WorldWideScience

Sample records for utilize effectively carbon

  1. Effective utilization technology of carbon dioxide. CO sub 2 no yuko riyo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibusuki, T. (National Research Inst. for pollution and Resources, Tsukuba (Japan))

    1991-03-12

    As carbon dioxide-related environmental measures, method was explained to chemically convert and utilize carbon dioxide. Synthesis is possible of methanol, carbon monoxide, different carbohydrates, etc. by catalytic hydrogenation of carbon dioxide, using hydrogen produced by the electrolysis of water. Task consists of heightening in both convertibility and selectivity, and abundant supply of low cost hydrogen. Methane, alcohol, etc. can be synthesized by electrochemical reducion of carbon dioxide. Because of effectively inserting multiple electron, discssion is being made of catalyst, intergrated with electrode, and electron transmitter. The photoelectrochemical reduction of carbon dioxide can be also made by utilizing photoelectric current, generated upon photoradiation on the semiconductive electrode. However, task consists of heightening in both efficiency and selectivity. Photochemical reduction of carbon dioxide, actually made by green plant, consists of oxidationlike decomposition of water and reduction of carbon dioxide. Both those reactions are skillfully separated by intermediation of very quick electron transmission system. Reduction is being studied with semiconductor, metallic colloid, enzyme, metallic complex and other various catalysts. 10 refs., 3 figs., 4 tabs.

  2. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  3. Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler

    Energy Technology Data Exchange (ETDEWEB)

    D. Gera; M.P. Mathur; M.C. Freeman; Allen Robinson [Fluent, Inc./NETL, Morgantown, WV (United States)

    2002-12-01

    This paper reports on the development and validation of comprehensive combustion sub models that include the effect of large aspect ratio of biomass (switchgrass) particles on carbon burnout and temperature distribution inside the particles. Temperature and carbon burnout data are compared from two different models that are formulated by assuming (i) the particles are cylindrical and conduct heat internally, and (ii) the particles are spherical without internal heat conduction, i.e., no temperature gradient exists inside the particle. It was inferred that the latter model significantly underpredicted the temperature of the particle and, consequently, the burnout. Additionally, some results from cofiring biomass (10% heat input) with pulverized coal (90% heat input) are compared with the pulverized coal (100% heat input) simulations and coal experiments in a tangentially fired 150 MW{sub e} utility boiler. 26 refs., 7 figs., 4 tabs.

  4. Active pore space utilization in nanoporous carbon-based supercapacitors: Effects of conductivity and pore accessibility

    Science.gov (United States)

    Seredych, Mykola; Koscinski, Mikolaj; Sliwinska-Bartkowiak, Malgorzata; Bandosz, Teresa J.

    2012-12-01

    Composites of commercial graphene and nanoporous sodium-salt-polymer-derived carbons were prepared with 5 or 20 weight% graphene. The materials were characterized using the adsorption of nitrogen, SEM/EDX, thermal analysis, Raman spectroscopy and potentiometric titration. The samples' conductivity was also measured. The performance of the carbon composites in energy storage was linked to their porosity and electronic conductivity. The small pores (<0.7) were found as very active for double layer capacitance. It was demonstrated that when double layer capacitance is a predominant mechanism of charge storage, the degree of the pore space utilization for that storage can be increased by increasing the conductivity of the carbons. That active pore space utilization is defined as gravimetric capacitance per unit pore volume in pores smaller than 0.7 nm. Its magnitude is affected by conductivity of the carbon materials. The functional groups, besides pseudocapacitive contribution, increased the wettability and thus the degree of the pore space utilization. Graphene phase, owing to its conductivity, also took part in an insitu increase of the small pore accessibility and thus the capacitance of the composites via enhancing an electron transfer to small pores and thus imposing the reduction of groups blocking the pores for electrolyte ions.

  5. Effective utilization of fossil fuels for low carbon world -- IGCC and high performance gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Hiromi; Hashimoto, Takao; Sakamoto, Koichi; Komori, Toyoaki; Kishine, Takashi; Shiozaki, Shigehiro

    2010-09-15

    The reduction of greenhouse-gas emissions is required to minimize the effect of hydrocarbon based power generation on global warming. In pursue of this objective, Mitsubishi Heavy Industries is dedicating considerable efforts on two different ways to reduce the environmental impact. The first one involves gas turbine performance improvement by raising firing temperature for Natural-gas and LNG applications. In this regard, the latest J class gas turbine was designed to operate at 1600 deg C and expected combined cycle efficiency in excess of 60%. The other approach involves the use of Integrated Gasification Combined Cycle (IGCC) plants to burn solid fuel like coal.

  6. Resource Utilization by Native and Invasive Earthworms and Their Effects on Soil Carbon and Nitrogen Dynamics in Puerto Rican Soils

    Directory of Open Access Journals (Sweden)

    Ching-Yu Huang

    2016-11-01

    Full Text Available Resource utilization by earthworms affects soil C and N dynamics and further colonization of invasive earthworms. By applying 13C-labeled Tabebuia heterophylla leaves and 15N-labeled Andropogon glomeratus grass, we investigated resource utilization by three earthworm species (invasive endogeic Pontoscolex corethrurus, native anecic Estherella sp, and native endogeic Onychochaeta borincana and their effects on soil C and N dynamics in Puerto Rican soils in a 22-day laboratory experiment. Changes of 13C/C and 15N/N in soils, earthworms, and microbial populations were analyzed to evaluate resource utilization by earthworms and their influences on C and N dynamics. Estherella spp. utilized the 13C-labeled litter; however, its utilization on the 13C-labeled litter reduced when cultivated with P. corethrurus and O. borincana. Both P. corethrurus and O. borincana utilized the 13C-labeled litter and 15C-labeled grass roots and root exudates. Pontoscolex corethrurus facilitated soil respiration by stimulating 13C-labeled microbial activity; however, this effect was suppressed possibly due to the changes in the microbial activities or community when coexisting with O. borincana. Increased soil N mineralization by individual Estherella spp. and O. borincana was reduced in the mixed-species treatments. The rapid population growth of P. corethrurus may increase competition pressure on food resources on the local earthworm community. The relevance of resource availability to the population growth of P. corethrurus and its significance as an invasive species is a topic in need of future research.

  7. Bioreactors for fixation and effective utilization of carbon dioxide gas. Tansan gas no koteiter dot yuko riyo no tame no bio reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. (Osaka University, Osaka (Japan). Faculty of Pharmaceutical Science); Benemann, J. (California University, CA (USA))

    1991-06-01

    As for a preventive countermeasure against the global warming, experiments and studies have been conducted on the bioreactors to fix carbon dioxide gas recovered from the concentric and large scale generating sources such as thermal power plamts in a form of carbohydrate by means of the culture of microbial algae. By using the Vertical Tube Reactors (VTR) culturing apparatus, a variety of microbial algae were cultivated and experiments were performed on the relationship of biomass productivity and absorption rate of carbon dioxide gas indoors and outdoors. Consequently, it was found that when the flow rate of carbon dioxide gas is adjusted to make the biomass productivity of filament type Nostoc maximum,the inlet and outlet concentrations of carbon dioxide gas were 0.7% and 0.05% respectively with the absorption rate of more than 90%. From the standpoint of fixation and effective utilization of carbon dioxide gas, the above rate of removal is one of the important parameters and it will be necessary in future to compare the rates of removal of carbon dioxide gas among various types of bioreactors as a function of operating condition. 9 refs., 6 figs., 2 tabs.

  8. A collaborative project on the effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, H.A.; O`Connor, M.; Stephenson, P.L.; Whitehouse, M.; Richards, D.G.; Hesselmann, G.; MacPhail, J.; Lockwood, F.C.; Williamson, J.; Williams, A.; Pourkashanian, M. [ETSU, Harwell (United Kingdom)

    1998-12-01

    This paper describes a UK Department of Trade and Industry-supported collaborative project entitled `The Effects of Coal Quality on Emission of Oxides of Nitrogen (NO{sub x}) and Carbon Burnout in Pulverised Coal-fired Utility Boilers`. The project involved extensive collaboration between the UK power generators, boiler and burner manufacturers and research groups in both industry and academia, together with several of the world`s leading computational fluid dynamics (CFD) `software houses`. The prime objectives of the project were to assess the relationship between NO{sub x} emissions and carbon burnout and to develop and validate predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon-in-ash. Results showed good correlations for NO{sub x} and carbon burnout when comparing data from full-scale and large-scale rig trials. Laboratory-scale tests were found to be useful but the influence of burner aerodynamics was more difficult to quantify. Modelling showed that predicted NO{sub x} emissions were encouragingly close to measured emissions but predicting carbon burnout was less successful. 24 refs., 4 figs., 6 tabs.

  9. Formic Acid Manufacture: Carbon Dioxide Utilization Alternatives

    Directory of Open Access Journals (Sweden)

    Marta Rumayor

    2018-06-01

    Full Text Available Carbon dioxide (CO2 utilization alternatives for manufacturing formic acid (FA such as electrochemical reduction (ER or homogeneous catalysis of CO2 and H2 could be efficient options for developing more environmentally-friendly production alternatives to FA fossil-dependant production. However, these alternatives are currently found at different technological readiness levels (TRLs, and some remaining technical challenges need to be overcome to achieve at least carbon-even FA compared to the commercial process, especially ER of CO2, which is still farther from its industrial application. The main technical limitations inherited by FA production by ER are the low FA concentration achieved and the high overpotentials required, which involve high consumptions of energy (ER cell and steam (distillation. In this study, a comparison in terms of carbon footprints (CF using the Life Cycle Assessment (LCA tool was done to evaluate the potential technological challenges assuring the environmental competitiveness of the FA production by ER of CO2. The CF of the FA conventional production were used as a benchmark, as well as the CF of a simulated plant based on homogeneous catalysts of CO2 and H2 (found closer to be commercial. Renewable energy utilization as PV solar for the reaction is essential to achieve a carbon-even product; however, the CF benefits are still negligible due to the enormous contribution of the steam produced by natural gas (purification stage. Some ER reactor configurations, plus a recirculation mode, could achieve an even CF versus commercial process. It was demonstrated that the ER alternatives could lead to lower natural resources consumption (mainly, natural gas and heavy fuel oil compared to the commercial process, which is a noticeable advantage in environmental sustainability terms.

  10. The mitigating effect of calcification-dependent of utilization of inorganic carbon of Chara vulgaris Linn on NH4-N toxicity.

    Science.gov (United States)

    Wang, Heyun; Ni, Leyi; Xie, Ping

    2013-09-01

    Increased ammonium (NH4-N) concentrations in water bodies have been reported to adversely affect the dominant species of submersed vegetation in meso-eutrophic waters worldwide. However calcareous plants were lowly sensitive to NH4-N toxicity. In order to make clear the function of calcification in the tolerance of calcareous plants to NH4-N stress, we studied the effects of increased HCO3(-) and additional NH4-N on calcification and utilization of dissolve inorganic carbon (DIC) in Chara vulgaris Linn in a 7-d sub-acute experiment (light:dark 12:12h) carried out in an open experimental system in lab. Results revealed that calcification was dependent of utilization of dissolve inorganic carbon. Additional HCO3(-) significantly decreased the increase of pH while additional NH4-N did not. And additional HCO3(-) significantly improved calcification while NH4-N did in versus in relation to the variation of DIC concentration. However, addition of both HCO3(-) and NH4-N increased utilization of DIC. This resulted in calcification to utilization of DIC ratio decreased under additional NH4-N condition while increased under additional HCO3(-) conditions in response to the variation of solution pH. In the present study, external HCO3(-) decreased the increase of solution pH by increasing calcification, which correspondingly mitigated the toxic effect of high NH4-N. And we argue that the mitigating effect of increased HCO3(-) on NH4-N toxicity is dependent of plant calcification, and it is a positive feedback mechanism, potentially leading to the dominance of calcareous plants in meso-eutrophic water bodies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Measures for carbon dioxide problem and utilization of energy

    International Nuclear Information System (INIS)

    Kojima, Toshinori

    1992-01-01

    As global environment problems, there are water, expansion of deserts, weather, tropical forests, wild animals, ocean pollution, nuclear waste contamination, acid rain, ozone layer and so on, and population, foods, energy, and resources are the problems surrounding them. It is clear that these origins are attributed to the development and consumption largely dependent on the intention of developed countries and the population problem of developing countries. In this report, the discharge of carbon dioxide that causes greenhouse effect and its relation with energy are discussed. The increase of carbon dioxide concentration, its release from fossil fuel, the destruction of forests, the balance of carbon on the earth, the development of new energy such as solar energy, the transport of new energy, secondary energy system and the role of carbon dioxide, the transfer to low carbon fuel and the carbon reduction treatment of fuel, the utilization of unused energy and energy price, the efficiency of energy utilization, the heightening of efficiency of energy conversion, energy conservation and the breakaway from energy wasteful use culture, and the recovery, preservation and use of discharged carbon dioxide are described. (K.I.)

  12. Effective utilizations of palm oil mill fly ash for synthetic amorphous silica and carbon zeolite composite synthesis

    Science.gov (United States)

    Utama, P. S.; Saputra, E.; Khairat

    2018-04-01

    Palm Oil Mill Fly Ash (POMFA) the solid waste of palm oil industry was used as a raw material for synthetic amorphous silica and carbon zeolite composite synthesis in order to minimize the wastes of palm oil industry. The alkaline extraction combine with the sol-gel precipitation and mechanical fragmentation was applied to produce synthetic amorphous silica. The byproduct, extracted POMFA was rich in carbon and silica content in a significant amount. The microwave heated hydrothermal process used to synthesize carbon zeolite composite from the byproduct. The obtained silica had chemical composition, specific surface area and the micrograph similar to commercial precipitated silica for rubber filler. The microwave heated hydrothermal process has a great potential for synthesizing carbon zeolite composite. The process only needs one-step and shorter time compare to conventional hydrothermal process.

  13. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.

    Science.gov (United States)

    Signori, Lorenzo; Ami, Diletta; Posteri, Riccardo; Giuzzi, Andrea; Mereghetti, Paolo; Porro, Danilo; Branduardi, Paola

    2016-05-05

    Microbial lipids can represent a valuable alternative feedstock for biodiesel production in the context of a viable bio-based economy. This production can be driven by cultivating some oleaginous microorganisms on crude-glycerol, a 10% (w/w) by-product produced during the transesterification process from oils into biodiesel. Despite attractive, the perspective is still economically unsustainable, mainly because impurities in crude glycerol can negatively affect microbial performances. In this view, the selection of the best cell factory, together with the development of a robust and effective production process are primary requirements. The present work compared crude versus pure glycerol as carbon sources for lipid production by three different oleaginous yeasts: Rhodosporidium toruloides (DSM 4444), Lipomyces starkeyi (DSM 70295) and Cryptococcus curvatus (DSM 70022). An efficient yet simple feeding strategy for avoiding the lag phase caused by growth on crude glycerol was developed, leading to high biomass and lipid production for all the tested yeasts. Flow-cytometry and fourier transform infrared (FTIR) microspectroscopy, supported by principal component analysis (PCA), were used as non-invasive and quick techniques to monitor, compare and analyze the lipid production over time. Gas chromatography (GC) analysis completed the quali-quantitative description. Under these operative conditions, the highest lipid content (up to 60.9% wt/wt) was measured in R. toruloides, while L. starkeyi showed the fastest glycerol consumption rate (1.05 g L(-1) h(-1)). Being productivity the most industrially relevant feature to be pursued, under the presented optimized conditions R. toruloides showed the best lipid productivity (0.13 and 0.15 g L(-1) h(-1) on pure and crude glycerol, respectively). Here we demonstrated that the development of an efficient feeding strategy is sufficient in preventing the inhibitory effect of crude glycerol, and robust enough to ensure high lipid

  14. The effects of coal quality on NO{sub x} emissions and carbon burnout in pulverised coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    O`Connor, M. [National Power plc, Swindon (United Kingdom)

    1999-04-01

    A comprehensive study is reported on the impact of coal quality on nitrogen oxides emissions and carbon burnout in utility boilers, with the aim of assessing their relationship and developing predictive tools for assessing coals. Experimental work was carried out on various laboratory-scale apparatus and on single burner test facilities ranging from 160 kW{sub th} to 40 MW{sub th} in size and measurements were obtained from full-scale 500 MW{sub e} utility boiler trials. This data and basic coal data were then used to develop mathematical models to predict full-scale boiler performance with respect to NO{sub x} emissions and carbon burnout. Power station trials demonstrated that coal quality effects nitrogen oxides and burnout. The variability in boiler conditions also impacted on these factors. Lower nitrogen and higher volatile coals generally produced less NO{sub x}. Volatile content was the most important generic coal property for predicting burnout. Modelling rig tests, using data from advanced laboratory-scale tests, were found to be just as successful as using rig tests for predicting NO{sub x} performance of different coals. Laboratory-scale tests were found to be successful in providing accurate predictions of burnout for the coals studied. Mathematical models, however, were found to be less successful in this area and further work to develop this is required. A major achievement was CFD solutions of full-scale utility boiler furnaces in a single mesh. 32 refs., 15 figs., 33 tabs., 2 apps.

  15. Study on the effective utilization of palm oil (Part 1). Survey of catalysts for oxidative cleavage of palm stearin into mono and dibasic acids with middle carbon chains

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Yasuhiko; Shiina, Hisako; Mamuro, Hideo; Nakasato, Satoshi; Ooi, T L; S H, Ong A

    1987-05-01

    Production of palm oil in Malaysia increases annually and it is estimated that the production will reach 6 million tons in 1990. Palm stearin which constitutes 20% or more of palm oil is not suitable for the food production, but if it is successfully converted into mono and dibasic acids with middle carbon chains, a big potential demand as excellent lubricating oil is expected. Chemical Engineering Institute, Agency of Industrial Science and Technology studied this matter jointly with Malaysian Institute of Palm Oil. Various metal (II) ion-exchanged zeolites which were considered to be effective catalysts for the above conversion were screened and from the analytical results utilizing signal strength of carboxyl proton, it was found that several catalysts were effective for the formation of carboxylic acids. Furthermore, it was revealed that Mn (II) ion-exchanged zeolite 5A and Co(II)-Cu(II) ion-exchanged zeolite Y were the catalysts suitable for the objective of this study, but a study for finding out the conditions to obtain high conversion ratio is required. (4 tabs, 28 refs)

  16. Are carbon credits effective?

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    Is it possible to reduce greenhouse gas emissions by assigning a value to CO 2 ? That's the concept behind carbon credits. Their advantage: they set targets but let companies decide how to meet them. Of all the processes that can be used to reduce air pollution, the cap and trade system is the best way to meet global targets on a national or continental scale. The system's efficiency is based on setting a ceiling for emissions: this is the cap. The emissions quotas are negotiable goods that can be traded on a market: this is the 'trade'. No company can exceed its quotas, but it can choose how to meet them: decreasing its emissions by changing its production processes, buying carbon credits sold by companies that have exceeded their targets, or using clean development mechanisms. For a carbon credit system to function correctly on an economic level, it's essential to meet one condition: don't allocate too many emissions quotas to the companies involved. If they receive too many quotas, it's not hard for them to meet their objectives without changing their production processes. The supply of carbon credits currently exceeds demand. The price per ton of CO 2 is collapsing, and companies that have exceeded their targets are not rewarded for their efforts. Efficient though it may be, the cap and trade system cannot be the only way to fight CO 2 emissions. In Europe, it presently covers 40% of the CO 2 emissions by targeting utilities and industries that consume the most fossil fuels. But it cannot be extended to some sectors where pollution is diffuse. In transportation, for example, it's not possible to impose such a requirement. For that sector, as well as for the building sector, a suitable system of taxes might be effective and incentive

  17. Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    The Algae Cultivation for Carbon Capture and Utilization Workshop Summary Report summarizes a workshop hosted by the U.S. Department of Energy's Bioenergy Technologies Office on May 23–24, 2017, in Orlando, Florida. The event gathered stakeholder input through facilitated discussions focused on innovative technologies and business strategies for growing algae on waste carbon dioxide resources.

  18. UTILIZATION OF PINEAPPLE WASTE AS CARBON SOURCE

    Directory of Open Access Journals (Sweden)

    Abdullah Moch Busairi

    2012-02-01

    Full Text Available The liquid pineapple waste contains mainly sucrose, glucose, fructose and other nutrients. It therefore can potentially be used as carbon source for organic acid fermentation.  The objective of this work is to evaluate the use of pineapple waste as substrate for lactic acid fermentation under variables of aerobic, anaerobic condition and pH controlling. Initial results showed that the liquid pineapple waste can be used as carbon source for lactic acid fermentation using Lactobacillus delbrueckii. In the anaerobic condition growth of bacteria and lactic acid production better than aerobic condition. In the anaerobic condition and the controlled pH  the production of lactic acid are found to be 54.79 g/l  (78.27% yield at  40oC, pH 6, 50 rpm and 70 g/l sugar concentration.  In contrast, only 13.87g/l lactic acid produced if the fermentation pH was not controlled even though the fermentation parameters were kept at the same conditions

  19. Carbon emissions and management scenarios for consumer-owned utilities

    International Nuclear Information System (INIS)

    Fischlein, Miriam; Smith, Timothy M.; Wilson, Elizabeth J.

    2009-01-01

    An important subset of the utility sector has been scarcely explored for its ability to reduce carbon dioxide emissions: consumer-owned electric utilities significantly contribute to U.S. greenhouse gas emissions, but are often excluded from energy efficiency and renewable energy policies. They sell a quarter of the nation's electricity, yet the carbon impact of these sales is not well understood, due to their small size, unique ownership models, and high percentage of purchased power for distribution. This paper situates consumer-owned utilities in the context of emerging U.S. climate policy, quantifying for the first time the state-by-state carbon impact of electricity sales by consumer-owned utilities. We estimate that total retail sales by consumer-owned utilities account for roughly 568 million metric tons of CO 2 annually, making this sector the 7th largest CO 2 emitter globally, and examine state-level carbon intensities of the sector in light of the current policy environment and the share of COU distribution in the states. Based on efficiency and fuel mix pathways under conceivable regulations, carbon scenarios for 2030 are developed.

  20. Bacterial carbon utilization in vertical subsurface flow constructed wetlands.

    Science.gov (United States)

    Tietz, Alexandra; Langergraber, Günter; Watzinger, Andrea; Haberl, Raimund; Kirschner, Alexander K T

    2008-03-01

    Subsurface vertical flow constructed wetlands with intermittent loading are considered as state of the art and can comply with stringent effluent requirements. It is usually assumed that microbial activity in the filter body of constructed wetlands, responsible for the removal of carbon and nitrogen, relies mainly on bacterially mediated transformations. However, little quantitative information is available on the distribution of bacterial biomass and production in the "black-box" constructed wetland. The spatial distribution of bacterial carbon utilization, based on bacterial (14)C-leucine incorporation measurements, was investigated for the filter body of planted and unplanted indoor pilot-scale constructed wetlands, as well as for a planted outdoor constructed wetland. A simple mass-balance approach was applied to explain the bacterially catalysed organic matter degradation in this system by comparing estimated bacterial carbon utilization rates with simultaneously measured carbon reduction values. The pilot-scale constructed wetlands proved to be a suitable model system for investigating microbial carbon utilization in constructed wetlands. Under an ideal operating mode, the bulk of bacterial productivity occurred within the first 10cm of the filter body. Plants seemed to have no significant influence on productivity and biomass of bacteria, as well as on wastewater total organic carbon removal.

  1. Biocompatible yogurt carbon dots: evaluation of utilization for medical applications

    Science.gov (United States)

    Dinç, Saliha; Kara, Meryem; Demirel Kars, Meltem; Aykül, Fatmanur; Çiçekci, Hacer; Akkuş, Mehmet

    2017-09-01

    In this study, carbon dots (CDs) were produced from yogurt, a fermented milk product, via microwave-assisted process (800 W) in 30 min without using any additional chemical agents. Yogurt CDs had outstanding nitrogen and oxygen ratios. These dots were monodisperse and about 2 nm sized. The toxicological assessments of yogurt carbon dots in human cancer cells and normal epithelial cells and their fluorescence imaging in living cell system were carried out. Yogurt carbon dots had intense fluorescent signal under confocal microscopy and good fluorescence stability in living cell system. The resulting yogurt carbon dots exhibited high biocompatibility up to 7.1 mg/mL CD concentration which may find utilization in medical applications such as cellular tracking, imaging and drug delivery. Yogurt carbon dots have potential to be good diagnostic agents to visualize cancer cells which may be developed as a therapeutic carrier.

  2. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  3. Generation, capture, and utilization of industrial carbon dioxide.

    Science.gov (United States)

    Hunt, Andrew J; Sin, Emily H K; Marriott, Ray; Clark, James H

    2010-03-22

    efficiency and lower per capita consumption, and replacing fossil energy sources with sources such as wind, wave, and solar, respectively). "Low carbon" is of inherently less value to the chemical and plastics industries at least in terms of raw materials although a version of (2), the use of biomass, does apply, especially if we use carbon sources that are renewable on a human timescale. There is however, another renewable, natural source of carbon that is widely available and for which greater utilization would help restore material balance and the natural cycle for carbon in terms of resource and waste. CO(2), perhaps the most widely discussed and feared chemical in modern society, is as fundamental to our survival as water, and like water we need to better understand the human as well as natural production and consumption of CO(2) so that we can attempt to get these into a sustainable balance. Current utilization of this valuable resource by the chemical industry is only 90 megatonne per year, compared to the 26.3 gigatonne CO(2) generated annually by combustion of fossil fuels for energy generation, as such significant opportunities exist for increased utilization of CO(2) generated from industrial processes. It is also essential that renewable energy is used if CO(2) is to be utilized as a C1 building block.

  4. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    Science.gov (United States)

    Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.

    2014-01-01

    Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.

  5. The role of utilities in developing low carbon, electric megacities

    International Nuclear Information System (INIS)

    Kennedy, Chris; Stewart, Iain D.; Facchini, Angelo; Mele, Renata

    2017-01-01

    Development of electric cities, with low carbon power supply, is a key strategy for reducing global CO2 emissions. We analyze the role of electric utilities as important actors to catalyze the transition to electric cites, drawing upon data for the world's 27 megacities. Progress towards the ideal electric city is most advanced for Paris, Rio de Janeiro, Sao Paulo and Buenos Aires for low carbon electricity, while Indian megacities have relatively high use of carbon-intensive electricity as a percentage of total energy use. There is wide variety in the structure of markets for electricity provision in megacities, with a dominant, public utility being the most common model. We review literature on electricity sector business models and broadly propose future models dependent on the predominance of locally dispersed generation and the nature of the ownership of the electric grid within the city. Where a high proportion of electricity can be provided by locally distributed supply within a city, the role of utilities could predominantly become that of enabler of exchange with the grid, but new pricing structures are required. A further challenge for utilities in enabling the electric city is to provide a higher level of resilience to events that disrupt power supply. - Highlights: • Amongst 27 megacities, Paris, Rio, Sao Paulo and Buenos Aires are most progressed low carbon electric cities. • Indian megacities have relatively high use of electricity as a percentage of total energy use. • Wide variety in electricity market structure in megacities; dominant, public utility the most common model. • Utilities could become enablers of exchange with the grid, but new pricing models required.

  6. Utilization of carbon and nitrogen sources by Streptomyces ...

    African Journals Online (AJOL)

    We tested a number of carbon and nitrogen compounds for their effect on the production of an antibacterial antibiotic by Streptomyces kananmyceticus M27. Dextrose was found to be the most suitable carbon source, though maltose, sucrose, and soluble starch gave moderate yields. (NH4)H2PO4 and yeast extract were ...

  7. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    International Nuclear Information System (INIS)

    Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Nguyen, Anh; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.

    2014-01-01

    Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R 2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts. -- Highlights: • Bioavailability of pesticides in soil were assessed using TF-SPE and earthworms. • Soil from a historical orchard was used to examine aged residues of dieldrin and DDT. • TF-SPE results were strongly correlated with earthworm bioaccumulation factors. • Ethylene vinyl acetate polymer has sorptive capacity similar to earthworm lipid. • TF-SPE useful to estimate bioavailability of hydrophobic organic pesticides in soil. -- Capsule A thin-film polymer sampler proved to be efficient in estimating the differences in bioavailability to earthworms in a soil treated with organic amendments

  8. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  9. Overcoming Barriers to Successfully Commercializing Carbon Dioxide Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Marvin, E-mail: marvin.kant@tu-berlin.de [Department of Entrepreneurship and Innovation Management, Technische Universität Berlin, Berlin (Germany)

    2017-09-13

    The successful transition to a low-carbon economy hinges on innovative solutions and collaborative action on a global scale. Sustainable entrepreneurship is thereby recognized as a key driver in the creation and transformation of ecologically and socially sustainable economic systems. The purpose of this article is to contribute to this topic by understanding commercialization barriers for strong sustainability-oriented new technology ventures and to derive recommendations to overcome them. A qualitative multilevel approach is applied to identify barriers and drivers within the internal dynamic capabilities of the organization and within the organization’s external stakeholders. A model of barriers has been developed based on semi-structured interviews with new carbon dioxide utilization ventures and associated industry players in Canada, the USA, and the European Economic Area. Resulting recommendations to facilitate the (re-)design of a dedicated support system are proposed on four levels: (a) actors, (b) resources, (c) institutional settings, and (d) the coordination of the support system.

  10. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  11. Overcoming Barriers to Successfully Commercializing Carbon Dioxide Utilization

    International Nuclear Information System (INIS)

    Kant, Marvin

    2017-01-01

    The successful transition to a low-carbon economy hinges on innovative solutions and collaborative action on a global scale. Sustainable entrepreneurship is thereby recognized as a key driver in the creation and transformation of ecologically and socially sustainable economic systems. The purpose of this article is to contribute to this topic by understanding commercialization barriers for strong sustainability-oriented new technology ventures and to derive recommendations to overcome them. A qualitative multilevel approach is applied to identify barriers and drivers within the internal dynamic capabilities of the organization and within the organization’s external stakeholders. A model of barriers has been developed based on semi-structured interviews with new carbon dioxide utilization ventures and associated industry players in Canada, the USA, and the European Economic Area. Resulting recommendations to facilitate the (re-)design of a dedicated support system are proposed on four levels: (a) actors, (b) resources, (c) institutional settings, and (d) the coordination of the support system.

  12. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  13. Utilization of Ethanolamine as Carbon Dioxide Absorber For

    OpenAIRE

    Yusuf, Asdiana Irma; Zakir, Muhammad; Maming, Maming

    2015-01-01

    Utilization of ethanolamine as carbon dioxide absober for estimating of coral age from langkai island via LSC (Liquid Scintillation Counting) method has been done. Focus is to analyze coral reefs taken from Langkai island surface which is relatively far from the influence of human activities. Chemical preparation was carried out by using a mixture of NaOH with H2O2 30% followed by a mixture of HClO4 with H2O2 30%, and finally with HCl solution to produce a clean sample with 8.6% weight reduct...

  14. Achievement report of projects in fiscal 2000 for measures on technologies to fix and utilize effectively carbon dioxide. Development of program system technologies to fix and utilize effectively carbon dioxide - researches on key technologies (Developing technology to fix carbon dioxide electrochemically); 2000 nendo program hoshiki nisanka tanso koteika yuko riyo gijutsu kaihatsu (kiban gijutsu kenkyu) seika hokokusho (kokaiyo). Nisanka tanso no denki kagakuteki koteika gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to prevent global warming, research and development has been made on a carbon dioxide fixation technology using electrochemical means. This paper summarizes the achievements in fiscal 2000. In the research of a technology to return carbon dioxide to hydrocarbon such as methane electrochemically utilizing the high concentration carbon dioxide-methanol system, basic studies were performed on electrolytic reduction of CO2 using a methanol solvent system, and experimental studies were executed on high-speed reduction of carbon dioxide using gas diffusion electrodes. In the basic property experiment on diamond electrodes, high carbon dioxide reduction activity was obtained by having copper carried in the diamond electrode. In the CO2 electrolytic reduction experiment on three-phase interface using a copper net electrode, CO, ethylene, and methane were produced, while the electrode has retained the activity for an extended period of time, and the CO2 conversion rate reached about 66%. In structuring an electrochemical carbon dioxide fixation system, specifications for the CO2 electrolytic reduction equipment were determined, design, manufacturing, and electrode materials were selected, supporting electrolytes were discussed, and the entire system flow and liquid resistance were discussed. (NEDO)

  15. Effects on annual cost of solar/air-heat utilization system of carbon tax and interest rate for a residential house; Jutakuyo taiyo/taikinetsu riyo system no nenkan keihi ni oyobosu tansozei kinri no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Q; Kenmoku, Y; Sakakibara, T [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T [Shizuoka University, Shizuoka (Japan). Faculty of Engineering

    1996-10-27

    In recent years, a system has been proposed that utilizes river heat, air-heat, exhaust heat from a cooler, etc., in addition to natural energy for the heat pump. With the introduction of such system, the amount of energy used and that of CO2 exhaust will be greatly reduced, but annual expenses will be increased as it stands. In order to improve the cost efficiency of the system, a proposal has been made for the introduction of an economic policy such as the carbon tax and a low interest financing system. With these matters in the background, the subject study predicts the production of solar cells in the future and, on the basis of this production, determines the price, conversion efficiency and equipment energy of solar cells in the future. Using these values and taking into consideration the introduction of the carbon tax and the low interest financing system, the optimum area was determined for solar cells and heat concentrators in a future residential solar/air-heat energy system. The carbon tax, being imposed on all CO2 discharges, had a large effect. Moreover, as the tax increased, annual expenses decreased for the solar/air-heat system. 3 refs., 6 figs.

  16. Carbon Capture and Utilization in the Industrial Sector.

    Science.gov (United States)

    Psarras, Peter C; Comello, Stephen; Bains, Praveen; Charoensawadpong, Panunya; Reichelstein, Stefan; Wilcox, Jennifer

    2017-10-03

    The fabrication and manufacturing processes of industrial commodities such as iron, glass, and cement are carbon-intensive, accounting for 23% of global CO 2 emissions. As a climate mitigation strategy, CO 2 capture from flue gases of industrial processes-much like that of the power sector-has not experienced wide adoption given its high associated costs. However, some industrial processes with relatively high CO 2 flue concentration may be viable candidates to cost-competitively supply CO 2 for utilization purposes (e.g., polymer manufacturing, etc.). This work develops a methodology that determines the levelized cost ($/tCO 2 ) of separating, compressing, and transporting carbon dioxide. A top-down model determines the cost of separating and compressing CO 2 across 18 industrial processes. Further, the study calculates the cost of transporting CO 2 via pipeline and tanker truck to appropriately paired sinks using a bottom-up cost model and geo-referencing approach. The results show that truck transportation is generally the low-cost alternative given the relatively small volumes (ca. 100 kt CO 2 /a). We apply our methodology to a regional case study in Pennsylvania, which shows steel and cement manufacturing paired to suitable sinks as having the lowest levelized cost of capture, compression, and transportation.

  17. Overcoming Barriers to Successfully Commercializing Carbon Dioxide Utilization

    Directory of Open Access Journals (Sweden)

    Marvin Kant

    2017-09-01

    Full Text Available The successful transition to a low-carbon economy hinges on innovative solutions and collaborative action on a global scale. Sustainable entrepreneurship is thereby recognized as a key driver in the creation and transformation of ecologically and socially sustainable economic systems. The purpose of this article is to contribute to this topic by understanding commercialization barriers for strong sustainability-oriented new technology ventures and to derive recommendations to overcome them. A qualitative multilevel approach is applied to identify barriers and drivers within the internal dynamic capabilities of the organization and within the organization’s external stakeholders. A model of barriers has been developed based on semi-structured interviews with new carbon dioxide utilization ventures and associated industry players in Canada, the USA, and the European Economic Area. Resulting recommendations to facilitate the (re-design of a dedicated support system are proposed on four levels: (a actors, (b resources, (c institutional settings, and (d the coordination of the support system.

  18. Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal and economic performance under carbon taxation.

    Science.gov (United States)

    Wiesberg, Igor Lapenda; Brigagão, George Victor; de Medeiros, José Luiz; de Queiroz Fernandes Araújo, Ofélia

    2017-12-01

    Coal-fired power plants are major stationary sources of carbon dioxide and environmental constraints demand technologies for abatement. Although Carbon Capture and Storage is the most mature route, it poses severe economic penalty to power generation. Alternatively, this penalty is potentially reduced by Carbon Capture and Utilization, which converts carbon dioxide to valuable products, monetizing it. This work evaluates a route consisting of carbon dioxide bio-capture by Chlorella pyrenoidosa and use of the resulting biomass as feedstock to a microalgae-based biorefinery; Carbon Capture and Storage route is evaluated as a reference technology. The integrated arrangement comprises: (a) carbon dioxide biocapture in a photobioreactor, (b) oil extraction from part of the produced biomass, (b) gasification of remaining biomass to obtain bio-syngas, and (c) conversion of bio-syngas to methanol. Calculation of capital and operational expenditures are estimated based on mass and energy balances obtained by process simulation for both routes (Carbon Capture and Storage and the biorefinery). Capital expenditure for the biorefinery is higher by a factor of 6.7, while operational expenditure is lower by a factor of 0.45 and revenues occur only for this route, with a ratio revenue/operational expenditure of 1.6. The photobioreactor is responsible for one fifth of the biorefinery capital expenditure, with footprint of about 1000 ha, posing the most significant barrier for technical and economic feasibility of the proposed biorefinery. The Biorefinery and Carbon Capture and Storage routes show carbon dioxide capture efficiency of 73% and 48%, respectively, with capture cost of 139$/t and 304$/t. Additionally, the biorefinery has superior performance in all evaluated metrics of environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insight into climate change from the carbon exchange of biocrusts utilizing non-rainfall water.

    Science.gov (United States)

    Ouyang, Hailong; Hu, Chunxiang

    2017-05-31

    Biocrusts are model ecosystems of global change studies. However, light and non-rainfall water (NRW) were previously few considered. Different biocrust types further aggravated the inconsistence. So carbon-exchange of biocrusts (cyanobacteria crusts-AC1/AC2; cyanolichen crust-LC1; chlorolichen crust-LC2; moss crust-MC) utilizing NRW at various temperatures and light-intensities were determined under simulated and insitu mesocosm experiments. Carbon input of all biocrusts were negatively correlated with experimental temperature under all light-intensity with saturated water and stronger light with equivalent NRW, but positively correlated with temperature under weak light with equivalent NRW. LCPs and R/Pg of AC1 were lowest, followed in turn by AC2, LC2 and MC. Thus AC1 had most opportunities to use NRW, and 2.5 °C warming did cause significant changes of carbon exchange. Structural equation models further revealed that air-temperature was most important for carbon-exchange of ACs, but equally important as NRW for LC2 and MC; positive influence of warming on carbon-input in ACs was much stronger than the latter. Therefore, temperature effect on biocrust carbon-input depends on both moisture and light. Meanwhile, the role of NRW, transitional states between ACs, and obvious carbon-fixation differences between lichen crusts should be fully considered in the future study of biocrusts responding to climate change.

  20. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, J M; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, Carlos M.

    2015-01-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering

  1. Application of a systematic methodology for sustainable carbon dioxide utilization process design

    DEFF Research Database (Denmark)

    Plaza, Cristina Calvera; Frauzem, Rebecca; Gani, Rafiqul

    than carbon capture and storage. To achieve this a methodology is developed to design sustainable carbon dioxide utilization processes. First, the information on the possible utilization alternatives is collected, including the economic potential of the process and the carbon dioxide emissions...... emission are desired in order to reduce the carbon dioxide emissions. Using this estimated preliminary evaluation, the top processes, with the most negative carbon dioxide emission are investigated by rigorous detailed simulation to evaluate the net carbon dioxide emissions. Once the base case design...

  2. Utilization of carbon dioxide for polymer electrolytes [I]: Effect of supercritical treatment conditions on ionic conduction in amorphous polyether/salt mixtures

    International Nuclear Information System (INIS)

    Oe, Yoshiyuki; Tominaga, Yoichi

    2011-01-01

    Highlights: ► Supercritical CO 2 treatment on amorphous polyether/salt mixtures improves ionic conductivity in the dry state. ► Suitable CO 2 condition for high conductivity exists in near the critical temperature and pressure. ► Conductivity decreases only 20% after 30 days. ► Dissociation of free ClO 4 − and interactions between ether chains and Li + increase in treated electrolytes. - Abstract: Supercritical carbon dioxide (scCO 2 ) as a treatment medium has a possibility to realize excellent room temperature conductivity more than 10 −4 S/cm for polymer electrolytes in the dry state. In this study, a typical high ion-conductive polyether-based electrolyte which consists of poly-[ethylene oxide-co-2-(2-methoxyethoxy)ethyl glycidyl ether] (P(EO/EM)) and lithium perchlorate (LiClO 4 ) was used as a model sample for the scCO 2 treatment. We found the suitable scCO 2 treatment conditions (pressure, temperature and time) for high conductivity. The conductivity of sample treated at 7.5 MPa and 40 °C for 40 min was more than 100-times higher than that of original without the treatment, and the value decreased only 20% after 30 days. DSC measurement revealed that the decrease in glass transition temperature (T g ) is caused by the scCO 2 -treatment. The change of ionic association in the scCO 2 -treated samples was confirmed using FT-IR measurement. The scCO 2 treatment gave rise to increase in peak fraction of free ClO 4 − anions (620–625 cm −1 ) and peak shift of ν(C–O–C) mode to lower frequency region (1060–1070 cm −1 ) depending on ether–Li + interactions.

  3. Effects of increased biofuel utilization

    International Nuclear Information System (INIS)

    Bahr, J.; Blad, B.; Hillring, B.

    1996-01-01

    This report is a compilation of present knowledge regarding the effects of an increased use of biomass fuels. Main areas treated are: Availability of raw materials; Effects on forestry and agriculture; Transportation; Areas of use; Cost and price formation; Emission to the atmosphere, and effect on the climate; and Effect on employment and regional aspects. 29 tabs

  4. Radiation Effects in Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2012-07-01

    Full Text Available We experimentally investigate the effects of Co-60 irradiation on the electrical properties of single-walled carbon nanotube and graphene field-effect transistors. We observe significant differences in the radiation response of devices depending on their irradiation environment, and confirm that, under controlled conditions, standard dielectric hardening approaches are applicable to carbon nanoelectronics devices.

  5. Utilization of corn cob biochar in a direct carbon fuel cell

    Science.gov (United States)

    Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan

    2014-12-01

    Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.

  6. Systematic framework for carbon dioxide capture and utilization processes to reduce the global carbon dioxide emissions

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Plaza, Cristina Calvera; Gani, Rafiqul

    information-data on various carbon dioxide emission sources and available capture-utilization technologies; the model and solution libraries [2]; and the generic 3-stage approach for determining more sustainable solutions [3] through superstructure (processing networks) based optimization – adopted for global...... need to provide, amongst other options: useful data from in-house databases on carbon dioxide emission sources; mathematical models from a library of process-property models; numerical solvers from library of implemented solvers; and, work-flows and data-flows for different benefit scenarios...... to be investigated. It is useful to start by developing a prototype framework and then augmenting its application range by increasing the contents of its databases, libraries and work-flows and data-flows. The objective is to present such a prototype framework with its implemented database containing collected...

  7. Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate

    International Nuclear Information System (INIS)

    Eloneva, Sanni; Said, Arshe; Fogelholm, Carl-Johan; Zevenhoven, Ron

    2012-01-01

    Highlights: ► An NH 4 -salt-based method utilizes CO 2 and steelmaking slags to produce pure CaCO 3 . ► It was determined if its economic potential warrants moving forward. ► Despite small solvent losses, the method was found to have economical potential. ► The method has significant CO 2 emissions reduction potential. ► Scaling up the reactor will allow for a more detailed design for the process. -- Abstract: One of the options that can contribute to the reduction of carbon dioxide emissions for climate change mitigation is the so-called CO 2 sequestration by mineral carbonation, or CO 2 mineral sequestration. Steel manufacturing could benefit from this option by utilizing its own by-products, i.e. steelmaking slags to combine with CO 2 . We have recently studied a method, where aqueous solution of ammonium salt (e.g. ammonium acetate, ammonium nitrate and ammonium chloride) is used to extract calcium selectively from the steel converter slag, followed by precipitation of pure calcium carbonate by bubbling CO 2 through the produced solution. The ammonium salt solution is recovered and re-used. The purpose of this research was to determine if the economic potential of the method warrants moving forward to large-scale application. Despite the small solvent losses, the method was found to have economical potential. In addition, it has significant CO 2 emission reduction potential as well. Scaling up the reactor from the small laboratory scale will allow more detailed design for the process to be made followed by a full economical evaluation including all of the important operational and capital investment costs.

  8. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  9. Effects of carbon tax

    International Nuclear Information System (INIS)

    Michelini, M.

    1992-01-01

    At the recent United Nations Conference held in Rio de Janeiro, a proposal was made by Italy to have surcharges be applied by OECD member countries on fossil fuels (carbon tax), primarily to fund pollution abatement technology transfer to developing countries and promote pollution abatement, energy conservation and the use of renewable energy sources in industrialized countries. This paper assesses how the application of the proposed carbon tax might be successfully combined with additional fiscal policies favouring coal gasification and reforestation so as to provide energy policy strategists of oil-importing countries with a long term economically and environmentally viable alternative to petroleum imports

  10. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes I. Fuel utilization

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    In the first of a two part publication, the effect of fuel utilization (Uf) on carbon deposition rates in solid oxide fuel cell nickel-based anodes was studied. Representative 5-component CH4 reformate compositions (CH4, H2, CO, H2O, & CO2) were selected graphically by plotting the solutions to a system of mass-balance constraint equations. The centroid of the solution space was chosen to represent a typical anode gas mixture for each nominal Uf value. Selected 5-component and 3-component gas mixtures were then delivered to anode-supported cells for 10 h, followed by determination of the resulting deposited carbon mass. The empirical carbon deposition thresholds were affected by atomic carbon (C), hydrogen (H), and oxygen (O) fractions of the delivered gas mixtures and temperature. It was also found that CH4-rich gas mixtures caused irreversible damage, whereas atomically equivalent CO-rich compositions did not. The coking threshold predicted by thermodynamic equilibrium calculations employing graphite for the solid carbon phase agreed well with empirical thresholds at 700 °C (Uf ≈ 32%); however, at 600 °C, poor agreement was observed with the empirical threshold of ∼36%. Finally, cell operating temperatures correlated well with the difference in enthalpy between the supplied anode gas mixtures and their resulting thermodynamic equilibrium gas mixtures.

  11. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  12. Managing carbon regulatory risk in utility resource planning: Current practices in the Western United States

    International Nuclear Information System (INIS)

    Barbose, Galen; Wiser, Ryan; Phadke, Amol; Goldman, Charles

    2008-01-01

    Concerns about global climate change have substantially increased the likelihood that future policy will seek to minimize carbon dioxide emissions. As such, even today, electric utilities are making resource planning and investment decisions that consider the possible implications of these future carbon regulations. In this article, we examine the manner in which utilities assess the financial risks associated with future carbon regulations within their long-term resource plans. We base our analysis on a review of the most recent resource plans filed by 15 electric utilities in the Western United States. Virtually all of these utilities made some effort to quantitatively evaluate the potential cost of future carbon regulations when analyzing alternate supply- and demand-side resource options for meeting customer load. Even without federal climate regulation in the US, the prospect of that regulation is already having an impact on utility decision-making and resource choices. That said, the methods and assumptions used by utilities to analyze carbon regulatory risk, and the impact of that analysis on their choice of a particular resource strategy, vary considerably, revealing a number of opportunities for analytic improvement. Though our review focuses on a subset of US electric utilities, this work holds implications for all electric utilities and energy policymakers who are seeking to minimize the compliance costs associated with future carbon regulations

  13. Utilization of HTGR on active carbon recycling energy system

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yukitaka, E-mail: yukitaka@nr.titech.ac.jp

    2014-05-01

    A new energy transformation concept based on carbon recycling, called as active carbon recycling energy system, ACRES, was proposed for a zero carbon dioxide emission process. The ACRES is driven availably by carbon dioxide free primary energy. High temperature gas cooled reactor (HTGR) is a candidate of the energy sources for ACRES. A smart ironmaking system with ACRES (iACRES) is one of application examples. The contribution of HTGR on iACRES was discussed thermodynamically in this study. A carbon material is re-used cyclically as energy carrier media in ACRES. Carbon monoxide (CO) had higher energy densities than hydrogen and was compatible with conventional process. Thus, CO was suitable recycling media for ACRES. Efficient regeneration of CO was a key technology for ACRES. A combined system of hydrogen production by water electrolysis and CO{sub 2} hydrogen reduction was candidate. CO{sub 2} direct electrolysis was also one of the candidates. HTGR was appropriate heat source for both water and CO{sub 2} electrolysises, and CO{sub 2} hydrogen reduction. Thermodynamic energy balances were calculated for both systems with HTGR for an ironmaking system. The direct system showed relatively advantage to the combined system in the stand point of enthalpy efficiency and simplicity of the process. One or two plants of HTGR are corresponding with ACRES system for one unit of conventional blast furnace. The proposed ACRES system with HTGR was expected to form the basis of a new energy industrial process that had low CO{sub 2} emission.

  14. Carbon dioxide (CO 2 ) utilizing strain database | Saini | African ...

    African Journals Online (AJOL)

    Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance because database of ...

  15. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, Jesus

    2015-12-18

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  16. Utilization Of Carbon Nanotubes In Electromagnetic Wave Detectors

    Directory of Open Access Journals (Sweden)

    Muhammad Hanis Zakariah

    2017-08-01

    Full Text Available Direct detection of hydrocarbon by an active source using electromagnetic (EM energy termed seabed logging (SBL has shown very promising results. However, currently available electromagnetic wave technology has a number of challenges include sensitivity and frequency matching. This paper presents development of the carbon nanotubes (CNTs as electromagnetic wave detector due to outstanding properties of carbon nanotubes. They are currently one of the desired materials for advanced technologies. Two types of detectors were developed in this work, carbon nanotube-based (D1 and without nanotube-based (D2 detectors. Various configuration and arrangement for each type of detector were investigated to determine the one with the highest detection measurement and stability of frequency stability of detection system. It was found that 20 turn-coils coil placed at its centre gives the maximum detection of induction voltage, 39.61 mV. However, the 20 turn- coils with CNTs which gives 36.50 mV is the preferred EM detectors due to the stability in frequency of the detection system.

  17. Utilization of carbon sources in a northern Brazilian mangrove ecosystem

    Science.gov (United States)

    Giarrizzo, Tommaso; Schwamborn, Ralf; Saint-Paul, Ulrich

    2011-12-01

    Carbon and nitrogen stable isotope ratios ( 13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ 13C signatures ranging between -29.2 and -19.5‰ and δ 15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (-28.6 to -17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ 13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.

  18. Economics of carbon dioxide capture and utilization-a supply and demand perspective.

    Science.gov (United States)

    Naims, Henriette

    2016-11-01

    Lately, the technical research on carbon dioxide capture and utilization (CCU) has achieved important breakthroughs. While single CO 2 -based innovations are entering the markets, the possible economic effects of a large-scale CO 2 utilization still remain unclear to policy makers and the public. Hence, this paper reviews the literature on CCU and provides insights on the motivations and potential of making use of recovered CO 2 emissions as a commodity in the industrial production of materials and fuels. By analyzing data on current global CO 2 supply from industrial sources, best practice benchmark capture costs and the demand potential of CO 2 utilization and storage scenarios with comparative statics, conclusions can be drawn on the role of different CO 2 sources. For near-term scenarios the demand for the commodity CO 2 can be covered from industrial processes, that emit CO 2 at a high purity and low benchmark capture cost of approximately 33 €/t. In the long-term, with synthetic fuel production and large-scale CO 2 utilization, CO 2 is likely to be available from a variety of processes at benchmark costs of approx. 65 €/t. Even if fossil-fired power generation is phased out, the CO 2 emissions of current industrial processes would suffice for ambitious CCU demand scenarios. At current economic conditions, the business case for CO 2 utilization is technology specific and depends on whether efficiency gains or substitution of volatile priced raw materials can be achieved. Overall, it is argued that CCU should be advanced complementary to mitigation technologies and can unfold its potential in creating local circular economy solutions.

  19. Effective utilization and management of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, R [International Atomic Energy Agency, Vienna (Austria). Div. of Research and Isotopes

    1984-06-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors.

  20. Effective utilization and management of research reactors

    International Nuclear Information System (INIS)

    Muranaka, R.

    1984-01-01

    The problem of utilizing a research reactor effectively is closely related to its management and therefore should not be considered separately. Too often, attention has been focused on specific techniques and methods rather than on the overall programme of utilization, with the result that skills and equipment have been acquired without any active continuing programme of applications and services. The seminar reported here provided a forum for reactor managers, users, and operators to discuss their experience. At the invitation of the Government of Malaysia, it was held at the Asia Pacific Development Centre, Kuala Lumpur, from 7 to 11 November 1983. It was attended by about 50 participants from 19 Member States; it is hoped that a report on the seminar, including papers presented, can be published and thus reach a wider audience. Thirty-one lectures and contributions were presented at a total of seven sessions: Research reactor management; Radiation exposure and safety; Research reactor utilization (two sessions); PUSPATI Research Reactor Project Development; Core conversion to low-enriched uranium, and safeguards; Research reactor technology. In addition, a panel discussed the causes and resolutions of the under-utilization of research reactors

  1. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... utilization of bitumen and production of bitu-oil and gas by a bacterial ... nitrogen and phosphorus, with a consequent limitation on degradation of the ..... concluded that in industrial setting, carbon starvation in anaerobic ...

  2. The strategy of carbon utilization in uniculm barley

    International Nuclear Information System (INIS)

    Gordon, A.J.; Ryle, G.J.A.; Powell, C.E.

    1977-01-01

    Following exposure of the youngest mature leaf of uniculm barley to 14 CO 2 , groups of plants were harvested over a 72 h period to determine the fate of 14 C in the photosynthesizing leaf and in growing leaves and roots. Initially, 14 C was mainly present in sucrose with a little in starch and charged compounds; transport out of the fed leaf was rapid and, by 7 and 24 h, 56 and 93% respectively of the 14 C had been translocated about equally to growing leaves and roots. Sucrose entering meristems was quickly metabolized to protein and structural carbohydrate (40 and 60% of the 14 C in these organs at 7 and 24 h respectively), while the remainder was converted to short-term storage products or intermediary metabolites. By the end of the first day c.35% of the 14 C originally assimilated had been lost in respiration. The metabolism of the leaf appeared to be organized on a diurnal basis, for it exported nearly all its carbon within 24 h of assimilation. In contrast, some of the assimilate imported into growing leaves and, to a lesser extent, roots was not immediately used for growth but persisted as temporary metabolites and was subsequently used for growth in the following days. (author)

  3. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  4. Form of inorganic carbon utilized for photosynthesis in Chlorella vulgaris 11h cells

    International Nuclear Information System (INIS)

    Miyachi, Shigetoh; Shiraiwa, Yoshihiro

    1979-01-01

    The rate of photosynthetic 14 CO 2 fixation in Chlorella vulgaris 11h cells in the presence of 0.55 mM NaH 14 CO 3 at pH 8.0 (20 0 C) was greatly enhanced by the addition of carbonic anhydrase (CA). However, when air containing 400 ppm 14 CO 2 was bubbled through the algal suspension, the rate of 14 CO 2 fixation immediately after the start of the bubbling was suppressed by CA. These effects of CA were observed in cells which had been grown in air containing 2% CO 2 (high-CO 2 cells) as well as those grown in ordinary air (containing 0.04% CO 2 , low-CO 2 cells). We therefore concluded that, irrespective of the CO 2 concentration given to the algal cells during growth, the active species of inorganic carbon absorbed by Chlorella cells is free CO 2 and they cannot utilize bicarbonate. The effects observed in the high-CO 2 cells were much more pronounced than those in the low-CO 2 cells. This difference was accounted for by the difference in the affinity for CO 2 in photosynthesis between the high- and low-CO 2 cells. (author)

  5. Energy Utilization Evaluation of Carbon Performance in Public Projects by FAHP and Cloud Model

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available With the low-carbon economy advocated all over the world, how to use energy reasonably and efficiently in public projects has become a major issue. It has brought many open questions, including which method is more reasonable in evaluating the energy utilization of carbon performance in public projects when the evaluation information is fuzzy; whether an indicator system can be constructed; and which indicators have more impact on carbon performance. This article aims to solve these problems. We propose a new carbon performance evaluation system for energy utilization based on project processes (design, construction, and operation. Fuzzy Analytic Hierarchy Process (FAHP is used to accumulate the indicator weights and cloud model is incorporated when the indicator value is fuzzy. Finally, we apply our indicator system to a case study of the Xiangjiang River project in China, which demonstrates the applicability and efficiency of our method.

  6. Evaluating The Performance of Asphalt Concrete Mixes by Utilizing Carbon Black as Asphalt Modifier

    Directory of Open Access Journals (Sweden)

    Aliaa Faleh Al.ani

    2018-02-01

    Full Text Available Carbon black produced from several factories in Iraq is expected to provide a reinforcing agent for asphalt paving materials. Carbon black has many characteristics that distinguish  it from conventional mineral fillers, as well as their different function in pavement mixtures. Theory and exercise advanced  in the inclusive utilize of carbon black as a reinforcing agent for rubber has led to concept of asphalt reinforcement. The very fine particles of micro filler added in different contents will be dispersed in asphalt cement improving the mechanical properties of asphalt concrete mixes. In this Four percentages rates were utilized; 0, 3, 6, and 9 percent adding to asphalt grade (60-70. Mixes of asphalt concrete were destined at their optimum asphalt content (OAC then experienced to assess their engineering characteristics that contain moisture of damage, permanent deformation, modulus of resilient and characteristics of fatigue. These characteristics have been assessed utilizing indirect tensile strength, uniaxial repeated loading and repeated flexural beam tests. Mixtures improved with carbon black were existed to have amended permanent deformation and fatigue characteristics, else exhibited high resilient modulus and lower moisture susceptibility. Result showed that a rate changed from 3 to 9 percent has shown an increase in resilient modulus for increment of carbon black and modulus of resilient for mixes with 9 percent carbon black was 1.4 times that for mixes with 0 percent carbon black. The altering of carbon black from a range (3-9 percent has modified the fatigue property of the asphalt concrete mixes as determined by flexural test, Significantly, to modify the asphalt concrete manner taken the  percent of carbon black 6, and to produce the mixes more durable , higher resistance to distresses by adding the local knowledge.

  7. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  8. Bicarbonate-based cultivation of Dunaliella salina for enhancing carbon utilization efficiency.

    Science.gov (United States)

    Kim, Ga-Yeong; Heo, Jina; Kim, Hee-Sik; Han, Jong-In

    2017-08-01

    In this study, bicarbonate was proposed as an alternative carbon source to overcome exceedingly low CO 2 fixation efficiency of conventional microalgae cultivation system. 5gL -1 of sodium bicarbonate was found to well support the growth of Dunaliella salina, showing 2.84-fold higher specific growth rate than a bicarbonate-free control. This bicarbonate-fed cultivation also could yield biomass productivity similar to that of CO 2 -based system as long as pH was controlled. While the supplied CO 2 , because of its being a gas, was mostly lost and only 3.59% of it was used for biomass synthesis, bicarbonate was effectively incorporated into the biomass with 91.40% of carbon utilization efficiency. This study showed that the bicarbonate-based microalgae cultivation is indeed possible, and can even become a truly environment-friendly and workable approach, provided that a CO 2 mineralization technology is concomitantly established. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Designing management strategies for carbon dioxide storage and utilization under uncertainty using inexact modelling

    Science.gov (United States)

    Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong

    2017-06-01

    Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.

  10. Utilization of carbon/carbon composites in nuclear simulation fuel rods

    International Nuclear Information System (INIS)

    Polidoro, H.A.; Otani, S.; Rezende, M.C.; Ferreira, S.R.; Otani, C.

    1988-01-01

    Thermo-hydraulic problems, in nuclear plants are normally analysed by using electrically heated rods. Carbon/carbon composites were used to make heating elements for testing by indirect heating up to a heat flux of 100 W/cm 2 . It is easy to verify that this value can be exceed if the choice of the complementary materials for insulator and cladding were improved. The swaging process used to reduce the cladding diameter prevented the fabrication of graphite heater rods. (author) [pt

  11. Effects of process parameters on hydrothermal carbonization

    Science.gov (United States)

    Uddin, Md. Helal

    In recent years there has been increased research activity in renewable energy, especially upgrading widely available lignicellulosic biomass, in a bid to counter the increasing environmental concerns related with the use of fossil fuels. Hydrothermal carbonization (HTC), also known as wet torrefaction or hot water pretreatment, is a process for pretreatment of diverse lignocellulosic biomass feedstocks, where biomass is treated under subcritical water conditions in short contact time to produce high-value products. The products of this process are: a solid mass characterized as biochar/biocoal/biocarbon, which is homogeneous, energy dense, and hydrophobic; a liquid stream composed of five and six carbon sugars, various organic acids, and 5-HMF; and a gaseous stream, mainly CO2. A number of process parameters are considered important for the extensive application of the HTC process. Primarily, reaction temperature determines the characteristics of the products. In the solid product, the oxygen carbon ratio decreases with increasing reaction temperature and as a result, HTC biochar has the similar characteristics to low rank coal. However, liquid and gaseous stream compositions are largely correlated with the residence time. Biomass particle size can also limit the reaction kinetics due to the mass transfer effect. Recycling of process water can help to minimize the utility consumption and reduce the waste treatment cost as a result of less environmental impact. Loblolly pine was treated in hot compressed water at 200 °C, 230 °C, and 260 °C with 5:1 water:biomass mass ratio to investigate the effects of process parameters on HTC. The solid product were characterized by their mass yields, higher heating values (HHV), and equilibrium moisture content (EMC), while the liquid were characterized by their total organic carbon content and pH value.

  12. Toxicity and efficacy of carbon nanotubes and graphene: the utility of carbon-based nanoparticles in nanomedicine.

    Science.gov (United States)

    Zhang, Yongbin; Petibone, Dayton; Xu, Yang; Mahmood, Meena; Karmakar, Alokita; Casciano, Dan; Ali, Syed; Biris, Alexandru S

    2014-05-01

    Carbon-based nanomaterials have attracted great interest in biomedical applications such as advanced imaging, tissue regeneration, and drug or gene delivery. The toxicity of the carbon nanotubes and graphene remains a debated issue although many toxicological studies have been reported in the scientific community. In this review, we summarize the biological effects of carbon nanotubes and graphene in terms of in vitro and in vivo toxicity, genotoxicity and toxicokinetics. The dose, shape, surface chemistry, exposure route and purity play important roles in the metabolism of carbon-based nanomaterials resulting in differential toxicity. Careful examination of the physico-chemical properties of carbon-based nanomaterials is considered a basic approach to correlate the toxicological response with the unique properties of the carbon nanomaterials. The reactive oxygen species-mediated toxic mechanism of carbon nanotubes has been extensively discussed and strategies, such as surface modification, have been proposed to reduce the toxicity of these materials. Carbon-based nanomaterials used in photothermal therapy, drug delivery and tissue regeneration are also discussed in this review. The toxicokinetics, toxicity and efficacy of carbon-based nanotubes and graphene still need to be investigated further to pave a way for biomedical applications and a better understanding of their potential applications to humans.

  13. Micrometeorological Technique for Monitoring of Geological Carbon Capture, Utilization and Storage: Methodology, Workflow and Resources

    Science.gov (United States)

    Burba, G. G.; Madsen, R.; Feese, K.

    2013-12-01

    The eddy covariance (EC) method is a micrometeorological technique for direct high-speed measurements of the transport of gases and energy between land or water surfaces and the atmosphere [1]. This method allows for observations of gas transport scales from 20-40 times per second to multiple years, represents gas exchange integrated over a large area, from hundreds of square meters to tens of square kilometres, and corresponds to gas exchange from the entire surface, including canopy, and soil or water layers. Gas fluxes, emission and exchange rates are characterized from single-point in situ measurements using permanent or mobile towers, or moving platforms such as automobiles, helicopters, airplanes, etc. Presently, over 600 eddy covariance stations are in operation in over 120 countries [1]. EC is now recognized as an effective method in regulatory and industrial applications, including CCUS [2-10]. Emerging projects utilize EC to continuously monitor large areas before and after the injections, to locate and quantify leakages where CO2 may escape from the subsurface, to improve storage efficiency, and for other CCUS characterizations [5-10]. Although EC is one of the most direct and defensible micrometeorological techniques measuring gas emission and transport, and complete automated stations and processing are readily available, the method is mathematically complex, and requires careful setup and execution specific to the site and project. With this in mind, step-by-step instructions were created in [1] to introduce a novice to the EC method, and to assist in further understanding of the method through more advanced references. In this presentation we provide brief highlights of the eddy covariance method, its application to geological carbon capture, utilization and storage, key requirements, instrumentation and software, and review educational resources particularly useful for carbon sequestration research. References: [1] Burba G. Eddy Covariance Method

  14. The kinetics of Scenedesmus obliquus microalgae growth utilizing carbon dioxide gas from biogas

    International Nuclear Information System (INIS)

    Thiansathit, Worrarat; Keener, Tim C.; Khang, Soon-Jai; Ratpukdi, Thunyalux; Hovichitr, Patcharee

    2015-01-01

    Microalgae Scenedesmus obliquus was cultured in a laboratory photobioreactor to determine the efficacy of using biogas as a carbon source for the microalgae's growth. The biogas contained ∼60% CH 4 and ∼40% CO 2 , and was derived from an anaerobic digester operating from animal wastes, and an anaerobic reactor utilizing high strength wastewater. The results showed that biogas is a viable carbon source for microalgae growth and that significant portions of the biogas' CO 2 can be utilized for algae growth, resulting in a biogas having a high concentration of methane. This paper develops the kinetic expressions for the algae's growth by assuming an autocatalytic reaction between carbon substrate and microalgae. The maximum specific growth rate and biomass productivity of S. obliquus were 0.56 d −1 and 0.145 g L −1 d −1 respectively. The biomass contained 51.8% carbon and higher heating value (HHV) was 22.9 MJ kg −1 . - Highlights: • Biogas is a viable carbon source for microalgae growth. • Biomass production rate and characteristics were assessed. • Scenedesmus obliquus can adjust to grow with high concentration of CO 2 in the carbon source

  15. A generic methodology for the design of sustainable carbon dioxide utilization processes using superstructure optimization

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Gani, Rafiqul

    , including as an extractive agent or raw material. Chemical conversion, an important element of utilization, involves the use of carbon dioxide as a reactant in the production of chemical compounds [2]. However, for feasible implementation, a systematic methodology is needed for the design of the utilization......, especially chemical conversion, processes. To achieve this, a generic methodology has been developed, which adopts a three-stage approach consisting in (i) process synthesis, (ii) process design, and (iii) innovative and sustainable design [3]. This methodology, with the individual steps and associated...... methods and tools, has been developed and applied to carbon dioxide utilization networks. This work will focus on the first stage, process synthesis, of this three-stage methodology; process synthesis is important in determining the appropriate processing route to produce products from a selection...

  16. Thermodynamic basis for effective energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J. T.

    1977-10-15

    A major difficulty in a quantitative assessment of effective energy utilization is that energy is always conserved (the First Law of Thermodynamics). However, the Second Law of Thermodynamics shows that, although energy cannot be destroyed, it can be degraded to a state in which it is of no further use for performing tasks. Thus, in considering the present world energy crisis, we are not really concerned with the conservation of energy but with the conservation of its ability to perform useful tasks. A measure of this ability is thermodynamic availability or, a less familiar term, exergy. In a real sense, we are concerned with an entropy-crisis, rather than an energy crisis. Analysis of energy processes on an exergy basis provides significantly different insights into the processes than those obtained from a conventional energy analysis. For example, process steam generation in an industrial boiler may appear quite efficient on the basis of a conventional analysis, but is shown to have very low effective use of energy when analyzed on an exergy basis. Applications of exergy analysis to other systems, such as large fossil and nuclear power stations, are discussed, and the benefits of extraction combined-purpose plants are demonstrated. Other examples of the application of the exergy concept in the industrial and residential energy sectors are also given. The concept is readily adaptable to economic optimization. Examples are given of economic optimization on an availability basis of an industrial heat exchanger and of a combined-purpose nuclear power and heavy-water production plant. Finally, the utility of the concept of exergy in assessing the energy requirements of an industrial society is discussed.

  17. Enhancing substrate utilization and power production of a microbial fuel cell with nitrogen-doped carbon aerogel as cathode catalyst.

    Science.gov (United States)

    Tardy, Gábor Márk; Lóránt, Bálint; Lóka, Máté; Nagy, Balázs; László, Krisztina

    2017-07-01

    Catalytic efficiency of a nitrogen-doped, mesoporous carbon aerogel cathode catalyst was investigated in a two-chambered microbial fuel cell (MFC) applying graphite felt as base material for cathode and anode, utilizing peptone as carbon source. This mesoporous carbon aerogel containing catalyst layer on the cathode increased the maximum power density normalized to the anode volume to 2.7 times higher compared to the maximum power density obtained applying graphite felt cathode without the catalyst layer. At high (2 and 3) cathode/anode volume ratios, maximum power density exceeded 40 W m -3 . At the same time, current density and specific substrate utilization rate increased by 58% resulting in 31.9 A m -3 and 18.8 g COD m -3  h -1 , respectively (normalized to anode volume). Besides the increase of the power and the rate of biodegradation, the investigated catalyst decreased the internal resistance from the range of 450-600 to 350-370 Ω. Although Pt/C catalyst proved to be more efficient, a considerable decrease in the material costs might be achieved by substituting it with nitrogen-doped carbon aerogel in MFCs. Such cathode still displays enhanced catalytic effect.

  18. Carbon emissions associated with the procurement and utilization of forest harvest residues for energy, northern Minnesota, USA

    Science.gov (United States)

    Grant M. Domke; Dennis R. Becker; Anthony W. D' Amato; Alan R. Ek; Christopher W. Woodall

    2012-01-01

    Interest in the use of forest-derived biomass for energy has prompted comparisons to fossil fuels and led to controversy over the atmospheric consequences of its utilization. Much of the debate has centered on the carbon storage implications of utilizing whole trees for energy and the time frame necessary to offset the carbon emissions associated with fixed-life...

  19. Carbon Capture and Storage and Carbon Capture and Utilization: What Do They Offer to Indonesia?

    Energy Technology Data Exchange (ETDEWEB)

    Adisaputro, Didi, E-mail: didiadisaputro@gmail.com [Department of Chemical and Biological Engineering, University of Sheffield, Sheffield (United Kingdom); Department of Energy Security, Indonesian Defence University, Bogor (Indonesia); Saputra, Bastian [Department of Chemical and Biological Engineering, University of Sheffield, Sheffield (United Kingdom)

    2017-03-30

    Indonesia is a developing country with abundance resource of fossil fuel in the world, and this fossil fuel will remain as the main source of energy over the next few decades. However, the Indonesian Government has committed to reducing greenhouse gas emissions from fossil fuel consumption as an effort to mitigate climate change. In view of this, two possible energy scenarios are envisioned to honor this commitment: “business as usual” (BaU) and the National Energy Policy (NEP) scenario (National Energy Council, 2014). The NEP scenario reduces CO{sub 2} emissions by up to 26% through an improved energy mix, less reliance on carbon-based fuels, and the deployment of renewable energy sources from 2020 to 2050. However, these actions are considered insufficient to further reduce the CO{sub 2} emission target, leading to an initiative to implement carbon capture and storage (CCS) technology.

  20. Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper.

    Science.gov (United States)

    Yoo, Sukjoon; Hsieh, Jeffery S; Zou, Peter; Kokoszka, John

    2009-12-01

    The effective treatment and utilization of biowaste have been emphasized in our society for environmental and economic concerns. Recently, the eggshell waste in the poultry industry has been highlighted because of its reclamation potential. This study presents an economical treatment process to recover useful bioproducts from eggshell waste and their utilization in commercial products. We developed the dissolved air floatation (DAF) separation unit, which successfully recovered 96% of eggshell membrane and 99% of eggshell calcium carbonate (ECC) particles from eggshell waste within 2 h of operation. The recovered ECC particles were utilized as coating pigments for ink-jet printing paper and their impact on the ink density and paper gloss were investigated. The addition of the ECC particles as coating pigments enhances the optical density of cyan, magenta and yellow inks while decreasing the black ink density and the gloss of the coated paper.

  1. Carbon footprint of forest and tree utilization technologies in life cycle approach

    Science.gov (United States)

    Polgár, András; Pécsinger, Judit

    2017-04-01

    In our research project a suitable method has been developed related the technological aspect of the environmental assessment of land use changes caused by climate change. We have prepared an eco-balance (environmental inventory) to the environmental effects classification in life-cycle approach in connection with the typical agricultural / forest and tree utilization technologies. The use of balances and environmental classification makes possible to compare land-use technologies and their environmental effects per common functional unit. In order to test our environmental analysis model, we carried out surveys in sample of forest stands. We set up an eco-balance of the working systems of intermediate cutting and final harvest in the stands of beech, oak, spruce, acacia, poplar and short rotation energy plantations (willow, poplar). We set up the life-cycle plan of the surveyed working systems by using the GaBi 6.0 Professional software and carried out midpoint and endpoint impact assessment. Out of the results, we applied the values of CML 2001 - Global Warming Potential (GWP 100 years) [kg CO2-Equiv.] and Eco-Indicator 99 - Human health, Climate Change [DALY]. On the basis of the values we set up a ranking of technology. By this, we received the environmental impact classification of the technologies based on carbon footprint. The working systems had the greatest impact on global warming (GWP 100 years) throughout their whole life cycle. This is explained by the amount of carbon dioxide releasing to the atmosphere resulting from the fuel of the technologies. Abiotic depletion (ADP foss) and marine aquatic ecotoxicity (MAETP) emerged also as significant impact categories. These impact categories can be explained by the share of input of fuel and lube. On the basis of the most significant environmental impact category (carbon footprint), we perform the relative life cycle contribution and ranking of each technologies. The technological life cycle stages examined

  2. Glyphosate Utilization as the Source of Carbon: Isolation and Identification of new Bacteria

    Directory of Open Access Journals (Sweden)

    M. Mohsen Nourouzi

    2011-01-01

    Full Text Available Mixed bacteria from oil palm plantation soil (OPS were isolated to investigate their ability to utilize glyphosate as carbon source. Results showed that approximately all of the glyphosate was converted to aminomethyl-phosphonic acid (AMPA (99.5%. It is worthy to note that mixed bacteria were able to degrade only 2% of AMPA to further metabolites. Two bacterial strains i.e. Stenotrophomonas maltophilia and Providencia alcalifaciens were obtained from enrichment culture. Bacterial isolates were cultured individually on glyphosate as a sole carbon source. It was observed that both isolates were able to convert glyphosate to AMPA.

  3. Carbon isotopes of dissolved inorganic carbon reflect utilization of different carbon sources by microbial communities in two limestone aquifer assemblages

    Directory of Open Access Journals (Sweden)

    M. E. Nowak

    2017-08-01

    Full Text Available Isotopes of dissolved inorganic carbon (DIC are used to indicate both transit times and biogeochemical evolution of groundwaters. These signals can be complicated in carbonate aquifers, as both abiotic (i.e., carbonate equilibria and biotic factors influence the δ13C and 14C of DIC. We applied a novel graphical method for tracking changes in the δ13C and 14C of DIC in two distinct aquifer complexes identified in the Hainich Critical Zone Exploratory (CZE, a platform to study how water transport links surface and shallow groundwaters in limestone and marlstone rocks in central Germany. For more quantitative estimates of contributions of different biotic and abiotic carbon sources to the DIC pool, we used the NETPATH geochemical modeling program, which accounts for changes in dissolved ions in addition to C isotopes. Although water residence times in the Hainich CZE aquifers based on hydrogeology are relatively short (years or less, DIC isotopes in the shallow, mostly anoxic, aquifer assemblage (HTU were depleted in 14C compared to a deeper, oxic, aquifer complex (HTL. Carbon isotopes and chemical changes in the deeper HTL wells could be explained by interaction of recharge waters equilibrated with post-bomb 14C sources with carbonates. However, oxygen depletion and δ13C and 14C values of DIC below those expected from the processes of carbonate equilibrium alone indicate considerably different biogeochemical evolution of waters in the upper aquifer assemblage (HTU wells. Changes in 14C and 13C in the upper aquifer complexes result from a number of biotic and abiotic processes, including oxidation of 14C-depleted OM derived from recycled microbial carbon and sedimentary organic matter as well as water–rock interactions. The microbial pathways inferred from DIC isotope shifts and changes in water chemistry in the HTU wells were supported by comparison with in situ microbial community structure based on 16S rRNA analyses. Our findings

  4. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Science.gov (United States)

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  5. Transcriptome Analysis of Polyhydroxybutyrate Cycle Mutants Reveals Discrete Loci Connecting Nitrogen Utilization and Carbon Storage in Sinorhizobium meliloti.

    Science.gov (United States)

    D'Alessio, Maya; Nordeste, Ricardo; Doxey, Andrew C; Charles, Trevor C

    2017-01-01

    Polyhydroxybutyrate (PHB) and glycogen polymers are produced by bacteria as carbon storage compounds under unbalanced growth conditions. To gain insights into the transcriptional mechanisms controlling carbon storage in Sinorhizobium meliloti , we investigated the global transcriptomic response to the genetic disruption of key genes in PHB synthesis and degradation and in glycogen synthesis. Under both nitrogen-limited and balanced growth conditions, transcriptomic analysis was performed with genetic mutants deficient in PHB synthesis ( phbA , phbB , phbAB , and phbC ), PHB degradation ( bdhA , phaZ , and acsA2 ), and glycogen synthesis ( glgA1 ). Three distinct genomic regions of the pSymA megaplasmid exhibited altered expression in the wild type and the PHB cycle mutants that was not seen in the glycogen synthesis mutant. An Fnr family transcriptional motif was identified in the upstream regions of a cluster of genes showing similar transcriptional patterns across the mutants. This motif was found at the highest density in the genomic regions with the strongest transcriptional effect, and the presence of this motif upstream of genes in these regions was significantly correlated with decreased transcript abundance. Analysis of the genes in the pSymA regions revealed that they contain a genomic overrepresentation of Fnr family transcription factor-encoding genes. We hypothesize that these loci, containing mostly nitrogen utilization, denitrification, and nitrogen fixation genes, are regulated in response to the intracellular carbon/nitrogen balance. These results indicate a transcriptional regulatory association between intracellular carbon levels (mediated through the functionality of the PHB cycle) and the expression of nitrogen metabolism genes. IMPORTANCE The ability of bacteria to store carbon and energy as intracellular polymers uncouples cell growth and replication from nutrient uptake and provides flexibility in the use of resources as they are available to

  6. Psychological effectiveness of carbon labelling

    Science.gov (United States)

    Beattie, Geoffrey

    2012-04-01

    Despite the decision by supermarket-giant Tesco to delay its plan to add carbon-footprint information onto all of its 70,000 products, carbon labelling, if carefully designed, could yet change consumer behaviour. However, it requires a new type of thinking about consumers and much additional work.

  7. Utilization of Glyphosate as Phosphate Source: Biochemistry and Genetics of Bacterial Carbon-Phosphorus Lyase

    Science.gov (United States)

    Zechel, David L.; Jochimsen, Bjarne

    2014-01-01

    SUMMARY After several decades of use of glyphosate, the active ingredient in weed killers such as Roundup, in fields, forests, and gardens, the biochemical pathway of transformation of glyphosate phosphorus to a useful phosphorus source for microorganisms has been disclosed. Glyphosate is a member of a large group of chemicals, phosphonic acids or phosphonates, which are characterized by a carbon-phosphorus bond. This is in contrast to the general phosphorus compounds utilized and metabolized by microorganisms. Here phosphorus is found as phosphoric acid or phosphate ion, phosphoric acid esters, or phosphoric acid anhydrides. The latter compounds contain phosphorus that is bound only to oxygen. Hydrolytic, oxidative, and radical-based mechanisms for carbon-phosphorus bond cleavage have been described. This review deals with the radical-based mechanism employed by the carbon-phosphorus lyase of the carbon-phosphorus lyase pathway, which involves reactions for activation of phosphonate, carbon-phosphorus bond cleavage, and further chemical transformation before a useful phosphate ion is generated in a series of seven or eight enzyme-catalyzed reactions. The phn genes, encoding the enzymes for this pathway, are widespread among bacterial species. The processes are described with emphasis on glyphosate as a substrate. Additionally, the catabolism of glyphosate is intimately connected with that of aminomethylphosphonate, which is also treated in this review. Results of physiological and genetic analyses are combined with those of bioinformatics analyses. PMID:24600043

  8. Relationship between Water and Carbon Utilization under Different Straw Mulching and Plant Density of Summer Maize in North China Plain

    Science.gov (United States)

    Liu, Quanru; Du, Shoujian; Yin, Honglian; Wang, Juan

    2018-03-01

    To explore the relationship between water and carbon utilization and key factors to keep high water use efficiency (WUE), a 2-yr experiment was conduct by covering 0 and 0.6 kg m-2 straw to the surface of soil with plant densities of 1.0 × 105, 7.5 × 104, and 5.5 × 104 plants ha-1 in North China Plain during summer maize growing seasons of the 2012 and 2013. Results showed that straw mulching not only increased grain yield (GY), WUE, and carbon efficient ratio (CER) but also inhibited CO2 emission significantly. WUE positively correlated with CER, GY and negative correlated with evapotranspiration (ET) and CO2 emission. CER had the larger direct effect on WUE compared with ET and CO2 emission. The results indicate that straw mulching management in summer maize growing seasons could make sense for inhibiting CO2 emission.

  9. Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process

    International Nuclear Information System (INIS)

    Sorgüven, Esra; Özilgen, Mustafa

    2012-01-01

    This paper investigates the impact of food production processes on the environment in terms of energy and exergy utilization and carbon dioxide emission. There are three different energy utilization mechanisms in food production: Utilization of solar energy by plants to produce agricultural goods; feed consumption by herbivores to produce meat and milk; fossil fuel consumption by industrial processes to perform mixing, cooling, heating, etc. Production of strawberry-flavored yogurt, which involves these three mechanisms, is investigated here thermodynamically. Analysis starts with the cultivation of the ingredients and ends with the transfer of the final product to the market. The results show that 53% of the total exergy loss occurs during the milk production and 80% of the total work input is consumed during the plain yogurt making. The cumulative degree of perfection is 3.6% for the strawberry-flavored yogurt. This value can rise up to 4.6%, if renewable energy resources like hydropower and algal biodiesel are employed instead of fossil fuels. This paper points the direction for the development of new technology in food processing to decrease waste of energy and carbon dioxide accumulation in the atmosphere. -- Highlights: ► Energy and exergy utilization and carbon dioxide emission during strawberry-flavored yogurt production. ► Cumulative degree of perfection of strawberry-flavored yogurt is 3.6%. ► 53% of the total exergy loss occurs during the milk production. ► 80% of the total work input is consumed during the plain yogurt making.

  10. Veblen effect, marginal utility of money, and money illusion

    OpenAIRE

    Malakhov, Sergey

    2013-01-01

    The paper discovers microeconomic mechanism of Veblen effect as well as of Giffen case as results of the negative marginal utility of money. The marginal utility of consumption also becomes negative. The total consumption-leisure utility is increased due to the increase in leisure time. This overall effect results in the phenomenon of money illusion on the macroeconomic level. This general effect has deep historical and institutional grounds and, in order to minimize its disequilibrium econom...

  11. Carbon dioxide: emissions and effects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1982-01-01

    This review provides a comprehensive guide to work carried out since 1978 in the many disciplines involved in this complex issue. Possible scenarios for carbon dioxide emissions, sources and sinks in the carbon cycle and for climatic changes are examined. The current concensus (by no means unanimous) of specialists on this issue appears to be that a continuation of reduced trends in energy consumption since 1973 is likely to double the atmospheric carbon dioxide concentration to 600 ppmv during the latter part of the next century. However, a higher demand scenario, requiring an upper limit of coal production, would bring forward the doubling to about the middle of the next century. Current climatic models predict that such a concentration of carbon dioxide would cause an average global warming of from 1.0 to 4.5/sup 0/C which might be delayed by the thermal inertia of the oceans. A warming due to estimated increases in carbon dioxide should, if the model results are correct, become apparent at the end of this century. Regional climatic changes are likely to vary considerably and prove disadvantageous to some regions and beneficial to others. Different strategies for dealing with the carbon dioxide issue are considered: no response, alleviation, countermeasures and prevention. It is concluded that uncertainties do not justify either the use of carbon dioxide disposal and other technical fixes at present or a policy of no further growth in fossil fuel consumption. On the other hand, major efforts to conserve energy would give more time to adapt to changes. The alleviation of climatic impacts and other desirable dual-benefit measures are advocated in addition to continuing international, interdisciplinary research on all aspects.

  12. Cost effective shift schedules enhance utility operations

    International Nuclear Information System (INIS)

    Coleman, R.M.

    1995-01-01

    This article describes how new shift scheduling concepts can save utility operations millions of dollars every year and yet maintain safety and improve employee morale. The key to scheduling is to define and match the work load. This includes discretionary as well as daily, weekly, and yearly core work loads. In most power plants the overall work load (including maintenance, operations, materials handling, etc.) on day shift is greater than on other shifts, hence an unbalanced schedule would be appropriate

  13. Cost-effectiveness, feed utilization and body composition of african ...

    African Journals Online (AJOL)

    Cost-effectiveness, feed utilization and body composition of african sharptooth catfish ( Clarias gariepinus , Burchell 1822) fingerlings fed locally formulated and commercial pelleted diets in tarpaulin tanks.

  14. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.H.; Leu, J.Y.; Lan, C.R.; Lin, P.H.P.; Chang, F.L. [Development Center for Biotechnology, Taipei (Taiwan). Dept. for Environmental Program

    2003-11-01

    A kinetic model was developed to describe inorganic carbon utilization by microalgae biofilm in a flat plate photoreactor. The model incorporates the fundamental mechanisms of diffusive mass transport and biological reaction of inorganic carbon by microalgal biofilm. An advanced numerical technique, the orthogonal collocation method and Gear's method, was employed to solve this kinetic model. The model solutions included the concentration profiles of inorganic carbon in the microalgal biofilm, the growths of suspended microalgae and microalgal biofilm, the effluent concentrations of inorganic carbon, and the flux of inorganic carbon from bulk liquid into biofilm. The batch kinetic test was independently conducted to determine biokinetic parameters used in the microalgal biofilm model simulation while initial thickness of microalgal biofilm were assumed. A laboratory-scale flat plate photoreactor with a high recycle flow rate was set up and conducted to verify the model. The volume of photoreactor is 60 l which yields a hydraulic retention time of 1.67 days. The model-generated inorganic carbon and the suspended microalgae concentration curves agreed well with those obtained in the laboratory-scale test. The fixation efficiencies of HCO{sub 3}{sup -} and CO{sub 2} are 98.5% and 90% at a steady-state condition, respectively. The concentration of suspended microalgal cell reached up to 12 mg/l at a maximum growth rate while the thickness of microalgal biofilm was estimated to be 104 pm at a steady-state condition. The approaches of experiments and model simulation presented in this study could be employed for the design of a flat plate photoreactor to treat CO{sub 2} by microalgal biofilm in a fossil-fuel power plant.

  15. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  16. An optimization model for carbon capture & storage/utilization vs. carbon trading: A case study of fossil-fired power plants in Turkey.

    Science.gov (United States)

    Ağralı, Semra; Üçtuğ, Fehmi Görkem; Türkmen, Burçin Atılgan

    2018-06-01

    We consider fossil-fired power plants that operate in an environment where a cap and trade system is in operation. These plants need to choose between carbon capture and storage (CCS), carbon capture and utilization (CCU), or carbon trading in order to obey emissions limits enforced by the government. We develop a mixed-integer programming model that decides on the capacities of carbon capture units, if it is optimal to install them, the transportation network that needs to be built for transporting the carbon captured, and the locations of storage sites, if they are decided to be built. Main restrictions on the system are the minimum and maximum capacities of the different parts of the pipeline network, the amount of carbon that can be sold to companies for utilization, and the capacities on the storage sites. Under these restrictions, the model aims to minimize the net present value of the sum of the costs associated with installation and operation of the carbon capture unit and the transportation of carbon, the storage cost in case of CCS, the cost (or revenue) that results from the emissions trading system, and finally the negative revenue of selling the carbon to other entities for utilization. We implement the model on General Algebraic Modeling System (GAMS) by using data associated with two coal-fired power plants located in different regions of Turkey. We choose enhanced oil recovery (EOR) as the process in which carbon would be utilized. The results show that CCU is preferable to CCS as long as there is sufficient demand in the EOR market. The distance between the location of emission and location of utilization/storage, and the capacity limits on the pipes are an important factor in deciding between carbon capture and carbon trading. At carbon prices over $15/ton, carbon capture becomes preferable to carbon trading. These results show that as far as Turkey is concerned, CCU should be prioritized as a means of reducing nation-wide carbon emissions in an

  17. Microbial-induced remediation of Zn2+ pollution based on the capture and utilization of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Qiwei Zhan

    2016-01-01

    Conclusions: The TG-DSC results showed that weight loss of the precipitates occurred around 253°C. The FTIR and TG-DSC results were in accord with the XRD and EDS results and proved again that the precipitates were basic zinc carbonate. This work thus demonstrates a new method for processing Zn2+ pollution based on the utilization of carbon dioxide.

  18. Afforestation effects on soil carbon

    DEFF Research Database (Denmark)

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...... Protocol. Despite research efforts on the quantification of SOC stock change and soil C fluxes following this land-use change, knowledge is still scarce in regions where afforestation currently is and has been widespread, like Denmark and the rest of Northern Europe. This PhD thesis explored three main...

  19. Technology roadmap study on carbon capture, utilization and storage in China

    International Nuclear Information System (INIS)

    Zhang, Xian; Fan, Jing-Li; Wei, Yi-Ming

    2013-01-01

    Carbon capture, utilization and storage (CCUS) technology will likely become an important approach to reduce carbon dioxide (CO 2 ) emissions and optimize the structure of energy consumption in China in the future. In order to provide guidance and recommendations for CCUS Research, Development and Demonstration in China, a high level stakeholder workshop was held in Chongqing in June 2011 to develop a technology roadmap for the development of CCUS technology. This roadmap outlines the overall vision to provide technically viable and economically affordable technological options to combat climate change and facilitate socio-economic development in China. Based on this vision, milestone goals from 2010 to 2030 are set out in accordance with the technology development environment and current status in China. This study identifies the critical technologies in capture, transport, utilization and storage of CO 2 and proposes technical priorities in the different stages of each technical aspect by evaluating indices such as the objective contribution rate and technical maturity, and gives recommendations on deployment of full-chain CCUS demonstration projects. Policies which would support CCUS are also suggested in this study. - Highlights: • A technology roadmap for CCUS development in China from 2010 to 2030 is presented. • Sound data and analysis in combination with expert workshops are used. • Critical technologies in CCUS are identified. • Priority actions of all stages are identified and proposed. • Guidance and recommendations for CCUS RD and D are provided

  20. Pyrolysis of chromium rich tanning industrial wastes and utilization of carbonized wastes in metallurgical process.

    Science.gov (United States)

    Tôrres Filho, Artur; Lange, Liséte Celina; de Melo, Gilberto Caldeira Bandeira; Praes, Gustavo Eduardo

    2016-02-01

    Pyrolysis is the thermal degradation of organic material in oxygen-free or very lean oxygen atmosphere. This study evaluates the use of pyrolysis for conversion of leather wastes from chromium tanning processes into Carbonized Leather Residues (CLR), and the utilization of CLR in metallurgical processes through the production of iron ore pellets. CLR was used to replace mineral coal in proportions of 10% and 25% on fixed carbon basis content in the mixtures for pellets preparation. Experimental conversions were performed on a pilot scale pyrolysis plant and a pelletizing reactor of the "pot grate" type. The results demonstrated the technical feasibility of using the charcoal product from animal origin as an energy source, with recovery of up to 76.47% of chromium contained in CLR in the final produced of iron ore pellets. Pellets with 25% replacement of fixed carbon in the coal showed an enhanced compressive strength, with an average value of 344kgfpellet(-1), compared to 300kgfpellet(-1) for standard produced pellets. Copyright © 2015. Published by Elsevier Ltd.

  1. Toxicological Investigation of Acute Carbon Monoxide Poisoning in Four Occupants of a Fuming Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    Martin Nnoli

    2014-11-01

    Full Text Available Background: This toxicological investigation involves a report on the death of four occupants of a sport utility vehicle on one of the major busy Federal roads of Nigeria where they were held for up to three hours in a traffic jam while the car was steaming. Methods: Autopsy was executed using the standard procedure and toxicological analysis was done using simple spectrophotometric method to establish the level of carboxyhaemoglobin (HbCO in peripheral blood in the four occupants. Results: The autopsy report indicated generalized cyanosis, sub-conjuctival hemorrhages, marked laryngo-trachea edema with severe hyperemia with frothy fluid discharges characteristic of carbon monoxide poisoning. Toxicological report of the level of HbCO in part per million (ppm in the peripheral blood of the four occupants was A= 650 ppm; B= 500 ppm; C= 480 ppm, and D= 495 ppm against the maximum permissible level of 50 ppm. Conclusion: The sudden death of the four occupants was due to excessive inhalation of the carbon monoxide gas from the exhaust fumes leaking into the cabin of the car. The poor road network, numerous potholes, and traffic jam in most of roads in Nigeria could have exacerbated a leaky exhaust of the smoky second hand SUV car leading to the acute carbon monoxide poisoning.

  2. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes

    International Nuclear Information System (INIS)

    Karakaya, Ahmet; Ozilgen, Mustafa

    2011-01-01

    Energy utilization and carbon dioxide emission during the production of fresh, peeled, diced, and juiced tomatoes are calculated. The energy utilization for production of raw and packaging materials, transportation, and waste management are also considered. The energy utilization to produce one-ton retail packaged fresh tomatoes is calculated to be 2412.8 MJ, whereas when the tomatoes are converted into paste, the energy utilization increases almost twofold; processing the same amount into the peeled or diced-tomatoes increases the energy utilization seven times. In case of juice production, the increase is five times. The carbon dioxide emission is determined by the source of energy used and is 189.4 kg/t of fresh tomatoes in the case of retail packaging, and did not change considerably when made into paste. The carbon dioxide emission increased twofold with peeled or diced-tomatoes, and increased threefold when juiced. Chemical fertilizers and transportation made the highest contribution to energy utilization and CO 2 emission. The difference in energy utilization is determined mainly by water to dry solids ratio of the food and increases with the water content of the final product. Environmentally conscious consumers may prefer eating fresh tomatoes or alternatively tomato paste, to minimize carbon dioxide emission. -- Highlights: → Energy utilization for producing one-ton retail packaged fresh tomatoes was 2412.8 MJ → Energy utilization was 2 folds with paste, 7 times with peeled or diced-tomatoes, 5 times with juice. → Energy utilization increases with water content of the final product. → Transportation, packaging, evaporation and chemicals are the major energy consumers. → Carbon dioxide emission is determined by the source of energy.

  3. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology development

  4. Development of Portable Venturi Kiln for Agricultural Waste Utilization by Carbonization Process

    Science.gov (United States)

    Agustina, S. E.; Chasanah, N.; Eris, A. P.

    2018-05-01

    Many types of kiln or carbonization equipment have been developed, but most of them were designed for big capacity and some also having low performance. This research aims to develop kiln, especially portable metal kiln, which has higher performance, more environmental- friendly, and can be used for several kinds of biomass or agricultural waste (not exclusive for one kind of biomass) as feeding material. To improve the kiln performance, a venturi drum type of portable kiln has been designed with an optimum capacity of 12.45 kg coconut shells. Basic idea of those design is heat flow improvement causing by venturi effect. The performance test for coconut shell carbonization shows that the carbonization process takes about 60-90 minutes to produce average yields of 23.8%., and the highest temperature of the process was 441 °C. The optimum performance has been achieved in the 4th test, which was producing 24% yield of highest charcoal quality (represented by LHV) in 65 minutes process at average temperature level 485 °C. For pecan shell and palm shell, design modification has been done by adding 6 air inlet holes and 3 ignition column to get better performance. While operation procedure should be modified on loading and air supply, depending on each biomass characteristic. The result of performance test showed that carbonization process of pecan shell produce 17 % yield, and palm shell produce 15% yield. Based on Indonesian Standard (SNI), all charcoal produced in those carbonization has good quality level.

  5. Sustainable process design with process intensification - Development and implementation of a framework for sustainable carbon dioxide capture and utilization processes

    DEFF Research Database (Denmark)

    Frauzem, Rebecca

    . The developed framework adopts a 3-stage approach for sustainable design, which is comprised of: (1) synthesis, (2) design, and (3) innovation. In the first stage, the optimal processing route is obtained from a network via a superstructure-based approach. This stage incorporates a structured database...... and are designed and simulated in detail: 1. Dimethyl ether from methanol via combined reforming 2. Dimethyl ether from methanol via direct hydrogenation 3. Dimethyl carbonate via ethylene carbonate and methanol from combined reforming 4. Dimethyl carbonate via ethylene carbonate and methanol from direct...... hydrogenation. Through the analysis of the processes, it can be seen that the methanol distillation and the dimethyl carbonate downstream separation contribute to largeamounts of the utility consumption and therefore costs. Therefore, the reductionof the utility consumption of the methanol distillation...

  6. Predicting mercury retention in utility gas cleaning systems with SCR/ESP/FGD combinations or activated carbon injection

    Energy Technology Data Exchange (ETDEWEB)

    Krishnakumar, Balaji; Naik, Chitralkumar V.; Niksa, Stephen [Niksa Energy Associates LLC, Belmont, CA (United States); Fujiwara, Naoki [Idemitsu Kosan Co., Ltd, Chiba (Japan). Coal and Environment Research Lab.

    2013-07-01

    This paper presents validations of the Hg speciation predicted by NEA's MercuRator trademark package with an American field test database for 28 full-scale utility gas cleaning systems. It emphasizes SCR/ESP/FGD combinations and activated carbon injection because these two applications present the best long- term prospects for Hg control by coal-burning utilities. Validations of the extents of Hg{sup 0} oxidation across SCRs and of Hg retention in wet FGDs gave correlation coefficients greater than 0.9 for both units. A transport-based FGD analysis correctly assessed the potential for Hg{sup 0} re-emission in one limestone wet FGD. Among the ten stations in the SCR/ESP/FGD validations, the simulations correctly identified 3 of 4 of the relatively high Hg emissions rates; all four of the sites with moderate emissions rates; and both sites with the lowest emission rates. The validations for ACI applications demonstrated that Hg removals can be accurately estimated for the full domain of coal quality, LOI, and ACI rates for both untreated and brominated carbon sorbents. The predictions for ACI depict the test-to-test variations in most cases, and accurately describe the impact of ACI configuration and sorbent type. ACI into FFs is the most effective configuration, although ACI into ESPs often removes 90% or more Hg, provided that there is sufficient residence time and Cl in the flue gas. Brominated sorbents perform better than untreated carbons, unless SO{sub 3} condensation inhibits Hg adsorption.

  7. Effects of increasing dietary protein levels on growth, feed utilization ...

    African Journals Online (AJOL)

    Yomi

    2012-01-05

    Jan 5, 2012 ... The effect of different dietary protein levels on growth performance and on feed utilization of catfish. (Heterobranchus ... (Legendre, 1991) because of its taste, fast growth rate ..... diet containing 40% protein had high growth with low food intake and feed ... protein rate (45%) combined with a bad utilization of.

  8. Effect Of Enzyme Supplementation On The Utilization Of ...

    African Journals Online (AJOL)

    ... by the dietary treatments. It was concluded that SWM can be employed as an animal protein source in broiler diets. The exogenous enzyme (Roxazyme G) used did not effect any appreciable improvement on the utilization of SWM based diets. Keywords: Enzyme supplementation, utilization, shrimp waste, broiler chicken.

  9. Microbial utilization of low molecular weight organic substrates in soil depends on their carbon oxidation state

    Science.gov (United States)

    Gunina, Anna; Smith, Andrew; Jones, Davey; Kuzyakov, Yakov

    2017-04-01

    Removal of low molecular weight organic substances (LMWOS), originating from plants and microorganisms, from soil solution is regulated by microbial uptake. In addition to the concentration of LMWOS in soil solution, the chemical properties of each substance (e.g. C oxidation state, number of C atoms, number of -COOH groups) can affect their uptake and subsequent partitioning of C within the soil microbial community. The aim of this study was to trace the initial fate of three dominant classes of LMWOS in soil (sugars, carboxylic and amino acids), including their removal from solution and utilization by microorganisms, and to reveal the effect of substance chemical properties on these processes. Soil solution, spiked at natural abundance levels with 14C-labelled glucose, fructose, malate, succinate, formate, alanine or glycine, was added to the soil and 14C was traced in the dissolved organic carbon (DOC), CO2, cytosol and soil organic carbon (SOC) over 24 hours. The half-life time of all LMWOS in the DOC (T1 /2-solution) varied between 0.6-5.0 min showing extremely fast initial uptake of LMWOS. The T1 /2-solution of substances was dependent on C oxidation state, indicating that less oxidized organic substances (with C oxidation state "0") were retained longer in soil solution than oxidized substances. The LMWOS-C T1 /2-fast, characterizing the half-life time of 14C in the fast mineralization pool, ranged between 30 and 80 min, with the T1 /2-fast of carboxylic acids (malic acid) being the fastest and the T1 /2-fast of amino acids (glycine) being the slowest. An absence of correlation between T1 /2-fast and either C oxidation state, number of C atoms, or number of -COOH groups suggests that intercellular metabolic pathways are more important for LMWOS transformation in soil than their basic chemical properties. The CO2 release during LMWOS mineralization accounted for 20-90% of 14C applied. Mineralization of LMWOS was the least for sugars and the greatest for

  10. Evaluation of lead/carbon devices for utility applications : a study for the DOE Energy Storage Program.

    Energy Technology Data Exchange (ETDEWEB)

    Walmet, Paula S. (MeadWestvaco Corporation,North Charleston, SC)

    2009-06-01

    This report describes the results of a three-phase project that evaluated lead-based energy storage technologies for utility-scale applications and developed carbon materials to improve the performance of lead-based energy storage technologies. In Phase I, lead/carbon asymmetric capacitors were compared to other technologies that used the same or similar materials. At the end of Phase I (in 2005) it was found that lead/carbon asymmetric capacitors were not yet fully developed and optimized (cost/performance) to be a viable option for utility-scale applications. It was, however, determined that adding carbon to the negative electrode of a standard lead-acid battery showed promise for performance improvements that could be beneficial for use in utility-scale applications. In Phase II various carbon types were developed and evaluated in lead-acid batteries. Overall it was found that mesoporous activated carbon at low loadings and graphite at high loadings gave the best cycle performance in shallow PSoC cycling. Phase III studied cost/performance benefits for a specific utility application (frequency regulation) and the full details of this analysis are included as an appendix to this report.

  11. Inorganic Carbon Utilization of the Freshwater Red Alga Compsopogon coeruleus (Balbis Montagne (Compsopogonaceae, Rhodophyta Evaluated by in situ Measurement of Chlorophyll Fluorescence

    Directory of Open Access Journals (Sweden)

    Shao-Lun Liu

    2004-09-01

    Full Text Available To explore the inorganic carbon utilization of the freshwater red alga Compsopogon coeruleus, photosynthetic rates in response to increasing of bicarbonate concentration, the addition of alkaline HEPES buffer (pH 8.8, acid HEPES buffer (pH 4.0 and the extracellular carbonic anhydrase inhibitor (acetazolamide, AZ, respectively, were examined in situ by using a submersible pulse amplitude modulated (PAM fluorometer. Among the treatments, adding acid HEPES buffer significantly reduced photosynthetic rates of the alga, while others showed no effect. Accordingly, we concluded that C. coeruleus had less or no inorganic carbon (Ci limitation in its natural habitat. The alga might have higher affinity for bicarbonate and directly uptake bicarbonate as main Ci source without the aid of extracellular carbonic anhydrase.

  12. Promoting effect of active carbons on methanol dehydrogenation on sodium carbonate - hydrogen spillover

    OpenAIRE

    Su, S.; Prairie, M.; Renken, A.

    1993-01-01

    Methanol dehydrogenation to formaldehyde was conducted in a fixed-bed flow reactor with sodium carbonate catalyst mixed with active carbons or transition metals. The additives promoted the reaction rate at 880-970 K without modifying formaldehyde selectivity. This effect increases with increasing carbon content in the carbon-carbonate mixture. Activation energy of methanol conversion is the same for the mixture and the carbonate alone. Temperature-programmed desorption experiments showed that...

  13. The effect of Employee Assistance Programs use on healthcare utilization.

    OpenAIRE

    Zarkin, G A; Bray, J W; Qi, J

    2000-01-01

    OBJECTIVE: To estimate the effect of Employee Assistance Program (EAP) use on healthcare utilization as measured by health claims. DATA SOURCES: A unique data set that combines individual-level information on EAP utilization, demographic information, and health insurance claims from 1991 to 1995 for all employees of a large midwestern employer. STUDY DESIGN: Using "fixed-effect" econometric models that control for unobserved differences between individuals' propensities to use healthcare reso...

  14. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  15. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil.

    Science.gov (United States)

    Žifčáková, Lucia; Větrovský, Tomáš; Lombard, Vincent; Henrissat, Bernard; Howe, Adina; Baldrian, Petr

    2017-09-18

    Evergreen coniferous forests contain high stocks of organic matter. Significant carbon transformations occur in litter and soil of these ecosystems, making them important for the global carbon cycle. Due to seasonal allocation of photosynthates to roots, carbon availability changes seasonally in the topsoil. The aim of this paper was to describe the seasonal differences in C source utilization and the involvement of various members of soil microbiome in this process. Here, we show that microorganisms in topsoil encode a diverse set of carbohydrate-active enzymes, including glycoside hydrolases and auxiliary enzymes. While the transcription of genes encoding enzymes degrading reserve compounds, such as starch or trehalose, was high in soil in winter, summer was characterized by high transcription of ligninolytic and cellulolytic enzymes produced mainly by fungi. Fungi strongly dominated the transcription in litter and an equal contribution of bacteria and fungi was found in soil. The turnover of fungal biomass appeared to be faster in summer than in winter, due to high activity of enzymes targeting its degradation, indicating fast growth in both litter and soil. In each enzyme family, hundreds to thousands of genes were typically transcribed simultaneously. Seasonal differences in the transcription of glycoside hydrolases and auxiliary enzyme genes are more pronounced in soil than in litter. Our results suggest that mainly fungi are involved in decomposition of recalcitrant biopolymers in summer, while bacteria replace them in this role in winter. Transcripts of genes encoding enzymes targeting plant biomass biopolymers, reserve compounds and fungal cell walls were especially abundant in the coniferous forest topsoil.

  16. Occupational medicine effects of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, W.M. [South African Society of Occupational Medicine (South Africa)

    1998-10-01

    Carbon monoxide can affect the body if it is inhaled or if liquid carbon monoxide comes in contact with the eyes or skin. The effects of overexposure are discussed and a brief explanation of the toxicological effects of CO given. Methods of control of CO from common operations (exhaust fumes of internal combustion engines, the chemical industry and foundries, welding, mines or tunnels, fire damp explosions, industrial heating) are by local exhaust ventilation or use of a respiratory protective device. The South African hazardous chemical substance regulation NO. R. 1179 of 25 August 1995 stipulates maximum safe levels of CO concentration. 4 refs., 1 photo.

  17. Environmental effects of increased atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    Soon, W.; Baliunas, S.L.; Robinson, A.B.; Robinson, Z.W.

    1999-01-01

    A review of the literature concerning the environmental consequences of increased levels of atmospheric carbon dioxide leads to the conclusion that increases during the 20th century have produced no deleterious effects upon global climate or temperature. Increased carbon dioxide has, however, markedly increased plant growth rates as inferred from numerous laboratory and field experiments. There is no clear evidence, nor unique attribution, of the global effects of anthropogenic CO 2 on climate. Meaningful integrated assessments of the environmental impacts of anthropogenic CO 2 are not yet possible because model estimates of global and regional climate changes on interannual, decadal and centennial timescales remain highly uncertain.(author)

  18. Utilization of the cyanobacteria Anabaena sp CH1 in biological carbon dioxide mitigation processes

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M.; Chen, P.C. [Hungkuang University, Taichung (Taiwan)

    2011-05-15

    Before switching totally to alternative fuel stage, CO{sub 2} mitigation process has considered a transitional strategy for combustion of fossil fuels inevitably. In comparison to other CO{sub 2} mitigation options, such as oceanic or geologic injection, the biological photosynthetic process would present a far superior and sustainable solution under both environmental and social considerations. The utilization of the cyanobacteria Anabaena sp. CH1 in carbon dioxide mitigation processes is analyzed in our research. It was found that an original developed photobioreactor with internal light source exhibits high light utilization. Anabaena sp. CH1 demonstrates excellent CO{sub 2} tolerance even at 15% CO{sub 2} level. This enables flue gas from power plant to be directly introduced to Anabaena sp. CH1 culture. Double light intensity and increased 47% CO{sub 2} bubble retention time could enhance CO{sub 2} removal efficiencies by 79% and 67%, respectively. A maximum CO{sub 2} fixation rate of 1.01 g CO{sub 2} L{sup -1} day{sup -1} was measured experimentally.

  19. Selection criteria utilized for hyperbaric oxygen treatment of carbon monoxide poisoning.

    Science.gov (United States)

    Hampson, N B; Dunford, R G; Kramer, C C; Norkool, D M

    1995-01-01

    Medical directors of North American hyperbaric oxygen (HBO) facilities were surveyed to assess selection criteria applied for treatment of acute carbon monoxide (CO) poisoning within the hyperbaric medicine community. Responses were received from 85% of the 208 facilities in the United States and Canada. Among responders, 89 monoplace and 58 multiplace chamber facilities treat acute CO poisoning, managing a total of 2,636 patients in 1992. A significant majority of facilities treat CO-exposed patients with coma (98%), transient loss of consciousness (LOC) (77%), ischemic changes on electrocardiogram (91%), focal neurologic deficits (94%), or abnormal psychometric testing (91%), regardless of carboxyhemoglobin (COHb) level. Although 92% would use HBO for a patient presenting with headache, nausea, and COHb 40%, only 62% of facilities utilize a specified minimum COHb level as the sole criterion for HBO therapy of an asymptomatic patient. When COHb is used as an independent criterion to determine HBO treatment, the level utilized varies widely between institutions. Half of responding facilities place limits on the delay to treatment for patients with only transient LOC. Time limits are applied less often in cases with persistent neurologic deficits. While variability exists, majority opinions can be derived for many patient selection criteria regarding the use of HBO in acute CO poisoning.

  20. Molecular mechanisms behind the adjustment of phototrophic light-harvesting and mixotrophic utilization of cellulosic carbon sources in Chlamydomonas reinhardtii

    OpenAIRE

    Blifernez-Klassen, Olga

    2012-01-01

    Plants, green algae and cyanobacteria perform photosynthetic conversion of sunlight into chemical energy in a permanently changing natural environment, where the efficient utilization of light and inorganic carbon represent the most critical factors. Photosynthetic organisms have developed different acclimation strategies to adapt changing light conditions and insufficient carbon source supply in order to survive and to assure optimal growth and protection. This thesis provides further insigh...

  1. Controlled deposition and utilization of carbon on Ni-YSZ anodes of SOFCs operating on dry methane

    International Nuclear Information System (INIS)

    Jiao, Yong; Zhang, Liqin; An, Wenting; Zhou, Wei; Sha, Yujing; Shao, Zongping; Bai, Jianping; Li, Si-Dian

    2016-01-01

    Solid oxide fuel cells (SOFCs) are promising power-generation systems to utilize methane or methane-based fuels with a high energy efficiency and low environmental impact. A successive multi-stage process is performed to explore the operation of cells using dry methane or the deposited carbon from methane decomposition as fuel. Stable operation can be maintained by optimizing the fuel supply and current density parameters. An electrochemical impedance analysis suggests that the partial oxidization of Ni can occur at anodes when the carbon fuel is consumed. The stability of cells operated on pure methane is investigated in three operating modes. The cell can run in a comparatively stable state with continuous power output in an intermittent methane supply mode, where the deposition and utilization of carbon is controlled by balancing the fuel supply and consumption. The increase in the polarization resistance of the cell might originate from the small amount of NiO and residual carbon at the anode, which can be removed via an oxidation-and-reduction maintenance process. Based on the above strategy, this work provides an alternative operating mode to improve the stability of direct methane SOFCs and demonstrates the feasibility of its application. - Highlights: • A new strategy to control the deposition and utilization of carbon was developed. • A stable fuel cell operation was obtained with an intermittent fuel supply mode. • Polarization resistance increased due to small amount of NiO and residual carbon.

  2. Prediction method of unburnt carbon for coal fired utility boiler using image processing technique of combustion flame

    International Nuclear Information System (INIS)

    Shimoda, M.; Sugano, A.; Kimura, T.; Watanabe, Y.; Ishiyama, K.

    1990-01-01

    This paper reports on a method predicting unburnt carbon in a coal fired utility boiler developed using an image processing technique. The method consists of an image processing unit and a furnace model unit. temperature distribution of combustion flames can be obtained through the former unit. The later calculates dynamics of the carbon reduction from the burner stages to the furnace outlet using coal feed rate, air flow rate, chemical and ash content of coal. An experimental study shows that the prediction error of the unburnt carbon can be reduced to 10%

  3. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  4. Improved tensile and buckling behavior of defected carbon nanotubes utilizing boron nitride coating – A molecular dynamic study

    Energy Technology Data Exchange (ETDEWEB)

    Badjian, H.; Setoodeh, A.R., E-mail: setoodeh@sutech.ac.ir

    2017-02-15

    Synthesizing inorganic nanostructures such as boron nitride nanotubes (BNNTs) have led to immense studies due to their many interesting functional features such as piezoelectricity, high temperature resistance to oxygen, electrical insulation, high thermal conductivity and very long lengths as physical features. In order to utilize the superior properties of pristine and defected carbon nanotubes (CNTs), a hybrid nanotube is proposed in this study by forming BNNTs surface coating on the CNTs. The benefits of such coating on the tensile and buckling behavior of single-walled CNTs (SWCNTs) are illustrated through molecular dynamics (MD) simulations of the resulted nanostructures during the deformation. The AIREBO and Tersoff-Brenner potentials are employed to model the interatomic forces between the carbon and boron nitride atoms, respectively. The effects of chiral indices, aspect ratio, presence of mono-vacancy defects and coating dimension on coated/non-coated CNTs are examined. It is demonstrated that the coated defective CNTs exhibit remarkably enhanced ultimate strength, buckling load capacity and Young's modulus. The proposed coating not only enhances the mechanical properties of the resulted nanostructure, but also conceals it from few external factors impacting the behavior of the CNT such as humidity and high temperature.

  5. Networking Micro-Processors for Effective Computer Utilization in Nursing

    OpenAIRE

    Mangaroo, Jewellean; Smith, Bob; Glasser, Jay; Littell, Arthur; Saba, Virginia

    1982-01-01

    Networking as a social entity has important implications for maximizing computer resources for improved utilization in nursing. This paper describes the one process of networking of complementary resources at three institutions. Prairie View A&M University, Texas A&M University and the University of Texas School of Public Health, which has effected greater utilization of computers at the college. The results achieved in this project should have implications for nurses, users, and consumers in...

  6. The effect of distal utility value intervention for students’ learning

    OpenAIRE

    KERA, Masaki; NAKAYA, Motoyuki

    2017-01-01

    The purpose of this study was to determine whether a utility value intervention influenced students’motivation and performance. Specifically, we examined the effect of distal utility value (i.e., the recognition of content usefulness for skill development that can improve daily and future endeavors) instruction in this study.Fifty-one Japanese undergraduate students completed an experimental session in the laboratory, in which they performed a series of logical reasoning problem-solving tasks...

  7. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum is well described by a one-dimensional effective Hamiltonian...

  8. [Impact of Land Utilization Pattern on Distributing Characters of Labile Organic Carbon in Soil Aggregates in Jinyun Mountain].

    Science.gov (United States)

    Li, Rui; Jiang, Chang-sheng; Hao, Qing-ju

    2015-09-01

    Four land utilization patterns were selected for this study in Jinyun mountain, including subtropical evergreen broad-leaved forest (abbreviation: forest), sloping farmland, orchard and abandoned land. Soil samples were taken every 10 cm in the depth of 60 cm soil and proportions of large macroaggregates (> 2 mm), small macroaggregates (0. 25-2 mm), microaggregates (0. 053 - 0. 25 mm) and silt + clay (organic carbon and labile organic carbon in each aggregate fraction and analyze impacts of land uses on organic carbon and labile organic carbon of soil aggregates. LOC content of four soil aggregates were significantly reduced with the increase of soil depth; in layers of 0-60 cm soil depth, our results showed that LOC contents of forest and abandoned land were higher than orchard and sloping farmland. Reserves of labile organic carbon were estimated by the same soil quality, it revealed that forest (3. 68 Mg.hm-2) > abandoned land (1. 73 Mg.hm-2) > orchard (1. 43 Mg.hm-2) >sloping farmland (0.54 Mg.hm-2) in large macroaggregates, abandoned land (7.77, 5. 01 Mg.hm-2) > forest (4. 96, 2.71 Mg.hm-2) > orchard (3. 33, 21. 10 Mg.hm-2) > sloping farmland (1. 68, 1. 35 Mg.hm-2) in small macroaggregates and microaggregates, and abandoned land(4. 32 Mg.hm-2) > orchard(4. 00 Mg.hm-2) > forest(3. 22 Mg.hm-2) > sloping farmland (2.37 Mg.hm-2) in silt + clay, forest and abandoned land were higher than orchard and sloping farmland in other three soil aggregates except silt + clay. It was observed that the level of organic carbon and labile organic carbon were decreased when bringing forest under cultivation to orchard or farmland, and augments on organic carbon and labile organic carbon were found after exchanging farmland to abandoned land. The most reverses of forest and abandoned land emerged in small macroaggregates, orchard and sloping farmland were in microaggregates. That was, during the transformations of land utilization pattern, soil aggregates with bigger size were

  9. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    The degradation of bitumen was found to be associated with the production of carbon (IV) oxide, natural gas and oil. As a result of using nitrogen limited and phosphate limited media, 1750 and 1250 cm3 of gas and 0.95 and 0.85 g/l of oil were obtained respectively. Nitrogen and phosphate limitation have profound effect on ...

  10. Analysis of preference for carbon source utilization among three strains of aromatic compounds degrading Pseudomonas.

    Science.gov (United States)

    Karishma, M; Trivedi, Vikas D; Choudhary, Alpa; Mhatre, Akanksha; Kambli, Pranita; Desai, Jinal; Phale, Prashant S

    2015-10-01

    Soil isolates Pseudomonas putida CSV86, Pseudomonas aeruginosa PP4 and Pseudomonas sp. C5pp degrade naphthalene, phthalate isomers and carbaryl, respectively. Strain CSV86 displayed a diauxic growth pattern on phenylpropanoid compounds (veratraldehyde, ferulic acid, vanillin or vanillic acid) plus glucose with a distinct second lag-phase. The glucose concentration in the medium remained constant with higher cell respiration rates on aromatics and maximum protocatechuate 3,4-dioxygenase activity in the first log-phase, which gradually decreased in the second log-phase with concomitant depletion of the glucose. In strains PP4 and C5pp, growth profile and metabolic studies suggest that glucose is utilized in the first log-phase with the repression of utilization of aromatics (phthalate or carbaryl). All three strains utilize benzoate via the catechol 'ortho' ring-cleavage pathway. On benzoate plus glucose, strain CSV86 showed preference for benzoate over glucose in contrast to strains PP4 and C5pp. Additionally, organic acids like succinate were preferred over aromatics in strains PP4 and C5pp, whereas strain CSV86 co-metabolizes them. Preferential utilization of aromatics over glucose and co-metabolism of organic acids and aromatics are found to be unique properties of P. putida CSV86 as compared with strains PP4 and C5pp and this property of strain CSV86 can be exploited for effective bioremediation. © FEMS 2015. All rights reserved.

  11. Utilization of Activated Carbon Prepared from Aceh Coffee Grounds as Bio-sorbent for Treatment of Fertilizer Industrial Waste Water

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Aman, F.

    2018-05-01

    The people of Aceh are well known as coffee drinkers. Therefore, a lot of coffee shops have been established in Aceh in the past decade. The growing of coffee shops resulting to large amounts of coffee waste produced in Aceh Province that will become solid waste if not wisely utilized. The high carbon content in coffee underlined as background of this research to be utilized those used coffee grounds as bio-sorbent. The preparation of activated carbon from coffee grounds by using carbonization method that was initially activated with HCl was expected to increase the absorption capacity. The prepared activated carbon with high reactivity was applied to adsorb nitrite, nitrate and ammonia in wastewater outlet of PT. PIM wastewater pond. Morphological structure of coffee waste was analyzed by using Scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The result showed that the adsorption capacity of iodine was equal to 856.578 mg/g. From the characterization results, it was concluded that the activated carbon from coffee waste complied to the permitted quality standards in accordance with the quality requirements of activated carbon SNI No. 06-3730-1995. Observed from the adsorption efficiency, the bio-sorbent showed a tendency of adsorbing more ammonia than nitrite and nitrate of PT. PIM wastewater with ammonia absorption efficiency of 56%.

  12. Industrial technology research and development project for global environment in fiscal 1998. Report on achievements in research and development of technologies for fixation and effective utilization of carbon dioxide by utilizing bacteria and algae; 1998 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Microorganisms are cultivated industrially in a great quantity to fix CO2 at efficiency higher than that of photosynthesis in natural world to develop technologies to re-utilize them as resources. This paper describes achievements in fiscal 1998. Existing strain samples of photosynthesized bacteria and micro-algae were screened to continue discussions on optimal culture conditions, and evaluation on properties. Genes that provide Chlorella with antibiotic resistance were introduced to have performed evaluation on function manifestation, and acquired enzymatic genes of unsaturated {omega} 3. Using green algae as the object, reduction in the processing time has resulted in acquiring a large number of fused cell colonies. Discussions were given on conditions to breed photosynthesized bacteria and fix CO2. Structural analyses were performed on CA protein as an enzyme related to take CO2 into living organisms, and on genes. Developments were carried out on a photosynthesizing bio-reactor and useful substance producing technologies on a continual basis. A 200-liter scale light collection type bio-reactor improved the fixing capacity by 30% in Chlorellas by changing the culture medium. The direct light receiving panel type bio-reactor can utilize even scattered light, with its fixing capacity per installation area exceeding the target. Fundamental data were acquired with Chlorellas on utilizing feeds, fertilizers and building materials. (NEDO)

  13. Assessment of self-organizing maps to analyze sole-carbon source utilization profiles.

    Science.gov (United States)

    Leflaive, Joséphine; Céréghino, Régis; Danger, Michaël; Lacroix, Gérard; Ten-Hage, Loïc

    2005-07-01

    The use of community-level physiological profiles obtained with Biolog microplates is widely employed to consider the functional diversity of bacterial communities. Biolog produces a great amount of data which analysis has been the subject of many studies. In most cases, after some transformations, these data were investigated with classical multivariate analyses. Here we provided an alternative to this method, that is the use of an artificial intelligence technique, the Self-Organizing Maps (SOM, unsupervised neural network). We used data from a microcosm study of algae-associated bacterial communities placed in various nutritive conditions. Analyses were carried out on the net absorbances at two incubation times for each substrates and on the chemical guild categorization of the total bacterial activity. Compared to Principal Components Analysis and cluster analysis, SOM appeared as a valuable tool for community classification, and to establish clear relationships between clusters of bacterial communities and sole-carbon sources utilization. Specifically, SOM offered a clear bidimensional projection of a relatively large volume of data and were easier to interpret than plots commonly obtained with multivariate analyses. They would be recommended to pattern the temporal evolution of communities' functional diversity.

  14. Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus.

    Science.gov (United States)

    Yang, Suling; Liu, Guijun; Meng, Youting; Wang, Ping; Zhou, Sijing; Shang, Hongzhong

    2014-11-01

    Mixotrophic cultivation is one potential mode for microalgae production, and an economically acceptable and environmentally sustainable organic carbon source is essential. The potential use of xylose for culturing Scenedesmus obliquus in a mixotrophic mode and physiological features of xylose-grown S. obliquus were studied. S. obliquus had a certain xylose tolerance, and was capable of utilizing xylose for growth. At a xylose concentration of 4gL(-1), the maximal cell density was 2.2gL(-1), being 2.9-fold of that under photoautotrophic condition and arriving to the level of mixotrophic growth using 4gL(-1) glucose. No changes in cellular morphology of the cells grown with or without xylose were detected. Fluorescence emission from photosystem II (PS II) relative to photosystem I (PS I) was decreased in mixotrophic cells, implying that the PSII activity was decreased. The biomass lipid content was enhanced and carbohydrate concentration was decreased, in relation to photoautotrophic controls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Carbon Dioxide Utilization (CO2U) ICEF Roadmap 2.0. Draft October 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sandalow, D; Aines, R; Friedmann, J; McCormick, C; McCoy, S

    2017-10-02

    Last year, experts from CO2 Sciences, Columbia University and Valence Strategic came together to develop a roadmap. That document, Carbon Dioxide Utilization ICEF Roadmap 1.0, released at the UNFCCC Marrakesh Climate Change Conference in 2016, surveyed the commercial and technical landscape of CO2 conversion and use. The document provided extensive background and analysis and has helped to provide a foundation for additional studies, including this one.This roadmap is meant to complement and expand upon the work of its predecessor. Based in part on a workshop at Columbia University’s Center on Global Energy Policy in July 2017, it explores three distinct categories of CO2-based products, the technologies that can be harnessed to convert CO2 to these products, and the associated research and development needs. It also explores the complicated topic of life cycle analysis—critically important when considering the climate impacts of CO2 conversion and use—as well as policy tools that could be used to promote CO2-based products.

  16. Sequestration and utilization of carbon dioxide by chemical and biological methods for biofuels and biomaterials by chemoautotrophs: Opportunities and challenges.

    Science.gov (United States)

    Thakur, Indu Shekhar; Kumar, Manish; Varjani, Sunita J; Wu, Yonghong; Gnansounou, Edgard; Ravindran, Sindhu

    2018-05-01

    To meet the CO 2 emission reduction targets, carbon dioxide capture and utilization (CCU) comes as an evolve technology. CCU concept is turning into a feedstock and technologies have been developed for transformation of CO 2 into useful organic products. At industrial scale, utilization of CO 2 as raw material is not much significant as compare to its abundance. Mechanisms in nature have evolved for carbon concentration, fixation and utilization. Assimilation and subsequent conversion of CO 2 into complex molecules are performed by the photosynthetic and chemolithotrophic organisms. In the last three decades, substantial research is carry out to discover chemical and biological conversion of CO 2 in various synthetic and biological materials, such as carboxylic acids, esters, lactones, polymer biodiesel, bio-plastics, bio-alcohols, exopolysaccharides. This review presents an over view of catalytic transformation of CO 2 into biofuels and biomaterials by chemical and biological methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Utility green pricing programs: a statistical analysis of program effectiveness

    International Nuclear Information System (INIS)

    Ryan, W.; Scott, O.; Lori, B.; Blair, S.

    2005-01-01

    Utility green pricing programs represent one way in which consumers can voluntarily support the development of renewable energy. The design features and effectiveness of these programs varies considerably. Based on a survey of utility program managers in the United States, this article provides insight into which program features might help maximize both customer participation in green pricing programs and the amount of renewable energy purchased by customers in those programs. We find that program length has a substantial impact on customer participation and purchases; to achieve higher levels of success, utilities will need to remain committed to their product offering for some time. Our findings also suggest that utilities should consider higher renewable energy purchase thresholds for residential customers in order to maximize renewable energy sales. Smaller utilities are found to be more successful than larger utilities, and we find some evidence that providing private benefits to nonresidential participants can enhance success. Interestingly, we find little evidence that the cost of the green pricing product greatly impacts customer participation and renewable energy sales, at least over the narrow range of premiums embedded in our data set, and for the initial set of green power purchasers. (author)

  18. Effect of different carbon fillers and dopant acids on electrical ...

    Indian Academy of Sciences (India)

    The nature of both the carbon filler and the dopant acid can significantly influence the conductivity of these nanocomposites. This paper describes the effects of carbon fillers like carbon black (CB), graphite (GR) and muti-walled carbon nanotubes (MWCNT) and of dopant acids like methane sulfonic acid (MSA), camphor ...

  19. Variable Responses to Carbon Utilization between Planktonic and Biofilm Cells of a Human Carrier Strain of Salmonella enterica Serovar Typhi.

    Directory of Open Access Journals (Sweden)

    Kalaivani Kalai Chelvam

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi is a foodborne pathogen that causes typhoid fever and infects only humans. The ability of S. Typhi to survive outside the human host remains unclear, particularly in human carrier strains. In this study, we have investigated the catabolic activity of a human carrier S. Typhi strain in both planktonic and biofilm cells using the high-throughput Biolog Phenotype MicroArray, Minimum Biofilm Eradication Concentration (MBEC biofilm inoculator (96-well peg lid and whole genome sequence data. Additional strains of S. Typhi were tested to further validate the variation of catabolism in selected carbon substrates in the different bacterial growth phases. The analyzes of the carbon utilization data indicated that planktonic cells of the carrier strain, S. Typhi CR0044 could utilize a broader range of carbon substrates compared to biofilm cells. Pyruvic acid and succinic acid which are related to energy metabolism were actively catabolised in the planktonic stage compared to biofilm stage. On the other hand, glycerol, L-fucose, L-rhamnose (carbohydrates and D-threonine (amino acid were more actively catabolised by biofilm cells compared to planktonic cells. Notably, dextrin and pectin could induce strong biofilm formation in the human carrier strain of S. Typhi. However, pectin could not induce formation of biofilm in the other S. Typhi strains. Phenome data showed the utilization of certain carbon substrates which was supported by the presence of the catabolism-associated genes in S. Typhi CR0044. In conclusion, the findings showed the differential carbon utilization between planktonic and biofilm cells of a S. Typhi human carrier strain. The differences found in the carbon utilization profiles suggested that S. Typhi uses substrates mainly found in the human biliary mucus glycoprotein, gallbladder, liver and cortex of the kidney of the human host. The observed diversity in the carbon catabolism profiles among

  20. [Study on influence between activated carbon property and immobilized biological activated carbon purification effect].

    Science.gov (United States)

    Wang, Guang-zhi; Li, Wei-guang; He, Wen-jie; Han, Hong-da; Ding, Chi; Ma, Xiao-na; Qu, Yan-ming

    2006-10-01

    By means of immobilizing five kinds of activated carbon, we studied the influence between the chief activated carbon property items and immobilized bioactivated carbon (IBAC) purification effect with the correlation analysis. The result shows that the activated carbon property items which the correlation coefficient is up 0.7 include molasses, abrasion number, hardness, tannin, uniform coefficient, mean particle diameter and effective particle diameter; the activated carbon property items which the correlation coefficient is up 0.5 include pH, iodine, butane and tetrachloride. In succession, the partial correlation analysis shows that activated carbon property items mostly influencing on IBAC purification effect include molasses, hardness, abrasion number, uniform coefficient, mean particle diameter and effective particle diameter. The causation of these property items bringing influence on IBAC purification is that the activated carbon holes distribution (representative activated carbon property item is molasses) provides inhabitable location and adjust food for the dominance bacteria; the mechanical resist-crash property of activated carbon (representative activated carbon property items: abrasion number and hardness) have influence on the stability of biofilm; and the particle diameter size and distribution of activated carbon (representative activated carbon property items: uniform coefficient, mean particle diameter and effective particle diameter) can directly affect the force of water in IBAC filter bed, which brings influence on the dominance bacteria immobilizing on activated carbon.

  1. The effect of carbon-chain oxygenation in the carbon-carbon dissociation.

    Science.gov (United States)

    Dos Santos, Lisandra Paulino; Baptista, Leonardo

    2018-06-01

    Currently, there is a trend of moving away from the use of fossil fuels to the use of biofuels. This modification changes the molecular structure of gasoline and diesel constituents, which should impact pollutant emissions and engine efficiency. An important property of automotive fuels is the resistance to autoignition. The goal of the present work is to evaluate thermochemical and kinetic parameters that govern the carbon-carbon bond dissociation and relate these parameters, in conjunction with molecular properties, to autoignition resistance. Three model reactions were investigated in the present work: dissociation of ethane, ethanol, and ethanal. All studies were conducted at the multiconfigurational level of theory, and the rate coefficients were evaluated from 300 to 2000 K. The comparison of dissociation energies and Arrhenius expressions indicates that autoignition resistance is related to the kinetic control of dissociation reactions and it is possible to relate the higher octane number of ethanol based fuels to the kinetics parameters of carbon-carbon bond fission. Graphical abstract Effect of the functional group in the Arrhenius parameters of the C-C dissociation. Arrhenius curves calculated at NEVPT2(6,6)/6-311G(2df,2pd).

  2. Synergistic Effect of Co-utilization of Coal and Biomass Char: An Overview

    Science.gov (United States)

    Paiman, M. E. S.; Hamzah, N. S.; Idris, S. S.; Rahman, N. A.; Ismail, K.

    2018-05-01

    Global concerns on impact of greenhouse gases emission, mostly released from coal-fired power plant, and the depletion of fossil fuel particularly coal, has led the production of electricity from alternatives resources such as co-utilization technologies. Previous studies proved that the co-utilization of coal and biomass/biomass chars has significantly reduced the emission of greenhouse gases either during the pyrolysis, combustion or gasification process in laboratories, pilots as well as in the industrial scales. Interestingly, most of the studies reported the presence of synergistic effect during the co-utilization processes particularly between coal and biomass char while some are not. Biomass chars were found to have porous and highly disorder carbon structure and belong to the class of most reactive carbon material, resulting to be more reactive than those hard coal and lignite. Up to date, microwave assisted pyrolysis is one of the best and latest techniques employed to produce better quality of biomass chars and it is also reduce the processing cost. Lot of works has been done regarding on the existence of synergistic effects during its co-utilization. However, the knowledge is limited to thermal and product characteristics so far. Even so, the specific reasons behind its existence are yet to understand well. Therefore, in this paper, the emphasis will be given on the synergistic effects on emission characteristics of co-utilization of coal and biomass chars so that it can be apply in energy-based industries to help in reduction of the greenhouse gases emission.

  3. Effect of vertical integration on the utilization of hardwood resources

    Science.gov (United States)

    Jan Wiedenbeck

    2002-01-01

    The effectiveness of vertical integration in promoting the efficient utilization of the hardwood resource in the eastern United States was assessed during a series of interviews with vertically integrated hardwood manufacturers in the Appalachian region. Data from 19 companies that responded to the 1996 phone survey indicate that: 1) vertically integrated hardwood...

  4. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    International Nuclear Information System (INIS)

    Lawal, Abdulazeez T.

    2016-01-01

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  5. Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Lawal, Abdulazeez T., E-mail: abdul.lawal@yahoo.com

    2016-01-15

    Graphical abstract: Carbon nanotubes. - Highlights: • This review discusses synthesis and applications of carbon nanotubes sensors. • The review summarizes contributions of carbon nanotube to electrochemical biosensor. • Good electrical conductivity makes carbon nanotubes a good material for biosensors. • Carbon nanotubes promotes electron transfer that aids biosensing of biomolecules. - Abstract: This review summarizes the most recent contributions in the fabrication of carbon nanotubes-based electrochemical biosensors in recent years. It discusses the synthesis and application of carbon nanotubes to the assembly of carbon nanotube-based electrochemical sensors, its analytical performance and future expectations. An increasing number of reviews and publications involving carbon nanotubes sensors have been reported ever since the first design of carbon nanotube electrochemical biosensors. The large surface area and good electrical conductivity of carbon nanotubes allow them to act as “electron wire” between the redox center of an enzyme or protein and an electrode's surface, which make them very excellent material for the design of electrochemical biosensors. Carbon nanotubes promote the different rapid electron transfers that facilitate accurate and selective detection of cytochrome-c, β-nicotinamide adenine dinucleotide, hemoglobin and biomolecules, such as glucose, cholesterol, ascorbic acid, uric acid, dopamine pesticides, metals ions and hydrogen peroxide.

  6. Calcium Carbonate Precipitation for CO{sub 2} Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Ribooga; Kim, Semin; Lee, Seungin; Choi, Soyoung; Kim, Minhee; Park, Youngjune, E-mail: young@gist.ac.kr [Carbon and Energy Systems, School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2017-07-10

    The transformation of CO{sub 2} into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS) since (i) the captured CO{sub 2} can be stored permanently and (ii) industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts) can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity). Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO{sub 3} strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO{sub 3} have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO{sub 3} and the influences of the synthesis factors on the polymorphs.

  7. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism

    Directory of Open Access Journals (Sweden)

    Ribooga Chang

    2017-07-01

    Full Text Available The transformation of CO2 into a precipitated mineral carbonate through an ex situ mineral carbonation route is considered a promising option for carbon capture and storage (CCS since (i the captured CO2 can be stored permanently and (ii industrial wastes (i.e., coal fly ash, steel and stainless-steel slags, and cement and lime kiln dusts can be recycled and converted into value-added carbonate materials by controlling polymorphs and properties of the mineral carbonates. The final products produced by the ex situ mineral carbonation route can be divided into two categories—low-end high-volume and high-end low-volume mineral carbonates—in terms of their market needs as well as their properties (i.e., purity. Therefore, it is expected that this can partially offset the total cost of the CCS processes. Polymorphs and physicochemical properties of CaCO3 strongly rely on the synthesis variables such as temperature, pH of the solution, reaction time, ion concentration and ratio, stirring, and the concentration of additives. Various efforts to control and fabricate polymorphs of CaCO3 have been made to date. In this review, we present a summary of current knowledge and recent investigations entailing mechanistic studies on the formation of the precipitated CaCO3 and the influences of the synthesis factors on the polymorphs.

  8. Effect of anesthesia on glucose production and utilization in rats

    International Nuclear Information System (INIS)

    Penicaud, L.; Ferre, P.; Kande, J.; Leturque, A.; Issad, T.; Girard, J.

    1987-01-01

    This study was undertaken to determine the effects of pentobarbital anesthesia (50 mg/kg ip) on glucose kinetics and individual tissue glucose utilization in vivo, in chronically catheterized rats. Glucose turnover studies were carried out using [3- 3 H] glucose as tracer. A transient hyperglycemia and an increased glucose production were observed 3 min after induction of anesthesia. However, 40 min after induction of anesthesia, glycemia returned to the level observed in awake animals, whereas glucose turnover was decreased by 30% as compared with unanesthetized rats. These results are discussed with regard to the variations observed in plasma insulin, glucagon, and catecholamine levels. Glucose utilization by individual tissues was studied by the 2-[1- 3 H] deoxyglucose technique. A four- to fivefold decrease in glucose utilization was observed in postural muscles (soleus and adductor longus), while in other nonpostural muscles (epitrochlearis, tibialis anterior, extensor digitorum longus, and diaphragm) and other tissues (white and brown adipose tissues) anesthesia did not modify the rate of glucose utilization. A decrease in glucose utilization was also observed in the brain

  9. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  10. Urban tree effects on soil organic carbon.

    Directory of Open Access Journals (Sweden)

    Jill L Edmondson

    Full Text Available Urban trees sequester carbon into biomass and provide many ecosystem service benefits aboveground leading to worldwide tree planting schemes. Since soils hold ∼75% of ecosystem organic carbon, understanding the effect of urban trees on soil organic carbon (SOC and soil properties that underpin belowground ecosystem services is vital. We use an observational study to investigate effects of three important tree genera and mixed-species woodlands on soil properties (to 1 m depth compared to adjacent urban grasslands. Aboveground biomass and belowground ecosystem service provision by urban trees are found not to be directly coupled. Indeed, SOC enhancement relative to urban grasslands is genus-specific being highest under Fraxinus excelsior and Acer spp., but similar to grasslands under Quercus robur and mixed woodland. Tree cover type does not influence soil bulk density or C∶N ratio, properties which indicate the ability of soils to provide regulating ecosystem services such as nutrient cycling and flood mitigation. The trends observed in this study suggest that genus selection is important to maximise long-term SOC storage under urban trees, but emerging threats from genus-specific pathogens must also be considered.

  11. Effect of carbon on ion beam mixing of Fe-Ti bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, J.P.; Nastasi, M.; Lappalainen, R.; Sickafus, K. (Los Alamos National Lab., NM (USA); Helsinki Univ. (Finland). Dept. of Physics; Los Alamos National Lab., NM (USA))

    1989-01-01

    The influence of implanted carbon on ion beam mixing of a Fe-Ti system was investigated. Carbon was introduced into bilayer samples by implanting {sup 13}C isotopes. The implantation energies were selected to set the mean range of carbon ions in either the iron or titanium layer. The effect of implanted carbon on 400 keV Ar ion mixing in the temperature range from 0 to 300{degree}C was studied using Rutherford backscattering spectroscopy at the energy of 5 MeV. Changes in carbon concentration profiles were probed utilizing the resonance of the nuclear reaction {sup 13}C(p,{gamma}){sup 14}N at the proton energy of 1.748 MeV. The measurements revealed that mixing was not affected by carbon implanted into the titanium layer. However, carbon in the iron layer remarkably retarded mixing at all temperatures investigated. Significant changes in carbon depth distributions were observed only when the sample with implanted carbon in the iron layer was mixed at 300{degree}C. These results are explained in terms of the enhanced mobility of carbon in an evaporated iron film which allows segregation to the interface. At low temperatures, however, vacancy-carbon interaction in iron may have a contribution to the retarded ion beam mixing. 19 refs., 3 figs.

  12. Forest carbon benefits, costs and leakage effects of carbon reserve scenarios in the United States

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2013-01-01

    This study evaluated the potential effectiveness of future carbon reserve scenarios, where U.S. forest landowners would hypothetically be paid to sequester carbon on their timberland and forego timber harvests for 100 years. Scenarios featured direct payments to landowners of $0 (baseline), $5, $10, or $15 per metric ton of additional forest carbon sequestered on the...

  13. Utilization of spent dregs for the production of activated carbon for CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Serafin Jarosław

    2017-06-01

    Full Text Available The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the temperature of 550°C. Textural properties of activated carbons were obtained based on the adsorption-desorption isotherms of nitrogen at −196°C and carbon dioxide at 0°C. The specific surface areas of activated carbons were calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density functional theory method. The highest CO2 adsorption was 9.54 mmol/cm3 at 0°C – and 8.50 mmol/cm3 at 25°C.

  14. Hard template synthesis of porous carbon nitride materials with improved efficiency for photocatalytic CO_2 utilization

    International Nuclear Information System (INIS)

    Ovcharov, M.; Shcherban, N.; Filonenko, S.; Mishura, A.; Skoryk, M.; Shvalagin, V.; Granchak, V.

    2015-01-01

    Graphical abstract: - Highlights: • Porous carbon nitrides were obtained via bulk and matrix pyrolysis of melamine. • Carbon nitride obtained in MCF has the highest bandgap and photocatalytic activity. • Acetaldehyde was the major product of the photoreduction reaction of CO2. - Abstract: Porous carbon nitrides of different morphology were obtained via bulk and hard template (SBA-15 and MCF) pyrolysis of melamine. Matrix method allowed obtaining ordered porous C_3N_4 with higher bandgap (2.87 eV) in the contrary to the bulk sample (2.45 eV). Obtained carbon nitrides were found to be p-type semiconductors with catalytic activity towards photoreduction of carbon dioxide with water vapour. Carbon nitride obtained in MCF has the higher bandgap, developed surface, sponge-like morphology, spatially ordering and it's characterized by the highest photocatalytic activity.

  15. Utilization of Cacao Pod Husk (Theobroma cacao l.) as Activated Carbon and Catalyst in Biodiesel Production Process from Waste Cooking Oil

    Science.gov (United States)

    Rachmat, Devita; Johar Mawarani, Lizda; Dewi Risanti, Doty

    2018-01-01

    Cocoa pod husk (Theobroma cacao l.) is a waste from cocoa beans processing. In this research we employ cocoa pod husk as activated carbon to decrease the value of FFA (Free Fatty Acid) in waste cooking oil and as K2CO3 catalyst in biodiesel production process from waste cooking oil. Cocoa pod husk was crusched and grounded into powder that passed thorugh 60 mesh-screen. As activated carbon, cocoa pod husk was firstly carbonized at three variant temperatures i.e 250°C, 300°C and 350°C. The activation process was done using HCl 2M as activator. Based on the results of XRD and FTIR, the carbonization at all variant temperatures does not cause a significant changes in terms of crystallite structure and water content. The pore of activated carbon started to form in sample that was carbonized at 350°C resulting in pore diameter of 5.14644 nm. This result was supported by the fact that the ability of this activated carbon in reducing the FFA of waste cooking oil was the most pronounced one, i.e. up to 86.7% of FFA. It was found that the performance of cocoa pod husk’s activated carbon in reducing FFA is more effective than esterification using H2SO4 which can only decrease 80.8%. On the other hand, the utilization as K2CO3 catalyst was carried out by carbonization at temperature 650°C and extraction using aquadest solvent. The extraction of cocoa pod husk produced 7.067% K2CO3 catalyst. According to RD results the fraction of K2CO3 compound from the green catalysts is the same as the commercial (SAP, 99%) that is ≥ 60%. From the obtained results, the best yield percentage was obtained using K2CO3 catalyst from cacao pod husk extract, i.e. 73-85%. To cope with biodiesel conversion efficiency, a two-step process consisting pretreatment with activated carbon carbonized at 350°C and esterification with K2CO3 from cocoa pod husk catalyst was developed. This two-step process could reach a high conversion of 85%. From the results it was clear that the produced

  16. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    NARCIS (Netherlands)

    Mann, Paul J.; Eglinton, Timothy I.; McIntyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G M

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14 C and 13 C

  17. Life cycle impacts of forest management and wood utilization on carbon mitigation : knowns and unknowns

    Science.gov (United States)

    Bruce Lippke; Elaine Oneil; Rob Harrison; Kenneth Skog; Leif Gustavsson; Roger Sathre

    2011-01-01

    This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our...

  18. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment

    CSIR Research Space (South Africa)

    Mulopo, J

    2012-06-01

    Full Text Available The conversion of steelmaking slag (a waste product of the steelmaking process) to calcium carbonate (CaCO3) was tested using hydrochloric acid, ammonium hydroxide and carbon dioxide via a pH-swing process. Batch reactors were used to assess...

  19. Utilization of porous carbons derived from coconut shell and wood in natural rubber

    Science.gov (United States)

    The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, x-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared...

  20. Effects of utility demand-side management programs on uncertainty

    International Nuclear Information System (INIS)

    Hirst, E.

    1994-01-01

    Electric utilities face a variety of uncertainties that complicate their long-term resource planning. These uncertainties include future economic and load growths, fuel prices, environmental and economic regulations, performance of existing power plants, cost and availability of purchased power, and the costs and performance of new demand and supply resources. As utilities increasingly turn to demand-side management (DSM) programs to provide resources, it becomes more important to analyze the interactions between these programs and the uncertainties facing utilities. This paper uses a dynamic planning model to quantify the uncertainty effects of supply-only vs DSM + supply resource portfolios. The analysis considers four sets of uncertainties: economic growth, fuel prices, the costs to build new power plants, and the costs to operate DSM programs. The two types of portfolios are tested against these four sets of uncertainties for the period 1990 to 2010. Sensitivity, scenario, and worst-case analysis methods are used. The sensitivity analyses show that the DSM + supply resource portfolio is less sensitive to unanticipated changes in economic growth, fuel prices, and power-plant construction costs than is the supply-only portfolio. The supply-only resource mix is better only with respect to uncertainties about the costs of DSM programs. The base-case analysis shows that including DSM programs in the utility's resource portfolio reduces the net present value of revenue requirements (NPV-RR) by 490 million dollars. The scenario-analysis results show an additional 30 million dollars (6%) in benefits associated with reduction in these uncertainties. In the worst-case analysis, the DSM + supply portfolio again reduces the cost penalty associated with guessing wrong for both cases, when the utility plans for high needs and learns it has low needs and vice versa. 20 refs

  1. Radiation damage in carbon-carbon composites: Structure and property effects

    International Nuclear Information System (INIS)

    Burchell, T.D.

    1995-01-01

    Carbon-carbon composites are an attractive choice for fusion reactor plasma facing components because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation tokamak reactors such as the International Thermonuclear Experimental Reactor (ITER), will require high thermal conductivity carbon-carbon composites and other materials, such as beryllium, to protect their plasma facing components from the anticipated high heat fluxes. Moreover, ignition machines such as ITER will produce a large neutron flux. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from two irradiation experiments are reported and discussed here. Carbon-carbon composite materials were irradiated in target capsules in the High Flux Isotope Reactor (HAIR) at Oak Ridge National Laboratory (ORAL). A peak damage dose of 4.7 displacements per atom (da) at an irradiation temperature of ∼600 degrees C was attained. The carbon materials irradiated here included unidirectional, two- directional, and three-directional carbon-carbon composites. Irradiation induced dimensional changes are reported for the materials and related to single crystal dimensional changes through fiber and composite structural models. Moreover, carbon-carbon composite material dimensional changes are discussed in terms of their architecture, fiber type, and graphitization temperature. Neutron irradiation induced reductions in the thermal conductivity of two, three-directional carbon-carbon composites are reported, and the recovery of thermal conductivity due to thermal annealing is demonstrated. Irradiation induced strength changes are reported for several carbon-carbon composite materials and are explained in terms of in-crystal and composite structural effects

  2. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  3. The effect of carbon tax on carbon emission abatement and GDP: a case study

    Science.gov (United States)

    Liu, Xiao; Leung, Yee; Xu, Yuan; Yung, Linda Chor Wing

    2017-10-01

    Carbon tax has been advocated as an effective economic instrument for the abatement of CO2 emission by various countries, including China, the world's biggest carbon emission country. However, carbon emission abatement cannot be done while ignoring the impact on economic growth. A delicate balance needs to be achieved between the two to find an appropriate pathway for sustainable development. This paper applies a multi-objective optimization approach to analyze the impact of levying carbon tax on the energy-intensive sectors of Guangdong province in China under the constraint of emission reduction target. This approach allows us to evaluate carbon emission minimization while maximizing GDP. For policy analysis, we construct five scenarios for evaluation and optimal choice. The results of the analysis show that a lower initial carbon tax rate is not necessarily better, and that a carbon tax is an effective means to reduce CO2 emissions while maintaining a certain level of GDP growth.

  4. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    Science.gov (United States)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  5. The effect of Employee Assistance Programs use on healthcare utilization.

    Science.gov (United States)

    Zarkin, G A; Bray, J W; Qi, J

    2000-04-01

    To estimate the effect of Employee Assistance Program (EAP) use on healthcare utilization as measured by health claims. A unique data set that combines individual-level information on EAP utilization, demographic information, and health insurance claims from 1991 to 1995 for all employees of a large midwestern employer. Using "fixed-effect" econometric models that control for unobserved differences between individuals' propensities to use healthcare resources and the EAP, we perform our analyses in two steps. First, for those employees who visited the EAP, we test whether post-EAP claims differ from pre-EAP claims. Second, we combine claims data of individuals who went to an EAP with those of individuals who did not use an EAP to test whether differences in utilization exist between EAP users and nonusers. From the EAP we obtained the date of first EAP contact for all employees who used the service, and from the company's human resources department we obtained limited demographic data on all employees. We obtained healthcare utilization claims data on all employees and their dependents from the company's two healthcare plans: a fee-for-service (FFS) plan and a health maintenance organization (HMO) plan. We found that going to an EAP substantially increases both the probability of an alcohol, drug abuse, or mental health (ADM) claim and the number of ADM claims in the same quarter as EAP contact. The increased probability of an ADM claim persists for approximately 11 quarters after the initial contact, while the increased ADM charges persist for approximately six quarters after the initial EAP contact. Our results strongly suggest that the EAP is able to identify behavioral and other health problems that may affect workplace performance and prompt EAP users to access ADM and other healthcare. Consistent with the stated goals of many EAPs, including the one examined in this study, this process should improve individuals' health, family functioning, and workplace

  6. DES/CCHP: The best utilization mode of natural gas for China’s low carbon economy

    International Nuclear Information System (INIS)

    Li, Yajun; Xia, Yan

    2013-01-01

    In this paper, through the analysis of the great challenges faced by China’s energy industry in the development of low carbon economy, it is advisable that China increase the proportion of natural gas (NG) in primary energy as the main strategy of energy conservation and CO 2 reduction in the advancement of industrialization and urbanization. In the near future, NG will become one of the major energy suppliers for new towns and industrial parks, and work for electric peak shaving when used in distributed energy system/combined cold, heat and power (DES/CCHP). However, as an efficient approach to improve the energy utilization efficiency, DES/CCHP cannot only increase the current energy efficiency from 33% to 50.3% (the world’s average), but also reduce the cost of terminal supplies of power, cold, steam and hot water. It will become one of the most important means to control CO 2 emissions in the next 20 years, and is essential to China’s low carbon industrialization and urbanization. - Highlights: ► China’s high economic growth has lead to a huge amount of carbon emissions. ► Climate change calls for a low carbon economy in China. ► The pressure of carbon emission reduction requires China reduce the excessive dependency on coal and oil. ► Natural gas used in distributed energy system/combined cold, heat and power (NG DES/CCHP) is low in carbon emission. ► NG DES/CCHP is the optimal energy supplier for a low carbon economy in China.

  7. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2013-01-01

    the molecular mechanisms. In this study, adaptively evolved yeast mutants with improved galactose utilization ability showed impaired glucose utilization. The molecular genetic basis of this trade-off was investigated using a systems biology approach. Transcriptional and metabolic changes resulting from...... the improvement of galactose utilization were found maintained during growth on glucose. Moreover, glucose repression related genes showed conserved expression patterns during growth on both sugars. Mutations in the RAS2 gene that were identified as beneficial for galactose utilization in evolved mutants...

  8. Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during ...

    African Journals Online (AJOL)

    Metabolic effects of Carbon Dioxide (CO 2 ) insufflation during laparoscopic surgery: changes in pH, arterial partial Pressure of Carbon Dioxide (PaCo 2 ) and End Tidal Carbon Dioxide (EtCO 2 ) ... Respiratory adjustments were done for EtCO2 levels above 60mmHg or SPO2 below 92% or adverse haemodynamic changes.

  9. Effect of various carbon and nitrogen sources on cellulose synthesis ...

    African Journals Online (AJOL)

    The effect of various carbon and nitrogen sources on cellulose production by Acetobacter lovaniensis HBB5 was examined. In this study, glucose, fructose, sucrose and ethanol as carbon source and yeast extract, casein hydrolysate and ammonium sulphate as nitrogen source were used. Among the carbon sources, ...

  10. Health effects of carbon monoxide environmental pollution

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Carbon monoxide's (CO) chronic effects on man, its sources, and measuring methods are reviewed, and guidelines to determine health criteria are considered. The European data exchange included CO measuring methods in air and blood and their use in survey and experimental work, atmospheric CO pollution and sampling methods in urban thoroughfares and road tunnels in the European countries, a population survey of carboxyhemoglobin levels from cigarette smoking and atmospheric exposure, and physiological kinetics (uptake, distribution, and elimination) of CO inhalation. Additional topics are CO and the central nervous system, effects of moderate CO exposure on the cardiovascular system and on fetal development, and the current views on existing air quality criteria for CO.

  11. In-Situ Resource Utilization: Carbon Dioxide Collection, Separation, and Pressurization

    Data.gov (United States)

    National Aeronautics and Space Administration — The atmosphere of Mars is predominantly carbon dioxide (95.5 percent), with nitrogen, argon, and trace gases comprising the remaining portion. KSC and GRC are...

  12. Utilization of turkey manure as granular activated carbon: physical, chemical and adsorptive properties.

    Science.gov (United States)

    Lima, Isabel; Marshall, Wayne E

    2005-01-01

    The high availability of large quantities of turkey manure generated from turkey production makes it an attractive feedstock for carbon production. Pelletized samples of turkey litter and cake were converted to granular activated carbons (GACs) by steam activation. Water flow rate and activation time were changed to produce a range of activation conditions. The GACs were characterized for select physical (yield, surface area, bulk density, attrition), chemical (pH, surface charge) and adsorptive properties (copper ion uptake). Carbon physical and adsorptive properties were dependent on activation time and quantity of steam used as activant. Yields varied from 23% to 37%, surface area varied from 248 to 472 m(2)/g and copper ion adsorption varied from 0.72 to 1.86 mmol Cu(2+)/g carbon. Copper ion adsorption greatly exceeded the values for two commercial GACs. GACs from turkey litter and cake show considerable potential to remove metal ions from water.

  13. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  14. Understanding the effects of sulfur on mercury capture from coal-fired utility flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Morita, K.; Jia, C.Q. [University of Toronto, Toronto, ON (Canada)

    2010-07-01

    Coal combustion continues to be a major source of energy throughout the world and is the leading contributor to anthropogenic mercury emissions. Effective control of these emissions requires a good understanding of how other flue gas constituents such as sulfur dioxide (SO{sub 2}) and sulfur trioxide (SO{sub 3}) may interfere in the removal process. Most of the current literature suggests that SO{sub 2} hinders elemental mercury (Hg{sup 0}) oxidation by scavenging oxidizing species such as chlorine (Cl2) and reduces the overall efficiency of mercury capture, while there is evidence to suggest that SO{sub 2} with oxygen (O{sub 2}) enhances Hg{sup 0} oxidation by promoting Cl2 formation below 100{sup o}C. However, studies in which SO{sub 2} was shown to have a positive correlation with Hg{sup 0} oxidation in full-scale utilities indicate that these interactions may be heavily dependent on operating conditions, particularly chlorine content of the coal and temperature. While bench-scale studies explicitly targeting SO{sub 3} are scarce, the general consensus among full-scale coal-fired utilities is that its presence in flue gas has a strong negative correlation with mercury capture efficiency. The exact reason behind this observed correlation is not completely clear, however. While SO{sub 3} is an inevitable product of SO{sub 2} oxidation by O{sub 2}, a reaction that hinders Hg{sup 0} oxidation, it readily reacts with water vapor, forms sulfuric acid (H{sub 2 }SO{sub 4}) at the surface of carbon, and physically blocks active sites of carbon. On the other hand, H{sub 2}SO{sub 4} on carbon surfaces may increase mercury capacity either through the creation of oxidation sites on the carbon surface or through a direct reaction of mercury with the acid. However, neither of these beneficial impacts is expected to be of practical significance for an activated carbon injection system in a real coal-fired utility flue gas.

  15. Carbon burnout project-coal fineness effects

    Energy Technology Data Exchange (ETDEWEB)

    Mike Celechin [Powergen UK plc, Nottingham (United Kingdom)

    2004-02-01

    The aim of this DTI project is to establish good quality plant and rig data to demonstrate the effect of changing coal fineness on carbon burnout in a controlled manner, which can then be used to support computational fluid dynamics (CFD) and engineering models of the process. The modelling elements of the project were completed by Mitsui Babcock Energy Ltd., and validated using the data produced by the other partners. The full scale plant trials were successfully completed at Powergen's Kingsnorth Power Station and a full set of tests were also completed on Powergen's CTF. During these test both carbon-in-ash and NOx levels were seen to increase with increasing fuel particle size. Laboratory analysis of fly ash produced during the plant and rig trials revealed that only small differences in char morphology and reactivity could be detected in samples produced under significantly different operating conditions. Thermo Gravimetric Analysis was also undertaken on a range of PF size fractions collected form mills operating at different conditions. 3 refs., 13 figs., 1 tab.

  16. Fly ashes from Polish power plants and combined heat and power plants and conditions of their application for carbon dioxide utilization

    Energy Technology Data Exchange (ETDEWEB)

    Uliasz-Bochenczyk, A.; Mokrzycki, E. [Polish Academy of Science, Krakow (Poland). Mineral & Energy Economic Research Institute

    2006-09-15

    Poland has large resources of hard coal and brown coal. Therefore power industry is mostly based on these two original energy carriers. The power plants producing heat and electrical energy create combustion byproducts. These products include: fly ashes, slags, carbon dioxide and other gaseous compounds. In year 2003 fly ashes emission from hard coal combustion in Poland reached 37 000 tons and over 15 000 tons from brown coal combustion. Fly ashes are widely used in the economy. They are used in building materials industry, in road building and geotechnics. CO{sub 2} emission in Poland in 2003 originating from hard coal combustion was almost 91 million tons and from brown coal combustion-almost 58 million tons. High emissions of CO{sub 2} originating from power engineering processes of coal combustion are deleterious to the natural environment, contributing to the greenhouse effect. Presently there are carried out studies aimed at limiting CO{sub 2} emission coming from industrial processes. Fly ash properties are determined by qualitative characteristics of combusted coal, its chemical composition and combustion technology. Chemical composition of Polish fly ashes is very diversified. Fly ashes with high calcium oxide content can be used for carbon dioxide fixation. Fly ash carbonation is a complicated process however safe for natural environment. Polish fly ashes coming from power engineering, conditions of their use for the carbon dioxide utilization as well as their quantitative and qualitative characteristics are the subjects of this paper.

  17. High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, J.J.; Yin, G.P.; Zhang, J.; Wang, Z.B.; Gao, Y.Z.

    2007-01-01

    This research aims to enhance the activity of Pt catalysts, thus to lower the loading of Pt metal in fuel cell. Highly dispersed platinum supported on single-walled carbon nanotubes (SWNTs) as catalyst was prepared by ion exchange method. The homemade Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. For comparison, the similar loading of Pt catalyst supported on carbon nanotubes was prepared by borohydride reduction method. The catalysts were characterized by using energy dispersive analysis of X-ray (EDAX), transmission electron micrograph (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrum (XPS). Compared with the Pt/SWNTs catalyst prepared by borohydride method, higher Pt utilization was achieved on the SWNTs by ion exchange method. Furthermore, in comparison to the E-TEK 20 wt.% Pt/C catalyst with the support of carbon black, the results from electrochemical measurement indicated that the Pt/SWNTs prepared by ion exchange method displayed a higher catalytic activity for methanol oxidation and higher Pt utilization, while no significant increasing in the catalytic activity of the Pt/SWNTs catalyst obtained by borohydride method

  18. The utility of the historical record in assessing future carbon budgets

    Science.gov (United States)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  19. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  20. Forensic utility of the carbon isotope ratio of PVC tape backings

    Science.gov (United States)

    Stern, L. A.; Thompson, A. H.; Mehltretter, A. H.; McLaskey, V.; Parish, A.; Aranda, R.

    2008-12-01

    Forensic interest in adhesive tapes with PVC-backings (polyvinyl chloride, electrical tapes) derives from their use in construction of improvised explosive devices, drug packaging and in a variety of other illicit activities. Due to the range of physical characteristics and chemical compositions of such tapes, traditional microscopic and chemical analysis of the tape backings and adhesives offer a high degree of discrimination between tapes from different manufacturers and products. To evaluate whether carbon isotope ratios may be able to increase discrimination of electrical tapes, particularly with regards to different tapes of the same product, we assessed the PVC-backings of 87 rolls of black electrical tape for their δ13C values. The adhesive on these tapes was physically removed with hexane, and plasticizers within the PVC tape backings were removed by three-20 minute extractions with chloroform. The δ13C values of the PVC tape backings ranged between -23.8 and -41.5 (‰ V-PDB). The carbon isotopic variation within a product (identical brand and product identification) is significant, based on five products with at least 3 rolls (ranges of 7.4‰ (n=3), 10.0‰ (n=6), 4.2‰ (n=16), 3.8‰ (n=6), and 11.5‰ (n=8), respectively). There was no measurable carbon isotope variation in regards to the following: a) along the length of a roll (4 samples from 1 roll); b) between the center and edge of a strip of tape (1 pair); c) between rolls assumed to be from the same lot of tape (2 pairs); d) between different rolls from the same batch of tape (same product purchased at the same time and place; 5 pairs); and e) between samples of a tape at room temperature, heated to 50° C and 80° C for 1 week. For each sample within the population of 87 tapes, carbon isotopes alone exclude 80 to 100% of the tapes as a potential match, with an average exclusion power of 92.5%, using a window of ± 0.4‰. Carbon isotope variations originate from variations in starting

  1. Take off the heater: Utility effect and food environment effect in food consumption decisions

    OpenAIRE

    Lombardini-Riipinen, Chiara; Lankoski, Leena

    2010-01-01

    In this paper, we describe individual food consumption decisions as driven by a utility effect and a food environment effect. To outline the utility effect, we first develop a new theoretical model of individual food consumption. Next, we introduce the food environment effect by showing how the food environment can affect food consumption decisions and how this can skew the resulting food consumption vector. Finally, we analyse manipulations of the food environment as a potential form of poli...

  2. General consideration of effective plutonium utilization in future LWRs

    International Nuclear Information System (INIS)

    Ishikawa, Nobuyuki; Okubo, Tsutomu

    2009-01-01

    In this study, the potential of mixed oxide fueled light water reactors (MOX-LWRs), especially focusing on the high conversion type LWRs (HC-LWRs) such as FLWR are evaluated in terms of both economic aspect and effective use of plutonium. For economics consideration, relative economics positions of MOX-LWRs are clarified comparing the cost of electricity for uranium fueled LWRs (U-LWRs), MOX-LWRs and fast breeder reactors (FBRs) assuming future natural uranium price raise and variation of parameters such as construction cost and capacity factor. Also the economic superiority of MOX utilization against the uranium use is mentioned from the view point of plutonium credit concerning to the front-end fuel cycle cost. In terms of effective use of plutonium, comparative evaluations on plutonium mass balance in the cases of HC-LWR and high moderation type LWRs (HM-LWRs) taking into account plutonium quality (ratio of fissile to total plutonium) constraint in multiple recycling are performed as representative MOX utilization cases. Through this evaluation, the advantageous features of plutonium multiple recycling by HC-LWR are clarified. From all these results, merits of the introduction of HC-LWRs are discussed. (author)

  3. Peatlands in Finland accumulate carbon more than the peat production and utilization liberates it

    International Nuclear Information System (INIS)

    Maentymaa, E.

    1997-01-01

    The peatlands in Finland bind more carbon dioxide then it is liberated into the air in peat combustion and production. Because the carbon accumulation into peatlands is higher than that of liberation, the peat deposits increase all the time in spite of peat economy. The emissions of methane, which is tens of times worse greenhouse gas then CO 2 , have decreased by 40 % due to forest drainage. Very small amounts of methane is released into the atmosphere from peat production sites. This is proven by the national SILMU research programme investigating the atmospheric changes

  4. Measuring the consumer welfare effects of carbon penalties: theory and applications to household energy demand

    International Nuclear Information System (INIS)

    Dumagan, J.C.; Mount, T.D.

    1992-01-01

    Increased attention is being devoted to the analysis of environmental externalities generated by economic activities. For example, the emissions of sulphur dioxide, nitrogen oxides and carbon from the generation of electricity are central issues in the discussion of externalities in the New York State bidding process. Furthermore, there is increasing interest nationally and internationally in policy proposals to reduce carbon emissions. The taxation of carbon emissions is one way for society to internalize environmental externalities relative to global warming by imposing monetary penalties per unit of carbon emitted from all fuels. This contrasts with the bidding process because the latter adds cost to electricity generation only. However, in both cases electric utilities are in a position to pass on these charges to their customers through increased rates. Consequently, there are inevitable effects on the welfare of consumers, and the monetary measurement of these welfare effects is the primary focus of this paper. (author)

  5. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source

    International Nuclear Information System (INIS)

    Krupiński, Mariusz; Janicki, Tomasz; Pałecz, Bartłomiej; Długoński, Jerzy

    2014-01-01

    Highlights: • A. versicolor is able to degrade 4-n-NP as the sole source of carbon and energy. • 4-n-NP removal by A. versicolor was accompanied by the formation of metabolites. • Radioactive experiments show complete 4-n-NP mineralization by A. versicolor. • 4-n-NP initiates heat production in the A. versicolor spores. - Abstract: 4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography–mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L −1 ) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring- 14 C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of 14 CO 2 , proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate

  6. Biodegradation and utilization of 4-n-nonylphenol by Aspergillus versicolor as a sole carbon and energy source

    Energy Technology Data Exchange (ETDEWEB)

    Krupiński, Mariusz; Janicki, Tomasz [Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Łódź (Poland); Pałecz, Bartłomiej [Department of Physical Chemistry, University of Lodz, Pomorska 165, 90-236 Łódź (Poland); Długoński, Jerzy, E-mail: jdlugo@biol.uni.lodz.pl [Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Łódź (Poland)

    2014-09-15

    Highlights: • A. versicolor is able to degrade 4-n-NP as the sole source of carbon and energy. • 4-n-NP removal by A. versicolor was accompanied by the formation of metabolites. • Radioactive experiments show complete 4-n-NP mineralization by A. versicolor. • 4-n-NP initiates heat production in the A. versicolor spores. - Abstract: 4-n-Nonylphenol (4-n-NP) is an environmental pollutant with endocrine-disrupting activities that is formed during the degradation of nonylphenol polyethoxylates, which are widely used as surfactants. Utilization of 4-n-NP by the filamentous fungus Aspergillus versicolor as the sole carbon and energy source was investigated. By means of gas chromatography–mass spectrometry, we showed that in the absence of any carbon source other than 4-n-NP in the medium, A. versicolor completely removed the xenobiotic (100 mg L{sup −1}) after 3 d of cultivation. Moreover, mass spectrometric analysis of intracellular extracts led to the identification of eight intermediates. The mineralization of the xenobiotic in cultures supplemented with 4-n-NP [ring-{sup 14}C(U)] as a growth substrate was also assessed. After 3 d of incubation, approximately 50% of the initially applied radioactivity was recovered in the form of {sup 14}CO{sub 2}, proving that this xenobiotic was completely metabolized and utilized by A. versicolor as a carbon source. Based on microscopic analysis, A. versicolor is capable of germinating spores under such conditions. To confirm these observations, a microcalorimetric method was used. The results show that even the highest amount of 4-n-NP initiates heat production in the fungal samples, proving that metabolic processes were affected by the use of 4-n-NP as an energetic substrate.

  7. Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer culture units

    Czech Academy of Sciences Publication Activity Database

    Lívanský, Karel; Doucha, Jiří

    2005-01-01

    Roč. 116, - (2005), s. 201-212 ISSN 0342-1120 R&D Projects: GA ČR GV104/97/S055 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlorella kessleri * carbon dioxide * microalga Subject RIV: EE - Microbiology, Virology

  8. Carbon-14 urea utilization in diagnosis of the presence Campylobacter pylori in stomach

    International Nuclear Information System (INIS)

    Chausson, Y.

    1989-01-01

    A new method to detect the Campylobacter pylori in the stomach, using carbon-14 urea is presented. The technique consists in after the tracer ingestion, the tracer is recuperated by the expiration way in organic hiamin and after counting and evaluating. (M.L.J.)

  9. Climate Change Effects of Forest Management and Substitution of Carbon-Intensive Materials and Fossil Fuels

    Science.gov (United States)

    Sathre, R.; Gustavsson, L.; Haus, S.; Lundblad, M.; Lundström, A.; Ortiz, C.; Truong, N.; Wikberg, P. E.

    2016-12-01

    Forests can play several roles in climate change mitigation strategies, for example as a reservoir for storing carbon and as a source of renewable materials and energy. To better understand the linkages and possible trade-offs between different forest management strategies, we conduct an integrated analysis where both sequestration of carbon in growing forests and the effects of substituting carbon intensive products within society are considered. We estimate the climate effects of directing forest management in Sweden towards increased carbon storage in forests, with more land set-aside for protection, or towards increased forest production for the substitution of carbon-intensive materials and fossil fuels, relative to a reference case of current forest management. We develop various scenarios of forest management and biomass use to estimate the carbon balances of the forest systems, including ecological and technological components, and their impacts on the climate in terms of cumulative radiative forcing over a 100-year period. For the reference case of current forest management, increasing the harvest of forest residues is found to give increased climate benefits. A scenario with increased set-aside area and the current level of forest residue harvest begins with climate benefits compared to the reference scenario, but the benefits cannot be sustained for 100 years because the rate of carbon storage in set-aside forests diminishes over time as the forests mature, but the demand for products and fuels remains. The most climatically beneficial scenario, expressed as reduced cumulative radiative forcing, in both the short and long terms is a strategy aimed at high forest production, high residue recovery rate, and high efficiency utilization of harvested biomass. Active forest management with high harvest level and efficient forest product utilization will provide more climate benefit, compared to reducing harvest and storing more carbon in the forest. Figure

  10. The diversification value of nuclear power as part of a utility technology mix when gas and carbon prices are uncertain

    International Nuclear Information System (INIS)

    Roques, Fabien A.; Nuttall, William J.; Newbery, David M.; Neufville, Richard de; Connors, Stephen

    2005-01-01

    Despite recent revived interest, the prospects for new nuclear power investment in liberalized electricity industries without government support do not seem promising. The objective of this paper is twofold. First it aims to identify the specific features of nuclear power technology that makes it an unattractive choice. The second objective is to estimate the value to a utility of a nuclear investment as a hedge against uncertain gas and carbon prices. A stylized 5-plant Real Option utility model shows that while the nuclear option value represents about 18% of the net present value (NPV) of the nuclear plant investment in the case where electricity and gas prices are uncorrelated, it reduces to nearly zero for correlation factors between electricity and gas price greater than 30%. These results suggest that the private diversification incentives in electricity markets might not be aligned with the social value of a diverse fuel-mix at the country level. (Author)

  11. Short-term utilization of carbon by the soil microbial community under future climatic conditions in a temperate heathland

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Michelsen, Anders; Sárossy, Zsuzsa

    2014-01-01

    An in-situ13C pulse-labeling experiment was carried out in a temperate heath/grassland to study the impacts of elevated CO2 concentration (510ppm), prolonged summer droughts (annual exclusion of 7.6±0.8%) and increased temperature (~1°C) on belowground carbon (C) utilization. Recently assimilated C...... (13C from the pulse-label) was traced into roots, soil and microbial biomass 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid...... (PLFA) biomarker profiles. Climate treatments did not affect microbial abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi...

  12. Synthesis and utilization of a novel carbon nanotubes supported nanocables for the adsorption of dyes from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving & Environment-friendly Society and Ecological Civilization (China)

    2015-09-15

    Using multiwalled carbon nanotubes(MWCNTs) as mechanical support and glucose as carbon resource, a hydrothermal carbonization route was designed for the synthesis of MWCNTs@carbon nanocables with tunable diameter and length. MWCNTs are firstly used as templates for the formation of carbon-rich composite nanocables, and the diameter of the nanocables could be tailored through adjusting the hydrothermal time or the ratio of MWCNTs and glucose. Owing to abundant superficial oxygen-containing functional groups, porous surface and remarkable reactivity, the as-synthesized nanocables are capable of efficiently adsorbing cationic dye methylene blue (MB) and crystal violet (CV). Furthermore, the optimum adsorption conditions, kinetics, adsorption isotherms and adsorption thermodynamics of dyes were studied systematically. Additionally, the maximum adsorption capacities calculated from data analysis (298.5 mg/g for MB and 228.3 mg/g for CV) are significant higher than those of raw MWCNTs and some other adsorbents reported previously, which provides strong evidence for using MWCNTs@carbon nanocables as adsorbent to remove dyes from aqueous solutions. - Graphical abstract: MWCNTs@carbon nanocables has been successfully fabricated by a hydrothermal carbonization method. The as-synthesized novel samples were used as adsorbents and exhibited high adsorption capacity on MB and CV. - Highlights: • A simple, cost-effective and “green” method for the synthesis of the material. • The diameter and length of the material are relatively easy to control. • The surface has large oxygen-containing groups and preferable chemical reactivity. • Compared with raw MWCNTs and some other adsorbents, the adsorption capacity is much high.

  13. Factors effecting carbonate equilibria in natural waters

    International Nuclear Information System (INIS)

    Snellman, M.

    1987-12-01

    This study is related to preliminary stie evaluations to be carried out in 1987-1992 for spent nuclear fuel disposal in Finland. Near surface and shallow groundwaters are characterized by high concentration of calcium and bicarbonate due to dissolution of calcite. The input of carbon dioxide in the upper zone of the bedrock has a strong influence on the pH giving a pH around neutral. In deep groundwaters when the system is no longer open to the input of carbon dioxide the pH rises as the carbonate system is displaced towards the bicarbonate-carbonate site. In still deeper parts of the rock weathering of other minerals such as feldspars affects the chemistry raising the pH and resulting in saturation and precipitation of calcite. The more advanced these reactions become the higher is the pH and the lower is the carbonate content. The equilibrium concentrations of carbonate species are affected both by temperature and ionic strength of the waters, at high ionic strength especially the distribution between bicarbonate and carbonate ions is affected. The total concentration of carbonates in groundwaters is determined through complex interaction between calcite and carbonates in the water. In deep groundwaters which are closed for input of CO 2 the concentration is stated to be regulated by dissolution of calcium carbonate. In deep granitic groundwaters pH is stated to be buffered to 6.5 to 10, where a high pH would correspond to a low total carbonate concentration and often also a low calcium concentration and a low pH would correspond to high carbonae and calcium concentrations

  14. Effects of lead and cadmium nitrate on biomass and substrate utilization pattern of soil microbial communities.

    Science.gov (United States)

    Muhammad, Akmal; Xu, Jianming; Li, Zhaojun; Wang, Haizhen; Yao, Huaiying

    2005-07-01

    A study was conducted to evaluate the effects of different concentrations of lead (Pb) and cadmium (Cd) applied as their nitrates on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), and substrate utilization pattern of soil microbial communities. The C(mic) and N(mic) contents were determined at 0, 14, 28, 42 and 56 days after heavy metal application (DAA). The results showed a significant decline in the C(mic) for all Pb and Cd amended soils from the start to 28 DAA. From 28 to 56 DAA, C(mic) contents changed non-significantly for all other treatments except for 600 mgkg(-1) Pb and 100 mgkg(-1) Cd in which it declined significantly from 42 to 56 DAA. The N(mic) contents also decreased significantly from start to 28 DAA for all other Pb and Cd treatments except for 200 mgkg(-1) Pb which did not show significant difference from the control. Control and 200 mgkg(-1) Pb had significantly lower soil microbial biomass C:N ratio as compared with other Pb treatments from 14 to 42 DAA, however at 56 DAA, only 1000 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. No significant difference in C:N ratio for all Cd treated soils was seen from start to 28 DAA, however from 42 to 56 DAA, 100 mgkg(-1) Pb showed significantly higher C:N ratio compared with other treatments. On 56 DAA, substrate utilization pattern of soil microbial communities was determined by inoculating Biolog ECO plates. The results indicated that Pb and Cd addition inhibited the functional activity of soil microbial communities as indicated by the intensity of average well color development (AWCD) during 168 h of incubation. Multivariate analysis of sole carbon source utilization pattern demonstrated that higher levels of heavy metal application had significantly affected soil microbial community structure.

  15. Differential Utilization of Carbon Substrates by Bacteria and Fungi in Tundra Soil

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Bååth, Erland

    2009-01-01

    Little is known about the contribution of bacteria and fungi to decomposition of different carbon compounds in arctic soils, which are an important carbon store and possibly vulnerable to climate warming. Soil samples from a subarctic tundra heath were incubated with 13C-labeled glucose, acetic...... at concentrations low enough not to affect the total amount of PLFA. The label of glucose and acetic acid was rapidly incorporated into the PLFA in a pattern largely corresponding to the fatty acid concentration profile, while glycine and especially starch were mainly taken up by bacteria and not fungi, showing......, the allocation decreased over time, indicating use of the storage products, whereas for vanillin incorporation into fungal NLFA increased during the incubation. In addition to providing information on functioning of the microbial communities in an arctic soil, our study showed that the combination of PLFA...

  16. COHO - Utilizing Waste Heat and Carbon Dioxide at Power Plants for Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Sumanjeet [Porifera Inc., Hayward, CA (United States); Wilson, Aaron [Porifera Inc., Hayward, CA (United States); Wendt, Daniel [Porifera Inc., Hayward, CA (United States); Mendelssohn, Jeffrey [Porifera Inc., Hayward, CA (United States); Bakajin, Olgica [Porifera Inc., Hayward, CA (United States); Desormeaux, Erik [Porifera Inc., Hayward, CA (United States); Klare, Jennifer [Porifera Inc., Hayward, CA (United States)

    2017-07-25

    The COHO is a breakthrough water purification system that can concentrate challenging feed waters using carbon dioxide and low-grade heat. For this project, we studied feeds in a lab-scale system to simulate COHO’s potential to operate at coal- powered power plants. COHO proved successful at concentrating the highly scaling and challenging wastewaters derived from a power plant’s cooling towers and flue gas desulfurization units. We also found that COHO was successful at scrubbing carbon dioxide from flue gas mixtures. Thermal regeneration of the switchable polarity solvent forward osmosis draw solution ended up requiring higher temperatures than initially anticipated, but we also found that the draw solution could be polished via reverse osmosis. A techno-economic analysis indicates that installation of a COHO at a power plant for wastewater treatment would result in significant savings.

  17. Feed in summer, rest in winter: microbial carbon utilization in forest topsoil

    Czech Academy of Sciences Publication Activity Database

    Žifčáková, Lucia; Větrovský, Tomáš; Lombard, V.; Henrissat, B.; Howe, A.; Baldrian, Petr

    2017-01-01

    Roč. 5, SEP 18 (2017), č. článku 122. ISSN 2049-2618 R&D Projects: GA ČR(CZ) GA16-08916S; GA MŠk(CZ) LD15086; GA MŠk(CZ) LM2015055 Institutional support: RVO:61388971 Keywords : Auxiliary activity enzymes * Bacteria * Carbon cycle Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 8.496, year: 2016

  18. The global carbon nation: Status of CO2 capture, storage and utilization

    Science.gov (United States)

    Kocs, Elizabeth A.

    2017-07-01

    As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS) plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG) emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today's global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  19. The global carbon nation: Status of CO2 capture, storage and utilization

    Directory of Open Access Journals (Sweden)

    Kocs Elizabeth A.

    2017-01-01

    Full Text Available As the world transitions toward cleaner and more sustainable energy generation, Carbon Capture and Sequestration/Storage (CCS plays an essential role in the portfolio of technologies to help reduce global greenhouse gas (GHG emissions. The projected increase in population size and its resulting increase in global energy consumption, for both transportation and the electricity grid —the largest emitters of greenhouse gases, will continue to add to current CO2 emissions levels during this transition. Since eighty percent of today’s global energy continues to be generated by fossil fuels, a shift to low-carbon energy sources will take many decades. In recent years, shifting to renewables and increasing energy efficiencies have taken more importance than deploying CCS. Together, this triad —renewables, energy efficiency, and CCS— represent a strong paradigm for achieving a carbon-free world. Additionally, the need to accelerate CCS in developing economies like China and India are of increasing concern since migration to renewables is unlikely to occur quickly in those countries. CCS of stationary sources, accounting for only 20% reduction in emissions, as well as increasing efficiency in current systems are needed for major reductions in emissions. A rising urgency for fifty to eighty percent reduction of CO2 emissions by 2050 and one hundred percent reduction by 2100 makes CCS all that more critical in the transition to a cleaner-energy future globally.

  20. Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Isaiah D. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States); Koylu, Umit O. [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 290A Toomey Hall, 400 West 13th Street, Rolla, MO 65409 (United States); Dogan, Fatih [Department of Materials Science and Engineering, Missouri University of Science and Technology, 223 McNutt Hall, 1400 N. Bishop, Rolla, MO 65409 (United States)

    2010-11-01

    Pyrolytic carbon was used as fuel in a solid oxide fuel cell (SOFC) with a yttria-stabilized zirconia (YSZ) electrolyte and a bi-layer anode composed of nickel oxide gadolinia-doped ceria (NiO-GDC) and NiO-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous NiO-YSZ as a buffer anode layer between the electrolyte and the NiO-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided, that is, the necessity of glycine-nitrate combustion synthesis, specialty multicomponent oxide powders, sputtering, or chemical vapor deposition. The easily-fabricated cell was successfully utilized with hydrogen and propane fuels as well as carbon deposited on the anode during the cyclic operation with the propane. A cell of similar construction could be used in the exhaust stream of a diesel engine to capture and utilize soot for secondary power generation and decreased particulate pollution without the need for filter regeneration. (author)

  1. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies.

    Science.gov (United States)

    Xiao, Gang; Chan, Lai N; Klemm, Lars; Braas, Daniel; Chen, Zhengshan; Geng, Huimin; Zhang, Qiuyi Chen; Aghajanirefah, Ali; Cosgun, Kadriye Nehir; Sadras, Teresa; Lee, Jaewoong; Mirzapoiazova, Tamara; Salgia, Ravi; Ernst, Thomas; Hochhaus, Andreas; Jumaa, Hassan; Jiang, Xiaoyan; Weinstock, David M; Graeber, Thomas G; Müschen, Markus

    2018-04-05

    B cell activation during normal immune responses and oncogenic transformation impose increased metabolic demands on B cells and their ability to retain redox homeostasis. While the serine/threonine-protein phosphatase 2A (PP2A) was identified as a tumor suppressor in multiple types of cancer, our genetic studies revealed an essential role of PP2A in B cell tumors. Thereby, PP2A redirects glucose carbon utilization from glycolysis to the pentose phosphate pathway (PPP) to salvage oxidative stress. This unique vulnerability reflects constitutively low PPP activity in B cells and transcriptional repression of G6PD and other key PPP enzymes by the B cell transcription factors PAX5 and IKZF1. Reflecting B-cell-specific transcriptional PPP-repression, glucose carbon utilization in B cells is heavily skewed in favor of glycolysis resulting in lack of PPP-dependent antioxidant protection. These findings reveal a gatekeeper function of the PPP in a broad range of B cell malignancies that can be efficiently targeted by small molecule inhibition of PP2A and G6PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    Science.gov (United States)

    Zhang, Yanzong; Zheng, Jingtang; Qu, Xianfeng; Yu, Weizhao; Chen, Honggang

    2008-06-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H2O2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  3. Catalytic Effect of Activated Carbon and Activated Carbon Fiber in Non-Equilibrium Plasma-Based Water Treatment

    International Nuclear Information System (INIS)

    Zhang Yanzong; Zheng Jingtang; Qu Xianfeng; Yu Weizhao; Chen Honggang

    2008-01-01

    Catalysis and regeneration efficiency of granular activated carbon (GAC) and activated carbon fiber (ACF) were investigated in a non-equilibrium plasma water treatment reactor with a combination of pulsed streamer discharge and GAC or ACF. The experimental results show that the degradation efficiency of methyl orange (MO) by the combined treatment can increase 22% (for GAC) and 24% (for ACF) respectively compared to pulsed discharge treatment alone, indicating that the combined treatment has a synergetic effect. The MO degradation efficiency by the combined treatment with pulsed discharge and saturated GAC or ACF can increase 12% and 17% respectively compared to pulsed discharge treatment alone. Both GAC and ACF show catalysis and the catalysis of ACF is prominent. Meanwhile, the regeneration of GAC and ACF are realized in this process. When H 2 O 2 is introduced into the system, the utilization efficiency of ozone and ultraviolet light is improved and the regeneration efficiency of GAC and ACF is also increased.

  4. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Science.gov (United States)

    Stubbins, Aron; Spencer, Robert; Mann, Paul; Holmes, R.; McClelland, James; Niggemann, Jutta; Dittmar, Thorsten

    2015-10-01

    Wildfires have produced black carbon (BC) since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC). The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon) were analyzed for dissolved organic carbon (DOC), colored dissolved organic matter (CDOM), and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254). Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  5. Utilizing Colored Dissolved Organic Matter to Derive Dissolved Black Carbon Export by Arctic Rivers

    Directory of Open Access Journals (Sweden)

    Aron eStubbins

    2015-10-01

    Full Text Available Wildfires have produced black carbon (BC since land plants emerged. Condensed aromatic compounds, a form of BC, have accumulated to become a major component of the soil carbon pool. Condensed aromatics leach from soils into rivers, where they are termed dissolved black carbon (DBC. The transport of DBC by rivers to the sea is a major term in the global carbon and BC cycles. To estimate Arctic river DBC export, 25 samples collected from the six largest Arctic rivers (Kolyma, Lena, Mackenzie, Ob’, Yenisey and Yukon were analyzed for dissolved organic carbon (DOC, colored dissolved organic matter (CDOM, and DBC. A simple, linear regression between DOC and DBC indicated that DBC accounted for 8.9 ± 0.3% DOC exported by Arctic rivers. To improve upon this estimate, an optical proxy for DBC was developed based upon the linear correlation between DBC concentrations and CDOM light absorption coefficients at 254 nm (a254. Relatively easy to measure a254 values were determined for 410 Arctic river samples between 2004 and 2010. Each of these a254 values was converted to a DBC concentration based upon the linear correlation, providing an extended record of DBC concentration. The extended DBC record was coupled with daily discharge data from the six rivers to estimate riverine DBC loads using the LOADEST modeling program. The six rivers studied cover 53% of the pan-Arctic watershed and exported 1.5 ± 0.1 million tons of DBC per year. Scaling up to the full area of the pan-Arctic watershed, we estimate that Arctic rivers carry 2.8 ± 0.3 million tons of DBC from land to the Arctic Ocean each year. This equates to ~8% of Arctic river DOC export, slightly less than indicated by the simpler DBC vs DOC correlation-based estimate. Riverine discharge is predicted to increase in a warmer Arctic. DBC export was positively correlated with river runoff, suggesting that the export of soil BC to the Arctic Ocean is likely to increase as the Arctic warms.

  6. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  7. NapA Mediates a Redox Regulation of the Antioxidant Response, Carbon Utilization and Development in Aspergillus nidulans

    Directory of Open Access Journals (Sweden)

    Ariann E. Mendoza-Martínez

    2017-03-01

    Full Text Available The redox-regulated transcription factors (TFs of the bZIP AP1 family, such as yeast Yap1 and fission yeast Pap1, are activated by peroxiredoxin proteins (Prxs to regulate the antioxidant response. Previously, Aspergillus nidulans mutants lacking the Yap1 ortholog NapA have been characterized as sensitive to H2O2 and menadione. Here we study NapA roles in relation to TFs SrrA and AtfA, also involved in oxidant detoxification, showing that these TFs play different roles in oxidative stress resistance, catalase gene regulation and development, during A. nidulans life cycle. We also uncover novel NapA roles in repression of sexual development, normal conidiation, conidial mRNA accumulation, and carbon utilization. The phenotypic characterization of ΔgpxA, ΔtpxA, and ΔtpxB single, double and triple peroxiredoxin mutants in wild type or ΔnapA backgrounds shows that none of these Prxs is required for NapA function in H2O2 and menadione resistance. However, these Prxs participate in a minor NapA-independent H2O2 resistance pathway and NapA and TpxA appear to regulate conidiation along the same route. Using transcriptomic analysis we show that during conidial development NapA-dependent gene expression pattern is different from canonical oxidative stress patterns. In the course of conidiation, NapA is required for regulation of at least 214 genes, including ethanol utilization genes alcR, alcA and aldA, and large sets of genes encoding proteins involved in transcriptional regulation, drug detoxification, carbohydrate utilization and secondary metabolism, comprising multiple oxidoreductases, membrane transporters and hydrolases. In agreement with this, ΔnapA mutants fail to grow or grow very poorly in ethanol, arabinose or fructose as sole carbon sources. Moreover, we show that NapA nuclear localization is induced not only by oxidative stress but also by growth in ethanol and by carbon starvation. Together with our previous work, these results show

  8. A Method for Sustainable Carbon Dioxide Utilization Process Synthesis and Design

    DEFF Research Database (Denmark)

    Frauzem, Rebecca; Fjellerup, Kasper; Roh, Kosan

    As a result of increasing regulations and concern about the impact of greenhouse gases on the environment, carbon dioxide (CO2) emissions are a primary focus for reducing emissions and improving global sustainability. One method to achieve reduced emissions, is the conversion of CO2 to useful...... compounds via chemical reactions. However, conversion is still in its infancy and requires work for implementation at an industrial level. One aspect of this is the development of a methodology for the formulation and optimization of sustainable conversion processes. This methodology follows three stages...

  9. Community effects of carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Velzeboer, I.; Kupryianchyk, D.; Peeters, E.T.H.M.; Koelmans, A.A.

    2011-01-01

    Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the

  10. Adverse effects of the automotive industry on carbon dioxide emissions

    OpenAIRE

    Mpho Bosupeng

    2016-01-01

    This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japa...

  11. Effect of neutron irradiation on vitreous carbon

    International Nuclear Information System (INIS)

    Kurolenkin, E.I.; Virgil'ev, Yu.S.; Chugunova, T.K.

    1989-01-01

    The change in mass (m), volume (V), specific electric resistance (ρ), coefficient of linear thermal expansion (α), dynamic elasticity modulus (E), and limit of bending strength (σ) of vitreous carbon are studied upon neutron irradiation. Samples for study were two forms of vitreous carbon obtained by hardening thermally reactive polymers at 900-1,000 degree K. Phenol-formaldehyde (bakelite lacquer A, Bakelite A) and furfural-phenol-formaldehyde (FM-2) resin were used. They were irradiated in the experimental water - water VVR-M reactor between 360-1,030 degree K. The maximal neutron flux was 1.65·10 21 neut/cm 2 . Neutron irradiation of vitreous carbon led to its shrinkage and accompanied weakening. Shrinkage and weakening of vitreous carbon was decreased with an increase of treatment and irradiation temperatures

  12. Utilization of solid catfish manure waste as carbon and nutrient source for lactic acid production.

    Science.gov (United States)

    Shi, Suan; Li, Jing; Blersch, David M

    2018-04-19

    The aim of this work was to study the solid waste (manure) produced by catfish as a potential feedstock for the production of lactic acid (LA) via fermentation. The solid waste contains high levels of both carbohydrates and nutrients that are sufficient for LA bacteria. Simultaneous saccharification and co-fermentation (SSCF) was applied using enzyme and Lactobacillus pentosus, and different loadings of enzyme and solid waste were tested. Results showed LA concentrations of 35.7 g/L were obtained at 15% solids content of catfish waste. Because of the high nutrient content in the fish waste, it could also be used as supplementary substrate for nitrogen and carbon sources with other lignocellulosic materials. A combined feedstock of catfish waste and paper mill sludge was tested, increasing the final LA concentration to 43.1 g/L at 12% solids loading. The catfish waste was shown to be a potential feedstock to provide both carbon and nutrients for LA production, suggesting its use as a sole substrate or in combination with other lignocellulosic materials.

  13. Carbon dioxide effects research and assessment program

    International Nuclear Information System (INIS)

    Jacoby, G.

    1980-12-01

    Information about the past and present concentrations of CO 2 in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis

  14. Growth of carbon nanocone arrays on a metal catalyst: The effect of carbon flux ionization

    International Nuclear Information System (INIS)

    Levchenko, I.; Khachan, J.; Vladimirov, S. V.; Ostrikov, K.

    2008-01-01

    The growth of carbon nanocone arrays on metal catalyst particles by deposition from a low-temperature plasma is studied by multiscale Monte Carlo/surface diffusion numerical simulation. It is demonstrated that the variation in the degree of ionization of the carbon flux provides an effective control of the growth kinetics of the carbon nanocones, and leads to the formation of more uniform arrays of nanostructures. In the case of zero degree of ionization (neutral gas process), a width of the distribution of nanocone heights reaches 360 nm with the nanocone mean height of 150 nm. When the carbon flux of 75% ionization is used, the width of the distribution of nanocone heights decreases to 100 nm, i.e., by a factor of 3.6. A higher degree of ionization leads to a better uniformity of the metal catalyst saturation and the nanocone growth, thus contributing to the formation of more height-uniform arrays of carbon nanostructures.

  15. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Darrel [Mississippi State Univ., Mississippi State, MS (United States); Brown, Lewis [Mississippi State Univ., Mississippi State, MS (United States); Lynch, F. Leo [Mississippi State Univ., Mississippi State, MS (United States); Kirkland, Brenda L. [Mississippi State Univ., Mississippi State, MS (United States); Collins, Krystal M. [Mississippi State Univ., Mississippi State, MS (United States); Funderburk, William K. [Mississippi State Univ., Mississippi State, MS (United States)

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115°C (239°F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66°C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 μm diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly

  16. Effects of carbon dioxide on Penicillium chrysogenum: an autoradiographic study

    International Nuclear Information System (INIS)

    Edwards, A.G.; Ho, C.S.

    1988-01-01

    Previous research has shown that dissolved carbon dioxide causes significant changes in submerged penicillin fermentations, such as stunted, swollen hyphae, increased branching, lower growth rates, and lower penicillin productivity. Influent carbon dioxide levels of 5 and 10% were shown through the use of autoradiography to cause an increase in chitin synthesis in submerged cultures of Penicillium chrysogenum. At an influent 5% carbon dioxide level, chitin synthesis is ca. 100% greater in the subapical region of P. chrysogenum hyphae than that of the control, in which there was no influent carbon dioxide. Influent carbon dioxide of 10% caused an increase of 200% in chitin synthesis. It is believed that the cell wall must be plasticized before branching can occur and that high amounts of dissolved carbon dioxide cause the cell to lose control of the plasticizing effect, thus the severe morphological changes occur

  17. Utilization of granular activated carbon adsorber for nitrates removal from groundwater of the Cluj region.

    Science.gov (United States)

    Moşneag, Silvia C; Popescu, Violeta; Dinescu, Adrian; Borodi, George

    2013-01-01

    The level of nitrates from groundwater from Cluj County and other areas from Romania have increased values, exceeding or getting close to the allowed limit values, putting in danger human and animal heath. In this study we used granular activated carbon adsorbent (GAC) for nitrate (NO(-)3) removal for the production of drinking water from groundwater of the Cluj county. The influences of the contact time, nitrate initial concentration, and adsorbent concentration have been studied. We determined the equilibrium adsorption capacity of GAC, used for NO(-)3 removal and we applied the Langmuir and Freundlich isotherm models. Ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy, X ray diffraction (XRD), Scanning Electron Microscopy (SEM) were used for process characterization. We also determined: pH, conductivity, Total Dissolved Solids and Total Hardness. The GAC adsorbents have excellent capacities of removing nitrate from groundwater from Cluj County areas.

  18. Synthesis and Characterization of Multiwalled Carbon Nanotubes/Poly(HEMA-co-MMA) by Utilizing Click Chemistry.

    Science.gov (United States)

    Bach, Long Giang; Cao, Xuan Thang; Islam, Md Rafiqul; Jeong, Yeon Tae; Kim, Jong Su; Lim, Kwon Taek

    2016-03-01

    The hybrid material consisting of multi walled carbon nanotubes (MWNTs) and poly(2-hydroxyethylmethacrylate-co-methylmethacrylate) [poly(HEMA-co-MMA)] was synthesized by a combination of RAFT and Click chemistry. In the primary stage, the copolymer poly(HEMA-co-MMA) was prepared by applying RAFT technique. Alkynyl side groups were incorporated onto the poly(HEMA-co-MMA) backbone by esterification reaction. Then, MWNTs-N3 was prepared by treating MWNTs with 4-azidobutylamine. The click coupling reaction between azide-functionalized MWNTs (MWNTs-N3) and the alkyne-functionalized random copolymer ((HEMA-co-MMA)-Alkyne) with the Cu(I)-catalyzed [3+2] Huisgen cycloaddition afforded the hybrid compound. The structure and properties of poly(MMA-co-HEMA)-g-MWNTs were investigated by FT-IR, EDX and TGA measurements. The copolymer brushes were observed to be immobilized onto the functionalized MWNTs by SEM and TEM analysis.

  19. Carbon transfer in soil - plant system. Molecular labelling utilization for determining rhizosphere compounds

    International Nuclear Information System (INIS)

    Leguay, J.J.

    2000-01-01

    The growing up of the bacteria developing in the rhizosphere of plants is dependent on the compounds exudation by plant roots. Even the bacterial genetics use has permitted to identify diverse functions involved in the process of the rhizosphere colonisation ( mobility, heterotrophic bacteria, growing rate, antibiotics production), there is a big delay in vegetal partners. To decrease this delay we tried to characterize the interactions between a plant model, Arabidopsis thaliana and the rhizosphere bacteria. An experimental device has been conceived for measuring the transfer of carbon issued from the photosynthesis to roots and soil. The exudation by roots has been studied. The analysis of rhizospheric compounds in situ pose some methodological problems, especially, the rhizospheric compounds must be extracted from the soil matrix. we suggest an analysis method of rhizospheric compound and of their dynamics. (F.M.)

  20. A comparative assessment of the energy and carbon balance of utilizing straw

    International Nuclear Information System (INIS)

    Horne, R.E.; Mortimer, N.D.; Hetherington, Robert; Grant, J.F.

    1996-01-01

    There has been a recent growth of interest in the potential for using straw as an energy source to generate electricity and/or heat. The energy balance of this process is important as a measure of the sustainability of such an activity, while the CO 2 emitted and that saved by offsetting the need to produce energy by other means are also important, given the U.K.'s obligations to reduce CO 2 emissions. An existing methodology is adopted to calculate estimates of primary energy inputs and CO 2 outputs. Results of calculations are presented and considered in the context of their implications for potential uses of straw represented by four scenarios. Conclusions are drawn concerning the contributions to the energy and carbon balances of using straw as a fuel and recommendations are made for further work. (author)

  1. Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate.

    Science.gov (United States)

    Lee, Jechan; Jung, Jong-Min; Oh, Jeong-Ik; Sik Ok, Yong; Kwon, Eilhann E

    2017-10-01

    To establish a green platform for biodiesel production, this study mainly investigates pseudo-catalytic (non-catalytic) transesterification of olive oil. To this end, biochar from agricultural waste (maize residue) and dimethyl carbonate (DMC) as an acyl acceptor were used for pseudo-catalytic transesterification reaction. Reaction parameters (temperature and molar ratio of DMC to olive oil) were also optimized. The biodiesel yield reached up to 95.4% under the optimal operational conditions (380°C and molar ratio of DMC to olive oil (36:1)). The new sustainable environmentally benign biodiesel production introduced in this study is greener and faster than conventional transesterification reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Clinical utility of polymorphisms in one-carbon metabolism for breast cancer risk prediction

    Directory of Open Access Journals (Sweden)

    Shaik Mohammad Naushad

    2011-01-01

    Full Text Available This study addresses the issues in translating the laboratory derived data obtained during discovery phase of research to a clinical setting using a breast cancer model. Laboratory-based risk assessment indi-cated that a family history of breast cancer, reduced folate carrier 1 (RFC1 G80A, thymidylate synthase (TYMS 5’-UTR 28bp tandem repeat, methylene tetrahydrofolate reductase (MTHFR C677T and catecholamine-O-methyl transferase (COMT genetic polymorphisms in one-carbon metabolic pathway increase the risk for breast cancer. Glutamate carboxypeptidase II (GCPII C1561T and cytosolic serine hydroxymethyl transferase (cSHMT C1420T polymorphisms were found to decrease breast cancer risk. In order to test the clinical validity of this information in the risk prediction of breast cancer, data was stratified based on number of protective alleles into four categories and in each category sensitivity and 1-specificity values were obtained based on the distribution of number of risk alleles in cases and controls. Receiver operating characteristic (ROC curves were plotted and the area under ROC curve (C was used as a measure of discriminatory ability between cases and controls. In subjects without any protective allele, aberrations in one-carbon metabolism showed perfect prediction (C=0.93 while the predictability was lost in subjects with one protective allele (C=0.60. However, predictability increased steadily with increasing number of protective alleles (C=0.63 for 2 protective alleles and C=0.71 for 3 protective alleles. The cut-off point for discrimination was >4 alleles in all predictable combinations. Models of this kind can serve as valuable tools in translational re-search, especially in identifying high-risk individuals and reducing the disease risk either by life style modification or by medical intervention.

  3. The effects of carbonated alcoholic herbal beverage on selected ...

    African Journals Online (AJOL)

    Aim: Carbonated Alcoholic herbal beverages (CAHB) are a menace in our society as the drink is grossly abused; this study is therefore aimed at investigating the Histomorphological, selected hepatorenal function indices and some hematological parameters effects induced by a Carbonated Alcoholic Herbal Beverage that ...

  4. Effect of high pressurized carbon dioxide on Escherichia coli ...

    African Journals Online (AJOL)

    Carbon dioxide at high pressure can retard microbial growth and sometimes kill microorganisms depending on values of applied pressure, temperature and exposure time. In this study the effect of high pressurised carbon dioxide (HPCD) on Escherichia coli was investigated. Culture of E. coli was subjected to high ...

  5. Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources.

    Science.gov (United States)

    Luthfi, Abdullah Amru Indera; Manaf, Shareena Fairuz Abdul; Illias, Rosli Md; Harun, Shuhaida; Mohammad, Abdul Wahab; Jahim, Jamaliah Md

    2017-04-01

    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.

  6. An experimental study on the effect of carbonic anhydrase on the oxygen isotope exchange kinetics and equilibrium in the carbonic acid system

    Science.gov (United States)

    Uchikawa, J.; Zeebe, R. E.

    2011-12-01

    Stable oxygen isotopes of marine biogenic carbonates are often depleted in 18O relative to the values expected for thermodynamic equilibrium with ambient seawater. One possibility is that 18O-depletion in carbonates is kinetically controlled. The kinetic isotope effect associated with the hydration of CO2 results in 18O-depleted HCO3-. If the HCO3- is utilized before re-establishing equilibrium with ambient water under rapid calcification, the 18O-depletion will be recorded in carbonates. But one caveat in this kinetic model is the fact that many marine calcifiers posses carbonic anhydrase, a zinc-bearing enzyme that catalyzes the CO2 hydration reaction. It is expected that this enzyme accelerates 18O-equilibration in the carbonic acid system by facilitating direct oxygen isotope exchange between HCO3- and H2O via CO2 hydration. Clearly this argues against the conceptual framework of the kinetic model. Yet the critical variable here is the effectiveness of the carbonic anhydrase, which is likely to depend on its concentration and the carbonate chemistry of the aqueous medium. It is also hitherto unknown whether the presence of carbonic anhydrase alters the equilibrium oxygen isotope fractionations between dissolved carbonate species and water. We performed a series of quantitative inorganic carbonate precipitation experiments to examine the changes in the oxygen isotope equilibration time as a function of carbonic anhydrase concentrations. We conducted experiments at pH 8.3 and 8.9. These pH values are similar to the average surface ocean pH and the elevated pH levels observed within calcification microenvironments of certain corals and planktonic foraminifera. A summary of our new experimental results will be presented.

  7. Memristive effects in oxygenated amorphous carbon nanodevices

    Science.gov (United States)

    Bachmann, T. A.; Koelmans, W. W.; Jonnalagadda, V. P.; Le Gallo, M.; Santini, C. A.; Sebastian, A.; Eleftheriou, E.; Craciun, M. F.; Wright, C. D.

    2018-01-01

    Computing with resistive-switching (memristive) memory devices has shown much recent progress and offers an attractive route to circumvent the von-Neumann bottleneck, i.e. the separation of processing and memory, which limits the performance of conventional computer architectures. Due to their good scalability and nanosecond switching speeds, carbon-based resistive-switching memory devices could play an important role in this respect. However, devices based on elemental carbon, such as tetrahedral amorphous carbon or ta-C, typically suffer from a low cycling endurance. A material that has proven to be capable of combining the advantages of elemental carbon-based memories with simple fabrication methods and good endurance performance for binary memory applications is oxygenated amorphous carbon, or a-CO x . Here, we examine the memristive capabilities of nanoscale a-CO x devices, in particular their ability to provide the multilevel and accumulation properties that underpin computing type applications. We show the successful operation of nanoscale a-CO x memory cells for both the storage of multilevel states (here 3-level) and for the provision of an arithmetic accumulator. We implement a base-16, or hexadecimal, accumulator and show how such a device can carry out hexadecimal arithmetic and simultaneously store the computed result in the self-same a-CO x cell, all using fast (sub-10 ns) and low-energy (sub-pJ) input pulses.

  8. Effect of vegetation in reducing carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, J C

    1977-01-01

    Carbon monoxide is a product of incomplete combustion. Because almost all of this gas is produced by motor vehicles, it is considered to have a line rather than a stationary point source. Greatest concentrations of this lethal gas correspond to periods of peak traffic volume and congestion; therefore, there are two daily periods of maxima and minima. Carbon monoxide cannot be detected by sight or smell. For this reason, this gas is especially deadly. During the summer of 1975, a study involving carbon monoxide concentrations at selected sites in Sendai was undertaken in conjunction with an ongoing investigation of urban pollution under the directorship of Professor Toshio Noh of Tohoku University. This study was made possible by a grant from the Japan Society for the Promotion of Science. 5 references, 5 figures, 1 table.

  9. Few-layer graphene growth from polystyrene as solid carbon source utilizing simple APCVD method

    Science.gov (United States)

    Ahmadi, Shahrokh; Afzalzadeh, Reza

    2016-07-01

    This research article presents development of an economical, simple, immune and environment friendly process to grow few-layer graphene by controlling evaporation rate of polystyrene on copper foil as catalyst and substrate utilizing atmospheric pressure chemical vapor deposition (APCVD) method. Evaporation rate of polystyrene depends on molecular structure, amount of used material and temperature. We have found controlling rate of evaporation of polystyrene by controlling the source temperature is easier than controlling the material weight. Atomic force microscopy (AFM) as well as Raman Spectroscopy has been used for characterization of the layers. The frequency of G‧ to G band ratio intensity in some samples varied between 0.8 and 1.6 corresponding to few-layer graphene. Topography characterization by atomic force microscopy confirmed Raman results.

  10. Combination of Asymmetric Supercapacitor Utilizing Activated Carbon and Nickel Oxide with Cobalt Polypyridyl-Based Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    Bagheri, Narjes; Aghaei, Alireza; Ghotbi, Mohammad Yeganeh; Marzbanrad, Ehsan; Vlachopoulos, Nick; Häggman, Leif; Wang, Michael; Boschloo, Gerrit; Hagfeldt, Anders; Skunik-Nuckowska, Magdalena; Kulesza, Pawel J.

    2014-01-01

    Highlights: • Dye Solar Cell and supercapacitor are integrated into a single device capable of generation and storage of energy. • The solar cell part of the device utilizes the Co-based electrolyte and nickel/PEDOT counter electrode. • A cobalt-doped nickel oxide together with activated carbon is used in the capacitor part of the device. • The integrated photocapacitor is characterized by the capacitance of 32 F g −1 and the total efficiency of 0.6%. - Abstract: A dye-sensitized solar cell (DSC) based on the metal-free organic sensitizer and the cobalt (II, III) polypyridyl electrolyte was integrated here within an asymmetric supercapacitor utilizing cobalt-doped nickel oxide and activated carbon as positive and negative electrodes, respectively. A low cost nickel foil served as intermediate (auxiliary) bifunctional electrode separating two parts of the device and permitting the DSC electrolyte regeneration at one side and charge storage within cobalt-doped nickel oxide at the other. The main purpose of the research was to develop an integrated photocapacitor system capable of both energy generation and its further storage. Following irradiation at the 100 mW cm −2 level, the solar cell generated an open-circuit voltage of 0.8 V and short-circuit current of 8 mA cm −2 which corresponds to energy conversion efficiency of 4.9%. It was further shown that upon integration with asymmetric supercapacitor, the photogenerated energy was directly injected into porous charge storage electrodes thus resulting in specific capacitance of 32 F g −1 and energy density of 2.3 Wh kg −1 . The coulumbic and total (energy conversion and charge storage) efficiency of photocapacitor were equal to 54% and 0.6%, respectively

  11. Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength

    DEFF Research Database (Denmark)

    Zhou, H. W.; Mishnaevsky, Leon; Yi, H. Y.

    2016-01-01

    The strength and fracture behavior of carbon fiber reinforced polymer composites with carbon nanotube (CNT) secondary reinforcement are investigated experimentally and numerically. Short Beam Shearing tests have been carried out, with SEM observations of the damage evolution in the composites. 3D...... CNT nanoreinforcement into the matrix and/or the sizing of carbon fiber/reinforced composites ensures strong increase of the composite strength. The effect of secondary CNTs reinforcement is strongest when some small addition of CNTs in the polymer matrix is complemented by the fiber sizing with high...... multiscale computational (FE) models of the carbon/polymer composite with varied CNT distributions have been developed and employed to study the effect of the secondary CNT reinforcement, its distribution and content on the strength and fracture behavior of the composites. It is shown that adding secondary...

  12. Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID.

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; Jonathan Sandquist

    2010-01-01

    Forests are important for carbon sequestration and how they are manipulated either through natural or human induced disturbances can have an effect on CO2 emissions and carbon sequestration. The 2009 National Silviculture Workshop presented scientific information and management strategies to meet a variety of objectives while simultaneously addressing carbon...

  13. Effects of Crack and Climate Change on Service Life of Concrete Subjected to Carbonation

    Directory of Open Access Journals (Sweden)

    Xiao-Yong Wang

    2018-04-01

    Full Text Available Carbonation is among the primary reasons for the initiation of the corrosion of steel rebar in reinforced concrete (RC structures. Due to structural loading effects and environmental actions, inevitable cracks have frequently occurred in concrete structures since the early ages. Additionally, climate change, which entails increases in CO2 concentration and environmental temperature, will also accelerate the carbonation of concrete. This article presents an analytical way of predicting the service life of cracked concrete structures considering influences of carbonation and climate change. First, using a hydration model, the quantity of carbonatable materials and concrete porosity were calculated. Carbonation depth was evaluated considering properties of concrete materials and environmental conditions. Second, the influence of cracks on CO2 diffusivity was examined. Carbonation depth for cracked concrete was evaluated using equivalent CO2 diffusivity. The effects of climate change, for example, growing CO2 concentration and environmental temperature, were considered using different schemes of carbonation models. Third, different climate change scenarios (such as Representative Concentration Pathways (RCP 2.6, RCP 4.5, RCP 8.5 and upper 90% confidence interval of RCP 8.5 and time slices (such as 2000 and 2050 were used for case studies. By utilizing the Monte Carlo method, the influences of various climate change scenarios on the service life loss of concrete structures were highlighted.

  14. Resource Guide to Effective Utility Management and Lean

    Science.gov (United States)

    Water and wastewater utilities are critical to the environmental, economic, and social well being of our nation’s communities, as they work to ensure that the public continues to enjoy the benefits of clean and safe water.

  15. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Science.gov (United States)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  16. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Directory of Open Access Journals (Sweden)

    Bipin Kumar Gupta

    2018-01-01

    Full Text Available The vertical aligned carbon nanotubes (CNTs-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness as a barrier layer and iron (Fe, 1.5 nm thickness as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2–30 walls with an inner diameter of 3–8 nm. Raman spectrum analysis shows G-band at 1580 cm−1 and D-band at 1340 cm−1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm, low turn-on field (0.6 V/μm and field enhancement factor (6917 with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  17. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  18. Effect of Spatial-Dependent Utility on Social Group Domination

    Science.gov (United States)

    Rodriguez, Nathaniel; Meyertholen, Andrew

    2012-02-01

    The mathematical modeling of social group competition has garnered much attention. We consider a model originated by Abrams and Strogatz [Nature 424, 900 (2003)] that predicts the extinction of one of two social groups. This model assigns a utility to each social group, which is constant over the entire society. We find by allowing this utility to vary over a society, through the introduction of a network or spatial dependence, this model may result in the coexistence of the two social groups.

  19. Effect of Ultrasound on Calcium Carbonate Crystallization

    NARCIS (Netherlands)

    Wagterveld, R.M.

    2013-01-01

    Scaling comprises the formation of hard mineral deposits on process or membrane equipment and calcium carbonate is the most common scaling salt. Especially in reverse osmosis (RO) membrane systems, scale formation has always been a serious limitation, causing flux decline, membrane degradation, loss

  20. Effective models for excitons in carbon nanotubes

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Ricaud, Benjamin

    2007-01-01

    We analyse the low lying spectrum of a model of excitons in carbon nanotubes. Consider two particles with opposite charges and a Coulomb self-interaction, placed on an infinitely long cylinder. If the cylinder radius becomes small, the low lying spectrum of their relative motion is well described...

  1. Effects of Inulin and Sodium Carbonate in Phosphate-Free Restructured Poultry Steaks

    Science.gov (United States)

    Öztürk, B.; Serdaroğlu, M.

    2017-09-01

    Recently inorganic phosphates used in meat product formulations have caused negative impact on consumers due to their potential health risks. Therefore, utilization of natural ingredients as phosphate replacers has come into prominence as a novel research topic to meet consumer demands for clean-label trends. In this study, we objected to investigate the effects of inulin utilization either in the powder or gelled form, alone or in combination with sodium carbonate on quality of phosphate-free restructured chicken steaks. Total moisture, protein, lipid and ash values of the trial groups were in the range of 71.54-75.46%, 22.60-24.31%, 0.94-1.70% and 1.45-2.13%, respectively. pH of the samples was between 6.18-6.39, significant increments were recorded in samples containing inulin with sodium carbonate. L*, a* and b* values were recorded as 78.92-81.05, 1.76-3.05 and 10.80-11.94, respectively, where use of gelled inulin resulted in changes of L* and a* values. Utilization of inulin in combination with sodium carbonate decreased cook loss and enhanced product yield. Sensory scores in control group with phosphate showed a similar pattern to sensory scores in groups with inulin and sodium carbonate. During storage, purge loss and lipid oxidation rate were similar in control and inulin + sodium carbonate samples. The results showed that use of inulin in combination with sodium carbonate provided equivalent physical, chemical and sensory quality to phosphates in restructured chicken steaks.

  2. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Science.gov (United States)

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  3. An MBA: the utility and effect on physicians' careers.

    Science.gov (United States)

    Parekh, Selene G; Singh, Bikramjit

    2007-02-01

    Higher economic, legislative, legal, and administrative constraints in health-care services in the United States have led to an increase in physician dissatisfaction and a decrease in physician morale. In this study, we attempted to understand the motivation for a physician to enroll in a business school, and to discover the utility of the Master of Business Administration degree and how it changed the career path for the practicing clinician. We conducted a retrospective study in which a twenty-seven-question survey was distributed by the United States Postal Service and by e-mail to 161 physician graduates of three East Coast business schools. The results were evaluated, and a statistical analysis was performed. Eighty-seven physicians (54%) responded. Eight surveys were discarded because of incomplete data or stray marks, leaving seventy-nine surveys. The average age of the respondents was 41.4 years. The major motivations for going back to school included learning the business aspects of the health-care system (fifty-three respondents; 67%) and obtaining a more interesting job (forty-one respondents; 52%). The time that the respondents allocated for health-care-related activities before and after obtaining the degree was 58.3% and 31.8%, respectively, for patient care (p administrative responsibilities (p principles (thirty-three; 42%), working within a team (twenty-seven; 34%), and negotiating effectively (twenty-five; 32%). Sixty-four physicians (81%) believed that their business degree had been very useful or essential in the advancement of their careers. Many physicians decide to acquire a Master of Business Administration degree to understand the business of medicine. After they complete the degree program, their practice patterns substantially change, which is reflected particularly by an increase in time spent on administrative responsibilities. In order for physicians to overcome the multifaceted challenges of the evolving health-care system, it is

  4. Eccentric utilization ratio: effect of sport and phase of training.

    Science.gov (United States)

    McGuigan, Michael R; Doyle, Timothy L A; Newton, Michael; Edwards, Dylan J; Nimphius, Sophia; Newton, Robert U

    2006-11-01

    The eccentric utilization ratio (EUR), which is the ratio of countermovement jump (CMJ) to static jump (SJ) performance, has been suggested as a useful indicator of power performance in athletes. The purpose of the study was to compare the EUR of athletes from a variety of different sports and during different phases of training. A total of 142 athletes from rugby union, Australian Rules Football, soccer, softball, and field hockey were tested. Subjects performed both CMJ and SJ on a force plate integrated with a position transducer. The EUR was measured as the ratio of CMJ to SJ for jump height and peak power. The rugby union, Australian Rules Football, and hockey athletes were tested during off-season and preseason to provide EUR data during different phases of training. For men, EUR for soccer, Australian Rules Football, and rugby was greater than softball (effect size range, 0.83-0.92). For women, EUR for soccer was greater than field hockey and softball (0.86- 1.0). There was a significant difference between the jump height and peak power method for the Australian Rules Football, rugby, and field hockey tests conducted preseason (p sports such as soccer, rugby union, and Australian Rules Football appear to have higher EUR values, which reflects the greater reliance on stretch shortening activities in these sports. It does appear that EUR can be used to track changes in training with the values significantly increasing from off-season to preseason. The EUR provides the practitioner with information about the performance of athletes and appears to be sensitive to changes in the type of training being undertaken.

  5. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes.

    Science.gov (United States)

    Campbell, Alan S; Jeong, Yeon Joo; Geier, Steven M; Koepsel, Richard R; Russell, Alan J; Islam, Mohammad F

    2015-02-25

    Enzymatic biofuel cells (EBFCs) utilize enzymes to convert chemical energy present in renewable biofuels into electrical energy and have shown much promise in the continuous powering of implantable devices. Currently, however, EBFCs are greatly limited in terms of power and operational stability with a majority of reported improvements requiring the inclusion of potentially toxic and unstable electron transfer mediators or multicompartment systems separated by a semipermeable membrane resulting in complicated setups. We report on the development of a simple, membrane/mediator-free EBFC utilizing novel electrodes of graphene and single-wall carbon nanotube cogel. These cogel electrodes had large surface area (∼ 800 m(2) g(-1)) that enabled high enzyme loading, large porosity for unhindered glucose transport and moderate electrical conductivity (∼ 0.2 S cm(-1)) for efficient charge collection. Glucose oxidase and bilirubin oxidase were physically adsorbed onto these electrodes to form anodes and cathodes, respectively, and the EBFC produced power densities up to 0.19 mW cm(-2) that correlated to 0.65 mW mL(-1) or 140 mW g(-1) of GOX with an open circuit voltage of 0.61 V. Further, the electrodes were rejuvenated by a simple wash and reloading procedure. We postulate these porous and ultrahigh surface area electrodes will be useful for biosensing applications, and will allow reuse of EBFCs.

  6. RNA–Stable-Isotope Probing Shows Utilization of Carbon from Inulin by Specific Bacterial Populations in the Rat Large Bowel

    Science.gov (United States)

    Lawley, Blair; Munro, Karen; Sims, Ian M.; Lee, Julian; Butts, Christine A.; Roy, Nicole

    2014-01-01

    Knowledge of the trophisms that underpin bowel microbiota composition is required in order to understand its complex phylogeny and function. Stable-isotope (13C)-labeled inulin was added to the diet of rats on a single occasion in order to detect utilization of inulin-derived substrates by particular members of the cecal microbiota. Cecal digesta from Fibruline-inulin-fed rats was collected prior to (0 h) and at 6, 12, 18 and 24 h following provision of the [13C]inulin diet. RNA was extracted from these cecal specimens and fractionated in isopycnic buoyant density gradients in order to detect 13C-labeled nucleic acid originating in bacterial cells that had metabolized the labeled dietary constituent. RNA extracted from specimens collected after provision of the labeled diet was more dense than 0-h RNA. Sequencing of 16S rRNA genes amplified from cDNA obtained from these fractions showed that Bacteroides uniformis, Blautia glucerasea, Clostridium indolis, and Bifidobacterium animalis were the main users of the 13C-labeled substrate. Culture-based studies of strains of these bacterial species enabled trophisms associated with inulin and its hydrolysis products to be identified. B. uniformis utilized Fibruline-inulin for growth, whereas the other species used fructo-oligosaccharide and monosaccharides. Thus, RNA–stable-isotope probing (RNA-SIP) provided new information about the use of carbon from inulin in microbiota metabolism. PMID:24487527

  7. Effect of nitrogen and phosphate limitation on utilization of bitumen ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-15

    Dec 15, 2009 ... Carbon (iv) oxide. Bromine + gas. Decolourization. Alkene and alkyne suspect. Cold acidified potassium tetraoxomanganate(vii) + gas. Decolourzation. Alkene and alkyne suspect. Silver trioxonitrate (v) + gas. No reaction. Alkene confirmed. Figure 7. The IR analysis of bitumen before biodegradation.

  8. Ammonia modification of activated carbon to enhance carbon dioxide adsorption: Effect of pre-oxidation

    Science.gov (United States)

    Shafeeyan, Mohammad Saleh; Daud, Wan Mohd Ashri Wan; Houshmand, Amirhossein; Arami-Niya, Arash

    2011-02-01

    A commercial granular activated carbon (GAC) was subjected to thermal treatment with ammonia for obtaining an efficient carbon dioxide (CO2) adsorbent. In general, CO2 adsorption capacity of activated carbon can be increased by introduction of basic nitrogen functionalities onto the carbon surface. In this work, the effect of oxygen surface groups before introduction of basic nitrogen functionalities to the carbon surface on CO2 adsorption capacity was investigated. For this purpose two different approaches of ammonia treatment without preliminary oxidation and amination of oxidized samples were studied. Modified carbons were characterized by elemental analysis and Fourier Transform Infrared spectroscopy (FT-IR) to study the impact of changes in surface chemistry and formation of specific surface groups on adsorption properties. The texture of the samples was characterized by conducting N2 adsorption/desorption at -196 °C. CO2 capture performance of the samples was investigated using a thermogravimetric analysis (TGA). It was found that in both modification techniques, the presence of nitrogen functionalities on carbon surface generally increased the CO2 adsorption capacity. The results indicated that oxidation followed by high temperature ammonia treatment (800 °C) considerably enhanced the CO2 uptake at higher temperatures.

  9. Determination of Aspartame and Caffeine in Carbonated Beverages Utilizing Electrospray Ionization-Mass Spectrometry

    Science.gov (United States)

    Bergen, H. Robert, III; Benson, Linda M.; Naylor, Stephen

    2000-10-01

    Mass spectrometry has undergone considerable changes in the past decade. The advent of "soft ionization" techniques such as electrospray ionization (ESI) affords the direct analysis of very polar molecules without need for the complex inefficient derivatization procedures often required in GC-MS. These ionization techniques make possible the direct mass spectral analysis of polar nonvolatile molecules such as DNA and proteins, which previously were difficult or impossible to analyze by MS. Compounds that readily take on a charge (acids and bases) lend themselves to ESI-MS analysis, whereas compounds that do not readily accept a charge (e.g. sugars) are often not seen or are seen only as inefficient adducts (e.g., M+Na+). To gain exposure to this state-of-the-art analytical procedure, high school students utilize ESI-MS in an analysis of aspartame and caffeine. They dilute a beverage sample and inject the diluted sample into the ESI-MS. The lab is procedurally simple and the results clearly demonstrate the potential and limitations of ESI-coupled mass spectrometry. Depending upon the instructional goals, the outlined procedures can be used to quantify the content of caffeine and aspartame in beverages or to understand the capabilities of electrospray ionization.

  10. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.

    Science.gov (United States)

    Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Chiu, Tzai-Wen; Lin, Hsiun-Yu; Chen, Chun-Da; Chang, Jo-Shu; Lin, Chih-Sheng

    2014-08-01

    The biomass and lipid productivity of Chlorella sp. MTF-15 cultivated using aeration with flue gases from a coke oven, hot stove or power plant in a steel plant of the China Steel Corporation in Taiwan were investigated. Using the flue gas from the coke oven, hot stove or power plant for cultivation, the microalgal strain obtained a maximum specific growth rate and lipid production of (0.827 d(-1), 0.688 g L(-1)), (0.762 d(-1), 0.961 g L(-1)), and (0.728 d(-1), 0.792 g L(-1)), respectively. This study demonstrated that Chlorella sp. MTF-15 could efficiently utilize the CO₂, NOX and SO₂ present in the different flue gases. The results also showed that the growth potential, lipid production and fatty acid composition of the microalgal strain were dependent on the composition of the flue gas and on the operating strategy deployed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Report on the results of research and development under a consignment from NEDO of glycoconjugate production utilizing technologies. Development of technologies to fix and effectively utilize carbon dioxide by applying glycoconjugates; 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Fukugo toshitsu seisan riyo gijutsu no kenkyu kaihatsu (fukugo toshitsu oyo nisanka tanso koteika yuko riyo gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper reports research results in fiscal 1997 for the `research and development of glycoconjugate production utilizing technologies`. In synthesizing, utilizing and remodeling technologies for glycoconjugates by means of chemical synthesis, studies were performed on developing methods to synthesize Gal {beta}1-3Gal NA(c {alpha})1-0-Serine in preparative scale, synthesizing high mannose type sugars of natural type without protection groups, and linking GlcNA or GalNAc onto partial peptide of fibroblast growth factor (FGF). In synthesizing, utilizing and remodeling technologies for glycoconjugates by using biological methods, studies were carried out, with regard to glycoconjugate synthesizing, utilizing and remodeling technologies utilizing animal cells, on identifying sugar structures of IFN-{gamma} produced from CHO cell line, and isolating CHO cell lines introduced with genes of sugar transferred enzyme GnTIV and/or GnTV. Furthermore, studies were conducted on glycoconjugate synthesizing, utilizing and remodeling technologies utilizing microorganisms, and glycoconjugate structure analyzing technologies. In addition, overall investigation was made on glycoconjugate production utilizing technologies. 113 refs., 76 figs., 18 tabs.

  12. Measurements and properties of ice particles and carbon dioxide bubbles in aqueous mixture utilizing optical techniques

    Science.gov (United States)

    Diallo, Amadou O.

    Optical techniques are used to determine the size, shape and many other properties of particles ranging from the micro to a nano-level. These techniques have endless applications. This research is based on a project assigned by a "Vendor" that wants anonymity. The Leica optical microscope and the Dark Field Polarizing Metallurgical Microscope is used to determine the size and count of ice crystals (Vendors products) in multiple time frames. Since the ice temperature influences, its symmetry and the shape is subject to changes at room temperature (300 K) and the atmospheric pressure that is exerted on the ice crystals varies. The ice crystals are in a mixture of water, electrolytes and carbon dioxide with the optical spectroscopy (Qpod2) and Spectra suite, the optical density of the ice crystals is established from the absorbance and transmission measurements. The optical density in this case is also referred to as absorption; it is plotted with respect to a frequency (GHz), wavelength (nm) or Raman shift (1/cm) which shows the light colliding with the ice particles and CO2. Depending on the peaks positions, it is possible to profile the ice crystal sizes using a mean distribution plots. The region of absorbency wavelength expected for the ice is in the visible range; the water molecules in the (UV) Ultra-violet range and the CO2 in the (IR) infrared region. It is also possible to obtain the reflection and transmission output as a percentage change with the wavelengths ranging from 200 to 1100 nm. The refractive index of the ice can be correlated to the density based on the optical acoustic theorem, or Mie Scattering Theory. The viscosity of the ice crystals and the solutions from which the ice crystals are made of as well are recorded with the SV-10 viscometer. The baseline viscosity is used as reference and set lower than that of the ice crystals. The Zeta potential of the particles present in the mixture are approximated by first finding the viscosity of the

  13. Distribution of carbon flux within fatty acid utilization during myocardial ischemia and reperfusion

    International Nuclear Information System (INIS)

    Nellis, S.H.; Liedtke, A.J.; Renstrom, B.

    1991-01-01

    Twenty-nine intact, working pig hearts were extracorporeally perfused and divided into two study groups (16 Aerobic and 13 Ischemic/Reflow hearts). Step function, equilibrium labeling with [14C]palmitate was used to develop uptake and washout curves of radioactive fatty acid products contained in coronary effluent during either aerobic perfusion or reperfusion after ischemia (60% reduction in left anterior descending coronary flow for 30 minutes). Left anterior descending control flows were slightly overperfused in Aerobic hearts (18% higher than in Ischemic/Reflow hearts); otherwise, circumflex and right coronary flows, left ventricular pressure, and serum fatty acids and blood sugar levels were comparable between groups. As expected in Ischemic/Reflow hearts, recovery of regional systolic shortening and myocardial oxygen consumption in reperfusion was only modestly impaired (-20% and -19%, respectively, not significant and p less than 0.011 compared with preischemic values, not significant from Aerobic hearts). The only significant metabolized product to be released from labeled fatty acid utilization in either group was 14CO2. A smaller fatty acid pool also was measured and accounted for by that contained in the coronary intravascular volume. The authors could determine no significant back diffusion of fatty acids from myocardium in either perfusion condition. Uptake time constants of the early phase of 14CO2 production also were virtually identical in both groups (19.9 ± 3.2 versus 16.7 ± 3.2 minutes in Aerobic and Ischemic/Reflow hearts, respectively) and strongly correlated with hemodynamics as described by heart rate. In washout studies, tissue radioactivity in the aqueous soluble and fatty acid pools declined in both study groups, and counts in complex lipids and cholesterol/cholesteryl esters remained steady, whereas those in triacylglycerols varied

  14. Carbon utilization by fruit limits shoot growth in alternate-bearing citrus trees.

    Science.gov (United States)

    Martínez-Alcántara, Belén; Iglesias, Domingo J; Reig, Carmina; Mesejo, Carlos; Agustí, Manuel; Primo-Millo, Eduardo

    2015-03-15

    Fruit load in alternate-bearing citrus trees is reported to alter shoot number and growth during spring, summer, and autumn flushes, and the source-sink balance, which affects the storage and mobilization of reserve nutrients. The aim of this work was to assess the extent of shoot growth inhibition resulting from the presence of fruits in 'Moncada' mandarin trees loaded with fruit (ON) or with very light fruit load (OFF), and to identify the role of carbohydrates and nitrogenous compounds in the competition between fruits and shoots. Growth of reproductive and vegetative organs was measured on a monthly basis. (13)C- and (15)N-labeled compounds were supplied to trace the allocation of reserve nutrients and subsequent translocation from source to sink. At the end of the year, OFF trees produced more abundant flushes (2.4- and 4.9-fold higher in number and biomass, respectively) than ON trees. Fruits from ON trees accumulated higher C amounts at the expense of developing flushes, whereas OFF trees exhibited the opposite pattern. An inverse relationship was identified between the amount of C utilized by fruits and vegetative flush growth. (13)C-labeling revealed an important role for mature leaves of fruit-bearing branches in supporting shoot/fruit growth, and the elevated sink strength of growing fruits on shoots. N availability for vegetative shoots was not affected by the presence or absence of fruits, which accumulated important amounts of (15)N. In conclusion, our results show that shoot growth is resource-limited as a consequence of fruit development, and vegetative-growth inhibition is caused by photoassimilate limitation. The competence for N is not a decisive factor in limiting vegetative growth under the experimental conditions of this study. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. 2D Petroleum System Modeling in Support of Carbon Capture, Utilization and Storage in the Northeast Texas Panhandle

    Science.gov (United States)

    Gragg, E.; Van Wijk, J. W.; Balch, R. S.

    2016-12-01

    A 40 mile long 2D petroleum system model has been constructed and simulated along a 2D reflection seismic line in the western Anadarko Basin. Petroleum system models are useful for predicting carbon storage capacity, characterizing regional CO2 plume migration risks, predicting how future fields may respond to CO2-EOR via hydrocarbon compositional estimations and characterizing the petroleum system that make sites attractive for storage. This work is part of the Southwest Regional Partnership on Carbon Sequestration Phase III large scale injection operation at Farnsworth Unit Ochiltree Co., Texas. Farnsworth Unit is a mature oil field producing from Morrowan Sandstone incised valley deposits. The project goal is to evaluate the injection and storage of 1 million metric tons of man-made CO2. Geologic carbon storage and utilization via CO2-enhanced oil recovery operations is a method under active research which aims to mitigate climate change via emission reductions while meeting current energy demands. The 2D model was constructed using 2D regional reflection seismic data, geophysical logs and core data. Simulations are forward modeled over 542 Ma of the Anadarko Basins geologic history. The research illustrates (1) in the unlikely case of CO2 leakage out of the reservoir, buoyancy driven regional migration risk is to the northwest-northeast (2) Morrowan play hydrocarbons in the Northeast Texas Panhandle dominantly migrated from the Thirteen Finger Limestone further basinward (3) the regions tectonic evolution has played an important role on the pressure and hydraulic history of reservoirs. Farnsworth's reservoir was discovered as under-pressured, the exact process(s) giving rise to this condition are not well-understood and need further investigation. Moreover, the heat flow model used in this study will aid understanding of the diagenetic evolution of the reservoir and caprocks better. The petroleum system modeling conducted here has accurately predicted 1st order

  16. Adverse effects of the automotive industry on carbon dioxide emissions

    Directory of Open Access Journals (Sweden)

    Mpho Bosupeng

    2016-05-01

    Full Text Available This study aims to determine the effects of the automotive industry on carbon dioxide emissions for the period from 1997 to 2010 for diverse economies, as well as the relationships between carbon dioxide discharges and output. The study applies cointegration and causality tests to validate these associations. The results of the Johansen cointegration test depict long-run associations between the quantity of passenger cars and carbon dioxide emissions in France, Sweden, Spain, Hungary and Japan. In addition, significant relations were observed between output and carbon dioxide discharges in Spain, Canada, India and Japan. Changes in output had substantial impact on emissions in Germany, Canada and India. The results also show that the number of passenger cars influences the magnitude of emissions in multiple economies. In conclusion, the automotive industry has to be considered in policies that aim to reduce carbon dioxide emissions.

  17. Cost effective tools for soil organic carbon monitoring

    Science.gov (United States)

    Shepherd, Keith; Aynekulu, Ermias

    2013-04-01

    There is increasing demand for data on soil properties at fine spatial resolution to support management and planning decisions. Measurement of soil organic carbon has attracted much interest because (i) soil organic carbon is widely cited as a useful indicator of soil condition and (ii) of the importance of soil carbon in the global carbon cycle and climate mitigation strategies. However in considering soil measurement designs there has been insufficient attention given to careful analysis of the specific decisions that the measurements are meant to support and on what measurements have high information value for decision-making. As a result, much measurement effort may be wasted or focused on the wrong variables. A cost-effective measurement is one that reduces risk in decisions and does not cost more than the societal returns to additional evidence. A key uncertainty in measuring soil carbon as a soil condition indicator is what constitutes a good or bad level of carbon on a given soil. A measure of soil organic carbon concentration may have limited value for informing management decisions without the additional information required to interpret it, and so expending further efforts on improving measurements to increase precision may then have no value to improving the decision. Measuring soil carbon stock changes for carbon trading purposes requires high levels of measurement precision but there is still large uncertainty on whether the costs of measurement exceed the benefits. Since the largest cost component in soil monitoring is often travel to the field and physically sampling soils, it is generally cost-effective to meet multiple objectives by analysing a number of properties on a soil sample. Diffuse reflectance infrared spectroscopy is playing a key role in allowing multiple soil properties to be determined rapidly and at low cost. The method provides estimation of multiple soil properties (e.g. soil carbon, texture and mineralogy) in one measurement

  18. Effect of long construction times on utility financial requirements

    International Nuclear Information System (INIS)

    Francis, J.M.

    1981-01-01

    It is well-known that long construction times significantly increase the cost of an individual nuclear plant. Long construction times, however, are not confined to either a single plant or a single utility. Rather, they apparently occur in almost all nuclear plants currently under construction. The total financial requirement to complete the 82 nuclear plants currently under construction was assessed. The analysis was performed assuming a construction time of ten years in one case, and six years in another. It was found that decreasing the construction time from ten to six years will reduce the financial requirements of the utility industry by $89 billion

  19. Effects of carbon additives on the performance of negative electrode of lead-carbon battery

    International Nuclear Information System (INIS)

    Zou, Xianping; Kang, Zongxuan; Shu, Dong; Liao, Yuqing; Gong, Yibin; He, Chun; Hao, Junnan; Zhong, Yayun

    2015-01-01

    Highlights: • The negative electrode sheets are prepared by simulating manufacture condition of negative plates. • The effect of carbon additives on negative electrode sheets is studied by electrochemical method. • Carbon additives in NAM enhance electrochemical properties of the negative sheets. • The negative sheets with 0.5 wt% carbon additive exhibit better electrochemical performance. • The charge-discharge mechanism is discussed in detail according to the experimental results. - Abstract: In this study, carbon additives such as activated carbon (AC) and carbon black (CB) are introduced to the negative electrode to improve its electrochemical performance, the negative electrode sheets are prepared by simulating the negative plate manufacturing process of lead-acid battery, the types and contents of carbon additives in the negative electrode sheets are investigated in detail for the application of lead-carbon battery. The electrochemical performance of negative electrode sheets are measured by chronopotentiometry, galvanostatic charge-discharge and electrochemical impedance spectroscopy, the crystal structure and morphology are characterized by X-ray diffraction and scanning electron microscopy, respectively. The experimental results indicate that the appropriate addition of AC or CB can enhance the discharge capacity and prolong the cycle life of negative electrode sheets under high-rate partial-state-of-charge conditions, AC additive exerts more obvious effect than CB additive, the optimum contents for the best electrochemical performance of the negative electrode sheets are determined as 0.5wt% for both AC and CB. The reaction mechanism of the electrochemical process is also discussed in this paper, the appropriate addition of AC or CB in negative electrode can promote the conversion of PbSO 4 to Pb, suppress the sulfation of negative electrode sheets and reduce the electrochemical reaction resistance

  20. Climate implications of including albedo effects in terrestrial carbon policy

    Science.gov (United States)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo

  1. Effect of an Aqueous Extract of Entandrophragma utile Bark on ...

    African Journals Online (AJOL)

    Adjunct therapy is needed for patients with compromised gastrointestinal mucosa due to necessary aspirin usage against cardiovascular disorders. We tested the Nigerian bark extract of Entandrophragma utile on gastric acid secretion (GA) and peptic activity (PA). Rats were ligated at the pylorus for collection of gastric ...

  2. Effect of Work Complexity & Individual Differences on Nursing IT Utilization

    Science.gov (United States)

    Tian, Renran

    2013-01-01

    Various healthcare IT systems have been developed to reduce medication errors. Although these systems can help to improve patient safety and reduce adverse medical events, new problems are also generated with their utilizations. One key problem during IT implementation is the change of working process. Although many of these changes are recorded…

  3. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    International Nuclear Information System (INIS)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping; Liu, Zizheng; Xiong, Ya

    2014-01-01

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments

  4. Utilization of solar energy in sewage sludge composting: Fertilizer effect and application

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yiqun; Yu, Fang; Liang, Shengwen; Wang, Zongping, E-mail: zongpingw@hust.edu.cn; Liu, Zizheng; Xiong, Ya

    2014-11-15

    Highlights: • Solar energy technologies were utilized in aerobic sewage sludge composting. • Greenhouse and solar reactors were constructed to compare impacts on the composting. • Impatiens balsamina was planted in pot experiments to evaluate fertilizer effect. - Abstract: Three reactors, ordinary, greenhouse, and solar, were constructed and tested to compare their impacts on the composting of municipal sewage sludge. Greenhouse and solar reactors were designed to evaluate the use of solar energy in sludge composting, including their effects on temperature and compost quality. After 40 days of composting, it was found that the solar reactor could provide more stable heat for the composting process. The average temperature of the solar reactor was higher than that of the other two systems, and only the solar reactor could maintain the temperature above 55 °C for more than 3 days. Composting with the solar reactor resulted in 31.3% decrease in the total organic carbon, increased the germination index to 91%, decreased the total nitrogen loss, and produced a good effect on pot experiments.

  5. Correlation and dimensional effects of trions in carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2010-01-01

    We study the binding energies of singlet trions, i.e., charged excitons, in carbon nanotubes. The problem is modeled, through the effective-mass model, as a three-particle complex on the surface of a cylinder, which we investigate using both one- and two-dimensional expansions of the wave function...... are used to compute physical binding energies for a wide selection of carbon nanotubes. In addition, the dependence on dielectric screening is examined. Our findings indicate that trions are detectable at room temperature in carbon nanotubes with radius below 8 Å....

  6. Effect of ornithine on ammonia utilization and urea synthesis in isolated hepatocytes from fed rats

    International Nuclear Information System (INIS)

    Garwacki, S.; Wiechetek, M.; Souffrant, W.B.

    1988-01-01

    The effect of ornithine on the ammonia utilization and urea synthesis in hepatocytes isolated from fed male Wistar rats was investigated. On the basis of the 15 N tracer technique, it was found that ornithine stimulated urea synthesis with an increased utilization of the exogenously marked ammonia for urea, but deminished its utilization in other N-metabolic processes. The results also showed that the stimulation of urea synthesis due to ornithine resulted from the utilization of both exogenous and endogenous sources. (author)

  7. Performance and Stability Enhancement of Perovskite-Type Nanomaterials Applied for Carbon Capture Utilizing Oxyfuel Combustion

    Directory of Open Access Journals (Sweden)

    Qiuwan Shen

    2017-02-01

    Full Text Available A new series of Ba-Co-Operovskite-type oxygen carriers has been successfully synthesized by the microwave-assisted sol-gel method and further applied for producing an O2/CO2 mixture gas. The oxygen adsorption/desorption performance of synthesized samples was studied in a fixed-bed reactor system. Effects of A/B-site substitution on the oxygen desorption performance of Ba-Co-O–based perovskites are also included. Furthermore, the effects of operating conditions including the adsorption time and temperature as well as the desorption temperature on oxygen production performance were investigated in detail. The results indicated that BaCoO3-δ exhibited an excellent oxygen desorption performance among the synthesized A/B-site–substituted ACoO3-δ and BaBO3-δ samples, and that the optimal adsorption time, adsorption temperature and desorption temperatureforBaCoO3-δ were determined to be 20min, 850◦Cand850◦C, respectively, in this study.

  8. Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials.

    Science.gov (United States)

    Sampson, Matthew D; Kubiak, Clifford P

    2016-02-03

    Earth-abundant manganese bipyridine (bpy) complexes are well-established molecular electrocatalysts for proton-coupled carbon dioxide (CO2) reduction to carbon monoxide (CO). Recently, a bulky bipyridine ligand, 6,6'-dimesityl-2,2'-bipyridine (mesbpy), was utilized to significantly lower the potential necessary to access the doubly reduced states of these manganese catalysts by eliminating their ability to dimerize after one-electron reduction. Although this Mn mesbpy catalyst binds CO2 at very low potentials, reduction of a resulting Mn(I)-COOH complex at significantly more negative potentials is required to achieve fast catalytic rates. Without reduction of Mn(I)-COOH, catalysis occurs slowly via a alternate catalytic pathway-protonation of Mn(I)-COOH to form a cationic tetracarbonyl complex. We report the use of Lewis acids, specifically Mg(2+) cations, to significantly increase the rate of catalysis (by over 10-fold) at these low overpotentials (i.e., the same potential as CO2 binding). Reduction of CO2 occurs at one of the lowest overpotentials ever reported for molecular electrocatalysts (η = 0.3-0.45 V). With Mg(2+), catalysis proceeds via a reductive disproportionation reaction of 2CO2 + 2e(-) → CO and CO3(2-). Insights into the catalytic mechanism were gained by using variable concentration cyclic voltammetry, infrared spectroelectrochemistry, and bulk electrolysis studies. The catalytic Tafel behavior (log turnover frequency vs overpotential relationship) of [Mn(mesbpy)(CO)3(MeCN)](OTf) with added Mg(2+) is compared with those of other commonly studied CO2 reduction catalysts.

  9. Intrinsic graphene field effect transistor on amorphous carbon films

    OpenAIRE

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  10. Developing strategic plans for effective utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, Danas [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Sciences and Applications

    2015-12-15

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  11. Developing strategic plans for effective utilization of research reactors

    International Nuclear Information System (INIS)

    Ridikas, Danas

    2015-01-01

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  12. Enhancing effects of picocyanobacteria on growth and hydrocarbon consumption potential of the associated oil-utilizing bacteria

    International Nuclear Information System (INIS)

    Radwan, S.S.; Al-Hasan, R.H.; Salamah, S.

    2004-01-01

    Marine surface waters around the world are rich in unicellular cyanobacteria or picocyanobacteria. This paper presents the results of a study which focused on the interaction of microorganisms in naturally occurring marine consortium active in hydrocarbon attenuation. Picocyanobacteria are minute phototrophs which accumulate hydrocarbons from water without any potential for oxidizing these compounds. This study demonstrates that the picocyanobacteria are part of a microbial consortia floating on the water surface of the Arabian Gulf. The consortia are include a rich population of oil-utilizing true bacteria whose growth and activities are improved in the presence of cyanobacterial partners. Each gram of picocyanobacterial biomass was associated with 10 8 - 10 12 cells of oil-utilizing bacteria. Studies have shown that oil-utilizing bacteria grow better in the presence of their partner picocyanobacteria. In addition, the oil-utilizing bacteria resulted in more powerful hydrocarbon attenuation in the presence of picocyanobacteria. Picocyanobacterial cells accumulate hydrocarbon from water without biodegrading it. The oil-utilizing bacteria grew on hydrocarbons for a source of carbon and energy. It was concluded that the oil-polluted environment of the Arabian Gulf can be cleaned effectively by the cooperative activities of this oil consuming group of bacteria composed of symbiotic microorganisms floating in the Gulf waters. 17 refs., 1 tab., 6 figs

  13. High Sensitivity Electrochemical Cholesterol Sensor Utilizing a Vertically Aligned Carbon Nanotube Electrode with Electropolymerized Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Ditsayut Phokharatkul

    2009-10-01

    Full Text Available In this report, a new cholesterol sensor is developed based on a vertically aligned CNT electrode with two-step electrochemical polymerized enzyme immobilization. Vertically aligned CNTs are selectively grown on a 1 mm2 window of gold coated SiO2/Si substrate by thermal chemical vapor deposition (CVD with gravity effect and water-assisted etching. CNTs are then simultaneously functionalized and enzyme immobilized by electrochemical polymerization of polyaniline and cholesterol enzymes. Subsequently, ineffective enzymes are removed and new enzymes are electrochemically recharged. Scanning electron microscopic characterization indicates polymer-enzyme nanoparticle coating on CNT surface. Cyclic voltammogram (CV measurements in cholesterol solution show the oxidation and reduction peaks centered around 450 and −220 mV, respectively. An approximately linear relationship between the cholesterol concentration and the response current could be observed in the concentration range of 50–300 mg/dl with a sensitivity of approximately 0.22 μA/mg·dl−1, which is considerably higher compared to previously reported CNT bioprobe. In addition, good specificity toward glucose, uric acid acetaminophen and ascorbic acid have been obtained. Moreover, sensors have satisfactory stability, repeatability and life time. Therefore, the electropolymerized CNT bioprobe is promising for cholesterol detection in normal cholesterol concentration in human blood.

  14. In Situ Densification Utilizing a Low-Viscosity Wetting Impregnant that Greating Reduces Processing Time to Produce Uniform Density Carbon-Carbon Composites

    National Research Council Canada - National Science Library

    Hoffman, Wesley

    2002-01-01

    High-performance carbon-carbon (C-C) composites possess a unique set of properties that make them desirable materials for high-temperature structural uses such as in rocket propulsion components, hypersonic vehicles, and aircraft brakes...

  15. Report on a survey in fiscal 1999. Supplementary survey on research and development of carbon dioxide fixation and effective utilization technologies utilizing bacteria and algae (the survey on feasibility of bio-technologies to create economic effects, such as the biological CO2 fixation technology); 1999 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu futai chosa. Keizaiteki koka wo soshutsusuru seibutsuteki CO{sub 2} koteigijutsu nado no biotechnology no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Bio-technologies including the biological CO2 fixation technology, or the green bio-technologies (GBT) are the technologies indispensable in realizing the change to a resource circulating and environment harmonizing society that accompanies economical growth, or in other words, the 'sustainable development'. In quantifying the feasibility of these technologies, the GBTs that contribute to creating Japan's international competitive power and employment were specified, and an approach to establish the realization target in 2010 was adopted, upon identifying the general condition of the related markets inside and outside the country. The GBT is the technology that makes the best use of Japan's independent strength created by combining the enzyme engineering and fermentation engineering with the 'genome science' (HEART). The targets are to substitute four million kiloliters of petroleum with a resource circulation type energy generated by the bio-technology; apply the bio-technology to about 30% of products and processes produced or used in Japan's chemical industries; and aim at creating markets by using environmental measurement and analysis, treatment of hard-to-decompose substances, and supports on tree planting as the three pillars. A simulation on return on investment in GBT business suggests the effect of promoting PFI. (NEDO)

  16. Report on a survey in fiscal 1999. Supplementary survey on research and development of carbon dioxide fixation and effective utilization technologies utilizing bacteria and algae (the survey on feasibility of bio-technologies to create economic effects, such as the biological CO2 fixation technology); 1999 nendo saikin sorui nado riyo nisanka tanso koteika yuko riyo gijutsu kenkyu kaihatsu futai chosa. Keizaiteki koka wo soshutsusuru seibutsuteki CO{sub 2} koteigijutsu nado no biotechnology no kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Bio-technologies including the biological CO2 fixation technology, or the green bio-technologies (GBT) are the technologies indispensable in realizing the change to a resource circulating and environment harmonizing society that accompanies economical growth, or in other words, the 'sustainable development'. In quantifying the feasibility of these technologies, the GBTs that contribute to creating Japan's international competitive power and employment were specified, and an approach to establish the realization target in 2010 was adopted, upon identifying the general condition of the related markets inside and outside the country. The GBT is the technology that makes the best use of Japan's independent strength created by combining the enzyme engineering and fermentation engineering with the 'genome science' (HEART). The targets are to substitute four million kiloliters of petroleum with a resource circulation type energy generated by the bio-technology; apply the bio-technology to about 30% of products and processes produced or used in Japan's chemical industries; and aim at creating markets by using environmental measurement and analysis, treatment of hard-to-decompose substances, and supports on tree planting as the three pillars. A simulation on return on investment in GBT business suggests the effect of promoting PFI. (NEDO)

  17. The effects of neutron irradiation on the structure of carbon-carbon composites

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Hollenberg, G. W.; Slagle, O.D.; Watson, R.D.

    1991-01-01

    In this paper irradiation behavior of carbon fibers and carbon-carbon composites are discussed in terms on simple microstructural models. Previous data are discussed in terms of these models. New data are presented for the irradiation-induced dimensional changes of selected carbon-carbon composites. The influence of fiber precursor on carbon- carbon irradiation performance is discussed

  18. Biosynthetic effects on the stable carbon isotopic compositions of agal lipids: Implications for deciphering the carbon isotopic biomarker record

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Schouten, S.; Klein Breteler, W.C.M.; Blokker, P.; Schogt, N.; Rijpstra, W.I.C.; Grice, K.; Baas, M.

    1998-01-01

    Thirteen species of algae covering an extensive range of classes were cultured and stable carbon isotopic compositions of their lipids were analysed in order to assess carbon isotopic fractionation effects during their biosynthesis. The fatty acids were found to have similar stable carbon isotopic

  19. Utilization of waste bittern from saltern as a source for magnesium and an absorbent for carbon dioxide capture.

    Science.gov (United States)

    Na, Choon-Ki; Park, Hyunju; Jho, Eun Hea

    2017-10-01

    During solar salt production, large quantities of bittern, a liquid by-product containing high inorganic substance concentrations, are produced. The purpose of this research was to examine the utilization of waste bittern generated from salterns as a source for Mg production and as an absorbent for carbon dioxide (CO 2 ) capture. The study was conducted in a sequential two-step process. At NaOH/Mg molar ratios of 2.70-2.75 and pH 9.5-10.0, > 99% Mg precipitation from the bittern was achieved. After washing with water, 100-120 g/L of precipitate containing 94% Mg(OH) 2 was recovered from the bittern. At the optimum NH 4 OH concentration of 5%, 120 g of sodium bicarbonate precipitate per liter of bittern were recovered, which was equivalent to 63 g CO 2 captured per liter of bittern. These results can be used to support the use of bittern as a resource and reduce economic losses during solar salt production.

  20. Evaluation of the integrated hydrothermal carbonization-algal cultivation process for enhanced nitrogen utilization in Arthrospira platensis production.

    Science.gov (United States)

    Yao, Changhong; Wu, Peichun; Pan, Yanfei; Lu, Hongbin; Chi, Lei; Meng, Yingying; Cao, Xupeng; Xue, Song; Yang, Xiaoyi

    2016-09-01

    Sustainable microalgal cultivation at commercial scale requires nitrogen recycling. This study applied hydrothermal carbonization to recover N of hot-water extracted Arthrospira platensis biomass residue into aqueous phase (AP) under different operation conditions and evaluated the N utilization, biomass yield and quality of A. platensis cultures using AP as the sole N source. With the increase of temperature at 190-210°C or reaction time of 2-3h, the N recovery rate decreased under nitrogen-repletion (+N) cultivation, while contrarily increased under nitrogen-limitation (-N) cultivation. Under +N biomass accumulation in the cultures with AP under 190°C was enhanced by 41-67% compared with that in NaNO3, and the highest protein content of 51.5%DW achieved under 200°C-2h was also 22% higher. Carbohydrate content of 71.4%DW under -N cultivation achieved under 210°C-3h was 14% higher than that in NaNO3. HTC-algal cultivation strategy under -N mode could save 60% of conventional N. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of doping of multi-walled carbon nanotubes on phenolic based carbon fiber reinforced nanocomposites

    International Nuclear Information System (INIS)

    Saeed, Sadaf; Hakeem, Saira; Faheem, Muhammad; Alvi, Rashid Ahmed; Farooq, Khawar; Hussain, Syed Tajammul; Ahmad, Shahid Nisar

    2013-01-01

    We report on the effect of multi-walled carbon nanotubes (MWCNTs) on different properties of phenolic resin. A low content of MWCNTs (∼ 0.05 wt%) was mixed in phenolic resin and a stable dispersion was achieved by ultrasonication, followed by melt mixing. After curing the characterization of these composites was done by using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier transform infra-red spectroscopy (FTIR). The thermal and ablative properties of carbon fiber reinforced MWCNTs-phenolic nanocomposites were also studied. The addition of MWCNTs showed improvement in thermal stability and ablation properties.

  2. Corn cob biochar increases soil culturable bacterial abundance without enhancing their capacities in utilizing carbon sources in Biolog Eco-plates

    Institute of Scientific and Technical Information of China (English)

    JIANG Lin-lin; HAN Guang-ming; LAN Yu; LIU Sai-nan; GAO Ji-ping; YANG Xu; MENG Jun; CHEN Wen-fu

    2017-01-01

    Biochar has been shown to influence soil microbial communities in terms of their abundance and diversity.However,the relationship among microbial abundance,structure and C metabolic traits is not well studied under biochar application.Here it was hypothesized that the addition of biochar with intrinsic properties (i.e.,porous structure) could affect the proliferation of culturable microbes and the genetic structure of soil bacterial communities.In the meantime,the presence of available organic carbon in biochar may influence the C utilization capacities of microbial community in Biolog Eco-plates.A pot experiment was conducted with differenct biochar application (BC) rates:control (0 t ha-1),BC1 (20 t ha-1) and BC2 (40 t ha-1).Culturable microorganisms were enumerated via the plate counting method.Bacterial diversity was examined using denaturing gradient gel electrophoresis (DGGE).Microbial capacity in using C sources was assessed using Biolog Eco-plates.The addition of biochar stimulated the growth of actinomyces and bacteria,especially the ammonifying bacteria and azotobacteria,but had no significant effect on fungi proliferation.The phylogenetic distribution of the operational taxonomic units could be divided into the following groups with the biochar addition:Firmicutes,Acidobacteria,Gemmatimonadetes,Actinobacteria,Cyanobacteria and α-,β-,γ-and δ-Proteobacteria (average similarity >95%).Biochar application had a higher capacity utilization for L-asparagine,Tween 80,D-mannitol,L-serine,γ-hydroxybutyric acid,N-acetyI-D-glucosamine,glycogen,itaconic acid,glycyl-L-glutamic acid,α-ketobutyricacid and putrescine,whereas it had received decreased capacities in using the other 20 carbon sources in Biolog Eco-plates.Redundancy analysis (RDA) revealed that the physico-chemical properties,indices of bacterial diversity,and C metabolic traits were positively correlated with the appearance of novel sequences under BC2 treatment.Our study indicates that the

  3. Effects of carbon and nitrogen sources on the induction and ...

    African Journals Online (AJOL)

    Effects of carbon and nitrogen sources on the induction and repression of chitinase enzyme from Beauveria bassiana isolates. Priyanka Dhar, Gurvinder Kaur. Abstract. Beauveria bassiana a natural soil borne insect pathogen is being used effectively these days in integrated pest management system. Foliar application of ...

  4. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    OpenAIRE

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been o...

  5. The mediating role of training utility in the relationship between training needs assessment and organisational effectiveness

    NARCIS (Netherlands)

    Eerde, van W.; Tang, K.C.S.; Talbot, G.

    2008-01-01

    In a survey among respondents from 96 organizations, we found that the utility of training partially mediated the relationship between Training Needs Assessment (TNA) comprehensiveness and the effectiveness of the organization. We did not find an effect of training quantity on training utility and

  6. Effects of Nb Modification and Cooling Rate on the Microstructure in an Ultrahigh Carbon Steel

    Science.gov (United States)

    Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N.

    2018-06-01

    In this study, two different melting methods were used to investigate effects of Nb modification on microstructure in ultrahigh carbon steel (UHCS). Nb-free and Nb-modified UHCS samples were produced by melting and resolidifying an industrially produced base UHCS with and without addition of Nb powder. Microstructure was characterized using scanning electron microscopy, X-ray diffraction, and electron dispersive spectroscopy. Equilibrium computations of phase fractions and compositions were utilized to help describe microstructural changes caused by the Nb additions. Nb combined with C to form NbC structures before and during austenite solidification, reducing the effective amount of carbon available for the other phases. Cementite network spacing in the Nb-free samples was controlled by the cooling rate during solidification (faster cooling led to a more refined network). Network spacing in the Nb-modified UHCS could be enlarged by NbC structures that formed cooperatively with austenite.

  7. Interactive effects of carbon footprint information and its accessibility on value and subjective qualities of food products.

    Science.gov (United States)

    Kimura, Atsushi; Wada, Yuji; Kamada, Akiko; Masuda, Tomohiro; Okamoto, Masako; Goto, Sho-ichi; Tsuzuki, Daisuke; Cai, Dongsheng; Oka, Takashi; Dan, Ippeita

    2010-10-01

    We aimed to explore the interactive effects of the accessibility of information and the degree of carbon footprint score on consumers' value judgments of food products. Participants (n=151, undergraduate students in Japan) rated their maximum willingness to pay (WTP) for four food products varying in information accessibility (active-search or read-only conditions) and in carbon footprint values (low, middle, high, or non-display) provided. We also assessed further effects of information accessibly and carbon footprint value on other product attributes utilizing the subjective estimation of taste, quality, healthiness, and environmental friendliness. Results of the experiment demonstrated an interactive effect of information accessibility and the degree of carbon emission on consumer valuation of carbon footprint-labeled food. The carbon footprint value had a stronger impact on participants' WTP in the active-search condition than in the read-only condition. Similar to WTP, the results of the subjective ratings for product qualities also exhibited an interactive effect of the two factors on the rating of environmental friendliness for products. These results imply that the perceived environmental friendliness inferable from a carbon footprint label contributes to creating value for a food product.

  8. Protective effect of Parthenium hysterophorus against carbon ...

    African Journals Online (AJOL)

    admin

    Results: Pre-treatment of rabbits with Ph.Cr reduced ALT, ALP and TB levels (p ... treatment of liver disorders. Because of more effectiveness, less consequences of side effects and low cost, natural remedies are now .... showed hepatocyte necrosis, vacuolization of ..... myocardium, cardiac pacemakers and vascular smooth.

  9. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN

    Directory of Open Access Journals (Sweden)

    Penny Lea Morrill

    2014-11-01

    Full Text Available Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in 13 C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ13C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO.

  10. Investigations of potential microbial methanogenic and carbon monoxide utilization pathways in ultra-basic reducing springs associated with present-day continental serpentinization: the Tablelands, NL, CAN.

    Science.gov (United States)

    Morrill, Penny L; Brazelton, William J; Kohl, Lukas; Rietze, Amanda; Miles, Sarah M; Kavanagh, Heidi; Schrenk, Matthew O; Ziegler, Susan E; Lang, Susan Q

    2014-01-01

    Ultra-basic reducing springs at continental sites of serpentinization act as portals into the biogeochemistry of a subsurface environment with H2 and CH4 present. Very little, however, is known about the carbon substrate utilization, energy sources, and metabolic pathways of the microorganisms that live in this ultra-basic environment. The potential for microbial methanogenesis with bicarbonate, formate, acetate, and propionate precursors and carbon monoxide (CO) utilization pathways were tested in laboratory experiments by adding substrates to water and sediment from the Tablelands, NL, CAD, a site of present-day continental serpentinization. Microbial methanogenesis was not observed after bicarbonate, formate, acetate, or propionate addition. CO was consumed in the live experiments but not in the killed controls and the residual CO in the live experiments became enriched in (13)C. The average isotopic enrichment factor resulting from this microbial utilization of CO was estimated to be 11.2 ± 0.2‰. Phospholipid fatty acid concentrations and δ(13)C values suggest limited incorporation of carbon from CO into microbial lipids. This indicates that in our experiments, CO was used primarily as an energy source, but not for biomass growth. Environmental DNA sequencing of spring fluids collected at the same time as the addition experiments yielded a large proportion of Hydrogenophaga-related sequences, which is consistent with previous metagenomic data indicating the potential for these taxa to utilize CO.

  11. Effect of carbonation on the leaching of organic carbon and of copper from MSWI bottom ash.

    Science.gov (United States)

    Arickx, S; De Borger, V; Van Gerven, T; Vandecasteele, C

    2010-07-01

    In Flanders, the northern part of Belgium, about 31% of the produced amount of MSWI bottom ash is recycled as secondary raw material. In view of recycling a higher percentage of bottom ash, a particular bottom ash fraction (Ø 0.1-2mm) was studied. As the leaching of this bottom ash fraction exceeds some of the Flemish limit values for heavy metals (with Cu being the most critical), treatment is required. Natural weathering and accelerated carbonation resulted in a significant decrease of the Cu leaching. Natural weathering during 3 months caused a decrease of Cu leaching to <50% of its original value, whereas accelerated carbonation resulted in an even larger decrease (to ca. 13% of its initial value) after 2 weeks, with the main decrease taking place within the first 48 h. Total organic carbon decreased to ca. 70% and 55% of the initial concentration in the solid phase, and to 40% and 25% in the leachate after natural weathering and after accelerated carbonation, respectively. In the solid material the decrease of the Hy fraction was the largest, the FA concentration remained essentially constant. The decrease of FA in the leachate can be attributed partly to an enhanced adsorption of FA to Fe/Al (hydr)oxides, due to the combined effect of a pH decrease and the neoformation of Al (hydr)oxides (both due to carbonation). A detailed study of adsorption of FA to Fe/Al (hydr)oxides showed that significant adsorption of FA occurs, that it increases with decreasing pH and started above pH 12 for Fe (hydr)oxides and around 10 for Al (hydr)oxides. Depending whether FA or Hy are considered the controlling factor in enhanced Cu leaching, the decreasing FA or Hy in the leachate explains the decrease in the Cu leaching during carbonation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  13. Biosensing hydrogen peroxide utilizing carbon paste electrodes containing peroxidases naturally immobilized on coconut (Cocus nucifera L.) fibers.

    Science.gov (United States)

    Kozan, J V B; Silva, R P; Serrano, S H P; Lima, A W O; Angnes, L

    2007-05-22

    A novel unmediated hydrogen peroxide biosensor based on the incorporation of fibrous tissue of coconut fruit in carbon paste matrix is presented. Cyclic voltammetry and amperometry were utilized to characterize the main electrochemical parameters and the performance of this new biosensor under different preparation and operation conditions. The resulting H2O2-sensitive biosensors respond rapidly (7 s to attain 90% of the signal), was operated at -0.15 V, presented linear response between 2.0x10(-4) and 3.4x10(-3) mol L(-1), the detection limit was estimated as 4.0x10(-5) mol L(-1). Its operation potential was situated between -0.2 and 0.1 V and the best pH was determined as 5.2. Electrodes containing 5% (w/w) of coconut fiber presented the best signal and their lifetime was extended to 3 months. The apparent Michaelis-Menten constant KM(app) and Vmax were estimated to be 8.90 mmol L(-1) and 6.92 mmol L(-1) microA(-1), respectively. The results obtained for determination of hydrogen peroxide in four pharmaceutical products (antiseptic solution, contact lenses cleaning solution, hair coloring cream and antiseptic dental rinse solution) were in agreement with those obtained by the spectrophotometric method. An additional advantage of these biosensors is the capacity to measure hydrogen peroxide even in samples with relatively low pH. To demonstrate the enzymatic activity of the coconut tissue, a very simple way was created during this work. Coconut fibers were immersed in H2O2 solution between two glass slides. Sequential images were taken to show the rapid generation of O2, attesting the high activity of the enzymes.

  14. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    Science.gov (United States)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or

  15. The effect of carbon dioxide at high pressure under different ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... the pulse beetle, Callosobruchus maculates. J. Insect Sci. 9: 58-61. George NM, Sonny BR (1998). Comparative effect of short term exposures of Callosobruchus subinnotatus to carbon dioxide, nitrogen, or low temperature on behaviour and fecundity. Entomologia Experimentalis et Applicata Vol. 89, No.

  16. Effects of carbonization conditions on properties of bamboo pellets

    Science.gov (United States)

    Zhijia Liu; Zehui Jiang; Zhiyong Cai; Benhua Fei; Yan Yu; Xing' e Liu

    2013-01-01

    Bamboo is a biomass material and has great potential as a bio-energy resource of the future in China. Bamboo pellets were successfully manufactured using a laboratory pellet mill in preliminary work. This study was therefore carried out to investigate the effect of carbonization conditions (temperature and time) on properties of bamboo pellets and to evaluate product...

  17. Effects of organic nitrogen and carbon sources on mycelial growth ...

    African Journals Online (AJOL)

    Grifola umbellate is a famous and expensive Chinese herb medicine and the main medicinal component is polysaccharide mainly produced by its mycelia. Effects of organic nitrogen and carbon resources on mycelial growth and polysaccharides production of a medicinal mushroom, G. umbellate were studied in the ...

  18. Effect of membrane on carbonation and carbon dioxide uptake of Chlorella sp.

    Directory of Open Access Journals (Sweden)

    Suali Emma

    2017-01-01

    Full Text Available Recent studies showed that as low as 5% CO2 increased microalgae growth. However, common bioreactor operation resulted in low carbonation due to poor CO2 mass transfer and this inhibited CO2 uptake of microalgae. Although bubbling increases mass transfer of CO2-O2 exchange, preserving high dissolved CO2 remains the most challenging of microalgae cultivation in bioreactor. In order to increase high dissolved CO2 and CO2-O2 exchange, this study employed two types of membrane; hollow-fibre membrane for carbonation and hydrophobic membrane for deoxygenation. It was found that membrane increased carbonation from 20 % to 75 % when operated at control CO2 concentration. The hollow-fibre membrane capable of creating as small as 2 mm bubble which effective for high carbonation. At the same time, itincreased CO2 uptake up to 85% in bioreactor. The hydrophobic membrane removed 43% O2 from the bioreactor. Both membranes increased mass transfer of CO2-O2 exchange in bioreactor which stimulated microalgae growth.

  19. FY 1998 annual summary report on development of techniques for keeping water environments in good conditions by utilizing phenomena involving immobilization of microorganisms on soft structures of carbon fibers (abbreviated to carbon/water environment project); 1998 nendo tanso sen'i nansoshiki eno biseibutsu kochaku gensho wo riyoshita mizukankyo seibi gijutsu no kaihatsu seika hokokusho. Ryakusho tanso mizukankyo project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project is aimed at creation of the new industry of keeping water environments in good conditions in wide amphitrichous areas by establishing the technical systems for applying the phenomena in which microorganisms are massively immobilized on a carbon fiber bundle suspended in water to, e.g., purification of sewage systems, rivers and ponds, and providing sites for algae to grow, and by commercializing these systems. The following 3 themes have been established. The first theme is to develop the techniques for braiding/weaving carbon fibers. The second theme is to analyze characteristics of the immobilized microorganism groups. The third theme is to establish the principles of utilization. The FY 1997 R&D efforts were directed to production of a total of 57 types of braided/woven carbon fibers, development of sizing agents, and analysis of microorganism groups. In FY 1998, the carbon fibers treated with new sizing agents have been developed, and the braided/woven carbon fibers are being tested in water purification systems and algae sites. It is found that the microorganism groups exhibit synergistic effects between the pumping function and carbon/gel materials. The simulation models are being developed for system designs. The systems which apparently show the effects of this method have been classified by analyzing the field test results. (NEDO)

  20. Carbon dioxide effects research and assessment program. Measurement of changes in terrestrial carbon using remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Woodwell, G M [ed.

    1980-09-01

    Changes in the area of forests as well as changes in the storage of carbon within forest stands have large potential effects on atmospheric CO/sub 2/. This conference addressed the challenge of measuring changes in the area of forests globally through use of satellite remote sensing. The conclusion of the approximately seventy participants from around the world was that a program based on LANDSAT imagery supplemented by aerial photography is both possible and appropriate.

  1. Utility-Marketing Partnerships: An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A.; Brown, E. S.

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility?s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  2. Economic effects of restricting carbon dioxide emissions

    International Nuclear Information System (INIS)

    Haaparanta, P.; Jerkkola, J.; Pohjola, J.

    1994-01-01

    The aim of this study is to evaluate the economy-wide effects of reducing CO 2 emissions. NO x and SO 2 emissions can also be included. The policy questions can be approached either by estimating the emission taxes needed to achieve the given levels of emissions or by estimating the level of emissions given the level of taxes. A computable general equilibrium (CGE) is used in this analysis. The general equilibrium models deal with long-run effects, after all markets have equilibrated and all resources are optimally used. They are particularly well-suited to analyze long-run resource allocation, welfare losses and income distribution, beyond the short-run macroeconomic disturbances and business cycle phenomena. As the general equilibrium framework integrates all main economic sectors, the feedbacks and interrelationships between the various sectors are taken into account

  3. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    DEFF Research Database (Denmark)

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  4. Biochar carbon stability and effect on greenhouse gas emissions

    DEFF Research Database (Denmark)

    Bruun, Esben Wilson; Cross, Andrew; Hammond, Jim

    2016-01-01

    As demonstrated by several scientific studies there is no doubt that biochar in general is very recalcitrant compared to other organic matter additions and soil organic matter fractions and also that it is possible to sequester carbon at a climate change relevant time scale (~100 years or more......) by soil application of biochar. However, the carbon stability of biochar in soil is strongly correlated with the degree of thermal alteration of the original feedstock (the lower the temperature, the larger the labile fraction) and in depth understanding of the technology used and its effect...... on the biochar quality is necessary in order to produce the most beneficial biochars for soil application. Beside carbon sequestration in soil biochar may improve the GHG balance by reducing N2O and CH4 soil emissions, although contrasting results are found in the literature. The mechanisms behind...

  5. Understanding and Utilizing the Effectiveness of e‐Learning

    DEFF Research Database (Denmark)

    Noesgaard, Signe Schack; Ørngreen, Rikke

    2014-01-01

    , the research brings valuable input to the discussion of the validity of self-assessments suggesting that participants are able to report on their own practices provided certain qualitative survey approaches. Understanding the many ways to define effectiveness can help learning and development professionals...

  6. Effect of protein supplementation and urea treatment on utilization of ...

    African Journals Online (AJOL)

    Authorised User

    Abstract. Six Red Maasai sheep were used to investigate the effects of urea treatment and cotton seed cake supplementation of maize stover on intake, digestibility and rumen fermentation parameters. The basal feeds were Rhodes grass (Chloris gayana) hay (H), untreated maize (Zea mays) stover (US) and treated maize.

  7. Carbon dioxide and the greenhouse effect: an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I M

    1978-01-01

    This paper evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is discussed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected.

  8. Carbon dioxide and the 'greenhouse effect': an unresolved problem

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I

    1978-01-01

    This executive review evaluates current scientific literature concerned with the accumulation of carbon dioxide in the atmosphere. The extent and possible causes of natural variations in global climate are outlined as a background to potential variations due to human activity. Estimates are given on relative contributions of carbon dioxide to the atmosphere due to fossil fuel combustion, deforestation and other land modifications. The possibility of a rise in global temperature as a result of increasing the amount of carbon dioxide in the atmosphere is dicusssed including model predictions, natural factors which could compensate for or emphasize a warming effect, and the implications if extensive warming actually occurred. Carbon dioxide disposal is discussed, but there appears to be no practicable long-term means of accomplishing this. It is concluded that there is no evidence of a rise in global temperature due to carbon dioxide at present. Predictions, which involve a high degree of uncertainty, indicate that the global temperature could rise appreciably in the next century. An increase in precipitation rate is also expected. If these changes result in a redistribution of climatic zones, there may be problems in adapting agricultural belts in some regions. Complete melting of all the ice sheets would take several millenia. A partial melting of continental ice sheets would not necessarily occur in view of the increase in precipitation rates, but if it did, there would be a rise in sea level of a few metres. Melting of the Arctic sea ice would affect climate, but not sea level.

  9. The effect of nonlinear utility on behaviour in repeated prisoner’s dilemmas

    NARCIS (Netherlands)

    Assen, van M.A.L.M.; Snijders, C.C.P.

    2010-01-01

    The present study focuses on the effect of agents’ utility on their cooperation in indefinitely repeated two-person prisoner’s dilemma games (PDs). A game-theoretical analysis suggests that conditions for cooperation in the PDs improve with concavity of utility, with increasing risk aversion, and

  10. Effective Utilization of ICT in English Language Learning--The Case of University of Botswana Undergraduates

    Science.gov (United States)

    Umunnakwe, Ngozi; Sello, Queen

    2016-01-01

    The study investigates the effective utilization of Information and Communication Technology (ICT) by first year undergraduates of the University of Botswana (UB) in their reading and writing skills. The first year students are not first language (L1) learners of English. They have not utilized computers for learning reading and writing in their…

  11. Effects of the surfactant Tween 80 on the growth and dibenzothiophene utilization by Exophiala spinifera isolated from oil- contaminated soil

    Directory of Open Access Journals (Sweden)

    Fatemeh Elmi

    2016-06-01

    Full Text Available Introduction: Oil is one of the most important energy sources that contain variety of organosulfur compounds that are combustible and can produce sulfur dioxide which will cause pollution over the atmosphere and the soil. Dibenzothiophene (DBT is often used as a model for biodesulfurization studies and surfactant Tween80 increases the solubility of DBT in water that leads to higher consumption by microorganisms. Materials and methods: DBT specific UV spectrophotometry at a wavelength of 323 nm was used to evaluate the ability of isolated Exophiala spinifera fungus in removal of DBT. The effect of various concentrations of surfactant Tween80 on the growth of the fungus and DBT utilization was studied. Results: Exophiala spinifera was able to remove 100% DBT after 7 days of incubation at 30 ° C and 180 rpm shaking. The effect of different concentrations of surfactant Tween80 on growth and DBT utilization by this fungus was examined and it was observed that the presence of surfactant in the culture medium increased the growth and removal of DBT, therefore the amount of DBT utilized with 0.4% concentration of the surfactant was about 30% more than that utilized without surfactant. However, higher concentrations of surfactant Tween80 decreased the growth and consumption of DBT by fungi. Discussion and conclusion: Exophiala spinifera was isolated from oil contaminated soil and able to utilize toxic compound DBT as a sulfur source in the presence of other carbon sources such as glucose. So this isolated strain could be a good candidate for the petroleum desulfurization and it is the first report about desulfurization of DBT by fungus Exophiala spinifera. Growth and removal of DBT by fungus increased in the presence of surfactant Tween80. It can be concluded that the surfactant increases the total DBT transfer between the organic and aqueous phases and has a potential application in DBT bioremediation system by the studied fungus biocatalyst.

  12. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  13. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  14. Utilization of poly(methyl methacrylate – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    Directory of Open Access Journals (Sweden)

    M. Lahelin

    2012-10-01

    Full Text Available Carbon nanotubes (CNTs were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS or poly(methyl methacrylate (PMMA. The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was increased interfacial adhesion between the components, as for PS and the CNTs, the use of directly melt mixed CNTs gave better resistivity results. Without strong interactions between the CNTs and the matrix, as with PMMA and CNTs, the use of a tailored masterbatch had a significant effect on properties of the final composites. The molecular weight and viscosity of masterbatches can be varied and when the PMMA-masterbatch had optimized viscosity with respect to the PMMA matrix, electrical resistivity of the final composites decreased noticeably.

  15. Economic evaluation of nuclear reactor operation utilizing power effect

    International Nuclear Information System (INIS)

    Budinsky, M.; Mydliar, J.

    1988-01-01

    The operation of a reactor at the so-called power effect may substantially increase the burnup of fuel to be removed. The aim of the evaluation of such reactor operation is the optimal determination of the time over which the yield of the higher use of fuel exceeds economic losses resulting from the increased share of constant expenditure of the price of generated kWh of electric power which ensues from such operation. A mathematical model is presented for such evaluation of reactor operation with regard to benefits for the national economy which is the basis of the ESTER 2 computer program. The calculations show that the prices of generated and delivered kWh are minimally 2% less than the prices of generated power without the power effect use. The minimum ranges in the interval of 30 to 50 days. The dependence of the price of generated and delivered kWh from the point of view of the operator of the power plant as well as the component of fuel price of generated kWh will not reach the minimum even after 50 days of operation. From the operating and physical points of view the duration of power effect is not expected to exceed 20 to 30 days which means that from the point of view of the national economy the price of generated and delivered kWh will be 1.6 to 2% less and the fuel component of the price of the generated kWh will be 3 to 4.5% lower. (Z.M.). 5 figs., 3 refs

  16. Utilizing media arts principles for developing effective interactive neurorehabilitation systems.

    Science.gov (United States)

    Rikakis, Thanassis

    2011-01-01

    This paper discusses how interactive neurorehabilitation systems can increase their effectiveness through systematic integration of media arts principles and practice. Media arts expertise can foster the development of complex yet intuitive extrinsic feedback displays that match the inherent complexity and intuitive nature of motor learning. Abstract, arts-based feedback displays can be powerful metaphors that provide re-contextualization, engagement and appropriate reward mechanisms for mature adults. Such virtual feedback displays must be seamlessly integrated with physical components to produce mixed reality training environments that promote active, generalizable learning. The proposed approaches are illustrated through examples from mixed reality rehabilitation systems developed by our team.

  17. Effectively utilizing NYMEX contracts for natural gas electricity futures

    International Nuclear Information System (INIS)

    Burke, L.M.

    1996-01-01

    NYMEX (New York Mercantile Exchange) is one of the United States' largest commodity exchanges. The primary role of commodity exchanges were summarized as well as the characteristics of an effective exchange. The concept of commoditization, price risk and price volatility were explained. The evolution of world and domestic regulated energy markets, the characteristics of the futures market, NYMEX electricity futures contract specifications, natural gas and crude futures contract development, and the nature of hedging were reviewed. Differences of risk management practices in cash markets and futures markets were illustrated. tabs., figs

  18. Thermodynamic approach and comparison of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Hsu, Chih-Liang; Wang, Xiao-Dong

    2016-01-01

    DME (Dimethyl ether) synthesis from syngas with CO_2 utilization through two-step and single step processes is analyzed thermodynamically. The influences of reaction temperature, H_2/CO molar ratio, and CO_2/CO molar ratio on CO and CO_2 conversions, DME selectivity and yield, and thermal behavior are evaluated. Particular attention is paid to the comparison of the performance of DME synthesis between the two different methods. In the two-step method, the addition of CO_2 suppresses the CO conversion during methanol synthesis. An increase in CO_2/CO ratio decreases the CO_2 conversion (negative effect), but increases the total consumption amount of CO_2 (positive effect). At a given reaction temperature with H_2/CO = 4, the maximum DME yield develops at CO_2/CO = 1. In the single step method, over 98% of CO can be converted and the DME yield can be as high as 0.52 mol (mol CO)"−"1 at CO_2/CO = 2. The comparison of the single step and two-step processes indicates that the maximum CO conversion, DME selectivity, and DME yield in the former are higher than those in the latter, whereas an opposite result in the maximum CO_2 conversion is observed. These results reveal that the single step process has lower thermodynamic limitation and is a better option for DME synthesis. From CO_2 utilization point of view, the operation with low temperature, high H_2/CO ratio, and low CO_2/CO ratio results in higher CO_2 conversion, irrespective of two-step or single step DME synthesis. - Highlights: • DME (Dimethyl ether) synthesis with CO_2 utilization is analyzed thermodynamically. • Single step and two-step DME syntheses are studied and compared with each other. • CO_2 addition suppresses CO conversion in MeOH synthesis but increases MeOH yield. • The performance of the single step DME synthesis is better than that of the two-step one. • Increase CO_2/CO ratio decreases CO_2 conversion but increases CO_2 consumption amount.

  19. The Effect of Carbon Nanotube Composite Addition on Biomass-Based Supercapacitor

    Directory of Open Access Journals (Sweden)

    Pramujo Widiatmoko

    2016-11-01

    Full Text Available Electric vehicles are set to become a most attractive alternative transportation mode due to their high efficiency and low emission. Electric vehicles require an efficient energy storage system, e.g. a supercapacitor. Coconut shells have high lignocellulosic content and are not being fully utilized in Indonesia. The lignocellulose could be converted into activated carbon for use as the electrode on a hybrid supercapacitor. This research focused on studying the effect of the addition of carbon nanotube (CNT composite to porous graphene-like nanosheets (PGNS as the electrode on a hybrid supercapacitor. The PGNS and CNT composite were synthesized via simultaneous activation and carbonization. Nickel oxide was used as the counter electrode. The CNT composite had a large surface area of 1374.8 m2g-1, pore volume of 1.1 cm3g, and pore size of 3.2 nm. On the other hand, the PGNS had a surface area of 666.1 m2g-1, pore volume of 0.47 cm3g , and pore size of 2.8 nm. The electrode pair between the NiO and the activated carbon achieved 5.69 F/g and 94.1% cycle durability after 10 charging and discharging cycles. The composite had an energy density of 0.38 W h kg-1. The aim of this research was to provide an alternative formula for producing high-performance supercapacitor materials.

  20. Pyrolysis Strategies for Effective Utilization of Lignocellulosic and Algal Biomass

    Science.gov (United States)

    Maddi, Balakrishna

    Pyrolysis is a processing technique involving thermal degradation of biomass in the absence of oxygen. The bio-oils obtained following the condensation of the pyrolysis vapors form a convenient starting point for valorizing the major components of lignocellulosic as well as algal biomass feed stocks for the production of fuels and value-added chemicals. Pyrolysis can be implemented on whole biomass or on residues left behind following standard fractionation methods. Microalgae and oil seeds predominantly consist of protein, carbohydrate and triglycerides, whereas lignocellulose is composed of carbohydrates (cellulose and hemicellulose) and lignin. The differences in the major components of these two types of biomass will necessitate different pyrolysis strategies to derive the optimal benefits from the resulting bio-oils. In this thesis, novel pyrolysis strategies were developed that enable efficient utilization of the bio-oils (and/or their vapors) from lignocellulose, algae, as well as oil seed feed stocks. With lignocellulosic feed stocks, pyrolysis of whole biomass as well as the lignin residue left behind following well-established pretreatment and saccharification (i.e., depolymerization of cellulose and hemicellulose to their monomeric-sugars) of the biomass was studied with and without catalysts. Following this, pyrolysis of (lipid-deficient) algae and lignocellulosic feed stocks, under similar reactor conditions, was performed for comparison of product (bio-oil, gas and bio-char) yields and composition. In spite of major differences in component bio-polymers, feedstock properties relevant to thermo-chemical conversions, such as overall C, H and O-content, C/O and H/C molar ratio as well as calorific values, were found to be similar for algae and lignocellulosic material. Bio-oil yields from algae and some lignocellulosic materials were similar; however, algal bio-oils were compositionally different and contained several N-compounds (most likely from

  1. The effect of yeast culture addition on utility of calves

    Directory of Open Access Journals (Sweden)

    Petr Doležal

    2004-01-01

    Full Text Available In the present study, examined was the effect of a yeast culture (Saccharomyces cerevisiae, Strain 47 on performance (especially on daily gains, feed conversion and condition in an experiment with a group of Holstein calves within the period of plant nutrition. Animals received a diet consisting of 3 kg of good maize silage, 5.5 kg of grass haylage, 1 kg of meadow hay and 1.6 kg of supplementary starter feed mixture ČOT B. The yeast culture was added to the starter in the dose of 1 g.kg–1. This means that each experimental calf received 1.6 g of yeast culture per day. The supplement of yeast culture showed a positive effect on daily gains and on the final body weight of calves; however, the differences were statistically not significant (P>0.05. In control and experimental groups, the mean conversion rates of concentrate were 2.19 kg and 2.13 kg, respectively. There was no difference in feed intake and feed conversion efficiency. The difference in final live body weights of calves in the control and experimental groups was also not significant. However, the condition of calves in the experimental group was much better and the scours were in general less frequent.

  2. Fabrication of Micromixers Utilizing Shedding Effect Induced by Electrokinetic Instability

    International Nuclear Information System (INIS)

    Fu, L-M; Tai, C-H; Tsai, C-H; Lin, C-H; Lee, C-Y

    2006-01-01

    This paper proposes a T-shaped micromixer featuring 45 deg. parallelogram barriers within the mixing channel. The proposed device obtains a rapid mixing of two sample fluids by means of the electrokinetic instability induced by shedding effect which is produced as an appropriate intensity of DC electric field of is applied. The proposed device uses a single high-voltage power source to simultaneously drive and mix the sample fluids. The effectiveness of the mixer is characterized experimentally as a function of the applied electrical field intensity and the extent to which the parallelogram barriers obstruct the mixing channel. The experimental results indicate that the mixing performance reaches 91.2% at a cross-section located 2.3 mm downstream of the T-junction when the barriers obstruct four-fifths of the channel width and an electrical field of 300V/cm is applied. The micromixing method presented in this study provides a simple low-cost solution to mixing problems in lab-on-a-chip systems

  3. Improving the utility and effectiveness of the standing consultative commission

    International Nuclear Information System (INIS)

    Graybeal, S.N.; Krepon, M.

    1988-01-01

    The Standing Consultative Commission has been an indispensable channel of communication between the superpowers over SALT implementation and compliance. Other channels could have been used for these purposes, but none would have been as ideally suited, or specifically authorized to do so. If something like the SCC did not exist, it would have to be created. In recent years, the SCC has not been a forum of productive exchanges, its jurisdiction has been narrowed, and its reputation tarnished. Nevertheless, new bilateral arms reduction agreements will require effective consultation if they are to be implemented properly and with a minimum of compliance problems. Important lessons can be learned from the experience of the SCC, whether this body is strenghened or new mechanisms are created to perform similar functions for new agreements. The guidelines presented here can help minimize treaty implementation and compliance problems. No suggestions will be of much value, however, if the United States and Soviet Union are ambivalent about affirming the objectives and purposes of past agreements. During periods of strained political relations, negotiations over new agreements rarely proceed smoothly. While the SCC has been somewhat more insulated from the ups and downs of superpower relations, it clearly has not been immune from them. But when political relations between negotiating partners deteriorate to the point where intentions toward existing treaty obligations are called into question, no bilateral compliance mechanism can serve as an effective, problem-solving forum

  4. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas

    Directory of Open Access Journals (Sweden)

    Makoto Onodera

    2016-01-01

    Full Text Available Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p=0.021, but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  5. Utility of the Measurement of Carboxyhemoglobin Level at the Site of Acute Carbon Monoxide Poisoning in Rural Areas.

    Science.gov (United States)

    Onodera, Makoto; Fujino, Yasuhisa; Kikuchi, Satoshi; Sato, Masayuki; Mori, Kiyofumi; Beppu, Takaaki; Inoue, Yoshihiro

    2016-01-01

    Objective. This study examined the hypothesis that correlations exist between the carbon monoxide exposure time and the carboxyhemoglobin concentration at the site of carbon monoxide poisoning, using a pulse carbon monoxide oximeter in rural areas or the carboxyhemoglobin concentration measured at a given medical institution. Background. In previous studies, no definitive relationships between the arterial blood carboxyhemoglobin level and the severity of carbon monoxide poisoning have been observed. Method. The subjects included patients treated for acute carbon monoxide poisoning in whom a medical emergency team was able to measure the carboxyhemoglobin level at the site of poisoning. We examined the relationship between the carboxyhemoglobin level at the site of poisoning and carbon monoxide exposure time and the relationships between the arterial blood carboxyhemoglobin level and carbon monoxide exposure time. Results. A total of 10 patients met the above criteria. The carboxyhemoglobin levels at the site of poisoning were significantly and positively correlated with the exposure time (rs = 0.710, p = 0.021), but the arterial blood carboxyhemoglobin levels were not correlated with the exposure time. Conclusion. In rural areas, the carboxyhemoglobin level measured at the site of carbon monoxide poisoning correlated with the exposure time.

  6. Potential nitrous oxide yield of AOA vs. AOB and utilization of carbon and nitrogen in the ammonia oxidizing process in the Pearl River Estuary

    Science.gov (United States)

    Ma, L.; Dai, M.; Tan, S.; Xia, X.; Liu, H.

    2016-12-01

    Nitrous oxide (N2O), a greenhouse gas, is a by-product during ammonia oxidation process, the production of which is often stimulated under low dissolved oxygen (DO) in the estuarine environment. The potential yield of N2O has been considered to be driven by ammonia-oxidizing bacteria (AOB) of Betaproteobacteria & Gammaproteobacteria and/or ammonia-oxidizing archaea (AOA) of Thaumarchaeota. In order to examine the relative importance of AOA and AOB in producing N2O and in modulating the potential N2O yield, arch-amoA, beta-amoA, gamma-amoA encoding for the alpha subunit of the ammonia monooxygenase (AMO) are used as biomarkers to identify the distributions and bioactivities of AOA and AOB in the Pearl River Estuary (PRE). Size fractionation experiments were conducted to distinguish AOA and AOB on particles in different size-fractions of > 3 μm, 0.45-3 μm, and 0.22-0.45 μm. Pure culture of N. maritimusSCM1 was studied as a model organism to identify the organic carbon production during ammonia oxidation by SCM1 strains. Our results show that AOA distributes largely in the free-living state and could adapt to very limited ammonia substrate and low saturation of DO; AOB mainly distributes at the particle-attached state under relative richer ammonia and high DO conditions; however, the RNA/DNA ratio of AOB was higher than that of AOA under the same conditions suggesting AOB is relatively more actively expressed. In the upper reach of PRE, the dominant microorganism in the water column was AOB and the in situ N2O/NH3 therein ranged 0.73-3.74 ‰. In the lower PRE, AOA was dominated, and the in situ N2O/NH3 was of 1.17- 7.32‰. At selected sites, we estimated isotope effect (e) of AOA (eDIC/bulk) as -23.94‰ and AOB (eDIC/bulk) as -56.6‰ to -44.8‰, which is consistent with the studies of pure cultures. The coefficient of C sequestration "k", defined as (C biomass / DIC in situ) / (N biomass / ammonia in situ) to differ the utilization of carbon and nitrogen, of

  7. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  8. Effect of particulate matrix inhibitors on microstructure and properties of 2-D carbon-carbon composites

    International Nuclear Information System (INIS)

    Tlomak, P.; Takano, Shigeru; Wright, M.A.; Ju, Chien-Ping.

    1991-01-01

    Extended-life applications of structural carbon-carbon (C-C) composites involve multiple periods of operation in high-temperature oxidizing environments and as such require a reliable oxidation protection system (OPS). Advanced OPS's generally consist of an external ceramic coating combined with an in-depth matrix inhibitor. This work investigated the effects produced by particulate inhibitors doped on the matrix on the microstructure of 2D, PAN fiber-pitch matrix C-C's. Boron and zirconium-based particulate inhibitors were added to the matrix material prior to heat treatment. A process was developed to assure a uniform distribution of the inhibitors. Oxidation behavior of such matrix-inhibited composites was evaluated using isothermal oxidation tests. 5 refs

  9. Supply-chain environmental effects of wastewater utilities

    International Nuclear Information System (INIS)

    Stokes, Jennifer R; Horvath, Arpad

    2010-01-01

    This letter describes a comprehensive modeling framework and the Wastewater-Energy Sustainability Tool (WWEST) designed for conducting hybrid life-cycle assessments of the wastewater collection, treatment, and discharge infrastructure in the United States. Results from a case study treatment plant which produces electricity using methane offgas are discussed. The case study system supplements influent with 'high-strength organic waste' to augment electricity production. The system balance is 55 kg of greenhouse gases per million liters of wastewater. Sensitivity analysis confirms that reusing biogas from anaerobic digestion for electricity reduces life-cycle greenhouse gas emissions by nine times. When biogas is captured and reused for electricity, material production (e.g., chemicals and pipes) and the corresponding supply chains, rather than energy production, are responsible for most of the environmental effects. When biogas is flared, the material and energy production contributions are similar.

  10. Bystander effects on mammalian cells induced by carbon ions

    International Nuclear Information System (INIS)

    Wang Jufang; Zhao Jing; Ma Qiufeng; Chinese Academy of Sciences, Beijing; Li Weijian; Zhou Guangming; Dang Bingrong; Mao Limin; Feng Yan

    2004-01-01

    Bystander effects on unirradiated V79 cells were observed by irradiated conditioned medium (ICM) method and co-cultured with carbon-ion-irradiated V79 cells. The results showed that the colony formation efficiency of unirradiated cells is obviously decreased by ICM. After co-culture with carbon-ion-irradiated cells for some time, the colony formation efficiency of co-cultured cells was lower than expected results assuming no bystander effects. The micronucleus frequency and hprt gene mutation rate was almost the same as expected results. Cytotoxic factor(s), which was effective for cell growth but not for micronucleus and mutation on unirradiated cells, might be released by irradiated cells. (authors)

  11. Diameter sensitive effect in singlewalled carbon nanotubes upon acid treatment

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.

    2009-01-01

    Singlewalled carbon nanotubes (SWCNT) exhibit very unique properties. As an electronic system they undergo amphoteric doping effects (n-type and p-type) which can be reversed. These processes affect the optical and vibronic properties of the carbon nanotubes. The most common and widely used procedure which changes the properties of the SWCNT is acid treatment applied as a purification procedure. This effect has been widely studied but not fully understood so far. Here, we present a study, in which a diameter sensitive effect has been observed. Therefore, two kinds of SWCNT samples have been studied: (i) produced via chemical vapour deposition with a broad diameter distribution, and (ii) synthesised by the laser ablation technique which is commonly known to result in narrow diameter distribution bulk SWCNT samples. Resonance Raman spectroscopy, optical absorption spectroscopy, and Fourier transform middle-infrared spectroscopy have been applied for the characterisation of the samples.

  12. Biomass fuels - effects on the carbon dioxide budget

    International Nuclear Information System (INIS)

    Eriksson, H.; Hallsby, G.

    1992-02-01

    It is highly desirable that the effects on the carbon dioxide balance of alternative energy sources are evaluated. Two important alternatives studied in Sweden are the extraction of logging residues left in the forest and willow production on farmland. Considered in isolation, a conversion from stem-wood harvest to whole-tree harvest has a negative effect on the carbon dioxide balance, because the amount of soil organic matter decreases. With the assumption that it takes 20 years for the logging residues to decompose, the net decrease in emissions that would result from the replacement of fossil fuels by logging residues appear moderate after 20 years. However, it will grow significantly as time passes. After 100 years with an annual combustion of logging residues the emissions are 12% of those associated with the production of an equivalent amount of energy through oil combustion. Corresponding values for 300 and 500 years are 4% and 2.5% respectively. In less than 100 years there should be a considerable reduction in the Swedish CO 2 -C emissions even if only every second new logging residue-produced TWH replaces a fossil-fuel-produced TWh. From a long-term perspective, effects on carbon reservoirs in Sweden, caused by conversions to whole-tree harvesting in forestry and to willow production on redundant farmland, can be considered negligible in terms of their influence on the carbon dioxide budget of Sweden. The orders of magnitude of influencing fluxes is exemplified in the following: The annual production of 50 TWh, whereof 40 TWh from logging residues, 8 TWh from willow and 2 TWh from annual crops is estimated to cause a total net decrease of the carbon reservoirs within Sweden corresponding to 32 Tg CO 2 -C, whereas the annual production of 50 TWh from oil combustion should emit 1200 Tg CO 2 -C in 300 years, 2000 Tg CO 2 -C in 500 years and so on. (au). 17 refs., 4 tabs

  13. Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

    International Nuclear Information System (INIS)

    Smekens, K.; Van der Zwaan, B.

    2004-03-01

    Geological carbon sequestration seems one of the promising options to address, in the near term, the global problem of climate change, since carbon sequestration technologies are in principle available today and their costs are expected to be affordable. Whereas extensive technological and economic feasibility studies rightly point out the large potential of this 'clean fossil fuel' option, relatively little attention has been paid so far to the detrimental environmental externalities that the sequestering of CO2 underground could entail. This paper assesses what the relevance might be of including these external effects in long-term energy planning and scenario analyses. Our main conclusion is that, while these effects are generally likely to be relatively small, carbon sequestration externalities do matter and influence the nature of future world energy supply and consumption. More importantly, since geological carbon storage (depending on the method employed) may in some cases have substantial external impacts, in terms of both environmental damage and health risks, it is recommended that extensive studies are performed to quantify these effects. This article addresses three main questions: (1) What may energy supply look like if one accounts for large-scale CO2 sequestration in the construction of long-term energy and climate change scenarios; (2) Suppose one hypothesizes a quantification of the external environmental costs of CO2 sequestration, how do then these supposed costs affect the evolution of the energy system during the 21st century; (3) Does it matter for these scenarios whether carbon sequestration damage costs are charged directly to consumers or, instead, to electricity producers?

  14. Carbon Dioxide: Surprising Effects on Decision Making and Neurocognitive Performance

    Science.gov (United States)

    James, John T.

    2013-01-01

    The occupants of modern submarines and the International Space Station (ISS) have much in common as far as their air quality is concerned. Air is polluted by materials offgassing, use of utility compounds, leaks of systems chemicals, and anthropogenic sources. The primary anthropogenic compound of concern to submariners and astronauts has been carbon dioxide (CO2). NASA and the US Navy rely on the National Research Council Committee on Toxicology (NRC-COT) to help formulate exposure levels to CO2 that are thought to be safe for exposures of 3-6 months. NASA calls its limits Spacecraft Maximum Allowable Concentrations (SMACs). Years of experience aboard the ISS and a recent publication on deficits in decision making in ground-based subjects exposed briefly to 0.25% CO2 suggest that exposure levels that have been presumed acceptable to preserve health and performance need to be reevaluated. The current CO2 exposure limits for 3-6 months set by NASA and the UK Navy are 0.7%, and the limit for US submariners is 0.5%, although the NRC-COT recommended a 90-day level of 0.8% as safe a few years ago. NASA has set a 1000-day SMAC at 0.5% for exploration-class missions. Anecdotal experience with ISS operations approaching the current 180-day SMAC of 0.7% suggest that this limit is too high. Temporarily, NASA has limited exposures to 0.5% until further peer-reviewed data become available. In the meantime, a study published last year in the journal Environmental Health Perspectives (Satish U, et al. 2012) demonstrated that complexdecision- making performance is somewhat affected at 0.1% CO2 and becomes "dysfunctional" for at least half of the 9 indices of performance at concentrations approaching 0.25% CO2. The investigators used the Strategic Management Simulation (SMS) method of testing for decisionmaking ability, and the results were so surprising to the investigators that they declared that their findings need to be independently confirmed. NASA has responded to the

  15. Characterization of coal blends for effective utilization in thermal power plants

    International Nuclear Information System (INIS)

    Santhosh Raaj, S.; Arumugam, S.; Muthukrishnan, M.; Krishnamoorthy, S.; Anantharaman, N.

    2016-01-01

    Highlights: • This work will assist utilities to decide on the choice of coals for blending. • Conventional and advanced analytical techniques were used for characterization. • Fuel ratio, burnout profile, ash chemistry and carbon burnout are key factors. • Basic properties were additive while carbon burnout was non additive for the blends. - Abstract: This paper deals with the characterization of coal blends using various conventional and advanced analytical techniques. There has been an increasing trend in utilizing imported coals for power generation in India and utilities are resorting to blended coal firing for various reasons, both financially as well as technically. Characterization studies were carried out on 2 combinations of Indian and imported coal blends. Conventional characterization such as proximate and ultimate analysis and determination of calorific value were carried out for the raw coals and blends as per ASTM standards. Following this thermal and mineral analysis of the samples were carried out using thermo gravimetric analyzer (TGA), X-ray fluorescence spectrometer (XRF) and computer controlled scanning electron microscope (CCSEM). Combustion experiments were also conducted using drop tube furnace (DTF) to determine the burnout of the raw coals and blends. The selection of technically suitable coal combination for blending, based on these characterization studies, has been detailed.

  16. Reflection effects in multimode fiber systems utilizing laser transmitters

    Science.gov (United States)

    Bates, Harry E.

    1991-11-01

    A number of optical communication lines are now in use at NASA-Kennedy for the transmission of voice, computer data, and video signals. Now, all of these channels use a single carrier wavelength centered near 1300 or 1550 nm. Engineering tests in the past have given indications of the growth of systematic and random noise in the RF spectrum of a fiber network as the number of connector pairs is increased. This noise seems to occur when a laser transmitter is used instead of a LED. It has been suggested that the noise is caused by back reflections created at connector fiber interfaces. Experiments were performed to explore the effect of reflection on the transmitting laser under conditions of reflective feedback. This effort included computer integration of some of the instrumentation in the fiber optic lab using the Lab View software recently acquired by the lab group. The main goal was to interface the Anritsu Optical and RF spectrum analyzers to the MacIntosh II computer so that laser spectra and network RF spectra could be simultaneously and rapidly acquired in a form convenient for analysis. Both single and multimode fiber is installed at Kennedy. Since most are multimode, this effort concentrated on multimode systems.

  17. Indomethacin lowers optic nerve oxygen tension and reduces the effect of carbonic anhydrase inhibition and carbon dioxide breathing

    DEFF Research Database (Denmark)

    Pedersen, D B; Eysteinsson, T; Stefánsson, E

    2004-01-01

    Prostaglandins are important in blood flow regulation. Carbon dioxide (CO(2)) breathing and carbonic anhydrase inhibition increase the oxygen tension in the retina and optic nerve. To study the mechanism of this effect and the role of cyclo-oxygenase in the regulation of optic nerve oxygen tension...... (ONPO(2)), the authors investigated how indomethacin affects ONPO(2) and the ONPO(2) increases caused by CO(2) breathing and carbonic anhydrase inhibition in the pig....

  18. Effect of Facility Ownership on Utilization of Arthroscopic Shoulder Surgery.

    Science.gov (United States)

    Black, Eric M; Reynolds, John; Maltenfort, Mitchell G; Williams, Gerald R; Abboud, Joseph A; Lazarus, Mark D

    2018-03-01

    We examined practice patterns and surgical indications in the management of common shoulder procedures by surgeons practicing at physician-owned facilities. This study was a retrospective analysis of 501 patients who underwent arthroscopic shoulder procedures performed by five surgeons in our practice at one of five facilities during an 18-month period. Two of the facilities were physician-owned, and three of the five surgeons were shareholders. Demographics, insurance status, symptom duration, time from injury/symptom onset to the decision to perform surgery (at which time surgical consent is obtained), and time to schedule surgery were studied to determine the influence of facility type and physician shareholder status. Median duration of symptoms before surgery was significantly shorter in workers' compensation patients than in non-workers' compensation patients (47% less; P 0.05). Time between presentation and surgical consent was not influenced by facility ownership (P = 0.39) or shareholder status (P = 0.50). Time from consent to procedure was 13% faster in physician-owned facilities than in non-physician-owned facilities (P = 0.03) and 35% slower with shareholder physicians than with nonshareholder physicians (P < 0.0001). The role of physician investment in private healthcare facilities has caused considerable debate in the orthopaedic surgery field. To our knowledge, this study is the first to examine the effects of shareholder status and facility ownership on surgeons' practice patterns, surgical timing, and measures of nonsurgical treatment before shoulder surgery. Neither shareholder status nor facility ownership characteristics influenced the speed with which surgeons determined that shoulder surgery was indicated or surgeons' use of preoperative nonsurgical treatment. After the need for surgery was determined, patients underwent surgery sooner at physician-owned facilities than at non-physician-owned facilities and with nonshareholder physicians than

  19. The effects of utility DSM programs on electricity costs and prices

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1991-11-01

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  20. The effects of utility DSM programs on electricity costs and prices

    Energy Technology Data Exchange (ETDEWEB)

    Hirst, E.

    1991-11-01

    More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

  1. The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties

    Science.gov (United States)

    Pan, Xiaohua; Zhang, Yan; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Si, Shuxin; Wang, Jinping

    2018-04-01

    Carbon dots (CDs) have attracted increasing attention due to their high performances and potential applications in wide range of areas. However, their emission mechanism is not clear so far. In order to reveal more factors contributing to the emission of CDs, the effect of carbon chain length of starting materials on the formation of CDs and their optical properties was experimentally investigated in this work. In order to focus on the effect of carbon chain length, the starting materials with C, O, N in fully identical forms and only carbon chain lengths being different were selected for synthesizing CDs, including citric acid (CA) and adipic acid (AA) as carbon sources, and diamines with different carbon chain lengths (H2N(CH2)nNH2, n = 2, 4, 6) as nitrogen sources, as well as ethylenediamine (EDA) as nitrogen source and diacids with different carbon chain lengths (HOOC(CH2)nCOOH, n = 0, 2, 4, 6) as carbon sources. Therefore, the effect of carbon chain length of starting materials on the formation and optical properties of CDs can be systematically investigated by characterizing and comparing the structures and optical properties of as-prepared nine types of CDs. Moreover, the density of –NH2 on the surface of the CDs was quantitatively detected by a spectrophotometry so as to elucidate the relationship between the –NH2 related surface state and the optical properties.

  2. Retention and effective diffusion of model metabolites on porous graphitic carbon.

    Science.gov (United States)

    Lunn, Daniel B; Yun, Young J; Jorgenson, James W

    2017-12-29

    The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D eff /D m ∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube

    International Nuclear Information System (INIS)

    Hu, Z L; Guo, X M; Ru, C Q

    2007-01-01

    An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs

  4. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  5. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  6. Effect of activated carbon and electrolyte on properties of supercapacitor

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Effect of activated carbon and electrolyte on electrochemical properties of organic supercapacitor was investigated. The results show that specific surface area and mesoporosity of activated carbon influence specific capacitance. If specific surface area is larger and mesoporosity is higher, the specific capacitance will become bigger. Specific surface area influences resistance of carbon electrode and consequently influences power property and pore size distribution. If specific surface area is smaller and mesoporosity is higher, the power property will become better. Ash influences leakage current and electrochemical cycling stability. If ash content is lower, the performance will become better. The properties of supercapacitor highly depend on the electrolyte. The compatibility of electrolyte and activated carbon is a determining factor of supercapacitor's working voltage. LiPF6/(EC+EMC+DMC) is inappropriate for double layer capacitor. MeEt3NPF4/PC has higher specific capacitance than EtnNPFn/PC because methyl's electronegativity value is lower than ethyl and MeEt3N+ has more positive charges and stronger polarizability than Et4N+ when an ethyl is substituted by methyl.

  7. Effects of Temperature on Polymer/Carbon Chemical Sensors

    Science.gov (United States)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  8. Effects of tempering on internal friction of carbon steels

    International Nuclear Information System (INIS)

    Hoyos, J.J.; Ghilarducci, A.A.; Salva, H.R.; Chaves, C.A.; Velez, J.M.

    2011-01-01

    Research highlights: → Time tempering dependent microstructure of two steels is studied by internal friction. → Internal friction indicates the interactions of dislocations with carbon and carbides. → Internal friction detects the first stage of tempering. → Precipitation hardening is detected by the decrease in the background. - Abstract: Two steels containing 0.626 and 0.71 wt.% carbon have been studied to determine the effects of tempering on the microstructure and the internal friction. The steels were annealed at 1093 K, quenched into water and tempered for 60 min at 423 K, 573 K and 723 K. The increase of the tempering time diminishes the martensite tetragonality due to the redistribution of carbon atoms from octahedrical interstitial sites to dislocations. Internal friction spectrum is decomposed into five peaks and an exponential background, which are attributed to the carbide precipitation and the dislocation relaxation process. Simultaneous presence of peaks P1 and P2 indicates the interaction of dislocations with the segregated carbon and carbide precipitate.

  9. The effects of phosphorus limitation on carbon metabolism in diatoms.

    Science.gov (United States)

    Brembu, Tore; Mühlroth, Alice; Alipanah, Leila; Bones, Atle M

    2017-09-05

    Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'. © 2017 The Authors.

  10. Temperature effects in an optical limiter using carbon nanotube suspensions

    International Nuclear Information System (INIS)

    Yu, Hyojung; Kim, Sokwon

    2005-01-01

    An optical limiter is an optical component that reduces the laser beam intensity for the protection of eyes and light sensors, and a carbon nanotube is known to be a highly efficient optical limiting material. However, the effects of heat generated by continuous use have not been studied yet. Therefore, in this work, the variation of optical limiting effect of multi-walled carbon-nanotube suspensions in several kinds of solvents such as distilled water, chloroform, ethanol and ethylene glycol, were measured in the temperature range from room temperature to the boiling point of each solvent. A pulsed Nd : YAG laser with a wavelength of 1064 nm and a pulse duration of 6 ns was used as the light source. The experimental result shows that the limiting efficiencies of all the suspensions were reduced as the temperature was increased and that a suspension with a solvent of lower boiling point, viscosity, and surface tension showed a higher efficiency.

  11. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.

    Science.gov (United States)

    Holtz, Lena-Maria; Wolf-Gladrow, Dieter; Thoms, Silke

    2015-05-07

    Coccolithophores play an important role in the marine carbon cycle. Variations in light intensity and external carbonate system composition alter intracellular carbon fluxes and therewith the production rates of particulate organic and inorganic carbon. Aiming to find a mechanistic explanation for the interrelation between dissolved inorganic carbon fluxes and particulate carbon production rates, we develop a numerical cell model for Emiliania huxleyi, one of the most abundant coccolithophore species. The model consists of four cellular compartments, for each of which the carbonate system is resolved dynamically. The compartments are connected to each other and to the external medium via substrate fluxes across the compartment-confining membranes. By means of the model we are able to explain several pattern observed in particulate organic and inorganic carbon production rates for different strains and under different acclimation conditions. Particulate organic and inorganic carbon production rates for instance decrease at very low external CO2 concentrations. Our model suggests that this effect is caused mainly by reduced HCO3(-) uptake rates, not by CO2 limitation. The often observed decrease in particulate inorganic carbon production rates under Ocean Acidification is explained by a downregulation of cellular HCO3(-) uptake. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Gamma radiation effects in vertically aligned carbon nanotubes

    OpenAIRE

    Lubkowski, Grzegorz; Kuhnhenn, Jochen; Suhrke, Michael; Weinand, Udo; Endler, Ingolf; Meißner, Frank; Richter, Sylvia

    2011-01-01

    This paper describes an experimental study of gamma radiation effects in low-density arrays of vertically aligned carbon nanotubes. These arrays are characterized by excellent anti-reflective and absorbing properties for wavelengths from UV to IR, which makes them an interesting option for stray light control in optical space applications. Gamma irradiation equivalent to an estimated surface lifetime exposition in geostationary orbit does not affect the reflectivity of the structures. First h...

  13. The effect of carbon dioxide therapy on composite graft survival

    OpenAIRE

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino Júnior, Ruy de Souza; Sousa, João Batista de

    2013-01-01

    PURPOSE: To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. METHODS: An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, h...

  14. The Path of Carbon in Photosynthesis XII. Some Temperature Effects

    Science.gov (United States)

    Ouellet, C.

    1951-06-25

    The photosynthetic assimilation of radioactive carbon dioxide for two-minute periods by Scenedesmus has bee studied at temperatures ranging from 25? to 44? C. All labeled intermediates cease to be formed at about 45? C. With rising temperature, the radioactivity reaching the sugar phosphate reservoirs decreases regularly while there is a sharp maximum in sucrose at 37? C. and a less pronounced one in malic and aspartic acids about 40? C. A tentative interpretation of these effects is offered.

  15. Biological effects of accelerated boron, carbon, and neon ions

    International Nuclear Information System (INIS)

    Grigoryev, Yu.G.; Ryzhov, N.I.; Popov, V.I.

    1975-01-01

    The biological effects of accelerated boron, carbon, and neon ions on various biological materials were determined. The accelerated ions included 10 B, 11 B, 12 C, 20 Ne, 22 Ne, and 40 Ar. Gamma radiation and x radiation were used as references in the experiments. Among the biological materials used were mammalian cells and tissues, yeasts, unicellular algae (chlorella), and hydrogen bacteria. The results of the investigation are given and the biophysical aspects of the problem are discussed

  16. The effects of carbon monoxide on respiratory chemoreflexes in humans

    International Nuclear Information System (INIS)

    Vesely, A.E.; Somogyi, R.B.; Sasano, Hiroshi; Sasano, Nobuko; Fisher, J.A.; Duffin, James

    2004-01-01

    As protection against low-oxygen and high-carbon-dioxide environments, the respiratory chemoreceptors reflexly increase breathing. Since CO is also frequently present in such environments, it is important to know whether CO affects the respiratory chemoreflexes responsiveness. Although the peripheral chemoreceptors fail to detect hypoxia produced by CO poisoning, whether CO affects the respiratory chemoreflex responsiveness to carbon dioxide is unknown. The responsiveness of 10 healthy male volunteers were assessed before and after inhalation of ∼1200 ppm CO in air using two iso-oxic rebreathing tests; hypoxic, to emphasize the peripheral chemoreflex, and hyperoxic, to emphasize the central chemoreflex. Although mean (SEM) COHb values of 10.2 (0.2)% were achieved, no statistically significant effects of CO were observed. The average differences between pre- and post-CO values for ventilation response threshold and sensitivity were -0.5 (0.9) mmHg and 0.8 (0.3) L/min/mmHg, respectively, for hyperoxia, and 0.7 (1.1) mmHg and 1.2 (0.8) L/min/mmHg, respectively, for hypoxia. The 95% confidence intervals for the effect of CO were small. We conclude that environments with low levels of CO do not have a clinically significant effect acutely on either the central or the peripheral chemoreflex responsiveness to carbon dioxide

  17. Radiation damage in carbon-carbon composites

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eartherly, W.P.; Nelson, G.E.

    1992-01-01

    Graphite and carbon-carbon composite materials are widely used in plasma facing applications in current Tokamak devices such as TFTR and DIIID in the USA, JET, Tore Supra and TEXTOR in Europe, and JT-60U in Japan. Carbon-carbon composites are attractive choices for Tokamak limiters and diverters because of their low atomic number, high thermal shock resistance, high melting point, and high thermal conductivity. Next generation machines such as the International Thermonuclear Experimental Reactor (ITER) will utilize carbon-carbon composites in their first wall and diverter. ITER will be an ignition machine and thus will produce substantial neutron fluences from the D-T fusion reaction. The resultant high energy neutrons will cause carbon atom displacements in the plasma facing materials which will markedly affect their structure and physical properties. The effect of neutron damage on graphite has been studied for over forty years. Recently the effects of neutron irradiation on the fusion relevant graphite GraphNOL N3M was reviewed. In contrast to graphite, relatively little work has been performed to elucidate the effects of neutron irradiation on carbon-carbon composites. The results of our previous irradiation experiments have been published elsewhere. Here the irradiation induced dimensional changes in 1D, 2D, and 3D carbon-carbon composites are reported for fluences up to 4.7 dpa at an irradiation temperature of 600 degree C

  18. The effects of alternative carbon mitigation policies on Japanese industries

    International Nuclear Information System (INIS)

    Sugino, Makoto; Arimura, Toshi H.; Morgenstern, Richard D.

    2013-01-01

    To address the climate change issue, developed nations have considered introducing carbon pricing mechanisms in the form of a carbon tax or an emissions trading scheme (ETS). Despite the small number of programmes actually in operation, these mechanisms remain under active discussion in a number of countries, including Japan. Using an input–output model of the Japanese economy, this article analyses the effects of carbon pricing on Japan′s industrial sector. We also examine the impact of a rebate programme of the type proposed for energy-intensive trade-exposed (EITE) industries in U.S. legislation, the Waxman–Markey Bill (H.R. 2454), and in the European Union′s ETS. We find that a carbon pricing scheme would impose a disproportionate burden on a limited number of sectors – namely, pig iron, crude steel (converters), cement and other EITE industries. Out of 401 industries, 23 would be eligible for rebates according to the Waxman–Markey-type programme, whereas 122 industries would be eligible for rebates according to the E.U.-type programme, if adopted in Japan. Overall, despite the differences in coverage, we find that the Waxman–Markey and E.U. rebate programmes have roughly similar impacts in reducing the average burden on EITE industries. - Highlights: • Energy-intensive trade-exposed (EITE) industries suffer the most due to carbon pricing policies. • Twenty-three industries will be eligible under a Waxman–Markey (WM)-type rebate programme. • The E.U. emissions trading scheme (ETS)-type programme identifies 122 industries. • Both WM- and E.U.-type programmes will lower the cost of production to similar levels. • Industries eligible for rebates must be determined carefully

  19. Transitional Home Care program utilizing the Integrated Practice Unit concept (THC-IPU: Effectiveness in improving acute hospital utilization

    Directory of Open Access Journals (Sweden)

    Lian Leng Low

    2017-08-01

    Full Text Available Background: Organizing care into integrated practice units (IPUs around conditions and patient segments has been proposed to increase value. We organized transitional care into an IPU (THC-IPU for a patient segment of functionally dependent patients with limited community ambulation. Methods: 1,166 eligible patients were approached for enrolment into THC-IPU. THC-IPU patients received a comprehensive assessment within two weeks of discharge; medication reconciliation; education using standardized action plans and a dedicated nurse case manager for up to 90 days after discharge. Patients who rejected enrolment into THC-IPU received usual post-discharge care planned by their attending hospital physician, and formed the control group. The primary outcome was the proportion of patients with at least one unscheduled readmission within 30 days after discharge. Results: We found a statistically significant reduction in 30-day readmissions and emergency department visits in patients on THC-IPU care compared to usual care, even after adjusting for confounders. Conclusion: Delivering transitional care to patients with functional dependence in the form of home visits and organized into an IPU reduced acute hospital utilization in this patient segment. Extending the program into the pre-hospital discharge phase to include discharge planning can have incremental effectiveness in reducing avoidable hospital readmissions.

  20. Guide for monitoring effectiveness of utility Reliability Centered Maintenance (RCM) programs

    International Nuclear Information System (INIS)

    Midgett, W.D.; Wilson, J.F.; Krochmal, D.F.; Owsenek, L.W.

    1991-02-01

    Reliability centered maintenance (RCM) programs help utilities optimize preventive maintenance efforts while improving plant safety and economy through increased dependability of plant components. The project team developed this guide and accompanying methodology based on status updates from the Ginna and San Onofre demonstration projects. These updates addressed areas ranging from system selection to the effectiveness of RCM program implementation. In addition, the team incorporated information from a 12-utility survey soliciting opinions on the need for a methodology to monitor RCM cost-effectiveness. An analysis of the 12-utility survey showed that no techniques had been developed to measure RCM program cost-effectiveness. Thus, this guide addresses two key areas: Pros and cons of various monitoring techniques available to assess the overall effectiveness of RCM and a methodology for specifically evaluating the cost-effectiveness of RCM programs. 1 fig

  1. Effects of fullerene (C60), multi-wall carbon nanotubes (MWCNT), single wall carbon nanotubes (SWCNT) and hydroxyl and carboxyl modified single wall carbon nanotubes on riverine microbial communities.

    Science.gov (United States)

    Lawrence, J R; Waiser, M J; Swerhone, G D W; Roy, J; Tumber, V; Paule, A; Hitchcock, A P; Dynes, J J; Korber, D R

    2016-05-01

    Commercial production of nanoparticles (NP) has created a need for research to support regulation of nanotechnology. In the current study, microbial biofilm communities were developed in rotating annular reactors during continuous exposure to 500 μg L(-1) of each nanomaterial and subjected to multimetric analyses. Scanning transmission X-ray spectromicroscopy (STXM) was used to detect and estimate the presence of the carbon nanomaterials in the biofilm communities. Microscopy observations indicated that the communities were visibly different in appearance with changes in abundance of filamentous cyanobacteria in particular. Microscale analyses indicated that fullerene (C60) did not significantly (p carbon utilization revealed few significant effects with the exception of the utilization of carboxylic acids. PCA and ANOSIM analyses of denaturing gradient gel electrophoresis (DGGE) results indicated that the bacterial communities exposed to fullerene were not different from the control, the MWCNT and SWNT-OH differed from the control but not each other, whereas the SWCNT and SWCNT-COOH both differed from all other treatments and were significantly different from the control (p carbon nanomaterials significantly alter aspects of microbial community structure and function supporting the need for further evaluation of their effects in aquatic habitats.

  2. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    International Nuclear Information System (INIS)

    Lee, Young Keun; Murugesan, Senthilkumar

    2009-01-01

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg -1 protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg -1 protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg -1 protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg -1 protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg -1 protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions

  3. Substrate specificity of glucose dehydrogenase and carbon source utilization pattern of pantoea dispersa strain P2 and its radiation induced mutants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Murugesan, Senthilkumar [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Mineral phosphate solubilizing pantoea dispersa strain P2 produced 5.5 mM and 42.6 mM of gluconic acid on 24 h and 72 h incubation, respectively. Strain P2 exhibited glucose dehydrogenase (GDH) specific activity of 0.32 IU mg{sup -1} protein. We have studied the substrate specificity of GDH as well as carbon source utilization pattern of strain P2. GDH of strain P2 did not use ribose as substrate. Utilization of lactose with specific activity of 0.65 IU mg{sup -1} protein indicated that the enzyme belongs to GDH type B isozyme. Arabinose, galactose, ribose, sucrose and xylose did not induce the synthesis of GDH enzyme while mannose induced the synthesis of GDH with highest specific activity of 0.58 IU mg{sup -1} protein. Through radiation mutagenesis, the substrate specificity of GDH was modified in order to utilize side range of sugars available in root exudates. Ribose, originally not a substrate for GDH of strain P2 was utilized as substrate by mutants P2-M5 with specific activity of 0.44 and 0.57 IU mg{sup -1} protein, respectively. Specific activity of GDH on the media containing lactose and galactose was also improved to 1.2 and 0.52 IU mg{sup -1} protein in P2-M5 and P2-M6 respectively. Based on the carbon source availability in root exudate, the mutants can be selected and utilized as efficient biofertilizer under P-deficient soil conditions.

  4. Effects of Charcoal Addition on the Properties of Carbon Anodes

    Directory of Open Access Journals (Sweden)

    Asem Hussein

    2017-03-01

    Full Text Available Wood charcoal is an attractive alternative to petroleum coke in production of carbon anodes for the aluminum smelting process. Calcined petroleum coke is the major component in the anode recipe and its consumption results in a direct greenhouse gas (GHG footprint for the industry. Charcoal, on the other hand, is considered as a green and abundant source of sulfur-free carbon. However, its amorphous carbon structure and high contents of alkali and alkaline earth metals (e.g., Na and Ca make charcoal highly reactive to air and CO2. Acid washing and heat treatment were employed in order to reduce the reactivity of charcoal. The pre-treated charcoal was used to substitute up to 10% of coke in the anode recipe in an attempt to investigate the effect of this substitution on final anode properties. The results showed deterioration in the anode properties by increasing the charcoal content. However, by adjusting the anode recipe, this negative effect can be considerably mitigated. Increasing the pitch content was found to be helpful to improve the physical properties of the anodes containing charcoal.

  5. The effect of carbon dioxide therapy on composite graft survival.

    Science.gov (United States)

    Durães, Eliana Ferreira Ribeiro; Durães, Leonardo de Castro; Carneiro, Fabiana Pirani; Lino, Ruy de Souza; Sousa, João Batista de

    2013-08-01

    To investigate the effect of carboxytherapy in auricular composite grafts in rabbits. An experimental study was conducted using 20 rabbits randomly assigned to a treatment group of carboxytherapy or a control group of saline solution. In each ear, a circular graft with 1.5 cm or 2 cm of diameter was amputated and reattached. Animals underwent carbon dioxide or saline injection four times during the experiment. We analyzed clinical evolution of the animals, grafts survival, histopathology features and histomorphometry of collagen. The treated group had a significantly lower weight gain (p=0.038). Histopathology was not significantly different between groups. There was an increase in amount of collagen in 2 cm grafts submitted to carbon dioxide therapy (p=0.003). Carboxytherapy didn't influence graft survival rate for 1.5 cm grafts or 2 cm grafts (p=0.567 and p=0.777, respectively). Carbon dioxide therapy increased the amount of collagen in 2 cm grafts. CO2 was not significantly different from saline infusion on composite grafts survival, but this study suggests that there is a mechanical effect caused by distension which favored graft survival.

  6. Carbon footprint and cost-effectiveness of cataract surgery.

    Science.gov (United States)

    Venkatesh, Rengaraj; van Landingham, Suzanne W; Khodifad, Ashish M; Haripriya, Aravind; Thiel, Cassandra L; Ramulu, Pradeep; Robin, Alan L

    2016-01-01

    This article raises awareness about the cost-effectiveness and carbon footprint of various cataract surgery techniques, comparing their relative carbon emissions and expenses: manual small-incision cataract surgery (MSICS), phacoemulsification, and femtosecond laser-assisted cataract surgery. As the most commonly performed surgical procedure worldwide, cataract surgery contributes significantly to global climate change. The carbon footprint of a single phacoemulsification cataract surgery is estimated to be comparable to that of a typical person's life for 1 week. Phacoemulsification has been estimated to be between 1.4 and 4.7 times more expensive than MSICS; however, given the lower degree of postoperative astigmatism and other potential complications, phacoemulsification may still be preferable to MSICS in relatively resource-rich settings requiring high levels of visual function. Limited data are currently available regarding the environmental and financial impact of femtosecond laser-assisted cataract surgery; however, in its current form, it appears to be the least cost-effective option. Cataract surgery has a high value to patients. The relative environmental impact and cost of different types of cataract surgery should be considered as this treatment becomes even more broadly available globally and as new technologies are developed and implemented.

  7. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    Science.gov (United States)

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effects of temperature during the irradiation of calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Camargo R, C.; Ramos B, S. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M., E-mail: negron@nucleares.unam.mx [Kent State University, College of Technology, Kent 44240 Ohio (United States)

    2015-10-15

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  9. Effects of temperature during the irradiation of calcium carbonate

    International Nuclear Information System (INIS)

    Negron M, A.; Camargo R, C.; Ramos B, S.; Gomez V, V.; Uribe, R. M.

    2015-10-01

    The gamma irradiation of calcium carbonate at different doses (0 to 309 kGy) and temperature regimes (77 K to 298 K) was carried out to study the effects of irradiation temperature. The changes were followed by EPR spectroscopy. We observed the formation of a composite EPR spectrum even at low radiation doses and temperature. There is a strong effect on the evaluation of the radicals formed as a function of irradiation temperature, probably due to the diffusion in the frozen powder. Response curves show that this system tends to saturate at 10 MGy at 298 K. (Author)

  10. Toxicological effects of multi-wall carbon nanotubes in rats

    International Nuclear Information System (INIS)

    Liu Aihong; Sun Kangning; Yang, Jiafeng; Zhao Dongmei

    2008-01-01

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  11. Toxicological effects of multi-wall carbon nanotubes in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aihong; Sun Kangning, E-mail: Sunkangning@sdu.edu.cn; Yang, Jiafeng [Engineering Ceramics Key Laboratory of Shandong Province, Material Science and Engineering Institute, Shandong University, Key Laboratory of Liquid Structure and Heredity of Materials ministry of Education (China); Zhao Dongmei [The Second Hospital of Shandong University (China)

    2008-12-15

    The aim of this study was to evaluate the lung toxicity of multi-wall carbon nanotubes (MWCNTs). The present work exposed MWCNTs into the rats in intratracheal instillation administration modes. We systematically studied the distribution of nanoparticles in vivo, target organs and time-effects of nanotoxicity, dose-effects of nanotoxicity, etc. These results indicate that under the conditions of this test, pulmonary exposures to MWCNTs in rats by intratracheal instillation produced a series of multiple lesions in a dose-dependent and time-dependent manner, evidence of a foreign tissue body reaction.

  12. Core business concentration vs. corporate diversification in the US electric utility industry: Synergy and deregulation effects

    International Nuclear Information System (INIS)

    Sueyoshi, Toshiyuki; Goto, Mika; Shang, Jennifer

    2009-01-01

    Many economists such as Wilson (2002) [Wilson, R., 2002. Architecture of power market, Econometrica, 70, 1299-1340] have considered that there are similarities between electricity and gas services in the US electric utility industry. Hence, they expect a synergy effect between them. However, the two businesses do not have technology similarities at the level that the gas service produces a synergy effect with electricity. To examine whether there is a synergy effect of corporate diversification in the industry, we compare electricity-specialized firms with diversified utility firms in terms of their financial performance and corporate value. The comparison indicates that core business concentration is more effective for electric utility firms than corporate diversification under the current US deregulation policy.

  13. Effect of storage conditions on losses and crop utilization of nitrogen from solid cattle manure

    NARCIS (Netherlands)

    Shah, G.M.; Shah, G.A.; Groot, J.C.J.; Oenema, O.; Raza, A.S.; Lantinga, E.A.

    2016-01-01

    The objectives of the present study were to quantify the effects of contrasting methods for storing solid cattle manure on: (i) total carbon (C) and nitrogen (N) balances during storage, and (ii) crop apparent N recovery (ANR) following manure application to arable land, with maize as a test

  14. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  15. Sectoral roles in greenhouse gas emissions and policy implications for energy utilization and carbon emissions trading: a case study of Beijing, China.

    Science.gov (United States)

    Ge, Jianping; Lei, Yalin; Xu, Qun; Wang, Xibo

    2016-01-01

    In this study, a decomposition and emissions matrix is developed to identify the roles (giver or taker) played by the sectors in the greenhouse gas emissions for the economy of Beijing in China. Our results indicate that services were the most important emitter if we consider the total (direct and indirect) emissions. In addition to Construction, Scientific studies and technical services and Finance sectors of services were the largest takers. They have a large role in boosting greenhouse gas emissions throughout the economy of Beijing. As the basis and supporter of production activities, the electricity production and the transportation sectors were the greatest givers. More emphasis should be placed on using clean energy and carbon capture and storage technologies to reduce emissions within these sectors. Based on the roles played by these sectors in greenhouse gas emissions, some policy implications were proposed for energy utilization and carbon emissions trading.

  16. The Effect of Persuasion on the Utilization of Program Evaluation Information: A Preliminary Study.

    Science.gov (United States)

    Eason, Sandra H.; Thompson, Bruce

    The utilization of program evaluation may be made more effective by means of the application of contemporary persuasion theory. The Elaboration Likelihood Model--a model of cognitive processing, ability, and motivation--was used in this study to test the persuasive effects of source credibility and involvement on message acceptance of evaluation…

  17. Managed Care for Children: Effect on Access to Care and Utilization of Health Services.

    Science.gov (United States)

    Szilagyi, Peter G.

    1998-01-01

    Reviews what is known about the effect of managed care on access to health services, as well as utilization of hospital care, emergency department visits, primary care services, and specialty pediatric services. The effect of managed care appears dependent on several factors and, thus, is likely to vary according to the population served. (SLD)

  18. The use of forests to mitigate global warming - designing programs that work for utilities

    International Nuclear Information System (INIS)

    Holmes, N.R.

    1990-01-01

    This paper discusses the use of forests as carbon sinks by utilities to offset carbon dioxide production by fossil-fueled power plants. The topics of the paper include greenhouse gases, greenhouse effect, why trees are carbon sinks, planning a carbon sequestering program based on trees and forests, and descriptions of specific types of programs

  19. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shanwei [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Libin, E-mail: libinzhou@impcas.ac.cn [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Li, Wenjian; Du, Yan [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Yu, Lixia; Feng, Hui; Mu, Jinhu [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Yuze [College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, Gansu Province 730070 (China)

    2016-09-15

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M{sub 1} populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD{sub 50}) for a large-scale mutant screening. Among 2472 M{sub 2} plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M{sub 2} populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  20. Utilization of activated carbon produced from fruit juice industry solid waste for the adsorption of Yellow 18 from aqueous solutions.

    Science.gov (United States)

    Angin, Dilek

    2014-09-01

    The use of activated carbon obtained from sour cherry (Prunus cerasus L.) stones for the removal of a basic textile dye, which is Yellow 18, from aqueous solutions at different contact times, pH values and solution temperatures was investigated. The surface area and micropore volume of chemically modified activated carbon were 1704 m(2) g(-1) and 0.984 cm(3) g(-1), respectively. The experimental data indicated that the adsorption isotherms were well described by the Langmuir equilibrium isotherm equation and the calculated adsorption capacity was 75.76 mg g(-1) at 318 K. The adsorption kinetic of Yellow 18 obeys the pseudo-second-order kinetic model. The thermodynamic parameters were calculated to estimate the nature of adsorption. The activation energy of the system was calculated as 0.71-2.36 kJ/mol. According to these results, prepared activated carbon could be used as a low-cost adsorbent to compare with the commercial activated carbon for the removal of Yellow 18 from wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Mirage effect from thermally modulated transparent carbon nanotube sheets.

    Science.gov (United States)

    Aliev, Ali E; Gartstein, Yuri N; Baughman, Ray H

    2011-10-28

    The single-beam mirage effect, also known as photothermal deflection, is studied using a free-standing, highly aligned carbon nanotube aerogel sheet as the heat source. The extremely low thermal capacitance and high heat transfer ability of these transparent forest-drawn carbon nanotube sheets enables high frequency modulation of sheet temperature over an enormous temperature range, thereby providing a sharp, rapidly changing gradient of refractive index in the surrounding liquid or gas. The advantages of temperature modulation using carbon nanotube sheets are multiple: in inert gases the temperature can reach > 2500 K; the obtained frequency range for photothermal modulation is ~100 kHz in gases and over 100 Hz in high refractive index liquids; and the heat source is transparent for optical and acoustical waves. Unlike for conventional heat sources for photothermal deflection, the intensity and phase of the thermally modulated beam component linearly depends upon the beam-to-sheet separation over a wide range of distances. This aspect enables convenient measurements of accurate values for thermal diffusivity and the temperature dependence of refractive index for both liquids and gases. The remarkable performance of nanotube sheets suggests possible applications as photo-deflectors and for switchable invisibility cloaks, and provides useful insights into their use as thermoacoustic projectors and sonar. Visibility cloaking is demonstrated in a liquid.

  2. The effect of carbonate on neptunium sorption by hydroxyapatite

    International Nuclear Information System (INIS)

    Moore, R.C.; Holt, K.

    2005-01-01

    Full text of publication follows: Hydroxyapatite, Ca 10 (PO 4 ) 6 (OH) 2 , is a common mineral, the main inorganic compound in bone and exhibits strong sorptive properties for many radionuclides. It has been widely studied and proposed as a backfill material for nuclear waste repositories. Neptunium is one the radionuclides sorbed by hydroxyapatite. Neptunium is of particular importance to nuclear waste repository performance because of its relatively high aqueous solubility, high mobility in the environment and long half-life. In this work, we report on the effects of carbonate on sorption of neptunium by hydroxyapatite. Batch sorption and desorption studies for neptunium were performed as a function of carbonate concentration in water using a synthetic hydroxyapatite. The results indicate even low concentrations of carbonate significantly reduce neptunium sorption and enhance desorption. The data were fit to several simple isotherm equations with the Langmuir equation giving the best results. The results of the work are discussed with respect to nuclear waste repository performance. (authors)

  3. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita; Perry, John D.; Koros, William J.

    2010-01-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  4. Effect of processing on carbon molecular sieve structure and performance

    KAUST Repository

    Das, Mita

    2010-11-01

    Sub-micron sized carbon molecular sieve (CMS) materials were produced via ball milling for subsequent use in hybrid material formation. A detailed analysis of the effects of the milling process in the presence of different milling environments is reported. The milling process apparently alters the molecular scale structure and properties of the carbon material. Three cases: unmilled, air milled and nitrogen milled, were analyzed in this work. The property changes were probed using equilibrium sorption experiments with different gases. Furthermore, WAXD and BET results also showed differences between milling processes. Finally in order to improve the interfacial polymer-sieve region of hybrid membranes, the CMS surface was chemically modified with a linkage unit capable of covalently bonding the polymer to the sieve. A published single-wall carbon nanotube (SWCNTs) modification method was adopted to attach a primary aromatic amine to the surface. Several aspects including rigidity, chemical composition, bulky groups and length were considered in selecting the preferred linkage unit. Fortunately kinetic and equilibrium sorption properties of the modified sieves showed very little difference from unmodified samples, suggesting that the linkage unit is not excessively filling or obstructing access to the pores of the CMSs during the modification process. © 2010 Elsevier Ltd. All rights reserved.

  5. Fire suppression and fuels treatment effects on mixed-conifer carbon stocks and emissions

    Science.gov (United States)

    M. North; M Hurteau; J Innes

    2009-01-01

    Depending on management, forests can be an important sink or source of carbon that if released as CO2 could contribute to global warming. Many forests in the western United States are being treated to reduce fuels, yet the effects of these treatments on forest carbon are not well understood. We compared the immediate effects of fuels treatments on carbon stocks and...

  6. The effect of neutron irradiation on the structure and properties of carbon-carbon composite materials

    International Nuclear Information System (INIS)

    Burchell, T.D.; Eatherly, W.P.; Robbins, J.M.; Strizak, J.P.

    1991-01-01

    Carbon-based materials are an attractive choice for fusion reactor plasma facing components (PFCs) because of their low atomic number, superior thermal shock resistance, and low neutron activation. Next generation plasma fusion reactors, such as the International Thermonuclear Experimental Reactor (ITER), will require advanced carbon-carbon composite materials possessing extremely high thermal conductivity to manage the anticipated severe heat loads. Moreover, ignition machines such as ITER will produce high neutron fluxes. Consequently, the influence of neutron damage on the structure and properties of carbon-carbon composite materials must be evaluated. Data from an irradiation experiment are reported and discussed here. Fusion relevant graphite and carbon-carbon composites were irradiated in a target capsule in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). A peak damage dose of 1.59 dpa at 600 degrees C was attained. The carbon materials irradiated included nuclear graphite grade H-451 and one-, two-, and three-directional carbon-carbon composite materials. Dimensional changes, thermal conductivity and strength are reported for the materials examined. The influence of fiber type, architecture, and heat treatment temperature on properties and irradiation behavior are reported. Carbon-Carbon composite dimensional changes are interpreted in terms of simple microstructural models

  7. Nickel deposition effects on the growth of carbon nanofibers on carbon paper

    NARCIS (Netherlands)

    Celebi, S.; Schaaf, van der J.; Nijhuis, T.A.; Bruijn, de F.A.; Schouten, J.C.

    2010-01-01

    Carbon nanofiber (CNF) growth has been achieved on carbon paper fibers via two nickel deposition routes: i. nickel nanoparticle-ethanol suspension casting, and ii. homogenous deposition precipitation (HDP) of nickel onto carbon paper. Nickel nanoparticles created regular tubular CNF whereas HDP of

  8. Efficient hiding of confidential high-utility itemsets with minimal side effects

    Science.gov (United States)

    Lin, Jerry Chun-Wei; Hong, Tzung-Pei; Fournier-Viger, Philippe; Liu, Qiankun; Wong, Jia-Wei; Zhan, Justin

    2017-11-01

    Privacy preserving data mining (PPDM) is an emerging research problem that has become critical in the last decades. PPDM consists of hiding sensitive information to ensure that it cannot be discovered by data mining algorithms. Several PPDM algorithms have been developed. Most of them are designed for hiding sensitive frequent itemsets or association rules. Hiding sensitive information in a database can have several side effects such as hiding other non-sensitive information and introducing redundant information. Finding the set of itemsets or transactions to be sanitised that minimises side effects is an NP-hard problem. In this paper, a genetic algorithm (GA) using transaction deletion is designed to hide sensitive high-utility itemsets for PPUM. A flexible fitness function with three adjustable weights is used to evaluate the goodness of each chromosome for hiding sensitive high-utility itemsets. To speed up the evolution process, the pre-large concept is adopted in the designed algorithm. It reduces the number of database scans required for verifying the goodness of an evaluated chromosome. Substantial experiments are conducted to compare the performance of the designed GA approach (with/without the pre-large concept), with a GA-based approach relying on transaction insertion and a non-evolutionary algorithm, in terms of execution time, side effects, database integrity and utility integrity. Results demonstrate that the proposed algorithm hides sensitive high-utility itemsets with fewer side effects than previous studies, while preserving high database and utility integrity.

  9. Mutagenic effects of nitrogen and carbon ions on stevia

    International Nuclear Information System (INIS)

    Wang Cailian; Chen Qiufang; Shen Mei; Lu Ting; Shu Shizhen

    1998-06-01

    Dry seeds of stevia were implanted by 60∼100 keV nitrogen ion and 75 keV carbon ion with various doses. The biological effects in M 1 and mutation in M 2 were studied. The results showed that ion beam was able to induce variation on chromosome structure and inhibited mitosis action in root tip cells. The rate of cells with chromosome aberration was increased with the increase of ion beam energy and dose. Energy effects of mitosis were presented between 75 keV and 60, 100 keV. As compared with γ-rays, the effects of ion beam were lower on chromosomal aberration but were higher on frequency of the mutation. The rate of cell with chromosome aberration and M 2 useful mutation induced by implantation of carbon ion was higher than those induced by implantation of nitrogen ion. Mutagenic effects of Feng 1 x Ri Yuan and of Ri Yuan x Feng 2 are higher than that of Ji Ning and Feng 2

  10. Utility-Marketer Partnerships. An Effective Strategy for Marketing Green Power?

    Energy Technology Data Exchange (ETDEWEB)

    Bird, L. A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brown, E. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2006-04-01

    This paper explores whether partnerships between utilities and independent marketers are an effective strategy for marketing green power. We present case studies of voluntary and mandatory partnerships covering green power program design and implementation in both regulated and restructured electricity markets. We also include perspectives (based on interviews) from utilities, marketers, and regulators involved in developing and implementing these partnerships. From these case studies and interviews, we describe lessons learned about developing effective partnerships, including such issues as respective roles in marketing and administration, product branding, and contract and incentive structures. Based on experience to date, strategic partnerships between utilities and marketers can be an effective approach to marketing green power. Partnerships leverage the sales and resource procurement experience of marketers and the utility’s reputation and access to customers. Further, partnerships can create greater incentives for success because marketers have a vested financial interest in maximizing customer participation and green power sales.

  11. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    Science.gov (United States)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  12. [Effects of climate change on forest soil organic carbon storage: a review].

    Science.gov (United States)

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  13. Effect of biochar or activated carbon amendment on the volatilisation and biodegradation of organic soil pollutants

    Science.gov (United States)

    Werner, David; Meynet, Paola; Bushnaf, Khaled

    2013-04-01

    Biochar or activated carbon added to contaminated soil may temporarily reduce the volatilisation of organic pollutants by enhanced sorption. The long-term effect of sorbent amendments on the fate of volatile petroleum hydrocarbon mixtures (VPHs) will depend on the responses of the soil bacterial community members, especially those which may utilize VPHs as carbon substrates. We investigated the volatilisation and biodegradation of VPHs emanating from NAPL sources and migrating through one meter long columns containing unsaturated sandy soil with and without 2% biochar or activated carbon amendment. After 420 days, VPH volatilisation from AC amended soil was less than 10 percent of the cumulative VPH volatilisation flux from unamended soil. The cumulative CO2 volatilisation flux increased more slowly in AC amended soil, but was comparable to the untreated soil after 420 days. This indicated that the pollution attenuation over a 1 meter distance was improved by the AC amendment. Biochar was a weaker VPH sorbent than AC and had a lesser effect on the cumulative VPH and CO2 fluxes. We also investgated the predominant bacterial community responses in sandy soil to biochar and/or VPH addition with a factorially designed batch study, and by analyzing preserved soil samples. Biochar addition alone had only weak effects on soil bacterial communities, while VPH addition was a strong community structure shaping factor. The bacterial community effects of biochar-enhanced VPH sorption were moderated by the limited biomass carrying capacity of the sandy soil investigated which contained only low amounts of inorganic nitrogen. Several Pseudomonas spp., including Pseudomonas putida strains, became dominant in VPH polluted soil with and without biochar. The ability of these versatile VPH degraders to effectively regulate their metabolic pathways according to substrate availabilities may additionally have moderated bacterial community structure responses to the presence of biochar

  14. Ultraclean individual suspended single-walled carbon nanotube field effect transistor

    Science.gov (United States)

    Liu, Siyu; Zhang, Jian; Nshimiyimana, Jean Pierre; Chi, Xiannian; Hu, Xiao; Wu, Pei; Liu, Jia; Wang, Gongtang; Sun, Lianfeng

    2018-04-01

    In this work, we report an effective technique of fabricating ultraclean individual suspended single-walled carbon nanotube (SWNT) transistors. The surface tension of molten silver is utilized to suspend an individual SWNT between a pair of Pd electrodes during annealing treatment. This approach avoids the usage and the residues of organic resist attached to SWNTs, resulting ultraclean SWNT devices. And the resistance per micrometer of suspended SWNTs is found to be smaller than that of non-suspended SWNTs, indicating the effect of the substrate on the electrical properties of SWNTs. The ON-state resistance (˜50 kΩ), mobility of 8600 cm2 V-1 s-1 and large on/off ratio (˜105) of semiconducting suspended SWNT devices indicate its advantages and potential applications.

  15. The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2014-10-01

    Full Text Available Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C. The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization and 450 °C (carbonization, including Vmeso about 2.21 cm3/g (pore cage and 2.32 cm3/g (pore window with pore uniformity centered at 300 Å (pore cage and 200 Å (pore window, containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.

  16. Effects of junctions on carbon nanotube network-based devices

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Pil Soo; Kim, Gyu Tae [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2011-11-15

    Realistic random networks of carbon nanotubes (CNTs) were simulated by the noble hybrid method combining Monte Carlo and SPICE simulations. Near the percolation threshold, the electrical characteristics of networks are strongly affected by the contacts among nanotubes. The nonlinear electrical junctions in the CNT network were modeled by suitable SPICE models and simulated using our hybrid simulation method. We successfully described the morphological percolation threshold, and the critical density was determined as a function of normalized length. The effects of electrical junctions on the scaling of the sheet conductance were investigated. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Error correcting circuit design with carbon nanotube field effect transistors

    Science.gov (United States)

    Liu, Xiaoqiang; Cai, Li; Yang, Xiaokuo; Liu, Baojun; Liu, Zhongyong

    2018-03-01

    In this work, a parallel error correcting circuit based on (7, 4) Hamming code is designed and implemented with carbon nanotube field effect transistors, and its function is validated by simulation in HSpice with the Stanford model. A grouping method which is able to correct multiple bit errors in 16-bit and 32-bit application is proposed, and its error correction capability is analyzed. Performance of circuits implemented with CNTFETs and traditional MOSFETs respectively is also compared, and the former shows a 34.4% decrement of layout area and a 56.9% decrement of power consumption.

  18. Forest carbon management in the United States: 1600-2100

    Science.gov (United States)

    Richard A. Birdsey; Kurt Pregitzer; Alan Lucier

    2006-01-01

    This paper reviews the effects of past forest management on carbon stocks in the United States, and the challenges for managing forest carbon resources in the 21st century. Forests in the United States were in approximate carbon balance with the atmosphere from 1600-1800. Utilization and land clearing caused a large pulse of forest carbon emissions during the 19th...

  19. Use of nuclear techniques for mutation and selection of fungi for high protein yield utilizing carbon from inexpensive agricultural waste

    International Nuclear Information System (INIS)

    Georgopulos, S.

    1976-12-01

    The report briefly describes work carried out on the following subjects: Determination of protein in fungal strains (including Fusarium and Aspergillus niger); induction and selection of mutants (Aspergillus niger) giving higher yields of biomass and/or higher protein content; ability of fungi (Candida tropicalis) to utilize water extracts of carob bean pods; growth of Fusarium monoliforme at the expense of carob sugars; the use of alternate oxidase-negative mutants (of Ustilago maydis), for better utilization of substrates for growth (electron transport pathways in reoxidation of reduced coenzymes); kinetics of batch and continuous cultivation of Fusarium moniliforme (cultivated on aqueous carob extracts)

  20. Utilization of poly(methyl methacrylate) – carbon nanotube and polystyrene – carbon nanotube in situ polymerized composites as masterbatches for melt mixing

    OpenAIRE

    M. Lahelin; M. Annala; J. Seppala

    2012-01-01

    Carbon nanotubes (CNTs) were melt mixed directly or by using an in situ polymerized masterbatch into a matrix polymer, polystyrene (PS) or poly(methyl methacrylate) (PMMA). The mechanical properties of the composites were mostly determined by the amount of CNTs, and not by the use of directly melt mixed CNTs or the use of the masterbatch. In contrast, the electrical resistivity of the composites was dependent on the manner in which the CNTs were added to the matrix polymer. When there was inc...

  1. Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry

    International Nuclear Information System (INIS)

    Ren Shenggang; Hu Zhen

    2012-01-01

    We adopted the refined Laspeyres index approach to explore the impacts of industry scale, energy mix, energy intensity and utility mix on the total carbon dioxide emissions from the Chinese nonferrous metals industry for the period 1996–2008. In addition, we calculated the trend of decoupling effects in nonferrous metals industry in China by presenting a theoretical framework for decoupling. As the results suggest, Chinese nonferrous metals industry has gone through four decoupling stages: strong negative decoupling stage (1996–1998), weak decoupling stage (1999–2000), expensive negative decoupling stage (2001–2003) and weak decoupling stage (2004–2008). We have analyzed the reasons for each phase. Generally speaking, the rapid growth of the industry is the most important factor responsible for the increase of CO 2 emissions, and the change in energy mix was mainly due to the increased proportion of electric energy consumption that has contributed to the increase of CO 2 emissions. Reduction of energy intensity has contributed significantly to emissions decrease, and the utility mix effect has also contributed to the emission decrease to some extent. - Highlights: ► We calculate the decoupling effects of CO 2 from Chinese nonferrous metals industry. ► Results demonstrate that the industry has gone through four decoupling stages. ► The output effect is most important for the increase of CO 2 emissions. ► Reduction of energy intensity has contributed significantly to emissions decrease.

  2. Effect of multiwalled carbon nanotubes on UASB microbial consortium.

    Science.gov (United States)

    Yadav, Tushar; Mungray, Alka A; Mungray, Arvind K

    2016-03-01

    The continuous rise in production and applications of carbon nanotubes (CNTs) has grown a concern about their fate and toxicity in the environment. After use, these nanomaterials pass through sewage and accumulate in wastewater treatment plants. Since, such plants rely on biological degradation of wastes; their activity may decrease due to the presence of CNTs. This study investigated the effect of multiwalled carbon nanotubes (MWCNTs) on upflow anaerobic sludge blanket (UASB) microbial activity. The toxic effect on microbial viability, extracellular polymeric substances (EPS), volatile fatty acids (VFA), and biogas generation was determined. The reduction in a colony-forming unit (CFU) was 29 and 58 % in 1 and 100 mg/L test samples, respectively, as compared to control. The volatile fatty acids and biogas production was also found reduced. The scanning electron microscopy (SEM) and fluorescent microscopy images confirmed that the MWCNT mediated microbial cell damage. This damage caused the increase in EPS carbohydrate, protein, and DNA concentration. Fourier transform infrared (FTIR) spectroscopy results supported the alterations in sludge EPS due to MWCNT. Our observations offer a new insight to understand the nanotoxic effect of MWCNTs on UASB microflora in a complex environment system.

  3. Highly catalytic carbon nanotube counter electrode on plastic for dye solar cells utilizing cobalt-based redox mediator

    International Nuclear Information System (INIS)

    Aitola, Kerttu; Halme, Janne; Feldt, Sandra; Lohse, Peter; Borghei, Maryam; Kaskela, Antti; Nasibulin, Albert G.; Kauppinen, Esko I.; Lund, Peter D.; Boschloo, Gerrit; Hagfeldt, Anders

    2013-01-01

    A flexible, slightly transparent and metal-free random network of single-walled carbon nanotubes (SWCNTs) on plain polyethylene terephthalate (PET) plastic substrate outperformed platinum on conductive glass and on plastic as the counter electrode (CE) of a dye solar cell employing a Co(II/III)tris(2,2′-bipyridyl) complex redox mediator in 3-methoxypropionitrile solvent. The CE charge-transfer resistance of the SWCNT film was 0.60 Ω cm 2 , 4.0 Ω cm 2 for sputtered platinum on indium tin oxide-PET substrate and 1.7 Ω cm 2 for thermally deposited Pt on fluorine-doped tin oxide glass, respectively. The solar cell efficiencies were in the same range, thus proving that an entirely carbon-based SWCNT film on plastic is as good CE candidate for the Co electrolyte

  4. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    Science.gov (United States)

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  5. Preparation and Utilization of Kapok Hull Carbon for the Removal of Rhodamine-B from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    P. S. Syed Shabudeen

    2006-01-01

    Full Text Available A carbonaceous sorbent prepared from the indegeneous agricultural waste (which is facing solid waste disposal problem Kapok Hull, by acid treatment was tested for its efficiency in removing basic dyes. Batch kinetic and isotherm experiments were conducted to determine the sorption and desorption of the Rhodamine-B from aqueous solution with activated carbon. The factors affecting the rate processes involved in the removal of dye for initial dye concentration, agitation time, and carbon dose and particle size have been studied at ambient temperature. The adsorption process followed first order rate kinetics. The first-order rate equation by Lagergren was tested on the kinetic data, and isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherm equations. The intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. The structural and morphological of activated carbon were characterized by XRD and SEM studies respectively.

  6. Utilization of Pine Nut Shell derived carbon as an efficient alternate for the sequestration of phthalates from aqueous system

    Directory of Open Access Journals (Sweden)

    Umair A. Qureshi

    2014-12-01

    Full Text Available This study highlights the importance of a cheap bio waste; Pine Nut Shell (PNS, from which a carbon is synthesized that can efficiently remove toxic phthalates from an aqueous system. PNS derived carbon shows high affinity toward phthalates in descending order along with adsorption capacity i.e., dibutyl phthalate (DBP 5.65 mg/g > diallyl phthalate (DAP 3.64 mg/g > diethyl phthalate (DEP and 2.87 mg/g > dimethyl phthalate (DMP 2.48 mg/g. Different characterization techniques such as FTIR, elemental analysis, point of zero electric charge (PZC, SEM, EDX and BET were employed to investigate the binding sites and surface area of the adsorbent. Adsorption experiments were performed both in batch and column modes. Equilibrium studies showed that the Langmuir isotherm fits best to experimental data. Kinetically, adsorption phenomena obeyed pseudo second order. Furthermore, thermodynamic results expressed the exothermic nature of adsorption on the basis of negative value of enthalpy change. Column sorption method was also adapted to check the feasibility of the adsorption process through the investigation of flow rate, breakthrough curve and pre-concentration factor which is found to be 13 for DMP and DEP and 16 for DAP and DBP. Methanol was found to be best solvent for the recovery of phthalates. Application in real water samples also showed good efficiency of PNS derived carbon for the removal of phthalates.

  7. Dynamic Bandwidth Allocation with Effective Utilization of Polling Interval over WDM/TDM PON

    Science.gov (United States)

    Ni, Cuiping; Gan, Chaoqin; Gao, Ziyue

    2014-12-01

    WDM/TDM (wavelength-division multiplexing/time-division multiplexing) PON (passive optical network) appears to be an attractive solution for the next generation optical access networks. Dynamic bandwidth allocation (DBA) plays a crucial role in efficiently and fairly allocating the bandwidth among all users in WDM/TDM PON. In this paper, two dynamic bandwidth allocation schemes (DBA1 and DBA2) are proposed to eliminate the idle time of polling cycles (i.e. polling interval), improve bandwidth utilization and make full use of bandwidth resources. The two DBA schemes adjust the time slot of sending request information and make fair scheduling among users to achieve the effective utilization of polling interval in WDM/TDM PON. The simulation and theoretical analyses verify that the proposed schemes outperform the conventional DBA scheme. We also make comparisons between the two schemes in terms of bandwidth utilization and average packet delay to further demonstrate the effectiveness of the scheme of DBA2.

  8. State environmental law and carbon emissions: Do public utility commissions use environmental statutes to fight global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Sautter, John A.

    2010-10-15

    In many states environmental statutes provide the authority for public utility commissioners to make decisions to reduce greenhouse gases from electricity generation. This article looks at six such laws and how the presence of these laws affected CO{sub 2} emissions during a nine-year period from 1997 to 2005. (author)

  9. Relaxation Response and Resiliency Training and Its Effect on Healthcare Resource Utilization.

    Directory of Open Access Journals (Sweden)

    James E Stahl

    Full Text Available Poor psychological and physical resilience in response to stress drives a great deal of health care utilization. Mind-body interventions can reduce stress and build resiliency. The rationale for this study is therefore to estimate the effect of mind-body interventions on healthcare utilization.Estimate the effect of mind body training, specifically, the Relaxation Response Resiliency Program (3RP on healthcare utilization.Retrospective controlled cohort observational study.Major US Academic Health Network.All patients receiving 3RP at the MGH Benson-Henry Institute from 1/12/2006 to 7/1/2014 (n = 4452, controls (n = 13149 followed for a median of 4.2 years (.85-8.4 yrs.Utilization as measured by billable encounters/year (be/yr stratified by encounter type: clinical, imaging, laboratory and procedural, by class of chief complaint: e.g., Cardiovascular, and by site of care delivery, e.g., Emergency Department. Subgroup analysis by propensity score matched pre-intervention utilization rate.At one year, total utilization for the intervention group decreased by 43% [53.5 to 30.5 be/yr] (p <0.0001. Clinical encounters decreased by 41.9% [40 to 23.2 be/yr], imaging by 50.3% [11.5 to 5.7 be/yr], lab encounters by 43.5% [9.8 to 5.6], and procedures by 21.4% [2.2 to 1.7 be/yr], all p < 0.01. The intervention group's Emergency department (ED visits decreased from 3.6 to 1.7/year (p<0.0001 and Hospital and Urgent care visits converged with the controls. Subgroup analysis (identically matched initial utilization rates-Intervention group: high utilizing controls showed the intervention group significantly reduced utilization relative to the control group by: 18.3% across all functional categories, 24.7% across all site categories and 25.3% across all clinical categories.Mind body interventions such as 3RP have the potential to substantially reduce healthcare utilization at relatively low cost and thus can serve as key components in any population health and

  10. Distributional effects of a carbon tax on Chinese households: A case of Shanghai

    International Nuclear Information System (INIS)

    Jiang, Zhujun; Shao, Shuai

    2014-01-01

    As an effective policy instrument to reduce CO 2 emissions, the effects of a carbon tax on distribution have been the critical factor in determining whether a carbon tax will be acceptable in China. Taking Shanghai as an example, which is the economic center and front-runner of China, this paper estimates the distributional effect of a carbon tax on households in various income groups by using the input–output model and the Suits index. The results indicate that the comprehensive distributional effect of the carbon tax is regressive. The expenditure of the low-income group caused by the carbon tax accounts for 0.853% of the total expenditure, while that of the high-income group 0.712%. The direct distributional effect presents a weak progressivity, while the indirect one is significantly regressive, and the latter is much larger than the former. Moreover, the Suits index of the carbon tax is −0.078, implying that the carbon tax burden on the low-income group is the highest and thus that a carbon tax can intensify income inequality. Therefore, when introducing a carbon tax, some rational associated redistribution or compensation measures, such as purposive transfer payments, should be implemented to restrict or even eliminate the regressivity of the carbon tax. - Highlights: • The direct distributional effect of carbon tax presents a weak progressivity. • The indirect distributional effect of carbon tax is significantly regressive. • The comprehensive distributional effect of carbon tax is regressive. • The Suits index of carbon tax is −0.078. • Imposing carbon tax on fossil fuels can intensify income inequality

  11. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska

    Science.gov (United States)

    Spencer, R.G.M.; Aiken, G.R.; Butler, K.D.; Dornblaser, M.M.; Striegl, Robert G.; Hernes, P.J.

    2009-01-01

    The quality and quantity of dissolved organic matter (DOM) exported by Arctic rivers is known to vary with hydrology and this exported material plays a fundamental role in the biogeochemical cycling of carbon at high latitudes. We highlight the potential of optical measurements to examine DOM quality across the hydrograph in Arctic rivers. Furthermore, we establish chromophoric DOM (CDOM) relationships to dissolved organic carbon (DOC) and lignin phenols in the Yukon River and model DOC and lignin loads from CDOM measurements, the former in excellent agreement with long-term DOC monitoring data. Intensive sampling across the historically under-sampled spring flush period highlights the importance of this time for total export of DOC and particularly lignin. Calculated riverine DOC loads to the Arctic Ocean show an increase from previous estimates, especially when new higher discharge data are incorporated. Increased DOC loads indicate decreased residence times for terrigenous DOM in the Arctic Ocean with important implications for the reactivity and export of this material to the Atlantic Ocean. Citation: Spencer, R. G. M., G. R. Aiken, K. D. Butler, M. M. Dornblaser, R. G. Striegl, and P. J. Hernes (2009), Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska, Geophys. Res. Lett., 36, L06401, doi:10.1029/ 2008GL036831. Copyright 2009 by the American Geophysical Union.

  12. SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Hieken, T; Mutter, R; Park, S; Yan, E; Brinkmann, D; Pafundi, D [Mayo Clinic, Rochester, MN (United States)

    2015-06-15

    Purpose To investigate the feasibility of utilizing carbon fiducials to increase localization accuracy of lumpectomy cavity for partial breast irradiation (PBI). Methods Carbon fiducials were placed intraoperatively in the lumpectomy cavity following resection of breast cancer in 11 patients. The patients were scheduled to receive whole breast irradiation (WBI) with a boost or 3D-conformal PBI. WBI patients were initially setup to skin tattoos using lasers, followed by orthogonal kV on-board-imaging (OBI) matching to bone per clinical practice. Cone beam CT (CBCT) was acquired weekly for offline review. For the boost component of WBI and PBI, patients were setup with lasers, followed by OBI matching to fiducials, with final alignment by CBCT matching to fiducials. Using carbon fiducials as a surrogate for the lumpectomy cavity and CBCT matching to fiducials as the gold standard, setup uncertainties to lasers, OBI bone, OBI fiducials, and CBCT breast were compared. Results Minimal imaging artifacts were introduced by fiducials on the planning CT and CBCT. The fiducials were sufficiently visible on OBI for online localization. The mean magnitude and standard deviation of setup errors were 8.4mm ± 5.3 mm (n=84), 7.3mm ± 3.7mm (n=87), 2.2mm ± 1.6mm (n=40) and 4.8mm ± 2.6mm (n=87), for lasers, OBI bone, OBI fiducials and CBCT breast tissue, respectively. Significant migration occurred in one of 39 implanted fiducials in a patient with a large postoperative seroma. Conclusion OBI carbon fiducial-based setup can improve localization accuracy with minimal imaging artifacts. With increased localization accuracy, setup uncertainties can be reduced from 8mm using OBI bone matching to 3mm using OBI fiducial matching for PBI treatment. This work demonstrates the feasibility of utilizing carbon fiducials to increase localization accuracy to the lumpectomy cavity for PBI. This may be particularly attractive for localization in the setting of proton therapy and other scenarios

  13. SU-E-J-37: Feasibility of Utilizing Carbon Fiducials to Increase Localization Accuracy of Lumpectomy Cavity for Partial Breast Irradiation

    International Nuclear Information System (INIS)

    Zhang, Y; Hieken, T; Mutter, R; Park, S; Yan, E; Brinkmann, D; Pafundi, D

    2015-01-01

    Purpose To investigate the feasibility of utilizing carbon fiducials to increase localization accuracy of lumpectomy cavity for partial breast irradiation (PBI). Methods Carbon fiducials were placed intraoperatively in the lumpectomy cavity following resection of breast cancer in 11 patients. The patients were scheduled to receive whole breast irradiation (WBI) with a boost or 3D-conformal PBI. WBI patients were initially setup to skin tattoos using lasers, followed by orthogonal kV on-board-imaging (OBI) matching to bone per clinical practice. Cone beam CT (CBCT) was acquired weekly for offline review. For the boost component of WBI and PBI, patients were setup with lasers, followed by OBI matching to fiducials, with final alignment by CBCT matching to fiducials. Using carbon fiducials as a surrogate for the lumpectomy cavity and CBCT matching to fiducials as the gold standard, setup uncertainties to lasers, OBI bone, OBI fiducials, and CBCT breast were compared. Results Minimal imaging artifacts were introduced by fiducials on the planning CT and CBCT. The fiducials were sufficiently visible on OBI for online localization. The mean magnitude and standard deviation of setup errors were 8.4mm ± 5.3 mm (n=84), 7.3mm ± 3.7mm (n=87), 2.2mm ± 1.6mm (n=40) and 4.8mm ± 2.6mm (n=87), for lasers, OBI bone, OBI fiducials and CBCT breast tissue, respectively. Significant migration occurred in one of 39 implanted fiducials in a patient with a large postoperative seroma. Conclusion OBI carbon fiducial-based setup can improve localization accuracy with minimal imaging artifacts. With increased localization accuracy, setup uncertainties can be reduced from 8mm using OBI bone matching to 3mm using OBI fiducial matching for PBI treatment. This work demonstrates the feasibility of utilizing carbon fiducials to increase localization accuracy to the lumpectomy cavity for PBI. This may be particularly attractive for localization in the setting of proton therapy and other scenarios

  14. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar

    2013-05-11

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  15. Potential of carbon nanotube field effect transistors for analogue circuits

    KAUST Repository

    Hayat, Khizar; Cheema, Hammad; Shamim, Atif

    2013-01-01

    This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET's potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.

  16. PTCR effect in carbon black/copolymer composites

    International Nuclear Information System (INIS)

    Costa, L.C.; Chakki, A.; Achour, M.E.; Graca, M.P.F.

    2011-01-01

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 o C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  17. PTCR effect in carbon black/copolymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Costa, L.C., E-mail: kady@fis.ua.p [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Chakki, A.; Achour, M.E. [LASTID, Physics Department, Faculty of Sciences, Ibn Tofail University, BP 133, 14000 Kenitra (Morocco); Graca, M.P.F. [I3N and Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-01-15

    Some materials show an abrupt increase in resistivity when the temperature changes only over a few degrees. This phenomenon, known as PTCR effect (positive temperature coefficient of resistivity), has been largely studied in the last few years, due to its potential applications in industry. Particularly, it can be used in auto controlled heaters, temperature sensors, protection circuits and in security systems for power electronic circuits. In this work we present the study of the electrical properties of the percolating system carbon black particles filled with ethylene butylacrylate copolymer composite (EBA), in the temperature range from -100 to 100 {sup o}C and in frequencies between 10 Hz and 100 kHz. The PTCR effect was observed at temperatures slightly above the room temperature, for concentrations higher than that of the percolation critical concentration. The mechanism responsible for the change in resistivity, at this stage, is predominantly tunnelling, wherein the conductive filler particles are not in physical contact, and the electrons tunnel through the insulating gap between them. At low temperatures, such as below and close to the glass transition temperature, the DC conductivity obeys the Arrhenius law. The calculated activation energy values are independent of carbon black contents inside the copolymer matrix, suggesting that these particles do not interact significantly with the chain segments of the macromolecules in the EBA copolymer.

  18. Numerical simulation of carbon dioxide effects in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Moya, S.L.; Iglesias, E.R. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-03-01

    We developed and coded a new equation of state (EOS) for water-carbon dioxide mixtures and coupled it to the TOUGH numerical simulator. This EOS is valid up to 350{degrees}C and 500 bar. Unlike previous thermodynamical models, it rigorously considers the non-ideal behavior of both components in the gaseous mixture and formally includes the effect of the compressibility of the liquid phase. We refer to the coupling of this EOS with TOUGH as TOUGH-DIOX. To complement this enhancement of TOUGH, we added indexed output files for easy selection and interpretation of results. We validated TOUGH-DIOX against published results. Furthermore we used TOUGH-DIOX to explore and compare mass and energy inflow performance relationships of geothermal wells with/without carbon dioxide (CO{sub 2}). Our results include the effects of a broad range of fluid and formation properties, initial conditions and history of reservoir production. This work contributes with generalized dimensionless inflow performance relationships appropriate for geothermal use.

  19. Underground coal gasification with extended CO2 utilization as economic and carbon neutral approach to address energy and fertilizer supply shortages in Bangladesh

    Science.gov (United States)

    Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas

    2014-05-01

    The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be

  20. Proline porters effect the utilization of proline as nutrient or osmoprotectant for bacteria.

    Science.gov (United States)

    Wood, J M

    1988-12-01

    Proline is utilized by all organisms as a protein constituent. It may also serve as a source of carbon, energy and nitrogen for growth or as an osmoprotectant. The molecular characteristics of the proline transport systems which mediate the multiple functions of proline in the Gram negative enteric bacteria, Escherichia coli and Salmonella typhimurium, are now becoming apparent. Recent research on those organisms has provided both protocols for the genetic and biochemical characterization of the enzymes mediating proline transport and molecular probes with which the degree of homology among the proline transport systems of archaebacteria, eubacteria and eukaryotes can be assessed. This review has provided a detailed summary of recent research on proline transport in E. coli and S. typhimurium; the properties of other organisms are cited primarily to illustrate the generality of those observations and to show where homologous proline transport systems might be expected to occur. The characteristics of proline transport in eukaryotic microorganisms have recently been reviewed (Horak, 1986).

  1. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Groppo; T.L. Robl

    2005-09-30

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a

  2. Effects of energy and protein levels on growth and nutrient utilization ...

    African Journals Online (AJOL)

    Effects of energy and protein levels on growth and nutrient utilization of weaned rabbits. ML Egbo, TA Adegbola, EO Oyawoye, MM Abubakar. Abstract. No Abstract. Animal Production Research Advances Vol. 3 (4) 2007: pp. 306-310. http://dx.doi.org/10.4314/apra.v3i4.36411 · AJOL African Journals Online. HOW TO USE ...

  3. Utilizing the Intercultural Effectiveness Scale (IES) to Enhance International Student Travel

    Science.gov (United States)

    Bates, Alicia; Rehal, Dalia Atef

    2017-01-01

    This paper highlights how one institution used the International Effectiveness Scale (IES) to support intercultural exploration and development for short-term undergraduate travel programs. Authors discuss utilization of the IES to explore students' intercultural development, how it can be applied to create an individualized action plan, and how…

  4. Effect of utilizing unground and ground normal and black rice husk ...

    Indian Academy of Sciences (India)

    The aim of the present study is to investigate the effects of utilizing different processings of normal rice husk ash (RHA) and black rice husk ash (BRHA) on the mechanical and durability properties of high strength concrete (HSC). Mechanical and durability properties of HSC were evaluated on concrete mixes containing ...

  5. 77 FR 73646 - Notice of Effectiveness of Exempt Wholesale Generator or Foreign Utility Company Status

    Science.gov (United States)

    2012-12-11

    ... Renewable Energy Infrastructure FC12-10-000 Limited Partnership. Project AMBG2 LP FC12-11-000 SunBridge Wind... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. EG12-108-000, et al.] Notice of Effectiveness of Exempt Wholesale Generator or Foreign Utility Company Status [[Page 73647...

  6. 77 FR 42719 - Notice of Effectiveness of Exempt Wholesale Generator or Foreign Utility Company Status

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [EG12-43-000, EG12-53-000, EG12-54-000, et al.] Notice of Effectiveness of Exempt Wholesale Generator or Foreign Utility Company Status Docket Nos. Sherbino I Wind Farm LLC EG12-43-000 Eagle Point Power Generation LLC....... EG12-53-000...

  7. Controlling Campylobacter in the chicken meat chain - Cost-effectiveness and cost-utility analysis

    NARCIS (Netherlands)

    Mangen MJJ; Havelaar AH; Nauta MJ; Koeijer AA de; Wit GA de; LEI; Animal Sciences Group; PZO; MGB

    2005-01-01

    The aim of this study was the estimation of cost-effectiveness and cost-utility of various interventions to control Campylobacter contamination of broiler meat. The relative risk, the intervention costs, the disease burden (expressed in Disability Adjusted Live Years (DALYs)) and the

  8. Scenario-based potential effects of carbon trading in China: An integrated approach

    International Nuclear Information System (INIS)

    Zhang, Cheng; Wang, Qunwei; Shi, Dan; Li, Pengfei; Cai, Wanhuan

    2016-01-01

    Highlights: • Carbon dioxide shadow price shows a negative asymmetrical correlation with carbon dioxide emissions in China. • The implements of carbon trading can bring Porter Hypothesis effect significantly. • Provincial carbon trading can reduce carbon intensity by 19.79–25.24% in China. - Abstract: Using China’s provincial panel data and national panel data of OECD (Organization for Economic Co-operation and Development) and BRICS (Five major emerging national economies: Brazil, Russia, India, China and South Africa), this paper simulates the scenario-based potential effect of carbon trading in China. Analysis methods included Stochastic Frontier Analysis, Difference-in-differences Model, and Nonlinear Programming Technique. Results indicated that in a theory-based view of carbon trading, the shadow price of carbon dioxide generally rises, with a non-linear negative correlation with carbon dioxide emissions. In different regions, the shadow price of carbon dioxide presents a digressive tendency among eastern, central, and western areas, with divergent gaps between and within areas. When the greatest goal is assumed to reduce national carbon intensity as much as possible at the given national GDP (Gross Domestic Product) (Scenario I), carbon trading has the effect of reducing carbon intensity by 19.79%, with the consideration of Porter Hypothesis effect. If the rigid constraint of national GDP is relaxed, and the dual constraint of both economic growth and environment protection in each region is introduced (Scenario II), the resulting effect is a reduced carbon intensity of 25.24%. China’s general carbon intensity in 2012 was higher than goals set at the Copenhagen Conference, but lagged behind the goal of Twelfth Five-Year Plan for National Economy. This study provides realistic and significant technical support for the government to use in designing and deploying a national carbon trading market.

  9. Effect of Elevated Carbon Dioxide Concentration on Carbon Assimilation under Fluctuating Light

    Czech Academy of Sciences Publication Activity Database

    Holišová, Petra; Zitová, Martina; Klem, Karel; Urban, Otmar

    2012-01-01

    Roč. 41, č. 6 (2012), s. 1931-1938 ISSN 0047-2425 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA ČR(CZ) GAP501/10/0340; GA MŠk(CZ) LM2010007; GA AV ČR IAA600870701 Institutional support: RVO:67179843 Keywords : carbon * light * beech * spruce * carbon assimilation * elevat e carbon * dioxide concentration * mol * photosynthetic * assimilation * carbon dioxide * dioxide * concentracion * leave * photosynthetic efficiency Subject RIV: EH - Ecology, Behaviour Impact factor: 2.353, year: 2012

  10. Quantitative iTRAQ-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(II)-oxidizing Ascomycete fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Wu, Si; Santelli, Cara M.; Hansel, Colleen M.

    2017-09-01

    Fungi generate a wide range of extracellular hydrolytic and oxidative enzymes and reactive metabolites, collectively known as the secretome, that synergistically drive plant litter decomposition in the environment. While secretome studies of model organisms have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or directly compared temporal patterns of enzyme utilization among diverse species. Thus, the mechanisms of carbon (C) degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of iTRAQ proteomics and custom bioinformatic analyses to compare the protein composition of the secretomes of four manganese(II)-oxidizing Ascomycete fungi over a three-week time course. We demonstrate that although the fungi produce a similar suite of extracellular enzymes, they exhibit striking differences in the regulation of these enzymes among species and over time, revealing species-specific and temporal shifts in C utilization strategies as they degrade the same substrate. Specifically, our findings suggest that Paraconiothyrium sporulosum AP3s5-JAC2a and Alternaria alternata SRC1lrK2f employ sequential enzyme secretion patterns concomitant with decreasing resource availability, Stagonospora sp. SRC1lsM3a preferentially degrades proteinaceous substrate before switching to carbohydrates, and Pyrenochaeta sp. DS3sAY3a utilizes primarily peptidases to aggressively attack carbon sources in a concentrated burst. This work highlights the diversity of operative metabolic strategies among cellulose-degrading Ascomycetes and enhances our understanding of their role in C turnover in the environment.

  11. Ability of an alkali-tolerant mutant strain of the microalga Chlorella sp. AT1 to capture carbon dioxide for increasing carbon dioxide utilization efficiency.

    Science.gov (United States)

    Kuo, Chiu-Mei; Lin, Tsung-Hsien; Yang, Yi-Chun; Zhang, Wen-Xin; Lai, Jinn-Tsyy; Wu, Hsi-Tien; Chang, Jo-Shu; Lin, Chih-Sheng

    2017-11-01

    An alkali-tolerant Chlorella sp. AT1 mutant strain was screened by NTG mutagenesis. The strain grew well in pH 6-11 media, and the optimal pH for growth was 10. The CO 2 utilization efficiencies of Chlorella sp. AT1 cultured with intermittent 10% CO 2 aeration for 10, 20 and 30min at 3-h intervals were approximately 80, 42 and 30%, respectively. In alkaline medium (pH=11) with intermittent 10% CO 2 aeration for 30min at 3-, 6- and 12-h intervals, the medium pH gradually changed to 10, and the biomass productivities of Chlorella sp. AT1 were 0.987, 0.848 and 0.710gL -1 d -1 , respectively. When Chlorella sp. AT1 was aerated with 10% CO 2 intermittently for 30min at 3-h intervals in semi-continuous cultivation for 21days, the biomass concentration and biomass productivity were 4.35gL -1 and 0.726gL -1 d -1 , respectively. Our results show that CO 2 utilization efficiency can be markedly increased by intermittent CO 2 aeration and alkaline media as a CO 2 -capturing strategy for alkali-tolerant microalga cultivation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    International Nuclear Information System (INIS)

    Nurulhuda, I.; Poh, R.; Mazatulikhma, M. Z.; Rusop, M.; Salman, A. H. A.; Haseeb, A. K.

    2016-01-01

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from the process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm −1 , respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm −1 . Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.

  13. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Nurulhuda, I., E-mail: nurulnye@gmail.com [NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Poh, R. [Department of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mazatulikhma, M. Z. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Salman, A. H. A.; Haseeb, A. K.

    2016-07-06

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from the process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm{sup −1}, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm{sup −1}. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.

  14. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  15. The effect of brushing with nano calcium carbonate and calcium carbonate toothpaste on the surface roughness of nano-ionomer

    Science.gov (United States)

    Anisja, D. H.; Indrani, D. J.; Herda, E.

    2017-08-01

    Nanotechnology developments in dentistry have resulted in the development of nano-ionomer, a new restorative material. The surface roughness of restorative materials can increase bacteria adhesion and lead to poor oral hygiene. Abrasive agents in toothpaste can alter tooth and restorative material surfaces. The aim of this study is to identify the effect of brushing with nano calcium carbonate, and calcium carbonate toothpaste on surface roughness of nano-ionomer. Eighteen nano-ionomer specimens were brushed with Aquabidest (doubledistilled water), nano calcium carbonate and calcium carbonate toothpaste. Brushing lasted 30 minutes, and the roughness value (Ra) was measured after each 10 minute segment using a surface roughness tester. The data was analyzed using repeated ANOVA and one-way ANOVA test. The value of nano-ionomer surface roughness increased significantly (p<0.05) after 20 minutes of brushing with the nano calcium carbonate toothpaste. Brushing with calcium carbonate toothpaste leaves nano-ionomer surfaces more rugged than brushing with nano calcium carbonate toothpaste.

  16. Management effects on carbon fluxes in boreal forests (Invited)

    Science.gov (United States)

    Lindroth, A.; Mölder, M.; Lagergren, F.; Vestin, P.; Hellström, M.; Sundqvist, E.; Norunda Bgs Team

    2010-12-01

    Disturbance by management or natural causes such as wind throw or fire are believed to be one of the main factors that are controlling the carbon balance of vegetation. In Northern Europe a large fraction of the forest area is managed with clear cutting and thinning as the main silvicultural methods. The effect of clear-cutting on carbon dioxide exchanges were studied in different chrono-sequences located in Sweden, Finland, UK and France, respectively. The combined results from these studies showed that a simple model could be developed describing relative net ecosystem exchange as a function of relative rotation length (age). A stand with a rotation length of 100 years, typical for Swedish conditions, looses substantial amounts of carbon during the first 12-15 years and the time it takes to reach cumulative balance after clear-cut, is 25-30 years. The mean net ecosystem exchange over the whole rotation length equals 50% of the maximum uptake. An interesting question is if it is possible to harvest without the substantial carbon losses that take place after clear-cutting. Selective harvest by thinning could potentially be such a method. We therefore studied the effect of thinning on soil and ecosystem carbon fluxes in a mixed pine and spruce forest in Central Sweden, the Norunda forest, located in the semi-boreal zone at 60.08°N, 17.48 °E. The CO2 fluxes from the forest were measured by eddy covariance method and soil effluxes were measured by automatic chambers. Maximum canopy height of the ca. 100 years-old forest was 28 m. The stand was composed of ca 72% pine, 28% before the thinning while the composition after the thinning became 82% pine and 18% spruce. The thinning was made in November/December 2008 in a half- circle from the tower with a radius of 200 m. The LAI decreased from 4.5 to 2.8 after the thinning operation. Immediately after the thinning, we found significantly higher soil effluxes, probably due to increased decomposition of dead roots. The

  17. Electrical conductivity of metal–carbon nanotube structures: Effect of ...

    Indian Academy of Sciences (India)

    Administrator

    The electrical properties of asymmetric metal–carbon nanotube (CNT) structures have been studied using ... The models with asymmetric metal contacts and carbon nanotube bear resemblance to experimental ... ordinary mechanical strength.

  18. The effect of cutting on carbon dioxide absorption and carbohydrate ...

    African Journals Online (AJOL)

    grass) and Osteospermun sinuatum (Karoo-bush) plants during the flag leaf and flower bud stages respectively resulted in a sharp decline in net carbon dioxide absorption. As new photosynthetic material was produced the total carbon ...

  19. Non-carbon benefits for effective implementation of REDD+

    African Journals Online (AJOL)

    EJIRO

    Environmental System of Accounting has a system to measure ... natural patches (Burel et al., 2013). Biodiversity ... of safeguards prioritization” from pure carbon to non- carbon ...... important intervention of climate-smart agriculture. Leaving ...

  20. Carbonizing

    Energy Technology Data Exchange (ETDEWEB)

    Garrow, J R

    1918-07-31

    The sensible heat of producer gas is utilized in the dry distillation of carbonaceous material at temperatures ranging from 450 to 1000/sup 0/C in an internally-heated rotary retort. One or more producers are arranged in close proximity to the retorts, and the charge is treated for a period of 5 to 6 hours; by-product recovery producers may be used.

  1. Effect of precipitated calcium carbonate--Cellulose nanofibrils composite filler on paper properties.

    Science.gov (United States)

    He, Ming; Cho, Byoung-Uk; Won, Jong Myoung

    2016-01-20

    A new concept of composite filler was developed by using cellulose nanofibrils (CNF), precipitated calcium carbonate (PCC) and cationic starch (C-starch). In this study, cellulose nanofibrils were utilized in two different ways: a PCC-CNF composite filler and a papermaking additive in sheet forming. The aim was to elucidate their effects on flocculation, filler retention and the strength and optical properties of handsheets. The highest filler retention was obtained by using the PCC-CNF composite filler in paper sheets. The paper filled with the composite fillers had much higher bursting and tensile strengths than conventional PCC loading. It was also found that the paper prepared with PCC-CNF composite fillers became denser with increasing the filler content of paper. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Interregional carbon emission spillover–feedback effects in China

    International Nuclear Information System (INIS)

    Zhang, Youguo

    2017-01-01

    A three-region input–output model was applied in this study to analyze the emission spillover–feedback effects across the eastern, middle, and western regions of China. Results revealed that the interregional trade has important spillover effects (SEs) on the emissions of each region, particularly in the middle and western regions, but the feedback effects are few. Although the eastern regional final demands have a smaller economic SE per unit than those of the middle and western regions in 2002–2010, its emission SE gradually exceeded that of the two other regions. The interregional trade policy has to be enforced in the future, but the emission SEs should be controlled efficiently. Therefore, the central government should continue to implement the policies on the reduction of energy and carbon intensities from the past decade, limit coal consumption, and encourage renewable fuel development. At the same time, the central government and the eastern region can help the middle and western regions control their carbon intensity by providing fiscal, technological, and training assistance. The middle and western regions should set strict admittance standards for energy-intensive plants that transferred from the eastern region. - Highlights: • We study spillover-feedback effects (SFEs) with a three-region input-output model. • We calculate the emission SFEs among the east, middle and west China. • We compare changes of the interregional emission and economic SFEs in 2002–2010. • Regional sector emission SFEs are also presented. • The policy implication of emission SFEs are discussed.

  3. Black carbon reduction will weaken the aerosol net cooling effect

    Science.gov (United States)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  4. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    OpenAIRE

    Huang, Jingsong; Bobby,; Sumpter, Bobby G.; Meunier, Vincent; Yushin, Gleb; Portet, Cristelle; Gogotsi, Yury

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior ...

  5. Effects of elevated carbon dioxide concentration on growth and N2 fixation of young Robinia pseudoacacia

    International Nuclear Information System (INIS)

    Feng, Z; Flessa, H.; Dyckmans, J.

    2004-01-01

    The effects of elevated carbon dioxide concentration on carbon and nitrogen uptake and nitrogen source partitioning were determined in one year-old locust trees using a dual 13 C and 15 N continuous labelling experiment. Elevated carbon dioxide increased the fraction of new carbon in total carbon, but it did not alter carbon partitioning among plant compartments. Elevated carbon dioxide also increased the fraction of new nitrogen in total nitrogen. This was coupled with a shift in nitrogen source partitioning toward nitrogen fixation. Soil nitrogen uptake was not affected, but nitrogen fixation was markedly increased by elevated carbon dioxide treatment. The increased nitrogen fixation tended to decrease the C/N ratio in the presence of elevated carbon dioxide. Total dry mass of root nodules doubled in response to elevated carbon dioxide, however, this effect was not considered significant because of the great variability in root nodule formation. Overall, it was concluded that the growth of locust trees in an elevated carbon dioxide environment will not primarily be limited by nitrogen availability, giving the R. pseudoacacia species a competitive advantage over non-nitrogen-fixing tree species. It was also suggested that the increase in nitrogen fixation observed in response to elevated carbon dioxide treatment may play a key role in the growth response of forest ecosystems to elevated carbon dioxide by improving nitrogen availability for non-nitrogen-fixing trees. 51 refs., 1 tab., 4 figs

  6. Methane and carbon dioxide hydrates on Mars: Potential origins, distribution, detection, and implications for future in situ resource utilization

    Science.gov (United States)

    Pellenbarg, Robert E.; Max, Michael D.; Clifford, Stephen M.

    2003-04-01

    There is high probability for the long-term crustal accumulation of methane and carbon dioxide on Mars. These gases can arise from a variety of processes, including deep biosphere activity and abiotic mechanisms, or, like water, they could exist as remnants of planetary formation and by-products of internal differentiation. CH4 and CO2 would tend to rise buoyantly toward the planet's surface, condensing with water under appropriate conditions of temperature and pressure to form gas hydrate. Gas hydrates are a class of materials created when gas molecules are trapped within a crystalline lattice of water-ice. The hydrate stability fields of both CH4 and CO2 encompass a portion of the Martian crust that extends from within the water-ice cryosphere, from a depth as shallow as ~10-20 m to as great as a kilometer or more below the base of the Martian cryosphere. The presence and distribution of methane and carbon dioxide hydrates may be of critical importance in understanding the geomorphic evolution of Mars and the geophysical identification of water and other volatiles stored in the hydrates. Of critical importance, Martian gas hydrates would ensure the availability of key in situ resources for sustaining future robotic and human exploration, and the eventual colonization, of Mars.

  7. Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers

    International Nuclear Information System (INIS)

    Li, Yu-An; Chen, Yin-Ju; Tai, Nyan-Hwa

    2014-01-01

    A flexible transparent film heater using functionalized few-walled carbon nanotubes and graphene nanosheets decorated with silver nanoparticles as fillers and poly(3,4-ethylenedioxythiophene)- poly(4-stryrenesulfonate) (PEDOT:PSS) as a dispersant possesses excellent optoelectronic and electrothermal properties. The film possesses a low sheet resistance of 53.0 ± 4.2 ohm · sq −1 , a transmittance of 80.2 ± 0.8% at a wavelength of 550 nm, a high thermal conductivity of 142.0 ± 9.6 W · m −1  · K −1 , a quick response time of less than 60 s, stable heating performance, good reliability, low power consumption, flexibility, and uniform heat diffusion. Besides, the film shows an average infrared emissivity of 0.53 in the wavelength range of 4 to 14 μm, which shows an outstanding heat release performance by radiation. The flexible transparent film heaters adopting graphene and carbon nanotubes as fillers boast excellent electrothermal performance through heat conduction and infrared radiation, suggesting that they are good substitutes for traditional metallic and indium tin oxide film heaters. (papers)

  8. Long-term effects of oral clefts on health care utilization

    DEFF Research Database (Denmark)

    Pedersen, Morten Saaby; Wehby, George L; Pedersen, Dorthe Almind

    2015-01-01

    clefts use more health services than their unaffected siblings. Additional results show that the effects are driven primarily by congenital malformation-related hospitalizations and intake of anti-infectives. Although the absolute differences in most health care utilization diminish over time, affected......Oral clefts are among the most common birth defects affecting thousands of newborns each year, but little is known about their potential long-term consequences. In this paper, we explore the impact of oral clefts on health care utilization over most of the lifespan. To account for time...... individuals have slightly higher utilization of some health care services in adulthood (particularly for diseases of the nervous and respiratory system). These results have important implications for affected individuals, their families, and their health professionals....

  9. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector.

    Science.gov (United States)

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E

    2014-02-01

    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. © 2013.

  10. The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes.

    Science.gov (United States)

    Zhang, Shujuan; Shao, Ting; Karanfil, Tanju

    2011-01-01

    Understanding the influence of natural organic matter (NOM) on synthetic organic contaminant (SOC) adsorption by carbon nanotubes (CNTs) is important for assessing the environmental implications of accidental CNT release and spill to natural waters, and their potential use as adsorbents in engineered systems. In this study, adsorption of two SOCs by three single-walled carbon nanotubes (SWNTs), one multi-walled carbon nanotube (MWNT), a microporous activated carbon fiber (ACF) [i.e., ACF10] and a bimodal porous granular activated carbon (GAC) [i.e., HD4000] was compared in the presence and absence of NOM. The NOM effect was found to depend strongly on the pore size distribution of carbons. Minimal NOM effect occurred on the macroporous MWNT, whereas severe NOM effects were observed on the microporous HD4000 and ACF10. Although the single-solute adsorption capacities of the SWNTs were much lower than those of HD4000, in the presence of NOM the SWNTs exhibited adsorption capacities similar to those of HD4000. Therefore, if released into natural waters, SWNTs can behave like an activated carbon, and will be able to adsorb, carry, and transfer SOCs to other systems. However, from an engineering application perspective, CNTs did not exhibit a major advantage, in terms of adsorption capacities, over the GAC and ACF. The NOM effect was also found to depend on molecular properties of SOCs. NOM competition was more severe on the adsorption of 2-phenylphenol, a nonplanar and hydrophilic SOC, than phenanthrene, a planar and hydrophobic SOC, tested in this study. In terms of surface chemistry, both adsorption affinity to SOCs and NOM effect on SOC adsorption were enhanced with increasing hydrophobicity of the SWNTs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. WEALTH EFFECT AND DENTAL CARE UTILIZATION IN THE U.S.

    Science.gov (United States)

    Manski, Richard J.; Moeller, John F.; Chen, Haiyan; Clair, Patricia A. St.; Schimmel, Jody; Pepper, John V.

    2012-01-01

    Objective The purpose of this article is to examine the relationship of wealth and income and the relative impact of each on dental utilization in a population of older Americans, using data from the Health and Retirement Study (HRS). Methods Data from the Health and Retirement Study (HRS) were analyzed for U.S. individuals aged 51 years and older during the 2008 wave of the HRS. The primary focus of the analysis is the relationship between wealth, income and dental utilization. We estimate a multivariable model of dental use controlling for wealth, income and other potentially confounding covariates. Results We find that both wealth and income each have a strong and independent positive effect on dental care use of older Americans [pdental care utilization as wealth increases depends on a person's income level, or, alternatively, that the impact on dental use as income increases depends on a person's household wealth status [p>.05]. Conclusions Relative to those living in the wealthiest U.S. households, the likelihood of utilizing dental care appears to decrease with a decline in wealth. The likelihood of utilizing dental care also appears to decrease with a decline in income as well. PMID:22515635

  12. An effective utilization management strategy by dual approach of influencing physician ordering and gate keeping.

    Science.gov (United States)

    Elnenaei, Manal O; Campbell, Samuel G; Thoni, Andrea J; Lou, Amy; Crocker, Bryan D; Nassar, Bassam A

    2016-02-01

    There is increasing recognition of the importance of appropriate laboratory test utilization. We investigate the effect of a multifaceted educational approach that includes physician feedback on individual test ordering, in conjunction with targeted restriction, on the utilization of selected laboratory tests. Scientific evidence was compiled on the usefulness and limitations of tests suspected of being over utilized in our laboratories. A variety of approaches were used to deliver education on each of the targeted tests, with greater focus on primary care physicians (PCPs). Feedback on requesting behavior of these tests was also communicated to the latter group which included an educational component. Laboratory based restriction of testing was also exercised, including the unbundling of our electrolyte panel. PCP requesting patterns for the selected tests were found to be markedly skewed. The interventions implemented over the study period resulted in a substantial 51% reduction in overall ordering of five of the targeted tests equating to an annual marginal cost saving of $60,124. Unbundling of the electrolyte panel resulted in marginal cost savings that equated annually to $42,500 on chloride and $48,000 on total CO2. A multifaceted educational approach combined with feedback on utilization and laboratory driven gate-keeping significantly reduced the number of laboratory tests suspected of being redundant or unjustifiably requested. Laboratory professionals are well positioned to manage demand on laboratory tests by utilizing evidence base in developing specific test ordering directives and gate-keeping rules. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  13. Effect of laparoscopic surgery on health care utilization and costs in patients who undergo colectomy.

    Science.gov (United States)

    Crawshaw, Benjamin P; Chien, Hung-Lun; Augestad, Knut M; Delaney, Conor P

    2015-05-01

    Laparoscopic colectomy is safe and effective in the treatment of many colorectal diseases. However, the effect of increasing use of laparoscopy on overall health care utilization and costs, especially in the long term, has not been thoroughly investigated. To evaluate the effect of laparoscopic vs open colectomy on short- and long-term health care utilization and costs. Retrospective multivariate regression analysis of national health insurance claims data was used to evaluate health care utilization and costs up to 1 year following elective colectomy. Data were obtained from the Truven Health Analytics MarketScan Commercial Claims and Encounters database. Patients aged 18 to 64 years who underwent elective laparoscopic or open colectomy from January 1, 2010, through December 31, 2010, were included. Patients with complex diagnoses that require increased non-surgery-related health care utilization, including malignant neoplasm, inflammatory bowel disease, human immunodeficiency virus, transplantation, and pregnancy, were excluded. Of 25 481 patients who underwent colectomy, 4160 were included in the study. Healthcare utilization, including office, hospital outpatient, and emergency department visits and inpatient services 90 and 365 days after the index procedure; total health care costs; and estimated days off from work owing to health care utilization. Of 25 481 patients who underwent colectomy, 4160 were included in the study (laparoscopic, 45.6%; open, 54.4%). The mean (SD) net and total payments were lower for laparoscopy ($23 064 [$14 558] and $24 196 [$14 507] vs $29 753 [$21 421] and $31 606 [$23 586]). In the first 90 days after surgery, an open approach was significantly associated with a 1.26-fold increase in health care costs (estimated, $1715; 95% CI, $338-$2853), increased use of heath care services, and more estimated days off from work (2.78 days; 95% CI, 1.93-3.59). Similar trends were found in the full postoperative year, with

  14. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi

    2017-08-13

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications have dominated the SOC stock mapping at regional scale so far. However, the community has hardly ever attempted to implement Quantile Regression (QR) to spatially predict the SOC distribution. In this contribution, we test QR to estimate SOC stock (0-30 $cm$ depth) in the agricultural areas of a highly variable semi-arid region (Sicily, Italy, around 25,000 $km2$) by using topographic and remotely sensed predictors. We also compare the results with those from available SOC stock measurement. The QR models produced robust performances and allowed to recognize dominant effects among the predictors with respect to the considered quantile. This information, currently lacking, suggests that QR can discern predictor influences on SOC stock at specific sub-domains of each predictors. In this work, the predictive map generated at the median shows lower errors than those of the Joint Research Centre and International Soil Reference, and Information Centre benchmarks. The results suggest the use of QR as a comprehensive and effective method to map SOC using legacy data in agro-ecosystems. The R code scripted in this study for QR is included.

  15. Effects of energy and carbon taxes on building material competitiveness

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund, (Sweden)

    2007-04-15

    The relations between building material competitiveness and economic instruments for mitigating climate change are explored in this bottom-up study. The effects of carbon and energy taxes on building material manufacturing cost and total building construction cost are modelled, analysing individual materials as well as comparing a wood-framed building to a reinforced concrete-framed building. The energy balances of producing construction materials made of wood, concrete, steel, and gypsum are described and quantified. For wood lumber, more usable energy is available as biomass residues than is consumed in the processing steps. The quantities of biofuels made available during the production of wood materials are calculated, and the cost differences between using these biofuels and using fossil fuels are shown under various tax regimes. The results indicate that higher energy and carbon taxation rates increase the economic competitiveness of wood construction materials. This is due to both the lower energy cost for material manufacture, and the increased economic value of biomass by-products used to replace fossil fuel. (Author)

  16. Estimation of the global climate effect of brown carbon

    Science.gov (United States)

    Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.

    2017-12-01

    Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.

  17. Piezoresistive effect observed in flexible amorphous carbon films

    Science.gov (United States)

    Wang, B.; Jiang, Y. C.; Zhao, R.; Liu, G. Z.; He, A. P.; Gao, J.

    2018-05-01

    Amorphous carbon (a-C) films, deposited on Si substrates at 500 °C, were transferred onto flexible polyethylene (PE) substrates by a lift-off method, which overcomes the limit of deposition temperature. After transferring, a-C films exhibited a large piezoresistive effect. Such flexible samples could detect the change of bending angle by attaching them onto Cu foils. The ratio of the bending and non-bending resistances reaches as large as ~27.8, which indicates a potential application as a pressure sensor. Also, the a-C/PE sample revealed an enhanced sensitivity to gas pressure compared with the a-C/Si one. By controlling the bending angle, the sensitivity range can be tuned to shift to a low- or high-pressure region. The fatigue test shows a less than 1% change in resistance after 10 000 bending cycles. Our work provides a route to prepare the flexible and piezoresistive carbon-based devices with high sensitivity, controllable pressure-sensing and high stability.

  18. Mesoscale Effects on Carbon Export: A Global Perspective

    Science.gov (United States)

    Harrison, Cheryl S.; Long, Matthew C.; Lovenduski, Nicole S.; Moore, Jefferson K.

    2018-04-01

    Carbon export from the surface to the deep ocean is a primary control on global carbon budgets and is mediated by plankton that are sensitive to physical forcing. Earth system models generally do not resolve ocean mesoscale circulation (O(10-100) km), scales that strongly affect transport of nutrients and plankton. The role of mesoscale circulation in modulating export is evaluated by comparing global ocean simulations conducted at 1° and 0.1° horizontal resolution. Mesoscale resolution produces a small reduction in globally integrated export production (export production can be large (±50%), with compensating effects in different ocean basins. With mesoscale resolution, improved representation of coastal jets block off-shelf transport, leading to lower export in regions where shelf-derived nutrients fuel production. Export is further reduced in these regions by resolution of mesoscale turbulence, which restricts the spatial area of production. Maximum mixed layer depths are narrower and deeper across the Subantarctic at higher resolution, driving locally stronger nutrient entrainment and enhanced summer export production. In energetic regions with seasonal blooms, such as the Subantarctic and North Pacific, internally generated mesoscale variability drives substantial interannual variation in local export production. These results suggest that biogeochemical tracer dynamics show different sensitivities to transport biases than temperature and salinity, which should be considered in the formulation and validation of physical parameterizations. Efforts to compare estimates of export production from observations and models should account for large variability in space and time expected for regions strongly affected by mesoscale circulation.

  19. Effect of Larval Density on Food Utilization Efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    Morales-Ramos, Juan A; Rojas, M Guadalupe

    2015-10-01

    Crowding conditions of larvae may have a significant impact on commercial production efficiency of some insects, such as Tenebrio molitor L. (Coleoptera: Tenebrionidae). Although larval densities are known to affect developmental time and growth in T. molitor, no reports were found on the effects of crowding on food utilization. The effect of larval density on food utilization efficiency of T. molitor larvae was studied by measuring efficiency of ingested food conversion (ECI), efficiency of digested food conversion (EDC), and mg of larval weight gain per gram of food consumed (LWGpFC) at increasing larval densities (12, 24, 36, 48, 50, 62, 74, and 96 larvae per dm(2)) over four consecutive 3-wk periods. Individual larval weight gain and food consumption were negatively impacted by larval density. Similarly, ECI, ECD, and LWGpFC were negatively impacted by larval density. Larval ageing, measured as four consecutive 3-wk periods, significantly and independently impacted ECI, ECD, and LWGpFC in a negative way. General linear model analysis showed that age had a higher impact than density on food utilization parameters of T. molitor larvae. Larval growth was determined to be responsible for the age effects, as measurements of larval mass density (in grams of larvae per dm(2)) had a significant impact on food utilization parameters across ages and density treatments (in number of larvae per dm(2)). The importance of mass versus numbers per unit of area as measurements of larval density and the implications of negative effects of density on food utilization for insect biomass production are discussed. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  20. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays

    International Nuclear Information System (INIS)

    Yoon, J.H.; Chung, H.H.; Lee, M.J.; Jung, J.

    2002-01-01

    Carbonate ions significantly inhibit the decomposition of TCE (trichloroethylene) and PCE (perchloroethylene) by gamma-rays. The inhibition effect is larger in the case of TCE than PCE due to a greater dependence of TCE decomposition on hydroxyl radicals. The inhibition effect of carbonate ions was characterized by an EPR/spin-trapping technique. The intensity of DMPO-OH adduct signal decreased as the carbonate ion concentration increased and the percent of signal reduction was linearly proportional to the logarithm of carbonate ion concentration. This directly proves that the carbonate ions inhibit the decomposition of TCE and PCE by scavenging hydroxyl radicals. (author)

  1. Effect of Carbon Concentration on the Sputtering of Carbon-Rich SiC Bombarded by Helium Ions

    Directory of Open Access Journals (Sweden)

    Xinghao Liang

    2018-02-01

    Full Text Available Silicon carbide (SiC is considered as an important material for nuclear engineering due to its excellent properties. Changing the carbon content in SiC can regulate and control its elastic and thermodynamic properties, but a simulation study of the effect of carbon content on the sputtering (caused by the helium ions of SiC is still lacking. In this work, we used the Monte-Carlo and molecular dynamics simulation methods to study the effects of carbon concentration, incidence energy, incident angle, and target temperature on the sputtering yield of SiC. The results show that the incident ions’ energy and angle have a significant effect on sputtering yield of SiC when the carbon concentration in SiC is around 62 at %, while the target temperature has a little effect on the sputtering yield of SiC. Our work might provide theoretical support for the experimental research and engineering application of carbon fiber-reinforced SiC that be used as the plasma-facing material in tokamak fusion reactors.

  2. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO₂ concentrations compared to primordial values.

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-13

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO₂ concentration. The results show that the expression of CA genes is negatively correlated with both CO₂ concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO₂ concentration show that the magnitudes of the effects of CA and CO₂ concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO₂ concentration compared to 3 billion years ago.

  3. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values

    Science.gov (United States)

    Xiao, Leilei; Lian, Bin; Hao, Jianchao; Liu, Congqiang; Wang, Shijie

    2015-01-01

    It is widely recognized that carbonic anhydrase (CA) participates in silicate weathering and carbonate formation. Nevertheless, it is still not known if the magnitude of the effect produced by CA on surface rock evolution changes or not. In this work, CA gene expression from Bacillus mucilaginosus and the effects of recombination protein on wollastonite dissolution and carbonate formation under different conditions are explored. Real-time fluorescent quantitative PCR was used to explore the correlation between CA gene expression and sufficiency or deficiency in calcium and CO2 concentration. The results show that the expression of CA genes is negatively correlated with both CO2 concentration and ease of obtaining soluble calcium. A pure form of the protein of interest (CA) is obtained by cloning, heterologous expression, and purification. The results from tests of the recombination protein on wollastonite dissolution and carbonate formation at different levels of CO2 concentration show that the magnitudes of the effects of CA and CO2 concentration are negatively correlated. These results suggest that the effects of microbial CA in relation to silicate weathering and carbonate formation may have increased importance at the modern atmospheric CO2 concentration compared to 3 billion years ago. PMID:25583135

  4. Utilization of [1-14C]carbon of glycine of high glycine diet fed young and old rats

    International Nuclear Information System (INIS)

    Petzke, K.J.; Albrecht, V.; Medovar, B.Ya.; Pisarczuk, K.L.; Grigorov, Yu.G.

    1987-01-01

    The incorporation of radioactivity from [1- 14 C]glycine was studied in various organ (serum, liver, muscle) fractions (acid soluble, proteins, lipids, liver glycogen) and carbon dioxide in rats fed with isonitrogenous isocaloric purfied diets. The diets contained 30% casein (control), gelatin (exchange of half of the 30% casein) or glycine (corresponding level of glycine in relation to the gelatin diet). The incorporation of radioactivity into proteins was reduced by feeding high glycine diets in young (20-weeks-old) and old (18-month-old) rats in relation to the control diet. The modifications of the results for old animals may be partially explained on the base of a reduced protein turnover rate and adaptation to a high gelatin (glycine) diet. (author)

  5. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  6. Comparative studies of utilization of industrial electron accelerators and adsorption with activated carbon for industrial effluent treatment

    International Nuclear Information System (INIS)

    Sampa, Maria Helena de O.; Rela, Paulo R.; Duarte, Celina Lopes; Las Casas, Alexandre; Mori, Manoel Nunes; Omi, Nelson M.

    2005-01-01

    A technical and economical feasibility study was performed comparing the use electron beam and activated charcoal for treatment of industrial wastewater. In this study was used synthetic solutions, prepared in laboratory with organic compounds standards, where the composition was focused on the critical organic contaminants usually presented in wastewater from petrochemical industry. For the sample irradiation was used an industrial electron beam from Radiation Dynamics Inc. 1.5 MeV - 37.5 kW setup in IPEN. The doses ranged from 5 kGy to 100 kGy. A common granulated activated charcoal in a fixed-bed absorber glass column was used to study the pollutants absorption performance. The results show that if the adequate irradiation dose was delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is, in aspect of organic removal efficiency, similar to the activated carbon process. (author)

  7. Incidence Angle Effect of Energetic Carbon Ions on Deposition Rate, Topography, and Structure of Ultrathin Amorphous Carbon Films Deposited by Filtered Cathodic Vacuum Arc

    KAUST Repository

    Wang, N.; Komvopoulos, K.

    2012-01-01

    The effect of the incidence angle of energetic carbon ions on the thickness, topography, and structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) was examined in the context of numerical

  8. The Effects of Operational and Environmental Variables on Efficiency of Danish Water and Wastewater Utilities

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini

    2015-06-01

    Full Text Available Efficiency improvement is one of three patterns a public utility should follow in order to get funds for investments realization. The other two are recourse to bank loans or to private equity and tariff increase. Efficiency can be improved, for example, by growth and vertical integration and may be conditioned by environmental variables, such as customer and output density. Prior studies into the effects of these variables on the efficiency of water utilities do not agree on certain points (e.g., scale and economies of scope and rarely consider others (e.g., density economies. This article aims to contribute to the literature by analysing the efficiency of water utilities in Denmark, observing the effects of operational and environmental variables. The method is based on two-stage Data Envelopment Analysis (DEA applied to 101 water utilities. We found that the efficiency of the water sector was not affected by the observed variables, whereas that of wastewater was improved by smaller firm size, vertical integration strategy, and higher population density.

  9. Secondhand smoke and asthma: what are the effects on healthcare utilization among children?

    Science.gov (United States)

    Jin, Yue; Seiber, Eric E; Ferketich, Amy K

    2013-08-01

    This study aims to examine the associations between asthma, secondhand smoke exposure and healthcare utilization in a nationally representative sample of children. Data from 5686 children aged 0-11 years were analyzed. Healthcare utilization, asthma diagnosis and demographic information came from the 2001 and 2006 Medical Expenditure Panel Surveys. Secondhand smoke exposure was measured during the 2000 and 2005 National Health Interview Surveys. Multivariable regression models were used to determine the association between secondhand smoke exposure, asthma diagnosis and healthcare utilization (hospitalizations, emergency department visits, outpatient visits and prescription medication use). Asthma modified the relationship between secondhand smoke exposure and hospitalizations, as exposure more than doubled the odds of hospitalization among children with asthma but had no effect on children without asthma. Secondhand smoke exposure increased the odds by 37% of emergency room visits (PSecondhand smoke exposure was associated with a greater utilization of hospitals and emergency departments, and the effect on hospitalizations was most pronounced among children with asthma. Reducing secondhand smoke exposure would help to reduce the burden on the healthcare system, especially among children with asthma. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  11. Utilization of 15N-labelled nitrogen fertilizer in dependence on organic manuring and carbon and nitrogen contents of loess chernozem profiles with different stratification

    International Nuclear Information System (INIS)

    Greilich, J.

    1988-01-01

    In an outdoor model experiment with different total C and N contents in five profile variants of loess chernozem, the utilization of 15 N-labelled mineral fertilizer N by maize was investigated over three years. The total nitrogen uptake in the variants correlated with the yields at nearly uniform nitrogen contents in dry matter. Total C and N contents of the profile variants and one organic manure application per year had no statistically significant effects on the 15 N-labelled fertilizer N proportion in total N content of biomass. As a result of the low yields obtained from the variants with low total C and N contents of soil, mineral fertilizer utilization was found to be lower, too, in most of these variants. Organic manuring had no essential effect on mineral fertilizer N utilization. (author)

  12. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

    Directory of Open Access Journals (Sweden)

    Olorunnisola Kola Saheed

    2016-04-01

    Full Text Available The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB. Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp, pineapple peel (PAp and papaya peel (Pp were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium, Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6% on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

  13. Degradation of fly ash concrete under the coupled effect of carbonation and chloride aerosol ingress

    International Nuclear Information System (INIS)

    Liu, Jun; Qiu, Qiwen; Chen, Xiaochi; Wang, Xiaodong; Xing, Feng; Han, Ningxu; He, Yijian

    2016-01-01

    Highlights: • Carbonation affects the chloride profile in concrete under chloride aerosol attack. • The chloride binding capacity can be reduced by the presence of carbonation. • Carbonation increases the rate of chloride diffusion for chloride aerosol ingress. • Chloride aerosol ingress reduces the carbonation depth and increases the pH value. • The use of fly ash in concrete enhances the resistance of chloride aerosol ingress. - Abstract: This paper presents an experimental investigation regarding the coupled effect of carbonation and chloride aerosol ingress on the durability performance of fly ash concrete. Test results demonstrate that carbonation significantly affects the chloride ingress profile, reduces the chloride binding capacity, and accelerates the rate of chloride ion diffusion. On the other hand, the carbonation rate of fly ash concrete is reduced by the presence of chlorides aerosol. The interaction nature between concrete carbonation and chloride aerosol ingress is also demonstrated by the microscopic analysis results obtained from scanning electron microscope and mercury intrusion porosimetry.

  14. The effect of carbon monoxide on planetary haze formation

    Energy Technology Data Exchange (ETDEWEB)

    Hörst, S. M.; Tolbert, M. A, E-mail: sarah.horst@colorado.edu [Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO (United States)

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  15. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    Science.gov (United States)

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  16. Excitons in single-walled carbon nanotubes: environmental effect

    International Nuclear Information System (INIS)

    Smyrnov, O.A.

    2010-01-01

    The properties of excitons in semiconducting single-walled carbon nanotubes (SWCNTs) isolated in vacuum or a medium and their contributions to the optical spectra of nanotubes are studied within the elementary potential model, in which an exciton is represented as a bound state of two oppositely charged quasiparticles confined to the nanotube surface. The emphasis is given on the influence of the dielectric environment surrounding a nanotube on the exciton spectra. For nanotubes in the environment with a permittivity less than ∼ 1:8; the ground-state exciton binding energies exceed the respective energy gaps, whereas the obtained binding energies of excitons in nanotubes in a medium with permittivity greater than ∼ 4 are in good accordance with the corresponding experimental data and consistent with the known scaling relation for the environmental effect. The stabilization of a single-electron spectrum in SWCNTs in media with rather low permittivities is discussed.

  17. Effects of Carbonization Parameters of Moso-Bamboo-Based Porous Charcoal on Capturing Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Pei-Hsing Huang

    2014-01-01

    Full Text Available This study experimentally analyzed the carbon dioxide adsorption capacity of Moso-bamboo- (Phyllostachys edulis- based porous charcoal. The porous charcoal was prepared at various carbonization temperatures and ground into powders with 60, 100, and 170 meshes, respectively. In order to understand the adsorption characteristics of porous charcoal, its fundamental properties, namely, charcoal yield, ash content, pH value, Brunauer-Emmett-Teller (BET surface area, iodine number, pore volume, and powder size, were analyzed. The results show that when the carbonization temperature was increased, the charcoal yield decreased and the pH value increased. Moreover, the bamboo carbonized at a temperature of 1000°C for 2 h had the highest iodine sorption value and BET surface area. In the experiments, charcoal powders prepared at various carbonization temperatures were used to adsorb 1.854% CO2 for 120 h. The results show that the bamboo charcoal carbonized at 1000°C and ground with a 170 mesh had the best adsorption capacity, significantly decreasing the CO2 concentration to 0.836%. At room temperature and atmospheric pressure, the Moso-bamboo-based porous charcoal exhibited much better CO2 adsorption capacity compared to that of commercially available 350-mesh activated carbon.

  18. Effects of acid mine drainage on dissolved inorganic carbon and stable carbon isotopes in receiving streams

    International Nuclear Information System (INIS)

    Fonyuy, Ernest W.; Atekwana, Eliot A.

    2008-01-01

    Dissolved inorganic carbon (DIC) constitutes a significant fraction of a stream's carbon budget, yet the role of acid mine drainage (AMD) in DIC dynamics in receiving streams remains poorly understood. The objective of this study was to evaluate spatial and temporal effects of AMD and its chemical evolution on DIC and stable isotope ratio of DIC (δ 13 C DIC ) in receiving streams. We examined spatial and seasonal variations in physical and chemical parameters, DIC, and δ 13 C DIC in a stream receiving AMD. In addition, we mixed different proportions of AMD and tap water in a laboratory experiment to investigate AMD dilution and variable bicarbonate concentrations to simulate downstream and seasonal hydrologic conditions in the stream. Field and laboratory samples showed variable pH, overall decreases in Fe 2+ , alkalinity, and DIC, and variable increase in δ 13 C DIC . We attribute the decrease in alkalinity, DIC loss, and enrichment of 13 C of DIC in stream water to protons produced from oxidation of Fe 2+ followed by Fe 3+ hydrolysis and precipitation of Fe(OH) 3(s) . The extent of DIC decrease and 13 C enrichment of DIC was related to the amount of HCO 3 - dehydrated by protons. The laboratory experiment showed that lower 13 C enrichment occurred in unmixed AMD (2.7 per mille ) when the amount of protons produced was in excess of HCO 3 - or in tap water (3.2 per mille ) where no protons were produced from Fe 3+ hydrolysis for HCO 3 - dehydration. The 13 C enrichment increased and was highest for AMD-tap water mixture (8.0 per mille ) where Fe 2+ was proportional to HCO 3 - concentration. Thus, the variable downstream and seasonal 13 C enrichment in stream water was due in part to: (1) variations in the volume of stream water initially mixed with AMD and (2) to HCO 3 - input from groundwater and seepage in the downstream direction. Protons produced during the chemical evolution of AMD caused seasonal losses of 50 to >98% of stream water DIC. This loss of DIC

  19. Pathway To Low-Carbon Lignite Utilization; U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Cooperative Agreement No. DE-FE0024233

    Energy Technology Data Exchange (ETDEWEB)

    Kay, John [Univ. of North Dakota, Grand Forks, ND (United States); Stanislowski, Joshua [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Fiala, Nathan [Univ. of North Dakota, Grand Forks, ND (United States); Patel, Nikhil [Univ. of North Dakota, Grand Forks, ND (United States); Laumb, Jason [Univ. of North Dakota, Grand Forks, ND (United States)

    2017-05-31

    Utilities continue to investigate ways to decrease their carbon footprint. Carbon capture and storage (CCS) can enable existing power generation facilities to maintain operations and address carbon reduction. Subtask 2.1 – Pathway to Low-Carbon Lignite Utilization focused on several research areas in an effort to find ways to decrease the cost of capture across both precombustion and postcombustion platforms. Two postcombustion capture solvents were tested, one from CO2 Solutions Inc. and one from ARCTECH, Inc. The CO2 Solutions solvent had been evaluated previously, and the company had incorporated the concept of a rotating packed bed (RPB) to replace the traditional packed columns typically used. In the limited testing performed at the Energy & Environmental Research Center (EERC), no CO2 reduction benefit was seen from the RPB; however, if the technology could be scaled up, it may introduce some savings in capital expense and overall system footprint. Rudimentary tests were conducted with the ARCTECH solvent to evaluate if it could be utilized in a spray tower configuration contactor and capture CO2, SO2, and NOx. This solvent after loading can be processed to make an additional product to filter wastewater, providing a second-tier usable product. Modeling of the RPB process for scaling to a 550-MW power system was also conducted. The reduced cost of RPB systems combined with a smaller footprint highlight the potential for reducing the cost of capturing CO2; however, more extensive testing is needed to truly evaluate their potential for use at full scale. Hydrogen separation membranes from Commonwealth Scientific and Industrial Research Organisation (CSIRO) were evaluated through precombustion testing. These had also been previously tested and were improved by CSIRO for this test campaign. They are composed of vanadium alloy, which is less expensive than the palladium alloys that are

  20. Effect of Mineral Nutrients on the Kinetics of Methane Utilization by Methanotrophs

    DEFF Research Database (Denmark)

    Boiesen, Anette; Arvin, Erik; Broholm, Kim

    1993-01-01

    The effect of different mineral nutrients on the kinetics of methane biodegradation by a mixed culture of methanotrophic bacteria was studied. The substrate factors examined were ammonia, iron, copper, manganese, phosphate, and sulphide. The presence of iron in the growth medium had a strong effect...... was the only nitrogen source. The observed Monod constant for methane utilization increased with increasing concentration of ammonia. This shows that ammonia is a weak competitive inhibitor as observed by other researchers. Relatively high levels of both ammonia (70 mg/l) and copper (300 mu-g/l) inhibited...... the methane degradation, probably due to the toxic effect of copper-amine complexes....

  1. Identifying Cost-Effective Residential Energy Efficiency Opportunities for the Kauai Island Utility Cooperative

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Hockett, S.

    2010-06-01

    This analysis is an update to the 2005 Energy Efficiency Potential Study completed by KEMA for the Kauai Island Utility Cooperative (KIUC) and identifies potential energy efficiency opportunities in the residential sector on Kauai (KEMA 2005). The Total Resource Cost (TRC) test is used to determine which of the energy efficiency measures analyzed in the KEMA report are cost effective for KIUC to include in a residential energy efficiency program. This report finds that there remains potential energy efficiency savings that could be cost-effectively incentivized through a utility residential demand-side management program on Kauai if implemented in such a way that the program costs per measure are consistent with the current residential program costs.

  2. Utilization of variation theory in the classroom: Effect on students' algebraic achievement and motivation

    Science.gov (United States)

    Jing, Ting Jing; Tarmizi, Rohani Ahmad; Bakar, Kamariah Abu; Aralas, Dalia

    2017-01-01

    This study investigates the effect of utilizing Variation Theory Based Strategy on students' algebraic achievement and motivation in learning algebra. The study used quasi-experimental non-equivalent control group research design and involved 56 Form Two (Secondary Two) students in two classes (28 in experimental group, 28 in control group) in Malaysia The first class of students went through algebra class taught with Variation Theory Based Strategy (VTBS) while the second class of students experienced conventional teaching strategy. The instruments used for the study were a 24-item Algebra Test and 36-item Instructional Materials Motivation Survey. Result from analysis of Covariance indicated that experimental group students achieved significantly better test scores than control group. Result of Multivariate Analysis of Variance also shows evidences of significant effect of VTBS on experimental students' overall motivation in all the five subscales; attention, relevance, confidence, and satisfaction. These results suggested the utilization of VTBS would improve students' learning in algebra.

  3. Modeling soil organic carbon with Quantile Regression: Dissecting predictors' effects on carbon stocks

    KAUST Repository

    Lombardo, Luigi; Saia, Sergio; Schillaci, Calogero; Mai, Paul Martin; Huser, Raphaë l

    2017-01-01

    Soil Organic Carbon (SOC) estimation is crucial to manage both natural and anthropic ecosystems and has recently been put under the magnifying glass after the Paris agreement 2016 due to its relationship with greenhouse gas. Statistical applications

  4. The Physical and Chemical Properties of Fine Carbon Particles-Pinewood Resin Blends and Their Possible Utilization

    Directory of Open Access Journals (Sweden)

    Aviwe Melapi

    2015-01-01

    Full Text Available The application of biomass gasification technology is very important in the sense that it helps to relieve the dwindling supply of natural gas from fossil fuels, and the desired product of its gasification process is syngas. This syngas is a mixture of CO and H2; however, by-products such as char, tar, soot, ash, and condensates are also produced. This study, therefore, investigated selected by-products recovered from the gasification process of pinewood chips with specific reference to their potential application in other areas when used as blends. Three samples of the gasification by-products were obtained from a downdraft biomass gasifier system and were characterized in terms of chemical and physical properties. FTIR analysis confirmed similar spectra in all char-resin blends. For fine carbon particles- (soot- resin blends, almost the same functional groups as observed in char-resin blends appeared. In bomb calorimeter measurements, 70% resin/30% char blends gave highest calorific value, followed by 50% resin/50% soot blends with values of 35.23 MJ/kg and 34.75 MJ/kg consecutively. Provided these by-products meet certain criteria, they could be used in other areas such as varnishes, water purification, and wind turbine blades.

  5. Curvature effects on carbon nanomaterials: Exohedral versus endhohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J; Sumpter, B. G.; Meunier, V.; Yushin, G.; Portet, C.; Gogotsi, Y.

    2011-01-31

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  6. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingsong [ORNL; Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Gogotsi, Yury G. [Drexel University; Yushin, Gleb [Georgia Institute of Technology; Portet, Cristelle [Drexel University

    2010-01-01

    Capacitive energy storage mechanisms in nanoporous carbon supercapacitors hinge on endohedral interactions in carbon materials with macro-, meso-, and micropores that have negative surface curvature. In this article, we show that because of the positive curvature found in zero-dimensional carbon onions or one-dimensional carbon nanotube arrays, exohedral interactions cause the normalized capacitance to increase with decreasing particle size or tube diameter, in sharp contrast to the behavior of nanoporous carbon materials. This finding is in good agreement with the trend of recent experimental data. Our analysis suggests that electrical energy storage can be improved by exploiting the highly curved surfaces of carbon nanotube arrays with diameters on the order of 1 nm.

  7. Carbonated fermented dairy drink - effect on quality and shelf life.

    Science.gov (United States)

    Ravindra, Menon Rekha; Rao, K Jayaraj; Nath, B Surendra; Ram, Chand

    2014-11-01

    Processing conditions were standardized for a carbonated sweetened fermented dairy beverage. The optimum level of carbonation for the beverage filled in 200 ml glass bottles was found to be at 50 psi pressure for 30 seconds. The beverage samples were stored under refrigerated conditions (7 °C) and evaluated at weekly intervals for their sensory, chemical and microbial quality. The uncarbonated control samples were found to keep well till 5 weeks of storage while the carbonated beverage was acceptable up to 12 weeks of storage. Carbonation did not significantly alter the pH of the beverage, while a marginal increase in titratable acidity was recorded for the carbonated samples. Carbonation was found to arrest the development of lipolysis and proteolysis in the beverage during storage. Microbiological investigations established the inhibition of yeast and mold growth due to dissolved CO2.

  8. Supercapacitors based on ordered mesoporous carbon derived from furfuryl alcohol: effect of the carbonized temperature.

    Science.gov (United States)

    Li, Na; Xu, Jianxiong; Chen, Han; Wang, Xianyou

    2014-07-01

    Supercapacitors are successfully prepared from ordered mesoporous carbon (OMC) synthesized by employing the mesoporous silica, SBA-15 as template and furfuryl alcohol as carbon source. It is found that the carbonized temperature greatly influences the physical properties of the synthesized mesoporous carbon materials. The optimal carbonized temperature is measured to be 600 degrees C under which OMC with the specific surface area of 1219 m2/g and pore volume of 1.31 cm3/g and average pore diameter of - 3 nm are synthesized. The OMC materials synthesized under different carbonized temperature are used as electrode material of supercapacitors and the electrochemical properties of the OMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge-discharge and self-discharge tests. The results show that the electrochemical properties of the OMC materials are directly related to the specific surface area and pore volume of the mesoporous carbon and the electrode prepared from the OMC synthesized under the carbonized temperature of 600 degrees C (OMC-600) exhibits the most excellent electrochemical performance with the specific capacitance of 207.08 F/g obtained from cyclic voltammetry at the scan rate of 1 mV/s, small resistance and low self-discharge rate. Moreover, the supercapacitor based on the OMC-600 material exhibits good capacitance properties and stable cycle behavior with the specific capacitance of 105 F/g at the current density of 700 mA/g, and keeps a specific capacitance of 98 F/g after 20000 consecutive charge/discharge cycles.

  9. Evaluation of actual costs of power sources and effects on balance sheets of electric utilities

    International Nuclear Information System (INIS)

    Matsuo, Yuji; Yamaguchi, Yuji; Murakami, Tomoko

    2013-01-01

    After the Fukushima nuclear accident, almost all nuclear power stations continued to stop operation and sharp increase of purchase costs of fossil fuels forced some electric utilities to suffer a deficit. This article presented quantitative analysis of effects of present state on power costs and balance sheets of electric utilities. Levelized costs of electricity increased from 8.6 ¥/kWh (2010) to 11.6 ¥/kWh (2011) and 12.6 ¥/kWh (2012). Total power costs increased from 7.5 Trillion¥(2010) to 9.5 Trillion¥(2011). Due to increase of cost of fossil fuel compensated for nuclear power, electric utilities suffered a net loss of 0.8 Trillion¥ and decreased surplus to 2.5 Trillion¥ in 2011. Net loss of 1.3 Trillion¥ and surplus of 1.2 Trillion¥ was estimated for 2012. This state was beyond the limit of utilities' efforts to reduce costs and uncertain share of power sources became a great risk. Future share of power sources should be judged appropriately from various standpoints (costs, stable supply, energy security and national economic growth) and early public dissemination of new philosophy on share of power sources was highly required. (T. Tanaka)

  10. The effect of the Fukushima nuclear accident on stock prices of electric power utilities in Japan

    International Nuclear Information System (INIS)

    Kawashima, Shingo; Takeda, Fumiko

    2012-01-01

    The purpose of this study is to investigate the effect of the accident at the Fukushima Daiichi nuclear power station, which is owned by Tokyo Electric Power Co. (TEPCO), on the stock prices of the other electric power utilities in Japan. Because the other utilities were not directly damaged by the Fukushima nuclear accident, their stock price responses should reflect the change in investor perceptions on risk and return associated with nuclear power generation. Our first finding is that the stock prices of utilities that own nuclear power plants declined more sharply after the accident than did the stock prices of other electric power utilities. In contrast, investors did not seem to care about the risk that may arise from the use of the same type of nuclear power reactors as those at the Fukushima Daiichi station. We also observe an increase of both systematic and total risks in the post-Fukushima period, indicating that negative market reactions are not merely caused by one-time losses but by structural changes in society and regulation that could increase the costs of operating a nuclear power plant.

  11. Biological effects of pesticides on rats treated with carbon tetrachloride

    International Nuclear Information System (INIS)

    Abdel Kader, S.M.

    1990-01-01

    The present study investigates the effect of repeated oral doses of the organophosphorus pesticide, cytrolane on normal and pretreated rate with different oral doses of carbon tetrachloride. For that purpose the effect of cytrolane, CCl 4 and their potential interaction had been studied on brain and erythrocyte acetylcholinesterase (Ache), plasma cholinesterase (Ch E), liver succinic dehydrogenase (SDH), serum alkaline phosphatase (SAP), liver succinic dehydrogenas (SDH), serum alkaline phosphatase (SAP), glutamic oxaloacetic (GOT) and glutamic pyruvic (GPT) transaminases. It also investigates the effect of an acute oral dose of cytrolane at short time intervals (1/2-24 hours) on brain and blood ache of normal and pretreated rate with a single oral dose of CCl 4 . The distribution and excretion of 1 4cc1 4 at different time intervals (2,6 and 24 hours) in normal rats and in rats pretreated with o.89 mg cytrolane/kg/day for a week had been determined in different organs, expired air, urine and faeces

  12. Effect of nitroimidazoles on glucose utilization and lactate accumulation in mouse brain

    International Nuclear Information System (INIS)

    Chao, C.F.; Subjeck, J.R.; Brody, H.; Shen, J.; Johnson, R.J.R.

    1984-01-01

    The radiation sensitizers misonidazole (MISO) and desmethylmisonidazole (DMM) can produce central and peripheral neuropathy in patients and laboratory animals. Nitroimidazoles can also interfere with glycolysis in vitro under aerobic and anaerobic conditions. In the present work, the authors studied the effect of MISO or DMM on lactate production and glucose utilization in mouse brain. It is observed that these compounds result in a 25% inhibition of lactate production in brain slices relative to the control at a 10 mM level. Additionally, MISO (1.0 mg/g/day) or DMM (1.4 mg/g/day) were administered daily (oral) for 1, 4, 7, or 14 days to examine the effect of these two drugs on the regional glucose utilization in C3Hf mouse brain. Five microcuries of 2-deoxy[ 14 C]glucose was given following the last drug dose and autoradiographs of serial brain sections were made and analyzed by a densitometer. Following a single dose of either MISO or DMM, no significant differences in glucose uptake were observed when compared with controls. However, following 4, 7, and 14 doses the rate of glucose utilization was significantly reduced in the intoxicated animals. Larger reductions were measured in specific regions including the posterior colliculus, cochlear nuclei, vestibular nuclei, and pons with increasing effects observed at later stages. These results share a degree of correspondence with the regional brain pathology produced by these nitroimidazoles

  13. Health anxiety and medical utilization: The moderating effect of age among patients in primary care.

    Science.gov (United States)

    Fergus, Thomas A; Griggs, Jackson O; Cunningham, Scott C; Kelley, Lance P

    2017-10-01

    Health anxiety is commonly seen in medical clinics and is related to the overutilization of primary care services, but existing studies have not yet considered the possible moderating effect of age. We examined if age moderated the association between health anxiety and medical utilization. A secondary aim was to examine potential racial/ethnic differences in health anxiety. An ethnoracially diverse group of patients (N=533) seeking treatment from a primary care clinic completed a self-report measure of health anxiety. Three indices of medical utilization were assessed using medical records, including the number of: (a) clinic visits over the past two years, (b) current medications, and (c) lab tests over the past two years. Age moderated the effect of health anxiety on multiple indices of medical utilization. Supplemental analyses found that the moderating effect of age was specific to a somatic/body preoccupation, rather than health worry, dimension of health anxiety. Mean-level differences in health anxiety were either not supported (health anxiety composite, somatic/body preoccupation) or were small in magnitude (health worry) among self-identifying Black, Latino, and White participants. Results indicate that assessing for health anxiety could be particularly important for older adult patients who frequently seek out medical services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Carbon Alloys-Multi-functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Eiichi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)], E-mail: yasuda.e.aa.@m.titech.ac.jp; Enami, Takashi; Hoteida, Nobuyuki [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Lanticse-Diaz, L.J. [University of the Philippines (Philippines); Tanabe, Yasuhiro [Nagoya University (Japan); Akatsu, Takashi [MSL, Tokyo Institute of Technology, Yokohama 226-8503 (Japan)

    2008-02-25

    Last decade after our proposal of the 'Carbon Alloys' concept, many different kinds of Carbon Alloys, such as carbon nanotubes, carbon nanofibers, graphene sheet with magnetism, semi-conducting BCN compounds, graphite intercalation compounds, exfoliated carbon fiber, etc. have been found and developed. To extend the concept further, it is important to make it into intelligent materials by incorporating multiple functions. One example of the multi-functionalization is the development of homo-atomic Carbon Alloys from glassy carbon (GC) that exhibits high electrical conductivity and low gas permeability after treatment at critical conditions. Glassy carbon underwent metamorphosis to graphite spheres at HIP condition, and improved resistance to oxidation after alloying with Ta. The other one is shape utilization of the nano-sized carbon by understanding the effect of its large surfaces or interfaces in nanotechnology treatment. Recently carbon nanofiber was produced by polymer blend technology (PB) which was proposed by Prof. A. Oya during the Carbon Alloy project and progressed into intelligent carbon nanofiber (CNF) materials. CNF is combined into the polymer composites which is a candidate material for the bipolar separator in fuel cell. The superior properties, i.e., high electrical conductivity, high modulus, high strength, etc., of the CNF is being utilized in the preparation of this polymer composite.

  15. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks

    Science.gov (United States)

    Bradford, J.B.; Fraver, S.; Milo, A.M.; D'Amato, A.W.; Palik, B.; Shinneman, D.J.

    2012-01-01

    Climate change is anticipated to increase the frequency of disturbances, potentially impacting carbon stocks in terrestrial ecosystems. However, little is known about the implications of either multiple disturbances or post-disturbance forest management activities on ecosystem carbon stocks. This study quantified how forest carbon stocks responded to stand-replacing blowdown and wildfire, both individually and in combination with and without post-disturbance salvage operations, in a sub-boreal jack pine ecosystem. Individually, blowdown or fire caused similar decreases in live carbon and total ecosystem carbon. However, whereas blowdown increased carbon in down woody material and forest floor, fire increased carbon in standing snags, a difference that may have consequences for long-term carbon cycling patterns. Fire after the blowdown caused substantial additional reduction in ecosystem carbon stocks, suggesting that potential increases in multiple disturbance events may represent a challenge for sustaining ecosystem carbon stocks. Salvage logging, as examined here, decreased carbon stored in snags and down woody material but had no significant effect on total ecosystem carbon stocks.

  16. Effect of Women's autonomy on maternal health service utilization in Nepal: a cross sectional study.

    Science.gov (United States)

    Adhikari, Ramesh

    2016-05-13

    Women's role has been a priority area not only for sustainable development, but also in reproductive health since ICPD 1994. However, very little empirical evidence is available about women's role on maternal health service utilization in Nepal. This paper explores dimensions of women's autonomy and their relationship to utilization of maternal health services. The analysis uses data from the Nepal Demographic and Health Survey, 2011. The analysis is confined to women who had given birth in the 5 years preceding the survey (n = 4,148). Women's autonomy related variables are taken from the standard DHS questionnaire and measured based on decision in household about obtaining health care, large household purchases and visit to family or relative. The net effect of women's autonomy on utilization of maternal health services after controlling for the effect of other predictors has been measured through multivariate logistic regression analysis. The findings indicate only about a half of the women who had given birth in the past 5 years preceding the survey had 4 or more ANC check up for their last birth. Similarly, 40 % of the women had delivered their last child in the health facilities. Furthermore, slightly higher than two-fifth women (43 %) had postnatal check up for their last child. Only slightly higher than a fourth woman (27 %) had utilized all the services (adequate ANC visit, delivered at health institution and post natal check up) for their last child. This study found that many socio-demographic variables such as age of women, number of children born, level of education, ethnicity, place of residence and wealth index are predicators of utilizing the maternal health services of recent child. Notably, higher level autonomy was associated with higher use of maternal health services [adjusted odds ratio (aOR) =1.40; CI 1.18-1.65]. Utilization of maternal health services for the recent child among women is very low. The study results suggest that policy

  17. Utilization of buffered vinegar to increase the shelf life of chicken retail cuts packaged in carbon dioxide.

    Science.gov (United States)

    Desai, Monil A; Kurve, Vikram; Smith, Brian S; Campano, Stephen G; Soni, Kamlesh; Schilling, M Wes

    2014-07-01

    Poultry processors commonly place whole parts of broilers in plastic packages and seal them in an atmosphere of 100% carbon dioxide before shipping them to food service and retail customers. This practice extends the shelf life of retail cuts to approximately 12 d under refrigerated conditions. The objective of this study was to determine the antimicrobial efficacy of vinegar for growth inhibition of mesophilic and lactic acid bacterial counts and enhancement of shelf life in CO2-packaged refrigerated chicken thigh samples. Meat quality, sensory differences, and microbial enumeration were evaluated for chicken thighs that were sprayed with 0, 0.5, or 1.0% vinegar. No differences were observed (P > 0.05) among treatments (control vs. 0.5 and 1.0% vinegar-treated chicken thighs) with respect to pH and Commission Internationale d'Eclairage L*a*b*for both chicken skin and the meat tissue. The difference from the control test indicated that trained panelists were not able to detect a difference (P > 0.05) in flavor between the chicken thigh treatments. The mesophilic and Lactobacillus bacterial counts were enumerated after 0, 4, 8, 12, 16, and 20 d of storage. The mesophilic bacterial load for the 1.0% vinegar treatment was less than all other treatments after 8, 12, 16, and 20 d of storage, whereas the 0.5% vinegar treatment had lower bacterial counts at d 12 than both controls and had an approximate shelf life of 16 d. For lactic acid bacteria, the vinegar 1.0% treatment had lower counts than the control treatments at d 12 and 16. The results from the study indicate that a combination of 1.0% vinegar with CO2 packaging can extend the shelf life from 12 to 20 d for chicken retail cuts without negatively affecting the quality and sensory properties of the broiler meat. © 2014 Poultry Science Association Inc.

  18. Utilize Cementitious High Carbon Fly Ash (CHCFA) to Stabilize Cold In-Place Recycled (CIR) Asphalt Pavement as Base Coarse

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haifang; Li, Xiaojun; Edil, Tuncer; O' Donnell, Jonathan; Danda, Swapna

    2011-02-05

    The purpose of this study was to evaluate the performance of cementitious high carbon fly ash (CHCFA) stabilized recycled asphalt pavement as a base course material in a real world setting. Three test road cells were built at MnROAD facility in Minnesota. These cells have the same asphalt surface layers, subbases, and subgrades, but three different base courses: conventional crushed aggregates, untreated recycled pavement materials (RPM), and CHCFA stabilized RPM materials. During and after the construction of the three cells, laboratory and field tests were carried out to characterize the material properties. The test results were used in the mechanistic-empirical pavement design guide (MEPDG) to predict the pavement performance. Based on the performance prediction, the life cycle analyses of cost, energy consumption, and greenhouse gasses were performed. The leaching impacts of these three types of base materials were compared. The laboratory and field tests showed that fly ash stabilized RPM had higher modulus than crushed aggregate and RPM did. Based on the MEPDG performance prediction, the service life of the Cell 79 containing fly ash stabilized RPM, is 23.5 years, which is about twice the service life (11 years) of the Cell 77 with RPM base, and about three times the service life (7.5 years) of the Cell 78 with crushed aggregate base. The life cycle analysis indicated that the usage of the fly ash stabilized RPM as the base of the flexible pavement can significantly reduce the life cycle cost, the energy consumption, the greenhouse gases emission. Concentrations of many trace elements, particularly those with relatively low water quality standards, diminish over time as water flows through the pavement profile. For many elements, concentrations below US water drinking water quality standards are attained at the bottom of the pavement profile within 2-4 pore volumes of flow.

  19. Carbon source utilization patterns of Bacillus simplex ecotypes do not reflect their adaptation to ecologically divergent slopes in 'Evolution Canyon', Israel.

    Science.gov (United States)

    Sikorski, Johannes; Pukall, Rüdiger; Stackebrandt, Erko

    2008-10-01

    The 'Evolution Canyons' I and II in Israel are model habitats to study adaptation and speciation of bacteria in the environment. These canyons represent similar ecological replicates, separated by 40 km, with a strongly sun-exposed and hot 'African' south-facing slope (SFS) vs. a cooler and mesic-lush 'European' north-facing slope (NFS). Previously, among 131 Bacillus simplex isolates, distinct genetic lineages (ecotypes), each specific for either SFS or NFS, were identified, suggesting a temperature-driven slope-specific adaptation. Here, we asked whether the ecological heterogeneity of SFS vs. NFS also affected carbon utilization abilities, as determined using the Biolog assay. Contrary to expectation, a correlation between substrate utilization patterns and the ecological origin of strains was not found. Rather, the patterns split according to the two major phylogenetic lineages each of which contain SFS and NFS ecotypes. We conclude that traits related to the general energy metabolism, as far as assessed here, are neither shaped by the major abiotic features of 'Evolution Canyon', namely solar radiation, temperature, and drought, nor by the soil characteristics. We further conclude that some traits diverge rather neutrally from each other, whereas other, more environmentally related traits are shaped by natural selection and show evolutionary convergence.

  20. Availability of anesthetic effect monitoring: utilization, intraoperative management and time to extubation in liver transplantation.

    Science.gov (United States)

    Schumann, R; Hudcova, J; Bonney, I; Cepeda, M S

    2010-12-01

    Titration of volatile anesthetics to anesthetic effect monitoring using the bispectral index (BIS) has been shown to decrease anesthetic requirements and facilitate recovery from anesthesia unrelated to liver transplantation (OLT). To determine whether availability of such monitoring influences its utilization pattern and affect anesthetic care and outcomes in OLT, we conducted a retrospective analysis in recipients with and without such monitoring. We evaluated annual BIS utilization over a period of 7 years, and compared 41 BIS-monitored patients to 42 controls. All received an isoflurane/air/oxygen and opioid-based anesthetic with planned postoperative ventilation. Data collection included age, body mass index (BMI), gender, Model for End-stage Liver Disease (MELD) score, and time to extubation (TtE). Mean preanhepatic, anhepatic, and postanhepatic end-tidal isoflurane concentrations were compared, as well as BIS values for each phase of OLT using the Kruskal-Wallis and Wilcoxon signed-rank tests, respectively. The use of anesthetic effect monitoring when available increased steadily from 15% of cases in the first year to almost 93% by year 7. There was no significant difference in age, gender, BMI, MELD, or TtE between groups. The BIS group received less inhalational anesthetic during each phase of OLT compared to the control group. However, this difference was statistically significant only during the anhepatic phase (P = .026), and was clinically not impressive. Within the BIS group, the mean BIS value was 38.74 ± 5.25 (mean ± standard deviation), and there was no difference for the BIS value between different transplant phases. Availability of anesthetic effect monitoring as an optional monitoring tool during OLT results in its increasing utilization by anesthesia care teams over time. However, unless integrated into an intraoperative algorithm and an early extubation protocol for fast tracking of OLT recipients, this utilization does not appear to provide