrier performance of silicon-containing plasma polymer coatings using a hollow cathode-activated PECVD process

    NARCIS (Netherlands)

    Top, Michiel; Fahlteich, John; De Hosson, Jeff T. M.

    A hollow cathode arc discharge is used for the roll-to-roll deposition of silicon-containing plasma polymer thin films on a polymer substrate. It is found that the fragmentation of the used monomer hexamethyldisiloxane (HMDSO) increases with increasing plasma power. The higher fragmentation was

  3. Vacuum science, technology, and applications

    CERN Document Server

    Naik, Pramod K

    2018-01-01

    Vacuum plays an important role in science and technology. The study of interaction of charged particles, neutrals and radiation with each other and with solid surfaces requires a vacuum environment for reliable investigations. Vacuum has contributed immensely to advancements made in nuclear science, space, metallurgy, electrical/electronic technology, chemical engineering, transportation, robotics and many other fields. This book is intended to assist students, scientists, technicians and engineers to understand the basics of vacuum science and technology for application in their projects. The fundamental theories, concepts, devices, applications, and key inventions are discussed.

  4. On Orbit Daytime Solar Heating Effects: A Comparison of Ground Chamber Arcing Results

    Science.gov (United States)

    Galofaro, J.; Vayner, B.; Ferguson, D.

    2004-01-01

    The purpose of the current experiment is to make direct comparisons between the arcing results obtained from the diffusion pumped vertical chamber and our newly renovated Teney vacuum chamber which is equipped with a cryogenic pump. Recall that the prior reported results obtained for the Vertical chamber were nominal at best, showing only a slight reduction in the arc rate after 5 heating cycles at the lower bias potentials and virtually no changes at high potential biases. It was concluded that the vertical chamber was unable to remove enough water vapor from the chamber to adequately test the arcing criterion. Because the cryo-pumped Teney chamber has a ten times better pumping speed, (40,000 liters per sec compared to 4,000 liters per sec for the diffusion pumped vertical chamber), a decision was made to retest that experiment in both the Teney and Vertical vacuum chambers. A comparison of the various data is presented with encouraging results.

  5. Plasma-Surface Interactions in Hollow Cathode Discharges for Electric Propulsion

    Science.gov (United States)

    Capece, Angela Maria

    Electric thrusters generate high exhaust velocities and can achieve specific impulses in excess of 1000 s. The low thrust generation and high specific impulse make electric propulsion ideal for interplanetary missions, spacecraft station keeping, and orbit raising maneuvers. Consequently, these devices have been used on a variety of space missions including Deep Space 1, Dawn, and hundreds of commercial spacecraft in Earth orbit. In order to provide the required total impulses, thruster burn time can often exceed 10,000 hours, making thruster lifetime essential. One of the main life-limiting components on ion engines is the hollow cathode, which serves as the electron source for ionization of the xenon propellant gas. Reactive contaminants such as oxygen can modify the cathode surface morphology and degrade the electron emission properties. Hollow cathodes that operate with reactive impurities in the propellant will experience higher operating temperatures, which increase evaporation of the emission materials and reduce cathode life. A deeper understanding of the mechanisms initiating cathode failure will improve thruster operation, increase lifetime, and ultimately reduce cost. A significant amount of work has been done previously to understand the effects of oxygen poisoning on vacuum cathodes; however, the xenon plasma adds complexity, and its role during cathode poisoning is not completely understood. The work presented here represents the first attempt at understanding how oxygen impurities in the xenon discharge plasma alter the emitter surface and affect operation of a 4:1:1 BaO-CaO-Al2O3 hollow cathode. A combination of experimentation and modeling was used to investigate how oxygen impurities in the discharge plasma alter the emitter surface and reduce the electron emission capability. The experimental effort involved operating a 4:1:1 hollow cathode at various conditions with oxygen impurities in the xenon flow. Since direct measurements of the emitter

  6. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T

    1998-01-01

    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  7. Arc behavior in low-voltage arc chambers

    Science.gov (United States)

    Mutzke, A.; Rüther, T.; Lindmayer, M.; Kurrat, M.

    2010-02-01

    The arc behavior in an arrangement of parallel arc rails with a splitter plate in between has been investigated experimentally and in numerical computations. Thereby, the arc is simulated by coupling finite-volume modeling for the gasdynamics and finite-elements modeling for the electromagnetics. The formation of arc roots on the splitter plate can be described by a thin layer of elements with a current-density dependent specific resistance. The simulations were extended to model the experimental arrangement exactly. Additionally, net emission coefficients and radiation heat conductivity of air plasma instead of a simplified T4 net emission of a black body were used to model the radiative cooling of the arc. The results of the arc voltage, the arc movement and the splitting process have been compared to measurements and high speed movies of the arc and yield good correlation. Moreover, the simulations allow good insight into the temperature distribution of the arc and the movement of the pressure waves caused at the arc ignition.

  8. Reflective article having a sacrificial cathodic layer

    Science.gov (United States)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.; Rearick, Brian K.; Medwick, Paul A.; McCamy, James W.

    2017-09-12

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formed from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.

  9. Vacuum energy sequestering and graviton loops

    OpenAIRE

    Kaloper, Nemanja; Padilla, Antonio

    2017-01-01

    We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.

  10. THERMOCOUPLE VACUUM GAUGE

    Science.gov (United States)

    Price, G.W.

    1954-08-01

    A protector device is described for use in controlling the pressure within a cyclotron. In particular, an electrical circuit functions to actuate a vacuum pump when a predetermined low pressure is reached and disconnect the pump when the pressure increases abcve a certain value. The principal feature of the control circuit lies in the use of a voltage divider network at the input to a relay control tube comprising two parallel, adjustable resistances wherein one resistor is switched into the circuit when the relay connects the pump to a power source. With this arrangement the relay is energized at one input level received from a sensing element within the cyclotron chamber and is de-energized when a second input level, representing the higher pressure limit, is reached.

  11. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  12. Abdominal intrauterine vacuum aspiration.

    Science.gov (United States)

    Tjalma, W A A

    2014-01-01

    Evaluating and "cleaning" of the uterine cavity is probably the most performed operation in women. It is done for several reasons: abortion, evaluation of irregular bleeding in premenopausal period, and postmenopausal bleeding. Abortion is undoubtedly the number one procedure with more than 44 million pregnancies terminated every year. This procedure should not be underestimated and a careful preoperative evaluation is needed. Ideally a sensitive pregnancy test should be done together with an ultrasound in order to confirm a uterine pregnancy, excluding extra-uterine pregnancy, and to detect genital and/or uterine malformations. Three out of four abortions are performed by surgical methods. Surgical methods include a sharp, blunt, and suction curettage. Suction curettage or vacuum aspiration is the preferred method. Despite the fact that it is a relative safe procedure with major complications in less than one percent of cases, it is still responsible for 13% of all maternal deaths. All the figures have not declined in the last decade. Trauma, perforation, and bleeding are a danger triage. When there is a perforation, a laparoscopy should be performed immediately, in order to detect intra-abdominal lacerations and bleeding. The bleeding should be stopped as soon as possible in order to not destabilize the patient. When there is a perforation in the uterus, this "entrance" can be used to perform the curettage. This is particularly useful if there is trauma of the isthmus and uterine wall, and it is difficult to identify the uterine canal. A curettage is a frequent performed procedure, which should not be underestimated. If there is a perforation in the uterus, then this opening can safely be used for vacuum aspiration.

  13. ULTRARAPID VACUUM-MICROWAVE HISTOPROCESSING

    NARCIS (Netherlands)

    KOK, LP; BOON, ME

    A novel histoprocessing method for paraffin sections is presented in which the combination of vacuum and microwave exposure is the key element. By exploiting the decrease in boiling temperature under vacuum, the liquid molecules in the tissues have been successfully extracted and exchanged at

  14. Vacuum Technology for Superconducting Devices

    CERN Document Server

    Chiggiato, P

    2014-01-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  15. Cathode fall measurements in fluorescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    Nachtrieb, Robert [Lutron Electronics Co Inc., 7200 Suter Rd., Coopersburg, PA 18036 (United States); Khan, Farheen [Lutron Electronics Co Inc., 7200 Suter Rd., Coopersburg, PA 18036 (United States); Waymouth, John F [Consultant, 16 Bennett Rd. Marblehead, MA 01945 (United States)

    2005-09-07

    We describe an improved method and apparatus for making capacitive measurements of the cathode fall in fluorescent lamps employing known behaviour of anode oscillations to provide a zero-of-potential reference, placing the entire cathode and anode fall waveform on an absolute rather than relative scale. The improved method is applicable to any diameter of fluorescent lamp currently manufactured. We also describe a method and apparatus for making spectroscopic measurements of the cathode fall in fluorescent lamps. This uses the abrupt onset of emission of certain selected spectral lines of the rare gas filling as a signal that the cathode fall has exceeded the excitation potentials of the spectral lines in question.

  16. Cathodes Delivered for Space Station Plasma Contactor System

    Science.gov (United States)

    Patterson, Michael J.

    1999-01-01

    The International Space Station's (ISS) power system is designed with high-voltage solar arrays that typically operate at output voltages of 140 to 160 volts (V). The ISS grounding scheme electrically ties the habitat modules, structure, and radiators to the negative tap of the solar arrays. Without some active charge control method, this electrical configuration and the plasma current balance would cause the habitat modules, structure, and radiators to float to voltages as large as -120 V with respect to the ambient space plasma. With such large negative floating potentials, the ISS could have deleterious interactions with the space plasma. These interactions could include arcing through insulating surfaces and sputtering of conductive surfaces as ions are accelerated by the spacecraft plasma sheath. A plasma contactor system was baselined on the ISS to prevent arcing and sputtering. The sole requirement for the system is contained within a single directive (SSP 30000, paragraph 3.1.3.2.1.8): "The Space Station structure floating potential at all points on the Space Station shall be controlled to within 40 V of the ionospheric plasma potential using a plasma contactor." NASA is developing this plasma contactor as part of the ISS electrical power system. For ISS, efficient and rapid emission of high electron currents is required from the plasma contactor system under conditions of variable and uncertain current demand. A hollow cathode plasma source is well suited for this application and was, therefore, selected as the design approach for the station plasma contactor system. In addition to the plasma source, which is referred to as a hollow cathode assembly, or HCA, the plasma contactor system includes two other subsystems. These are the power electronics unit and the xenon gas feed system. The Rocketdyne Division of Boeing North American is responsible for the design, fabrication, assembly, test, and integration of the plasma contactor system. Because of

  17. Controlling Arc Length in Plasma Welding

    Science.gov (United States)

    Iceland, W. F.

    1986-01-01

    Circuit maintains arc length on irregularly shaped workpieces. Length of plasma arc continuously adjusted by control circuit to maintain commanded value. After pilot arc is established, contactor closed and transfers arc to workpiece. Control circuit then half-wave rectifies ac arc voltage to produce dc control signal proportional to arc length. Circuit added to plasma arc welding machines with few wiring changes. Welds made with circuit cleaner and require less rework than welds made without it. Beads smooth and free of inclusions.

  18. Vacuum fiber-fiber coupler

    Science.gov (United States)

    Heinrici, Axel; Bjelajac, Goran; Jonkers, Jeroen; Jakobs, Stefan; Olschok, Simon; Reisgen, Uwe

    2017-02-01

    Research and development carried out by the ISF Welding and Joining Institute of RWTH Aachen University has proven that combining high power laser and low vacuum atmosphere provides a welding performance and quality, which is comparable to electron beam welding. The developed welding machines are still using a beam forming which takes place outside the vacuum and the focusing laser beam has to be introduced to the vacuum via a suitable window. This inflexible design spoils much of the flexibility of modern laser welding. With the target to bring a compact, lightweight flying optics with flexible laser transport fibers into vacuum chambers, a high power fiber-fiber coupler has been adapted by II-VI HIGHYAG that includes a reliable vacuum interface. The vacuum-fiber-fiber coupler (V-FFC) is tested with up to 16 kW sustained laser power and the design is flexible in terms of a wide variety of laser fiber plug systems and vacuum flanges. All that is needed to implement the V-FFC towards an existing or planned vacuum chamber is an aperture of at least 100 mm (4 inch) diameter with any type of vacuum or pressure flange. The V-FFC has a state-of-the-art safety interface which allows for fast fiber breakage detection for both fibers (as supported by fibers) by electric wire breakage and short circuit detection. Moreover, the System also provides connectors for cooling and electric signals for the laser beam optics inside the vacuum. The V-FFC has all necessary adjustment options for coupling the laser radiation to the receiving fiber.

  19. Electrochemical performance of lanthanum calcium cobalt ferrite cathode interfaced to LAMOX electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cheng-Wei; Tsai, Dah-Shyang; Jin, Tsu-Yung; Chung, Wen-Hung [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan); Chou, Chen-Chia [Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106 (Taiwan)

    2008-05-15

    Lanthanum calcium cobalt ferrite (LCCF), a potential cathode composition for the LAMOX electrolyte, is studied on its electrocatalytic performance in oxygen reduction reaction (ORR) using impedance spectroscopy. Nyquist plots of LCCF impedance at 600-800 C display two arcs, in which the low-frequency arc is constantly larger than the high-frequency arc. When interfaced to the electrolyte containing 20 mol% tungsten, the ORR polarization resistance of LCCF exhibits a strong temperature dependency whose activation energy increases with increasing Co content, 190 (10 mol%)-220 (90 mol%) kJ mol{sup -} {sup 1}. Among the cathode compositions, LCCF82 (80 mol% Co) exhibits the best catalytic performance. Its zero-bias ORR resistance is 242.4 at 600 C, 0.845 {omega} cm{sup 2} at 800 C, along with the capacitance 7.79 (600 C), 14.93 mF cm{sup -} {sup 2} (800 C). The ORR resistance of LCCF82 decreases with increasing dc bias at 600 and 700 C, hardly changes at 800 C. The electrocatalytic activity of LCCF82 is also influenced by the tungsten content of its interfacing electrolyte. The exchange current density of LCCF82 correlates positively with the electrolyte ion conductivity which increases with decreasing tungsten content. (author)

  20. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Vacuum brake assist unit and vacuum brake system... Vehicles With GVWR of More Than 10,000 Pounds § 570.56 Vacuum brake assist unit and vacuum brake system. The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems...

  1. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  2. Vacuum system of the compact Energy Recovery Linac

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.; Takai, R.; Obina, T.; Asaoka, S.; Uchiyama, T.; Nakamura, N. [High Energy Accelerator Research Organization (KEK) (1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan) (Japan)

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gas interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.

  3. Pemesinan Nonkonvensional Plasma Arc Cutting

    OpenAIRE

    Akhmad, Al Antoni

    2009-01-01

    Dalam proses pemesinan dikenal 2 jenis proses pemesian, yaitu pemesinan konvensional dan pemesinan nonkonvensional. Salah satu jenis pemesinan nonkonvensional ini adalah Plasma Arc Cutting. Plasma Arc Cutting sangat banyak digunakan dalam berbagai industri yang mengunakan bahan baku logam. Jenis torch pada Plasma Arc Cutting ini ada banyak. Setiap jenis torch mempunyai karakteristik tertentu dan fungsi tertentu. In machining process known 2 kind machining process, conventional machining and n...

  4. Of Eggs and Arcs

    Science.gov (United States)

    Burns, Joseph A.; Thomas, P. C.; Helfenstein, P.; Tiscareno, M. S.; Hedman, M. M.; Agarwal, M.

    2012-10-01

    New scenarios for the origins of Saturn’s rings/interior moons have directed scientific attention to the region just exterior to Saturn’s main rings. Four satellites (Aegaeon = Ae; Anthe = An; Methone = Me; Pallene = Pa) discovered by the Cassini mission on either side of Mimas’s orbit perhaps comprise a distinct class of ring-moon. They are tiny (R = 0.3-2.5 km); three (AeAnMe) are trapped in co-rotation resonances with Mimas and reside within ring-arcs; and at least two (MePa) have remarkably regular shapes. Images with pixel scales as fine as 27 m taken in May 2012 reveal Methone to be ovoid within 10 m (from sub-pixel limb detection) and devoid of any craters (>130 m) across its 9 km2 of surface; Pallene and even tiny Aegaeon have similar appearances in lesser-quality images. Numerical simulations demonstrate that particles comprising the surrounding ring-arcs populate the same resonances as their embedded moons; escape speeds from the moons are transfer of particles back and forth between the ring-arcs and any embedded bodies. In this environment, the moons’ shapes are smooth equipotentials; electrostatic effects may also determine how grains settle to surfaces. Considering these shapes to represent equipotential surfaces for rotating, tidally distorted, homogeneous bodies, we infer mean satellite densities of 250+/-60 (Pa), 310+/-30 (Me), and 540+/-120 (Ae) kg m-3. About half of Methone’s leading hemisphere is covered by a sharply bounded, lemon-shaped, relatively dark region, having a form reminiscent of Mimas’s thermal anomaly (Howett et al. 2011). Its (601 nm) albedo is 13% lower than the bounding brighter material. An irregularly shaped, even-darker (by 4%) blotch straddles the apex of the moon’s motion. Impacts with circum-planetary meteoroids and plasma are likely responsible for these features.

  5. Preparation of nanocomposite fluid by electrical arc discharge technique.

    Science.gov (United States)

    Chang, Ho

    2008-02-01

    This study proposes a new method, the electrical arc discharge system, for preparing a nanocomposite fluid with the basic ingredients of Cu, Fe and O. The proposed system has the advantages of a high-power electric arc heating system, excellent stability of the electric arc, and well-developed control technology. In the fabrication process, the positive electrode uses a copper rod and the negative electrode an iron rod, and the two electrodes are processed in the insulating processing liquid. The nanocomposite fluid generated by the synthesis system is analyzed by morphological analysis, heat transfer analysis, magnetism analysis, and rheological testing. The experiment generates satisfactory results for nanocomposite fluid with an average particle diameter of 25 nm by process conditions of vacuum pressure of 30 torr, peak current of 7 A for arc discharge, breakdown voltage of 250 V and duration time of 10 micros. The experimental results showed that the nanocomposite fluid is composed of Fe, FeO, Cu, and Cu2O. SEM images show that Fe and Cu are spherical, FeO is square, and Cu2O is ovoid. For the heat transfer experiment, the experimental temperature was set at ambient temperature of 30 degrees C, the average heat transfer coefficient is 0.708 W/m oC, which is 16.3% higher than that of deionized water. The magnetism test shows that the magnetic retentivity of the fluid is 47.27 (Oe), which makes it a soft magnetic fluid.

  6. Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode

    Science.gov (United States)

    Chae, Bum-Jin; Yim, Taeeun

    2017-08-01

    Although lithium nickel cobalt manganese layered oxides with a high nickel composition have gained great attention due to increased overall energy density for energy conversion/storage systems, poor interfacial stability is considered a critical bottleneck impeding its widespread adoption. We propose a new approach based on immobilizing the artificial cathode-electrolyte interphase layer, which effectively reduces undesired surface reactions, leading to high interfacial stability of cathode material. For installation of artificial cathode-electrolyte interphases, a sulfonate-based amphiphilic organic precursor, which effectively suppresses electrolyte decomposition, is synthesized and subjected to immobilization on cathode material via simple wet-coating, followed by heat treatment at low temperature. The sulfonate-based artificial cathode-electrolyte interphase layer is well-developed on the cathode surface, and the cell controlled by the sulfonate-immobilized cathode exhibits remarkable electrochemical performance, including a high average Coulombic efficiency (99.8%) and cycling retention (97.4%) compared with pristine cathode material. The spectroscopic analyses of the cycled cathode show that the sulfonate-based artificial cathode-electrolyte interphase layer effectively mitigates electrolyte decomposition on the cathode surface, resulting in decreased interfacial resistance between electrode and electrolyte.

  7. Joan of Arc.

    Science.gov (United States)

    Foote-Smith, E; Bayne, L

    1991-01-01

    For centuries, romantics have praised and historians and scientists debated the mystery of Joan of Arc's exceptional achievements. How could an uneducated farmer's daughter, raised in harsh isolation in a remote village in medieval France, have found the strength and resolution to alter the course of history? Hypotheses have ranged from miraculous intervention to creative psychopathy. We suggest, based on her own words and the contemporary descriptions of observers, that the source of her visions and convictions was in part ecstatic epileptic auras and that she joins the host of creative religious thinkers suspected or known to have epilepsy, from St. Paul and Mohammed to Dostoevsky, who have changed western civilization.

  8. Experimental tests of vacuum energy

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    While the current vacuum energy of the Universe is very small, in our standard cosmological picture it has been much larger at earlier epochs. We try to address the question of what are possible ways to try to experimentally verify this. One direction is to look for systems where vacuum energy constitutes a non-negligible fraction of the total energy, and study the properties of those. Another possibility is to focus on the epochs around cosmic phase transitions, when the vacuum energy is of the same order as the total energy. Along these lines we investigate properties of neutron stars and the imprint of phase transitions on primordial gravitational waves.

  9. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    Science.gov (United States)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  10. Alumina barrier for vacuum brazing

    Science.gov (United States)

    Beuyukian, C. S.

    1980-01-01

    Heating platens of vacuum-brazing press will not stick to workpiece if aluminum oxide "paper" is interposed. Paper does not disintegrate in press, will not contaminate braze alloy, and helps form smoothly contoured, regular fillet at brazed edges.

  11. [Endoscopic vacuum-assisted closure].

    Science.gov (United States)

    Wedemeyer, J; Lankisch, T

    2013-03-01

    Anastomotic leakage in the upper and lower intestinal tract is associated with high morbidity and mortality. Within the last 10 years endoscopic treatment options have been accepted as sufficient treatment option of these surgical complications. Endoscopic vacuum assisted closure (E-VAC) is a new innovative endoscopic therapeutic option in this field. E-VAC transfers the positive effects of vacuum assisted closure (VAC) on infected cutaneous wounds to infected cavities that can only be reached endoscopically. A sponge connected to a drainage tube is endoscopically placed in the leakage and a continuous vacuum is applied. Sponge and vacuum allow removal of infected fluids and promote granulation of the leakage. This results in clean wound grounds and finally allows wound closure. Meanwhile the method was also successfully used in the treatment of necrotic pancreatitis.

  12. SILICON REFINING BY VACUUM TREATMENT

    Directory of Open Access Journals (Sweden)

    André Alexandrino Lotto

    2014-12-01

    Full Text Available This work aims to investigate the phosphorus removal by vacuum from metallurgical grade silicon (MGSi (98.5% to 99% Si. Melting experiments were carried out in a vacuum induction furnace, varying parameters such as temperature, time and relation area exposed to the vacuum / volume of molten silicon. The results of chemical analysis were obtained by inductively coupled plasma (ICP, and evaluated based on thermodynamic and kinetic aspects of the reaction of vaporization of the phosphorus in the silicon. The phosphorus was decreased from 33 to approximately 1.5 ppm after three hours of vacuum treatment, concluding that the evaporation step is the controlling step of the process for parameters of temperature, pressure and agitation used and refining by this process is technically feasible.

  13. Vacuum production; Produccion de vacio

    Energy Technology Data Exchange (ETDEWEB)

    Segovia, J. L. de

    2010-07-01

    Since the advent of ultra high vacuum in 1958 has been a great demand for new as means of production and to meet the process needs to be done: industry heavy, high technology and space research areas, large accelerator systems particles or nuclear fusion. In this paper we explore the modern media production: dry vacuum pumps, turbo pumps, pump status diffusion ion pumps and cryopumps. (Author)

  14. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  15. Prospects of airflow control by a gliding arc in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Balcon, N; Benard, N; Braud, P; Touchard, G; Moreau, E [Laboratoire d' Etudes Aerodynamiques (LEA), Universite de Poitiers, ENSMA, CNRS Bld Marie et Pierre Curie, Teleport 2, 86962 Futuroscope Cedex (France); Mizuno, A [Toyohashi University of Technology, Japan, Hibarigaoka, Tempaku-cho, Toyoashi, Aichi 441-8580 (Japan)

    2008-10-21

    The electrical properties of a gliding arc operating in air at atmospheric pressure are studied to evaluate its possible applications to flow control. The electromechanical behaviour of the discharge travelling at 4 m s{sup -1} along diverging electrodes in a static magnetic field is analysed in detail. Two different methods are proposed to evaluate the velocity of the arc. An initial estimation is based on the arc current evolution during its transit and additional information is gained from fast digital imaging with a CCD camera. The displacement of the arc observed with short exposure time corroborates the electrical measurement and also exhibits the existence of luminous points on the cathode that can slow down the arc motion. In addition, a particle image velocimetry system is used to investigate the interaction between the gliding arc and the surrounding air. The displacement of the low current glidarc creates a low velocity convection (around 0.2 m s{sup -1}) in the gas and also generate faster structures up to 1 m s{sup -1} directly in front of the discharge. These electromechanical effects could be used to manipulate the boundary layer region of various aerodynamic shapes.

  16. Edge conduction in vacuum glazing

    Energy Technology Data Exchange (ETDEWEB)

    Simko, T.M.; Collins, R.E. [Sydney Univ., NSW (Australia). Dept. of Applied Physics; Beck, F.A.; Arasteh, D. [Lawrence Berkeley Lab., CA (United States)

    1995-03-01

    Vacuum glazing is a form of low-conductance double glazing using in internal vacuum between the two glass sheets to eliminate heat transport by gas conduction and convection. An array of small support pillars separates the sheets; fused solder glass forms the edge seal. Heat transfer through the glazing occurs by radiation across the vacuum gap, conduction through the support pillars, and conduction through the bonded edge seal. Edge conduction is problematic because it affects stresses in the edge region, leading to possible failure of the glazing; in addition, excessive heat transfer because of thermal bridging in the edge region can lower overall window thermal performance and decrease resistance to condensation. Infrared thermography was used to analyze the thermal performance of prototype vacuum glazings, and, for comparison, atmospheric pressure superwindows. Research focused on mitigating the edge effects of vacuum glazings through the use of insulating trim, recessed edges, and framing materials. Experimentally validated finite-element and finite-difference modeling tools were used for thermal analysis of prototype vacuum glazing units and complete windows. Experimental measurements of edge conduction using infrared imaging were found to be in good agreement with finite-element modeling results for a given set of conditions. Finite-element modeling validates an analytic model developed for edge conduction.

  17. Vacuum-assisted cesarean section

    Directory of Open Access Journals (Sweden)

    McQuivey RW

    2017-03-01

    Full Text Available Ross W McQuivey,1 Jon E Block2 1Clinical Innovations, Salt Lake City, UT, 2Independent consultant, San Francisco, CA, USA Abstract: There has been a dramatic rise in the frequency of cesarean sections, surpassing 30% of all deliveries in the US. This upsurge, coupled with a decreasing willingness to allow vaginal birth after cesarean section, has resulted in an expansion of the use of vacuum assistance to safely extract the fetal head. By avoiding the use of a delivering hand or forceps blade, the volume being delivered through the uterine incision can be decreased when the vacuum is used properly. Reducing uterine extensions with their associated complications (eg, excessive blood loss in difficult cases is also a theoretical advantage of vacuum delivery. Maternal discomfort related to excessive fundal pressure may also be lessened. To minimize the risk of neonatal morbidity, proper cup placement over the “flexion point” remains essential to maintain vacuum integrity and reduce the chance of inadvertent detachment and uterine extensions. Based on the published literature and pragmatic clinical experience, utilization of the vacuum device is a safe and effective technique to assist delivery during cesarean section. Keywords: cesarean section, vacuum, forceps, birth, delivery

  18. Technical specification for vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaw, J. (ed.)

    1987-01-01

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing and designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)

  19. Arcing at B 4C-covered limiters exposed to a SOL-plasma

    Science.gov (United States)

    Laux, M.; Schneider, W.; Wienhold, P.; Jüttner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H.

    2003-03-01

    Plasma sprayed B 4C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B 4C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B 4C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B 4C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B 4C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B 4C.

  20. Arcing at B{sub 4}C-covered limiters exposed to a SOL-plasma

    Energy Technology Data Exchange (ETDEWEB)

    Laux, M. E-mail: michael.laux@ipp.mpg.delaux@ipp.mpg.de; Schneider, W.; Wienhold, P.; Juettner, B.; Huber, A.; Balden, M.; Linke, J.; Kostial, H.; Mayer, M.; Rubel, M.; Herrmann, A.; Pospieszczyk, A.; Jachmich, S.; Schweer, B.; Hildebrandt, D.; Bolt, H

    2003-03-01

    Plasma sprayed B{sub 4}C-layers considered as wall coatings for the W7X stellarator have been studied during and after exposure to TEXTOR and after arcing experiments in vacuum. Arcing through the B{sub 4}C layer occurred favoured by high power fluxes and not restricted to less stable phases. But this arcing implies an especially noisy scrape-off layer (SOL). Instead of moving retrograde in the external magnetic field, the arc spot on the B{sub 4}C-layer sticks to the same location for its whole lifetime. Consequently, the arc erodes the entire B{sub 4}C layer, finally burning down to the Cu substrate. In the neighbourhood of craters the surface contains Cu originating from those craters. This material, hauled to the surface by the arc, is subject to subsequent erosion, transport, and redeposition by the SOL-plasma. The behaviour of arcs on B{sub 4}C is most probably caused by the peculiar temperature dependences of the electrical and heat conductivity of B{sub 4}C.

  1. Simulations of Atmospheric Plasma Arcs

    Science.gov (United States)

    Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael

    2017-10-01

    We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.

  2. Numerical Model with Arc Length Variation of Welding Arc with Constant Voltage Power Source

    OpenAIRE

    Tanaka, Manabu; Tsujimura, Yoshihiro; Tashiro, Shinichi

    2012-01-01

    In the present paper, Tungsten Inert Gas (TIG) arc with Constant Voltage (CV) power source is modeled if arc length changes. And TIG arc with Constant Current (CC) power source is also modeled if arc length changes. The TIG arc is assumed on base material of water-cooled copper. For the CV power source, Maximum temperature of arc plasma and arc current increase with decrease of arc length. For the CC power source, arc voltage changes but maximum temperatures of arc plasma is almost constant i...

  3. Batteries: Overview of Battery Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Doeff, Marca M

    2010-07-12

    The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as

  4. Cathodic oxygen consumption and electrically induced osteogenesis.

    Science.gov (United States)

    Brighton, C T; Adler, S; Black, J; Itada, N; Friedenberg, Z B

    1975-01-01

    Small amounts of electric current stimulate bone formation in the region of a cathode. The purpose of this experiment is to compare changes in oxygen and hydroxyl ion concentration that occur at the cathode at current levels known to be capable of inducing osteogenesis (10-20 muamps) with those changes that occur at current levels known to be toxic to bone (100 muamps). An oxygen consumption chamber containing an oxygen electrode is fitted with two stainless steel electrodes which are connected to a constant current source. At the cathode, with a current of 100 muamps, oxygen is consumed at nearly stoichiometric rates. At higher current (100 muamps) levels, cathodic oxygen consumption gives way to hydrogen evolution. Cathodic hydroxyl ion production is directly proportional to current. It is concluded from these in vitro experiments that at 10-20 muamps the oxygen tension in the vicinity of the cathode is lowered and the pH is moderately increased. At 100 muamps the oxygen tension is not lowered, but the pH is increased dramatically. If these same changes occur in the vicinity of a cathode in vivo, then lowering the local tissue oxygen tension and raising the local pH may be mechanisms operative in electrically induced bone formation.

  5. Design Of Photovoltaic Powered Cathodic Protection System

    Directory of Open Access Journals (Sweden)

    Golina Samir Adly

    2017-07-01

    Full Text Available The corrosion caused by chemical reaction between metallic structures and surrounding mediums such as soil or water .the CP cathodic protection system is used to protect metallic structure against corrosion. Cathodic protection CP used to minimize corrosion by utilizing an external source of electrical current which forces the entire structure to become a cathode. There are two Types of cathodic protection system Galvanic current Impressed current.the Galvanic current is called a sacrificial anode is connected to the protected structure cathode through a DC power supply. In Galvanic current system a current passes from the sacrificing anode to the protected structure .the sacrificial anode is corroded rather than causing the protected structure corrosion .protected structure requires a constant current to stop the corrosion which determined by area structure metal and the surrounding medium. The rains humidity are decrease soil resistivity and increase the DC current .The corrosion and over protection resulting from increase in the DC current is harmful for the metallic structure. This problem can be solved by conventional cathodic protection system by manual adjustment of DC voltage periodically to obtain a constant current .the manual adjustment of DC voltage depends on experience of the technician and using the accuracy of the measuring equipment. The errors of measuring current depend on error from the technician or error from the measuring equipment. the corrosion of structure may occur when the interval between two successive adjustment is long .An automatically regulated cathodic protection system is used to overcome problems from conventional cathodic protection system .the regulated cathodic protection system adjust the DC voltage of the system automatically when it senses the variations of surrounding medium resistivity so the DC current is constant at the required level.

  6. A carbon nanotube field emission cathode with high current density and long-term stability

    Energy Technology Data Exchange (ETDEWEB)

    Calderon-Colon, Xiomara; Zhou, Otto [Curriculum in Applied Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Geng Huaizhi; Gao Bo [Xintek, Incorporated, 7020 Kit Creek Road, Research Triangle Park, NC (United States); An Lei; Cao Guohua [Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-08-12

    Carbon nanotube (CNT) field emitters are now being evaluated for a wide range of vacuum electronic applications. However, problems including short lifetime at high current density, instability under high voltage, poor emission uniformity, and pixel-to-pixel inconsistency are still major obstacles for device applications. We developed an electrophoretic process to fabricate composite CNT films with controlled nanotube orientation and surface density, and enhanced adhesion. The cathodes have significantly enhanced macroscopic field emission current density and long-term stability under high operating voltages. The application of this CNT electron source for high-resolution x-ray imaging is demonstrated.

  7. Jeanne d’Arc

    OpenAIRE

    Anonymous

    2016-01-01

    Malgré les nombreuses informations historiques dont on dispose à son sujet, Jeanne d’Arc reste un personnage médiéval atypique et mystérieux. En effet, si son action est bien connue grâce aux comptes rendus de ses deux procès, celle-ci reste difficilement compréhensible. Comment expliquer qu’une jeune paysanne de Domrémy, ne sachant ni lire ni écrire, parvienne à prendre la tête d’une armée, à faire lever le siège d’Orléans et à permettre le sacre du roi Charles VII à Reims ? De plus, les ten...

  8. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  9. Cells having cathodes containing polycarbon disulfide materials

    Science.gov (United States)

    Okamoto, Yoshi; Skotheim, Terje A.; Lee, Hung S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS.sub.x).sub.n, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode.

  10. Cells having cathodes containing polycarbon disulfide materials

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Y.; Skotheim, T.A.; Lee, H.S.

    1995-08-15

    The present invention relates to an electric current producing cell which contains an anode, a cathode having as a cathode-active material one or more carbon-sulfur compounds of the formula (CS{sub x}){sub n}, in which x takes values from 1.2 to 2.3 and n is greater or equal to 2, and where the redox process does not involve polymerization and de-polymerization by forming and breaking S--S bonds in the polymer backbone. The cell also contains an electrolyte which is chemically inert with respect to the anode and the cathode. 5 figs.

  11. 49 CFR 192.463 - External corrosion control: Cathodic protection.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic protection system required by this subpart must provide a level of cathodic protection that complies with one...

  12. Lanthanum manganate based cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Juhl Joergensen, M.

    2001-07-01

    Composite cathodes for solid oxide fuel cells were investigated using electrochemical impedance spectroscopy and scanning electron microscopy. The aim was to study the oxygen reduction process in the electrode in order to minimise the voltage drop in the cathode. The electrodes contained a composite layer made from lanthanum strontium manganate (LSM) and yttria stabilised zirconia (YSZ) and a layer of pure LSM aimed for current collection. The performance of the composite electrodes was sensitive to microstructure and thickness. Further, the interface between the composite and the current collecting layer proved to affect the performance. In a durability study severe deg-radation of the composite electrodes was found when passing current through the electrode for 2000 hours at 1000 deg. C. This was ascribed to pore formation along the composite interfaces and densification of the composite and current collector microstructure. An evaluation of the measurement approach indicated that impedance spectroscopy is a very sensitive method. This affects the reproducibility, as small undesirable variations in for instance the microstructure from electrode to electrode may change the impedance. At least five processes were found to affect the impedance of LSM/YSZ composite electrodes. Two high frequency processes were ascribed to transport of oxide ions/oxygen intermediates across LSM/YSZ interfaces and through YSZ in the composite. Several competitive elementary reaction steps, which appear as one medium frequency process in the impedance spectra, were observed. A low frequency arc related to gas diffusion limitation in a stagnant gas layer above the composite structure was detected. Finally, an inductive process, assumed to be connected to an activation process involving segregates at the triple phase boundary between electrode, electrolyte and gas phase, was found. (au)

  13. Structure and optical properties of CdS:O films by cathode sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Masahiro; Asaba, Ryo; Suzuki, Akinori; Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016 (Japan); Shim, Yong-Gu [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Khalilova, Kh.; Mamedov, Nazim; Bayramov, Ayaz; Huseynov, Emil [Institute of Physics, Azerbaijan National Academy of Science, H. Javid ave. 33, Baku 1143 (Azerbaijan)

    2015-06-15

    We have studied the structure and optical properties of CdS:O films deposited on SLG (soda lime glass) substrates by cathode sputtering in the atmosphere of oxygen/argon gases. According to X-ray diffraction (XRD) and confocal Raman scattering data, the films annealed in vacuum at temperatures above 300 C exhibited crystalline structure of CdS. On the other hand, XRD, confocal Raman scattering, AFM (atomic force microscopy) and TEM (transmission electron microscopy) data indicated amorphous structure nano-crystallization in CdS:O films annealed in vacuum at 400 C. For the films, the emissions located at 3.35 eV were evident from photoluminescence measurements. The origin of this energy gap is discussed by taking into account redistribution of electronic density of states in the amorphous phase and quantum-size effect. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. RFQ Vacuum brazing at CERN

    CERN Document Server

    Mathot, S

    2008-01-01

    The aim of this paper is to describe the vacuum brazing procedure used at CERN for the brazing of Radio Frequency Quadrupole (RFQ). The RFQ is made of high precision machined OFE copper pieces assembled together. Vacuum brazing is one of the most promising techniques used to join the individual components leading to vacuum tightness and high precision alignment. The RFQ modules brazed at CERN are made of four 100 or 120 cm long vanes (two major and two minor vanes). Our brazing procedure consists of two steps. The first step involves the brazing of the four vanes in a horizontal position. The second step consists of brazing the vacuum stainless steel flanges to the copper structure in a vertical position. The paper describes the problems encountered with the alignment and the vacuum tightness. The difficulties related to the stress relaxation of the machined copper pieces during the brazing heat treatment are discussed. In addition, the solutions developed to improve the alignment of the brazed RFQ’s are...

  15. Measurement of partial pressures in vacuum technology and vacuum physics

    Science.gov (United States)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  16. 2D arc-PIC code description: methods and documentation

    CERN Document Server

    Timko, Helga

    2011-01-01

    Vacuum discharges are one of the main limiting factors for future linear collider designs such as that of the Compact LInear Collider. To optimize machine efficiency, maintaining the highest feasible accelerating gradient below a certain breakdown rate is desirable; understanding breakdowns can therefore help us to achieve this goal. As a part of ongoing theoretical research on vacuum discharges at the Helsinki Institute of Physics, the build-up of plasma can be investigated through the particle-in-cell method. For this purpose, we have developed the 2D Arc-PIC code introduced here. We present an exhaustive description of the 2D Arc-PIC code in two parts. In the first part, we introduce the particle-in-cell method in general and detail the techniques used in the code. In the second part, we provide a documentation and derivation of the key equations occurring in the code. The code is original work of the author, written in 2010, and is therefore under the copyright of the author. The development of the code h...

  17. Reservoir Scandate Cathode for Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to combine two revolutionary cathode technologies into a single device for use in electric space propulsion. This will overcome problems that both...

  18. Pulsed arc plasma jet synchronized with drop-on-demand dispenser

    Science.gov (United States)

    Mavier, F.; Lemesre, L.; Rat, V.; Bienia, M.; Lejeune, M.; Coudert, J.-F.

    2017-04-01

    This work concerns with the liquid injection in arc plasma spraying for the development of finely structured ceramics coatings. Nanostructured coatings can be now achieved with nanopowders dispersed in a liquid (SPS: Suspension Plasma Spraying) or with a salt dissolved into a liquid (SPPS: Solution Precursor Plasma Spraying) injected into the plasma jet. Controlling electric arc instabilities confined in non-transferred arc plasma torch is therefore a key issue to get reproducible coating properties. Adjustment of parameters with a mono-cathode arc plasma allows a new resonance mode called “Mosquito”. A pulsed arc plasma producing a periodic regular voltage signal with modulation of enthalpy is obtained. The basic idea is to synchronize the injection system with the arc to introduce the liquid material in each plasma oscillation in the same conditions, in order to control the plasma treatment of the material in-fly. A custom-developed pulsed arc plasma torch is used with a drop-on-demand dispenser triggered by the arc voltage. A delay is added to adjust the droplets emission time and their penetration into the plasma gusts. Indeed, the treatment of droplets is also shown to be dependent on this injection delay. A TiO2 suspension and an aqueous solution of aluminium nitrate were optimized to get ejectable inks forming individual droplets. The feasibility of the process was demonstrated for SPS and SPPS techniques. Coatings from the suspension and the solution were achieved. First synchronized sprayings show a good penetration of the droplets into the plasma. Coatings show a fine structure of cauliflowers shapes. The synchronization of the ejection allows a control of morphology and a better deposition efficiency. Further investigations will find the optimal operating parameters to show the full potential of this original liquid injection technique.

  19. Co-Flow Hollow Cathode Technology

    Science.gov (United States)

    Hofer, Richard R.; Goebel, Dan M.

    2011-01-01

    Hall thrusters utilize identical hollow cathode technology as ion thrusters, yet must operate at much higher mass flow rates in order to efficiently couple to the bulk plasma discharge. Higher flow rates are necessary in order to provide enough neutral collisions to transport electrons across magnetic fields so that they can reach the discharge. This higher flow rate, however, has potential life-limiting implications for the operation of the cathode. A solution to the problem involves splitting the mass flow into the hollow cathode into two streams, the internal and external flows. The internal flow is fixed and set such that the neutral pressure in the cathode allows for a high utilization of the emitter surface area. The external flow is variable depending on the flow rate through the anode of the Hall thruster, but also has a minimum in order to suppress high-energy ion generation. In the co-flow hollow cathode, the cathode assembly is mounted on thruster centerline, inside the inner magnetic core of the thruster. An annular gas plenum is placed at the base of the cathode and propellant is fed throughout to produce an azimuthally symmetric flow of gas that evenly expands around the cathode keeper. This configuration maximizes propellant utilization and is not subject to erosion processes. External gas feeds have been considered in the past for ion thruster applications, but usually in the context of eliminating high energy ion production. This approach is adapted specifically for the Hall thruster and exploits the geometry of a Hall thruster to feed and focus the external flow without introducing significant new complexity to the thruster design.

  20. Preventing Corrosion by Controlling Cathodic Reaction Kinetics

    Science.gov (United States)

    2016-03-25

    Preventing corrosion by controlling cathodic reaction kinetics Progress Report for Period: 1 SEP 2015-31 MAR 2016 John Keith Department of...25 March 2016 Preventing corrosion by controlling cathodic reaction kinetics Annual Summary Report: FY16 PI: John Keith, 412-624-7016,jakeith...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion

  1. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  2. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  3. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  4. Vacuum Cleaner Fan Being Improved

    Science.gov (United States)

    Tweedt, Daniel L.

    1997-01-01

    As part of the technology utilization program at the NASA Lewis Research Center, efforts are underway to transfer aerospace technologies to new areas of practical application. One such effort involves using advanced computational fluid dynamics (CFD) codes for turbomachinery to analyze the internal fluid dynamics of low-speed fans and blowers. This year, the Kirby Company in Cleveland, Ohio, approached NASA with a request for technologies that could help them improve their vacuum cleaners. Of particular interest to Kirby is the high-frequency blade-passing noise generation of their vacuum cleaner fan at low airflow rates.

  5. Pulsed laser deposition-assisted synthesis of porous WP2 nanosheet arrays integrated on graphite paper as a 3D flexible cathode for efficient hydrogen evolution

    Science.gov (United States)

    Pi, Mingyu; Guo, Weimeng; Wu, Tianli; Wang, Xiaodeng; Zhang, Dingke; Wang, Shuxia; Chen, Shijian

    2017-10-01

    Herein, porous WP2 nanosheet arrays integrated on graphite paper (P-WP2 NSs/GP) as 3D flexible cathode for electrocatalytic hydrogen evolution reaction (HER) are prepared by in situ phosphidation via vacuum encapsulation assisted by pulsed laser deposition technique. Compared to the electrode without pre-deposition process, the enhanced catalytic activities are attributed to the increased effective catalyst loading and the reinforced charge transport kinetics. The results make the present P-WP2 NSs/GP as a promising cathode for energy conversion and paves a new way for designing and fabricating efficient electrodes toward HER.

  6. Development of self-aligned gated porous silicon microtip field emission arrays for vacuum microelectronic applications

    Science.gov (United States)

    Jessing, Jeffrey Richard

    Solid state microelectronics is the dominate technology in the present day electronics industry. However, as the physical dimensions decrease, it is becoming apparent that solid state devices have inherent performance limitations, such as finite saturation drift velocity, high temperature degradation, and failure in extreme radiation environments. To address these problems a relatively new technology, called vacuum microelectronics, has emerged. Vacuum microelectronics encompasses the fabrication, characterization, and application of various devices whose operation is based on vacuum ballistic transport of field emitted electrons from microminiature electrodes. The field of vacuum microelectronics has advanced at a rapid rate over the past decade; however, there remain key issues to be addressed prior to any widespread commercialization of this technology. Field emission arrays (FEAs) must operate at low voltages and generate high current densities with uniform, long-lifetime operation. The use of porous silicon cathodes in vacuum microelectronic applications is a promising alternative to existing silicon and metal field emitters. Surface modification of bulk crystalline silicon by electrochemical anodization in a concentrated hydrofluoric acid (HF) solution has been shown to produce large submicroscopic field enhancement and large emission area. The primary focus of this research was the development of novel gated FEAs based on porous silicon microtip cathodes. Device design consisted of both experimental and theoretical efforts. Employing semiconductor process technology, the successful fabrication of an operational self-aligned gated porous silicon microtip FEA was demonstrated. Small arrays exhibited Fowler-Nordheim characteristics over several decades of anode current. A peak stable current of approximately 60 to 70 nA per tip was obtained at less than 125 V. A correlation of anodization conditions with emission properties has been found, and a simple emission

  7. Arc of opportunity.

    Science.gov (United States)

    Delaney, Adam Vai

    2011-07-01

    Born in Port Moresby, Papua New Guinea, the author had a 20 year career in diplomacy, political affairs, and development policy analysis at the Pacific Islands Forum, the United Nations in New York; the Prime Minister's Department in Papua New Guinea (PNG) and in the Foreign Ministry of PNG. He has also been involved in theatre for over a decade in PNG, and participated in a three-month program at the Eugene O'Neill Theatre Center in Connecticut, USA. He is currently the Business Development Manager at the Torres Strait Regional Authority (Commonwealth) on Thursday Island. Since 1975 the Australian government's overseas development policy has supported various sectoral programs in its neighbouring countries, in particular Papua New Guinea and the Solomon Islands. The "creative" field has not been prominent in this strategy. While natural resources and the sports sectors have gained much greater attention, in terms of being viable international commercial enterprises, the arts, have remained stagnant. In this paper the need for joint programs genuinely supporting "wellbeing" and promoting social enterprise throughout the "arc of opportunity" is described to harness Melanesian creativity to compete successfully in world-markets, starting with penetration of the largest economy at its door-step: Australia.

  8. Concept for a MEMS-type vacuum sensor based on electrical conductivity measurements

    Directory of Open Access Journals (Sweden)

    F. J. Giebel

    2017-11-01

    Full Text Available The concept of the micro-structured vacuum sensor presented in this article is the measurement of the electrical conductivity of thinned gases in order to develop a small, economical and quite a simple type of vacuum sensor. There are already some approaches for small vacuum sensors. Most of them are based on conservative measurement principles similar to those used in macroscopic vacuum gauges. Ionization gauges use additional sources of energy, like hot cathodes, ultraviolet radiation or high voltage for example, for ionizing gas molecules and thereby increasing the number of charge carriers for measuring low pressures. In contrast, the concept discussed here cannot be found in macroscopic sensor systems because it depends on the microscopic dimension of a gas volume defined by two electrodes. Here we present the concept and the production of a micro-structured vacuum sensor chip, followed by the electrical characterization. Reference measurements with electrodes at a distance of about 1 mm showed currents in the size of picoampere and a conductivity depending on ambient pressure. In comparison with these preliminary measurements, fundamental differences regarding pressure dependence of the conductivity are monitored in the electrical characterization of the micro-structured sensor chip. Finally the future perspectives of this sensor concept are discussed.

  9. Dynamics of microparticles in vacuum breakdown: Cranberg’s scenario updated by numerical modeling

    Directory of Open Access Journals (Sweden)

    B. Seznec

    2017-07-01

    Full Text Available Microparticles (MP and thermofield emission in vacuum are mainly caused by the roughness present at the surface of electrodes holding a high voltage. They can act as a trigger for breakdown, especially under high vacuum. This theoretical study discusses the interactions between one MP and the thermofield emission electron current as well as the consequences on the MP’s transit. Starting from Cranberg’s assumptions, new phenomena have been taken into account such as MP charge variation due to the secondary electron emission induced by energetic electron bombardment. Hence, the present model can be solved only numerically. Four scenarios have been identified based on the results, depending on the electron emission current from the cathode roughness (tip and the size of the MP released at the anode, namely (i one way; (ii back and forth; (iii oscillation; and (iv vaporization. A crash study of the MP on the cathode shows that the electron emission can decrease if the MP covers the thermoemissive tip, i.e., if the MP is larger than the tip size—a phenomenon often called “conditioning”—and helping to increase the voltage holding in vacuum without breakdown.

  10. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  11. Beam Current Increase and Cathode Lifetime Improvement of KOTRON-13 Ion Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W. K.; Chae, S. K.; Song, J. Y.; Im, G. S.; Cho, B. O. [Samyoung Unitech Co., Seoul (Korea, Republic of)

    2010-05-15

    Technology of cyclotron has been actively developed to meet the increasing requirement output of medical radioactive isotopes for PET. KOTRON-13 is produced with low negative hydrogen ion beam current owing to the low efficiency of proton beam current compared with foreign cyclotron. In the defect there from, the lifetime of cathode is around 5,000min, which requires frequent maintenance period, and the target beam current is maximum 50uA at a poor efficiency compared with the inflow quantity of hydrogen gas and that of inflicting arc current. Considering above affairs, we have to improve the PIG ion source extraction efficiency of KOTRON-13 in order to lift beam current. Mostly the ion source of cyclotron less than 30Mev comes from the use of PIG ion source mainly with the method of cold cathode or hot cathode. However, the cyclotron of 30Mev grade of EBCO or IBA uses the external ion source and uses ion source with cusp type of good withdrawal efficiency. This type requires high voltage, and transports ion from ion source to cyclotron, which requires precise transportation equipment. And entering cyclotron requires a high quality of inflictor with a high defect rate, but high current cyclotron has no choice but to use ion source of such a method. But the cyclotron using PET with the beam current less than 100uA uses PIG ion source of KOTRON-13 with a reasonable maintenance cost

  12. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    Science.gov (United States)

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  13. Cleaner Vacuum-Bag Curing

    Science.gov (United States)

    Clemons, J. M.; Penn, B. G.; Ledbetter, Frank E., III; Daniels, J. G.

    1987-01-01

    Improvement upon recommended procedures saves time and expense. Autoclave molding in vacuum bag cleaner if adhesive-backed covering placed around caul plate as well as on mold plate. Covering easy to remove after curing and leaves caul plate free of resin deposits.

  14. Brine Distribution after Vacuum Saturation

    DEFF Research Database (Denmark)

    Hedegaard, Kathrine; Andersen, Bertel Lohmann

    1999-01-01

    Experiments with the vacuum saturation method for brine in plugs of chalk showed that a homogeneous distribution of brine cannot be ensured at saturations below 20% volume. Instead of a homogeneous volume distribution the brine becomes concentrated close to the surfaces of the plugs...

  15. Quantum Vacuum Structure and Cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann; Labun, Lance; Hadad, Yaron; /Arizona U. /Munich U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2011-12-05

    Contemporary physics faces three great riddles that lie at the intersection of quantum theory, particle physics and cosmology. They are: (1) The expansion of the universe is accelerating - an extra factor of two appears in the size; (2) Zero-point fluctuations do not gravitate - a matter of 120 orders of magnitude; and (3) The 'True' quantum vacuum state does not gravitate. The latter two are explicitly problems related to the interpretation and the physical role and relation of the quantum vacuum with and in general relativity. Their resolution may require a major advance in our formulation and understanding of a common unified approach to quantum physics and gravity. To achieve this goal we must develop an experimental basis and much of the discussion we present is devoted to this task. In the following, we examine the observations and the theory contributing to the current framework comprising these riddles. We consider an interpretation of the first riddle within the context of the universe's quantum vacuum state, and propose an experimental concept to probe the vacuum state of the universe.

  16. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The same vacuum chamber as in 7810256, read the detailed description there. Here, the 4 strip-shaped ion-getter pumps are poised at the entrance to their slots. Ion-getter pumps were not retained, thermal getter pumps were chosen instead (see 8301153 and 8305170).

  17. Filling the vacuum at LHCb

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Last month, the Vacuum, Surfaces and Coatings (VSC) group was tasked with an unusually delicate operation in the LHCb experiment cavern: removing the LHC beam pipe while keeping the sensitive Vertex Locator vacuum vessel (VELO) completely isolated from the action.   The VSC group seal off the VELO beam pipe with a flange. Image: Gloria Corti. LHCb’s VELO detector is one of the crown jewels of the experiment. With detector elements surrounded by a vacuum, it gets as close as 5 cm from the beam. Fantastic for physics, but difficult for all-important access. “Because of the sensitivity of the VELO detector and its proximity to the beam, the collaboration decided not to bake (see box) its portion of the beam pipe,” says Giulia Lanza (TE-VSC-LBV), the expert in charge of the beam vacuum operation. “Our group was therefore asked to remove the rest of the LHC beam pipe while keeping the VELO portion of the pipe completely isolated. This work...

  18. Vacuum Stability of Standard Model^{++}

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2013-01-01

    The latest results of the ATLAS and CMS experiments point to a preferred narrow Higgs mass range (m_h \\simeq 124 - 126 GeV) in which the effective potential of the Standard Model (SM) develops a vacuum instability at a scale 10^{9} -10^{11} GeV, with the precise scale depending on the precise value of the top quark mass and the strong coupling constant. Motivated by this experimental situation, we present here a detailed investigation about the stability of the SM^{++} vacuum, which is characterized by a simple extension of the SM obtained by adding to the scalar sector a complex SU(2) singlet that has the quantum numbers of the right-handed neutrino, H", and to the gauge sector an U(1) that is broken by the vacuum expectation value of H". We derive the complete set of renormalization group equations at one loop. We then pursue a numerical study of the system to determine the triviality and vacuum stability bounds, using a scan of 10^4 random set of points to fix the initial conditions. We show that, if there...

  19. Vacuum assisted closure in coloproctology

    NARCIS (Netherlands)

    Bemelman, W.A.

    2009-01-01

    Vacuum-assisted closure has earned its indications in coloproctology. It has been described with variable results in the treatment of large perineal defects after abdominoperineal excision, in the treatment of stoma dehiscence and perirectal abscesses. The most promising indication for

  20. Improved cathode materials for microbial electrosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T; Nie, HR; Bain, TS; Lu, HY; Cui, MM; Snoeyenbos-West, OL; Franks, AE; Nevin, KP; Russell, TP; Lovley, DR

    2013-01-01

    Microbial electrosynthesis is a promising strategy for the microbial conversion of carbon dioxide to transportation fuels and other organic commodities, but optimization of this process is required for commercialization. Cathodes which enhance electrode-microbe electron transfer might improve rates of product formation. To evaluate this possibility, biofilms of Sporomusa ovata, which are effective in acetate electrosynthesis, were grown on a range of cathode materials and acetate production was monitored over time. Modifications of carbon cloth that resulted in a positive-charge enhanced microbial electrosynthesis. Functionalization with chitosan or cyanuric chloride increased acetate production rates 6-7 fold and modification with 3-aminopropyltriethoxysilane gave rates 3-fold higher than untreated controls. A 3-fold increase in electrosynthesis over untreated carbon cloth cathodes was also achieved with polyaniline cathodes. However, not all strategies to provide positively charged surfaces were successful, as treatment of carbon cloth with melamine or ammonia gas did not stimulate acetate electrosynthesis. Treating carbon cloth with metal, in particular gold, palladium, or nickel nanoparticles, also promoted electrosynthesis, yielding electrosynthesis rates that were 6-,4.7- or 4.5-fold faster than the untreated control, respectively. Cathodes comprised of cotton or polyester fabric treated with carbon nanotubes yielded cathodes that supported acetate electrosynthesis rates that were similar to 3-fold higher than carbon cloth controls. Recovery of electrons consumed in acetate was similar to 80% for all materials. The results demonstrate that one approach to increase rates of carbon dioxide reduction in microbial electrosynthesis is to modify cathode surfaces to improve microbe-electrode interactions.

  1. HIGH PRODUCTIVITY VACUUM BLASTING SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    William S. McPhee

    1999-05-31

    The objective of this project is to improve the productivity and lower the expense of existing vacuum blasting technology. This technology is used to remove radioactive contamination, PCBs, and lead-based paint and provides worker protection by continuously recycling the material and dust for the decontamination tasks. The proposed work would increase the cleaning rate and provide safe and cost-effective decontamination of the DOE sites. This work focuses on redesigning and improving existing vacuum blasting technology including blast head nozzles, ergonomic handling of the blast head by reducing its weight; brush-ring design, vacuum level regulator, efficiency of the dust separator, and operational control sensors. The redesign is expected to enhance the productivity and economy of the vacuum blasting system by at least 50% over current vacuum blasting systems. There are three phases in the project. Phase I consists of developing and testing mathematical models. Phase II consists of pre-prototype design and fabrication and pre-prototype unit testing. Phase III consists of prototype design and field verification testing. In phase I, mathematical models are developed and analyzed for the nozzle, blast head, wind curtain, and dust separator, first as individual devices and then combined as an integrated model. This allows study of respective airflow and design parameters. The Contractor shall, based on the results of the mathematical modeling studies, design experimental models of the components and test these models. In addition, the Contractor shall develop sensors to detect the relationship of the blast head to the blast surfaces and controls to minimize the dependency on an operator's skill and judgment to obtain optimum positioning, as well as real-time characterization sensors to determine as the blast head is moving the depth to which coatings must be removed, thereby improving production and minimizing waste. In phase II, the Contractor shall design and

  2. A High Capacity Li-Ion Cathode: The Fe(III/VI Super-Iron Cathode

    Directory of Open Access Journals (Sweden)

    Stuart Licht

    2010-05-01

    Full Text Available A super-iron Li-ion cathode with a 3-fold higher reversible capacity (a storage capacity of 485 mAh/g is presented. One of the principle constraints to vehicle electrification is that the Li-ion cathode battery chemistry is massive, and expensive. Demonstrated is a 3 electron storage lithium cathodic chemistry, and a reversible Li super-iron battery, which has a significantly higher capacity than contemporary Li-ion batteries. The super-iron Li-ion cathode consists of the hexavalent iron (Fe(VI salt, Na2FeO4, and is formed from inexpensive and clean materials. The charge storage mechanism is fundamentally different from those of traditional lithium ion intercalation cathodes. Instead, charge storage is based on multi-electron faradaic reduction, which considerably enhances the intrinsic charge storage capacity.

  3. Vacuum polarization and Hawking radiation

    Science.gov (United States)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  4. Final Design and Manufacturing of the PEP-II High Energy Ring Arc Bellows Module

    Science.gov (United States)

    Kurita, Nadine R.; Kulikov, Artem; Corlett, John

    1997-05-01

    An update on the Arc Bellows Module for the PEP-II High Energy Ring is presented (M.E. Nordby, N. Kurita, C-K Ng, " Bellows Design for the PEP-II High Energy Ring Arc Chambers", PAC95 Conference Proceedings, Dallas, Texas). This paper includes final design, manufacturing issues, material and coating selection, and tribological and Higher Order Mode testing. The final performance requirements and operational requirements are also reviewed. The RF Shield design was proven during assembly to allow for large manufacturing tolerances without reducing the mechanical spring force below required values. In addition, the RF Shield does not loose electrical contact with large misalignments across the module. Also discussed is the adaptation of the Arc Bellows Module into a circular geometry for use in the PEP-II Abort Line vacuum system.

  5. Plasma Sputtering Robotic Device for In-Situ Thick Coatings of Long, Small Diameter Vacuum Tubes

    Science.gov (United States)

    Hershcovitch, Ady

    2014-10-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed fabricated & operated. Reason for this endeavor is to alleviate the problems of unacceptable ohmic heating of stainless steel vacuum tubes and of electron clouds, due to high secondary electron yield (SEY), in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase cathode lifetime, movable magnet package was developed, and thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced SEY to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that 10 μm Cu coated stainless steel RHIC tube has conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. Device detail and experimental results will be presented. Work supported by Brookhaven Science Associates, LLC under

  6. Plasma sputtering robotic device for in-situ thick coatings of long, small diameter vacuum tubesa)

    Science.gov (United States)

    Hershcovitch, A.; Blaskiewicz, M.; Brennan, J. M.; Custer, A.; Dingus, A.; Erickson, M.; Fischer, W.; Jamshidi, N.; Laping, R.; Liaw, C.-J.; Meng, W.; Poole, H. J.; Todd, R.

    2015-05-01

    A novel robotic plasma magnetron mole with a 50 cm long cathode was designed, fabricated, and operated. The reason for this endeavor is to alleviate the problems of unacceptable resistive heating of stainless steel vacuum tubes in the BNL Relativistic Heavy Ion Collider (RHIC). The magnetron mole was successfully operated to copper coat an assembly containing a full-size, stainless steel, cold bore, RHIC magnet tubing connected to two types of RHIC bellows, to which two additional pipes made of RHIC tubing were connected. To increase the cathode lifetime, a movable magnet package was developed, and the thickest possible cathode was made, with a rather challenging target to substrate (de facto anode) distance of less than 1.5 cm. Achieving reliable steady state magnetron discharges at such a short cathode to anode gap was rather challenging, when compared to commercial coating equipment, where the target to substrate distance is 10's cm; 6.3 cm is the lowest experimental target to substrate distance found in the literature. Additionally, the magnetron developed during this project provides unique omni-directional uniform coating. The magnetron is mounted on a carriage with spring loaded wheels that successfully crossed bellows and adjusted for variations in vacuum tube diameter, while keeping the magnetron centered. Electrical power and cooling water were fed through a cable bundle. The umbilical cabling system is driven by a motorized spool. Excellent coating adhesion was achieved. Measurements indicated that well-scrubbed copper coating reduced secondary electron yield to 1, i.e., the problem of electron clouds can be eliminated. Room temperature RF resistivity measurement indicated that a 10 μm copper coated stainless steel RHIC tube has a conductivity close to that of pure copper tubing. Excellent coating adhesion was achieved. The device details and experimental results are described.

  7. Gravitational Waves in Decaying Vacuum Cosmologies

    OpenAIRE

    David Alejandro Tamayo Ramirez

    2015-01-01

    In the present monograph we study in detail the primordial gravitational waves in cosmologies with a decaying vacuum. The decaying vacuum models are an alternative to solve the cosmological constant problem attributing a dynamic to the vacuum energy. The problem of primordial gravitational waves is discussed in the framework of an expanding, flat, spatially homogeneous and isotropic FLRW Universe described by General Relativity theory with decaying vacuum energy density of the type $\\\\Lambda ...

  8. Robot Vacuum Cleaner Personality and Behavior

    OpenAIRE

    Hendriks, A.F.M.; Meerbeek, B.W.; Boess, S.; Pauws, S.C.; Sonneveld, M.

    2011-01-01

    In this paper we report our study on the user experience of robot vacuum cleaner behavior. How do people want to experience this new type of cleaning appliance? Interviews were conducted to elicit a desired robot vacuum cleaner personality. With this knowledge in mind, behavior was designed for a future robot vacuum cleaner. A video prototype was used to evaluate how people experienced the behavior of this robot vacuum cleaner. The results indicate that people recognizedthe intended personali...

  9. Magnetic filtered plasma deposition and implantation technique

    CERN Document Server

    Zhang Hui Xing; Wu Xian Ying

    2002-01-01

    A high dense metal plasma can be produced by using cathodic vacuum arc discharge technique. The microparticles emitted from the cathode in the metal plasma can be removed when the metal plasma passes through the magnetic filter. It is a new technique for making high quality, fine and close thin films which have very widespread applications. The authors describe the applications of cathodic vacuum arc technique, and then a filtered plasma deposition and ion implantation system as well as its applications

  10. Modulation of field emission properties of znO nanorods during arc discharge.

    Science.gov (United States)

    Fang, F; Kennedy, J; Carder, D A; Futter, J; Murmu, P; Markwitz, A

    2010-12-01

    Zinc oxide (ZnO) nanorods have been synthesized via the arc discharge method. Different oxygen partial pressures were applied in the arc discharge chamber to modulate the field emission properties of the as-synthesized ZnO nanorods. Scanning electron microscopy (SEM) was carried out to analyze the morphology of the ZnO nanorods. The ion beam analysis technique of proton induced X-ray emission (PIXE) was performed to probe the impurities in ZnO nanorods. SEM images clearly revealed the formation of randomly oriented ZnO nanorods with diameters between 10-50 nm. It was found that the morphology and the electrical properties of the ZnO nanorods were dependent on the oxygen partial pressure during arc discharge. In addition enhanced UV-sensitive photoconductivity was found for ZnO nanorods synthesized at high oxygen partial pressure during arc discharge. The field emission properties of the nanorods were studied. The turn-on field, which is defined at a current density of 10 microA cm(-2), was about 3 V microm(-1) for ZnO nanorods synthesized at 99% oxygen partial pressure during arc discharge. The turn-on field for ZnO nanorods increased with the decrease of oxygen partial pressure during arc discharge. The simplicity of the synthesis route coupled with the modulation of field emission properties due to the arc discharge method make the ZnO nanorods a promising candidate for a low cost and compact cold cathode material.

  11. 14 CFR 29.1433 - Vacuum systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe...

  12. Utilize Vacuum Forming to Make Interdisciplinary Connections

    Science.gov (United States)

    Love, Tyler S.; Valenza, Frank

    2011-01-01

    The concept of vacuum forming has been around since the 19th century, despite not being fully utilized in industry until the 1950s. In the past, industrial arts classes have used vacuum-forming projects to concentrate solely on the manufacturing process and the final product. However, vacuum forming is not just an old industrial arts activity; it…

  13. 14 CFR 25.1433 - Vacuum systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Vacuum systems. 25.1433 Section 25.1433... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. ...

  14. The Dirac-Electron Vacuum Wave

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2016-07-01

    Full Text Available This paper argues that the Dirac equation can be interpreted as an interaction between the electron core and the Planck vacuum state, where the positive and negative solutions represent respectively the dynamics of the electron core and a vacuum wave propagating within the vacuum state. Results show that the nonrelativistic positive solution reduces to the Schrödinger wave equation

  15. Study of Arc-Related RF Faults in the CEBAF Cryomodules

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Curry; Ganapati Myneni; Ganapati Rao Myneni; John Musson; Thomas Powers; Timothy Whitlatch; Isidoro Campisi; Haipeng Wang

    2004-07-01

    A series of measurements has been conducted on two superconducting radio-frequency (RF) cavity pairs, installed in cryomodules and routinely operated in the Continuous Electron Beam Accelerator Facility, in order to study the RF-vacuum interaction during an RF fault. These arc-related fault rates increase with increasing machine energy, contribute to system downtime, and directly affect the accelerator's availability. For this study, the fundamental power coupler waveguides have been instrumented with vacuum gauges, additional arc detectors, additional infrared sensors, and temperature sensors in order to measure the system response during both steady-state operations and RF fault conditions. Residual gas analyzers have been installed on the waveguide vacuum manifolds to monitor the gas species present during cooldown, RF processing, and operation. Measurements of the signals are presented, a comparison with analysis is shown and results are discussed. The goal of this study is to characterize the RF-vacuum interaction during normal operations. With a better understanding of the installed system response, methods for reducing the fault rate may be devised, ultimately leading to improvements in availability.

  16. Structural investigation of two carbon nitride solids produced by cathodic arc deposition and nitrogen implantation

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, A.R.; McCulloch, D.; McKenzie, D.R.; Yin, Y.; Gerstner, E.G. [New South Wales Univ., Kensington, NSW (Australia)

    1996-12-31

    Carbon nitride materials have been the focus of research efforts worldwide. Most materials studied have been amorphous, with only a few groups claiming to have found a crystalline material. In this paper, carbon nitride materials prepared by two different techniques are analysed, and found to be remarkably similar in bonding and structure. The materials appear to have a primarily sp{sup 2} bonded carbon structure with a lower bond length than found in an amorphous carbon. This is explained by nitrogen substituting into `rings` to a saturation level of about one nitrogen per three carbon atoms. No evidence was found for a crystalline structure of formula C{sub 3}N{sub 4}, or any amorphous derivative of it. 16 refs., 1 tab., 5 figs.

  17. High pressure neon arc lamp

    Science.gov (United States)

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  18. Hydrogen mitigation in submerged arc welding

    Science.gov (United States)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process

  19. Synchrotron Investigations of SOFC Cathode Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Idzerda, Yves

    2013-09-30

    The atomic variations occurring in cathode/electrolyte interface regions of La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3-δ} (LSCF) cathodes and other SOFC related materials have been investigated and characterized using soft X-ray Absorption Spectroscopy (XAS) and diffuse soft X-ray Resonant Scattering (XRS). X-ray Absorption Spectroscopy in the soft X-ray region (soft XAS) is shown to be a sensitive technique to quantify the disruption that occurs and can be used to suggest a concrete mechanism for the degradation. For LSC, LSF, and LSCF films, a significant degradation mechanism is shown to be Sr out-diffusion. By using the XAS spectra of hexavalent Cr in SrCrO4 and trivalent Cr in Cr2O3, the driving factor for Sr segregation was identified to be the oxygen vacancy concentration at the anode and cathode side of of symmetric LSCF/GDC/LSCF heterostructures. This is direct evidence of vacancy induced cation diffusion and is shown to be a significant indicator of cathode/electrolyte interfacial degradation. X-ray absorption spectroscopy is used to identify the occupation of the A-sites and B-sites for LSC, LSF, and LSCF cathodes doped with other transition metals, including doping induced migration of Sr to the anti-site for Sr, a significant cathode degradation indicator. By using spatially resolved valence mapping of Co, a complete picture of the surface electrochemistry can be determined. This is especially important in identifying degradation phenomena where the degradation is spatially localized to the extremities of the electrochemistry and not the average. For samples that have electrochemical parameters that are measured to be spatially uniform, the Co valence modifications were correlated to the effects of current density, overpotential, and humidity.

  20. "Flat-Fish" Vacuum Chamber

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The picture shows a "Flat-Fish" vacuum chamber being prepared in the ISR workshop for testing prior to installation in the Split Field Magnet (SFM) at intersection I4. The two shells of each part were hydroformed from 0.15 mm thick inconel 718 sheet (with end parts in inconel 600 for easier manual welding to the arms) and welded toghether with two strips which were attached by means of thin stainless steel sheets to the Split Field Magnet poles in order to take the vertical component of the atmospheric pressure force. This was the thinnest vacuum chamber ever made for the ISR. Inconel material was chosen for its high elastic modulus and strenght at chamber bake-out temperature. In this picture the thin sheets transferring the vertical component of the atmosferic pressure force are attached to a support frame for testing. See also 7712182, 7712179.

  1. Advanced window incorporating vacuum glazing

    Science.gov (United States)

    Asano, Osamu; Misonou, Masao; Kato, Hidemi; Nagasaka, Shigeki

    1999-10-01

    Vacuum glazing product named SPACIATM, being an unique product with very high levels of thermal insulation properties in a very small thickness, is described in detail. The construction and manufacturing process of SPACIATM are reported. Its design, which was originally established by R.E. Collins et al. of the University of Sydney, has been adjusted in order to meet the requirements of the Japanese market and the requirements of mass production process. SPACIATM is found to have several unique features including airborne sound insulation as well as thermal insulation. Energy required for air conditioning was simulated for Japanese houses with various glazings, and it was revealed that SPACIATM could save the energy efficiently. Finally, hybrid IG unit, where vacuum glazing is incorporated into a conventional IG unit, is proposed for further improvement of thermal insulation.

  2. LEP vacuum chamber, early prototype

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    The structure of LEP, with long bending magnets and little access to the vacuum chamber between them, required distributed pumping. This is an early prototype for the LEP vacuum chamber, made from extruded aluminium. The main opening is for the beam. The small channel to the right is for cooling water, to carry away the heat deposited by the synchroton radiation from the beam. The 4 slots in the channel to the left house the strip-shaped ion-getter pumps (see 7810255). The ion-getter pumps depended on the magnetic field of the bending magnets, too low at injection energy for the pumps to function well. Also, a different design was required outside the bending magnets. This design was therefore abandoned, in favour of a thermal getter pump (see 8301153 and 8305170).

  3. Vacuum Alignment with more Flavors

    DEFF Research Database (Denmark)

    Ryttov, Thomas

    2014-01-01

    _f=2$ and $N_f=3$ we reproduce earlier known results including the Dashen phase with spontaneous violation of the combined charge conjugation and parity symmetry, CP. For $N_f=4$ we find regions with and without spontaneous CP violation. We then generalize to an arbitrary number of flavors. Here......We study the alignment of the vacuum in gauge theories with $N_f$ Dirac fermions transforming according to a complex representation of the gauge group. The alignment of the vacuum is produced by adding a small mass perturbation to the theory. We study in detail the $N_f=2,3$ and $4$ case. For $N...... it is shown that at the point where $N_f-1$ flavors are degenerate with positive mass $m>0$ and the mass of the $N_f$'th flavor becomes negative and equal to $-m$ CP breaks spontaneously....

  4. Visualizing electromagnetic vacuum by MRI

    CERN Document Server

    Chandrashekar, Chandrika S; Chandrashekar, S; Taylor, Erika A; Taylor, Deanne M

    2016-01-01

    Based upon Maxwell's equations, it has long been established that oscillating electromagnetic (EM) fields incident upon a metal surface decay exponentially inside the conductor, leading to a virtual EM vacuum at sufficient depths. Magnetic resonance imaging (MRI) utilizes radiofrequency (r.f.) EM fields to produce images. Here we present the first visualization of an EM vacuum inside a bulk metal strip by MRI, amongst several novel findings. We uncover unexpected MRI intensity patterns arising from two orthogonal pairs of faces of a metal strip, and derive formulae for their intensity ratios. Further, we furnish chemical shift imaging (CSI) results that discriminate different faces (surfaces) of a metal block according to their distinct nuclear magnetic resonance (NMR) chemical shifts, which holds much promise for monitoring surface chemical reactions noninvasively. Bulk metals are ubiquitous, and MRI is a premier noninvasive diagnostic tool. Combining the two, the emerging field of bulk metal MRI can be expe...

  5. Quantum vacuum and dark matter

    CERN Document Server

    Hajdukovic, Dragan Slavkov

    2012-01-01

    Recently, the gravitational polarization of the quantum vacuum was proposed as alternative to the dark matter paradigm. In the present paper we consider four benchmark measurements: the universality of the central surface density of galaxy dark matter haloes, the cored dark matter haloes in dwarf spheroidal galaxies, the non-existence of dark disks in spiral galaxies and distribution of dark matter after collision of clusters of galaxies (the Bullet cluster is a famous example). Only some of these phenomena (but not all of them) can (in principle) be explained by the dark matter and the theories of modified gravity. However, we argue that the framework of the gravitational polarization of the quantum vacuum allows the understanding of the totality of these phenomena.

  6. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Energy Technology Data Exchange (ETDEWEB)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  7. Cathode architectures for alkali metal / oxygen batteries

    Science.gov (United States)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  8. Process For Patterning Dispenser-Cathode Surfaces

    Science.gov (United States)

    Garner, Charles E.; Deininger, William D.

    1989-01-01

    Several microfabrication techniques combined into process cutting slots 100 micrometer long and 1 to 5 micrometer wide into tungsten dispenser cathodes for traveling-wave tubes. Patterned photoresist serves as mask for etching underlying aluminum. Chemically-assisted ion-beam etching with chlorine removes exposed parts of aluminum layer. Etching with fluorine or chlorine trifluoride removes tungsten not masked by aluminum layer. Slots enable more-uniform low-work function coating dispensed to electron-emitting surface. Emission of electrons therefore becomes more uniform over cathode surface.

  9. Mass dependence of vacuum energy

    OpenAIRE

    Fulling, S. A.

    2005-01-01

    The regularized vacuum energy (or energy density) of a quantum field subjected to static external conditions is shown to satisfy a certain partial differential equation with respect to two variables, the mass and the "time" (ultraviolet cutoff parameter). The equation is solved to provide integral expressions for the regularized energy (more precisely, the cylinder kernel) at positive mass in terms of that for zero mass. Alternatively, for fixed positive mass all coefficients in the short-tim...

  10. Vacuum configuration for inflationary superstring

    Energy Technology Data Exchange (ETDEWEB)

    Baadhio, R.A. (Theoretical Physics Group, Physics Division, Lawrence Berkeley Laboratory and Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States))

    1993-02-01

    The vacuum configuration for the inflationary superstring theory is established. It is argued that the basic physical contents of the inflationary universe are characterized by the Novikov higher signature. Finally it is shown, with respect to the splitting of Paper II, that the index of the Dirac operator defined in our inflated universe, and in the parallel shadow one, is indeed [ital h]-cobordant.

  11. Entanglement in the Bogoliubov vacuum

    DEFF Research Database (Denmark)

    Poulsen, Uffe Vestergaard; Meyer, T.; Lewenstein, M.

    2005-01-01

    We analyze the entanglement properties of the Bogoliubov vacuum, which is obtained as a second-order approximation to the ground state of an interacting Bose-Einstein condensate. We work in one- and two-dimensional lattices and study the entanglement between two groups of sites as a function...... and to be favoured by strong interactions. Conversely, long-range entanglement is favoured by relatively weak interactions. No examples of bound entanglement are found....

  12. Field Emission in Vacuum Microelectronics

    CERN Document Server

    Fursey, George; Schwoebel, Paul

    2005-01-01

    Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.

  13. Oscillations of a polarizable vacuum

    Directory of Open Access Journals (Sweden)

    James G. Gilson

    1991-01-01

    Full Text Available A classical basis for one-dimensional Schrödinger quantum theory is constructed from simple vacuum polarization harmonic oscillators within standard stochastic theory. The model is constructed on a two-dimensional phase configuration surface with phase velocity vectors that have a speed of light zitterbewegung behaviour character. The system supplies a natural Hermitian scalar product describing probability density which is derived from angular momentum considerations. The generality of the model which is extensive is discussed.

  14. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    Science.gov (United States)

    Cornish, S.; Khachan, J.

    2016-02-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.

  15. Klystron Amplifier Utilizing Scandate Cathode and Electrostatic Focusing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build an electrostatically focused klystron that exploits recent breakthroughs in scandate cathode technology. We have built cathodes with greater than...

  16. Long Life Cold Cathodes for Hall effect Thrusters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  17. Nano-Particle Scandate Cathode for Space Communications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose an improved cathode based on our novel theory of the role of scandium oxide in enhancing emission in tungsten impregnate cathodes. Recent results have...

  18. Running Jobs in the Vacuum

    Science.gov (United States)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  19. Vacuum electronics applications at CERN

    CERN Document Server

    Jensen, E

    2009-01-01

    CERN operates a large number of vacuum electronics based RF power amplifiers covering a wide frequency range – over 300 sockets with 24 different grid tubes and klystrons are in use and require constant care to insure reliable operation of the accelerators. This is in particular true for the LHC and its injector chain, for which a program of improvement and stepwise upgrade has started. These include IOT’s for the SPS and klystrons and modulators for Linac4 and SPL. The CLIC study and the CTF3 facility are relevant to vacuum electronics in many ways: The CLIC primary RF power, to be provided at 1 GHz, requires highest possible efficiency and phase stability, MBK’s are likely candidates. The CLIC RF power source and CTF3 are themselves large vacuum electronics applications, consequently there are areas of common interest and concern, including fabrication techniques, pulse compression techniques, breakdown and multipactor theory and simulation, material fatigue, numerical analysis of slow-wave structures...

  20. Improved Aerogel Vacuum Thermal Insulation

    Science.gov (United States)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  1. Gas Tungsten Arc Welding and Plasma Arc Cutting. Teacher Edition.

    Science.gov (United States)

    Fortney, Clarence; And Others

    This welding curriculum guide treats two topics in detail: the care of tungsten electrodes and the entire concept of contamination control and the hafnium electrode and its importance in dual-air cutting systems that use compressed shop air for plasma arc cutting activities. The guide contains three units of instruction that cover the following…

  2. Diagnostic et étude de la zone cathodique d'un arc électrique

    OpenAIRE

    Pellerin, S.; Pokrzywka, B.; Musiol, K.; Chapelle, J.

    1995-01-01

    Le diagnostic spectroscopique de la région cathodique d'un arc électrique a montré que, dans cette zone, l'intensité normative des raies de ArI variait considérablement avec la distance à la pointe de la cathode. Pour tenter d'expliquer cet effet, plusieurs phénomènes physiques sont considérés. Une comparaison des influences respectives de ces phénomènes montre que le comportement particulier du plasma au voisinage de la pointe cathodique peut être correctement expliqué par l'existence d'un e...

  3. Performance of carbon arc-discharge nanotubes to hydrogen energy storage.

    Science.gov (United States)

    Farhat, S; Weinberger, B; Lamari, F D; Izouyar, T; Noe, L; Monthioux, M

    2007-10-01

    Adsorption properties of gram-scale samples of different kind of arc discharge nanotubes were studied, namely: (A) raw collaret collected on the cathode, (B) raw soots collected on the lateral reactor wall, (C) thermally treated soot, and (D) thermally then chemically treated soot. The morphology, structure, and composition of these materials were characterized by SEM, TEM, TGA, and BET. In addition, hydrogen adsorption isotherms were recorded experimentally for A, B, and D samples over the pressure range of 0 to 55 bar at ambient temperature. Our experiments indicated a maximum-yet weak-hydrogen storage at room temperature of approximately 0.13 H2 wt% for the purified product (D).

  4. Employment Of IGBT-Transistors For Bipolar Impulsed Micro-Arc Oxidation

    Directory of Open Access Journals (Sweden)

    Krainyukov Alexander

    2015-09-01

    Full Text Available The paper is devoted to the use of insulated gate bipolar transistors (IGBT for the micro-arc oxidation (MAO process. The technical requirements to the current switches of power supplies for the pulsed bipolar MAO technology have been developed. The research installation for investigating the IGBT commutation processes during the pulse anode-cathode oxidation has been constructed. The experiments have been performed with its help in order to estimate the possibility of using half-bridge IGBT-modules with different drivers. The research results of the commutation processes investigation for different IGBT half- bridge modules are presented.

  5. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    Energy Technology Data Exchange (ETDEWEB)

    Harlan U. Anderson

    2000-03-31

    . However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  6. Getting to know ArcGIS desktop

    National Research Council Canada - National Science Library

    Ormsby, Tim

    2010-01-01

    .... Key concepts are combined with detailed illustrations and step-by-step exercises to acquaint readers with the building blocks of ArcGIS Desktop including ArcMap, for displaying and querying maps...

  7. Erosion of a copper cathode in a negative corona discharge

    Science.gov (United States)

    Asinovskiĭ, É. I.; Petrov, A. A.; Samoylov, I. S.

    2008-02-01

    The pulsed-periodic regime of a negative corona (Trichel pulses) in atmospheric-pressure air, which leads to explosion emission mechanisms (ecton generation) of pointed cathode erosion, is investigated. The jet erosion process at the copper cathode is discovered, and micrometer dendritelike structures formed by erosion products returning to the cathode are detected.

  8. A Transient Model for Fuel Cell Cathode-Water Propagation Behavior inside a Cathode after a Step Potential

    National Research Council Canada - National Science Library

    Der-Sheng Chan; Kan-Lin Hsueh

    2010-01-01

      Most of the voltage losses of proton exchange membrane fuel cells (PEMFC) are due to the sluggish kinetics of oxygen reduction on the cathode and the low oxygen diffusion rate inside the flooded cathode...

  9. A multi-use cathode cell MWPC

    CERN Document Server

    Delpierre, P A; Bonierbal, P; Diop, A; Espigat, P; Herteault, L; Jobez, J P; Saget, G; Saigne, R; Sotiras, D; Turlot, J P; Vassent, M

    1982-01-01

    Describes a highly flexible modular design for multiwire proportional chambers used in the CERN-NA3 experiment. The authors illustrate this flexibility by describing the transformation of one chamber into a cathode-cell shower detector and giving its performance as such.

  10. Close cathode chamber: Low material budget MWPC

    Science.gov (United States)

    Varga, Dezső; Kiss, Gábor; Hamar, Gergő; Bencédi, Gyula

    2013-01-01

    Performance of asymmetric-type MWPC-s are presented. In this structure, referred to as Close Cathode Chamber in an earlier study, the material budget is significantly reduced on one hand by the elimination of external support frame, on the other hand by thin detector walls. In this paper it is demonstrated that the outline is compatible with large size detectors (1 m wire length), maintaining mechanical and operation stability, with total weight of 3 kg (including support structure) for a half square meter surface. The detection efficiency and response time is shown to be sufficient for L0 triggering in the ALICE VHMPID layout. Reduced sensitivity to cathode deformations (due to internal overpressure as mechanical strain) is directly demonstrated. On small sized chambers, improvement of position resolution with analog readout is evaluated, reaching 0.09 mm RMS with 2 mm wide cathode segments. Simulation results on signal time evolutions are presented. With the above studies, comparison of classical MWPC-s and the Close Cathode Chamber design is performed in all major aspects.

  11. pipelines cathodic protection design methodologies for impressed ...

    African Journals Online (AJOL)

    HOD

    total external surface area of 226224m2. The computation further showed the current requirement was attainable with connection of 3620 anodes to set up a natural potential between sacrificial anode and pipeline. Key words: Cathodic protection, corrosion, impressed current, pipeline, sacrificial anodes. 1. INTRODUCTION.

  12. Pipelines cathodic protection design methodologies for impressed ...

    African Journals Online (AJOL)

    ... X42 pipeline with total external surface area of 226224m2. The computation further showed the current requirement was attainable with connection of 3620 anodes to set up a natural potential between sacrificial anode and pipeline. Keywords: Cathodic protection, corrosion, impressed current, pipeline, sacrificial anodes ...

  13. Electrochemical Impedance Studies of SOFC Cathodes

    DEFF Research Database (Denmark)

    Hjelm, Johan; Søgaard, Martin; Wandel, Marie

    2007-01-01

    . The full cells had a Ni-YSZ anode and anode support, a thin YSZ electrolyte, and a CGO barrier layer. The symmetric and full cell cathode responses were compared at open-circuit voltage. Humidified hydrogen was used as the fuel in the full cell measurements. Differential analysis of the impedance data...

  14. Adsorptive Cathodic Stripping Voltammetric Determination of ...

    African Journals Online (AJOL)

    Purpose: To investigate the electro-reduction behaviour and determination of ciprofloxacin using a hanging mercury drop electrode. Methods: Cyclic voltammograms of ciprofloxacin recorded in Britton – Robinson buffers pH 2 – 5 exhibit a single irreversible cathodic peak. The dependence of the peak current and peak ...

  15. Investigations of the long-term measuring stability of cold-cathode gauges

    Science.gov (United States)

    Wilfert, St.; Schindler, N.

    Cold-cathode ionization gauges (CCGs) are used widely for pressure reading in vacuum systems due to large measuring range, robustness and relative low cost. Amongst the many advantages of CCGs, however, these instruments are restricted in use by decreasing measuring accuracy over operating time as internal electrodes become contaminated. Thus, to guarantee a consistently high measuring accuracy, this gauge type needs to be calibrated regularly after a fixed operating time period. With the aim of quantifying the useful lifetime of CCGs we investigated the measuring behavior of different commercial CCGs in several long-term-operation tests. After a first calibration, the gauges were operated in a vacuum atmosphere with a high fraction of hydrocarbons for several thousand hours at varying high-vacuum pressures. After use, the gauges were re-calibrated and changes in their characteristics analyzed. To compare the operating states of the used CCGs a new basic quantity was introduced: the so-called pressure dose. Using this quantity it should be possible to verify roughly the effective lifetime of CCGs until their pressure readings become erroneous due to contamination effects. It was found that the pressure reading of all tested CCGs become inaccurate after a pressure dose of about 1 mbarh.

  16. The next-generation ARC middleware

    DEFF Research Database (Denmark)

    Appleton, O.; Cameron, D.; Cernak, J.

    2010-01-01

    The Advanced Resource Connector (ARC) is a light-weight, non-intrusive, simple yet powerful Grid middleware capable of connecting highly heterogeneous computing and storage resources. ARC aims at providing general purpose, flexible, collaborative computing environments suitable for a range of uses...... the next-generation ARC middleware, implemented as Web Services with the aim of standard-compliant interoperability....

  17. Magnification Bias in Gravitational Arc Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Caminha, G. B. [Rio de Janeiro, CBPF; Estrada, J. [Fermilab; Makler, M. [Rio de Janeiro, CBPF

    2013-08-29

    The statistics of gravitational arcs in galaxy clusters is a powerful probe of cluster structure and may provide complementary cosmological constraints. Despite recent progresses, discrepancies still remain among modelling and observations of arc abundance, specially regarding the redshift distribution of strong lensing clusters. Besides, fast "semi-analytic" methods still have to incorporate the success obtained with simulations. In this paper we discuss the contribution of the magnification in gravitational arc statistics. Although lensing conserves surface brightness, the magnification increases the signal-to-noise ratio of the arcs, enhancing their detectability. We present an approach to include this and other observational effects in semi-analytic calculations for arc statistics. The cross section for arc formation ({\\sigma}) is computed through a semi-analytic method based on the ratio of the eigenvalues of the magnification tensor. Using this approach we obtained the scaling of {\\sigma} with respect to the magnification, and other parameters, allowing for a fast computation of the cross section. We apply this method to evaluate the expected number of arcs per cluster using an elliptical Navarro--Frenk--White matter distribution. Our results show that the magnification has a strong effect on the arc abundance, enhancing the fraction of arcs, moving the peak of the arc fraction to higher redshifts, and softening its decrease at high redshifts. We argue that the effect of magnification should be included in arc statistics modelling and that it could help to reconcile arcs statistics predictions with the observational data.

  18. Improved Rare-Earth Emitter Hollow Cathode

    Science.gov (United States)

    Goebel, Dan M.

    2011-01-01

    An improvement has been made to the design of the hollow cathode geometry that was created for the rare-earth electron emitter described in Compact Rare Earth Emitter Hollow Cathode (NPO-44923), NASA Tech Briefs, Vol. 34, No. 3 (March 2010), p. 52. The original interior assembly was made entirely of graphite in order to be compatible with the LaB6 material, which cannot be touched by metals during operation due to boron diffusion causing embrittlement issues in high-temperature refractory materials. Also, the graphite tube was difficult to machine and was subject to vibration-induced fracturing. This innovation replaces the graphite tube with one made out of refractory metal that is relatively easy to manufacture. The cathode support tube is made of molybdenum or molybdenum-rhenium. This material is easily gun-bored to near the tolerances required, and finish machined with steps at each end that capture the orifice plate and the mounting flange. This provides the manufacturability and robustness needed for flight applications, and eliminates the need for expensive e-beam welding used in prior cathodes. The LaB6 insert is protected from direct contact with the refractory metal tube by thin, graphite sleeves in a cup-arrangement around the ends of the insert. The sleeves, insert, and orifice plate are held in place by a ceramic spacer and tungsten spring inserted inside the tube. To heat the cathode, an insulating tube is slipped around the refractory metal hollow tube, which can be made of high-temperature materials like boron nitride or aluminum nitride. A screw-shaped slot, or series of slots, is machined in the outside of the ceramic tube to constrain a refractory metal wire wound inside the slot that is used as the heater. The screw slot can hold a single heater wire that is then connected to the front of the cathode tube by tack-welding to complete the electrical circuit, or it can be a double slot that takes a bifilar wound heater with both leads coming out

  19. STRUVE arc and EUPOS® stations

    Science.gov (United States)

    Lasmane, Ieva; Kaminskis, Janis; Balodis, Janis; Haritonova, Diana

    2013-04-01

    The Struve Geodetic Arc was developed in Years 1816 to 1855, 200 years ago. Historic information on the points of the Struve Geodetic Arc are included in the UNESCO World Heritage list in 2005. Nevertheless, the sites of many points are still not identified nor included in the data bases nowadays. Originally STRUVE arc consisted of 258 main triangles with 265 triangulation points. Currently 34 of the original station points are identified and included in the in the UNESCO World Heritage list. identified original measurement points of the Meridian Arc are located in Sweden (7 points), Norway (15), Finland (83), Russia (1), Estonia (22), Latvia (16), Lithuania (18), Belorussia (28), Ukraine (59) and Moldova (27). In Year 2002 was initiated another large coverage project - European Position Determination System "EUPOS®". Currently there are about 400 continuously operating GNSS (Global Navigation Satellite Systems) stations covering EU countries Estonia, Latvia, Lithuania, Poland, Czech Republic, Slovakia, Hungary, Bulgaria, Romania and East European countries Ukraine and Moldavia. EUPOS® network is a ground based GNSS augmentation system widely used for geodesy, land surveying, geophysics and navigation. It gives the opportunity for fast and accurate position determination never available before. It is an honorable task to use the EUPOS® system for research of the Struve triangulation former sites. Projects with Struve arc can popularize geodesy, geo-information and its meaning in nowadays GIS and GNSS systems. Struve Arc and its points is unique cooperation cross-border object which deserve special attention because of their natural beauty and historical value for mankind. GNSS in geodesy discovers a powerful tool for the verification and validation of the height values of geodetic leveling benchmarks established historically almost 200 years ago. The differential GNSS and RTK methods appear very useful to identify vertical displacement of landscape by means of

  20. Static Heat Loads in the LHC Arc Cryostats: Final Assessment

    CERN Document Server

    Parma, V

    2010-01-01

    This note presents the final assessment of the static heat loads in the LHC arc cryostats, using different experimental methods during the first commissioning period in 2007. This assessment further develops and completes previous estimates made during the commissioning of sector 7_8 [1]. The estimate of the helium inventory, a prerequisite for the heat load calculation, is also presented. Heat loads to the cold mass are evaluated from the internal energy balance during natural as well as powered warm-ups of the helium baths in different subsector. The helium inventory is calculated from the internal energy balance during powered warm-ups and matched with previous assessments. Furthermore, heat loads to the thermal shield are estimated from the non-isothermal cooling of the supercritical helium in line E. The comparison of measured heat loads with previous estimates and with budgeted values is then presented, while their correlation with some important parameters like insulation vacuum pressure and some heat ...

  1. Progress of air-breathing cathode in microbial fuel cells

    Science.gov (United States)

    Wang, Zejie; Mahadevan, Gurumurthy Dummi; Wu, Yicheng; Zhao, Feng

    2017-07-01

    Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air-breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode.

  2. The Modification of Carbon with Iron Oxide Synthesized in Electrolysis Using the Arc Discharge Method

    Science.gov (United States)

    Endah Saraswati, Teguh; Dewi Indah Prasiwi, Oktaviana; Masykur, Abu; Handayani, Nestri; Anwar, Miftahul

    2017-02-01

    The modification of carbon-based nanomaterials with metals is widely studied due to its unique properties. Here, the modification of carbon nanomaterial with iron oxide has been successfully carried out. This modification was achieved using arc discharge in 50% ethanol liquid media. The anode used in the arc discharge was prepared from a mixture of carbon and iron oxide that was synthesized in electrolysis and was then calcined at 250°C with silicon binder with a mass ratio of 3:1:1, and the cathode used was graphite rod. Both electrodes were set in the nearest gap that could provide an arc during arc-discharging, leading to carbon-based nanoparticle formation. The diffractogram pattern of the X-ray diffraction of the fabricated nanoparticles confirmed the typical peak of carbon, iron oxide and iron. The magnetization value of the result analysis of the vibrating sample magnetometer was 9.9 emu/g. The bandgap energy measurement using diffuse reflectance ultra violet was estimated to be 2.18 eV. Using the transmission electron microscopy, the structure of the nanomaterial produced was observed as carbon-encapsulated iron compound nanoparticles.

  3. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  4. Wet/Dry Vacuum Cleaner

    Science.gov (United States)

    Reimers, Harold; Andampour, Jay; Kunitser, Craig; Thomas, Ike

    1995-01-01

    Vacuum cleaner collects and retains dust, wet debris, and liquids. Designed for housekeeping on Space Station Freedom, it functions equally well in normal Earth Gravity or in microgravity. Generates acoustic noise at comfortably low levels and includes circuitry that reduces electromagnetic interference to other electronic equipment. Draws materials into bag made of hydrophobic sheet with layers of hydrophilic super-absorbing pads at downstream end material. Hydrophilic material can gel many times its own weight of liquid. Blower also provides secondary airflow to cool its electronic components.

  5. Polymer coatings as separator layers for microbial fuel cell cathodes

    KAUST Repository

    Watson, Valerie J.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production. © 2010 Elsevier B.V. All rights reserved.

  6. Thin-wall vacuum domain evolution

    Directory of Open Access Journals (Sweden)

    V.A. Berezin

    1983-01-01

    Full Text Available In the framework of general relativity the equation of motion of a thin-wall vacuum shell is derived at arbitrary values of the vacuum parameters inside and outside the shell. We obtain that the velocity of the walls of the true vacuum bubble at its expansion does not tend to the velocity of light. We find that vacuum shells could exist now in the universe, which do not contradict to observational cosmology. The types of black holes created are investigated. Restrictions on the mass of the black holes formed from remnants of the false vacuum and on the fraction of the vacuum energy pumped into such black holes are obtained.

  7. A new vacuum for Loop Quantum Gravity

    CERN Document Server

    Dittrich, Bianca

    2014-01-01

    We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  8. Vacuum systems for the ILC helical undulator

    CERN Document Server

    Malyshev, O B; Clarke, J A; Bailey, I R; Dainton, J B; Malysheva, L I; Barber, D P; Cooke, P; Baynham, E; Bradshaw, T; Brummitt, A; Carr, S; Ivanyushenkov, Y; Rochford, J; Moortgat-Pick, G A

    2007-01-01

    The International Linear Collider (ILC) positron source uses a helical undulator to generate polarized photons of ∼10MeV∼10MeV at the first harmonic. Unlike many undulators used in synchrotron radiation sources, the ILC helical undulator vacuum chamber will be bombarded by photons, generated by the undulator, with energies mostly below that of the first harmonic. Achieving the vacuum specification of ∼100nTorr∼100nTorr in a narrow chamber of 4–6mm4–6mm inner diameter, with a long length of 100–200m100–200m, makes the design of the vacuum system challenging. This article describes the vacuum specifications and calculations of the flux and energy of photons irradiating the undulator vacuum chamber and considers possible vacuum system design solutions for two cases: cryogenic and room temperature.

  9. Straw detector: 1 - Vacuum: 0

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  10. Gases vacuum dedusting and cooling

    Directory of Open Access Journals (Sweden)

    Alexey А. Burov

    2015-03-01

    Full Text Available Represented are the results of operating the ladle degassing vacuum plant (productivity: 120 tons of liquid steel with various dust collectors. The process gases’ cooling and dedusting, obtained in the closed loop buran study, provides opportunity to install a bag filter after that closed loop and its efficient use. Proven is the effectiveness of the cylindrical cyclone replacement with a multichannel (buran dust collector, based on a system of closed-loop (return coupling serially connected curved ducts, where the dusty gas flow rotation axis is vertically positioned. The system of closed-loop serially connected curvilinear channels creates preconditions for the emergence of a negative feedback at the curvilinear gas flow containing transit and circulating flows. These conditions are embodied with circulating flows connecting the in- and outputs of the whole system each channel. The transit flow multiple continuous filtration through the circulating dust layers leads to the formation and accumulation of particles aggregates in the collection chamber. The validity of such a dusty flow control mechanism is confirmed by experimental data obtained in a vacuum chamber. Therefore, replacing one of the two buran’s forevacuum pumps assemblies with the necessary number of curved channels (closed loop is estimated in a promising method.

  11. Vacuum silicon photomultipliers: Recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Barbarino, Giancarlo [Dipartimento Scienze Fisiche, Università “Federico II” Napoli (Italy); INFN Napoli (Italy); Barbato, Felicia Carla Tiziana [INFN Napoli (Italy); Campajola, Luigi [Dipartimento Scienze Fisiche, Università “Federico II” Napoli (Italy); Asmundis, Riccardo de [INFN Napoli (Italy); De Rosa, Gianfranca [Dipartimento Scienze Fisiche, Università “Federico II” Napoli (Italy); Mollo, Carlos Maximiliano [INFN Napoli (Italy); Vivolo, Daniele, E-mail: vivolo@na.infn.it [Dipartimento Scienze Fisiche, Università “Federico II” Napoli (Italy); INFN Napoli (Italy)

    2013-08-01

    VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design for a modern hybrid, high gain, silicon based photodetector based on the combination of a SiPM with a hemispherical vacuum glass PMT standard envelope. In such a device photoelectrons emitted by the photocathode are accelerated and focused by an electric field towards a small focal area covered by the SiPM which therefore acts as an amplifier, thus substituting the classical dynode chain of a PMT. With a view to the realization of a first prototype of VSiPMT our group is carrying out a preliminary work aimed at the study of SiPM performances as an electron detector, including an accurate Geant4-based simulation of the interaction between SiPM and electron beams. In order to perform a full characterization of the SiPM we developed an experimental setup for the extraction and the acceleration of a beam of backward secondary electrons emitted after the bombardment of a carbon foil by a proton beam extracted in a TTT-3 accelerator.

  12. Vacuum Attachment for XRF Scanner

    Science.gov (United States)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  13. Cold vacuum drying facility design requirements

    Energy Technology Data Exchange (ETDEWEB)

    IRWIN, J.J.

    1999-07-01

    This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

  14. Vacuum Compatible Percussive Dynamic Cone Penetrometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Honeybee Robotics proposes to develop a vacuum compatible percussive dynamic cone penetrometer (PDCP), for establishing soil bin characteristics, with the ultimate...

  15. Vacuum Technology Considerations For Mass Metrology

    Science.gov (United States)

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  16. Quantum vacuum noise in physics and cosmology.

    Science.gov (United States)

    Davies, P. C. W.

    2001-09-01

    The concept of the vacuum in quantum field theory is a subtle one. Vacuum states have a rich and complex set of properties that produce distinctive, though usually exceedingly small, physical effects. Quantum vacuum noise is familiar in optical and electronic devices, but in this paper I wish to consider extending the discussion to systems in which gravitation, or large accelerations, are important. This leads to the prediction of vacuum friction: The quantum vacuum can act in a manner reminiscent of a viscous fluid. One result is that rapidly changing gravitational fields can create particles from the vacuum, and in turn the backreaction on the gravitational dynamics operates like a damping force. I consider such effects in early universe cosmology and the theory of quantum black holes, including the possibility that the large-scale structure of the universe might be produced by quantum vacuum noise in an early inflationary phase. I also discuss the curious phenomenon that an observer who accelerates through a quantum vacuum perceives a bath of thermal radiation closely analogous to Hawking radiation from black holes, even though an inertial observer registers no particles. The effects predicted raise very deep and unresolved issues about the nature of quantum particles, the role of the observer, and the relationship between the quantum vacuum and the concepts of information and entropy. (c) 2001 American Institute of Physics.

  17. Vacuum technology in the chemical industry

    CERN Document Server

    Jorisch, Wolfgang

    2015-01-01

    Based on the very successful German edition and a seminar held by the German Engineers` Association (VDI) on a regular basis for years now, this English edition has been thoroughly updated and revised to reflect the latest developments. It supplies in particular the special aspects of vacuum technology, applied vacuum pump types and vacuum engineering in the chemical, pharmaceutical and process industry application-segments. The text includes chapters dedicated to latest European regulations for operating in hazardous zones with vacuum systems, methods for process pressure control and regulati

  18. X-ray spectra of plasma radiation from laser induced low-power vacuum discharge

    Science.gov (United States)

    Romanov, I. V.; Kologrivov, A. A.; Paperny, V. L.; Rupasov, A. A.; Starodub, A. N.

    2018-02-01

    The x-ray spectra of plasma radiation in the wavelength range 30–300 Å are studied. The radiation is emitted from plasma of a vacuum discharge with storage energy less than 30 J that is initiated on an Al or Fe cathode by beam from neodymium laser with a power density up to 1012 W cm‑2. It is shown that both the spectral composition and intensity of radiation of hot micropinch plasma that is formed in the cathodic jet are determined by the set of the discharge and the laser pulse characteristics. By optimizing these characteristics, a mode of the discharge operation is attainable, in which a significant portion of the radiation energy is located in the long-wave band of the quasi-continuum (230–270 Å and 160–200 Å for Al and Fe cathodes, respectively). That makes it possible to treat such a discharge as an intense source of narrow-band soft x-ray radiation.

  19. Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker

    Science.gov (United States)

    Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe

    2017-06-01

    After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.

  20. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  1. XPS STRUCTURE ANALYSIS OF TiN/TiC BILAYERS PRODUCED BY PULSED VACUUM ARC DISCHARGE

    Directory of Open Access Journals (Sweden)

    ELISABETH RESTREPO PARRA

    2010-01-01

    Full Text Available se crecieron bicapas de TiN/TiC sobre sustratos de acero inoxidable 304 usando un sistema de deposición física de vapor asistida por plasma en forma de arco pulsado a dos diferentes temperaturas del sustrato (50º C y150º C. Para el análisis de la composición química se empleó la técnica de la espectroscopía de fotoelectrones de rayos X (XPS. Se observó el comportamiento de las líneas Ti2p, N1s y C1s. Los análisis de energía de enlace confirmaron la conformación de TiN y TiC. Los picos C1s y Ti2p sufrieron un corrimiento a medida que se incrementó el tiempo de esputtering, revelando contaminación debido a la presencia de hidrocarburos. Además, los perfiles de profundidad de las bicapas de TiN/TiC mostraron que las películas crecidas a una temperatura de 150 ° C tienen una capa de TiN más gruesa que las muestras crecidas a 50º C. El nitrógeno se difundió en la capa de TiC y el carbón en la capa de TiN para ambas temperaturas.

  2. A definitive criterion for cathodic protection

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Roger [Cathodic Protection Network International Ltd., Reading (United Kingdom)

    2009-07-01

    The corrosion reaction is defined using the Pourbaix Diagram and includes consideration of the pH, temperature, pressure, nobility of the metal and conductivity of the electrolyte. The passive zone can be established in a laboratory by creating a closed circuit condition in which the voltages can be measured. Natural corrosion cells occurring in simple conditions can be evaluated for the purpose of monitoring the performance of cathodic protection. Metal pipelines are complex networks of conductors submerged in electrolyte of infinitely variable qualities. The present method used to ascertain the effectiveness of cathodic protection has many inherent errors and results in costly and unpredictable corrosion failures. An electrode has been devised to define the exact electrical status of the corrosion reaction at its location. The design allows a closed circuit measurement of the corrosion current that can determine whether or not corrosion has been stopped by cathodic protection. This has allowed the development of software that can calculate the condition and corrosion status throughout a network of pipelines, using electrical circuit analysis common in the electronics industry. (author)

  3. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  4. Effect of the deviation of the current density profile center on the three-dimensional non-transferred arc plasma torch

    OpenAIRE

    Guo, Z; Yin, S; Qian, Z; Liao, H; Gu, S

    2015-01-01

    In this study, the three-dimensional steady-state non-transferred plasma arc was investigated using computational fluid dynamics (CFD) with user defined functions (UDFs). A two-equation current density profile was developed to simulate the complex plasma flow inside the torch. The effect of the deviation distance (distance between the cathode tip center and the current density profile center) on the plasma flow features was systematically investigated for the first time. It is found that the ...

  5. Determination of Kicker Vacuum Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    This note examines the effect of elevated vacuum pressures in the kicker region of the DARHT 2nd Axis which can lead to changes in the beam tune due to the long pulse length. The kicker uses Rexolite as an insulator supporting the electrodes. Rexolite is hygroscopic resulting is a large outgassing rate and prolonged pump down times after exposure to atmospheric conditions. LAMDA [1] is used to simulate the effect of ionization of the residual gas resulting in partial space charge neutralization and changes to the tune between the beginning and end of the pulse. The effect of the ion-hose instability is also examined. The purpose of this note is to establish/validate the required pressure in the downstream transport.

  6. TRIUMF cyclotron vacuum system refurbishing

    Science.gov (United States)

    Sekachev, I.

    2008-03-01

    The cyclotron at TRIUMF was commissioned to full energy in 1974. The volume of the cyclotron vacuum tank is about 100 m3 and it operates at 5×10-8 Torr pressure during beam production. The pumping is mainly based on a Phillips B-20 cryogenerator (Stirling cycle 4-cylinder engine). The cryogenerator supplies helium gas at 16 K and 70 K to cryopanels in the tank. The decreasing reliability of the B-20 and demanding maintenance requirements triggered the decision to completely overhaul or replace the cryogenerator. Replacement with the LINDE-1630 helium refrigerator was found to be the most attractive (technically and economically) option. The details of the proposal with installation of the helium refrigerator and with a continuous flow liquid nitrogen shield cooling system are presented.

  7. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    Science.gov (United States)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The

  8. C-Ni films for cold cathode applied in fluorescent lamp

    Science.gov (United States)

    Stępińska, Izabela; Czerwosz, Elżbieta; Wronka, Halina; Kozłowski, Mirosław

    2011-10-01

    Structural and field emission investigation results of carbonaceous films containing Ni nanocrystllities are presented. These films were prepared by Physical Vapor Deposition (PVD) method in which C60 and nickel acetate were evaporated from two separate sources and under with different technological conditions. Scanning Electron Microscope (SEM) was applied to study their morphology and topography of films. SEM images in low angel backscattered electrons (LABE) and secondary electrons (SE) mode were analyze to obtain information on a composition of observed objects. Many different types of films were studied by SEM and a field emission was measured for them. Field emission was studied in a vacuum chamber where film was a cathode and anode was flat metallic element.

  9. Progress of ITER vacuum vessel

    Energy Technology Data Exchange (ETDEWEB)

    Ioki, K., E-mail: Kimihiro.Ioki@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Bayon, A. [F4E, c/ Josep Pla, No. 2, Torres Diagonal Litoral, Edificio B3, E-08019 Barcelona (Spain); Choi, C.H.; Daly, E.; Dani, S.; Davis, J.; Giraud, B.; Gribov, Y.; Hamlyn-Harris, C.; Jun, C.; Levesy, B. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Kim, B.C. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Kuzmin, E. [NTC “Sintez”, Efremov Inst., 189631 Metallostroy, St. Petersburg (Russian Federation); Le Barbier, R.; Martinez, J.-M. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Pathak, H. [ITER-India, A-29, GIDC Electronic Estate, Sector 25, Gandhinagar 382025 (India); Preble, J. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); Sa, J.W. [NFRI, 52 Yeoeundong Yuseonggu, Daejeon 305-333 (Korea, Republic of); Terasawa, A.; Utin, Yu. [ITER Organization, Route de Vinon sur Verdon, 13115 St Paul-lez-Durance (France); and others

    2013-10-15

    Highlights: ► This covers the overall status and progress of the ITER vacuum vessel activities. ► It includes design, R and D, manufacturing and approval process of the regulators. ► The baseline design was completed and now manufacturing designs are on-going. ► R and D includes ISI, dynamic test of keys and lip-seal welding/cutting technology. ► The VV suppliers produced full-scale mock-ups and started VV manufacturing. -- Abstract: Design modifications were implemented in the vacuum vessel (VV) baseline design in 2011–2012 for finalization. The modifications are mostly due to interface components, such as support rails and feedthroughs for the in-vessel coils (IVC). Manufacturing designs are being developed at the domestic agencies (DAs) based on the baseline design. The VV support design was also finalized and tests on scale mock-ups are under preparation. Design of the in-wall shielding (IWS) has progressed, considering the assembly methods and the required tolerances. Further modifications are required to be consistent with the DAs’ manufacturing designs. Dynamic tests on the inter-modular and stub keys to support the blanket modules are being performed to measure the dynamic amplification factor (DAF). An in-service inspection (ISI) plan has been developed and R and D was launched for ISI. Conceptual design of the VV instrumentation has been developed. The VV baseline design was approved by the agreed notified body (ANB) in accordance with the French Nuclear Pressure Equipment Order procedure.

  10. Cathode material comparison of thermal runaway behavior of Li-ion cells at different state of charges including over charge

    Science.gov (United States)

    Mendoza-Hernandez, Omar Samuel; Ishikawa, Hiroaki; Nishikawa, Yuuki; Maruyama, Yuki; Umeda, Minoru

    2015-04-01

    The analysis of Li-ion secondary cells under outstanding conditions, as overcharge and high temperatures, is important to determine thermal abuse characteristics of electroactive materials and precise risk assessments on Li-ion cells. In this work, the thermal runaway behavior of LiCoO2 and LiMn2O4 cathode materials were compared at different state of charges (SOCs), including overcharge, by carrying out accelerating rate calorimetry (ARC) measurements using 18650 Li-ion cells. Onset temperatures of self-heating reactions and thermal runaway behavior were identified, and by using these onset points thermal mapping plots were made. We were able to identify non-self-heating, self-heating and thermal runaway regions as a function of state of charge and temperature. The cell using LiMn2O4 cathode material was found to be more thermally stable than the cell using LiCoO2. In parallel with the ARC measurements, the electrochemical behavior of the cells was monitored by measuring the OCV and internal resistance of the cells. The electrochemical behavior of the cells showed a slightly dependency on SOC.

  11. Confinement of light in a polarizable vacuum

    Directory of Open Access Journals (Sweden)

    Avinash Khare

    1983-01-01

    Full Text Available We show that an electrically polarizable vacuum with space-dependent permeability ε(r = μ−1(rexp(−αr2 can confine light whose quanta acquire a mass through interaction with this vacuum.

  12. Robot Vacuum Cleaner Personality and Behavior

    NARCIS (Netherlands)

    Hendriks, A.F.M.; Meerbeek, B.W.; Boess, S.; Pauws, S.C; Sonneveld, M.

    2011-01-01

    In this paper we report our study on the user experience of robot vacuum cleaner behavior. How do people want to experience this new type of cleaning appliance? Interviews were conducted to elicit a desired robot vacuum cleaner personality. With this knowledge in mind, behavior was designed for a

  13. Vacuum alignment with and without elementary scalars

    DEFF Research Database (Denmark)

    Alanne, Tommi; Gertov, Helene; Meroni, Aurora

    2016-01-01

    We systematically elucidate differences and similarities of the vacuum alignment issue in composite and renormalizable elementary extensions of the Standard Model featuring a pseudo-Goldstone Higgs. We also provide general conditions for the stability of the vacuum in the elementary framework...

  14. Vacuum sewerage system: an appropriate and economical ...

    African Journals Online (AJOL)

    However, vacuum technology has grown enormously in the last years. This paper reviews the applicability of the vacuum system as opposed to gravity systems, especially in Botswana. It is based on the training and visits to installed systems at Shoshong (Botswana), Dubai (UAE) and Hanau (Germany) offered by Roediger ...

  15. AA, vacuum tank for stochastic precooling

    CERN Document Server

    CERN PhotoLab

    1979-01-01

    The vaccum tank in which the fast stochastic precooling kicker was installed. It is clad with heating jackets for bake-out to 200 deg C, indispensable for reaching the operational vacuum of 7E-11 Torr. Alain Poncet, responsible for AA vacuum, is looking on. See also 7910268, 8002234.

  16. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  17. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  18. Effect of Glow-to-Arc Transition on Loss Mechanism of Ba Atoms from Electrode of Fluorescent Lamp

    Science.gov (United States)

    Ueda, Takashi; Samir, Ahmed; Egashira, Yuichi; Yamashita, Go; Shimada, Shozaburo; Yamagata, Yukihiko; Uchino, Kiichiro; Manabe, Yoshio

    2007-10-01

    The loss of Ba atoms from the electrode of a fluorescent lamp was measured while the lamp was operated in the glow and arc discharge modes at 60 Hz. A laser-induced fluorescence (LIF) technique was applied to the measurements of the temporal and spatial distributions of Ba atoms in the vicinity of the electrode. Ground-state (61S0) Ba atoms were excited to a 51P1 level by a frequency-doubled dye laser beam (350.1 nm), and the subsequent fluorescence (51P1-51D2, 582.6 nm) was detected. The temporal and spatial distributions of Ba atoms were found to be completely different in the two discharge modes. Temporally; in the arc discharge mode, the density of the Ba atoms was found to have two peaks, and the number of Ba atoms emitted in the anode half-cycle was about twofold larger than that emitted in the cathode half-cycle. In the glow discharge mode, the number of Ba atoms emitted in the anode half-cycle was found to be negligible compared with that emitted in the cathode half-cycle. Spatially; in the arc discharge mode, Ba atoms were found to be emitted mainly from the hot spot of the filament electrode. In the glow discharge mode, Ba atoms were found to be emitted from all parts of the filament electrodes homogeneously. The mechanism of Ba atom loss in both modes was discussed.

  19. Anaerobic polymers as high vacuum leak sealants

    Science.gov (United States)

    Kendall, B. R. F.

    1982-01-01

    Anaerobic polymers are useful as solventless leak sealants with good vacuum properties at moderate temperatures. Loctite 290 can seal leaks in a range generally encountered in carefully constructed ultrahigh vacuum and high vacuum systems. It was found that small leaks are sealed best under vacuum, whereas large leaks should be sealed at atmospheric pressure. The high-temperature behavior of Loctite 290 is limited by its fast cure, which prevents deep penetration into small leaks; cracking eventually occurs at the entrance to the leak. Repeated thermal cycling to about 300 C is possible, however, provided viscosity, curing time, and leak size are properly matched to ensure penetration into the body of the leak. This may require special formulations for high temperature vacuum applications.

  20. Vacuum and ultravacuum physics and technology

    CERN Document Server

    Bello, Igor

    2018-01-01

    Vacuum technology has enormous impact on human life in many aspects and fields, such as metallurgy, material development and production, food and electronic industry, microelectronics, device fabrication, physics, materials science, space science, engineering, chemistry, technology of low temperature, pharmaceutical industry, and biology. All decorative coatings used in jewelries and various daily products—including shiny decorative papers, the surface finish of watches, and light fixtures—are made using vacuum technological processes. Vacuum analytical techniques and vacuum technologies are pillars of the technological processes, material synthesis, deposition, and material analyses—all of which are used in the development of novel materials, increasing the value of industrial products, controlling the technological processes, and ensuring the high product quality. Based on physical models and calculated examples, the book provides a deeper look inside the vacuum physics and technology.