WorldWideScience

Sample records for usingbranched dna scaffolds

  1. DNA-scaffolded nanoparticle structures

    Energy Technology Data Exchange (ETDEWEB)

    Hoegberg, Bjoern; Olin, Haakan [Department of Engineering Physics and Mathematics, Mid Sweden University, SE-851 70 Sundsvall, Sweden (Sweden)

    2007-03-15

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications.

  2. DNA-scaffolded nanoparticle structures

    International Nuclear Information System (INIS)

    Hoegberg, Bjoern; Olin, Haakan

    2007-01-01

    DNA self-assembly is a powerful route to the production of very small, complex structures. When used in combination with nanoparticles it is likely to become a key technology in the production of nanoelectronics in the future. Previously, demonstrated nanoparticle assemblies have mainly been periodic and highly symmetric arrays, unsuited as building blocks for any complex circuits. With the invention of DNA-scaffolded origami reported earlier this year (Rothemund P W K 2006 Nature 440 (7082) 297-302), a new route to complex nanostructures using DNA has been opened. Here, we give a short review of the field and present the current status of our experiments were DNA origami is used in conjunction with nanoparticles. Gold nanoparticles are functionalized with thiolated single stranded DNA. Strands that are complementary to the gold particle strands can be positioned on the self-assembled DNA-structure in arbitrary patterns. This property should allow an accurate positioning of the particles by letting them hybridize on the lattice. We report on our recent experiments on this system and discuss open problems and future applications

  3. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  4. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container

    DEFF Research Database (Denmark)

    Ke, Yongang; Sharma, Jaswinder; Liu, Minghui

    2009-01-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is ∼54 nm in dimension. The estimated total external volume and the internal cavity of the triangular...... pyramid are about 1.8 × 10-23 and 1.5 × 10-23 m3, respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques....

  5. Scaffolded DNA origami of a DNA tetrahedron molecular container.

    Science.gov (United States)

    Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao

    2009-06-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is approximately 54 nm in dimension. The estimated total external volume and the internal cavity of the triangular pyramid are about 1.8 x 10(-23) and 1.5 x 10(-23) m(3), respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques.

  6. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.

    Science.gov (United States)

    Kozyra, Jerzy; Ceccarelli, Alessandro; Torelli, Emanuela; Lopiccolo, Annunziata; Gu, Jing-Ying; Fellermann, Harold; Stimming, Ulrich; Krasnogor, Natalio

    2017-07-21

    Nanotechnology and synthetic biology are rapidly converging, with DNA origami being one of the leading bridging technologies. DNA origami was shown to work well in a wide array of biotic environments. However, the large majority of extant DNA origami scaffolds utilize bacteriophages or plasmid sequences thus severely limiting its future applicability as a bio-orthogonal nanotechnology platform. In this paper we present the design of biologically inert (i.e., "bio-orthogonal") origami scaffolds. The synthetic scaffolds have the additional advantage of being uniquely addressable (unlike biologically derived ones) and hence are better optimized for high-yield folding. We demonstrate our fully synthetic scaffold design with both DNA and RNA origamis and describe a protocol to produce these bio-orthogonal and uniquely addressable origami scaffolds.

  7. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds.

    Science.gov (United States)

    Liu, Jianhua; Zhang, Xiaoliang; Yu, Mei; Li, Songmei; Zhang, Jindan

    2012-01-23

    Biological scaffolds are being actively explored for the synthesis of nanomaterials with novel structures and unexpected properties. Toroidal plasmid DNA separated from the Bacillus host is applied as a sacrificial mold for the synthesis of silver nanoparticles and nanorings. The photoirradiation method is applied to reduce Ag(I) on the plasmid. The nanoparticles are obtained by varying the concentration of the Ag(I) ion solution and the exposure time of the plasmid-Ag(I) complex under UV light at 254 nm and room temperature. It is found that the plasmid serves not only as a template but also as a reductant to drive the silver nucleation and deposition. The resulting nanoparticles have a face-centered cubic (fcc) crystal structure and 20-30 nm average diameter. The detailed mechanism is discussed, and other metals or alloys could also be synthesized with this method. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds.

    Directory of Open Access Journals (Sweden)

    Vikash Verma

    Full Text Available DNA origami provides a versatile platform for conducting 'architecture-function' analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis.

  9. Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds

    Science.gov (United States)

    Verma, Vikash; Mallik, Leena; Hariadi, Rizal F.; Sivaramakrishnan, Sivaraj; Skiniotis, Georgios; Joglekar, Ajit P.

    2015-01-01

    DNA origami provides a versatile platform for conducting ‘architecture-function’ analysis to determine how the nanoscale organization of multiple copies of a protein component within a multi-protein machine affects its overall function. Such analysis requires that the copy number of protein molecules bound to the origami scaffold exactly matches the desired number, and that it is uniform over an entire scaffold population. This requirement is challenging to satisfy for origami scaffolds with many protein hybridization sites, because it requires the successful completion of multiple, independent hybridization reactions. Here, we show that a cleavable dimerization domain on the hybridizing protein can be used to multiplex hybridization reactions on an origami scaffold. This strategy yields nearly 100% hybridization efficiency on a 6-site scaffold even when using low protein concentration and short incubation time. It can also be developed further to enable reliable patterning of a large number of molecules on DNA origami for architecture-function analysis. PMID:26348722

  10. DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.

    Science.gov (United States)

    Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2017-04-15

    Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  12. DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K+ Channels.

    Science.gov (United States)

    Kurokawa, Tatsuki; Kiyonaka, Shigeki; Nakata, Eiji; Endo, Masayuki; Koyama, Shohei; Mori, Emiko; Tran, Nam Ha; Dinh, Huyen; Suzuki, Yuki; Hidaka, Kumi; Kawata, Masaaki; Sato, Chikara; Sugiyama, Hiroshi; Morii, Takashi; Mori, Yasuo

    2018-03-01

    In native systems, scaffolding proteins play important roles in assembling proteins into complexes to transduce signals. This concept is yet to be applied to the assembly of functional transmembrane protein complexes in artificial systems. To address this issue, DNA origami has the potential to serve as scaffolds that arrange proteins at specific positions in complexes. Herein, we report that Kir3 K + channel proteins are assembled through zinc-finger protein (ZFP)-adaptors at specific locations on DNA origami scaffolds. Specific binding of the ZFP-fused Kir3 channels and ZFP-based adaptors on DNA origami were confirmed by atomic force microscopy and gel electrophoresis. Furthermore, the DNA origami with ZFP binding sites nearly tripled the K + channel current activity elicited by heterotetrameric Kir3 channels in HEK293T cells. Thus, our method provides a useful template to control the oligomerization states of membrane protein complexes in vitro and in living cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Detection of extracellular genomic DNA scaffold in human thrombus

    DEFF Research Database (Denmark)

    Oklu, Rahmi; Albadawi, Hassan; Watkins, Michael T

    2012-01-01

    into thrombus remodeling. MATERIALS AND METHODS: Ten human thrombus samples were collected during cases of thrombectomy and open surgical repair of abdominal aortic aneurysms (five samples 1 y old). Additionally, an acute murine hindlimb ischemia model was created to evaluate...... thrombus samples in mice. Human sections were immunostained for the H2A/H2B/DNA complex, myeloperoxidase, fibrinogen, and von Willebrand factor. Mouse sections were immunostained with the H2A antibody. All samples were further evaluated after hematoxylin and eosin and Masson trichrome staining. RESULTS......: An extensive network of extracellular histone/DNA complex was demonstrated in the matrix of human ex vivo thrombus. This network is present throughout the highly cellular acute thrombus. However, in chronic thrombi, detection of the histone/DNA network was predominantly in regions of low collagen content...

  14. Engineering DNA Backbone Interactions Results in TALE Scaffolds with Enhanced 5-Methylcytosine Selectivity.

    Science.gov (United States)

    Rathi, Preeti; Witte, Anna; Summerer, Daniel

    2017-11-08

    Transcription activator-like effectors (TALEs) are DNA major-groove binding proteins widely used for genome targeting. TALEs contain an N-terminal region (NTR) and a central repeat domain (CRD). Repeats of the CRD selectively recognize each one DNA nucleobase, offering programmability. Moreover, repeats with selectivity for 5-methylcytosine (5mC) and its oxidized derivatives can be designed for analytical applications. However, both TALE domains also nonspecifically interact with DNA phosphates via basic amino acids. To enhance the 5mC selectivity of TALEs, we aimed to decrease the nonselective binding energy of TALEs. We substituted basic amino acids with alanine in the NTR and identified TALE mutants with increased selectivity. We then analysed conserved, DNA phosphate-binding KQ diresidues in CRD repeats and identified further improved mutants. Combination of mutations in the NTR and CRD was highly synergetic and resulted in TALE scaffolds with up to 4.3-fold increased selectivity in genomic 5mC analysis via affinity enrichment. Moreover, transcriptional activation in HEK293T cells by a TALE-VP64 construct based on this scaffold design exhibited a 3.5-fold increased 5mC selectivity. This provides perspectives for improved 5mC analysis and for the 5mC-conditional control of TALE-based editing constructs in vivo.

  15. ALP gene expression in cDNA samples from bone tissue engineering using a HA/TCP/Chitosan scaffold

    Science.gov (United States)

    Stephanie, N.; Katarina, H.; Amir, L. R.; Gunawan, H. A.

    2017-08-01

    This study examined the potential use of hydroxyapatite (HA)/tricalcium phosphate (TCP)/Chitosan as a bone tissue engineering scaffold. The potential for using HA/TCP/chitosan as a scaffold was analyzed by measuring expression of the ALP osteogenic gene in cDNA from bone biopsies from four Macaque nemestrina. Experimental conditions included control (untreated), treatment with HA/TCP 70:30, HA/TCP 50:50, and HA/TCP/chitosan. cDNA samples were measured quantitively with Real-Time PCR (qPCR) and semi-quantitively by gel electrophoresis. There were no significant differences in ALP gene expression between treatment subjects after two weeks, but the HA/TCP/chitosan treatment gave the highest level of expression after four weeks. The scaffold using the HA/TCP/chitosan combination induced a higher level of expression of the osteogenic gene ALP than did scaffold without chitosan.

  16. The Chromatin Scaffold Protein SAFB1 Renders Chromatin Permissive for DNA Damage Signaling

    DEFF Research Database (Denmark)

    Altmeyer, Matthias; Toledo Lazaro, Luis Ignacio; Gudjonsson, Thorkell

    2013-01-01

    Although the general relevance of chromatin modifications for genotoxic stress signaling, cell-cycle checkpoint activation, and DNA repair is well established, how these modifications reach initial thresholds in order to trigger robust responses remains largely unexplored. Here, we identify...... the chromatin-associated scaffold attachment factor SAFB1 as a component of the DNA damage response and show that SAFB1 cooperates with histone acetylation to allow for efficient γH2AX spreading and genotoxic stress signaling. SAFB1 undergoes a highly dynamic exchange at damaged chromatin in a poly......(ADP-ribose)-polymerase 1- and poly(ADP-ribose)-dependent manner and is required for unperturbed cell-cycle checkpoint activation and guarding cells against replicative stress. Altogether, our data reveal that transient recruitment of an architectural chromatin component is required in order to overcome physiological...

  17. Logic gates and antisense DNA devices operating on a translator nucleic Acid scaffold.

    Science.gov (United States)

    Shlyahovsky, Bella; Li, Yang; Lioubashevski, Oleg; Elbaz, Johann; Willner, Itamar

    2009-07-28

    A series of logic gates, "AND", "OR", and "XOR", are designed using a DNA scaffold that includes four "footholds" on which the logic operations are activated. Two of the footholds represent input-recognition strands, and these are blocked by complementary nucleic acids, whereas the other two footholds are blocked by nucleic acids that include the horseradish peroxidase (HRP)-mimicking DNAzyme sequence. The logic gates are activated by either nucleic acid inputs that hybridize to the respective "footholds", or by low-molecular-weight inputs (adenosine monophosphate or cocaine) that yield the respective aptamer-substrate complexes. This results in the respective translocation of the blocking nucleic acids to the footholds carrying the HRP-mimicking DNAzyme sequence, and the concomitant release of the respective DNAzyme. The released product-strands then self-assemble into the hemin/G-quadruplex-HRP-mimicking DNAzyme that biocatalyzes the formation of a colored product and provides an output signal for the different logic gates. The principle of the logic operation is, then, implemented as a possible paradigm for future nanomedicine. The nucleic acid inputs that bind to the blocked footholds result in the translocation of the blocking nucleic acids to the respective footholds carrying the antithrombin aptamer. The released aptamer inhibits, then, the hydrolytic activity of thrombin. The system demonstrates the regulation of a biocatalytic reaction by a translator system activated on a DNA scaffold.

  18. Ball with hair: modular functionalization of highly stable G-quadruplex DNA nano-scaffolds through N2-guanine modification.

    Science.gov (United States)

    Lech, Christopher Jacques; Phan, Anh Tuân

    2017-06-20

    Functionalized nanoparticles have seen valuable applications, particularly in the delivery of therapeutic and diagnostic agents in biological systems. However, the manufacturing of such nano-scale systems with the consistency required for biological application can be challenging, as variation in size and shape have large influences in nanoparticle behavior in vivo. We report on the development of a versatile nano-scaffold based on the modular functionalization of a DNA G-quadruplex. DNA sequences are functionalized in a modular fashion using well-established phosphoramidite chemical synthesis with nucleotides containing modification of the amino (N2) position of the guanine base. In physiological conditions, these sequences fold into well-defined G-quadruplex structures. The resulting DNA nano-scaffolds are thermally stable, consistent in size, and functionalized in a manner that allows for control over the density and relative orientation of functional chemistries on the nano-scaffold surface. Various chemistries including small modifications (N2-methyl-guanine), bulky aromatic modifications (N2-benzyl-guanine), and long chain-like modifications (N2-6-amino-hexyl-guanine) are tested and are found to be generally compatible with G-quadruplex formation. Furthermore, these modifications stabilize the G-quadruplex scaffold by 2.0-13.3 °C per modification in the melting temperature, with concurrent modifications producing extremely stable nano-scaffolds. We demonstrate the potential of this approach by functionalizing nano-scaffolds for use within the biotin-avidin conjugation approach. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    Science.gov (United States)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  20. Scaffold protein enigma homolog 1 overcomes the repression of myogenesis activation by inhibitor of DNA binding 2

    Energy Technology Data Exchange (ETDEWEB)

    Nakatani, Miyuki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Ito, Jumpei [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Japan Society for the Promotion of Science, Tokyo, 102-0083 (Japan); Koyama, Riko [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Iijima, Masumi; Yoshimoto, Nobuo [The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Niimi, Tomoaki [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); Kuroda, Shun' ichi [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan); The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 (Japan); Maturana, Andrés D., E-mail: maturana@agr.nagoya-u.ac.jp [Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Nagoya, 464-8106 (Japan)

    2016-05-27

    Enigma Homolog 1 (ENH1) is a scaffold protein for signaling proteins and transcription factors. Previously, we reported that ENH1 overexpression promotes the differentiation of C2C12 myoblasts. However, the molecular mechanism underlying the role of ENH1 in the C2C12 cells differentiation remains elusive. ENH1 was shown to inhibit the proliferation of neuroblastoma cells by sequestering Inhibitor of DNA binding protein 2 (Id2) in the cytosol. Id2 is a repressor of basic Helix-Loop-Helix transcription factors activity and prevents myogenesis. Here, we found that ENH1 overcome the Id2 repression of C2C12 cells myogenic differentiation and that ENH1 overexpression promotes mice satellite cells activation, the first step toward myogenic differentiation. In addition, we show that ENH1 interacted with Id2 in C2C12 cells and mice satellite cells. Collectively, our results suggest that ENH1 plays an important role in the activation of myogenesis through the repression of Id2 activity. -- Highlights: •Enigma Homolog 1 (ENH1) is a scaffold protein. •ENH1 binds to inhibitor of DNA binding 2 (Id2) in myoblasts. •ENH1 overexpression overcomes the Id2's repression of myogenesis. •The Id2-ENH1 complex play an important role in the activation of myogenesis.

  1. Coverage percentage and raman measurement of cross-tile and scaffold cross-tile based DNA nanostructures.

    Science.gov (United States)

    Gnapareddy, Bramaramba; Ahn, Sang Jung; Dugasani, Sreekantha Reddy; Kim, Jang Ah; Amin, Rashid; Mitta, Sekhar Babu; Vellampatti, Srivithya; Kim, Byeonghoon; Kulkarni, Atul; Kim, Taesung; Yun, Kyusik; LaBean, Thomas H; Park, Sung Ha

    2015-11-01

    We present two free-solution annealed DNA nanostructures consisting of either cross-tile CT1 or CT2. The proposed nanostructures exhibit two distinct structural morphologies, with one-dimensional (1D) nanotubes for CT1 and 2D nanolattices for CT2. When we perform mica-assisted growth annealing with CT1, a dramatic dimensional change occurs where the 1D nanotubes transform into 2D nanolattices due to the presence of the substrate. We assessed the coverage percentage of the 2D nanolattices grown on the mica substrate with CT1 and CT2 as a function of the concentration of the DNA monomer. Furthermore, we fabricated a scaffold cross-tile (SCT), which is a new design of a modified cross-tile that consists of four four-arm junctions with a square aspect ratio. For SCT, eight oligonucleotides are designed in such a way that adjacent strands with sticky ends can produce continuous arms in both the horizontal and vertical directions. The SCT was fabricated via free-solution annealing, and self-assembled SCT produces 2D nanolattices with periodic square cavities. All structures were observed via atomic force microscopy. Finally, we fabricated divalent nickel ion (Ni(2+))- and trivalent dysprosium ion (Dy(3+))-modified 2D nanolattices constructed with CT2 on a quartz substrate, and the ion coordinations were examined via Raman spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Novel chitosan/collagen scaffold containing transforming growth factor-β1 DNA for periodontal tissue engineering

    International Nuclear Information System (INIS)

    Zhang Yufeng; Cheng Xiangrong; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-01-01

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-β1 (TGF-β1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-β1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-β1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-β1 as a good substrate candidate in periodontal tissue engineering

  3. A metal-free DNA nuclease based on a cyclic peptide scaffold

    Czech Academy of Sciences Publication Activity Database

    Alkhader, S.; Ezra, A.; Kašpárková, Jana; Brabec, Viktor; Yavin, E.

    2010-01-01

    Roč. 21, č. 8 (2010), s. 1425-1431 ISSN 1043-1802 R&D Projects: GA AV ČR(CZ) IAA400040803; GA MŠk(CZ) LC06030; GA MŠk(CZ) ME08017; GA MŠk(CZ) OC08003; GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA * cleavage * chemical nuclease Subject RIV: BO - Biophysics Impact factor: 5.002, year: 2010

  4. A DNA-Encoded Library of Chemical Compounds Based on Common Scaffolding Structures Reveals the Impact of Ligand Geometry on Protein Recognition.

    Science.gov (United States)

    Favalli, Nicholas; Biendl, Stefan; Hartmann, Marco; Piazzi, Jacopo; Sladojevich, Filippo; Gräslund, Susanne; Brown, Peter J; Näreoja, Katja; Schüler, Herwig; Scheuermann, Jörg; Franzini, Raphael; Neri, Dario

    2018-06-01

    A DNA-encoded chemical library (DECL) with 1.2 million compounds was synthesized by combinatorial reaction of seven central scaffolds with two sets of 343×492 building blocks. Library screening by affinity capture revealed that for some target proteins, the chemical nature of building blocks dominated the selection results, whereas for other proteins, the central scaffold also crucially contributed to ligand affinity. Molecules based on a 3,5-bis(aminomethyl)benzoic acid core structure were found to bind human serum albumin with a K d value of 6 nm, while compounds with the same substituents on an equidistant but flexible l-lysine scaffold showed 140-fold lower affinity. A 18 nm tankyrase-1 binder featured l-lysine as linking moiety, while molecules based on d-Lysine or (2S,4S)-amino-l-proline showed no detectable binding to the target. This work suggests that central scaffolds which predispose the orientation of chemical building blocks toward the protein target may enhance the screening productivity of encoded libraries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high

  6. Parallel fabrication of macroporous scaffolds.

    Science.gov (United States)

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  7. “One Ring to Bind Them All”—Part I: The Efficiency of the Macrocyclic Scaffold for G-Quadruplex DNA Recognition

    Directory of Open Access Journals (Sweden)

    David Monchaud

    2010-01-01

    Full Text Available Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes, and in addressing both synthetic issues and biological aspects.

  8. Synthetic LNA/DNA nano-scaffolds for highly efficient diagnostics of nucleic acids and autoimmune antibodies

    DEFF Research Database (Denmark)

    Astakhova, Irina Kira

    2014-01-01

    ) strands and a series of fluorescent azides. The multiply labeled fluorescent LNA/DNA probes prepared herein generally display high binding affinity to complementary DNA/RNA, high quantum yields and, hence, high fluorescence brightness values. With the novel fluorescent probes, specific sensing...

  9. Multimeric scaffolds displaying the HIV-1 envelope MPER induce MPER-specific antibodies and cross-neutralizing antibodies when co-immunized with gp160 DNA.

    Directory of Open Access Journals (Sweden)

    Shelly J Krebs

    Full Text Available Developing a vaccine that overcomes the diversity of HIV-1 is likely to require a strategy that directs antibody (Ab responses toward conserved regions of the viral Envelope (Env. However, the generation of neutralizing Abs (NAbs targeting these regions through vaccination has proven to be difficult. One conserved region of particular interest is the membrane proximal external region (MPER of Env located within the gp41 ectodomain. In order to direct the immune response to this region, the MPER and gp41 ectodomain were expressed separately as N-terminal fusions to the E2 protein of Geobacillus stearothermophilus. The E2 protein acts as a scaffold by self-assembling into 60-mer particles, displaying up to 60 copies of the fused target on the surface. Rabbits were immunized with E2 particles displaying MPER and/or the gp41 ectodomain in conjunction with DNA encoding full-length gp160. Only vaccines including E2 particles displaying MPER elicited MPER-specific Ab responses. NAbs were elicited after two immunizations that largely targeted the V3 loop. To overcome V3 immunodominance in the DNA component, E2 particles displaying MPER were used in conjunction with gp160 DNA lacking hypervariable regions V2, V3, or combined V1V2V3. All rabbits had HIV binding Ab responses and NAbs following the second vaccination. Using HIV-2/HIV-1 MPER chimeric viruses as targets, NAbs were detected in 12/16 rabbits after three immunizations. Low levels of NAbs specific for Tier 1 and 2 viruses were observed in all groups. This study provides evidence that co-immunizing E2 particles displaying MPER and gp160 DNA can focus Ab responses toward conserved regions of Env.

  10. Ultra-small rhenium nanoparticles immobilized on DNA scaffolds: An excellent material for surface enhanced Raman scattering and catalysis studies.

    Science.gov (United States)

    Anantharaj, S; Sakthikumar, K; Elangovan, Ayyapan; Ravi, G; Karthik, T; Kundu, Subrata

    2016-12-01

    Highly Sensitive and ultra-small Rhenium (Re) metal nanoparticles (NPs) were successfully stabilized in water by the staging and fencing action of the versatile biomolecule DNA that resulted in two distinct aggregated chain-like morphologies with average grain sizes of 1.1±0.1nm and 0.7±0.1nm for the very first time within a minute of reaction time. Re NPs are formed by the borohydride reduction of ammonium perrhenate (NH4ReO4) in the presence of DNA at room temperature (RT) under stirring. The morphologies were controlled by carefully monitoring the molar ratio of NH4ReO4 and DNA. The synthesized material was employed in two potential applications: as a substrate for surface enhanced Raman scattering (SERS) studies and as a catalyst for the reduction of aromatic nitro compounds. SERS study was carried out by taking methylene blue (MB) as the probe and the highest SERS enhancement factor (EF) of 2.07×10(7) was found for the aggregated chain-like having average grain size of 0.7±0.1nm. Catalytic reduction of 4-nitro phenol (4-NP), 2-nitro phenol (2-NP) and 4-nitroaniline (4-NA) with a rate constant value of 6×10(-2)min(-1), 33.83×10(-2)min(-1) and 37.4×10(-2)min(-1) have testified the excellent catalytic performance of our Re NPs immobilized on DNA. The overall study have revealed the capability of DNA in stabilizing the highly reactive Re metal at nanoscale and made them applicable in practice. The present route can also be extended to prepare one dimensional (1-D), self-assembled NPs of other reactive metals, mixed metals or even metal oxides for specific applications in water based solutions. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  12. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings impl...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution.......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... (the representamen) and the effect. Semiotic interaction patterns therefore provide fast and versatile mechanisms for adaptations, mechanisms that depend on communication and “learning” rather than on genetic preformation. Seen as a stabilizing agency supporting the emergence of higher-order structure...

  13. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. Awide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  14. Monothiol glutaredoxin Grx5 interacts with Fe-S scaffold proteins Isa1 and Isa2 and supports Fe-S assembly and DNA integrity in mitochondria of fission yeast

    International Nuclear Information System (INIS)

    Kim, Kyoung-Dong; Chung, Woo-Hyun; Kim, Hyo-Jin; Lee, Kyung-Chang; Roe, Jung-Hye

    2010-01-01

    Mitochondrial monothiol glutaredoxins that bind Fe-S cluster are known to participate in Fe-S cluster assembly. However, their precise role has not been well understood. Among three monothiol glutaredoxins (Grx3, 4, and 5) in Schizosaccharomyces pombe only Grx5 resides in mitochondria. The Δgrx5 mutant requires cysteine on minimal media, and does not grow on non-fermentable carbon source such as glycerol. We found that the mutant is low in the activity of Fe-S enzymes in mitochondria as well as in the cytoplasm. Screening of multi-copy suppressor of growth defects of the mutant identified isa1 + gene encoding a putative A-type Fe-S scaffold, in addition to mas5 + and hsc1 + genes encoding putative chaperones for Fe-S assembly process. Examination of other scaffold and chaperone genes revealed that isa2 + , but not isu1 + and ssc1 + , complemented the growth phenotype of Δgrx5 mutant as isa1 + did, partly through restoration of Fe-S enzyme activities. The mutant also showed a significant decrease in the amount of mitochondrial DNA. We demonstrated that Grx5 interacts in vivo with Isa1 and Isa2 proteins in mitochondria by observing bimolecular fluorescence complementation. These results indicate that Grx5 plays a central role in Fe-S assembly process through interaction with A-type Fe-S scaffold proteins Isa1 and Isa2, each of which is an essential protein in S. pombe, and supports mitochondrial genome integrity as well as Fe-S assembly.

  15. DNA repair: keeping it together

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2004-01-01

    A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest.......A protein scaffold has been identified that holds a chromosome together in the event of a DNA double-strand break. This scaffold is dependent on Rad52 and the Rad50-Mre11-Xrs2 complex and withstands the pulling forces of the mitotic spindle during DNA damage checkpoint arrest....

  16. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair.

    Science.gov (United States)

    Breslin, Claire; Mani, Rajam S; Fanta, Mesfin; Hoch, Nicolas; Weinfeld, Michael; Caldecott, Keith W

    2017-09-29

    The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: In vitro cell culture studies

    International Nuclear Information System (INIS)

    Milovac, Dajana; Gamboa-Martínez, Tatiana C.; Ivankovic, Marica; Gallego Ferrer, Gloria; Ivankovic, Hrvoje

    2014-01-01

    In the present study, we examined the potential of using highly porous poly(ε-caprolactone) (PCL)-coated hydroxyapatite (HAp) scaffold derived from cuttlefish bone for bone tissue engineering applications. The cell culture studies were performed in vitro with preosteoblastic MC3T3-E1 cells in static culture conditions. Comparisons were made with uncoated HAp scaffold. The attachment and spreading of preosteoblasts on scaffolds were observed by Live/Dead staining Kit. The cells grown on the HAp/PCL composite scaffold exhibited greater spreading than cells grown on the HAp scaffold. DNA quantification and scanning electron microscopy (SEM) confirmed a good proliferation of cells on the scaffolds. DNA content on the HAp/PCL scaffold was significantly higher compared to porous HAp scaffolds. The amount of collagen synthesis was determined using a hydroxyproline assay. The osteoblastic differentiation of the cells was evaluated by determining alkaline phosphatase (ALP) activity and collagen type I secretion. Furthermore, cell spreading and cell proliferation within scaffolds were observed using a fluorescence microscope. - Highlights: • Hydroxyapatite/poly(ε-caprolactone) scaffold with interconnected pores was prepared • Cytotoxicity test showed that the scaffold was not cytotoxic towards MC3T3-E1 cells • The scaffold supported the attachment, proliferation and differentiation of cells • A 3D cell colonization was confirmed using the fluorescence microscopy • The scaffold might be a promising candidate for bone tissue engineering

  18. Induced Förster resonance energy transfer by encapsulation of DNA-scaffold based probes inside a plant virus based protein cage

    Science.gov (United States)

    de Ruiter, Mark V.; Overeem, Nico J.; Singhai, Gaurav; Cornelissen, Jeroen J. L. M.

    2018-05-01

    Insight into the assembly and disassembly of viruses can play a crucial role in developing cures for viral diseases. Specialized fluorescent probes can benefit the study of interactions within viruses, especially during cell studies. In this work, we developed a strategy based on Förster resonance energy transfer (FRET) to study the assembly of viruses without labeling the exterior of viruses. Instead, we exploit their encapsulation of nucleic cargo, using three different fluorescent ATTO dyes linked to single-stranded DNA oligomers, which are hybridised to a longer DNA strand. FRET is induced upon assembly of the cowpea chlorotic mottle virus, which forms monodisperse icosahedral particles of about 22 nm, thereby increasing the FRET efficiency by a factor of 8. Additionally, encapsulation of the dyes in virus-like particles induces a two-step FRET. When the formed constructs are disassembled, this FRET signal is fully reduced to the value before encapsulation. This reversible behavior makes the system a good probe for studying viral assembly and disassembly. It, furthermore, shows that multi-component supramolecular materials are stabilized in the confinement of a protein cage.

  19. Nuclear scaffold organization in the X-ray sensitive Chinese hamster mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.; Fink, T.J.; Enrique, A.M.

    1994-01-01

    Nuclear organization was probed in the radiation-sensitive Chinese hamster ovary (CHO) cell line, xrs-5, and compared with parental CHO K1 cells using the resinless section technique and DNase I digestions. The resinless section data showed no gross morphological differences in core filaments from the nuclear scaffolds of unirradiated CHO K1 and xrs-5 cells. However, the nuclear scaffolds of irradiated xrs-5 cells (1 Gy) had significantly increased ground substance. Irradiated and unirradiated CHO K1 cell nuclear scaffolds were morphologically identical. These data suggest that both CHO K1 and xrs-5 cell nuclear scaffolds had internal nuclear scaffolding networks that could provide DNA attachment sites. (author)

  20. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds

    DEFF Research Database (Denmark)

    Mygind, Tina; Stiehler, Maik; Baatrup, Anette

    2007-01-01

    Culture of osteogenic cells on a porous scaffold could offer a new solution to bone grafting using autologous human mesenchymal stem cells (hMSC) from the patient. We compared coralline hydroxyapatite scaffolds with pore sizes of 200 and 500 microm for expansion and differentiation of hMSCs. We...... polymerase chain reaction for 10 osteogenic markers. The 500-microm scaffolds had increased proliferation rates and accommodated a higher number of cells (shown by DNA content, scanning electron microscopy and fluorescence microscopy). Thus the porosity of a 3D microporous biomaterial may be used to steer h......MSC in a particular direction. We found that dynamic spinner flask cultivation of hMSC/scaffold constructs resulted in increased proliferation, differentiation and distribution of cells in scaffolds. Therefore, spinner flask cultivation is an easy-to-use inexpensive system for cultivating hMSCs on small...

  1. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket.

    Science.gov (United States)

    Nishida, Erika; Miyaji, Hirofumi; Kato, Akihito; Takita, Hiroko; Iwanaga, Toshihiko; Momose, Takehito; Ogawa, Kosuke; Murakami, Shusuke; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Graphene oxide (GO) consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM), physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1 µg/mL GO scaffold were, respectively, approximately 2.5-fold and 1.4-fold greater than those of the control. Particularly, the infiltration of ED2-positive (M2) macrophages and blood vessels were prominent in the GO scaffold. Dog bone-formation tests showed that 1 µg/mL GO scaffold implantation enhanced bone formation. New bone formation following GO scaffold implantation was enhanced fivefold compared to that in control subjects. These results suggest that GO was biocompatible and had high bone-formation capability for the scaffold

  2. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  3. Comparison of TALEN scaffolds in Xenopus tropicalis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2013-11-01

    Transcription activator-like effector nucleases (TALENs are facile and potent tools used to modify a gene of interest for targeted gene knockout. TALENs consist of an N-terminal domain, a DNA-binding domain, and a C-terminal domain, which are derived from a transcription activator-like effector, and the non-specific nuclease domain of FokI. Using Xenopus tropicalis (X. tropicalis, we compared the toxicities and somatic mutation activities of four TALEN architectures in a side-by-side manner: a basic TALEN, a scaffold with the same truncated N- and C-terminal domains as GoldyTALEN, a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain, and a scaffold with the truncated N- and C-terminal domains and an obligate heterodimeric Sharkey nuclease domain. The strongest phenotype and targeted somatic gene mutation were induced by the injection of TALEN mRNAs containing the truncated N- and C-terminal domains and an obligate heterodimeric nuclease domain. The obligate heterodimeric TALENs exhibited reduced toxicity compared to the homodimeric TALENs, and the homodimeric GoldyTALEN-type scaffold showed both a high activity of somatic gene modification and high toxicity. The Sharkey mutation in the heterodimeric nuclease domain reduced the TALEN-mediated somatic mutagenesis.

  4. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    This paper investigates the notion of semiotic scaffolding in relation to mathematics by considering its influence on mathematical activities, and on the evolution of mathematics as a research field. We will do this by analyzing the role different representational forms play in mathematical...... cognition, and more broadly on mathematical activities. In the main part of the paper, we will present and analyze three different cases. For the first case, we investigate the semiotic scaffolding involved in pencil and paper multiplication. For the second case, we investigate how the development of new...... in both mathematical cognition and in the development of mathematics itself, but mathematical cognition cannot itself be reduced to the use of semiotic scaffolding....

  5. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.

    Science.gov (United States)

    Thavornyutikarn, Boonlom; Chantarapanich, Nattapon; Sitthiseripratip, Kriskrai; Thouas, George A; Chen, Qizhi

    Tissue engineering is essentially a technique for imitating nature. Natural tissues consist of three components: cells, signalling systems (e.g. growth factors) and extracellular matrix (ECM). The ECM forms a scaffold for its cells. Hence, the engineered tissue construct is an artificial scaffold populated with living cells and signalling molecules. A huge effort has been invested in bone tissue engineering, in which a highly porous scaffold plays a critical role in guiding bone and vascular tissue growth and regeneration in three dimensions. In the last two decades, numerous scaffolding techniques have been developed to fabricate highly interconnective, porous scaffolds for bone tissue engineering applications. This review provides an update on the progress of foaming technology of biomaterials, with a special attention being focused on computer-aided manufacturing (Andrade et al. 2002) techniques. This article starts with a brief introduction of tissue engineering (Bone tissue engineering and scaffolds) and scaffolding materials (Biomaterials used in bone tissue engineering). After a brief reviews on conventional scaffolding techniques (Conventional scaffolding techniques), a number of CAM techniques are reviewed in great detail. For each technique, the structure and mechanical integrity of fabricated scaffolds are discussed in detail. Finally, the advantaged and disadvantage of these techniques are compared (Comparison of scaffolding techniques) and summarised (Summary).

  6. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Sciences, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology, Roorkee (India)

    2013-10-15

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering.

  7. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications

    International Nuclear Information System (INIS)

    Gupta, Sweta K.; Dinda, Amit K.; Potdar, Pravin D.; Mishra, Narayan C.

    2013-01-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H and E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. - Highlights: • We successfully fabricated decellularized scaffold from cadaver goat-lung tissue. • Decellularized goat-lung scaffolds were found to be highly porous. • Skin derived MSC shows high cell viability and proliferation over the scaffold. • Phenotype of MSCs was well maintained over the scaffold. • The scaffold shows potential for applications in skin tissue engineering

  8. Cytocompatibility of a silk fibroin tubular scaffold

    International Nuclear Information System (INIS)

    Wang, Jiannan; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility

  9. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    International Nuclear Information System (INIS)

    Gomes, S.R.; Rodrigues, G.; Martins, G.G.; Henriques, C.M.R.; Silva, J.C.

    2013-01-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds

  10. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, S.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Rodrigues, G.; Martins, G.G. [Centro de Biologia Ambiental / Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, FCUL, 1749-016 Campo Grande, Lisboa (Portugal); Henriques, C.M.R. [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Silva, J.C., E-mail: jcs@fct.unl.pt [Centro de Física e Investigação Tecnológica / Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. - Highlights: ► Electrospinning of fish gelatin dissolved in both water or concentrated acetic acid ► Glutaraldehyde, genipin and dehydrothermal treatment effectively crosslink the fish gelatin fibers ► Fibroblasts effectively adhere to and propagate on all scaffolds ► Cell population is highest for glutaraldehyde crosslinked scaffolds ► Cells exhibit more filopodia and stress fibers on glutaraldehyde crosslinked scaffolds.

  11. Scaffolding students’ assignments

    DEFF Research Database (Denmark)

    Slot, Marie Falkesgaard

    2013-01-01

    This article discusses scaffolding in typical student assignments in mother tongue learning materials in upper secondary education in Denmark and the United Kingdom. It has been determined that assignments do not have sufficient scaffolding end features to help pupils understand concepts and build...... objects. The article presents the results of empirical research on tasks given in Danish and British learning materials. This work is based on a further development of my PhD thesis: “Learning materials in the subject of Danish” (Slot 2010). The main focus is how cognitive models (and subsidiary explicit...... learning goals) can help students structure their argumentative and communica-tive learning processes, and how various multimodal representations can give more open-ended learning possibilities for collaboration. The article presents a short introduction of the skills for 21st century learning and defines...

  12. Influence of quercetin and nanohydroxyapatite modifications of decellularized goat-lung scaffold for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sweta K. [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India); Kumar, Ritesh [Center for Computational Biology, University of Kansas, Kansas 66045 (United States); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, 247667 (India)

    2017-02-01

    In the present study, goat-lung scaffold was fabricated by decellularization of lung tissue and verified for complete cell removal by DNA quantification, DAPI and H&E staining. The scaffold was then modified by crosslinking with quercetin and nanohydroxyapatite (nHAp), and characterized to evaluate the suitability of quercetin-crosslinked nHAp-modified scaffold for regeneration of bone tissue. The crosslinking chemistry between quercetin and decellularized scaffold was established theoretically by AutoDock Vina program (in silico docking study), which predicted multiple intermolecular hydrogen bonding interactions between quercetin and decellularized scaffold, and FTIR spectroscopy analysis also proved the same. From MTT assay and SEM studies, it was found that the quercetin-crosslinked nHAp-modified decellularized scaffold encouraged better growth and proliferation of bone-marrow derived mesenchymal stem cells (BMMSCs) in comparison to unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold. Alkaline Phosphatase (ALP) assay results showed highest expression of ALP over quercetin-crosslinked nHAp-modified scaffold among all the tested scaffolds (unmodified decellularized scaffold, quercetin-crosslinked decellularized scaffold and nHAp-modified decellularized scaffold) − indicating that quercetin and nHAp is very much efficient in stimulating the differentiation of BMMSCs into osteoblast cells. Alizarin red test quantified in vitro mineralization (calcium deposits), and increased expression of alizarin red over quercetin-crosslinked nHAp-modified scaffold indicating better stimulation of osteogenesis in BMMSCs. The above findings suggest that quercetin-crosslinked nHAp-modified decellularized goat-lung scaffold provides biomimetic bone-like microenvironment for BMMSCs to differentiate into osteoblast and could be applied as a potential promising biomaterial for bone regeneration. - Highlights:

  13. Biological effects of functionalizing copolymer scaffolds with nanodiamond particles.

    Science.gov (United States)

    Xing, Zhe; Pedersen, Torbjorn O; Wu, Xujun; Xue, Ying; Sun, Yang; Finne-Wistrand, Anna; Kloss, Frank R; Waag, Thilo; Krueger, Anke; Steinmüller-Nethl, Doris; Mustafa, Kamal

    2013-08-01

    Significant evidence has indicated that poly(L-lactide)-co-(ɛ-caprolactone) [(poly(LLA-co-CL)] scaffolds could be one of the suitable candidates for bone tissue engineering. Oxygen-terminated nanodiamond particles (n-DP) were combined with poly(LLA-co-CL) and revealed to be positive for cell growth. In this study, we evaluated the influence of poly(LLA-co-CL) scaffolds modified by n-DP on attachment, proliferation, differentiation of bone marrow stromal cells (BMSCs) in vitro, and on bone formation using a sheep calvarial defect model. BMSCs were seeded on either poly(LLA-co-CL)- or n-DP-coated scaffolds and incubated for 1 h. Scanning electron microscopy (SEM) and fluorescence microscopy were used in addition to protein and DNA measurements to evaluate cellular attachment on the scaffolds. To determine the effect of n-DP on proliferation of BMSCs, cell/scaffold constructs were harvested after 3 days and evaluated by Bicinchoninic Acid (BCA) protein assay and SEM. In addition, the osteogenic differentiation of cells grown for 2 weeks on the various scaffolds and in a dynamic culture condition was evaluated by real-time RT-PCR. Unmodified and modified scaffolds were implanted into the calvaria of six-year-old sheep. The expression of collagen type I (COL I) and bone morphogenetic protein-2 (BMP-2) after 4 weeks as well as the formation of new bone after 12 and 24 weeks were analyzed by immunohistochemistry and histology. Scaffolds modified with n-DP supported increased cell attachment and the mRNA expression of osteopontin (OPN), bone sialoprotein (BSP), and BMP-2 were significantly increased after 2 weeks of culture. The BMSCs had spread well on the various scaffolds investigated after 3 days in the study with no significant difference in cell proliferation. Furthermore, the in vivo data revealed more positive staining of COL I and BMP-2 in relation to the n-DP-coated scaffolds after 4 weeks and presented more bone formation after 12 and 24 weeks. n

  14. Fabrication and characterization of scaffold from cadaver goat-lung tissue for skin tissue engineering applications.

    Science.gov (United States)

    Gupta, Sweta K; Dinda, Amit K; Potdar, Pravin D; Mishra, Narayan C

    2013-10-01

    The present study aims to fabricate scaffold from cadaver goat-lung tissue and evaluate it for skin tissue engineering applications. Decellularized goat-lung scaffold was fabricated by removing cells from cadaver goat-lung tissue enzymatically, to have cell-free 3D-architecture of natural extracellular matrix. DNA quantification assay and Hematoxylin and eosin staining confirmed the absence of cellular material in the decellularized lung-tissue. SEM analysis of decellularized scaffold shows the intrinsic porous structure of lung tissue with well-preserved pore-to-pore interconnectivity. FTIR analysis confirmed non-denaturation and well maintainance of collagenous protein structure of decellularized scaffold. MTT assay, SEM analysis and H&E staining of human skin-derived Mesenchymal Stem cell, seeded over the decellularized scaffold, confirms stem cell attachment, viability, biocompatibility and proliferation over the decellularized scaffold. Expression of Keratin18 gene, along with CD105, CD73 and CD44, by human skin-derived Mesenchymal Stem cells over decellularized scaffold signifies that the cells are viable, proliferating and migrating, and have maintained their critical cellular functions in the presence of scaffold. Thus, overall study proves the applicability of the goat-lung tissue derived decellularized scaffold for skin tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    Science.gov (United States)

    Chen, Muwan; Le, Dang QS; Hein, San; Li, Pengcheng; Nygaard, Jens V; Kassem, Moustapha; Kjems, Jørgen; Besenbacher, Flemming; Bünger, Cody

    2012-01-01

    Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT) cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other tissue engineering areas that need local sustained release of drug. PMID:22904634

  16. Graphene oxide scaffold accelerates cellular proliferative response and alveolar bone healing of tooth extraction socket

    Directory of Open Access Journals (Sweden)

    Nishida E

    2016-05-01

    Full Text Available Erika Nishida,1 Hirofumi Miyaji,1 Akihito Kato,1 Hiroko Takita,2 Toshihiko Iwanaga,3 Takehito Momose,1 Kosuke Ogawa,1 Shusuke Murakami,1 Tsutomu Sugaya,1 Masamitsu Kawanami11Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 2Support Section for Education and Research, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan; 3Laboratory of Histology and Cytology, Hokkaido University Graduate School of Medicine, Sapporo, JapanAbstract: Graphene oxide (GO consisting of a carbon monolayer has been widely investigated for tissue engineering platforms because of its unique properties. For this study, we fabricated a GO-applied scaffold and assessed the cellular and tissue behaviors in the scaffold. A preclinical test was conducted to ascertain whether the GO scaffold promoted bone induction in dog tooth extraction sockets. For this study, GO scaffolds were prepared by coating the surface of a collagen sponge scaffold with 0.1 and 1 µg/mL GO dispersion. Scaffolds were characterized using scanning electron microscopy (SEM, physical testing, cell seeding, and rat subcutaneous implant testing. Then a GO scaffold was implanted into a dog tooth extraction socket. Histological observations were made at 2 weeks postsurgery. SEM observations show that GO attached to the surface of collagen scaffold struts. The GO scaffold exhibited an interconnected structure resembling that of control subjects. GO application improved the physical strength, enzyme resistance, and adsorption of calcium and proteins. Cytocompatibility tests showed that GO application significantly increased osteoblastic MC3T3-E1 cell proliferation. In addition, an assessment of rat subcutaneous tissue response revealed that implantation of 1 µg/mL GO scaffold stimulated cellular ingrowth behavior, suggesting that the GO scaffold exhibited good biocompatibility. The tissue ingrowth area and DNA contents of 1

  17. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  18. Triplex configuration in the nick-free DNAs that constitute the chromosomal scaffolds in grasshopper spermatids

    Czech Academy of Sciences Publication Activity Database

    Černá, Adriana; Lopez-Fernandez, C.; Fernandez, J.L.; de la Espina, S.M.D.; De la Torre, C.; Gosalvez, J.

    2008-01-01

    Roč. 117, č. 1 (2008), s. 15-24 ISSN 0009-5915 Institutional research plan: CEZ:AV0Z50380511 Keywords : chromatid scaffold * DNA loops * triplex DNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.111, year: 2008

  19. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    Science.gov (United States)

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.

  1. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0152 TITLE: Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0152 Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism... chromatin immunoprecipitation-next generation DNA sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent of

  2. Using Scaffolds in Problem-Based Hypermedia

    Science.gov (United States)

    Su, Yuyan; Klein, James D.

    2010-01-01

    This study investigated the use of scaffolds in problem-based hypermedia. Three hundred and twelve undergraduate students enrolled in a computer literacy course worked in project teams to use a hypermedia PBL program focused on designing a personal computer. The PBL program included content scaffolds, metacognitive scaffolds, or no scaffolds.…

  3. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    Directory of Open Access Journals (Sweden)

    Dias Zanoni

    2012-05-01

    Full Text Available Abstract Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large

  4. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Experimental study of tissue engineered cartilage construction using oriented scaffold combined with bone marrow mesenchymal stem cells in vivo].

    Science.gov (United States)

    Duan, Wei; Da, Hu; Wang, Wentao; Lü, Shangjun; Xiong, Zhuo; Liu, Jian

    2013-05-01

    To investigate the feasibility of fabricating an oriented scaffold combined with chondrogenic-induced bone marrow mesenchymal stem cells (BMSCs) for enhancement of the biomechanical property of tissue engineered cartilage in vivo. Temperature gradient-guided thermal-induced phase separation was used to fabricate an oriented cartilage extracellular matrix-derived scaffold composed of microtubules arranged in parallel in vertical section. No-oriented scaffold was fabricated by simple freeze-drying. Mechanical property of oriented and non-oriented scaffold was determined by measurement of compressive modulus. Oriented and non-oriented scaffolds were seeded with chondrogenic-induced BMSCs, which were obtained from the New Zealand white rabbits. Proliferation, morphological characteristics, and the distribution of the cells on the scaffolds were analyzed by MTT assay and scanning electron microscope. Then cell-scaffold composites were implanted subcutaneously in the dorsa of nude mice. At 2 and 4 weeks after implantation, the samples were harvested for evaluating biochemical, histological, and biomechanical properties. The compressive modulus of oriented scaffold was significantly higher than that of non-oriented scaffold (t=201.099, P=0.000). The cell proliferation on the oriented scaffold was significantly higher than that on the non-oriented scaffold from 3 to 9 days (P fibers with chondrocyte-like cells on the oriented-structure constructs. Total DNA, glycosaminoglycan (GAG), and collagen contents increased with time, and no significant difference was found between 2 groups (P > 0.05). The compressive modulus of the oriented tissue engineered cartilage was significantly higher than that of the non-oriented tissue engineered cartilage at 2 and 4 weeks after implantation (P < 0.05). Total DNA, GAG, collagen contents, and compressive modulus in the 2 tissue engineered cartilages were significantly lower than those in normal cartilage (P < 0.05). Oriented extracellular

  6. A New Modular Approach to Nanoassembly: Stable and Addressable DNA Nanoconstructs via Orthogonal Click Chemistries

    KAUST Repository

    Gerrard, Simon R.; Hardiman, Claire; Shelbourne, Montserrat; Nandhakumar, Iris; Nordé n, Bengt; Brown, Tom

    2012-01-01

    chemistry for the synthesis of dimeric, trimeric, and oligomeric modular DNA scaffolds from cyclic, double-stranded, 80-mer DNA nanoconstructs. This particular combination of orthogonal click reactions was more effective for nanoassembly than others explored

  7. Scaffolding in Assisted Instruction

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available On-The-Job Training, developed as direct instruction, is one of the earliest forms of training. This method is still widely in use today because it requires only a person who knows how to do the task, and the tools the person uses to do the task. This paper is intended to be a study of the methods used in education in Knowledge Society, with more specific aspects in training the trainers; as a result of this approach, it promotes scaffolding in assisted instruction as a reflection of the digital age for the learning process. Training the trainers in old environment with default techniques and designing the learning process in assisted instruction, as an application of the Vygotskian concept of the zone of proximal development (ZPD to the area of computer literacy for the younger users, generate diversity in educational communities and requires standards for technology infrastructure, standards for the content, developed as a concepts map, and applications for personalized in-struction, based on ZPD theory.

  8. Scaffolding along Nucleic Acid Duplexes Using 2'-Amino-Locked Nucleic Acids

    DEFF Research Database (Denmark)

    Astakhova, I Kira; Wengel, Jesper

    2014-01-01

    -LNA nucleotides. By application of different chemical reactions, modification of 2'-amino-LNA scaffolds can be efficiently performed in high yields and with various tags, postsynthetically or during the automated oligonucleotide synthesis. The choice of a synthetic method for scaffolding along 2'-amino-LNA mainly....../DNA probes bind nucleic acid targets with advantages of high affinity and specificity. Thus, molecular motion of nanodevices and programmable self-assembly of chemically modified LNA/DNA nanomaterials can be followed by bright fluorescence signaling from the functionalized LNA units. Another appealing aspect...

  9. Neuronal Networks on Nanocellulose Scaffolds.

    Science.gov (United States)

    Jonsson, Malin; Brackmann, Christian; Puchades, Maja; Brattås, Karoline; Ewing, Andrew; Gatenholm, Paul; Enejder, Annika

    2015-11-01

    Proliferation, integration, and neurite extension of PC12 cells, a widely used culture model for cholinergic neurons, were studied in nanocellulose scaffolds biosynthesized by Gluconacetobacter xylinus to allow a three-dimensional (3D) extension of neurites better mimicking neuronal networks in tissue. The interaction with control scaffolds was compared with cationized nanocellulose (trimethyl ammonium betahydroxy propyl [TMAHP] cellulose) to investigate the impact of surface charges on the cell interaction mechanisms. Furthermore, coatings with extracellular matrix proteins (collagen, fibronectin, and laminin) were investigated to determine the importance of integrin-mediated cell attachment. Cell proliferation was evaluated by a cellular proliferation assay, while cell integration and neurite propagation were studied by simultaneous label-free Coherent anti-Stokes Raman Scattering and second harmonic generation microscopy, providing 3D images of PC12 cells and arrangement of nanocellulose fibrils, respectively. Cell attachment and proliferation were enhanced by TMAHP modification, but not by protein coating. Protein coating instead promoted active interaction between the cells and the scaffold, hence lateral cell migration and integration. Irrespective of surface modification, deepest cell integration measured was one to two cell layers, whereas neurites have a capacity to integrate deeper than the cell bodies in the scaffold due to their fine dimensions and amoeba-like migration pattern. Neurites with lengths of >50 μm were observed, successfully connecting individual cells and cell clusters. In conclusion, TMAHP-modified nanocellulose scaffolds promote initial cellular scaffold adhesion, which combined with additional cell-scaffold treatments enables further formation of 3D neuronal networks.

  10. Decellularized Rat Lung Scaffolds Using Sodium Lauryl Ether Sulfate for Tissue Engineering.

    Science.gov (United States)

    Ma, Jinhui; Ju, Zhihai; Yu, Jie; Qiao, Yeru; Hou, Chenwei; Wang, Chen; Hei, Feilong

    Perfusion decellularization with detergents is effective to maintain the architecture and proteins of extracellular matrix (ECM) for use in the field of lung tissue engineering (LTE). However, it is unclear which detergent is ideal to produce an acellular lung scaffold. In this study, we obtained two decellularized rat lung scaffolds using a novel detergent sodium lauryl ether sulfate (SLES) and a conventional detergent sodium dodecyl sulfate (SDS). Both decellularized lung scaffolds were assessed by histology, immunohistochemistry, scanning electron microscopy, DNA quantification, sulfated glycosaminoglycans (GAGs) quantification and western blot. Subsequently, the scaffolds were implanted subcutaneously in rats for 6 weeks and were evaluated via hematoxylin and eosin staining and Masson staining. Results indicated that SLES was effective to remove cells; moreover, lungs decellularized with SLES showed better preservation of sulfated GAGs, lung architecture, and ECM proteins than SDS. After 6 weeks, SLES scaffolds demonstrated a significantly greater potential for cell infiltration and blood vessel formation compared with SDS scaffolds. Taken together, we conclude that SLES is a promising detergent to produce an acellular scaffold using LTE for eventual transplantation.

  11. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Science.gov (United States)

    Ho, Ming-Hua; Liao, Mei-Hsiu; Lin, Yi-Ling; Lai, Chien-Hao; Lin, Pei-I; Chen, Ruei-Ming

    2014-01-01

    Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP) messenger (m)RNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses showed that chitosan nanofibers improved osteoblast mineralization. Taken together, results of this study demonstrate that chitosan nanofibers can stimulate osteoblast proliferation and maturation via runt-related transcription factor 2-mediated regulation of osteoblast-associated osteopontin, osteocalcin, and ALP gene expression. PMID:25246786

  12. Fabrication and characterization of a rapid prototyped tissue engineering scaffold with embedded multicomponent matrix for controlled drug release

    Directory of Open Access Journals (Sweden)

    Chen M

    2012-08-01

    Full Text Available Muwan Chen,1,2 Dang QS Le,1,2 San Hein,2 Pengcheng Li,1 Jens V Nygaard,2 Moustapha Kassem,3 Jørgen Kjems,2 Flemming Besenbacher,2 Cody Bünger11Orthopaedic Research Lab, Aarhus University Hospital, Aarhus C, Denmark; 2Interdisciplinary Nanoscience Center (iNANO, Aarhus University, Aarhus C, Denmark; 3Department of Endocrinology and Metabolism, Odense University Hospital, Odense C, DenmarkAbstract: Bone tissue engineering implants with sustained local drug delivery provide an opportunity for better postoperative care for bone tumor patients because these implants offer sustained drug release at the tumor site and reduce systemic side effects. A rapid prototyped macroporous polycaprolactone scaffold was embedded with a porous matrix composed of chitosan, nanoclay, and β-tricalcium phosphate by freeze-drying. This composite scaffold was evaluated on its ability to deliver an anthracycline antibiotic and to promote formation of mineralized matrix in vitro. Scanning electronic microscopy, confocal imaging, and DNA quantification confirmed that immortalized human bone marrow-derived mesenchymal stem cells (hMSC-TERT cultured in the scaffold showed high cell viability and growth, and good cell infiltration to the pores of the scaffold. Alkaline phosphatase activity and osteocalcin staining showed that the scaffold was osteoinductive. The drug-release kinetics was investigated by loading doxorubicin into the scaffold. The scaffolds comprising nanoclay released up to 45% of the drug for up to 2 months, while the scaffold without nanoclay released 95% of the drug within 4 days. Therefore, this scaffold can fulfill the requirements for both bone tissue engineering and local sustained release of an anticancer drug in vitro. These results suggest that the scaffold can be used clinically in reconstructive surgery after bone tumor resection. Moreover, by changing the composition and amount of individual components, the scaffold can find application in other

  13. Mechanical anisotropy of titanium scaffolds

    Directory of Open Access Journals (Sweden)

    Rüegg Jasmine

    2017-09-01

    Full Text Available The clinical performance of an implant, e.g. for the treatment of large bone defects, depends on the implant material, anchorage, surface topography and chemistry, but also on the mechanical properties, like the stiffness. The latter can be adapted by the porosity. Whereas foams show isotropic mechanical properties, digitally modelled scaffolds can be designed with anisotropic behaviour. In this study, we designed and produced 3D scaffolds based on an orthogonal architecture and studied its angle-dependent stiffness. The aim was to produce scaffolds with different orientations of the microarchitecture by selective laser melting and compare the angle-specific mechanical behaviour with an in-silico simulation. The anisotropic characteristics of open-porous implants and technical limitations of the production process were studied.

  14. A scaffold easy to decontaminate

    International Nuclear Information System (INIS)

    Mourek, D.

    1992-01-01

    The conventional scaffold used in the assembling work and in revisions of technological facilities at nuclear power plants has many drawbacks. The most serious of them are a high amount of radioactive waste arising from the decontamination (planing) of the floor timber and from the discarding of damaged irreparable parts, and a considerable corrosion of the carbon steel supporting structure after the decontamination. A detailed description is given of a novel scaffold assembly which can be decontaminated and which exhibits many assets, in particular a good mechanical resistance (also to bad weather), a lower weight, and the use of prepreg floor girders for the construction of service platforms or scaffold bridges which can readily be assembled from the pressed pieces in a modular way. (Z.S.). 4 figs., 4 refs

  15. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  16. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  17. Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding.

    Science.gov (United States)

    Pina, S; Canadas, R F; Jiménez, G; Perán, M; Marchal, J A; Reis, R L; Oliveira, J M

    2017-01-01

    The treatment and regeneration of bone defects caused by traumatism or diseases have not been completely addressed by current therapies. Lately, advanced tools and technologies have been successfully developed for bone tissue regeneration. Functional scaffolding materials such as biopolymers and bioresorbable fillers have gained particular attention, owing to their ability to promote cell adhesion, proliferation, and extracellular matrix production, which promote new bone growth. Here, we present novel biofunctional scaffolds for bone regeneration composed of silk fibroin (SF) and β-tricalcium phosphate (β-TCP) and incorporating Sr, Zn, and Mn, which were successfully developed using salt-leaching followed by a freeze-drying technique. The scaffolds presented a suitable pore size, porosity, and high interconnectivity, adequate for promoting cell attachment and proliferation. The degradation behavior and compressive mechanical strengths showed that SF/ionic-doped TCP scaffolds exhibit improved characteristics for bone tissue engineering when compared with SF scaffolds alone. The in vitro bioactivity assays using a simulated body fluid showed the growth of an apatite layer. Furthermore, in vitro assays using human adipose-derived stem cells presented different effects on cell proliferation/differentiation when varying the doping agents in the biofunctional scaffolds. The incorporation of Zn into the scaffolds led to improved proliferation, while the Sr- and Mn-doped scaffolds presented higher osteogenic potential as demonstrated by DNA quantification and alkaline phosphatase activity. The combination of Sr with Zn led to an influence on cell proliferation and osteogenesis when compared with single ions. Our results indicate that biofunctional ionic-doped composite scaffolds are good candidates for further in vivo studies on bone tissue regeneration. © 2017 S. Karger AG, Basel.

  18. Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes.

    Directory of Open Access Journals (Sweden)

    Mignon A Keaton

    2011-03-01

    Full Text Available The human genome must be packaged and organized in a functional manner for the regulation of DNA replication and transcription. The nuclear scaffold/matrix, consisting of structural and functional nuclear proteins, remains after extraction of nuclei and anchors loops of DNA. In the search for cis-elements functioning as chromatin domain boundaries, we identified 453 nuclear scaffold attachment sites purified by lithium-3,5-iodosalicylate extraction of HeLa nuclei across 30 Mb of the human genome studied by the ENCODE pilot project. The scaffold attachment sites mapped predominately near expressed genes and localized near transcription start sites and the ends of genes but not to boundary elements. In addition, these regions were enriched for RNA polymerase II and transcription factor binding sites and were located in early replicating regions of the genome. We believe these sites correspond to genome-interactions mediated by transcription factors and transcriptional machinery immobilized on a nuclear substructure.

  19. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method

    International Nuclear Information System (INIS)

    Gautam, Sneh; Dinda, Amit Kumar; Mishra, Narayan Chandra

    2013-01-01

    In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications. - Highlights: ► PCL/Gelatin scaffold was successfully fabricated by electrospinning method. ► PCL in CHCl 3 /CH 3 OH and gelatin in acetic acid: a novel polymer-solvent system. ► The morphology of nanofibers was influenced by the weight ratio of PCL/gelatin. ► Chemical interactions between PCL and gelatin molecules enhanced cell growth. ► Cell culture studies indicate the suitability of scaffold for tissue regeneration

  20. A practice scaffolding interactive platform

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe

    2009-01-01

    A Practice Scaffolding Interactive Platform (PracSIP) is a social learning platform which supports students in collaborative project based learning by simulating a professional practice. A PracSIP puts the core tools of the simulated practice at the students' disposal, it organizes collaboration...

  1. Problem Solving, Scaffolding and Learning

    Science.gov (United States)

    Lin, Shih-Yin

    2012-01-01

    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  2. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongcheng; Lin Zhaoquan [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054 (China); Xiong Hui; Long Xing; Wei Lili; Li Jian; Wu Yang, E-mail: xinglong1957@yahoo.com.c [State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079 (China)

    2010-10-01

    The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-{beta}1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-{beta}1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.

  3. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds.

    NARCIS (Netherlands)

    Yang, X.; Yang, F.; Walboomers, X.F.; Bian, Z.; Fan, M.; Jansen, J.A.

    2010-01-01

    The aim of current study is to investigate the in vitro and in vivo behavior of dental pulp stem cells (DPSCs) seeded on electrospun poly(epsilon-caprolactone) (PCL)/gelatin scaffolds with or without the addition of nano-hydroxyapatite (nHA). For the in vitro evaluation, DNA content, alkaline

  4. Chitin Scaffolds in Tissue Engineering

    Science.gov (United States)

    Jayakumar, Rangasamy; Chennazhi, Krishna Prasad; Srinivasan, Sowmya; Nair, Shantikumar V.; Furuike, Tetsuya; Tamura, Hiroshi

    2011-01-01

    Tissue engineering/regeneration is based on the hypothesis that healthy stem/progenitor cells either recruited or delivered to an injured site, can eventually regenerate lost or damaged tissue. Most of the researchers working in tissue engineering and regenerative technology attempt to create tissue replacements by culturing cells onto synthetic porous three-dimensional polymeric scaffolds, which is currently regarded as an ideal approach to enhance functional tissue regeneration by creating and maintaining channels that facilitate progenitor cell migration, proliferation and differentiation. The requirements that must be satisfied by such scaffolds include providing a space with the proper size, shape and porosity for tissue development and permitting cells from the surrounding tissue to migrate into the matrix. Recently, chitin scaffolds have been widely used in tissue engineering due to their non-toxic, biodegradable and biocompatible nature. The advantage of chitin as a tissue engineering biomaterial lies in that it can be easily processed into gel and scaffold forms for a variety of biomedical applications. Moreover, chitin has been shown to enhance some biological activities such as immunological, antibacterial, drug delivery and have been shown to promote better healing at a faster rate and exhibit greater compatibility with humans. This review provides an overview of the current status of tissue engineering/regenerative medicine research using chitin scaffolds for bone, cartilage and wound healing applications. We also outline the key challenges in this field and the most likely directions for future development and we hope that this review will be helpful to the researchers working in the field of tissue engineering and regenerative medicine. PMID:21673928

  5. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.

    Science.gov (United States)

    Lee, Se-Hwan; Cho, Yong Sang; Hong, Myoung Wha; Lee, Bu-Kyu; Park, Yongdoo; Park, Sang-Hyug; Kim, Young Yul; Cho, Young-Sam

    2017-09-13

    To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.

  6. Retention of insulin-like growth factor I bioactivity during the fabrication of sintered polymeric scaffolds

    International Nuclear Information System (INIS)

    Clark, Amanda; Puleo, David A; Milbrandt, Todd A; Hilt, J Zach

    2014-01-01

    The use of growth factors in tissue engineering offers an added benefit to cartilage regeneration. Growth factors, such as insulin-like growth factor I (IGF-I), increase cell proliferation and can therefore decrease the time it takes for cartilage tissue to regrow. In this study, IGF-I was released from poly(lactic-co-glycolic acid) (PLGA) scaffolds that were designed to have a decreased burst release often associated with tissue engineering scaffolds. The scaffolds were fabricated from IGF-I-loaded PLGA microspheres prepared by a double emulsion (W 1 /O/W 2 ) technique. The microspheres were then compressed, sintered at 49 °C and salt leached. The bioactivity of soluble IGF-I was verified after being heat treated at 37, 43, 45, 49 and 60 °C. Additionally, the bioactivity of IGF-I was confirmed after being released from the sintered scaffolds. The triphasic release lasted 120 days resulting in 20%, 55% and 25% of the IGF-I being released during days 1–3, 4–58 and 59–120, respectively. Seeding bone marrow cells directly onto the IGF-I-loaded scaffolds showed an increase in cell proliferation, based on DNA content, leading to increased glycosaminoglycan production. The present results demonstrated that IGF-I remains active after being incorporated into heat-treated scaffolds, further enhancing tissue regeneration possibilities. (paper)

  7. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  8. Alginate based scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Valente, J.F.A.; Valente, T.A.M. [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal); Alves, P.; Ferreira, P. [CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-290 Coimbra (Portugal); Silva, A. [Centro de Ciencia e Tecnologia Aeroespaciais, Universidade da Beira Interior, Covilha (Portugal); Correia, I.J., E-mail: icorreia@ubi.pt [CICS-UBI - Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, Covilha (Portugal)

    2012-12-01

    The design and production of scaffolds for bone tissue regeneration is yet unable to completely reproduce the native bone properties. In the present study new alginate microparticle and microfiber aggregated scaffolds were produced to be applied in this area of regenerative medicine. The scaffolds' mechanical properties were characterized by thermo mechanical assays. Their morphological characteristics were evaluated by isothermal nitrogen adsorption and scanning electron microscopy. The density of both types of scaffolds was determined by helium pycnometry and mercury intrusion porosimetry. Furthermore, scaffolds' cytotoxic profiles were evaluated in vitro by seeding human osteoblast cells in their presence. The results obtained showed that scaffolds have good mechanical and morphological properties compatible with their application as bone substitutes. Moreover, scaffold's biocompatibility was confirmed by the observation of cell adhesion and proliferation after 5 days of being seeded in their presence and by non-radioactive assays. - Highlights: Black-Right-Pointing-Pointer Design and production of scaffolds for bone tissue regeneration. Black-Right-Pointing-Pointer Microparticle and microfiber alginate scaffolds were produced through a particle aggregation technique; Black-Right-Pointing-Pointer Scaffolds' mechanically and biologically properties were characterized through in vitro studies;.

  9. 3D printed hyperelastic "bone" scaffolds and regional gene therapy: A novel approach to bone healing.

    Science.gov (United States)

    Alluri, Ram; Jakus, Adam; Bougioukli, Sofia; Pannell, William; Sugiyama, Osamu; Tang, Amy; Shah, Ramille; Lieberman, Jay R

    2018-04-01

    The purpose of this study was to evaluate the viability of human adipose-derived stem cells (ADSCs) transduced with a lentiviral (LV) vector to overexpress bone morphogenetic protein-2 (BMP-2) loaded onto a novel 3D printed scaffold. Human ADSCs were transduced with a LV vector carrying the cDNA for BMP-2. The transduced cells were loaded onto a 3D printed Hyperelastic "Bone" (HB) scaffold. In vitro BMP-2 production was assessed using enzyme-linked immunosorbent assay analysis. The ability of ADSCs loaded on the HB scaffold to induce in vivo bone formation in a hind limb muscle pouch model was assessed in the following groups: ADSCs transduced with LV-BMP-2, LV-green fluorescent protein, ADSCs alone, and empty HB scaffolds. Bone formation was assessed using radiographs, histology and histomorphometry. Transduced ADSCs BMP-2 production on the HB scaffold at 24 hours was similar on 3D printed HB scaffolds versus control wells with transduced cells alone, and continued to increase after 1 and 2 weeks of culture. Bone formation was noted in LV-BMP-2 animals on plain radiographs at 2 and 4 weeks after implantation; no bone formation was noted in the other groups. Histology demonstrated that the LV-BMP-2 group was the only group that formed woven bone and the mean bone area/tissue area was significantly greater when compared with the other groups. 3D printed HB scaffolds are effective carriers for transduced ADSCs to promote bone repair. The combination of gene therapy and tissue engineered scaffolds is a promising multidisciplinary approach to bone repair with significant clinical potential. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1104-1110, 2018. © 2018 Wiley Periodicals, Inc.

  10. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  11. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  12. Antimicrobial Cu-bearing stainless steel scaffolds

    International Nuclear Information System (INIS)

    Wang, Qiang; Ren, Ling; Li, Xiaopeng; Zhang, Shuyuan; Sercombe, Timothy B.; Yang, Ke

    2016-01-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  13. Antimicrobial Cu-bearing stainless steel scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qiang, E-mail: mfqwang@163.com [School of Stomatology, China Medical University, Shenyang 110002 (China); Ren, Ling [Institute of Metal Research, Chinese Academy of Sciences (China); Li, Xiaopeng [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Zhang, Shuyuan [Institute of Metal Research, Chinese Academy of Sciences (China); Sercombe, Timothy B., E-mail: tim.sercombe@uwa.edu.au [School of Mechanical and Chemical Engineering, The University of Western Australia (Australia); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences (China)

    2016-11-01

    Copper-bearing stainless steel scaffolds with two different structures (Body Centered Cubic and Gyroid labyrinth) at two solid fractions (25% and 40%) were fabricated from both 316L powder and a mixture of 316L and elemental Cu powder using selective laser melting, and relative 316L scaffolds were served as control group. After processing, the antimicrobial testing demonstrated that the 316L-Cu scaffolds presented excellent antimicrobial activity against Escherichia coli and Staphylococcus aureus, and the cell viability assay indicated that there was no cytotoxic effect of 316L-Cu scaffolds on rat marrow mesenchymal stem cells. As such, these have the potential to reduce implant-associated infections. The Cu was also found to homogeneously distribute within the microstructure by scanning electronic microcopy. The addition of Cu would not significantly affect its strength and stiffness compared to 316L scaffold, and the stiffness of all the scaffolds (3-20GPa) is similar to that of bone and much less than that of bulk stainless steel. Consequently, fabrication of such low stiffness porous structures, especially coupled with the addition of antimicrobial Cu, may provide a new direction for medical stainless steels. - Highlights: • 316L-Cu scaffolds were fabricated by using selective laser melting (SLM). • 316L-Cu scaffolds showed satisfied antimicrobial activities. • 316L-Cu scaffolds have no cytotoxic effect on normal cells. • Other properties of 316L-Cu scaffolds were similar to 316L scaffolds. • 316L-Cu scaffolds have the potential to be used in orthopedic applications.

  14. Pressure Shift Freezing as Potential Alternative for Generation of Decellularized Scaffolds

    Directory of Open Access Journals (Sweden)

    S. Eichhorn

    2013-01-01

    Full Text Available Background. Protocols using chemical reagents for scaffold decellularization can cause changes in the properties of the matrix, depending on the type of tissue and the chemical reagent. Technologies using physical techniques may be possible alternatives for the production grafts with potential superior matrix characteristics. Material and Methods. We tested four different technologies for scaffold decellularization. Group 1: high hydrostatic pressure (HHP, 1 GPa; Group 2: pressure shift freezing (PSF; Group 3: pulsed electric fields (PEF; Group 4: control group: detergent (SDS. The degree of decellularization was assessed by histological analysis and the measurement of residual DNA. Results. Tissue treated with PSF showed a decellularization with a penetration depth (PD of 1.5 mm and residual DNA content of . HHD treatment caused a PD of 0.2 mm with a residual DNA content of . PD in PEF was 0.5 mm, and the residual DNA content was . In the SDS group, PD was found to be 5 mm, and the DNA content was determined at . Conclusion. PSF showed promising results as a possible technique for scaffold decellularization. The penetration depth of PSF has to be optimized, and the mechanical as well as the biological characteristics of decellularized grafts have to be evaluated.

  15. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    Science.gov (United States)

    Roos, Wouter H.; Radtke, Kerstin; Kniesmeijer, Edward; Geertsema, Hylkje; Sodeik, Beate; Wuite, Gijs J. L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA. PMID:19487681

  16. Cell–scaffold interaction within engineered tissue

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiping; Liu, Yuanyuan, E-mail: Yuanyuan_liu@shu.edu.cn; Jiang, Zhenglong; Chen, Weihua; Yu, Yongzhe; Hu, Qingxi

    2014-05-01

    The structure of a tissue engineering scaffold plays an important role in modulating tissue growth. A novel gelatin–chitosan (Gel–Cs) scaffold with a unique structure produced by three-dimensional printing (3DP) technology combining with vacuum freeze-drying has been developed for tissue-engineering applications. The scaffold composed of overall construction, micro-pore, surface morphology, and effective mechanical property. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction supports the active biocompatibility of the structure. The structure is capable of supporting cell attachment and proliferation. Cells seeded into this structure tend to maintain phenotypic shape and secreted large amounts of extracellular matrix (ECM) and the cell growth decreased the mechanical properties of scaffold. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique structure, which acts to support cell growth. - Highlights: • The scaffold is not only for providing a surface for cell residence but also for determining cell phenotype and retaining structural integrity. • The mechanical property of scaffold can be affected by activities of cell. • The scaffold provides a microenvironment for cell attachment, growth, and migration.

  17. Platelet lysate embedded scaffolds for skin regeneration.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Ferrari, Franca; Mori, Michela; Cervio, Marila; Riva, Federica; Liakos, Ioannis; Athanassiou, Athanassia; Saporito, Francesca; Marini, Lara; Caramella, Carla

    2015-04-01

    The work presents the development of acellular scaffolds extemporaneously embedded with platelet lysate (PL), as an innovative approach in the field of tissue regeneration/reparation. PL embedded scaffolds should have a tridimensional architecture to support cell migration and growth, in order to restore skin integrity. For this reason, chondroitin sulfate (CS) was associated with sodium alginate (SA) to prepare highly porous systems. The developed scaffolds were characterized for chemical stability to γ-radiation, morphology, hydration and mechanical properties. Moreover, the capability of fibroblasts and endothelial cells to populate the scaffold was evaluated by means of proliferation test 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and confocal laser scanning microscopy study. The scaffolds, not altered by sterilization, were characterized by limited swelling and high flexibility, by foam-like structure with bubbles that formed a high surface area and irregular texture suitable for cell adhesion. Cell growth and scaffold population were evident on the bubble surface, where the cells appeared anchored to the scaffold structure. Scaffold network based on CS and SA demonstrated to be an effective support to enhance and to allow fibroblasts and endothelial cells (human umbilical vein endothelial cells, HUVEC) adhesion and proliferation. In particular, it could be hypothesized that cell adhesion was facilitated by the synergic effect of PL and CS. Although further in vivo evaluation is needed, on the basis of in vitro results, PL embedded scaffolds seem promising systems for skin wound healing.

  18. WiseScaffolder: an algorithm for the semi-automatic scaffolding of Next Generation Sequencing data.

    Science.gov (United States)

    Farrant, Gregory K; Hoebeke, Mark; Partensky, Frédéric; Andres, Gwendoline; Corre, Erwan; Garczarek, Laurence

    2015-09-03

    The sequencing depth provided by high-throughput sequencing technologies has allowed a rise in the number of de novo sequenced genomes that could potentially be closed without further sequencing. However, genome scaffolding and closure require costly human supervision that often results in genomes being published as drafts. A number of automatic scaffolders were recently released, which improved the global quality of genomes published in the last few years. Yet, none of them reach the efficiency of manual scaffolding. Here, we present an innovative semi-automatic scaffolder that additionally helps with chimerae resolution and generates valuable contig maps and outputs for manual improvement of the automatic scaffolding. This software was tested on the newly sequenced marine cyanobacterium Synechococcus sp. WH8103 as well as two reference datasets used in previous studies, Rhodobacter sphaeroides and Homo sapiens chromosome 14 (http://gage.cbcb.umd.edu/). The quality of resulting scaffolds was compared to that of three other stand-alone scaffolders: SSPACE, SOPRA and SCARPA. For all three model organisms, WiseScaffolder produced better results than other scaffolders in terms of contiguity statistics (number of genome fragments, N50, LG50, etc.) and, in the case of WH8103, the reliability of the scaffolds was confirmed by whole genome alignment against a closely related reference genome. We also propose an efficient computer-assisted strategy for manual improvement of the scaffolding, using outputs generated by WiseScaffolder, as well as for genome finishing that in our hands led to the circularization of the WH8103 genome. Altogether, WiseScaffolder proved more efficient than three other scaffolders for both prokaryotic and eukaryotic genomes and is thus likely applicable to most genome projects. The scaffolding pipeline described here should be of particular interest to biologists wishing to take advantage of the high added value of complete genomes.

  19. SHOP: scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Linusson, Anna; Zamora, Ismael

    2007-01-01

    A new GRID-based method for scaffold hopping (SHOP) is presented. In a fully automatic manner, scaffolds were identified in a database based on three types of 3D-descriptors. SHOP's ability to recover scaffolds was assessed and validated by searching a database spiked with fragments of known...... scaffolds were in the 31 top-ranked scaffolds. SHOP also identified new scaffolds with substantially different chemotypes from the queries. Docking analysis indicated that the new scaffolds would have similar binding modes to those of the respective query scaffolds observed in X-ray structures...

  20. Production of decellularized porcine lung scaffolds for use in tissue engineering.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Liu, Angela; Leiby, Katherine L; Schwan, Jonas; Kunkemoeller, Britta; Calle, Elizabeth A; Sivarapatna, Amogh; Lin, Tylee; Dimitrievska, Sashka; Cambpell, Stuart G; Niklason, Laura E

    2015-12-01

    There is a growing body of work dedicated to producing acellular lung scaffolds for use in regenerative medicine by decellularizing donor lungs of various species. These scaffolds typically undergo substantial matrix damage due to the harsh conditions required to remove cellular material (e.g., high pH, strong detergents), lengthy processing times, or pre-existing tissue contamination from microbial colonization. In this work, a new decellularization technique is described that maintains the global tissue architecture, key matrix components, mechanical composition and cell-seeding potential of lung tissue while effectively removing resident cellular material. Acellular lung scaffolds were produced from native porcine lungs using a combination of Triton X-100 and sodium deoxycholate (SDC) at low concentrations in 24 hours. We assessed the effect of matrix decellularization by measuring residual DNA, biochemical composition, mechanical characteristics, tissue architecture, and recellularization capacity.

  1. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold

    Science.gov (United States)

    Li, Yizhou; De Luca, Roberto; Cazzamalli, Samuele; Pretto, Francesca; Bajic, Davor; Scheuermann, Jörg; Neri, Dario

    2018-03-01

    In nature, specific antibodies can be generated as a result of an adaptive selection and expansion of lymphocytes with suitable protein binding properties. We attempted to mimic antibody-antigen recognition by displaying multiple chemical diversity elements on a defined macrocyclic scaffold. Encoding of the displayed combinations was achieved using distinctive DNA tags, resulting in a library size of 35,393,112. Specific binders could be isolated against a variety of proteins, including carbonic anhydrase IX, horseradish peroxidase, tankyrase 1, human serum albumin, alpha-1 acid glycoprotein, calmodulin, prostate-specific antigen and tumour necrosis factor. Similar to antibodies, the encoded display of multiple chemical elements on a constant scaffold enabled practical applications, such as fluorescence microscopy procedures or the selective in vivo delivery of payloads to tumours. Furthermore, the versatile structure of the scaffold facilitated the generation of protein-specific chemical probes, as illustrated by photo-crosslinking.

  2. Culture of equine fibroblast-like synoviocytes on synthetic tissue scaffolds towards meniscal tissue engineering: a preliminary cell-seeding study

    Directory of Open Access Journals (Sweden)

    Jennifer J. Warnock

    2014-04-01

    Full Text Available Introduction. Tissue engineering is a new methodology for addressing meniscal injury or loss. Synovium may be an ideal source of cells for in vitro meniscal fibrocartilage formation, however, favorable in vitro culture conditions for synovium must be established in order to achieve this goal. The objective of this study was to determine cellularity, cell distribution, and extracellular matrix (ECM formation of equine fibroblast-like synoviocytes (FLS cultured on synthetic scaffolds, for potential application in synovium-based meniscal tissue engineering. Scaffolds included open-cell poly-L-lactic acid (OPLA sponges and polyglycolic acid (PGA scaffolds cultured in static and dynamic culture conditions, and PGA scaffolds coated in poly-L-lactic (PLLA in dynamic culture conditions.Materials and Methods. Equine FLS were seeded on OPLA and PGA scaffolds, and cultured in a static environment or in a rotating bioreactor for 12 days. Equine FLS were also seeded on PGA scaffolds coated in 2% or 4% PLLA and cultured in a rotating bioreactor for 14 and 21 days. Three scaffolds from each group were fixed, sectioned and stained with Masson’s Trichrome, Safranin-O, and Hematoxylin and Eosin, and cell numbers and distribution were analyzed using computer image analysis. Three PGA and OPLA scaffolds from each culture condition were also analyzed for extracellular matrix (ECM production via dimethylmethylene blue (sulfated glycosaminoglycan assay and hydroxyproline (collagen assay. PLLA coated PGA scaffolds were analyzed using double stranded DNA quantification as areflection of cellularity and confocal laser microscopy in a fluorescent cell viability assay.Results. The highest cellularity occurred in PGA constructs cultured in a rotating bioreactor, which also had a mean sulfated glycosaminoglycan content of 22.3 µg per scaffold. PGA constructs cultured in static conditions had the lowest cellularity. Cells had difficulty adhering to OPLA and the PLLA

  3. Cell penetration to nanofibrous scaffolds

    Czech Academy of Sciences Publication Activity Database

    Rampichová, Michala; Buzgo, Matej; Chvojka, J.; Prosecká, Eva; Kofroňová, Olga; Amler, Evžen

    2014-01-01

    Roč. 8, č. 1 (2014), s. 36-41 ISSN 1933-6918 Grant - others:GA UK(CZ) 384311; GA UK(CZ) 626012; GA UK(CZ) 270513; GA UK(CZ) 330611; GA UK(CZ) 648112; GA MZd(CZ) NT12156; GA MŠk(CZ) project IPv6 Institutional support: RVO:68378041 ; RVO:61388971 Keywords : fibrous scaffold * mesenchymal stem cells * Forcespinning (R) Subject RIV: FP - Other Medical Disciplines Impact factor: 4.505, year: 2014

  4. 3D-DART: a DNA structure modelling server

    NARCIS (Netherlands)

    van Dijk, M.; Bonvin, A.M.J.J.

    2009-01-01

    There is a growing interest in structural studies of DNA by both experimental and computational approaches. Often, 3D-structural models of DNA are required, for instance, to serve as templates for homology modeling, as starting structures for macro-molecular docking or as scaffold for NMR structure

  5. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  6. Scaffolding Mathematical Modelling with a Solution Plan

    Science.gov (United States)

    Schukajlow, Stanislaw; Kolter, Jana; Blum, Werner

    2015-01-01

    In the study presented in this paper, we examined the possibility to scaffold mathematical modelling with strategies. The strategies were prompted using an instrument called "solution plan" as a scaffold. The effects of this step by step instrument on mathematical modelling competency and on self-reported strategies were tested using…

  7. Scaffolding proteins: not such innocent bystanders.

    Science.gov (United States)

    Smith, F Donelson; Scott, John D

    2013-06-17

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Scaffolding Proteins: Not Such Innocent Bystanders

    OpenAIRE

    Smith, F. Donelson; Scott, John D.

    2013-01-01

    Sequential transfer of information from one enzyme to the next within the confines of a protein kinase scaffold enhances signal transduction. Though frequently considered to be inert organizational elements, two recent reports implicate kinase-scaffolding proteins as active participants in signal relay.

  9. Metacognitive Scaffolding in an Innovative Learning Arrangement

    Science.gov (United States)

    Molenaar, Inge; van Boxtel, Carla A. M.; Sleegers, Peter J. C.

    2011-01-01

    This study examined the effects of metacognitive scaffolds on learning outcomes of collaborating students in an innovative learning arrangement. The triads were supported by computerized scaffolds, which were dynamically integrated into the learning process and took a structuring or problematizing form. In an experimental design the two…

  10. Teaching language teachers scaffolding professional learning

    CERN Document Server

    Maggioli, Gabriel Diaz

    2012-01-01

    Teaching Language Teachers: Scaffolding Professional Learning provides an updated view of as well as a reader-friendly introduction to the field of Teaching Teachers, with special reference to language teaching. By taking a decidedly Sociocultural perspective, the book addresses the main role of the Teacher of Teachers (ToT) as that of scaffolding the professional learning of aspiring teachers.

  11. Comprehensive genetic analysis of early host body reactions to the bioactive and bio-inert porous scaffolds.

    Directory of Open Access Journals (Sweden)

    Tomo Ehashi

    Full Text Available To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate (PMB and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic

  12. Comprehensive Genetic Analysis of Early Host Body Reactions to the Bioactive and Bio-Inert Porous Scaffolds

    Science.gov (United States)

    Ehashi, Tomo; Takemura, Taro; Hanagata, Nobutaka; Minowa, Takashi; Kobayashi, Hisatoshi; Ishihara, Kazuhiko; Yamaoka, Tetsuji

    2014-01-01

    To design scaffolds for tissue regeneration, details of the host body reaction to the scaffolds must be studied. Host body reactions have been investigated mainly by immunohistological observations for a long time. Despite of recent dramatic development in genetic analysis technologies, genetically comprehensive changes in host body reactions are hardly studied. There is no information about host body reactions that can predict successful tissue regeneration in the future. In the present study, porous polyethylene scaffolds were coated with bioactive collagen or bio-inert poly(2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate) (PMB) and were implanted subcutaneously and compared the host body reaction to those substrates by normalizing the result using control non-coat polyethylene scaffold. The comprehensive analyses of early host body reactions to the scaffolds were carried out using a DNA microarray assay. Within numerous genes which were expressed differently among these scaffolds, particular genes related to inflammation, wound healing, and angiogenesis were focused upon. Interleukin (IL)-1β and IL-10 are important cytokines in tissue responses to biomaterials because IL-1β promotes both inflammation and wound healing and IL-10 suppresses both of them. IL-1β was up-regulated in the collagen-coated scaffold. Collagen-specifically up-regulated genes contained both M1- and M2-macrophage-related genes. Marked vessel formation in the collagen-coated scaffold was occurred in accordance with the up-regulation of many angiogenesis-inducible factors. The DNA microarray assay provided global information regarding the host body reaction. Interestingly, several up-regulated genes were detected even on the very bio-inert PMB-coated surfaces and those genes include inflammation-suppressive and wound healing-suppressive IL-10, suggesting that not only active tissue response but also the inert response may relates to these genetic regulations. PMID:24454803

  13. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  14. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    International Nuclear Information System (INIS)

    Lin, Wen-Yang; Lin, Feng-Huei; Sadhasivam, S.; Savitha, S.

    2010-01-01

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  15. Antioxidant effects of betulin on porcine chondrocyte behavior in gelatin/C6S/C4S/HA modified tricopolymer scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Yang; Lin, Feng-Huei [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Sadhasivam, S., E-mail: rahulsbio@yahoo.co.in [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China); Savitha, S. [Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan (China)

    2010-05-10

    The antioxidant effects of betulin on porcine chondrocytes cultured in gelatin/C6S/C4S/HA modified tricopolymer scaffold for a period of 4 weeks was investigated. The porous structure of the scaffold and cell attachment was observed by scanning electron microscopy (SEM). Biochemical measures of necrosis, cell proliferation, sulfated glycosaminoglycans (sGAG) content and extracellular matrix related gene expressions were quantitatively evaluated. The cell proliferation data showed good cellular viability in tricopolymer scaffold and increased optical density for total DNA demonstrated that the cells continued to proliferate inside the scaffold. The sGAG production indicated chondrogenic differentiation. Chondrocytes treated with betulin expressed transcripts encoding type II collagen, aggrecan, and decorin. To conclude, the substantiated results supported cell proliferation, production of extracellular matrix proteins and down-regulation of matrix metalloproteases and cytokine, in betulin treated scaffolds.

  16. An Insilico Design of Nanoclay Based Nanocomposites and Scaffolds in Bone Tissue Engineering

    Science.gov (United States)

    Sharma, Anurag

    scaffold. Overall, this study provides a leap into methodologies for in silico design of biomaterials for bone tissue engineering applications. Furthermore, as a part of this work, a molecular dynamics study of rice DNA in the presence of single walled carbon nanotube is carried out to understand the role played by molecular interactions in the conformation changes of rice DNA. The simulations results showed wrapping of DNA onto SWCNT, breaking and forming of hydrogen bonds due to unzipping of Watson-Crick (WC) nucleobase pairs and forming of new non-WC nucleobase pairs in DNA.

  17. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure.

    Science.gov (United States)

    Costa, Pedro F; Vaquette, Cédryck; Zhang, Qiyi; Reis, Rui L; Ivanovski, Saso; Hutmacher, Dietmar W

    2014-03-01

    This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. An Autologous Bone Marrow Mesenchymal Stem Cell–Derived Extracellular Matrix Scaffold Applied with Bone Marrow Stimulation for Cartilage Repair

    Science.gov (United States)

    Tang, Cheng; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Min, Byoung-Hyun; Xu, Yan

    2014-01-01

    Purpose: It is well known that implanting a bioactive scaffold into a cartilage defect site can enhance cartilage repair after bone marrow stimulation (BMS). However, most of the current scaffolds are derived from xenogenous tissue and/or artificial polymers. The implantation of these scaffolds adds risks of pathogen transmission, undesirable inflammation, and other immunological reactions, as well as ethical issues in clinical practice. The current study was undertaken to evaluate the effectiveness of implanting autologous bone marrow mesenchymal stem cell–derived extracellular matrix (aBMSC-dECM) scaffolds after BMS for cartilage repair. Methods: Full osteochondral defects were performed on the trochlear groove of both knees in 24 rabbits. One group underwent BMS only in the right knee (the BMS group), and the other group was treated by implantation of the aBMSC-dECM scaffold after BMS in the left knee (the aBMSC-dECM scaffold group). Results: Better repair of cartilage defects was observed in the aBMSC-dECM scaffold group than in the BMS group according to gross observation, histological assessments, immunohistochemistry, and chemical assay. The glycosaminoglycan and DNA content, the distribution of proteoglycan, and the distribution and arrangement of type II and I collagen fibers in the repaired tissue in the aBMSC-dECM scaffold group at 12 weeks after surgery were similar to that surrounding normal hyaline cartilage. Conclusions: Implanting aBMSC-dECM scaffolds can enhance the therapeutic effect of BMS on articular cartilage repair, and this combination treatment is a potential method for successful articular cartilage repair. PMID:24666429

  19. Structure and conformational dynamics of scaffolded DNA origami nanoparticles

    Science.gov (United States)

    2017-05-08

    vertices of the tetrahedron, and an unconstrained 4-arm vertex region corresponding to the vertices of the octahe- dron (Figure 2B and C). Both the 3...all-atommodels of the tetrahe- dron , octahedron, unconstrained 3- and 4-arm vertices, and the unconstrained duplex bulge represent equilibrium val...structural analysis of 4-arm vertices within a self-assembled octahe- dron imaged using cryo-EM (87). This prediction suggests an enantiomeric preference

  20. Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments.

    Science.gov (United States)

    Messenger, Michael P; Raïf, El M; Seedhom, Bahaa B; Brookes, Steven J

    2010-02-01

    The following in vitro translational study investigated whether enamel matrix derivative (EMD), an approved biomimetic treatment for periodontal disease (Emdogain) and hard-to-heal wounds (Xelma), enhanced synovial cell colonization and protein synthesis around a scaffold used clinically for in situ tissue engineering of the torn anterior cruciate ligament (ACL). Synovial cells were enzymatically extracted from bovine synovium and dynamically seeded onto polyethylene terephthalate (PET) scaffolds. The cells were cultured in low-serum medium (0.5% FBS) for 4 weeks with either a single administration of EMD at the start of the 4 week period or multiple administrations of EMD at regular intervals throughout the 4 weeks. Samples were harvested and evaluated using the Hoechst DNA assay, BCA protein assay, cresolphthalein complexone calcium assay, SDS-PAGE, ELISA and electron microscopy. A significant increase in cell number (DNA) (p < 0.01), protein content (p < 0.01) and TGFbeta1 synthesis (p < 0.01) was observed with multiple administrations of EMD. Additionally, SDS-PAGE showed an increase in high molecular weight proteins, characteristic of the fibril-forming collagens. Electron microscopy supported these findings, showing that scaffolds treated with multiple administrations of EMD were heavily coated with cells and extracellular matrix (ECM) that enveloped the fibres. Multiple administrations of EMD to synovial cell-seeded scaffolds enhanced the formation of tissue in vitro. Additionally, it was shown that EMD enhanced TGFbeta1 synthesis of synovial cells, suggesting a potential mode of action for EMD's capacity to stimulate tissue regeneration.

  1. Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book" Scaffold for Use in Tissue Engineering.

    Directory of Open Access Journals (Sweden)

    Liyun Guo

    Full Text Available At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm with 10 layers, each layer (akin to a page of a book with a thickness of 100-μm. These fibrocartilage "book" scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel "book" fibrocartilage scaffold could have potential applications in tissue engineering.

  2. Preparation and Characterization of a Novel Decellularized Fibrocartilage "Book" Scaffold for Use in Tissue Engineering.

    Science.gov (United States)

    Guo, Liyun; Qu, Jin; Zheng, Cheng; Cao, Yong; Zhang, Tao; Lu, Hongbin; Hu, Jianzhong

    2015-01-01

    At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm) with 10 layers, each layer (akin to a page of a book) with a thickness of 100-μm. These fibrocartilage "book" scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel "book" fibrocartilage scaffold could have potential applications in tissue engineering.

  3. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  4. Teenaged Internet Tutors' Use of Scaffolding with Older Learners

    Science.gov (United States)

    Tambaum, Tiina

    2017-01-01

    This study analyses how teenaged instructors paired with older learners make use of scaffolding. Video data were categorised according to 15 types of direct scaffolding tactics, indirect scaffolding, and unused scaffolding opportunities. The results show that a teenager who is unprepared for the role of an instructor of Internet skills for older…

  5. Titanate nanotube coatings on biodegradable photopolymer scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632, Pécs (Hungary); Scarpellini, A. [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy); Anjum, F.; Brandi, F. [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova (Italy)

    2013-05-01

    Rigid, biodegradable photopolymer scaffolds were coated with titanate nanotubes (TNTs) by using a spin-coating method. TNTs were synthesized by a hydrothermal process at 150 °C under 4.7 bar ambient pressure. The biodegradable photopolymer scaffolds were produced by mask-assisted excimer laser photocuring at 308 nm. For scaffold coating, a stable ethanolic TNT sol was prepared by a simple colloid chemical route without the use of any binding compounds or additives. Scanning electron microscopy along with elemental analysis revealed that the scaffolds were homogenously coated by TNTs. The developed TNT coating can further improve the surface geometry of fabricated scaffolds, and therefore it can further increase the cell adhesion. Highlights: ► Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. ► Titanate nanotube deposition was carried out without binding compounds or additives. ► The titanate nanotube coating can further improve the surface geometry of scaffolds. ► These reproducible platforms will be of high importance for biological applications.

  6. Scaffold translation: barriers between concept and clinic.

    Science.gov (United States)

    Hollister, Scott J; Murphy, William L

    2011-12-01

    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.

  7. Inverse Opal Scaffolds and Their Biomedical Applications.

    Science.gov (United States)

    Zhang, Yu Shrike; Zhu, Chunlei; Xia, Younan

    2017-09-01

    Three-dimensional porous scaffolds play a pivotal role in tissue engineering and regenerative medicine by functioning as biomimetic substrates to manipulate cellular behaviors. While many techniques have been developed to fabricate porous scaffolds, most of them rely on stochastic processes that typically result in scaffolds with pores uncontrolled in terms of size, structure, and interconnectivity, greatly limiting their use in tissue regeneration. Inverse opal scaffolds, in contrast, possess uniform pores inheriting from the template comprised of a closely packed lattice of monodispersed microspheres. The key parameters of such scaffolds, including architecture, pore structure, porosity, and interconnectivity, can all be made uniform across the same sample and among different samples. In conjunction with a tight control over pore sizes, inverse opal scaffolds have found widespread use in biomedical applications. In this review, we provide a detailed discussion on this new class of advanced materials. After a brief introduction to their history and fabrication, we highlight the unique advantages of inverse opal scaffolds over their non-uniform counterparts. We then showcase their broad applications in tissue engineering and regenerative medicine, followed by a summary and perspective on future directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multilayer scaffolds in orthopaedic tissue engineering.

    Science.gov (United States)

    Atesok, Kivanc; Doral, M Nedim; Karlsson, Jon; Egol, Kenneth A; Jazrawi, Laith M; Coelho, Paulo G; Martinez, Amaury; Matsumoto, Tomoyuki; Owens, Brett D; Ochi, Mitsuo; Hurwitz, Shepard R; Atala, Anthony; Fu, Freddie H; Lu, Helen H; Rodeo, Scott A

    2016-07-01

    The purpose of this study was to summarize the recent developments in the field of tissue engineering as they relate to multilayer scaffold designs in musculoskeletal regeneration. Clinical and basic research studies that highlight the current knowledge and potential future applications of the multilayer scaffolds in orthopaedic tissue engineering were evaluated and the best evidence collected. Studies were divided into three main categories based on tissue types and interfaces for which multilayer scaffolds were used to regenerate: bone, osteochondral junction and tendon-to-bone interfaces. In vitro and in vivo studies indicate that the use of stratified scaffolds composed of multiple layers with distinct compositions for regeneration of distinct tissue types within the same scaffold and anatomic location is feasible. This emerging tissue engineering approach has potential applications in regeneration of bone defects, osteochondral lesions and tendon-to-bone interfaces with successful basic research findings that encourage clinical applications. Present data supporting the advantages of the use of multilayer scaffolds as an emerging strategy in musculoskeletal tissue engineering are promising, however, still limited. Positive impacts of the use of next generation scaffolds in orthopaedic tissue engineering can be expected in terms of decreasing the invasiveness of current grafting techniques used for reconstruction of bone and osteochondral defects, and tendon-to-bone interfaces in near future.

  9. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently......, several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...

  10. Scaffolding With and Through Videos

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin; Khoo, Elaine; Cowie, Bronwen

    2012-01-01

    In New Zealand and internationally claims are being made about the potential for information and communication technologies (ICTs) to transform teaching and learning. However, the theoretical underpinnings explaining the complex interplay between the content, pedagogy and technology a teacher needs...... to scaffold learning. It showcases the intricate interplay between teachers’ knowledge about content, digital video technology, and students’ learning needs based on a qualitative study of two science teachers and their students in a New Zealand primary school....... to consider must be expanded. This article explicates theoretical and practical ideas related to teachers’ application of their ICT technology, pedagogy, and content knowledge (TPACK) in science. The article unpacks the social and technological dimensions of teachers’ use of TPACK when they use digital videos...

  11. Semiotic Scaffolding in Living Systems

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2008-01-01

    The apparently purposeful nature of living systems is obtained through a sophisticated network of semiotic controls whereby biochemical, physiological and behavioral processes become tuned to the needs of the system. The operation of these semiotic controls takes place and is enabled across...... a diversity of levels. Such semiotic controls may be distinguished from ordinary deterministic control mechanisms through an inbuilt anticipatory capacity based on a distinct kind of causation that I call here "semiotic causation" to denote the bringing about of changes under the guidance of interpretation...... in a local .context. Anticipation through the skilled interpretation of indicators of temporal relations in the context of a particular survival project (or life strategy) guides organismic behavior towards local ends. This network of semiotic controls establishes an enormously complex semiotic scaffolding...

  12. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry.

    Science.gov (United States)

    Hu, Ye; Stumpfe, Dagmar; Bajorath, Jürgen

    2016-05-12

    The scaffold concept is widely applied in medicinal chemistry. Scaffolds are mostly used to represent core structures of bioactive compounds. Although the scaffold concept has limitations and is often viewed differently from a chemical and computational perspective, it has provided a basis for systematic investigations of molecular cores and building blocks, going far beyond the consideration of individual compound series. Over the past 2 decades, alternative scaffold definitions and organization schemes have been introduced and scaffolds have been studied in a variety of ways and increasingly on a large scale. Major applications of the scaffold concept include the generation of molecular hierarchies, structural classification, association of scaffolds with biological activities, and activity prediction. This contribution discusses computational approaches for scaffold generation and analysis, with emphasis on recent developments impacting medicinal chemistry. A variety of scaffold-based studies are discussed, and a perspective on scaffold methods is provided.

  13. Analog series-based scaffolds: computational design and exploration of a new type of molecular scaffolds for medicinal chemistry

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Hu, Ye; Bajorath, Jürgen

    2016-01-01

    Aim: Computational design of and systematic search for a new type of molecular scaffolds termed analog series-based scaffolds. Materials & methods: From currently available bioactive compounds, analog series were systematically extracted, key compounds identified and new scaffolds isolated from them. Results: Using our computational approach, more than 12,000 scaffolds were extracted from bioactive compounds. Conclusion: A new scaffold definition is introduced and a computational methodology developed to systematically identify such scaffolds, yielding a large freely available scaffold knowledge base. PMID:28116132

  14. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    OpenAIRE

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher r...

  15. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration

    Science.gov (United States)

    Meng, Qingyang; Man, Zhentao; Dai, Linghui; Huang, Hongjie; Zhang, Xin; Hu, Xiaoqing; Shao, Zhenxing; Zhu, Jingxian; Zhang, Jiying; Fu, Xin; Duan, Xiaoning; Ao, Yingfang

    2015-12-01

    Articular cartilage injury is still a significant challenge because of the poor intrinsic healing potential of cartilage. Stem cell-based tissue engineering is a promising technique for cartilage repair. As cartilage defects are usually irregular in clinical settings, scaffolds with moldability that can fill any shape of cartilage defects and closely integrate with the host cartilage are desirable. In this study, we constructed a composite scaffold combining mesenchymal stem cells (MSCs) E7 affinity peptide-modified demineralized bone matrix (DBM) particles and chitosan (CS) hydrogel for cartilage engineering. This solid-supported composite scaffold exhibited appropriate porosity, which provided a 3D microenvironment that supports cell adhesion and proliferation. Cell proliferation and DNA content analysis indicated that the DBM-E7/CS scaffold promoted better rat bone marrow-derived MSCs (BMMSCs) survival than the CS or DBM/CS groups. Meanwhile, the DBM-E7/CS scaffold increased matrix production and improved chondrogenic differentiation ability of BMMSCs in vitro. Furthermore, after implantation in vivo for four weeks, compared to those in control groups, the regenerated issue in the DBM-E7/CS group exhibited translucent and superior cartilage-like structures, as indicated by gross observation, histological examination, and assessment of matrix staining. Overall, the functional composite scaffold of DBM-E7/CS is a promising option for repairing irregularly shaped cartilage defects.

  16. Autologous Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    Science.gov (United States)

    2009-11-01

    seeded scaffolds Chondrocytes were isolated by enzymatic digestion of articular cartilage from the knee (stifle) joint of an adult dog. The cartilage...lyophilized and enzymatically digested using proteinase K (Roche Diagnostics, Indianapo- lis, IN) for DNA and GAG biochemical analyses. DNA analysis The DNA...Gelatin nanoencapsulation of protein/ peptide drugs using an emulsifier-free emulsion method. J Microencapsul 1998;15:163–172. 17. Truong-Le VL, August JT

  17. Comprehensive assessment of electrospun scaffolds hemocompatibility

    Czech Academy of Sciences Publication Activity Database

    Horáková, J.; Mikeš, P.; Šaman, A.; Švarcová, T.; Jenčová, V.; Suchý, Tomáš; Heczková, B.; Jakubková, Š.; Jiroušová, J.; Procházková, R.

    2018-01-01

    Roč. 82, JAN 1 (2018), s. 330-335 ISSN 0928-4931 Institutional support: RVO:67985891 Keywords : fibrous scaffolds * blood compatibility * polycaprolactone * copolymer of polylactide and polycaprolactone * collagen Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  18. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  19. Super dielectric capacitor using scaffold dielectric

    OpenAIRE

    Phillips, Jonathan

    2018-01-01

    Patent A capacitor having first and second electrodes and a scaffold dielectric. The scaffold dielectric comprises an insulating material with a plurality of longitudinal channels extending across the dielectric and filled with a liquid comprising cations and anions. The plurality of longitudinal channels are substantially parallel and the liquid within the longitudinal channels generally has an ionic strength of at least 0.1. Capacitance results from the migrations of...

  20. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  1. Biotechnological mass production of DNA origami

    Science.gov (United States)

    Praetorius, Florian; Kick, Benjamin; Behler, Karl L.; Honemann, Maximilian N.; Weuster-Botz, Dirk; Dietz, Hendrik

    2017-12-01

    DNA nanotechnology, in particular DNA origami, enables the bottom-up self-assembly of micrometre-scale, three-dimensional structures with nanometre-precise features. These structures are customizable in that they can be site-specifically functionalized or constructed to exhibit machine-like or logic-gating behaviour. Their use has been limited to applications that require only small amounts of material (of the order of micrograms), owing to the limitations of current production methods. But many proposed applications, for example as therapeutic agents or in complex materials, could be realized if more material could be used. In DNA origami, a nanostructure is assembled from a very long single-stranded scaffold molecule held in place by many short single-stranded staple oligonucleotides. Only the bacteriophage-derived scaffold molecules are amenable to scalable and efficient mass production; the shorter staple strands are obtained through costly solid-phase synthesis or enzymatic processes. Here we show that single strands of DNA of virtually arbitrary length and with virtually arbitrary sequences can be produced in a scalable and cost-efficient manner by using bacteriophages to generate single-stranded precursor DNA that contains target strand sequences interleaved with self-excising ‘cassettes’, with each cassette comprising two Zn2+-dependent DNA-cleaving DNA enzymes. We produce all of the necessary single strands of DNA for several DNA origami using shaker-flask cultures, and demonstrate end-to-end production of macroscopic amounts of a DNA origami nanorod in a litre-scale stirred-tank bioreactor. Our method is compatible with existing DNA origami design frameworks and retains the modularity and addressability of DNA origami objects that are necessary for implementing custom modifications using functional groups. With all of the production and purification steps amenable to scaling, we expect that our method will expand the scope of DNA nanotechnology in

  2. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  3. Scaffolds for peripheral nerve repair and reconstruction.

    Science.gov (United States)

    Yi, Sheng; Xu, Lai; Gu, Xiaosong

    2018-06-02

    Trauma-associated peripheral nerve defect is a widespread clinical problem. Autologous nerve grafting, the current gold standard technique for the treatment of peripheral nerve injury, has many internal disadvantages. Emerging studies showed that tissue engineered nerve graft is an effective substitute to autologous nerves. Tissue engineered nerve graft is generally composed of neural scaffolds and incorporating cells and molecules. A variety of biomaterials have been used to construct neural scaffolds, the main component of tissue engineered nerve graft. Synthetic polymers (e.g. silicone, polyglycolic acid, and poly(lactic-co-glycolic acid)) and natural materials (e.g. chitosan, silk fibroin, and extracellular matrix components) are commonly used along or together to build neural scaffolds. Many other materials, including the extracellular matrix, glass fabrics, ceramics, and metallic materials, have also been used to construct neural scaffolds. These biomaterials are fabricated to create specific structures and surface features. Seeding supporting cells and/or incorporating neurotrophic factors to neural scaffolds further improve restoration effects. Preliminary studies demonstrate that clinical applications of these neural scaffolds achieve satisfactory functional recovery. Therefore, tissue engineered nerve graft provides a good alternative to autologous nerve graft and represents a promising frontier in neural tissue engineering. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Strategies for osteochondral repair: Focus on scaffolds

    Directory of Open Access Journals (Sweden)

    Seog-Jin Seo

    2014-07-01

    Full Text Available Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.

  5. Signs, dispositions, and semiotic scaffolding.

    Science.gov (United States)

    Fernández, Eliseo

    2015-12-01

    scaffolding. These interactions transpire between energetic causal chains and a wide range of converging semiotic transactions unfolding within each individual organism and between organisms and their environment. The perspective advanced here helps elucidate the manner in which physical and semiotic causation cooperate in an orchestrated fashion, giving rise to an ever-expanding profusion of scaffolding structures and processes. Using simple examples I outline some mechanisms that bring about this orchestration as well as the resultant channeling activities that eventually merge and find their culmination in the enactment of goal-oriented behavior. Copyright © 2015. Published by Elsevier Ltd.

  6. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    , several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape...... [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application...... by the construction of a DNA box with dimensions of 42 × 36 × 36 nm3. The software is available at www.cdna.dk/origami/ ....

  7. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  8. DNA-PK dependent targeting of DNA-ends to a protein complex assembled on matrix attachment region DNA sequences

    International Nuclear Information System (INIS)

    Mauldin, S.K.; Getts, R.C.; Perez, M.L.; DiRienzo, S.; Stamato, T.D.

    2003-01-01

    Full text: We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end-binding was observed. Calculation of relative binding activities indicates that DNA-end binding activities to MAR sequences was 7 to 21 fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV, scaffold attachment factor A, topoisomerase II, and poly(ADP-ribose) polymerase preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends. After electroporation of a 32P-labeled DNA probe into human cells and cell fractionation, 87% of the total intercellular radioactivity remained in nuclei after a 0.5M NaCl extraction suggesting the probe was strongly bound in the nucleus. The above observations raise the possibility that DNA-PK targets DNA-ends to a repair and/or DNA damage signaling complex which is assembled on MAR sites in the nucleus

  9. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    Science.gov (United States)

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface. © 2013.

  10. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  11. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering.

    Science.gov (United States)

    Kundu, Joydip; Shim, Jin-Hyung; Jang, Jinah; Kim, Sung-Won; Cho, Dong-Woo

    2015-11-01

    Regenerative medicine is targeted to improve, restore or replace damaged tissues or organs using a combination of cells, materials and growth factors. Both tissue engineering and developmental biology currently deal with the process of tissue self-assembly and extracellular matrix (ECM) deposition. In this investigation, additive manufacturing (AM) with a multihead deposition system (MHDS) was used to fabricate three-dimensional (3D) cell-printed scaffolds using layer-by-layer (LBL) deposition of polycaprolactone (PCL) and chondrocyte cell-encapsulated alginate hydrogel. Appropriate cell dispensing conditions and optimum alginate concentrations for maintaining cell viability were determined. In vitro cell-based biochemical assays were performed to determine glycosaminoglycans (GAGs), DNA and total collagen contents from different PCL-alginate gel constructs. PCL-alginate gels containing transforming growth factor-β (TGFβ) showed higher ECM formation. The 3D cell-printed scaffolds of PCL-alginate gel were implanted in the dorsal subcutaneous spaces of female nude mice. Histochemical [Alcian blue and haematoxylin and eosin (H&E) staining] and immunohistochemical (type II collagen) analyses of the retrieved implants after 4 weeks revealed enhanced cartilage tissue and type II collagen fibril formation in the PCL-alginate gel (+TGFβ) hybrid scaffold. In conclusion, we present an innovative cell-printed scaffold for cartilage regeneration fabricated by an advanced bioprinting technology. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    Science.gov (United States)

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-05

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Comparative scaffolding and gap filling of ancient bacterial genomes applied to two ancient Yersinia pestis genomes

    Science.gov (United States)

    Doerr, Daniel; Chauve, Cedric

    2017-01-01

    Yersinia pestis is the causative agent of the bubonic plague, a disease responsible for several dramatic historical pandemics. Progress in ancient DNA (aDNA) sequencing rendered possible the sequencing of whole genomes of important human pathogens, including the ancient Y. pestis strains responsible for outbreaks of the bubonic plague in London in the 14th century and in Marseille in the 18th century, among others. However, aDNA sequencing data are still characterized by short reads and non-uniform coverage, so assembling ancient pathogen genomes remains challenging and often prevents a detailed study of genome rearrangements. It has recently been shown that comparative scaffolding approaches can improve the assembly of ancient Y. pestis genomes at a chromosome level. In the present work, we address the last step of genome assembly, the gap-filling stage. We describe an optimization-based method AGapEs (ancestral gap estimation) to fill in inter-contig gaps using a combination of a template obtained from related extant genomes and aDNA reads. We show how this approach can be used to refine comparative scaffolding by selecting contig adjacencies supported by a mix of unassembled aDNA reads and comparative signal. We applied our method to two Y. pestis data sets from the London and Marseilles outbreaks, for which we obtained highly improved genome assemblies for both genomes, comprised of, respectively, five and six scaffolds with 95 % of the assemblies supported by ancient reads. We analysed the genome evolution between both ancient genomes in terms of genome rearrangements, and observed a high level of synteny conservation between these strains. PMID:29114402

  14. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles

    Science.gov (United States)

    Edwardson, Thomas G. W.; Lau, Kai Lin; Bousmail, Danny; Serpell, Christopher J.; Sleiman, Hanadi F.

    2016-02-01

    DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle. We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications.

  15. Computational design of new molecular scaffolds for medicinal chemistry, part II: generalization of analog series-based scaffolds

    Science.gov (United States)

    Dimova, Dilyana; Stumpfe, Dagmar; Bajorath, Jürgen

    2018-01-01

    Aim: Extending and generalizing the computational concept of analog series-based (ASB) scaffolds. Materials & methods: Methodological modifications were introduced to further increase the coverage of analog series (ASs) and compounds by ASB scaffolds. From bioactive compounds, ASs were systematically extracted and second-generation ASB scaffolds isolated. Results: More than 20,000 second-generation ASB scaffolds with single or multiple substitution sites were extracted from active compounds, achieving more than 90% coverage of ASs. Conclusion: Generalization of the ASB scaffold approach has yielded a large knowledge base of scaffold-capturing compound series and target information. PMID:29379641

  16. In Vivo Evaluation of a Novel Oriented Scaffold-BMSC Construct for Enhancing Full-Thickness Articular Cartilage Repair in a Rabbit Model.

    Directory of Open Access Journals (Sweden)

    Shuaijun Jia

    Full Text Available Tissue engineering (TE has been proven usefulness in cartilage defect repair. For effective cartilage repair, the structural orientation of the cartilage scaffold should mimic that of native articular cartilage, as this orientation is closely linked to cartilage mechanical functions. Using thermal-induced phase separation (TIPS technology, we have fabricated an oriented cartilage extracellular matrix (ECM-derived scaffold with a Young's modulus value 3 times higher than that of a random scaffold. In this study, we test the effectiveness of bone mesenchymal stem cell (BMSC-scaffold constructs (cell-oriented and random in repairing full-thickness articular cartilage defects in rabbits. While histological and immunohistochemical analyses revealed efficient cartilage regeneration and cartilaginous matrix secretion at 6 and 12 weeks after transplantation in both groups, the biochemical properties (levels of DNA, GAG, and collagen and biomechanical values in the oriented scaffold group were higher than that in random group at early time points after implantation. While these differences were not evident at 24 weeks, the biochemical and biomechanical properties of the regenerated cartilage in the oriented scaffold-BMSC construct group were similar to that of native cartilage. These results demonstrate that an oriented scaffold, in combination with differentiated BMSCs can successfully repair full-thickness articular cartilage defects in rabbits, and produce cartilage enhanced biomechanical properties.

  17. Improving Students' Speaking Ability through Scaffolding Technique

    Directory of Open Access Journals (Sweden)

    Gede Ginaya

    2018-03-01

    Full Text Available Students often got confused and felt hesitant when they speak English. This situation had caused poor speaking ability, which then lead to serious problem in the teaching-learning process.  The application of scaffolding technique in the EFL learning might be the ideal solution; it had some principles that could improve the students’ speaking ability. This research is aimed at finding out the effect of the implementing Scaffolding Technique towards the students’ speaking ability. Participants were 50 (27 males and 23 females third-semester students, enrolled in a three-year diploma program in Travel and Tourism Business, State Polytechnic of Bali in 2017/2018 academic year. The students in the experimental group were given communicative activities such as brainstorming, business games, simulation, WebQuest, problem-solving, which were carefully designed to necessitate the implementation of the scaffolding technique. The students in the control group were taught by the deductive method of the lesson book. The students’ performance in the post-test was compared for both groups in order to determine whether there were significant differences between the groups in relation to the treatment. Significant differences occurring in the experimental group’s post-test speaking performance when compared to the pre-test indicate that the implementation of scaffolding technique can improve students’ speaking ability. The result of this study indicates scaffolding technique has the potential for use in promoting students’ speaking ability

  18. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  19. Scaffolds in regenerative endodontics: A review

    Science.gov (United States)

    Gathani, Kinjal M.; Raghavendra, Srinidhi Surya

    2016-01-01

    Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ‘A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ‘Platelet rich plasma’, ‘Platelet rich fibrin’, ‘Stem cells’, ‘Natural and artificial scaffolds’ from 1982–2015’. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon. PMID:27857762

  20. Scaffolds in regenerative endodontics: A review

    Directory of Open Access Journals (Sweden)

    Kinjal M Gathani

    2016-01-01

    Full Text Available Root canal therapy has enabled us to save numerous teeth over the years. The most desired outcome of endodontic treatment would be when diseased or nonvital pulp is replaced with healthy pulp tissue that would revitalize the teeth through regenerative endodontics. ′A search was conducted using the Pubmed and MEDLINE databases for articles with the criteria ′Platelet rich plasma′, ′Platelet rich fibrin′, ′Stem cells′, ′Natural and artificial scaffolds′ from 1982-2015′. Tissues are organized as three-dimensional structures, and appropriate scaffolding is necessary to provide a spatially correct position of cell location and regulate differentiation, proliferation, or metabolism of the stem cells. Extracellular matrix molecules control the differentiation of stem cells, and an appropriate scaffold might selectively bind and localize cells, contain growth factors, and undergo biodegradation over time. Different scaffolds facilitate the regeneration of different tissues. To ensure a successful regenerative procedure, it is essential to have a thorough and precise knowledge about the suitable scaffold for the required tissue. This article gives a review on the different scaffolds providing an insight into the new developmental approaches on the horizon.

  1. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  2. Three-Dimensional Scaffold Chip with Thermosensitive Coating for Capture and Reversible Release of Individual and Cluster of Circulating Tumor Cells.

    Science.gov (United States)

    Cheng, Shi-Bo; Xie, Min; Chen, Yan; Xiong, Jun; Liu, Ya; Chen, Zhen; Guo, Shan; Shu, Ying; Wang, Ming; Yuan, Bi-Feng; Dong, Wei-Guo; Huang, Wei-Hua

    2017-08-01

    Tumor metastasis is attributed to circulating tumor cells (CTC) or CTC clusters. Many strategies have hitherto been designed to isolate CTCs, but there are few methods that can capture and gently release CTC clusters as efficient as single CTCs. Herein, we developed a three-dimensional (3D) scaffold chip with thermosensitive coating for high-efficiency capture and release of individual and cluster CTCs. The 3D scaffold chip successfully combines the specific recognition and physically obstructed effect of 3D scaffold structure to significantly improve cell clusters capture efficiency. Thermosensitive gelatin hydrogel uniformly coated on the scaffold dissolves at 37 °C quickly, and the captured cells are gently released from chip with high viability. Notably, this platform was applied to isolate CTCs from cancer patients' blood samples. This allows global DNA and RNA methylation analysis of collected single CTC and CTC clusters, indicating the great potential of this platform in cancer diagnosis and downstream analysis at the molecular level.

  3. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices

    Science.gov (United States)

    Yan, Hao; Labean, Thomas H.; Feng, Liping; Reif, John H.

    2003-07-01

    The programmed self-assembly of patterned aperiodic molecular structures is a major challenge in nanotechnology and has numerous potential applications for nanofabrication of complex structures and useful devices. Here we report the construction of an aperiodic patterned DNA lattice (barcode lattice) by a self-assembly process of directed nucleation of DNA tiles around a scaffold DNA strand. The input DNA scaffold strand, constructed by ligation of shorter synthetic oligonucleotides, provides layers of the DNA lattice with barcode patterning information represented by the presence or absence of DNA hairpin loops protruding out of the lattice plane. Self-assembly of multiple DNA tiles around the scaffold strand was shown to result in a patterned lattice containing barcode information of 01101. We have also demonstrated the reprogramming of the system to another patterning. An inverted barcode pattern of 10010 was achieved by modifying the scaffold strands and one of the strands composing each tile. A ribbon lattice, consisting of repetitions of the barcode pattern with expected periodicity, was also constructed by the addition of sticky ends. The patterning of both classes of lattices was clearly observable via atomic force microscopy. These results represent a step toward implementation of a visual readout system capable of converting information encoded on a 1D DNA strand into a 2D form readable by advanced microscopic techniques. A functioning visual output method would not only increase the readout speed of DNA-based computers, but may also find use in other sequence identification techniques such as mutation or allele mapping.

  4. A Guide to Scaffold Use in the Construction Industry

    National Research Council Canada - National Science Library

    2001-01-01

    On August 30, 1996, OSHA issued revised standards for scaffolds. The revised standard, known as "Safety Standards for Scaffolds Used in the Construction Industry" is found in Title 29 Code of Federal Regulations (CFR) Part, Subpart L...

  5. Biodegradation and bioresorption of poly(-caprolactone) nanocomposite scaffolds

    CSIR Research Space (South Africa)

    Mkhabela, V

    2015-08-01

    Full Text Available confirmed the elemental composition of the scaffolds. The phase composition of the scaffolds was shown by XRD, which also indicated a decrease in crystallinity with the introduction of nanoclay. Biodegradability studies which were conducted in simulated...

  6. Knowledge scaffolding visualizations: A guiding framework

    Directory of Open Access Journals (Sweden)

    Elitsa Alexander

    2015-06-01

    Full Text Available In this paper we provide a guiding framework for understanding and selecting visual representations in the knowledge management (KM practice. We build on an interdisciplinary analogy between two connotations of the notion of “scaffolding”: physical scaffolding from an architectural-engineering perspective and scaffolding of the “everyday knowing in practice” from a KM perspective. We classify visual structures for knowledge communication in teams into four types of scaffolds: grounded (corresponding e.g., to perspectives diagrams or dynamic facilitation diagrams, suspended (e.g., negotiation sketches, argument maps, panel (e.g., roadmaps or timelines and reinforcing (e.g., concept diagrams. The article concludes with a set of recommendations in the form of questions to ask whenever practitioners are choosing visualizations for specific KM needs. Our recommendations aim at providing a framework at a broad-brush level to aid choosing a suitable visualization template depending on the type of KM endeavour.

  7. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  8. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Valentina [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy); Tammaro, Loredana [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA (Italy); Di Marcantonio, Lisa, E-mail: ldimarcantonio@unite.it [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB), CNR, P.le Enrico Fermi 1, I-80055 Portici, Napoli (Italy); Ancora, Massimo [Istituto Zooprofilattico Sperimentale dell' Abruzzo e del Molise ‘G. Caporale’, Teramo (Italy); Valbonetti, Luca [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy); Turriani, Maura; Martelli, Alessandra [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); Cammà, Cesare [Istituto Zooprofilattico Sperimentale dell' Abruzzo e del Molise ‘G. Caporale’, Teramo (Italy); Barboni, Barbara [Faculty of Veterinary Medicine, University of Teramo, Campus Universitario Coste S. Agostino Via R. Balzarini 1, 64100 Teramo (Italy); StemTeCh Group (Italy)

    2016-12-01

    Three biodegradable thermoplastic polymers, poly(ε-caprolactone) (PCL), poly(L-lactide-co-D,L-lactide) (PLA) and poly(L-lactide-co-glycolide) (PLGA), have been used to produce nonwovens scaffolds with uniform micrometer fibres. Scaffolds' physical and morphological characterization was performed by X-ray diffraction, Scanning Electron Microscopy and Contact-Angle test. Morphological investigations revealed that all produced fibres were randomly orientated with interconnected pores ranging between 5 and 12 μm in diameter. An average fibre diameter of 1.5, 0.75 and 1.2 μm was found for PCL, PLA and PLGA, respectively. Moreover, experiments were designed to verify whether the fabricated electrospun substrates were biocompatible for ovine amniotic epithelial stem cells (oAECs) under in vitro conditions. Cell adhesion, survival, spatial organization on fibres, proliferation index, and DNA quantification after 48 h culture, showed an enhanced adhesion and proliferation, especially for PLGA scaffolds. The favourable interaction between oAECs and the fibrous scaffolds was attributed to the greatly improved porosity and pore size distribution of the electrospun scaffolds. In addition, AECs can be considered ideal for tissue engineering especially when using biocompatible and opportunely produced scaffolds. - Highlights: • Scaffolds have random oriented, beadless fibres and similar wettability. • Porosity and pore size distribution are determinant on boosting cell activity. • oAECs activities are influenced by scaffold chemical and physical structure. • In PLGA oAECs showed higher spatial distribution efficiency. • PLGA seeded cells present a rise in cell proliferation activity and in DNA amount.

  9. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  10. Simulations as Scaffolds in Science Education

    DEFF Research Database (Denmark)

    Renken, Maggie; Peffer, Melanie; Otrel-Cass, Kathrin

    This book outlines key issues for addressing the grand challenges posed to educators, developers, and researchers interested in the intersection of simulations and science education. To achieve this, the authors explore the use of computer simulations as instructional scaffolds that provide...... strategies and support when students are faced with the need to acquire new skills or knowledge. The monograph aims to provide insight into what research has reported on navigating the complex process of inquiry- and problem-based science education and whether computer simulations as instructional scaffolds...

  11. Scaffold Diversity from N-Acyliminium Ions

    DEFF Research Database (Denmark)

    Wu, Peng; Nielsen, Thomas E

    2017-01-01

    N-Acyliminium ions are powerful reactive species for the formation of carbon-carbon and carbon-heteroatom bonds. Strategies relying on intramolecular reactions of N-acyliminium intermediates, also referred to as N-acyliminium ion cyclization reactions, have been employed for the construction...... of structurally diverse scaffolds, ranging from simple bicyclic skeletons to complex polycyclic systems and natural-product-like compounds. This review aims to provide an overview of cyclization reactions of N-acyliminium ions derived from various precursors for the assembly of structurally diverse scaffolds...

  12. Scaffolds of polycaprolactone with hydroxyapatite fibers

    International Nuclear Information System (INIS)

    Cardoso, Guinea B.C.; Zavaglia, Cecilia A.C.; Arruda, Antonio Celso F.

    2009-01-01

    Scaffolds of poly (ε-caprolactone) has been studied in many researches in tissue engineering. The used of hydroxyapatite fibers, allowed increase its resistance mechanical, beside the character bioactive and osteoconductive. Improving, its role in tissue engineering. The aim in this study was developed polycaprolactone matrix with dispersed hydroxyapatite fibers. The characterizations were by scanning electron microscopy (SEM), X- Ray Diffractometer (XRD), X-Ray Fluorescence (XRF) and Energy dispersive X-Ray Detector (EDX). Was able reviewed its composition, morphology and possible contaminations. The results were scaffolds with porosity and distribution of the fibers in all its area. (author)

  13. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P.; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Ramakrishna, S.

    2010-01-01

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  14. Patterns of Scaffolding in Computer-Mediated Collaborative Inquiry

    Science.gov (United States)

    Lakkala, Minna; Muukkonen, Hanni; Hakkarainen, Kai

    2005-01-01

    There is wide agreement on the importance of scaffolding for student learning. Yet, models of individual and face-to-face scaffolding are not necessarily applicable to educational settings in which a group of learners is pursuing a process of inquiry mediated by technology. The scaffolding needed for such a process may be examined from three…

  15. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells.

    Science.gov (United States)

    Subramanian, A; Ranganathan, P; Diamond, S L

    1999-09-01

    Lipofection of nondividing cells is inefficient because much of the transfected DNA is retained in endosomes, and that which escapes to the cytoplasm enters the nucleus at low rates. To improve the final rate-limiting step of nuclear import, we conjugated a nonclassical nuclear localization signal (NLS) containing the M9 sequence of heterogeneous nuclear ribonucleoprotein (hnRNP) A1, to a cationic peptide scaffold derived from a scrambled sequence of the SV40 T-antigen consensus NLS (ScT). The ScT was added to improve DNA binding of the M9 sequence. Lipofection of confluent endothelium with plasmid complexed with the M9-ScT conjugate resulted in 83% transfection and a 63-fold increase in marker gene expression. The M9-ScT conjugate localized fluorescent plasmid into the nucleus of permeabilized cells, and addition of the nuclear pore blocker wheat germ agglutinin prevented nuclear import. This method of gene transfer may lead to viral- and lipid-free transfection of nondividing cells.

  16. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  17. Preparation and Characterization of a Novel Decellularized Fibrocartilage “Book” Scaffold for Use in Tissue Engineering

    Science.gov (United States)

    Guo, Liyun; Qu, Jin; Zheng, Cheng; Cao, Yong; Zhang, Tao; Lu, Hongbin; Hu, Jianzhong

    2015-01-01

    At the tendon-to-bone insertion, there is a unique transitional structure: tendon, non-calcified fibrocartilage, calcified fibrocartilage, and bone. The reconstruction of this special graded structure after defects or damage is an important but challenging task in orthopedics. In particular, reconstruction of the fibrocartilage zone has yet to be successfully achieved. In this study, the development of a novel book-shape scaffold derived from the extracellular matrix of fibrocartilage was reported. Specifically, fibrocartilage from the pubic symphysis was obtained from rabbits and sliced into the shape of a book (dimensions: 10 mm × 3 mm × 1 mm) with 10 layers, each layer (akin to a page of a book) with a thickness of 100-μm. These fibrocartilage “book” scaffolds were decellularized using sequentially 3 freeze-thaw cycles, 0.1% Triton X-100 with 1.5 M KCl, 0.25% trypsin, and a nuclease. Histology and DNA quantification analysis confirmed substantial removal of cells from the fibrocartilage scaffolds. Furthermore, the quantities of DNA, collagen, and glycosaminoglycan in the fibrocartilage were markedly reduced following decellularization. Scanning electron microscopy confirmed that the intrinsic ultrastructure of the fibrocartilage tissue was well preserved. Therefore, the results of this study suggest that the novel “book” fibrocartilage scaffold could have potential applications in tissue engineering. PMID:26636672

  18. Folding DNA into a Lipid-Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins.

    Science.gov (United States)

    Dong, Yuanchen; Chen, Shuobing; Zhang, Shijian; Sodroski, Joseph; Yang, Zhongqiang; Liu, Dongsheng; Mao, Youdong

    2018-02-19

    Building upon DNA origami technology, we introduce a method to reconstitute a single membrane protein into a self-assembled DNA nanobarrel that scaffolds a nanodisc-like lipid environment. Compared with the membrane-scaffolding-protein nanodisc technique, our approach gives rise to defined stoichiometry, controlled sizes, as well as enhanced stability and homogeneity in membrane protein reconstitution. We further demonstrate potential applications of the DNA nanobarrels in the structural analysis of membrane proteins. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Improving effects of chitosan nanofiber scaffolds on osteoblast proliferation and maturation

    Directory of Open Access Journals (Sweden)

    Ho MH

    2014-09-01

    Full Text Available Ming-Hua Ho,1,2 Mei-Hsiu Liao,3 Yi-Ling Lin,2 Chien-Hao Lai,3 Pei-I Lin,3 Ruei-Ming Chen2–4 1Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; 2Cell Physiology and Molecular Image Research Center and Department of Anesthesiology, Wan Fang Hospital, 3Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan; 4Anesthetics and Toxicology Research Center, Taipei Medical University Hospital, Taipei, Taiwan Abstract: Osteoblast maturation plays a key role in regulating osteogenesis. Electrospun nanofibrous products were reported to possess a high surface area and porosity. In this study, we developed chitosan nanofibers and examined the effects of nanofibrous scaffolds on osteoblast maturation and the possible mechanisms. Macro- and micro observations of the chitosan nanofibers revealed that these nanoproducts had a flat surface and well-distributed fibers with nanoscale diameters. Mouse osteoblasts were able to attach onto the chitosan nanofiber scaffolds, and the scaffolds degraded in a time-dependent manner. Analysis by scanning electron microscopy further showed mouse osteoblasts adhered onto the scaffolds along the nanofibers, and cell–cell communication was also detected. Mouse osteoblasts grew much better on chitosan nanofiber scaffolds than on chitosan films. In addition, human osteoblasts were able to adhere and grow on the chitosan nanofiber scaffolds. Interestingly, culturing human osteoblasts on chitosan nanofiber scaffolds time-dependently increased DNA replication and cell proliferation. In parallel, administration of human osteoblasts onto chitosan nanofibers significantly induced osteopontin, osteocalcin, and alkaline phosphatase (ALP messenger (mRNA expression. As to the mechanism, chitosan nanofibers triggered runt-related transcription factor 2 mRNA and protein syntheses. Consequently, results of ALP-, alizarin red-, and von Kossa-staining analyses

  20. Biocompatibility of chitosan/Mimosa tenuiflora scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Martel-Estrada, Santos Adriana [Instituto de arquitectura diseño y arte, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Rodríguez-Espinoza, Brenda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); Santos-Rodríguez, Elí [ICTP Meso-American Centre for Theoretical Physics (ICTP-MCTP)/Universidad Autónoma de Chiapas, Ciudad Universitaria, Carretera Zapata Km. 4, Real del Bosque (Terán), C.P. 29040 Tuxtla Gutiérrez, Chiapas (Mexico); Jiménez-Vega, Florinda [Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Anillo envolvente del PRONAF y Estocolmo, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); García-Casillas, Perla E.; Martínez-Pérez, Carlos A. [Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ave. Del Charro #610 norte, Col. Partido Romero, C.P. 32320 Cd. Juárez, Chihuahua (Mexico); and others

    2015-09-15

    Highlights: • The porosity of the composites allow biological processes for the cell adaptation on the scaffolds. • The composites improve the viability and proliferation of cells. • Composition of the scaffold plays an important role in the biocompatibility. • The results indicate that Mimosa Tenuiflora can induce the differentiation of osteoblast cells. - Abstract: In search of a plant that exhibits osteogenic activity, Mimosa tenuiflora (M. tenuiflora) cortex represents the opportunity to create a biomaterial that, together with the chitosan, is osteoconductive and promote better and rapid regeneration of bone tissue. Thus, the composite of chitosan/M. tenuiflora cortex fabricated will have properties of biocompatibility and allow the osteoblast proliferation. Composites were developed with different concentrations of chitosan/M. tenuiflora cortex (w/w) using thermally induced phase separation technique (TIPS). To analyze the effects of composite on osteoblasts, primary cultures, each sample was collected on days 1, 3 and 7 after seeding. The evaluation of composites consisted of viability and proliferation tests in which we observed the metabolic activity of the cells using MTT reagent and determined the DNA concentration by means of fluorescence. The expression of the marker alkaline phosphatase (ALP) using p-nitrophenyl phosphate was examined, allowing the observation to the activity of proliferation and differentiation of osteoblastic cells. Moreover, an analysis of biomineralization was performed using scanning electron microscopy (SEM), energy dispersive spectroscopy, infrared spectroscopy and X-ray diffraction. The results showed that 80/20 chitosan/M. tenuiflora cortex biocomposite has the best performance with osteoblasts compared to biomaterials 100/0 and 70/30 chitosan/M. tenuiflora composites. Finally, it was determined that the composite of chitosan/M. tenuiflora cortex presents no cytotoxicity and increases the capacity of the osteoblasts

  1. Benzothiadiazole Derivatives as Fluorescence Imaging Probes: Beyond Classical Scaffolds.

    Science.gov (United States)

    Neto, Brenno A D; Carvalho, Pedro H P R; Correa, Jose R

    2015-06-16

    This Account describes the origins, features, importance, and trends of the use of fluorescent small-molecule 2,1,3-benzothiadiazole (BTD) derivatives as a new class of bioprobes applied to bioimaging analyses of several (live and fixed) cell types. BTDs have been successfully used as probes for a plethora of biological analyses for only a few years, and the impressive responses obtained by using this important class of heterocycle are fostering the development of new fluorescent BTDs and expanding the biological applications of such derivatives. The first use of a fluorescent small-molecule BTD derivative as a selective cellular probe dates back to 2010, and since then impressive advances have been described by us and others. The well-known limitations of classical scaffolds urged the development of new classes of bioprobes. Although great developments have been achieved by using classical scaffolds such as coumarins, BODIPYs, fluoresceins, rhodamines, cyanines, and phenoxazines, there is still much to be done, and BTDs aim to succeed where these dyes have shown their limitations. Important organelles and cell components such as nuclear DNA, mitochondria, lipid droplets, and others have already been successfully labeled by fluorescent small-molecule BTD derivatives. New technological systems that use BTDs as the fluorophores for bioimaging experiments have been described in recent scientific literature. The successful application of BTDs as selective bioprobes has led some groups to explore their potential for use in studying membrane pores or tumor cells under hypoxic conditions. Finally, BTDs have also been used as fluorescent tags to investigate the action mechanism of some antitumor compounds. The attractive photophysical data typically observed for π-extended BTD derivatives is fostering interest in the use of this new class of bioprobes. Large Stokes shifts, large molar extinction coefficients, high quantum yields, high stability when stored in solution or

  2. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  3. "Scaffolding" through Talk in Groupwork Learning

    Science.gov (United States)

    Panselinas, Giorgos; Komis, Vassilis

    2009-01-01

    In the present study, we develop and deploy a conceptual framework of "scaffolding" in groupwork learning, through the analysis of the pursuit of a learning goal over time. The analysis follows individuals' different experiences of an interaction as well as collective experiences, considering individual attainment as a result of a bi-directional…

  4. Acellular organ scaffolds for tumor tissue engineering

    Science.gov (United States)

    Guller, Anna; Trusova, Inna; Petersen, Elena; Shekhter, Anatoly; Kurkov, Alexander; Qian, Yi; Zvyagin, Andrei

    2015-12-01

    Rationale: Tissue engineering (TE) is an emerging alternative approach to create models of human malignant tumors for experimental oncology, personalized medicine and drug discovery studies. Being the bottom-up strategy, TE provides an opportunity to control and explore the role of every component of the model system, including cellular populations, supportive scaffolds and signalling molecules. Objectives: As an initial step to create a new ex vivo TE model of cancer, we optimized protocols to obtain organ-specific acellular matrices and evaluated their potential as TE scaffolds for culture of normal and tumor cells. Methods and results: Effective decellularization of animals' kidneys, ureter, lungs, heart, and liver has been achieved by detergent-based processing. The obtained scaffolds demonstrated biocompatibility and growthsupporting potential in combination with normal (Vero, MDCK) and tumor cell lines (C26, B16). Acellular scaffolds and TE constructs have been characterized and compared with morphological methods. Conclusions: The proposed methodology allows creation of sustainable 3D tumor TE constructs to explore the role of organ-specific cell-matrix interaction in tumorigenesis.

  5. Teacher Scaffolding of Oral Language Production

    Science.gov (United States)

    George, May G.

    2011-01-01

    This research involved two observational studies. It explored the scaffolding processes as part of classroom pedagogy. The research shed light on the way a teacher's instructional methodology took shape in the classroom. The target event for this study was the time in which a novice learner was engaged publicly in uttering a sentence in Arabic in…

  6. Membrane supported scaffold architectures for tissue engineering

    NARCIS (Netherlands)

    Bettahalli Narasimha, M.S.

    2011-01-01

    Tissue engineering aims at restoring or regenerating a damaged tissue. Often the tissue recreation occurs by combining cells, derived from a patient biopsy, onto a 3D porous matrix, functioning as a scaffold. One of the current limitations of tissue engineering is the inability to provide sufficient

  7. Communication Scaffolds for Project Management in PBL

    Science.gov (United States)

    Sasaki, Shigeru; Arai, Masayuki; Takai, Kumiko; Ogawa, Mitsuhiro; Watanabe, Hiroyoshi

    2017-01-01

    In this study, the role-playing situation and the system requirement list are adopted into project-based learning classes to develop web applications. In the classes, the third-year undergraduate project managers communicate with the client of the project rolled by teachers on the Web bulletin board. These are expected to act as scaffolds to…

  8. Polylactic acid organogel as versatile scaffolding technique

    NARCIS (Netherlands)

    Punet, Xavier; Levato, Riccardo; Bataille, Isabelle; Letourneur, Didier; Engel, Elisabeth; Mateos-Timoneda, Miguel A

    2017-01-01

    Tissue engineering requires scaffolding techniques based on non-toxic processes that permits the fabrication of constructs with tailored properties. Here, a two-step methodology based on the gelation and precipitation of the poly(lactic) acid/ethyl lactate organogel system is presented. With this

  9. Enhancing Student Learning through Scaffolded Client Projects

    Science.gov (United States)

    Tomlinson, Elizabeth

    2017-01-01

    This article reports on the current status of client projects (CPs) in business communication courses, provides a scaffolded model for implementing CP, and assesses student learning in CPs. Using a longitudinal mixed method research design, survey data and qualitative materials from six semesters are presented. The instructor survey indicated need…

  10. Muscle fragments on a scaffold in rats

    DEFF Research Database (Denmark)

    Jangö, Hanna; Gräs, Søren; Christensen, Lise

    2015-01-01

    -PLGA scaffolds seeded with autologous MFF affected some histological and biomechanical properties of native tissue repair in an abdominal wall defect model in rats. The method thus appears to be a simple tissue engineering concept with potential relevance for native tissue repair of POP....

  11. Biodegradable elastomeric scaffolds for soft tissue engineering

    NARCIS (Netherlands)

    Pêgo, A.P.; Poot, Andreas A.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and ε-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more

  12. COP9 signalosome: a provider of DNA building blocks

    DEFF Research Database (Denmark)

    Nielsen, Olaf

    2003-01-01

    In fission yeast, the COP9 signalosome is required to activate ribonucleotide reductase for DNA synthesis. This is mediated via the ubiquitin ligase Pcu4, activation of which leads to degradation of the scaffold protein Spd1, which anchors the small ribonucleotide reductase subunit in the nucleus...

  13. DNA-Protected Silver Clusters for Nanophotonics

    Directory of Open Access Journals (Sweden)

    Elisabeth Gwinn

    2015-02-01

    Full Text Available DNA-protected silver clusters (AgN-DNA possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.

  14. Peer scaffolding in an EFL writing classroom: An investigation of writing accuracy and scaffolding behaviors

    Directory of Open Access Journals (Sweden)

    Parastou Gholami Pasand

    2017-09-01

    Full Text Available Considering the tenets of Sociocultural Theory with its emphasis on co-construction of knowledge, L2 writing can be regarded as a co-writing practice whereby assistance is provided to struggling writers. To date, most studies have dealt with peer scaffolding in the revision phase of writing, as such planning and drafting are remained untouched. The present study examines the impact of peer scaffolding on writing accuracy of a group of intermediate EFL learners, and explores scaffolding behaviors employed by them in planning and drafting phases of writing. To these ends, 40 freshmen majoring in English Language and Literature in the University of Guilan were randomly divided into a control group and an experimental group consisting of dyads in which a competent writer provided scaffolding to a less competent one using the process approach to writing. Results of independent samples t-tests revealed that learners in the experimental group produced more accurate essays. Microgenetic analysis of one dyad’s talks showed that scaffolding behaviors used in planning and drafting phases of writing were more or less the same as those identified in the revision phase. These findings can be used to inform peer intervention in L2 writing classes, and assist L2 learners in conducting successful peer scaffolding in the planning and drafting phases of writing.

  15. Fabrication and Mechanical Characterization of Hydrogel Infused Network Silk Scaffolds

    Directory of Open Access Journals (Sweden)

    Lakshminath Kundanati

    2016-09-01

    Full Text Available Development and characterization of porous scaffolds for tissue engineering and regenerative medicine is of great importance. In recent times, silk scaffolds were developed and successfully tested in tissue engineering and drug release applications. We developed a novel composite scaffold by mechanical infusion of silk hydrogel matrix into a highly porous network silk scaffold. The mechanical behaviour of these scaffolds was thoroughly examined for their possible use in load bearing applications. Firstly, unconfined compression experiments show that the denser composite scaffolds displayed significant enhancement in the elastic modulus as compared to either of the components. This effect was examined and further explained with the help of foam mechanics principles. Secondly, results from confined compression experiments that resemble loading of cartilage in confinement, showed nonlinear material responses for all scaffolds. Finally, the confined creep experiments were performed to calculate the hydraulic permeability of the scaffolds using soil mechanics principles. Our results show that composite scaffolds with some modifications can be a potential candidate for use of cartilage like applications. We hope such approaches help in developing novel scaffolds for tissue engineering by providing an understanding of the mechanics and can further be used to develop graded scaffolds by targeted infusion in specific regions.

  16. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  17. Scaffold diversification enhances effectiveness of a superlibrary of hyperthermophilic proteins.

    Science.gov (United States)

    Hussain, Mahmud; Gera, Nimish; Hill, Andrew B; Rao, Balaji M

    2013-01-18

    The use of binding proteins from non-immunoglobulin scaffolds has become increasingly common in biotechnology and medicine. Typically, binders are isolated from a combinatorial library generated by mutating a single scaffold protein. In contrast, here we generated a "superlibrary" or "library-of-libraries" of 4 × 10(8) protein variants by mutagenesis of seven different hyperthermophilic proteins; six of the seven proteins have not been used as scaffolds prior to this study. Binding proteins for five different model targets were successfully isolated from this library. Binders obtained were derived from five out of the seven scaffolds. Strikingly, binders from this modestly sized superlibrary have affinities comparable or higher than those obtained from a library with 1000-fold higher sequence diversity but derived from a single stable scaffold. Thus scaffold diversification, i.e., randomization of multiple different scaffolds, is a powerful alternate strategy for combinatorial library construction.

  18. Polyelectrolyte-complex nanostructured fibrous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Verma, Devendra; Katti, Kalpana S.; Katti, Dinesh R.

    2009-01-01

    In the current work, polyelectrolyte complex (PEC) fibrous scaffolds for tissue engineering have been synthesized and a mechanism of their formation has been investigated. The scaffolds are synthesized using polygalacturonic acid and chitosan using the freeze drying methodology. Highly interconnected pores of sizes in the range of 5-20 μm are observed in the scaffolds. The thickness of the fibers was found to be in the range of 1-2 μm. Individual fibers have a nanogranular structure as observed using AFM imaging. In these scaffolds, PEC nanoparticles assemble together at the interface of ice crystals during freeze drying process. Further investigation shows that the freezing temperature and concentration have a remarkable effect on structure of scaffolds. Biocompatibility studies show that scaffold containing chitosan, polygalacturonic acid and hydroxyapatite promotes cell adhesion and proliferation. On the other hand, cells on scaffolds fabricated without hydroxyapatite nanoparticles showed poor adhesion.

  19. Synergistic Effect of Carbon Nanotubes and Graphene on Diopside Scaffolds.

    Science.gov (United States)

    Liu, Tingting; Wu, Ping; Gao, Chengde; Feng, Pei; Xiao, Tao; Deng, Youwen; Shuai, Cijun; Peng, Shuping

    2016-01-01

    A synergetic effect between carbon nanotubes (CNTs) and graphene on diopside (Di) scaffolds was demonstrated. 3D network architecture in the matrix was formed through the 1D CNTs inlaid among the 2D graphene platelets (GNPs). The mechanical properties of the CNTs/GNPs/Di scaffolds were significantly improved compared with the CNTs/Di scaffolds and GNPs/Di scaffolds. In addition, the scaffolds exhibited excellent apatite-forming ability, a modest degradation rate, and stable mechanical properties in simulated body fluid (SBF). Moreover, cell culturing tests indicated that the scaffolds supported the cells attachment and proliferation. Taken together, the CNTs/GNPs/Di scaffolds offered great potential for bone tissue engineering.

  20. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Zhao, J.; Guo, L.Y.; Yang, X.B.; Weng, J.

    2008-01-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  1. Small molecules, inhibitors of DNA-PK, targeting DNA repair and beyond

    Directory of Open Access Journals (Sweden)

    David eDavidson

    2013-01-01

    Full Text Available Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining (NHEJ a major mechanism for the repair of double strand breaks (DSB in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK. The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA

  2. Use of Interim Scaffolding and Neotissue Development to Produce a Scaffold-Free Living Hyaline Cartilage Graft.

    Science.gov (United States)

    Lau, Ting Ting; Leong, Wenyan; Peck, Yvonne; Su, Kai; Wang, Dong-An

    2015-01-01

    The fabrication of three-dimensional (3D) constructs relies heavily on the use of biomaterial-based scaffolds. These are required as mechanical supports as well as to translate two-dimensional cultures to 3D cultures for clinical applications. Regardless of the choice of scaffold, timely degradation of scaffolds is difficult to achieve and undegraded scaffold material can lead to interference in further tissue development or morphogenesis. In cartilage tissue engineering, hydrogel is the highly preferred scaffold material as it shares many similar characteristics with native cartilaginous matrix. Hence, we employed gelatin microspheres as porogens to create a microcavitary alginate hydrogel as an interim scaffold to facilitate initial chondrocyte 3D culture and to establish a final scaffold-free living hyaline cartilaginous graft (LhCG) for cartilage tissue engineering.

  3. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    Baylan, Nuray; Ditto, Maggie; Lawrence, Joseph G; Yildirim-Ayan, Eda; Bhat, Samerna; Lecka-Czernik, Beata

    2013-01-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  4. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  5. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation.

    Science.gov (United States)

    Zeng, Xiao Bo; Hu, Hao; Xie, Li Qin; Lan, Fang; Jiang, Wen; Wu, Yao; Gu, Zhong Wei

    2012-01-01

    In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs) and hydroxyapatite (HA) for bone repair has been developed by our research group. In this study, to investigate the influence of the MNP content (in the scaffolds) on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2%) were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), alkaline phosphatase, and bone gla protein activity tests. The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation. The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.

  6. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  7. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P; Venugopal, J; Chan, Casey K; Ramakrishna, S

    2008-01-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  8. A Review on Fabricating Tissue Scaffolds using Vat Photopolymerization.

    Science.gov (United States)

    Chartrain, Nicholas A; Williams, Christopher B; Whittington, Abby R

    2018-05-09

    Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity. Perhaps even more significantly, SLA can be used to fabricate vascular networks that may encourage angio and vasculogenesis. Fulfilling this potential requires the development of new photopolymers, the incorporation of biochemical factors into printed scaffolds, and an understanding of the effects scaffold geometry have on cell viability, proliferation, and differentiation. This review compares SLA to other scaffold fabrication techniques, highlights significant advances in the field, and offers a perspective on the field's challenges and future directions. Engineering de novo tissues continues to be challenging due, in part, to our inability to fabricate complex tissue scaffolds that can support cell proliferation and encourage the formation of developed tissue. The goal of this review is to first introduce the reader to traditional and Additive Manufacturing scaffold fabrication techniques. The bulk of this review will then focus on apprising the reader of current research and provide a perspective on the promising use of vat photopolymerization (stereolithography, SLA) for the fabrication of complex tissue scaffolds. Copyright © 2018. Published by Elsevier Ltd.

  9. Image-based characterization of foamed polymeric tissue scaffolds

    International Nuclear Information System (INIS)

    Mather, Melissa L; Morgan, Stephen P; Crowe, John A; White, Lisa J; Shakesheff, Kevin M; Tai, Hongyun; Howdle, Steven M; Kockenberger, Walter

    2008-01-01

    Tissue scaffolds are integral to many regenerative medicine therapies, providing suitable environments for tissue regeneration. In order to assess their suitability, methods to routinely and reproducibly characterize scaffolds are needed. Scaffold structures are typically complex, and thus their characterization is far from trivial. The work presented in this paper is centred on the application of the principles of scaffold characterization outlined in guidelines developed by ASTM International. Specifically, this work demonstrates the capabilities of different imaging modalities and analysis techniques used to characterize scaffolds fabricated from poly(lactic-co-glycolic acid) using supercritical carbon dioxide. Three structurally different scaffolds were used. The scaffolds were imaged using: scanning electron microscopy, micro x-ray computed tomography, magnetic resonance imaging and terahertz pulsed imaging. In each case two-dimensional images were obtained from which scaffold properties were determined using image processing. The findings of this work highlight how the chosen imaging modality and image-processing technique can influence the results of scaffold characterization. It is concluded that in order to obtain useful results from image-based scaffold characterization, an imaging methodology providing sufficient contrast and resolution must be used along with robust image segmentation methods to allow intercomparison of results

  10. ASTM International Workshop on Standards & Measurements for Tissue Engineering Scaffolds

    Science.gov (United States)

    Simon, Carl G.; Yaszemski, Michael J.; Ratcliffe, Anthony; Tomlins, Paul; Luginbuehl, Reto; Tesk, John A.

    2016-01-01

    The “Workshop on Standards & Measurements for Tissue Engineering Scaffolds” was held on May 21, 2013 in Indianapolis, IN and was sponsored by the ASTM International (ASTM). The purpose of the workshop was to identify the highest priority items for future standards work for scaffolds used in the development and manufacture of tissue engineered medical products (TEMPs). Eighteen speakers and 78 attendees met to assess current scaffold standards and to prioritize needs for future standards. A key finding was that the ASTM TEMPs subcommittees (F04.41-46) have many active “guide” documents for educational purposes, but that few standard “test methods” or “practices” have been published. Overwhelmingly, the most clearly identified need was standards for measuring the structure of scaffolds, followed by standards for biological characterization, including in vitro testing, animal models and cell-material interactions. The third most pressing need was to develop standards for assessing the mechanical properties of scaffolds. Additional needs included standards for assessing scaffold degradation, clinical outcomes with scaffolds, effects of sterilization on scaffolds, scaffold composition and drug release from scaffolds. Discussions also highlighted the need for additional scaffold reference materials and the need to use them for measurement traceability. Finally, dialogue emphasized the needs to promote the use of standards in scaffold fabrication, characterization, and commercialization and to assess the use and impact of standards in the TEMPs community. Many scaffold standard needs have been identified and focus should now turn to generating these standards to support the use of scaffolds in TEMPs. PMID:25220952

  11. A radiopaque electrospun scaffold for engineering fibrous musculoskeletal tissues: Scaffold characterization and in vivo applications.

    Science.gov (United States)

    Martin, John T; Milby, Andrew H; Ikuta, Kensuke; Poudel, Subash; Pfeifer, Christian G; Elliott, Dawn M; Smith, Harvey E; Mauck, Robert L

    2015-10-01

    Tissue engineering strategies have emerged in response to the growing prevalence of chronic musculoskeletal conditions, with many of these regenerative methods currently being evaluated in translational animal models. Engineered replacements for fibrous tissues such as the meniscus, annulus fibrosus, tendons, and ligaments are subjected to challenging physiologic loads, and are difficult to track in vivo using standard techniques. The diagnosis and treatment of musculoskeletal conditions depends heavily on radiographic assessment, and a number of currently available implants utilize radiopaque markers to facilitate in vivo imaging. In this study, we developed a nanofibrous scaffold in which individual fibers included radiopaque nanoparticles. Inclusion of radiopaque particles increased the tensile modulus of the scaffold and imparted radiation attenuation within the range of cortical bone. When scaffolds were seeded with bovine mesenchymal stem cells in vitro, there was no change in cell proliferation and no evidence of promiscuous conversion to an osteogenic phenotype. Scaffolds were implanted ex vivo in a model of a meniscal tear in a bovine joint and in vivo in a model of total disc replacement in the rat coccygeal spine (tail), and were visualized via fluoroscopy and microcomputed tomography. In the disc replacement model, histological analysis at 4 weeks showed that the scaffold was biocompatible and supported the deposition of fibrous tissue in vivo. Nanofibrous scaffolds that include radiopaque nanoparticles provide a biocompatible template with sufficient radiopacity for in vivo visualization in both small and large animal models. This radiopacity may facilitate image-guided implantation and non-invasive long-term evaluation of scaffold location and performance. The healing capacity of fibrous musculoskeletal tissues is limited, and injury or degeneration of these tissues compromises the standard of living of millions in the US. Tissue engineering repair

  12. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix.

    Science.gov (United States)

    Nyberg, Ethan; Rindone, Alexandra; Dorafshar, Amir; Grayson, Warren L

    2017-06-01

    Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the "print quality" of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous scaffolds. Raman spectroscopy revealed the surfaces of the scaffolds maintained the chemical profile of their dopants following the printing process. We evaluated the osteo-inductive properties of each scaffold composite by culturing adipose-derived stromal/stem cells in vitro and assessing their differentiation into osteoblasts. The calcium content (normalized to DNA) increased significantly in PCL-TCP (p  0.05). Collagen 1 expression was 10-fold greater than PCL in PCL-BO and PCL-DCB (p < 0.05) and osteocalcin expression was 10-fold greater in PCL-BO and PCL-DCB (p < 0.05) as measured by quantitative-real time-polymerase chain reaction. This study suggests that PCL-BO and PCL-DCB hybrid material may be advantageous for bone healing applications over PCL-HA or PCL-TCP blends.

  13. The design of 3D scaffold for tissue engineering using automated scaffold design algorithm.

    Science.gov (United States)

    Mahmoud, Shahenda; Eldeib, Ayman; Samy, Sherif

    2015-06-01

    Several progresses have been introduced in the field of bone regenerative medicine. A new term tissue engineering (TE) was created. In TE, a highly porous artificial extracellular matrix or scaffold is required to accommodate cells and guide their growth in three dimensions. The design of scaffolds with desirable internal and external structure represents a challenge for TE. In this paper, we introduce a new method known as automated scaffold design (ASD) for designing a 3D scaffold with a minimum mismatches for its geometrical parameters. The method makes use of k-means clustering algorithm to separate the different tissues and hence decodes the defected bone portions. The segmented portions of different slices are registered to construct the 3D volume for the data. It also uses an isosurface rendering technique for 3D visualization of the scaffold and bones. It provides the ability to visualize the transplanted as well as the normal bone portions. The proposed system proves good performance in both the segmentation results and visualizations aspects.

  14. Modeling of enhanced catalysis in multienzyme nanostructures: effect of molecular scaffolds, spatial organization, and concentration.

    Science.gov (United States)

    Roberts, Christopher C; Chang, Chia-en A

    2015-01-13

    Colocalized multistep enzymatic reaction pathways within biological catabolic and metabolic processes occur with high yield and specificity. Spatial organization on membranes or surfaces may be associated with increased efficiency of intermediate substrate transfer. Using a new Brownian dynamics package, GeomBD, we explored the geometric features of a surface-anchored enzyme system by parallel coarse-grained Brownian dynamics simulations of substrate diffusion over microsecond (μs) to millisecond (ms) time scales. We focused on a recently developed glucose oxidase (GOx), horseradish peroxidase (HRP), and DNA origami-scaffold enzyme system, where the H2O2 substrate of HRP is produced by GOx. The results revealed and explained a significant advantage in catalytic enhancement by optimizing interenzyme distance and orientation in the presence of the scaffold model. The planar scaffold colocalized the enzymes and provided a diffusive barrier that enhanced substrate transfer probability, becoming more relevant with increasing interenzyme distance. The results highlight the importance of protein geometry in the proper assessment of distance and orientation dependence on the probability of substrate transfer. They shed light on strategies for engineering multienzyme complexes and further investigation of enhanced catalytic efficiency for substrate diffusion between membrane-anchoring proteins.

  15. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    Science.gov (United States)

    Molenaar, Inge; Roda, Claudia; van Boxtel, Carla; Sleegers, Peter

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N=56) are supported with computer-generated scaffolds and students in the control condition (N=54) do not receive scaffolds. The scaffolds are…

  16. Protein Scaffolding for Small Molecule Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Baker, David [Univ. of Washington, Seattle, WA (United States)

    2014-09-14

    We aim to design hybrid catalysts for energy production and storage that combine the high specificity, affinity, and tunability of proteins with the potent chemical reactivities of small organometallic molecules. The widely used Rosetta and RosettaDesign methodologies will be extended to model novel protein / small molecule catalysts in which one or many small molecule active centers are supported and coordinated by protein scaffolding. The promise of such hybrid molecular systems will be demonstrated with the nickel-phosphine hydrogenase of DuBois et. al.We will enhance the hydrogenase activity of the catalyst by designing protein scaffolds that incorporate proton relays and systematically modulate the local environment of the catalyticcenter. In collaboration with DuBois and Shaw, the designs will be experimentally synthesized and characterized.

  17. Diamond as a scaffold for bone growth.

    Science.gov (United States)

    Fox, Kate; Palamara, Joseph; Judge, Roy; Greentree, Andrew D

    2013-04-01

    Diamond is an attractive material for biomedical implants. In this work, we investigate its capacity as a bone scaffold. It is well established that the bioactivity of a material can be evaluated by examining its capacity to form apatite-like calcium phosphate phases on its surface when exposed to simulated body fluid. Accordingly, polycrystalline diamond (PCD) and ultrananocrystalline diamond (UNCD) deposited by microwave plasma chemical vapour deposition were exposed to simulated body fluid and assessed for apatite growth when compared to the bulk silicon. Scanning electron microscopy and X-ray photoelectron spectroscopy showed that both UNCD and PCD are capable of acting as a bone scaffold. The composition of deposited apatite suggests that UNCD and PCD are suitable for in vivo implantation with UNCD possible favoured in applications where rapid osseointegration is essential.

  18. Optimized Diazo Scaffold for Protein Esterification

    Science.gov (United States)

    Mix, Kalie A.

    2015-01-01

    The O-alkylation of carboxylic acids with diazo compounds provides a means to esterify carboxylic acids in aqueous solution. A Hammett analysis of the reactivity of diazo compounds derived from phenylglycinamide revealed that the p-methylphenylglycinamide scaffold has an especially high reaction rate and ester:alcohol product ratio, and esterifies protein carboxyl groups more efficiently than does any known reagent. PMID:25938936

  19. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  20. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  1. Melt electrospinning of biodegradable polyurethane scaffolds

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  2. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  3. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  4. Bioactive Nano-fibrous Scaffold for Vascularized Craniofacial Bone Regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul Damodaran; Kraft, David Christian Evar; Harkness, Linda

    2018-01-01

    the limitation of cell penetration of electrospun scaffolds and improve on its osteoconductive nature, in this study, we fabricated a novel electrospun composite scaffold of polyvinyl alcohol (PVA) - poly (ε) caprolactone (PCL) - Bioceramic (HAB), namely, PVA-PCL-HAB. The scaffold prepared by dual...... electrospinning of PVA and PCL with HAB overcomes reduced cell attachment associated with hydrophobic poly (ε) caprolactone (PCL) by combination with a hydrophilic polyvinyl alcohol (PVA) and the bioceramic (HAB) can contribute to enhance osteo-conductivity. We characterized the physicochemical...... and biocompatibility properties of the new scaffold material. Our results indicate PVA-PCL-HAB scaffolds support attachment and growth of stromal stem cells; (human bone marrow skeletal (mesenchymal) stem cells (hMSC) and dental pulp stem cells (DPSC)). In addition, the scaffold supported in vitro osteogenic...

  5. Porous magnesium-based scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Moharamzadeh, Keyvan; Boccaccini, Aldo R.; Tayebi, Lobat

    2017-01-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  6. Porous magnesium-based scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); Razavi, Mehdi [Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Moharamzadeh, Keyvan [School of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield (United Kingdom); Marquette University School of Dentistry, Milwaukee, WI 53233 (United States); Boccaccini, Aldo R. [Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen (Germany); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2017-02-01

    Significant amount of research efforts have been dedicated to the development of scaffolds for tissue engineering. Although at present most of the studies are focused on non-load bearing scaffolds, many scaffolds have also been investigated for hard tissue repair. In particular, metallic scaffolds are being studied for hard tissue engineering due to their suitable mechanical properties. Several biocompatible metallic materials such as stainless steels, cobalt alloys, titanium alloys, tantalum, nitinol and magnesium alloys have been commonly employed as implants in orthopedic and dental treatments. They are often used to replace and regenerate the damaged bones or to provide structural support for healing bone defects. Among the common metallic biomaterials, magnesium (Mg) and a number of its alloys are effective because of their mechanical properties close to those of human bone, their natural ionic content that may have important functional roles in physiological systems, and their in vivo biodegradation characteristics in body fluids. Due to such collective properties, Mg based alloys can be employed as biocompatible, bioactive, and biodegradable scaffolds for load-bearing applications. Recently, porous Mg and Mg alloys have been specially suggested as metallic scaffolds for bone tissue engineering. With further optimization of the fabrication techniques, porous Mg is expected to make a promising hard substitute scaffold. The present review covers research conducted on the fabrication techniques, surface modifications, properties and biological characteristics of Mg alloys based scaffolds. Furthermore, the potential applications, challenges and future trends of such degradable metallic scaffolds are discussed in detail. - Highlights: • A porous 3D material provides the required pathways for cells to grow, proliferate, and differentiate • Porous magnesium and Mg alloys could be used as load-bearing scaffolds • Porous magnesium and Mg alloys are good

  7. Intrinsic Osteoinductivity of Porous Titanium Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Maryam Tamaddon

    2017-01-01

    Full Text Available Large bone defects and nonunions are serious complications that are caused by extensive trauma or tumour. As traditional therapies fail to repair these critical-sized defects, tissue engineering scaffolds can be used to regenerate the damaged tissue. Highly porous titanium scaffolds, produced by selective laser sintering with mechanical properties in range of trabecular bone (compressive strength 35 MPa and modulus 73 MPa, can be used in these orthopaedic applications, if a stable mechanical fixation is provided. Hydroxyapatite coatings are generally considered essential and/or beneficial for bone formation; however, debonding of the coatings is one of the main concerns. We hypothesised that the titanium scaffolds have an intrinsic potential to induce bone formation without the need for a hydroxyapatite coating. In this paper, titanium scaffolds coated with hydroxyapatite using electrochemical method were fabricated and osteoinductivity of coated and noncoated scaffolds was compared in vitro. Alizarin Red quantification confirmed osteogenesis independent of coating. Bone formation and ingrowth into the titanium scaffolds were evaluated in sheep stifle joints. The examinations after 3 months revealed 70% bone ingrowth into the scaffold confirming its osteoinductive capacity. It is shown that the developed titanium scaffold has an intrinsic capacity for bone formation and is a suitable scaffold for bone tissue engineering.

  8. Multilayer porous UHMWPE scaffolds for bone defects replacement

    Energy Technology Data Exchange (ETDEWEB)

    Maksimkin, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Senatov, F.S., E-mail: senatov@misis.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Anisimova, N.Yu.; Kiselevskiy, M.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); N.N. Blokhin Russian Cancer Research Center, Moscow (Russian Federation); Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A. [State Plant of Medicinal Drugs, Moscow (Russian Federation); Kaloshkin, S.D. [National University of Science and Technology “MISIS”, Moscow (Russian Federation)

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  9. Multilayer porous UHMWPE scaffolds for bone defects replacement

    International Nuclear Information System (INIS)

    Maksimkin, A.V.; Senatov, F.S.; Anisimova, N.Yu.; Kiselevskiy, M.V.; Zalepugin, D.Yu.; Chernyshova, I.V.; Tilkunova, N.A.; Kaloshkin, S.D.

    2017-01-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79 ± 2%; the pore size range was 80–700 μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility - Highlights: • Porous UHMWPE scaffold mimics cancellous bone architecture, maintaining its flexibility. • Multilayer UHMWPE scaffold is able to simulate different types of bone tissue. • Fixation of scaffolds in the bone provides through ingrowths of the connective tissue into pores. • Multilayer UHMWPE scaffolds can be used for the formation of bone implants.

  10. Biochemical properties of Hemigraphis alternata incorporated chitosan hydrogel scaffold.

    Science.gov (United States)

    Annapoorna, M; Sudheesh Kumar, P T; Lakshman, Lakshmi R; Lakshmanan, Vinoth-Kumar; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work, Hemigraphis alternata extract incorporated chitosan scaffold was synthesized and characterized for wound healing. The antibacterial activity of Hemigraphis incorporated chitosan scaffold (HIC) against Escherichia coli and Staphylococcus aureus was evaluated which showed a reduction in total colony forming units by 45-folds toward E. coli and 25-fold against S. aureus respectively. Cell viability studies using Human Dermal Fibroblast cells (HDF) showed 90% viability even at 48 h when compared to the chitosan control. The herbal scaffold made from chitosan was highly haemostatic and antibacterial. The obtained results were in support that the herbal scaffold can be effectively applied for infectious wounds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Low elastic modulus titanium–nickel scaffolds for bone implants

    International Nuclear Information System (INIS)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property

  12. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  13. Novel biodegradable porous scaffold applied to skin regeneration.

    Science.gov (United States)

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Chau-Zen; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  14. Novel biodegradable porous scaffold applied to skin regeneration.

    Directory of Open Access Journals (Sweden)

    Hui-Min Wang

    Full Text Available Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments.

  15. Chitosan composite three dimensional macrospheric scaffolds for bone tissue engineering.

    Science.gov (United States)

    Vyas, Veena; Kaur, Tejinder; Thirugnanam, Arunachalam

    2017-11-01

    The present work deals with the fabrication of chitosan composite scaffolds with controllable and predictable internal architecture for bone tissue engineering. Chitosan (CS) based composites were developed by varying montmorillonite (MMT) and hydroxyapatite (HA) combinations to fabricate macrospheric three dimensional (3D) scaffolds by direct agglomeration of the sintered macrospheres. The fabricated CS, CS/MMT, CS/HA and CS/MMT/HA 3D scaffolds were characterized for their physicochemical, biological and mechanical properties. The XRD and ATR-FTIR studies confirmed the presence of the individual constituents and the molecular interaction between them, respectively. The reinforcement with HA and MMT showed reduced swelling and degradation rate. It was found that in comparison to pure CS, the CS/HA/MMT composites exhibited improved hemocompatibility and protein adsorption. The sintering of the macrospheres controlled the swelling ability of the scaffolds which played an important role in maintaining the mechanical strength of the 3D scaffolds. The CS/HA/MMT composite scaffold showed 14 folds increase in the compressive strength when compared to pure CS scaffolds. The fabricated scaffolds were also found to encourage the MG 63 cell proliferation. Hence, from the above studies it can be concluded that the CS/HA/MMT composite 3D macrospheric scaffolds have wider and more practical application in bone tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.

    Science.gov (United States)

    Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N

    2007-01-01

    We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties.

  17. Facile method of building hydroxyapatite 3D scaffolds assembled from porous hollow fibers enabling nutrient delivery

    NARCIS (Netherlands)

    Salamon, David; Da Silva Teixeira, Sandra; Dutczak, S.M.; Stamatialis, Dimitrios

    2014-01-01

    Nowadays, diffusion through scaffold and tissue usually limits transport, and forms potentially hypoxic regions. Several methods are used for preparation of 3D hydroxyapatite scaffolds, however, production of a scaffold including porous hollow fibers for nutrition delivery is difficult and

  18. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  19. Composite porous scaffold of PEG/PLA support improved bone matrix deposition in vitro compared to PLA-only scaffolds.

    Science.gov (United States)

    Bhaskar, Birru; Owen, Robert; Bahmaee, Hossein; Wally, Zena; Sreenivasa Rao, Parcha; Reilly, Gwendolen C

    2018-05-01

    Controllable pore size and architecture are essential properties for tissue-engineering scaffolds to support cell ingrowth colonization. To investigate the effect of polyethylene glycol (PEG) addition on porosity and bone-cell behavior, porous polylactic acid (PLA)-PEG scaffolds were developed with varied weight ratios of PLA-PEG (100/0, 90/10, 75/25) using solvent casting and porogen leaching. Sugar 200-300 µm in size was used as a porogen. To assess scaffold suitability for bone tissue engineering, MLO-A5 murine osteoblast cells were cultured and cell metabolic activity, alkaline phosphatase (ALP) activity and bone-matrix production determined using (alizarin red S staining for calcium and direct red 80 staining for collagen). It was found that metabolic activity was significantly higher over time on scaffolds containing PEG, ALP activity and mineralized matrix production were also significantly higher on scaffolds containing 25% PEG. Porous architecture and cell distribution and penetration into the scaffold were analyzed using SEM and confocal microscopy, revealing that inclusion of PEG increased pore interconnectivity and therefore cell ingrowth in comparison to pure PLA scaffolds. The results of this study confirmed that PLA-PEG porous scaffolds support mineralizing osteoblasts better than pure PLA scaffolds, indicating they have a high potential for use in bone tissue engineering applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1334-1340, 2018. © 2018 Wiley Periodicals, Inc.

  20. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    International Nuclear Information System (INIS)

    Zeng, Chao; Yang, Qiang; Zhu, Meifeng; Du, Lilong; Zhang, Jiamin; Ma, Xinlong; Xu, Baoshan; Wang, Lianyong

    2014-01-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus

  1. Silk fibroin porous scaffolds for nucleus pulposus tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chao; Yang, Qiang [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhu, Meifeng [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Du, Lilong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Tianjin Medical University, Tianjin 300070 (China); Zhang, Jiamin [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ma, Xinlong [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Xu, Baoshan, E-mail: xubaoshan99@126.com [Department of Spine Surgery, Tianjin Hospital, Tianjin 300211 (China); Wang, Lianyong, E-mail: wly@nankai.edu.cn [The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-04-01

    Intervertebral discs (IVDs) are structurally complex tissue that hold the vertebrae together and provide mobility to spine. The nucleus pulposus (NP) degeneration often results in degenerative IVD disease that is one of the most common causes of back and neck pain. Tissue engineered nucleus pulposus offers an alternative approach to regain the function of the degenerative IVD. The aim of this study is to determine the feasibility of porous silk fibroin (SF) scaffolds fabricated by paraffin-sphere-leaching methods with freeze-drying in the application of nucleus pulposus regeneration. The prepared scaffold possessed high porosity of 92.38 ± 5.12% and pore size of 165.00 ± 8.25 μm as well as high pore interconnectivity and appropriate mechanical properties. Rabbit NP cells were seeded and cultured on the SF scaffolds. Scanning electron microscopy, histology, biochemical assays and mechanical tests revealed that the porous scaffolds could provide an appropriate microstructure and environment to support adhesion, proliferation and infiltration of NP cells in vitro as well as the generation of extracellular matrix. The NP cell–scaffold construction could be preliminarily formed after subcutaneously implanted in a nude mice model. In conclusion, The SF porous scaffold offers a potential candidate for tissue engineered NP tissue. - Highlights: • Paraffin microsphere-leaching method is used to fabricate silk fibroin scaffold. • The scaffold has appropriate mechanical property, porosity and pore size • The scaffold supports growth and infiltration of nucleus pulposus cells. • Nucleus pulposus cells can secrete extracellular matrix in the scaffolds. • The scaffold is a potential candidate for tissue engineered nucleus pulposus.

  2. Scaffold hopping in drug discovery using inductive logic programming.

    Science.gov (United States)

    Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H

    2008-05-01

    In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.

  3. Porous allograft bone scaffolds: doping with strontium.

    Directory of Open Access Journals (Sweden)

    Yantao Zhao

    Full Text Available Strontium (Sr can promote the process of bone formation. To improve bioactivity, porous allograft bone scaffolds (ABS were doped with Sr and the mechanical strength and bioactivity of the scaffolds were evaluated. Sr-doped ABS were prepared using the ion exchange method. The density and distribution of Sr in bone scaffolds were investigated by inductively coupled plasma optical emission spectrometry (ICP-OES, X-ray photoelectron spectroscopy (XPS, and energy-dispersive X-ray spectroscopy (EDS. Controlled release of strontium ions was measured and mechanical strength was evaluated by a compressive strength test. The bioactivity of Sr-doped ABS was investigated by a simulated body fluid (SBF assay, cytotoxicity testing, and an in vivo implantation experiment. The Sr molar concentration [Sr/(Sr+Ca] in ABS surpassed 5% and Sr was distributed nearly evenly. XPS analyses suggest that Sr combined with oxygen and carbonate radicals. Released Sr ions were detected in the immersion solution at higher concentration than calcium ions until day 30. The compressive strength of the Sr-doped ABS did not change significantly. The bioactivity of Sr-doped material, as measured by the in vitro SBF immersion method, was superior to that of the Sr-free freeze-dried bone and the Sr-doped material did not show cytotoxicity compared with Sr-free culture medium. The rate of bone mineral deposition for Sr-doped ABS was faster than that of the control at 4 weeks (3.28 ± 0.23 µm/day vs. 2.60 ± 0.20 µm/day; p<0.05. Sr can be evenly doped into porous ABS at relevant concentrations to create highly active bone substitutes.

  4. Development of a Cytocompatible Scaffold from Pig Immature Testicular Tissue Allowing Human Sertoli Cell Attachment, Proliferation and Functionality

    Directory of Open Access Journals (Sweden)

    Maxime Vermeulen

    2018-01-01

    Full Text Available Cryopreservation of immature testicular tissue before chemo/radiotherapy is the only option to preserve fertility of cancer-affected prepubertal boys. To avoid reintroduction of malignant cells, development of a transplantable scaffold by decellularization of pig immature testicular tissue (ITT able to support decontaminated testicular cells could be an option for fertility restoration in these patients. We, therefore, compared decellularization protocols to produce a cytocompatible scaffold. Fragments of ITT from 15 piglets were decellularized using three protocols: sodium dodecyl sulfate (SDS-Triton (ST, Triton-SDS-Triton (TST and trypsin 0.05%/ethylenediaminetetraacetic acid (EDTA 0.02%-Triton (TET with varying detergent concentrations. All protocols were able to lower DNA levels. Collagen retention was demonstrated in all groups except ST 1%, and a significant decrease in glycosaminoglycans was observed in the TST 1% and TET 1% groups. When Sertoli cells (SCs were cultured with decellularized tissue, no signs of cytotoxicity were detected. A higher SC proliferation rate and greater stem cell factor secretion were observed than with SCs cultured without scaffold. ST 0.01% and TET 3% conditions offered the best compromise in terms of DNA elimination and extracellular matrix (ECM preservation, while ensuring good attachment, proliferation and functionality of human SCs. This study demonstrates the potential of using decellularized pig ITT for human testicular tissue engineering purposes.

  5. Enhancer of rudimentary homologue interacts with scaffold attachment factor B at the nuclear matrix to regulate SR protein phosphorylation.

    Science.gov (United States)

    Drakouli, Sotiria; Lyberopoulou, Aggeliki; Papathanassiou, Maria; Mylonis, Ilias; Georgatsou, Eleni

    2017-08-01

    Scaffold attachment factor B1 (SAFB1) is an integral component of the nuclear matrix of vertebrate cells. It binds to DNA on scaffold/matrix attachment region elements, as well as to RNA and a multitude of different proteins, affecting basic cellular activities such as transcription, splicing and DNA damage repair. In the present study, we show that enhancer of rudimentary homologue (ERH) is a new molecular partner of SAFB1 and its 70% homologous paralogue, scaffold attachment factor B2 (SAFB2). ERH interacts directly in the nucleus with the C-terminal Arg-Gly-rich region of SAFB1/2 and co-localizes with it in the insoluble nuclear fraction. ERH, a small ubiquitous protein with striking homology among species and a unique structure, has also been implicated in fundamental cellular mechanisms. Our functional analyses suggest that the SAFB/ERH interaction does not affect SAFB1/2 function in transcription (e.g. as oestrogen receptor α co-repressors), although it reverses the inhibition exerted by SAFB1/2 on the splicing kinase SR protein kinase 1 (SRPK1), which also binds on the C-terminus of SAFB1/2. Accordingly, ERH silencing decreases lamin B receptor and SR protein phosphorylation, which are major SRPK1 substrates, further substantiating the role of SAFB1 and SAFB2 in the co-ordination of nuclear function. © 2017 Federation of European Biochemical Societies.

  6. Scaffold engineering: a bridge to where?

    International Nuclear Information System (INIS)

    Hollister, Scott J

    2009-01-01

    A significant amount of federal research funding (over $4 billion) has gone into tissue engineering over the last 20 years. This has led to an exponential increase in research productivity as evidenced by the number of published papers referencing 'tissue engineering' and 'scaffold'. However, the number of tissue engineering products resulting from this research remains a paltry few, of which true tissue engineering products can be counted using the fingers of two hands. The fundamental question remains 'Why does such a gap exist between research and translation?'. This paper argues that such a gap exists in part due to the research paradigms followed in tissue engineering, in which a linear model is followed that assumed individual technical discovery can be bundled into model tissue engineering systems, followed by manufacturing scale up and regulatory approval. As such, most research funding follows this linear model with the vast majority of research spent on the discovery phase. This includes funding on both cell therapy and scaffold materials and engineering. It is assumed that therapy systems can readily be constructed by combining disparate technologies derived in different laboratories and that these therapies can readily achieve regulatory approval. Yet, most tissue engineering technologies fail to make it to clinical application because they simply have not been engineered for these specific applications or cannot be scaled to clinical level production. This paper argues that a different research paradigm is needed, essentially that of Pasteur's Quadrant proposed by Donald Stokes in the book of the same name. In this paradigm, research is pursued from the twin perspective of end use and the need for fundamental understanding. From this perspective, more funding emphasis should be placed on scalable manufacturing of systems that are designed for specific clinical applications that can attain regulatory approval. Funding of such scaffold/cell manufacturing

  7. Scaffolded filmmaking in PlayOFF

    DEFF Research Database (Denmark)

    Philipsen, Heidi

    2012-01-01

    How is it possible to make an entire short film in only 48 hours? This task was carried out in the global online film contest, called PlayOFF, held by Odense International Film Festival (OFF) in August 2010 and -11. Contestants from all over the world - as different countries as Palestine, China...... the productions. This article is based on an empirical study of film processes in PlayOFF 2010 and -11, and I will point out how these findings could be used in developing creativity. Based on my empirical studies I will suggest a learning design for scaffolded filmmaking and propose some ideas of how to transfer...

  8. Printing and Prototyping of Tissues and Scaffolds

    Science.gov (United States)

    Derby, Brian

    2012-11-01

    New manufacturing technologies under the banner of rapid prototyping enable the fabrication of structures close in architecture to biological tissue. In their simplest form, these technologies allow the manufacture of scaffolds upon which cells can grow for later implantation into the body. A more exciting prospect is the printing and patterning in three dimensions of all the components that make up a tissue (cells and matrix materials) to generate structures analogous to tissues; this has been termed bioprinting. Such techniques have opened new areas of research in tissue engineering and regenerative medicine.

  9. Porous ceramic scaffolds with complex architectures

    Science.gov (United States)

    Munch, E.; Franco, J.; Deville, S.; Hunger, P.; Saiz, E.; Tomsia, A. P.

    2008-06-01

    This work compares two novel techniques for the fabrication of ceramic scaffolds for bone tissue engineering with complex porosity: robocasting and freeze casting. Both techniques are based on the preparation of concentrated ceramic suspensions with suitable properties for the process. In robocasting, the computer-guided deposition of the suspensions is used to build porous materials with designed three dimensional geometries and microstructures. Freeze casting uses ice crystals as a template to form porous lamellar ceramic materials. Preliminary results on the compressive strengths of the materials are also reported.

  10. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  11. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  12. FOLDNA, a Web Server for Self-Assembled DNA Nanostructure Autoscaffolds and Autostaples

    Directory of Open Access Journals (Sweden)

    Chensheng Zhou

    2012-01-01

    Full Text Available DNA self-assembly is a nanotechnology that folds DNA into desired shapes. Self-assembled DNA nanostructures, also known as origami, are increasingly valuable in nanomaterial and biosensing applications. Two ways to use DNA nanostructures in medicine are to form nanoarrays, and to work as vehicles in drug delivery. The DNA nanostructures perform well as a biomaterial in these areas because they have spatially addressable and size controllable properties. However, manually designing complementary DNA sequences for self-assembly is a technically demanding and time consuming task, which makes it advantageous for computers to do this job instead. We have developed a web server, FOLDNA, which can automatically design 2D self-assembled DNA nanostructures according to custom pictures and scaffold sequences provided by the users. It is the first web server to provide an entirely automatic design of self-assembled DNA nanostructure, and it takes merely a second to generate comprehensive information for molecular experiments including: scaffold DNA pathways, staple DNA directions, and staple DNA sequences. This program could save as much as several hours in the designing step for each DNA nanostructure. We randomly selected some shapes and corresponding outputs from our server and validated its performance in molecular experiments.

  13. Ethnic differences in disability risk between Dutch and Turkish scaffolders

    NARCIS (Netherlands)

    Elders, L.A.M.; Burdorf, A.; Öry, F.G.

    2004-01-01

    The number of native Dutch and Turkish workers receiving a permanent disability pension in the Netherlands is still rising. To assess ethnic differences in disability risk between Dutch and Turkish scaffolders, a retrospective study was conducted within a large scaffolding company. Medical files for

  14. The effect of scaffold pore size in cartilage tissue engineering.

    Science.gov (United States)

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  15. Using the Community of Inquiry Framework to Scaffold Online Tutoring

    Science.gov (United States)

    Feng, Xiaoying; Xie, Jingjing; Liu, Yue

    2017-01-01

    Tutoring involves providing learners with a suitable level of structure and guidance to support their learning. This study reports on an exploration of how to design such structure and guidance (i.e., learning scaffolds) in the Chinese online educational context, and in so doing, answer the following two questions: (a) What scaffolding strategies…

  16. Enzymatically biomineralized chitosan scaffolds for tissue-engineering applications.

    NARCIS (Netherlands)

    Dash, M.; Samal, S.K.; Douglas, T.E.L.; Schaubroeck, D.; Leeuwenburgh, S.C.G.; Voort, P. van der; Declercq, H.A.; Dubruel, P.

    2017-01-01

    Porous biodegradable scaffolds represent promising candidates for tissue-engineering applications because of their capability to be preseeded with cells. We report an uncrosslinked chitosan scaffold designed with the aim of inducing and supporting enzyme-mediated formation of apatite minerals in the

  17. Scaffolding of Small Groups' Metacognitive Activities with an Avatar

    Science.gov (United States)

    Molenaar, Inge; Chiu, Ming Ming; Sleegers, Peter; van Boxtel, Carla

    2011-01-01

    Metacognitive scaffolding in a computer-supported learning environment can influence students' metacognitive activities, metacognitive knowledge and domain knowledge. In this study we analyze how metacognitive activities mediate the relationships between different avatar scaffolds on students' learning. Multivariate, multilevel analysis of the…

  18. Metacognitive Scaffolding during Collaborative Learning: A Promising Combination

    Science.gov (United States)

    Molenaar, Inge; Sleegers, Peter; van Boxtel, Carla

    2014-01-01

    This article explores the effect of computerized scaffolding with different scaffolds (structuring vs. problematizing) on intra-group metacognitive interaction. In this study, we investigate 4 types of intra-group social metacognitive activities; namely ignored, accepted, shared and co-constructed metacognitive activities in 18 triads (6 control…

  19. Maternal Scaffolding and Attention Regulation in Children Living in Poverty

    Science.gov (United States)

    Robinson, Julia B.; Burns, Barbara M.; Davis, Deborah Winders

    2009-01-01

    This study examines the relation of maternal scaffolding and children's attention regulation abilities in preschool children from low-income families within the context of a parent-child interaction task and in a child-alone task. Maternal scaffolding behaviors differed for mothers of children with different attention regulation skills. Mothers…

  20. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  1. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  2. Multiscale fabrication of biomimetic scaffolds for tympanic membrane tissue engineering

    International Nuclear Information System (INIS)

    Mota, Carlos; Danti, Serena; D’Alessandro, Delfo; Trombi, Luisa; Ricci, Claudio; Berrettini, Stefano; Puppi, Dario; Dinucci, Dinuccio; Chiellini, Federica; Milazzo, Mario; Stefanini, Cesare; Moroni, Lorenzo

    2015-01-01

    The tympanic membrane (TM) is a thin tissue able to efficiently collect and transmit sound vibrations across the middle ear thanks to the particular orientation of its collagen fibers, radiate on one side and circular on the opposite side. Through the combination of advanced scaffolds and autologous cells, tissue engineering (TE) could offer valuable alternatives to autografting in major TM lesions. In this study, a multiscale approach based on electrospinning (ES) and additive manufacturing (AM) was investigated to fabricate scaffolds, based on FDA approved copolymers, resembling the anatomic features and collagen fiber arrangement of the human TM. A single scale TM scaffold was manufactured using a custom-made collector designed to confer a radial macro-arrangement to poly(lactic-co-glycolic acid) electrospun fibers during their deposition. Dual and triple scale scaffolds were fabricated combining conventional ES with AM to produce poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer scaffolds with anatomic-like architecture. The processing parameters were optimized for each manufacturing method and copolymer. TM scaffolds were cultured in vitro with human mesenchymal stromal cells, which were viable, metabolically active and organized following the anisotropic character of the scaffolds. The highest viability, cell density and protein content were detected in dual and triple scale scaffolds. Our findings showed that these biomimetic micro-patterned substrates enabled cell disposal along architectural directions, thus appearing as promising substrates for developing functional TM replacements via TE. (paper)

  3. Scaffolding and Dialogic Teaching in Mathematics Education: Introduction and Review

    Science.gov (United States)

    Bakker, Arthur; Smit, Jantien; Wegerif, Rupert

    2015-01-01

    This article has two purposes: firstly to introduce this special issue on scaffolding and dialogic teaching in mathematics education and secondly to review the recent literature on these topics as well as the articles in this special issue. First we define and characterise scaffolding and dialogic teaching and provide a brief historical overview…

  4. Scaffolding Performance in EPSSs: Bridging Theory and Practice.

    Science.gov (United States)

    Hannafin, Michael J; McCarthy, James E.; Hannafin, Kathleen M.; Radtke, Paul

    Electronic performance support systems (EPSS) help users accomplish tasks, using computational technologies. Scaffolding is the process through which efforts are supported while engaging a learning or performance task. A number of different types of scaffolds are possible, including conceptual, metacognitive, procedural, and strategic. Each of…

  5. Biomimetic mineral-organic composite scaffolds with controlled internal architecture.

    Science.gov (United States)

    Manjubala, I; Woesz, Alexander; Pilz, Christine; Rumpler, Monika; Fratzl-Zelman, Nadja; Roschger, Paul; Stampfl, Juergen; Fratzl, Peter

    2005-12-01

    Bone and cartilage generation by three-dimensional scaffolds is one of the promising techniques in tissue engineering. One approach is to generate histologically and functionally normal tissue by delivering healthy cells in biocompatible scaffolds. These scaffolds provide the necessary support for cells to proliferate and maintain their differentiated function, and their architecture defines the ultimate shape. Rapid prototyping (RP) is a technology by which a complex 3-dimensional (3D) structure can be produced indirectly from computer aided design (CAD). The present study aims at developing a 3D organic-inorganic composite scaffold with defined internal architecture by a RP method utilizing a 3D printer to produce wax molds. The composite scaffolds consisting of chitosan and hydroxyapatite were prepared using soluble wax molds. The behaviour and response of MC3T3-E1 pre-osteoblast cells on the scaffolds was studied. During a culture period of two and three weeks, cell proliferation and in-growth were observed by phase contrast light microscopy, histological staining and electron microscopy. The Giemsa and Gömöri staining of the cells cultured on scaffolds showed that the cells proliferated not only on the surface, but also filled the micro pores of the scaffolds and produced extracellular matrix within the pores. The electron micrographs showed that the cells covering the surface of the struts were flattened and grew from the periphery into the middle region of the pores.

  6. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  7. 29 CFR 1915.71 - Scaffolds or staging.

    Science.gov (United States)

    2010-07-01

    ... construction of scaffolds shall be spruce, fir, long leaf yellow pine, Oregon pine or wood of equal strength... large, loose or dead knots. It shall also be free from dry rot, large checks, worm holes or other... accidentally disengaged from the crane hook. (c) Independent pole wood scaffolds. (1) All pole uprights shall...

  8. TopBP1-mediated DNA processing during mitosis.

    Science.gov (United States)

    Gallina, Irene; Christiansen, Signe Korbo; Pedersen, Rune Troelsgaard; Lisby, Michael; Oestergaard, Vibe H

    2016-01-01

    Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells. (1) Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.

  9. DNA origami applications in cancer therapy.

    Science.gov (United States)

    Udomprasert, Anuttara; Kangsamaksin, Thaned

    2017-08-01

    Due to the complexity and heterogeneity of cancer, the development of cancer diagnosis and therapy is still progressing, and a complete understanding of cancer biology remains elusive. Recently, cancer nanomedicine has gained much interest as a promising diagnostic and therapeutic strategy, as a wide range of nanomaterials possess unique physical properties that can render drug delivery systems safer and more effective. Also, targeted drug delivery and precision medicine have now become a new paradigm in cancer therapy. With nanocarriers, chemotherapeutic drugs could be directly delivered into target cancer cells, resulting in enhanced efficiency with fewer side-effects. DNA, a biomolecule with molecular self-assembly properties, has emerged as a versatile nanomaterial to construct multifunctional platforms; DNA nanostructures can be modified with functional groups to improve their utilities as biosensors or drug carriers. Such applications have become possible with the advent of the scaffolded DNA origami method. This breakthrough technique in structural DNA nanotechnology provides an easier and faster way to construct DNA nanostructures with various shapes. Several experiments proved that DNA origami nanostructures possess abilities to enhance efficacies of chemotherapy, reduce adverse side-effects, and even circumvent drug resistance. Here, we highlight the principles of the DNA origami technique and its applications in cancer therapeutics and discuss current challenges and opportunities to improve cancer detection and targeted drug delivery. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  10. Design of a bioresorbable polymeric scaffold for osteoblast culture

    Science.gov (United States)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning

  11. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    International Nuclear Information System (INIS)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A.

    2015-01-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  12. Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.; Bissoyi, A.; Pramanik, K.; Biswas, A., E-mail: amitb79@gmail.com

    2015-03-01

    Biomaterials that stimulate cell attachment and proliferation without any surface modification (e.g. RGD coating) provide potent and cost effective scaffold for regenerative medicine. This study assessed the physico-chemical properties and cell supportive potential of a silk fibroin blend scaffold derived from eri (Philosamia ricini) and tasar (Antheraea mylitta) silk (ET) respectively by electrospinning process. The scanning electron microscopy and transmission electron microscopy study found that the fiber diameters are in 200 to 800 nm range with flat morphology. The porosity of ET scaffold is found to be 79 ± 5% with majority of pore diameter between 2.5 to 5 nm. Similarly, Bombyx mori (BM) silk fibroin and gelatin nanofibrous scaffolds were prepared and taken as control. The ultimate tensile strength of the ET and BM scaffold are found to be 1.83 ± 0.13 MPa and 1.47 ± 0.10 MPa respectively. The measured contact angle (a measure of hydrophilicity) for ET (54.7° ± 1.8°) is found to be lower than BM (62° ± 2.3°). The ability to deposit apatite over ET is comparable to that of BM nanofibers. All the scaffolds were seeded with cord blood derived mesenchymal stem cells (hMSCs) and cultured for 14 days in vitro. The immunofluorescence study reveals enhanced cell attachment with higher metabolic activity for MSCs grown over ET than BM and gelatin. The ET scaffold also demonstrated expression of higher amount cell adhesion molecules (CD29/CD44) and higher proliferation rate than BM and gelatin as confirmed by MTT assay, DNA content estimation assay, flow cytometry study and SEM study. Overall, it may be concluded that ET scaffold may have potential in developing bone tissue grafts for clinical applications in the future. - Highlights: • We have fabricated eri–tasar blended electrospun silk fibroin nanofiber with superior surface property. • The hydrophilicity is higher than the silk fibroin nanofiber derived from Bombyx mori (BM). • The nanofibrous

  13. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  14. Electrospun PVA-PCL-HAB scaffold for craniofacial bone regeneration

    DEFF Research Database (Denmark)

    Prabha, Rahul; Kraft, David Christian Evar; Melsen, Birte

    2015-01-01

    -caprolactone (PCL)- triphasic bioceramic(HAB) scaffold to biomimic native tissue and we tested its ability to support osteogenic differentiation of stromal stem cells ( MSC) and its suitability for regeneration of craniofa- cial defects. Physiochemical characterizations of the scaffold, including con- tact angle...... body fluid immersed scaffold samples. Culturing human adult dental pulp stem cells (DPSC) and human bone marrow derived MSC seeded on PVA-PCL-HAB scaffold showed enhanced cell proliferation and in vitro osteoblastic differentiation. Cell-containing scaffolds were implanted subcutaneously in immune...... deficient mice. Histologic ex- amination of retrieved implant sections stained with H&E, Col- lagenType I and Human Vimentin antibody demonstrated that the cells survived in vivo in the implants for at least 8 weeks with evidence of osteoblastic differentiation and angiogenesis within the implants. Our...

  15. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds

    International Nuclear Information System (INIS)

    Qi Jun; Chen Anmin; You Hongbo; Li Kunpeng; Zhang Di; Guo Fengjing

    2011-01-01

    Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105 + ) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-β 3 and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105 + enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.

  16. Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation

    International Nuclear Information System (INIS)

    Kim, Beom-Su; Lee, Jun; Park, Ko Eun; Park, Won Ho

    2013-01-01

    Electrospinning is a useful method for the production of nanofibrous scaffolds in the field of tissue engineering. Keratin has been used as a biomaterial for electrospinning and can be used in a variety of biomedical applications because it is a natural protein, giving it the ability to improve cell affinity of scaffolds. In this study, keratin was extracted from hagfish slime thread (H-keratin) and blended with polylactic acid (PLA) polymer solution to construct a nanofibrous scaffold. Wool keratin (W-keratin) was used as a control for the comparison of morphological, physical, and biological properties. The results of Fourier transform infrared spectroscopy showed the presence of both W-keratin and H-keratin in the electrospun PLA/keratin. Observations with a scanning electron microscope revealed that PLA, PLA/W-keratin, and PLA/H-keratin had similar average diameters (∼800 nm). Cell attachment experiments showed that MG-63 cells adhered more rapidly and spread better onto PLA/H-keratin than onto the pure PLA or PLA/W-keratin. Cell proliferation assay, DNA content, live/dead, and alkaline phosphatase activity assays showed that PLA/H-keratin scaffolds could accelerate the viability, proliferation, and osteogenesis of MG-63 cells relative to pure PLA or PLA/W-keratin nanofibrous scaffolds. These findings suggest that H-keratin can improve cellular attraction and has great potential to be used as a biomaterial in bone tissue engineering. (paper)

  17. Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation

    Directory of Open Access Journals (Sweden)

    Zeng XB

    2012-07-01

    Full Text Available Xiao Bo Zeng, Hao Hu, Li Qin Xie, Fang Lan, Wen Jiang, Yao Wu, Zhong Wei GuNational Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaIntroduction: In recent years, interest in magnetic biomimetic scaffolds for tissue engineering has increased considerably. A type of magnetic scaffold composed of magnetic nanoparticles (MNPs and hydroxyapatite (HA for bone repair has been developed by our research group.Aim and methods: In this study, to investigate the influence of the MNP content (in the scaffolds on the cell behaviors and the interactions between the magnetic scaffold and the exterior magnetic field, a series of MNP-HA magnetic scaffolds with different MNP contents (from 0.2% to 2% were fabricated by immersing HA scaffold into MNP colloid. ROS 17/2.8 and MC3T3-E1 cells were cultured on the scaffolds in vitro, with and without an exterior magnetic field, respectively. The cell adhesion, proliferation and differentiation were evaluated via scanning electron microscopy; confocal laser scanning microscopy; and 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT, alkaline phosphatase, and bone gla protein activity tests.Results: The results demonstrated the positive influence of the magnetic scaffolds on cell adhesion, proliferation, and differentiation. Further, a higher amount of MNPs on the magnetic scaffolds led to more significant stimulation.Conclusion: The magnetic scaffold can respond to the exterior magnetic field and engender some synergistic effect to intensify the stimulating effect of a magnetic field to the proliferation and differentiation of cells.Keywords: magnetic therapy, magnetic nanoparticles, bone repair, magnetic responsive

  18. Scaffold library for tissue engineering: a geometric evaluation.

    Science.gov (United States)

    Chantarapanich, Nattapon; Puttawibul, Puttisak; Sucharitpwatskul, Sedthawatt; Jeamwatthanachai, Pongnarin; Inglam, Samroeng; Sitthiseripratip, Kriskrai

    2012-01-01

    Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE) method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO:BT) were good for making the open-cellular scaffold. The PO:BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO:BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress level were excluded. Good couples for

  19. Scaffold Library for Tissue Engineering: A Geometric Evaluation

    Directory of Open Access Journals (Sweden)

    Nattapon Chantarapanich

    2012-01-01

    Full Text Available Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions. Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD model. To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development. In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria. The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons. CAD and finite element (FE method were employed as tools in evaluation. The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron. However, not all pore size to beam thickness ratios (PO : BT were good for making the open-cellular scaffold. The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication. The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes. The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function. The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level. The couples of polyhedrons presenting low intersection index and high stress

  20. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  1. Electrospun nanofiber scaffolds: engineering soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T [Department of Orthopaedic Surgery, University of Virginia, VA 22908 (United States); James, R [Department of Biomedical Engineering, University of Virginia, VA 22908 (United States)], E-mail: laurencin@virginia.edu

    2008-09-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle.

  2. Engineered porous scaffolds for periprosthetic infection prevention

    Energy Technology Data Exchange (ETDEWEB)

    Iviglia, Giorgio, E-mail: giorgio.iviglia@polito.it [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Cassinelli, Clara; Bollati, Daniele [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Baino, Francesco [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy); Torre, Elisa; Morra, Marco [Nobil Bio Ricerche Srl, 14037 Portacomaro (Italy); Vitale-Brovarone, Chiara [Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10121 Torino (Italy)

    2016-11-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  3. Engineered porous scaffolds for periprosthetic infection prevention

    International Nuclear Information System (INIS)

    Iviglia, Giorgio; Cassinelli, Clara; Bollati, Daniele; Baino, Francesco; Torre, Elisa; Morra, Marco; Vitale-Brovarone, Chiara

    2016-01-01

    Periprosthetic infection is a consequence of implant insertion procedures and strategies for its prevention involve either an increase in the rate of new bone formation or the release of antibiotics such as vancomycin. In this work we combined both strategies and developed a novel, multifunctional three-dimensional porous scaffold that was produced using hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP), coupled with a pectin (PEC)-chitosan (CHIT) polyelectrolyte (PEI), and loaded with vancomycin (VCA). By this approach, a controlled vancomycin release was achieved and serial bacterial dilution test demonstrated that, after 1 week, the engineered construct still inhibits the bacterial growth. Degradation tests show an excellent behavior in a physiological and acidic environment (< 10% of mass loss). Furthermore, the PEI coating shows an anti-inflammatory response, and good cell proliferation and migration were demonstrated in vitro using osteoblast SAOS-2 cell line. This new engineered construct exhibits excellent properties both as an antibacterial material and as a stimulator of bone formation, which makes it a good candidate to contrast periprosthetic infection. - Highlights: • A novel three-dimensional ceramic scaffold was developed for infection prevention. • Pectin/chitosan coating stabilizes the degradation behavior in acidic environment. • Polyelectrolyte complex allows sustained release of vancomycin. • Inhibition of bacterial proliferation and biofilm formation was assessed. • PEI coating elicits anti-inflammatory response.

  4. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  5. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  6. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  7. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  8. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  9. Hydrophilic PCU scaffolds prepared by grafting PEGMA and immobilizing gelatin to enhance cell adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Changcan; Yuan, Wenjie; Khan, Musammir; Li, Qian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Feng, Yakai, E-mail: yakaifeng@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300072 (China); Yao, Fanglian [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072 (China); Tianjin University-Helmholtz-Zentrum Geesthacht, Joint Laboratory for Biomaterials and Regenerative Medicine, Tianjin 300072 (China); Zhang, Wencheng, E-mail: wenchengzhang@yahoo.com [Department of Physiology and Pathophysiology, Logistics University of Chinese People' s Armed Police Force, Tianjin 300162 (China)

    2015-05-01

    Gelatin contains many functional motifs which can modulate cell specific adhesion, so we modified polycarbonate urethane (PCU) scaffold surface by immobilization of gelatin. PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatins onto the surface of aminated PCU scaffolds. To increase the immobilization amount of gelatin, poly(ethylene glycol) methacrylate (PEGMA) was grafted onto PCU scaffolds by surface initiated atom transfer radical polymerization. Then, following amination and immobilization, PCU-g-PEGMA-g-gelatin scaffolds were obtained. Both modified scaffolds were characterized by chemical and biological methods. After immobilization of gelatin, the microfiber surface became rough, but the original morphology of scaffolds was maintained successfully. PCU-g-PEGMA-g-gelatin scaffolds were more hydrophilic than PCU-g-gelatin scaffolds. Because hydrophilic PEGMA and gelatin were grafted and immobilized onto the surface, the PCU-g-PEGMA-g-gelatin scaffolds showed low platelet adhesion, perfect anti-hemolytic activity and excellent cell growth and proliferation capacity. It could be envisioned that PCU-g-PEGMA-g-gelatin scaffolds might have potential applications in tissue engineering artificial scaffolds. - Graphical abstract: PCU-g-gelatin scaffolds were prepared by direct immobilizing gelatin onto the surface of aminated PCU scaffolds (method a). To increase the immobilization amount of gelatin, PEGMAs were grafted onto the scaffold surface by SI-ATRP. PCU-g-PEGMA-g-gelatin scaffolds were prepared by method b. The gelatin modified scaffolds exhibited high hydrophilicity, low platelet adhesion, perfect anti-hemolytic activity, and excellent cell adhesion and proliferation capacity. They might have potential applications as tissue engineering scaffolds for artificial blood vessels. - Highlights: • Hydrophilic scaffolds were prepared by grafting PEGMA and immobilization of gelatins. • Grafting PEGMA enhanced the immobilization amount of gelatin

  10. Bioresorbable scaffold -fourth revolution or failed revolution: Is low scaffold strut thickness the wrong target?

    Directory of Open Access Journals (Sweden)

    Sundeep Mishra

    2017-11-01

    Full Text Available Bioresorbable scaffold (BRS technology has currently fallen into disrepute because of inordinately high risk of scaffold thrombosis and post-procedure myocardial infarction. Low tensile and radial strengths of polymeric BRS contributing to improper strut embedment have been identified as major correlates of poor outcomes following BRS implantation. Magnesium has a better tensile/radial strength compared with polymeric BRS but it is still far lower than cobalt-chromium. Newers innovations utilizing alteration in polymer composition and orientation or even newer polymers have focused on attempts to reduce strut thickness but may have little effect on tensile/radial strength of finished product and therefore may not impact the BRS outcome on long run. Currently, newer generation BRS usage may be restricted to suitable low risk younger patients with proper vessel preparation and application of technique.

  11. Bioresorbable scaffold -fourth revolution or failed revolution: Is low scaffold strut thickness the wrong target?

    Science.gov (United States)

    Mishra, Sundeep

    Bioresorbable scaffold (BRS) technology has currently fallen into disrepute because of inordinately high risk of scaffold thrombosis and post-procedure myocardial infarction. Low tensile and radial strengths of polymeric BRS contributing to improper strut embedment have been identified as major correlates of poor outcomes following BRS implantation. Magnesium has a better tensile/radial strength compared with polymeric BRS but it is still far lower than cobalt-chromium. Newers innovations utilizing alteration in polymer composition and orientation or even newer polymers have focused on attempts to reduce strut thickness but may have little effect on tensile/radial strength of finished product and therefore may not impact the BRS outcome on long run. Currently, newer generation BRS usage may be restricted to suitable low risk younger patients with proper vessel preparation and application of technique. Copyright © 2017 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.

  12. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  13. Patterning protein complexes on DNA nanostructures using a GFP nanobody.

    Science.gov (United States)

    Sommese, R F; Hariadi, R F; Kim, K; Liu, M; Tyska, M J; Sivaramakrishnan, S

    2016-11-01

    DNA nanostructures have become an important and powerful tool for studying protein function over the last 5 years. One of the challenges, though, has been the development of universal methods for patterning protein complexes on DNA nanostructures. Herein, we present a new approach for labeling DNA nanostructures by functionalizing them with a GFP nanobody. We demonstrate the ability to precisely control protein attachment via our nanobody linker using two enzymatic model systems, namely adenylyl cyclase activity and myosin motility. Finally, we test the power of this attachment method by patterning unpurified, endogenously expressed Arp2/3 protein complex from cell lysate. By bridging DNA nanostructures with a fluorescent protein ubiquitous throughout cell and developmental biology and protein biochemistry, this approach significantly streamlines the application of DNA nanostructures as a programmable scaffold in biological studies. © 2016 The Protein Society.

  14. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  15. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  16. Enhanced bioactive scaffolds for bone tissue regeneration

    Science.gov (United States)

    Karnik, Sonali

    Bone injuries are commonly termed as fractures and they vary in their severity and causes. If the fracture is severe and there is loss of bone, implant surgery is prescribed. The response to the implant depends on the patient's physiology and implant material. Sometimes, the compromised physiology and undesired implant reactions lead to post-surgical complications. [4, 5, 20, 28] Efforts have been directed towards the development of efficient implant materials to tackle the problem of post-surgical implant failure. [ 15, 19, 24, 28, 32]. The field of tissue engineering and regenerative medicine involves the use of cells to form a new tissue on bio-absorbable or inert scaffolds. [2, 32] One of the applications of this field is to regenerate the damaged or lost bone by using stem cells or osteoprogenitor cells on scaffolds that can integrate in the host tissue without causing any harmful side effects. [2, 32] A variety of natural, synthetic materials and their combinations have been used to regenerate the damaged bone tissue. [2, 19, 30, 32, 43]. Growth factors have been supplied to progenitor cells to trigger a sequence of metabolic pathways leading to cellular proliferation, differentiation and to enhance their functionality. [56, 57] The challenge persists to supply these proteins, in the range of nano or even picograms, and in a sustained fashion over a period of time. A delivery system has yet to be developed that would mimic the body's inherent mechanism of delivering the growth factor molecules in the required amount to the target organ or tissue. Titanium is the most preferred metal for orthopedic and orthodontic implants. [28, 46, 48] Even though it has better osteogenic properties as compared to other metals and alloys, it still has drawbacks like poor integration into the surrounding host tissue leading to bone resorption and implant failure. [20, 28, 35] It also faces the problem of postsurgical infections that contributes to the implant failure. [26, 37

  17. Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering

    Science.gov (United States)

    Velasco, Marco A.; Narváez-Tovar, Carlos A.; Garzón-Alvarado, Diego A.

    2015-01-01

    A review about design, manufacture, and mechanobiology of biodegradable scaffolds for bone tissue engineering is given. First, fundamental aspects about bone tissue engineering and considerations related to scaffold design are established. Second, issues related to scaffold biomaterials and manufacturing processes are discussed. Finally, mechanobiology of bone tissue and computational models developed for simulating how bone healing occurs inside a scaffold are described. PMID:25883972

  18. Accounting for structural compliance in nanoindentation measurements of bioceramic bone scaffolds

    Science.gov (United States)

    Juan Vivanco; Joseph E. Jakes; Josh Slane; Heidi-Lynn Ploeg

    2014-01-01

    Structural properties have been shown to be critical in the osteoconductive capacity and strength of bioactive ceramic bone scaffolds. Given the cellular foam-like structure of bone scaffolds, nanoindentation has been used as a technique to assess the mechanical properties of individual components of the scaffolds. Nevertheless, nanoindents placed on scaffolds may...

  19. Electrospinning versus knitting: two scaffolds for tisssue engineering of the aortic valve

    NARCIS (Netherlands)

    Lieshout, van M.I.; Vaz, C.M.; Rutten, M.C.M.; Peters, G.W.M.; Baaijens, F.P.T.

    2006-01-01

    Two types of scaffolds were developed for tissue engineering of the aortic valve; an electrospun valvular scaffold and a knitted valvular scaffold. These scaffolds were compared in a physiologic flow system and in a tissue-engineering process. In fibrin gel enclosed human myofibroblasts were seeded

  20. Electrospun Nanofiber Scaffolds with Gradations in Fiber Organization

    Science.gov (United States)

    Khandalavala, Karl; Jiang, Jiang; Shuler, Franklin D.; Xie, Jingwei

    2015-01-01

    The goal of this protocol is to report a simple method for generating nanofiber scaffolds with gradations in fiber organization and test their possible applications in controlling cell morphology/orientation. Nanofiber organization is controlled with a new fabrication apparatus that enables the gradual decrease of fiber organization in a scaffold. Changing the alignment of fibers is achieved through decreasing deposition time of random electrospun fibers on a uniaxially aligned fiber mat. By covering the collector with a moving barrier/mask, along the same axis as fiber deposition, the organizational structure is easily controlled. For tissue engineering purposes, adipose-derived stem cells can be seeded to these scaffolds. Stem cells undergo morphological changes as a result of their position on the varied organizational structure, and can potentially differentiate into different cell types depending on their locations. Additionally, the graded organization of fibers enhances the biomimicry of nanofiber scaffolds so they more closely resemble the natural orientations of collagen nanofibers at tendon-to-bone insertion site compared to traditional scaffolds. Through nanoencapsulation, the gradated fibers also afford the possibility to construct chemical gradients in fiber scaffolds, and thereby further strengthen their potential applications in fast screening of cell-materials interaction and interfacial tissue regeneration. This technique enables the production of continuous gradient scaffolds, but it also can potentially produce fibers in discrete steps by controlling the movement of the moving barrier/mask in a discrete fashion. PMID:25938562

  1. Cell-derived matrix coatings for polymeric scaffolds.

    Science.gov (United States)

    Decaris, Martin L; Binder, Bernard Y; Soicher, Matthew A; Bhat, Archana; Leach, J Kent

    2012-10-01

    Cells in culture deposit a complex extracellular matrix that remains intact following decellularization and possesses the capacity to modulate cell phenotype. The direct application of such decellularized matrices (DMs) to 3D substrates is problematic, as transport issues influence the homogeneous deposition, decellularization, and modification of DM surface coatings. In an attempt to address this shortcoming, we hypothesized that DMs deposited by human mesenchymal stem cells (MSCs) could be transferred to the surface of polymeric scaffolds while maintaining their capacity to direct cell fate. The ability of the transferred DM (tDM)-coated scaffolds to enhance the osteogenic differentiation of undifferentiated and osteogenically induced MSCs under osteogenic conditions in vitro was confirmed. tDM-coated scaffolds increased MSC expression of osteogenic marker genes (BGLAP, IBSP) and intracellular alkaline phosphatase production. In addition, undifferentiated MSCs deposited significantly more calcium when seeded onto tDM-coated scaffolds compared with control scaffolds. MSC-seeded tDM-coated scaffolds subcutaneously implanted in nude rats displayed significantly higher blood vessel density after 2 weeks compared with cells on uncoated scaffolds, but we did not observe significant differences in mineral deposition after 8 weeks. These data demonstrate that DM-coatings produced in 2D culture can be successfully transferred to 3D substrates and retain their capacity to modulate cell phenotype.

  2. Highly charged cyanine fluorophores for trafficking scaffold degradation

    International Nuclear Information System (INIS)

    Owens, Eric A; Alyabyev, Sergey; Henary, Maged; Hyun, Hoon; Kim, Soon Hee; Lee, Jeong Heon; Park, GwangLi; Ashitate, Yoshitomo; Choi, Jungmun; Hong, Gloria H; Choi, Hak Soo; Lee, Sang Jin; Khang, Gilson

    2013-01-01

    Biodegradable scaffolds have been extensively used in the field of tissue engineering and regenerative medicine. However, noninvasive monitoring of in vivo scaffold degradation is still lacking. In order to develop a real-time trafficking technique, a series of meso-brominated near-infrared (NIR) fluorophores were synthesized and conjugated to biodegradable gelatin scaffolds. Since the pentamethine cyanine core is highly lipophilic, the side chain of each fluorophore was modified with either quaternary ammonium salts or sulfonate groups. The physicochemical properties such as lipophilicity and net charge of fluorophores played a key role in the fate of NIR-conjugated scaffolds in vivo after biodegradation. The positively charged fluorophore-conjugated scaffold fragments were found in salivary glands, lymph nodes, and most of the hepatobiliary excretion route. However, halogenated fluorophores intensively accumulated into lymph nodes and the liver. Interestingly, balanced-charged gelatin scaffolds were degraded into urine in a short period of time. These results demonstrate that the noninvasive optical imaging using NIR fluorophores can be useful for the translation of biodegradable scaffolds into the clinic. (paper)

  3. Crossing kingdoms: Using decellularized plants as perfusable tissue engineering scaffolds.

    Science.gov (United States)

    Gershlak, Joshua R; Hernandez, Sarah; Fontana, Gianluca; Perreault, Luke R; Hansen, Katrina J; Larson, Sara A; Binder, Bernard Y K; Dolivo, David M; Yang, Tianhong; Dominko, Tanja; Rolle, Marsha W; Weathers, Pamela J; Medina-Bolivar, Fabricio; Cramer, Carole L; Murphy, William L; Gaudette, Glenn R

    2017-05-01

    Despite significant advances in the fabrication of bioengineered scaffolds for tissue engineering, delivery of nutrients in complex engineered human tissues remains a challenge. By taking advantage of the similarities in the vascular structure of plant and animal tissues, we developed decellularized plant tissue as a prevascularized scaffold for tissue engineering applications. Perfusion-based decellularization was modified for different plant species, providing different geometries of scaffolding. After decellularization, plant scaffolds remained patent and able to transport microparticles. Plant scaffolds were recellularized with human endothelial cells that colonized the inner surfaces of plant vasculature. Human mesenchymal stem cells and human pluripotent stem cell derived cardiomyocytes adhered to the outer surfaces of plant scaffolds. Cardiomyocytes demonstrated contractile function and calcium handling capabilities over the course of 21 days. These data demonstrate the potential of decellularized plants as scaffolds for tissue engineering, which could ultimately provide a cost-efficient, "green" technology for regenerating large volume vascularized tissue mass. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  5. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kumbar, S G; Toti, U S; Deng, M; James, R; Laurencin, C T; Aravamudhan, A; Harmon, M; Ramos, D M

    2011-01-01

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  6. BESST--efficient scaffolding of large fragmented assemblies.

    Science.gov (United States)

    Sahlin, Kristoffer; Vezzi, Francesco; Nystedt, Björn; Lundeberg, Joakim; Arvestad, Lars

    2014-08-15

    The use of short reads from High Throughput Sequencing (HTS) techniques is now commonplace in de novo assembly. Yet, obtaining contiguous assemblies from short reads is challenging, thus making scaffolding an important step in the assembly pipeline. Different algorithms have been proposed but many of them use the number of read pairs supporting a linking of two contigs as an indicator of reliability. This reasoning is intuitive, but fails to account for variation in link count due to contig features.We have also noted that published scaffolders are only evaluated on small datasets using output from only one assembler. Two issues arise from this. Firstly, some of the available tools are not well suited for complex genomes. Secondly, these evaluations provide little support for inferring a software's general performance. We propose a new algorithm, implemented in a tool called BESST, which can scaffold genomes of all sizes and complexities and was used to scaffold the genome of P. abies (20 Gbp). We performed a comprehensive comparison of BESST against the most popular stand-alone scaffolders on a large variety of datasets. Our results confirm that some of the popular scaffolders are not practical to run on complex datasets. Furthermore, no single stand-alone scaffolder outperforms the others on all datasets. However, BESST fares favorably to the other tested scaffolders on GAGE datasets and, moreover, outperforms the other methods when library insert size distribution is wide. We conclude from our results that information sources other than the quantity of links, as is commonly used, can provide useful information about genome structure when scaffolding.

  7. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  8. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  9. Nanoengineered Carbon Scaffolds for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O' Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M.

    2009-01-01

    Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

  10. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  11. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  12. Investigating the Effect of Scaffolding in Modern Game Design

    DEFF Research Database (Denmark)

    Jensen, Kasper Halkjær; Kraus, Martin

    2017-01-01

    of not knowing what to do. This paper investigates the effects that scaffolding in games has on players’ experience of a game. To this end, a custom game was designed and implemented that contained a number of different scenarios with different types of scaffolding. This was used to conduct an experiment on 18......Nowadays, game developers are much more focused on providing players with short-term rewards for overcoming challenges than they have been previously. This has resulted in a lot of games having more scaffolding to teach the players what to do, so they don’t quit the games in frustration...

  13. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    Science.gov (United States)

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  14. Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.

    Science.gov (United States)

    Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V

    2016-08-01

    We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds.

  15. hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks

    International Nuclear Information System (INIS)

    Berglund, Fredrik M.; Clarke, Paul R.

    2009-01-01

    Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.

  16. Structural Transformation of Wireframe DNA Origami via DNA Polymerase Assisted Gap-Filling.

    Science.gov (United States)

    Agarwal, Nayan P; Matthies, Michael; Joffroy, Bastian; Schmidt, Thorsten L

    2018-03-27

    The programmability of DNA enables constructing nanostructures with almost any arbitrary shape, which can be decorated with many functional materials. Moreover, dynamic structures can be realized such as molecular motors and walkers. In this work, we have explored the possibility to synthesize the complementary sequences to single-stranded gap regions in the DNA origami scaffold cost effectively by a DNA polymerase rather than by a DNA synthesizer. For this purpose, four different wireframe DNA origami structures were designed to have single-stranded gap regions. This reduced the number of staple strands needed to determine the shape and size of the final structure after gap filling. For this, several DNA polymerases and single-stranded binding (SSB) proteins were tested, with T4 DNA polymerase being the best fit. The structures could be folded in as little as 6 min, and the subsequent optimized gap-filling reaction was completed in less than 3 min. The introduction of flexible gap regions results in fully collapsed or partially bent structures due to entropic spring effects. Finally, we demonstrated structural transformations of such deformed wireframe DNA origami structures with DNA polymerases including the expansion of collapsed structures and the straightening of curved tubes. We anticipate that this approach will become a powerful tool to build DNA wireframe structures more material-efficiently, and to quickly prototype and test new wireframe designs that can be expanded, rigidified, or mechanically switched. Mechanical force generation and structural transitions will enable applications in structural DNA nanotechnology, plasmonics, or single-molecule biophysics.

  17. DNA-directed self-assembly of gold nanoparticles into binary and ternary nanostructures

    International Nuclear Information System (INIS)

    Yao Hui; Yi Changqing; Tzang Chihung; Zhu Junjie; Yang Mengsu

    2007-01-01

    The assembly and characterization of gold nanoparticle-based binary and ternary structures are reported. Two strategies were used to assemble gold nanoparticles into ordered nanoscale architectures: in strategy 1, gold nanoparticles were functionalized with single-strand DNA (ssDNA) first, and then hybridized with complementary ssDNA-labelled nanoparticles to assemble designed architectures. In strategy 2, the designed architectures were constructed through hybridization between complementary ssDNA first, then by assembling gold nanoparticles to the scaffolding through gold-sulfur bonds. Both TEM measurements and agarose gel electrophoresis confirmed that the latter strategy is more efficient in generating the designed nanostructures

  18. Localization and dynamics of small circular DNA in live mammalian nuclei

    DEFF Research Database (Denmark)

    Mearini, Giulia; Nielsen, Peter E; Fackelmayer, Frank O

    2004-01-01

    with intranuclear structural sites that strongly reduce its mobility and restrict the DNA to regions excluding nucleoli and nuclear bodies such as PML bodies. The labeled plasmids partially co-localize with SAF-A, a well characterized marker protein for the nuclear 'scaffold' or 'matrix', and are resistant towards...

  19. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  20. Characterization of Mechanical Properties of Tissue Scaffolds by Phase Contrast Imaging and Finite Element Modeling.

    Science.gov (United States)

    Bawolin, Nahshon K; Dolovich, Allan T; Chen, Daniel X B; Zhang, Chris W J

    2015-08-01

    In tissue engineering, the cell and scaffold approach has shown promise as a treatment to regenerate diseased and/or damaged tissue. In this treatment, an artificial construct (scaffold) is seeded with cells, which organize and proliferate into new tissue. The scaffold itself biodegrades with time, leaving behind only newly formed tissue. The degradation qualities of the scaffold are critical during the treatment period, since the change in the mechanical properties of the scaffold with time can influence cell behavior. To observe in time the scaffold's mechanical properties, a straightforward method is to deform the scaffold and then characterize scaffold deflection accordingly. However, experimentally observing the scaffold deflection is challenging. This paper presents a novel study on characterization of mechanical properties of scaffolds by phase contrast imaging and finite element modeling, which specifically includes scaffold fabrication, scaffold imaging, image analysis, and finite elements (FEs) modeling of the scaffold mechanical properties. The innovation of the work rests on the use of in-line phase contrast X-ray imaging at 20 KeV to characterize tissue scaffold deformation caused by ultrasound radiation forces and the use of the Fourier transform to identify movement. Once deformation has been determined experimentally, it is then compared with the predictions given by the forward solution of a finite element model. A consideration of the number of separate loading conditions necessary to uniquely identify the material properties of transversely isotropic and fully orthotropic scaffolds is also presented, along with the use of an FE as a form of regularization.

  1. Manufacture of degradable polymeric scaffolds for bone regeneration.

    Science.gov (United States)

    Ge, Zigang; Jin, Zhaoxia; Cao, Tong

    2008-06-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques.

  2. Put reading first: Positive effects of direct instruction and scaffolding ...

    African Journals Online (AJOL)

    Put reading first: Positive effects of direct instruction and scaffolding for ESL learners struggling with reading. ... are intended to open up for debate a topic of critical importance to the country's education system. ... AJOL African Journals Online.

  3. A Framework for Designing Scaffolds That Improve Motivation and Cognition

    Science.gov (United States)

    Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.

    2013-01-01

    A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b) problem-based learning and scaffolding as one way to help, (c) how scaffolding has strayed from what was originally equal parts motivational and cognitive support, and (d) a conceptual framework for the design of scaffolds that can enhance motivation as well as cognitive outcomes. We propose guidelines for the design of computer-based scaffolds to promote motivation and engagement while students are solving authentic problems. Remaining questions and suggestions for future research are then discussed. PMID:24273351

  4. Protein scaffolds and higher-order complexes in synthetic biology

    NARCIS (Netherlands)

    den Hamer, A.; Rosier, B.J.H.M.; Brunsveld, L.; de Greef, T.F.A.; Ryadnov, M.; Brunsveld, L.; Suga, H.

    2017-01-01

    Interactions between proteins control molecular functions such as signalling or metabolic activity. Assembly of proteins via scaffold proteins or in higher-order complexes is a key regulatory mechanism. Understanding and functionally applying this concept requires the construction, study, and

  5. Extracellular matrix scaffolds for cartilage and bone regeneration

    NARCIS (Netherlands)

    Benders, K.E.M.; van Weeren, P.R.; Badylak, S.F.; Saris, Daniël B.F.; Dhert, W.J.A.; Malda, J.

    2013-01-01

    Regenerative medicine approaches based on decellularized extracellular matrix (ECM) scaffolds and tissues are rapidly expanding. The rationale for using ECM as a natural biomaterial is the presence of bioactive molecules that drive tissue homeostasis and regeneration. Moreover, appropriately

  6. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Ge Zigang; Jin Zhaoxia; Cao Tong

    2008-01-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  7. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  8. Bioactive glass-based scaffolds for bone tissue engineering

    NARCIS (Netherlands)

    Will, J.; Gerhardt, L.C.; Boccaccini, A.R.

    2012-01-01

    Originally developed to fill and restore bone defects, bioactive glasses are currently also being intensively investigated for bone tissue engineering applications. In this chapter, we review and discuss current knowledge on porous bone tissue engineering scaffolds made from bioactive silicate

  9. Influence of preparation method on hydroxyapatite porous scaffolds

    Indian Academy of Sciences (India)

    Administrator

    Hydroxyapatite (HA) is extensively used in medical applications as an artificial bone because of its similarity to ... system, have been applied to fabricate HA porous scaffolds. In this work .... ceramic structured by the colloidal processing was.

  10. Biomimetic Composite Scaffold for Breast Reconstruction Following Tumor Resection

    National Research Council Canada - National Science Library

    Patrick, Jr, Charles W

    2005-01-01

    ... of life and outcomes are markedly improved. We hypothesized that a novel composite material consisting of silk fibroin and chitosan will act as a biomimetic scaffold amenable to in vivo adipogenesis. The specific aims (SAs...

  11. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  12. PENGARUH METODE SCAFFOLDING BERBASIS KONSTRUKTIVISME TERHADAP HASIL BELAJAR MATEMATIKA

    Directory of Open Access Journals (Sweden)

    Indrawati Indrawati

    2017-01-01

    ABSTRACT This study is motivated by the fact that many students have difficulties in learning mathematics especially for junior highschool students. This study aims to know the implementation of scaffolding method based on constructivism to students’ mathematics achievement. This is an experimental study with one group pretest and posttest design. The sample were 32 students grade VIII. Data is analyzed by t-test and n-gain test. T-test result shows that sig=0,000<0,05, The average score increases 15,63 and based on N-gain test shows that students competence increases too. It means that scaffolding method based on constructivism influence students’ mathematics achievement significantly. Thus scaffolding method based on constructivism can be implemented in any instruction, because it can increase students’ achievement and students will get learning variation that can reduce boredom and motivate them to learn actively. Keywords: mathematics achievement; constructivism; scaffolding.

  13. Role of scaffold mean pore size in meniscus regeneration.

    Science.gov (United States)

    Zhang, Zheng-Zheng; Jiang, Dong; Ding, Jian-Xun; Wang, Shao-Jie; Zhang, Lei; Zhang, Ji-Ying; Qi, Yan-Song; Chen, Xue-Si; Yu, Jia-Kuo

    2016-10-01

    Recently, meniscus tissue engineering offers a promising management for meniscus regeneration. Although rarely reported, the microarchitectures of scaffolds can deeply influence the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation in meniscus tissue engineering. Herein, a series of three-dimensional (3D) poly(ε-caprolactone) (PCL) scaffolds with three distinct mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The scaffold with the mean pore size of 215μm significantly improved both the proliferation and extracellular matrix (ECM) production/deposition of mesenchymal stem cells compared to all other groups in vitro. Moreover, scaffolds with mean pore size of 215μm exhibited the greatest tensile and compressive moduli in all the acellular and cellular studies. In addition, the relatively better results of fibrocartilaginous tissue formation and chondroprotection were observed in the 215μm scaffold group after substituting the rabbit medial meniscectomy for 12weeks. Overall, the mean pore size of 3D-printed PCL scaffold could affect cell behavior, ECM production, biomechanics, and repair effect significantly. The PCL scaffold with mean pore size of 215μm presented superior results both in vitro and in vivo, which could be an alternative for meniscus tissue engineering. Meniscus tissue engineering provides a promising strategy for meniscus regeneration. In this regard, the microarchitectures (e.g., mean pore size) of scaffolds remarkably impact the behaviors of cells and subsequent tissue formation, which has been rarely reported. Herein, three three-dimensional poly(ε-caprolactone) scaffolds with different mean pore sizes (i.e., 215, 320, and 515μm) were fabricated via fused deposition modeling. The results suggested that the mean pore size significantly affected the behaviors of endogenous or exogenous stem/progenitor cells and subsequent tissue formation. This study furthers

  14. Adventures in Scaffold Morphing: Discovery of Fused Ring Heterocyclic Checkpoint Kinase 1 (CHK1) Inhibitors.

    Science.gov (United States)

    Yang, Bin; Vasbinder, Melissa M; Hird, Alexander W; Su, Qibin; Wang, Haixia; Yu, Yan; Toader, Dorin; Lyne, Paul D; Read, Jon A; Breed, Jason; Ioannidis, Stephanos; Deng, Chun; Grondine, Michael; DeGrace, Nancy; Whitston, David; Brassil, Patrick; Janetka, James W

    2018-02-08

    Checkpoint kinase 1 (CHK1) inhibitors are potential cancer therapeutics that can be utilized for enhancing the efficacy of DNA damaging agents. Multiple small molecule CHK1 inhibitors from different chemical scaffolds have been developed and evaluated in clinical trials in combination with chemotherapeutics and radiation treatment. Scaffold morphing of thiophene carboxamide ureas (TCUs), such as AZD7762 (1) and a related series of triazoloquinolines (TZQs), led to the identification of fused-ring bicyclic CHK1 inhibitors, 7-carboxamide thienopyridines (7-CTPs), and 7-carboxamide indoles. X-ray crystal structures reveal a key intramolecular noncovalent sulfur-oxygen interaction in aligning the hinge-binding carboxamide group to the thienopyridine core in a coplanar fashion. An intramolecular hydrogen bond to an indole NH was also effective in locking the carboxamide in the preferred bound conformation to CHK1. Optimization on the 7-CTP series resulted in the identification of lead compound 44, which displayed respectable drug-like properties and good in vitro and in vivo potency.

  15. Impact of scaffolding and question structure on the gender gap

    Directory of Open Access Journals (Sweden)

    Hillary Dawkins

    2017-09-01

    Full Text Available We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question scaffolding into account, we identify questions that exhibit real bias in favor of male students. We find that both multidimensional context and use of diagrams are common elements of such questions.

  16. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Shanmugasundaram, Shobana; Chaudhry, Hans; Arinzeh, Treena Livingston

    2011-03-01

    Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.

  17. Impact of scaffolding and question structure on the gender gap

    Science.gov (United States)

    Dawkins, Hillary; Hedgeland, Holly; Jordan, Sally

    2017-12-01

    We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question scaffolding into account, we identify questions that exhibit real bias in favor of male students. We find that both multidimensional context and use of diagrams are common elements of such questions.

  18. Tubular Scaffold with Shape Recovery Effect for Cell Guide Applications

    Directory of Open Access Journals (Sweden)

    Kazi M. Zakir Hossain

    2015-07-01

    Full Text Available Tubular scaffolds with aligned polylactic acid (PLA fibres were fabricated for cell guide applications by immersing rolled PLA fibre mats into a polyvinyl acetate (PVAc solution to bind the mats. The PVAc solution was also mixed with up to 30 wt % β-tricalcium phosphate (β-TCP content. Cross-sectional images of the scaffold materials obtained via scanning electron microscopy (SEM revealed the aligned fibre morphology along with a significant number of voids in between the bundles of fibres. The addition of β-TCP into the scaffolds played an important role in increasing the void content from 17.1% to 25.3% for the 30 wt % β-TCP loading, which was measured via micro-CT (µCT analysis. Furthermore, µCT analyses revealed the distribution of aggregated β-TCP particles in between the various PLA fibre layers of the scaffold. The compressive modulus properties of the scaffolds increased from 66 MPa to 83 MPa and the compressive strength properties decreased from 67 MPa to 41 MPa for the 30 wt % β-TCP content scaffold. The scaffolds produced were observed to change into a soft and flexible form which demonstrated shape recovery properties after immersion in phosphate buffered saline (PBS media at 37 °C for 24 h. The cytocompatibility studies (using MG-63 human osteosarcoma cell line revealed preferential cell proliferation along the longitudinal direction of the fibres as compared to the control tissue culture plastic. The manufacturing process highlighted above reveals a simple process for inducing controlled cell alignment and varying porosity features within tubular scaffolds for potential tissue engineering applications.

  19. Collagen as potential cell scaffolds for tissue engineering.

    Science.gov (United States)

    Annuar, N; Spier, R E

    2004-05-01

    Selections of collagen available commercially were tested for their biocompatibility as scaffold to promote cell growth in vitro via simple collagen fast test and cultivation of mammalian cells on the selected type of collagen. It was found that collagen type C9791 promotes the highest degree of aggregation as well as cells growth. This preliminary study also indicated potential use of collagen as scaffold in engineered tissue.

  20. A Guide to Scaffold Use in the Construction Industry

    Science.gov (United States)

    2001-01-01

    1926.451(e)(5)) and •integral prefabricated frames. (1926.451(e)(6)) What are the access requirements for employees erecting and dismantling supported...guardrails which block employee access to the cantilevered end. (6) On scaffolds where scaffold planks are abutted to create a long platform, each... abutted end shall rest on a separate support surface. This provision does not preclude the use of common support members, such as “T” sections, to support

  1. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration.

  2. Quantum dots–DNA bioconjugates: synthesis to applications

    Science.gov (United States)

    2016-01-01

    Semiconductor nanoparticles particularly quantum dots (QDs) are interesting alternatives to organic fluorophores for a range of applications such as biosensing, imaging and therapeutics. Addition of a programmable scaffold such as DNA to QDs further expands the scope and applicability of these hybrid nanomaterials in biology. In this review, the most important stages of preparation of QD–DNA conjugates for specific applications in biology are discussed. Special emphasis is laid on (i) the most successful strategies to disperse QDs in aqueous media, (ii) the range of different conjugation with detailed discussion about specific merits and demerits in each case, and (iii) typical applications of these conjugates in the context of biology. PMID:27920898

  3. In vitro mesenchymal trilineage differentiation and extracellular matrix production by adipose and bone marrow derived adult equine multipotent stromal cells on a collagen scaffold.

    Science.gov (United States)

    Xie, Lin; Zhang, Nan; Marsano, Anna; Vunjak-Novakovic, Gordana; Zhang, Yanru; Lopez, Mandi J

    2013-12-01

    Directed differentiation of adult multipotent stromal cells (MSC) is critical for effective treatment strategies. This study was designed to evaluate the capability of equine MSC from bone marrow (BMSC) and adipose tissue (ASC) on a type I collagen (COLI) scaffold to undergo chondrogenic, osteogenic and adipogenic differentiation and form extracellular matrix (ECM) in vitro. Following determination of surface antigen expression, MSC were loaded into scaffolds in a perfusion bioreactor and loading efficiency was quantified. Cell-scaffold constructs were assessed after loading and 7, 14 and 21 days of culture in stromal or induction medium. Cell number was determined with DNA content, cell viability and spatial uniformity with confocal laser microscopy and cell phenotype and matrix production with light and scanning electron microscopy and mRNA levels. The MSC were positive for CD29 (>90 %), CD44 (>99 %), and CD105 (>60 %). Loading efficiencies were >70 %. The ASC and BMSC cell numbers on scaffolds were affected by culture in induction medium differently. Viable cells remained uniformly distributed in scaffolds for up to 21 days and could be directed to differentiate or to maintain an MSC phenotype. Micro- and ultrastructure showed lineage-specific cell and ECM changes. Lineage-specific mRNA levels differed between ASC and BMSC with induction and changed with time. Based on these results, equine ASC and BMSC differentiate into chondrogenic, osteogenic and adipogenic lineages and form ECM similarly on COLI scaffolds. The collected data supports the potential for equine MSC-COLI constructs to support diverse equine tissue formation for controlled biological studies.

  4. Application of DNA Machineries for the Barcode Patterned Detection of Genes or Proteins.

    Science.gov (United States)

    Zhou, Zhixin; Luo, Guofeng; Wulf, Verena; Willner, Itamar

    2018-06-05

    The study introduces an analytical platform for the detection of genes or aptamer-ligand complexes by nucleic acid barcode patterns generated by DNA machineries. The DNA machineries consist of nucleic acid scaffolds that include specific recognition sites for the different genes or aptamer-ligand analytes. The binding of the analytes to the scaffolds initiate, in the presence of the nucleotide mixture, a cyclic polymerization/nicking machinery that yields displaced strands of variable lengths. The electrophoretic separation of the resulting strands provides barcode patterns for the specific detection of the different analytes. Mixtures of DNA machineries that yield, upon sensing of different genes (or aptamer ligands), one-, two-, or three-band barcode patterns are described. The combination of nucleic acid scaffolds acting, in the presence of polymerase/nicking enzyme and nucleotide mixture, as DNA machineries, that generate multiband barcode patterns provide an analytical platform for the detection of an individual gene out of many possible genes. The diversity of genes (or other analytes) that can be analyzed by the DNA machineries and the barcode patterned imaging is given by the Pascal's triangle. As a proof-of-concept, the detection of one of six genes, that is, TP53, Werner syndrome, Tay-Sachs normal gene, BRCA1, Tay-Sachs mutant gene, and cystic fibrosis disorder gene by six two-band barcode patterns is demonstrated. The advantages and limitations of the detection of analytes by polymerase/nicking DNA machineries that yield barcode patterns as imaging readout signals are discussed.

  5. Laser printing of cells into 3D scaffolds

    International Nuclear Information System (INIS)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B; Pflaum, M; Wilhelmi, M; Haverich, A

    2010-01-01

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  6. Automated quality characterization of 3D printed bone scaffolds

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-07-01

    Full Text Available Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner microstructures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

  7. Investigation of cancer cell behavior on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Szot, Christopher S.; Buchanan, Cara F. [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Gatenholm, Paul [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Rylander, Marissa Nichole [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States); Freeman, Joseph W., E-mail: jwfreeman@vt.edu [School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 (United States)

    2011-01-01

    Tissue engineering and the use of nanofibrous biomaterial scaffolds offer a unique perspective for studying cancer development in vitro. Current in vitro models of tumorigenesis are limited by the use of static, two-dimensional (2D) cell culture monolayers that lack the structural architecture necessary for cell-cell interaction and three-dimensional (3D) scaffolds that are too simplistic for studying basic pathological mechanisms. In this study, two nanofibrous biomaterials that mimic the structure of the extracellular matrix, bacterial cellulose and electrospun polycaprolactone (PCL)/collagen I, were investigated as potential 3D scaffolds for an in vitro cancer model. Multiple cancer cell lines were cultured on each scaffold material and monitored for cell viability, proliferation, adhesion, infiltration, and morphology. Both bacterial cellulose and electrospun PCL/collagen I, which have nano-scale structures on the order of 100-500 nm, have been used in many diverse tissue engineering applications. Cancer cell adhesion and growth were limited on bacterial cellulose, while all cellular processes were enhanced on the electrospun scaffolds. This initial analysis has demonstrated the potential of electrospun PCL/collagen I scaffolds toward the development of an improved 3D in vitro cancer model.

  8. Scaffolding as an effort for thinking process optimization on heredity

    Science.gov (United States)

    Azizah, N. R.; Masykuri, M.; Prayitno, B. A.

    2018-04-01

    Thinking is an activity and process of manipulating and transforming data or information into memory. Thinking process is different between one and other person. Thinking process can be developed by interaction between student and their environment, such as scaffolding. Given scaffolding is based on each student necessity. There are 2 level on scaffolding such as explaining, reviewing, and restructuring; and developing conceptual thinking. This research is aimed to describe student’s thinking process on heredity especially on inheritance that is before and after scaffolding. This research used descriptive qualitative method. There were three kinds of subject degree such as the students with high, middle, and low achieving students. The result showed that subjects had some difficulty in dihybrid inheritance question in different place. Most difficulty was on determining the number of different characteristic, parental genotype, gamete, and ratio of genotype and phenotype F2. Based on discussed during scaffolding showed that the subjects have some misunderstanding terms and difficulty to determine parental, gamete, genotype, and phenotype. Final result in this research showed that the subjects develop thinking process higher after scaffolding. Therefore the subjects can solve question properly.

  9. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    Science.gov (United States)

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-05

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.

    Science.gov (United States)

    Spalazzi, Jeffrey P; Vyner, Moira C; Jacobs, Matthew T; Moffat, Kristen L; Lu, Helen H

    2008-08-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-alpha-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-beta3 (TGF-beta3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.

  11. Scaffold filling, contig fusion and comparative gene order inference

    Directory of Open Access Journals (Sweden)

    Rounsley Steve

    2010-06-01

    Full Text Available Abstract Background There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Results Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. Conclusions The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  12. Scaffold filling, contig fusion and comparative gene order inference.

    Science.gov (United States)

    Muñoz, Adriana; Zheng, Chunfang; Zhu, Qian; Albert, Victor A; Rounsley, Steve; Sankoff, David

    2010-06-04

    There has been a trend in increasing the phylogenetic scope of genome sequencing without finishing the sequence of the genome. Increasing numbers of genomes are being published in scaffold or contig form. Rearrangement algorithms, however, including gene order-based phylogenetic tools, require whole genome data on gene order or syntenic block order. How then can we use rearrangement algorithms to compare genomes available in scaffold form only? Can the comparative evidence predict the location of unsequenced genes? Our method involves optimally filling in genes missing from the scaffolds, while incorporating the augmented scaffolds directly into the rearrangement algorithms as if they were chromosomes. This is accomplished by an exact, polynomial-time algorithm. We then correct for the number of extra fusion/fission operations required to make scaffolds comparable to full assemblies. We model the relationship between the ratio of missing genes actually absent from the genome versus merely unsequenced ones, on one hand, and the increase of genomic distance after scaffold filling, on the other. We estimate the parameters of this model through simulations and by comparing the angiosperm genomes Ricinus communis and Vitis vinifera. The algorithm solves the comparison of genomes with 18,300 genes, including 4500 missing from one genome, in less than a minute on a MacBook, putting virtually all genomes within range of the method.

  13. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy-cell transplantation approach.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M; Jiang, Tao; Wirtel, Anthony J; Deng, Meng; Lv, Qing; Nair, Lakshmi S; Doty, Steven B; Laurencin, Cato T

    2008-08-12

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials.

  14. Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: A combined gene therapy–cell transplantation approach

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Starnes, Trevor; Khan, Yusuf M.; Jiang, Tao; Wirtel, Anthony J.; Deng, Meng; Lv, Qing; Nair, Lakshmi S.; Doty, Steven B.; Laurencin, Cato T.

    2008-01-01

    One of the fundamental principles underlying tissue engineering approaches is that newly formed tissue must maintain sufficient vascularization to support its growth. Efforts to induce vascular growth into tissue-engineered scaffolds have recently been dedicated to developing novel strategies to deliver specific biological factors that direct the recruitment of endothelial cell (EC) progenitors and their differentiation. The challenge, however, lies in orchestration of the cells, appropriate biological factors, and optimal factor doses. This study reports an approach as a step forward to resolving this dilemma by combining an ex vivo gene transfer strategy and EC transplantation. The utility of this approach was evaluated by using 3D poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for bone tissue engineering applications. Our goal was achieved by isolation and transfection of adipose-derived stromal cells (ADSCs) with adenovirus encoding the cDNA of VEGF. We demonstrated that the combination of VEGF releasing ADSCs and ECs results in marked vascular growth within PLAGA scaffolds. We thereby delineate the potential of ADSCs to promote vascular growth into biomaterials. PMID:18678895

  15. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  16. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  17. Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering applications.

    Science.gov (United States)

    Jayakumar, R; Ramachandran, Roshni; Divyarani, V V; Chennazhi, K P; Tamura, H; Nair, S V

    2011-03-01

    In this study, we prepared chitin-chitosan/nano TiO(2) composite scaffolds using lyophilization technique for bone tissue engineering. The prepared composite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the composite scaffolds were evaluated. The developed composite scaffold showed controlled swelling and degradation when compared to the control scaffold. Cytocompatibility of the scaffold was assessed by MTT assay and cell attachment studies using osteoblast-like cells (MG-63), fibroblast cells (L929) and human mesenchymal stem cells (hMSCs). Results indicated no sign of toxicity and cells were found attached to the pore walls within the scaffolds. These results suggested that the developed composite scaffold possess the prerequisites for tissue engineering scaffolds and it can be used for tissue engineering applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Porous poly (lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications

    International Nuclear Information System (INIS)

    Wang Yingjun; Shi Xuetao; Ren Li; Wang Chunming; Wang Dongan

    2009-01-01

    In this paper, a new route to preparing porous poly (lactic-co-glycolide) (PLGA) scaffolds for bone tissue repair applications was developed. Novel porous PLGA scaffolds were fabricated via microsphere sintered technique and gas forming technique. Ammonium bicarbonate was used to regulate porosity of these porous scaffolds. Porosity of the scaffolds, and cell attachment, viability and proliferation on the scaffolds were evaluated. The results indicated that PLGA porous scaffolds were with the porosity from around 30% to 95% by regulating ammonium bicarbonate content from 0 to 10%. We also found that PLGA porous microsphere scaffolds benefited cell attachment and viability. Taken together, the achieved porous scaffolds have controlled porosity and also support mesenchymal stem cell proliferation, which could serve as potential scaffolds for bone repair applications.

  19. Magnesium Oxide Nanoparticles Reinforced Electrospun Alginate-Based Nanofibrous Scaffolds with Improved Physical Properties

    Directory of Open Access Journals (Sweden)

    R. T. De Silva

    2017-01-01

    Full Text Available Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol (PVA polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm at a predetermined concentration (10% (w/w, is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P<0.05. In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues.

  20. [Three-dimensional parallel collagen scaffold promotes tendon extracellular matrix formation].

    Science.gov (United States)

    Zheng, Zefeng; Shen, Weiliang; Le, Huihui; Dai, Xuesong; Ouyang, Hongwei; Chen, Weishan

    2016-03-01

    To investigate the effects of three-dimensional parallel collagen scaffold on the cell shape, arrangement and extracellular matrix formation of tendon stem cells. Parallel collagen scaffold was fabricated by unidirectional freezing technique, while random collagen scaffold was fabricated by freeze-drying technique. The effects of two scaffolds on cell shape and extracellular matrix formation were investigated in vitro by seeding tendon stem/progenitor cells and in vivo by ectopic implantation. Parallel and random collagen scaffolds were produced successfully. Parallel collagen scaffold was more akin to tendon than random collagen scaffold. Tendon stem/progenitor cells were spindle-shaped and unified orientated in parallel collagen scaffold, while cells on random collagen scaffold had disorder orientation. Two weeks after ectopic implantation, cells had nearly the same orientation with the collagen substance. In parallel collagen scaffold, cells had parallel arrangement, and more spindly cells were observed. By contrast, cells in random collagen scaffold were disorder. Parallel collagen scaffold can induce cells to be in spindly and parallel arrangement, and promote parallel extracellular matrix formation; while random collagen scaffold can induce cells in random arrangement. The results indicate that parallel collagen scaffold is an ideal structure to promote tendon repairing.

  1. Development of hybrid scaffolds using ceramic and hydrogel for articular cartilage tissue regeneration.

    Science.gov (United States)

    Seol, Young-Joon; Park, Ju Young; Jeong, Wonju; Kim, Tae-Ho; Kim, Shin-Yoon; Cho, Dong-Woo

    2015-04-01

    The regeneration of articular cartilage consisting of hyaline cartilage and hydrogel scaffolds has been generally used in tissue engineering. However, success in in vivo studies has been rarely reported. The hydrogel scaffolds implanted into articular cartilage defects are mechanically unstable and it is difficult for them to integrate with the surrounding native cartilage tissue. Therefore, it is needed to regenerate cartilage and bone tissue simultaneously. We developed hybrid scaffolds with hydrogel scaffolds for cartilage tissue and with ceramic scaffolds for bone tissue. For in vivo study, hybrid scaffolds were press-fitted into osteochondral tissue defects in a rabbit knee joints and the cartilage tissue regeneration in blank, hydrogel scaffolds, and hybrid scaffolds was compared. In 12th week after implantation, the histological and immunohistochemical analyses were conducted to evaluate the cartilage tissue regeneration. In the blank and hydrogel scaffold groups, the defects were filled with fibrous tissues and the implanted hydrogel scaffolds could not maintain their initial position; in the hybrid scaffold group, newly generated cartilage tissues were morphologically similar to native cartilage tissues and were smoothly connected to the surrounding native tissues. This study demonstrates hybrid scaffolds containing hydrogel and ceramic scaffolds can provide mechanical stability to hydrogel scaffolds and enhance cartilage tissue regeneration at the defect site. © 2014 Wiley Periodicals, Inc.

  2. Fabrication of chitosan/gallic acid 3D microporous scaffold for tissue engineering applications.

    Science.gov (United States)

    Thangavel, Ponrasu; Ramachandran, Balaji; Muthuvijayan, Vignesh

    2016-05-01

    This study explores the potential of gallic acid incorporated chitosan (CS/GA) 3D scaffolds for tissue engineering applications. Scaffolds were prepared by freezing and lyophilization technique and characterized. FTIR spectra confirmed the presence of GA in chitosan (CS) gel. DSC and TGA analysis revealed that the structure of chitosan was not altered due to the incorporation of GA, but thermal stability was significantly increased compared to the CS scaffold. SEM micrographs showed smooth, homogeneous, and microporous architecture of the scaffolds with good interconnectivity. CS/GA scaffolds exhibited approximately 90% porosity on average, increased swelling (600-900%) and controlled biodegradation (15-40%) in PBS (pH 7.4 at 37°C) with 1 mg/mL of lysozyme. CS/GA scaffolds showed 2-4 fold decrease in CFUs (p < 0.05) for both gram positive and gram negative bacteria compared to the CS scaffold. Cytotoxicity of these scaffolds was evaluated using NIH 3T3 L1 fibroblast cells. CS/GA 0.25% scaffold showed similar viability with CS scaffold at 24 and 48 h. CS/GA scaffolds (0.5-1.0%) showed 60-75% viability at 24 h and 90% at 48 h. SEM images showed that an increased cell attachment was observed for CS/GA scaffolds compared to CS scaffolds. These findings authenticate that CS/GA scaffolds were cytocompatible and would be useful for tissue engineering applications. © 2015 Wiley Periodicals, Inc.

  3. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    International Nuclear Information System (INIS)

    Chhabra, Hemlata; Gupta, Priyanka; Verma, Paul J.; Jadhav, Sameer; Bellare, Jayesh R.

    2014-01-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold

  4. The response of tenocytes to commercial scaffolds used for rotator cuff repair

    Directory of Open Access Journals (Sweden)

    RDJ Smith

    2017-01-01

    Full Text Available Surgical repairs of rotator cuff tears have high re-tear rates and many scaffolds have been developed to augment the repair. Understanding the interaction between patients’ cells and scaffolds is important for improving scaffold performance and tendon healing. In this in vitro study, we investigated the response of patient-derived tenocytes to eight different scaffolds. Tested scaffolds included X-Repair, Poly-Tape, LARS Ligament, BioFiber (synthetic scaffolds, BioFiber-CM (biosynthetic scaffold, GraftJacket, Permacol, and Conexa (biological scaffolds. Cell attachment, proliferation, gene expression, and morphology were assessed. After one day, more cells attached to synthetic scaffolds with dense, fine and aligned fibres (X-Repair and Poly-Tape. Despite low initial cell attachment, the human dermal scaffold (GraftJacket promoted the greatest proliferation of cells over 13 days. Expression of collagen types I and III were upregulated in cells grown on non-cross-linked porcine dermis (Conexa. Interestingly, the ratio of collagen I to collagen III mRNA was lower on all dermal scaffolds compared to synthetic and biosynthetic scaffolds. These findings demonstrate significant differences in the response of patient-derived tendon cells to scaffolds that are routinely used for rotator cuff surgery. Synthetic scaffolds promoted increased cell adhesion and a tendon-like cellular phenotype, while biological scaffolds promoted cell proliferation and expression of collagen genes. However, no single scaffold was superior. Our results may help understand the way that patients’ cells interact with scaffolds and guide the development of new scaffolds in the future.

  5. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Hemlata [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); Gupta, Priyanka [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India); IITB-Monash Research Academy, Mumbai (India); Department of Chemical Engineering, Monash University, Melbourne (Australia); Verma, Paul J. [Turretfield Research Centre, South Australian Research and Development Institute, Rosedale, South Australia (Australia); Jadhav, Sameer; Bellare, Jayesh R. [Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai (India)

    2014-04-01

    We introduce a new composite scaffold of gelatin and polymethyl vinyl ether-alt-maleic anhydride (PMVE/MA) for expansion of embryonic stem cells (ESCs) in an in vitro environment. To optimize the scaffold, we prepared a gelatin scaffold (G) and three composite scaffolds namely GP-1, GP-2, and GP-3 with varying PMVE/MA concentrations (0.2–1%) and characterized them by scanning electron microscopy (SEM), swelling study, compression testing and FTIR. SEM micrographs revealed interconnected porous structure in all the scaffolds. The permissible hemolysis ratio and activation of platelets by scaffolds confirmed the hemocompatibility of scaffolds. Initial biocompatibility assessment of scaffolds was conducted using hepatocarcinoma (Hep G2) cells and adhesion, proliferation and infiltration of Hep G2 cells in depth of scaffolds were observed, proving the scaffold's biocompatibility. Further Oct4B2 mouse embryonic stem cells (mESCs), which harbor a green fluorescence protein transgene under regulatory control of the Oct4 promotor, were examined for expansion on scaffolds with MTT assay. The GP-2 scaffold demonstrated the best cell proliferation and was further explored for ESC adherence and infiltration in depth (SEM and confocal), and pluripotent state of mESCs was assessed with the expression of Oct4-GFP and stage-specific embryonic antigen-1 (SSEA-1). This study reports the first demonstration of biocompatibility of gelatin–PMVE/MA composite scaffold and presents this scaffold as a promising candidate for embryonic stem cell based tissue engineering. - Highlights: • Composite scaffolds of gelatin and PMVE/MA were prepared by freeze-drying method. • SEM micrographs showed porous structure in all scaffolds of varying pore dimension. • GP-2 composite exhibited better cellular response in comparison to other scaffolds. • mESCs proliferated and expressed Oct-4 and SSEA-1, when cultured on GP-2 scaffold.

  6. Dark matter maps reveal cosmic scaffolding

    Energy Technology Data Exchange (ETDEWEB)

    Massey, R; Rhodes, J; Ellis, R; Scoville, N; Capak, P [CALTECH, Pasadena, CA 91125 (United States); Rhodes, J [CALTECH, Jet Prop Lab, Pasadena, CA 91109 (United States); Leauthaud, A; Kneib, J P [Lab Astrophys Marseille, F-13376 Marseille, (France); Finoguenov, A [Max Planck Inst Extraterr Phys, D-85748 Garching, (Germany); Bacon, D; Taylor, A [Inst Astron, Edinburgh EH9 3HJ, Midlothian, (United Kingdom); Aussel, H; Refregier, A [CNRS, CEA, Unite Mixte Rech, AIM, F-91191 Gif Sur Yvette, (France); Koekemoer, A; Mobasher, B [Univ Paris 07, CE Saclay, UMR 7158, F-91191 Gif Sur Yvette, (France); McCracken, H [Space Telescope Sci Inst, Baltimore, MD 21218 (United States); Pires, S; Starck, J L [Univ Paris 06, Inst Astrophys Paris, F-75014 Paris, (France); Pires, S [Ctr Etud Saclay, CEA, DSM, DAPNIA, SEDI, F-91191 Gif Sur Yvette, (France); Sasaki, S; Taniguchi, Y [Ehime Univ, Dept Phys, Matsuyama, Ehime 7908577, (Japan); Taylor, J [Univ Waterloo, Dept Phys and Astron, Waterloo, ON N2L 3G1, (Canada)

    2007-07-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  7. Dark matter maps reveal cosmic scaffolding

    International Nuclear Information System (INIS)

    Massey, R.; Rhodes, J.; Ellis, R.; Scoville, N.; Capak, P.; Rhodes, J.; Leauthaud, A.; Kneib, J.P.; Finoguenov, A.; Bacon, D.; Taylor, A.; Aussel, H.; Refregier, A.; Koekemoer, A.; Mobasher, B.; McCracken, H.; Pires, S.; Starck, J.L.; Pires, S.; Sasaki, S.; Taniguchi, Y.; Taylor, J.

    2007-01-01

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter - whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built. (authors)

  8. Dark matter maps reveal cosmic scaffolding.

    Science.gov (United States)

    Massey, Richard; Rhodes, Jason; Ellis, Richard; Scoville, Nick; Leauthaud, Alexie; Finoguenov, Alexis; Capak, Peter; Bacon, David; Aussel, Hervé; Kneib, Jean-Paul; Koekemoer, Anton; McCracken, Henry; Mobasher, Bahram; Pires, Sandrine; Refregier, Alexandre; Sasaki, Shunji; Starck, Jean-Luc; Taniguchi, Yoshi; Taylor, Andy; Taylor, James

    2007-01-18

    Ordinary baryonic particles (such as protons and neutrons) account for only one-sixth of the total matter in the Universe. The remainder is a mysterious 'dark matter' component, which does not interact via electromagnetism and thus neither emits nor reflects light. As dark matter cannot be seen directly using traditional observations, very little is currently known about its properties. It does interact via gravity, and is most effectively probed through gravitational lensing: the deflection of light from distant galaxies by the gravitational attraction of foreground mass concentrations. This is a purely geometrical effect that is free of astrophysical assumptions and sensitive to all matter--whether baryonic or dark. Here we show high-fidelity maps of the large-scale distribution of dark matter, resolved in both angle and depth. We find a loose network of filaments, growing over time, which intersect in massive structures at the locations of clusters of galaxies. Our results are consistent with predictions of gravitationally induced structure formation, in which the initial, smooth distribution of dark matter collapses into filaments then into clusters, forming a gravitational scaffold into which gas can accumulate, and stars can be built.

  9. Calcium phosphate cement scaffolds with PLGA fibers.

    Science.gov (United States)

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Scaffolding conceptual change in early childhood

    Science.gov (United States)

    Fleer, Marilyn

    1990-01-01

    The general educational literature draws our attention to the limitations of Piaget’s work and presents a number of interesting ideas that science educators and researchers could consider. Of interest are Soviet psychologist Lev Vygotsky’s writings on the zone of proximal development and the more recent writings of Jerome Bruner on scaffolding. The notion of learning as a a socially constructed process in opposition to the more individualistic orientation of Piaget has challenged much of our educational practice. This paper will briefly explore the basic tenets of constructivism and contrast the theories developed from within this paradigm to the work of Vygotsky and Bruner through an analysis of classroom discourse collected from a number of early childhood classes involved in the interactive teaching approach to science. Transcripts of teacher-child discourse are presented as evidence to support the proposition that when the teacher’s role is not clearly defined, the range of teacher-child interactions will vary enormously, and the subsequent learning outcomes for children will be quite different.

  11. Novel Textile Scaffolds Generated by Flock Technology for Tissue Engineering of Bone and Cartilage.

    Science.gov (United States)

    Walther, Anja; Hoyer, Birgit; Springer, Armin; Mrozik, Birgit; Hanke, Thomas; Cherif, Chokri; Pompe, Wolfgang; Gelinsky, Michael

    2012-03-22

    Textile scaffolds can be found in a variety of application areas in regenerative medicine and tissue engineering. In the present study we used electrostatic flocking-a well-known textile technology-to produce scaffolds for tissue engineering of bone. Flock scaffolds stand out due to their unique structure: parallel arranged fibers that are aligned perpendicularly to a substrate, resulting in mechanically stable structures with a high porosity. In compression tests we demonstrated good mechanical properties of such scaffolds and in cell culture experiments we showed that flock scaffolds allow attachment and proliferation of human mesenchymal stem cells and support their osteogenic differentiation. These matrices represent promising scaffolds for tissue engineering.

  12. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Uswatta, Suren P.; Okeke, Israel U. [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Jayasuriya, Ambalangodage C., E-mail: a.jayasuriya@utoledo.edu [Department of Bioengineering, The University of Toledo, Toledo, OH 43614 (United States); Department of Orthopaedic Surgery, The University of Toledo, Toledo, OH 43614 (United States)

    2016-12-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  13. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration

    International Nuclear Information System (INIS)

    Uswatta, Suren P.; Okeke, Israel U.; Jayasuriya, Ambalangodage C.

    2016-01-01

    In this study we have fabricated porous injectable spherical scaffolds using chitosan biopolymer, sodium tripolyphosphate (TPP) and nano-hydroxyapatite (nHA). TPP was primarily used as an ionic crosslinker to crosslink nHA/chitosan droplets. We hypothesized that incorporating nHA into chitosan could support osteoconduction by emulating the mineralized cortical bone structure, and improve the Ultimate Compressive Strength (UCS) of the scaffolds. We prepared chitosan solutions with 0.5%, 1% and 2% (w/v) nHA concentration and used simple coacervation and lyophilization techniques to obtain spherical scaffolds. Lyophilized spherical scaffolds had a mean diameter of 1.33 mm (n = 25). Further, portion from each group lyophilized scaffolds were soaked and dried to obtain Lyophilized Soaked and Dried (LSD) scaffolds. LSD scaffolds had a mean diameter of 0.93 mm (n = 25) which is promising property for the injectability. Scanning Electron Microscopy images showed porous surface morphology and interconnected pore structures inside the scaffolds. Lyophilized and LSD scaffolds had surface pores < 10 and 2 μm, respectively. 2% nHA/chitosan LSD scaffolds exhibited UCS of 8.59 MPa compared to UCS of 2% nHA/chitosan lyophilized scaffolds at 3.93 MPa. Standardize UCS values were 79.98 MPa and 357 MPa for 2% nHA/chitosan lyophilized and LSD particles respectively. One-way ANOVA results showed a significant increase (p < 0.001) in UCS of 1% and 2% nHA/chitosan lyophilized scaffolds compared to 0% and 0.5% nHA/chitosan lyophilized scaffolds. Moreover, 2% nHA LSD scaffolds had significantly increased (p < 0.005) their mean UCS by 120% compared to 2% nHA lyophilized scaffolds. In a drawback, all scaffolds have lost their mechanical properties by 95% on the 2nd day when fully immersed in phosphate buffered saline. Additionally live and dead cell assay showed no cytotoxicity and excellent osteoblast attachment to both lyophilized and LSD scaffolds at the end of 14th day of in vitro

  14. In vitro cartilage construct generation from silk fibroin- chitosan porous scaffold and umbilical cord blood derived human mesenchymal stem cells in dynamic culture condition.

    Science.gov (United States)

    Agrawal, Parinita; Pramanik, Krishna; Biswas, Amit; Ku Patra, Ranjan

    2018-02-01

    Cartilage construct generation includes a scaffold with appropriate composition to mimic matrix of the damaged tissue on which the stem cells grow and differentiate. In this study, umbilical cord blood (UCB) derived human mesenchymal stem cells (hMSCs) were seeded on freeze dried porous silk-fibroin (SF)/chitosan (CS) scaffolds. Influence of static and dynamic (spinner flask bioreactor) culture conditions on the developing cartilage construct were studied by in-vitro characterization for viability, proliferation, distribution, and chondrogenic differentiation of hMSCs over the scaffold. Constructs developed in spinner flask consisted of 62% live cells, and exhibited 543% more cell density at the core than constructs cultured in static system. Quantification of DNA and glycosaminoglycans accumulation after 21 days showed the progression of chondrogenic differentiation of hMSCs was higher in dynamic culture compared to static one. In constructs generated under dynamic condition, histology staining for proteoglycan matrix, and fluorescence staining for collagen-II and aggrecan showed positive correlation between early and late stage chondrogenic markers, which was further confirmed by quantitative PCR analysis, showing low collagen-I expression and highly expressed Sox9, collagen-II and aggrecan. The present study demonstrated that construct generated by combining 3D SF/CS scaffold with UCB-hMSCs under dynamic condition using spinner flask bioreactor can be used for cartilage tissue regeneration for future medical treatments. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 397-407, 2018. © 2017 Wiley Periodicals, Inc.

  15. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  16. An in vitro study of bone cells grown on an electrospun scaffold for bone repair and reconstruction

    CSIR Research Space (South Africa)

    Wepener, I

    2012-10-01

    Full Text Available This presentation focuses on the manufacturing of the electrospun scaffold and the in vitro testing of this scaffold by making use of human cells. This scaffold is a possible candidate for repair and reconstruction of bone tissue....

  17. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.

    Science.gov (United States)

    Wang, Junping; Valmikinathan, Chandra M; Liu, Wei; Laurencin, Cato T; Yu, Xiaojun

    2010-05-01

    Polymeric nanofiber matrices have already been widely used in tissue engineering. However, the fabrication of nanofibers into complex three-dimensional (3D) structures is restricted due to current manufacturing techniques. To overcome this limitation, we have incorporated nanofibers onto spiral-structured 3D scaffolds made of poly (epsilon-caprolactone) (PCL). The spiral structure with open geometries, large surface areas, and porosity will be helpful for improving nutrient transport and cell penetration into the scaffolds, which are otherwise limited in conventional tissue-engineered scaffolds for large bone defects repair. To investigate the effect of structure and fiber coating on the performance of the scaffolds, three groups of scaffolds including cylindrical PCL scaffolds, spiral PCL scaffolds (without fiber coating), and spiral-structured fibrous PCL scaffolds (with fiber coating) have been prepared. The morphology, porosity, and mechanical properties of the scaffolds have been characterized. Furthermore, human osteoblast cells are seeded on these scaffolds, and the cell attachment, proliferation, differentiation, and mineralized matrix deposition on the scaffolds are evaluated. The results indicated that the spiral scaffolds possess porosities within the range of human trabecular bone and an appropriate pore structure for cell growth, and significantly lower compressive modulus and strength than cylindrical scaffolds. When compared with the cylindrical scaffolds, the spiral-structured scaffolds demonstrated enhanced cell proliferation, differentiation, and mineralization and allowed better cellular growth and penetration. The incorporation of nanofibers onto spiral scaffolds further enhanced cell attachment, proliferation, and differentiation. These studies suggest that spiral-structured nanofibrous scaffolds may serve as promising alternatives for bone tissue engineering applications. Copyright 2009 Wiley Periodicals, Inc.

  18. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuoyue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Song, Yue [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Zhang, Jing [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); Liu, Wei [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Cui, Jihong, E-mail: cjh@nwu.edu.cn [Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province 710069 (China); Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 TaiBai North Road, Xi' an, Shaanxi Province, 710069 (China); and others

    2017-03-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  19. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering

    International Nuclear Information System (INIS)

    Chen, Zhuoyue; Song, Yue; Zhang, Jing; Liu, Wei; Cui, Jihong

    2017-01-01

    Electrospinning is an effective means to generate nano- to micro-scale polymer fibers resembling native extracellular matrix for tissue engineering. However, a major problem of electrospun materials is that limited pore size and porosity may prevent adequate cellular infiltration and tissue ingrowth. In this study, we first prepared thin layers of hydroxyapatite nanoparticle (nHA)/poly-hydroxybutyrate (PHB) via electrospinning. We then laminated the nHA/PHB thin layers to obtain a scaffold for cell seeding and bone tissue engineering. The results demonstrated that the laminated scaffold possessed optimized cell-loading capacity. Bone marrow mesenchymal stem cells (MSCs) exhibited better adherence, proliferation and osteogenic phenotypes on nHA/PHB scaffolds than on PHB scaffolds. Thereafter, we seeded MSCs onto nHA/PHB scaffolds to fabricate bone grafts. Histological observation showed osteoid tissue formation throughout the scaffold, with most of the scaffold absorbed in the specimens 2 months after implantation, and blood vessels ingrowth into the graft could be observed in the graft. We concluded that electrospun and laminated nanoscaled biocomposite scaffolds hold great therapeutic potential for bone regeneration. - Highlights: • We laminated the nHA/PHB layers to obtain a scaffold for bone tissue engineering. • The laminated scaffold performed optimized cell-loading capacity. • MSCs exhibited osteogenic phenotypes on the laminated scaffold. • Osteoid tissue formed throughout the laminated scaffold after 2 months in vivo. The laminated bio-composite scaffolds can be applied to bone regeneration.

  20. Reinforced nanohydroxyapatite/polyamide66 scaffolds by chitosan coating for bone tissue engineering.

    Science.gov (United States)

    Huang, Di; Zuo, Yi; Zou, Qin; Wang, Yanying; Gao, Shibo; Wang, Xiaoyan; Liu, Haohuai; Li, Yubao

    2012-01-01

    High porosity of scaffold is always accompanied by poor mechanical property; the aim of this study was to enhance the strength and modulus of the highly porous scaffold of nanohydroxyapatite/polyamide66 (n-HA/PA66) by coating chitosan (CS) and to investigate the effect of CS content on the scaffold physical properties and cytological properties. The results show that CS coating can reinforce the scaffold effectively. The compress modulus and strength of the CS coated n-HA/PA66 scaffolds are improved to 32.71 and 2.38 MPa, respectively, being about six times and five times of those of the uncoated scaffolds. Meanwhile, the scaffolds still exhibit a highly interconnected porous structure and the porosity is approximate about 78%, slightly lower than the value (84%) of uncoated scaffold. The cytological properties of scaffolds were also studied in vitro by cocultured with osteoblast-like MG63 cells. The cytological experiments demonstrate that the reinforced scaffolds display favorable cytocompatibility and have no significant difference with the uncoated n-HA/PA66 scaffolds. The CS reinforced n-HA/PA66 scaffolds can meet the basic mechanical requirement of bone tissue engineering scaffold, presenting a potential for biomedical application in bone reconstruction and repair. Copyright © 2011 Wiley Periodicals, Inc.

  1. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  2. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  3. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbar-Mohammadi, Marziyeh [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Bahrami, S. Hajir, E-mail: hajirb@aut.ac.ir [Textile Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Center for excellence Modern Textile Characterization, Tehran (Iran, Islamic Republic of)

    2015-03-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  4. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds

    International Nuclear Information System (INIS)

    Ranjbar-Mohammadi, Marziyeh; Bahrami, S. Hajir

    2015-01-01

    Outstanding wound healing activity of gum tragacanth (GT) and higher mechanical strength of poly (ε-caprolactone) (PCL) may produce an excellent nanofibrous patch for either skin tissue engineering or wound dressing application. PCL/GT scaffold containing different concentrations of PCL with different blend ratios of GT/PCL was produced using 90% acetic acid as solvent. The results demonstrated that the PCL/GT (3:1.5) with PCL concentration of 20% (w/v) produced nanofibers with proper morphology. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were utilized to characterize the nanofibers. Surface wettability, functional groups analysis, porosity and tensile properties of nanofibers were evaluated. Morphological characterization showed that the addition of GT to PCL solution results in decreasing the average diameter of the PCL/GT nanofibers. However, the hydrophilicity increased in the PCL/GT nanofibers. Slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. PCL/GT nanofibers were used for in vitro cell culture of human fibroblast cell lines AGO and NIH 3T3 fibroblast cells. MTT assay and SEM results showed that the biocomposite PCL/GT mats enhanced the fibroblast adhesion and proliferation compared to PCL scaffolds. The antibacterial activity of PCL/GT and GT nanofibers against Staphylococcus aureus and Pseudomonas aeruginosa was also examined. - Highlights: • A new skin tissue engineering scaffold from poly (ε-caprolactone) (PCL) and gum tragacanth (GT) has been developed. • These scaffolds might be an effectual simulator of the structure and composition of native skin. • Very slight increase in melting peaks was observed due to the blending of PCL with GT nanofibers. • Biodegradation, water uptake and hydrophilicity properties of these scaffolds showed that produced scaffolds were adherent. • The electrospun PCL/GT scaffold can promote the skin regeneration of full

  5. Effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Department of Bone and Joint Surgery, The affiliated hospital of Luzhou Medical College, Luzhou 646000 (China); Qing, Quan [Sichuan College of Traditional Chinese Medicine, Mianyang 621000 (China); Regenerative Medicine Research Center, West China Hospital of Sichuan University, Chengdu 610041 (China); Chen, Xi; Liu, Cheng-Jun; Luo, Jing-Cong [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China); Hu, Jin-Lian [Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong (China); Qin, Ting-Wu, E-mail: tingwuqin@hotmail.com [State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2016-12-01

    Highlights: • The shapes of tenocytes varied when seeded on different surface of scaffolds. • Tenocytes were flat on smooth surface and spindle on micro-grooved surface. • Tenocytes were ellipse or spindle on porous surface. • Tenocytes got varying adhesion shape and elongation index on varying surfaces. • The tenocyte survival on porous surface was superior to the other two groups. - Abstract: The purpose of this study was to investigate the effects of scaffold surface morphology on cell adhesion and survival rate in vitreous cryopreservation of tenocyte-scaffold constructs. Tenocytes were obtained from tail tendons of rats. Polydimethylsiloxane (PDMS) was used to fabricate three types of scaffolds with varying surface morphological characteristics, i.e., smooth, micro-grooved, and porous surfaces, respectively. The tenocytes were seeded on the surfaces of the scaffolds to form tenocyte-scaffold constructs. The constructs were cryopreserved in a vitreous cryoprotectant (CPA) with a multi-step protocol. The cell adhesion to scaffolds was observed with electronic scanning microscopy (SEM). The elongation index of the living tenocytes and ratio of live/dead cell number were examined based on a live/dead dual fluorescent staining technique, and the survival rate of tenocytes was studied with flow cytometry (FC). The results showed the shapes of tenocytes varied between the different groups: flat or polygonal (on smooth surface), spindle (on micro-grooved surface), and spindle or ellipse (on porous surface). After thawing, the porous surface got the most living tenocytes and a higher survival rate, suggesting its potential application for vitreous cryopreservation of engineered tendon constructs.

  6. Cascade DNA nanomachine and exponential amplification biosensing.

    Science.gov (United States)

    Xu, Jianguo; Wu, Zai-Sheng; Shen, Weiyu; Xu, Huo; Li, Hongling; Jia, Lee

    2015-11-15

    DNA is a versatile scaffold for the assembly of multifunctional nanostructures, and potential applications of various DNA nanodevices have been recently demonstrated for disease diagnosis and treatment. In the current study, a powerful cascade DNA nanomachine was developed that can execute the exponential amplification of p53 tumor suppressor gene. During the operation of the newly-proposed DNA nanomachine, dual-cyclical nucleic acid strand-displacement polymerization (dual-CNDP) was ingeniously introduced, where the target trigger is repeatedly used as the fuel molecule and the nicked fragments are dramatically accumulated. Moreover, each displaced nicked fragment is able to activate the another type of cyclical strand-displacement amplification, increasing exponentially the value of fluorescence intensity. Essentially, one target binding event can induce considerable number of subsequent reactions, and the nanodevice was called cascade DNA nanomachine. It can implement several functions, including recognition element, signaling probe, polymerization primer and template. Using the developed autonomous operation of DNA nanomachine, the p53 gene can be quantified in the wide concentration range from 0.05 to 150 nM with the detection limit of 50 pM. If taking into account the final volume of mixture, the detection limit is calculated as lower as 6.2 pM, achieving an desirable assay ability. More strikingly, the mutant gene can be easily distinguished from the wild-type one. The proof-of-concept demonstrations reported herein is expected to promote the development and application of DNA nanomachine, showing great potential value in basic biology and medical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Polycaprolactone Scaffolds Fabricated via Bioextrusion for Tissue Engineering Applications

    Directory of Open Access Journals (Sweden)

    Marco Domingos

    2009-01-01

    Full Text Available The most promising approach in Tissue Engineering involves the seeding of porous, biocompatible/biodegradable scaffolds, with donor cells to promote tissue regeneration. Additive biomanufacturing processes are increasingly recognized as ideal techniques to produce 3D structures with optimal pore size and spatial distribution, providing an adequate mechanical support for tissue regeneration while shaping in-growing tissues. This paper presents a novel extrusion-based system to produce 3D scaffolds with controlled internal/external geometry for TE applications.The BioExtruder is a low-cost system that uses a proper fabrication code based on the ISO programming language enabling the fabrication of multimaterial scaffolds. Poly(ε-caprolactone was the material chosen to produce porous scaffolds, made by layers of directionally aligned microfilaments. Chemical, morphological, and in vitro biological evaluation performed on the polymeric constructs revealed a high potential of the BioExtruder to produce 3D scaffolds with regular and reproducible macropore architecture, without inducing relevant chemical and biocompatibility alterations of the material.

  8. Injectable biomimetic liquid crystalline scaffolds enhance muscle stem cell transplantation

    Science.gov (United States)

    Sleep, Eduard; McClendon, Mark T.; Preslar, Adam T.; Chen, Charlotte H.; Sangji, M. Hussain; Pérez, Charles M. Rubert; Haynes, Russell D.; Meade, Thomas J.; Blau, Helen M.; Stupp, Samuel I.

    2017-01-01

    Muscle stem cells are a potent cell population dedicated to efficacious skeletal muscle regeneration, but their therapeutic utility is currently limited by mode of delivery. We developed a cell delivery strategy based on a supramolecular liquid crystal formed by peptide amphiphiles (PAs) that encapsulates cells and growth factors within a muscle-like unidirectionally ordered environment of nanofibers. The stiffness of the PA scaffolds, dependent on amino acid sequence, was found to determine the macroscopic degree of cell alignment templated by the nanofibers in vitro. Furthermore, these PA scaffolds support myogenic progenitor cell survival and proliferation and they can be optimized to induce cell differentiation and maturation. We engineered an in vivo delivery system to assemble scaffolds by injection of a PA solution that enabled coalignment of scaffold nanofibers with endogenous myofibers. These scaffolds locally retained growth factors, displayed degradation rates matching the time course of muscle tissue regeneration, and markedly enhanced the engraftment of muscle stem cells in injured and noninjured muscles in mice. PMID:28874575

  9. Maternal scaffolding behavior: links with parenting style and maternal education.

    Science.gov (United States)

    Carr, Amanda; Pike, Alison

    2012-03-01

    The purpose of this study was to specify the relationship between positive and harsh parenting and maternal scaffolding behavior. A 2nd aim was to disentangle the effects of maternal education and parenting quality, and a 3rd aim was to test whether parenting quality mediated the association between maternal education and scaffolding practices. We examined associations between positive and harsh parenting practices and contingent and noncontingent tutoring strategies. Ninety-six mother-child dyads (49 boys, 47 girls) from working- and middle-class English families participated. Mothers reported on parenting quality at Time 1 when children were 5 years old and again approximately 5 years later at Time 2. Mother-child pairs were observed working together on a block design task at Time 2, and interactions were coded for contingent (contingent shifting) and noncontingent (fixed failure feedback) dimensions of maternal scaffolding behavior. Positive and harsh parenting accounted for variance in contingent behavior over and above maternal education, whereas only harsh parenting accounted for unique variance in noncontingent scaffolding practices. Our findings provide new evidence for a more differentiated model of the relation between general parenting quality and specific scaffolding behaviors. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  10. Manufacturing of calcium phosphate scaffolds by pseudomorphic transformation of gypsum

    Energy Technology Data Exchange (ETDEWEB)

    Araujo Batista, H. de.; Batista Cardoso, M.; Sales Vasconcelos, A.; Vinicius Lia Fook, M.; Rodriguez Barbero, M. A.; Garcia Carrodeguas, R.

    2016-08-01

    Carbonated hydroxyapatite (CHAp) and β-tricalcium phosphate (β-TCP) have been employed for decades as constituents of scaffolds for bone regeneration because they chemically resemble bone mineral. In this study, the feasibility to manufacture CHAp/β-TCP scaffolds by pseudomorphic transformation of casted blocks of gypsum was investigated. The transformation was carried out by immersing the precursor gypsum block in 1 M (NH{sub 4}){sub 2}HPO{sub 4}/1.33 M NH{sub 4}OH solution with liquid/solid ratio of 10 mL/g and autoclaving at 120 degree centigrade and 203 kPa (2 atm) for 3 h at least. Neither shape nor dimensions significantly changed during transformation. The composition of scaffolds treated for 3 h was 70 wt.% CHAp and 30 wt.% β-TCP, and their compressive and diametral compressive strengths were 6.5 ± 0.7 and 5.3 ±0.7 MPa, respectively. By increasing the time of treatment to 6 h, the composition of the scaffold enriched in β-TCP (60 wt.% CHAp and 40 wt.% β-TCP) but its compressive and diametral compressive strengths were not significantly affected (6.7 ± 0.9 and 5.4 ± 0.6 MPa, respectively). On the basis of the results obtained, it was concluded that this route is a good approach to the manufacturing of biphasic (CHAp/β-TCP) scaffolds from previously shaped pieces of gypsum. (Author)

  11. Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

    Science.gov (United States)

    Lim, Janice; You, Mingliang; Li, Jian; Li, Zibiao

    2017-10-01

    Polyhydroxyalkanoates (PHAs) are a class of biodegradable polymers derived from microorganisms. On top of their biodegradability and biocompatibility, different PHA types can contribute to varying mechanical and chemical properties. This has led to increasing attention to the use of PHAs in numerous biomedical applications over the past few decades. Bone tissue engineering refers to the regeneration of new bone through providing mechanical support while inducing cell growth on the PHA scaffolds having a porous structure for tissue regeneration. This review first introduces the various properties PHA scaffold that make them suitable for bone tissue engineering such as biocompatibility, biodegradability, mechanical properties as well as vascularization. The typical fabrication techniques of PHA scaffolds including electrospinning, salt-leaching and solution casting are further discussed, followed by the relatively new technology of using 3D printing in PHA scaffold fabrication. Finally, the recent progress of using different types of PHAs scaffold in bone tissue engineering applications are summarized in intrinsic PHA/blends forms or as composites with other polymeric or inorganic hybrid materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Novel scaffold design with multi-grooved PLA fibers

    International Nuclear Information System (INIS)

    Chung, Sangwon; King, Martin W; Gamcsik, Mike P

    2011-01-01

    A novel prototype nonwoven textile structure containing polylactide (PLA) multigrooved fibers has been proposed as a possible scaffold material for superior cell attachment and proliferation. Grooved cross-sectional fibers with larger surface area were obtained by a bi-component spinning system and the complete removal of the sacrificial component was confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray photon spectroscopy (XPS) analysis. These PLA nonwoven scaffolds containing the grooved fibers exhibited enhanced wettability, greater flexibility and tensile properties, and a larger surface area compared to a traditional PLA nonwoven fabric containing round fibers. To evaluate cellular attachment on the two types of PLA nonwoven scaffolds, NIH 3T3 fibroblasts were cultured for up to 12 days. It was evident that the initial cellular attachment was superior on the scaffold with grooved fibers, which was confirmed by MTT viability assay (p < 0.01) and SEM analysis. In the future, by modulating the size of the grooves on the fibers, such a scaffold material with a large surface area could serve as an alternative matrix for culturing different types of cells.

  13. Osteochondral tissue engineering: scaffolds, stem cells and applications

    Science.gov (United States)

    Nooeaid, Patcharakamon; Salih, Vehid; Beier, Justus P; Boccaccini, Aldo R

    2012-01-01

    Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment. PMID:22452848

  14. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  15. Fabrication and characterization of calcium phosphate cement scaffolds

    International Nuclear Information System (INIS)

    Sousa, E. de; Motisuke, M.; Bertran, C.A.

    2011-01-01

    In Tissue Engineering, the need for scaffolds which are capable of guiding the organization, differentiation and growth of cells leading to the formation of new tissues is highly relevant. For the development of new scaffolds focused on bone tissue therapy, calcium phosphate cements (CPC) have great potential, because besides their resorbability, they present morphology and chemical composition similar to the bone mineral phase. Moreover, there are several processing techniques to produce ceramic scaffolds: polymeric sponge replication, incorporation of organic material into the ceramic powder, gelcasting, emulsion, among others. The aim of this work was to obtain CPCs scaffolds by using two techniques, emulsion and gelcasting. The scaffolds were characterized by their physical and mechanical properties and the crystalline phases formed after the setting reaction of cement were determined by X-ray diffraction. The samples obtained by both methods presented porosity between 61-65% and the microstructure consists of nearly spherical pores (d5o = 50-100 μm). The mechanical strength of the samples ranged from 5.5 to 1.5 MPa. The crystalline phases found were monetite (CaHPO 4 ) and brushite (CaHPO 4 2H 2 O). (author)

  16. Computer aided design of architecture of degradable tissue engineering scaffolds.

    Science.gov (United States)

    Heljak, M K; Kurzydlowski, K J; Swieszkowski, W

    2017-11-01

    One important factor affecting the process of tissue regeneration is scaffold stiffness loss, which should be properly balanced with the rate of tissue regeneration. The aim of the research reported here was to develop a computer tool for designing the architecture of biodegradable scaffolds fabricated by melt-dissolution deposition systems (e.g. Fused Deposition Modeling) to provide the required scaffold stiffness at each stage of degradation/regeneration. The original idea presented in the paper is that the stiffness of a tissue engineering scaffold can be controlled during degradation by means of a proper selection of the diameter of the constituent fibers and the distances between them. This idea is based on the size-effect on degradation of aliphatic polyesters. The presented computer tool combines a genetic algorithm and a diffusion-reaction model of polymer hydrolytic degradation. In particular, we show how to design the architecture of scaffolds made of poly(DL-lactide-co-glycolide) with the required Young's modulus change during hydrolytic degradation.

  17. Multilayer porous UHMWPE scaffolds for bone defects replacement.

    Science.gov (United States)

    Maksimkin, A V; Senatov, F S; Anisimova, N Yu; Kiselevskiy, M V; Zalepugin, D Yu; Chernyshova, I V; Tilkunova, N A; Kaloshkin, S D

    2017-04-01

    Reconstruction of the structural integrity of the damaged bone tissue is an urgent problem. UHMWPE may be potentially used for the manufacture of porous implants simulating as closely as possible the porous cancellous bone tissue. But the extremely high molecular weight of the polymer does not allow using traditional methods of foaming. Porous and multilayer UHMWPE scaffolds with nonporous bulk layer and porous layer that mimics cancellous bone architecture were obtained by solid-state mixing, thermopressing and washing in subcritical water. Structural and mechanical properties of the samples were studied. Porous UHMWPE samples were also studied in vitro and in vivo. The pores of UHMWPE scaffold are open and interconnected. Volume porosity of the obtained samples was 79±2%; the pore size range was 80-700μm. Strong connection of the two layers in multilayer UHMWPE scaffolds was observed with decreased number of fusion defects. Functionality of implants based on multilayer UHMWPE scaffolds is provided by the fixation of scaffolds in the bone defect through ingrowths of the connective tissue into the pores, which ensures the maintenance of the animals' mobility. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Proangiogenic scaffolds as functional templates for cardiac tissue engineering.

    Science.gov (United States)

    Madden, Lauran R; Mortisen, Derek J; Sussman, Eric M; Dupras, Sarah K; Fugate, James A; Cuy, Janet L; Hauch, Kip D; Laflamme, Michael A; Murry, Charles E; Ratner, Buddy D

    2010-08-24

    We demonstrate here a cardiac tissue-engineering strategy addressing multicellular organization, integration into host myocardium, and directional cues to reconstruct the functional architecture of heart muscle. Microtemplating is used to shape poly(2-hydroxyethyl methacrylate-co-methacrylic acid) hydrogel into a tissue-engineering scaffold with architectures driving heart tissue integration. The construct contains parallel channels to organize cardiomyocyte bundles, supported by micrometer-sized, spherical, interconnected pores that enhance angiogenesis while reducing scarring. Surface-modified scaffolds were seeded with human ES cell-derived cardiomyocytes and cultured in vitro. Cardiomyocytes survived and proliferated for 2 wk in scaffolds, reaching adult heart densities. Cardiac implantation of acellular scaffolds with pore diameters of 30-40 microm showed angiogenesis and reduced fibrotic response, coinciding with a shift in macrophage phenotype toward the M2 state. This work establishes a foundation for spatially controlled cardiac tissue engineering by providing discrete compartments for cardiomyocytes and stroma in a scaffold that enhances vascularization and integration while controlling the inflammatory response.

  19. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  20. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  1. Surface-modified functionalized polycaprolactone scaffolds for bone repair

    DEFF Research Database (Denmark)

    Jensen, Jonas; Rölfing, Jan Hendrik Duedal; Svend Le, Dang Quang

    2014-01-01

    A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM-PCL). Af......A porcine calvaria defect study was carried out to investigate the bone repair potential of three-dimensional (3D)-printed poly-ε-caprolactone (PCL) scaffolds embedded with nanoporous PCL. A microscopic grid network was created by rapid prototyping making a 3D-fused deposition model (FDM......-PCL). Afterward, the FDM-PCL scaffolds were infused with a mixture of PCL, water, and 1,4-dioxane and underwent a thermal-induced phase separation (TIPS) followed by lyophilization. The TIPS process lead to a nanoporous structure shielded by the printed microstructure (NSP-PCL). Sixteen Landrace pigs were divided...... into two groups with 8 and 12 weeks follow-up, respectively. A total of six nonpenetrating holes were drilled in the calvaria of each animal. The size of the cylindrical defects was h 10 mm and Ø 10 mm. The defects were distributed randomly using following groups: (a) NSP-PCL scaffold, (b) FDM-PCL scaffold...

  2. Selection of antigenic markers on a GFP-Cκ fusion scaffold with high sensitivity by eukaryotic ribosome display

    International Nuclear Information System (INIS)

    Yang Yongmin; Barankiewicz, Teresa J.; He Mingyue; Taussig, Michael J.; Chen, Swey-Shen

    2007-01-01

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Cκ) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Cκ (3') were selected by anti-GFP or anti-Cκ antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins

  3. Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display

    Energy Technology Data Exchange (ETDEWEB)

    Yongmin, Yang [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Barankiewicz, Teresa J [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Mingyue, He [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Taussig, Michael J [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Chen, Swey-Shen [Institute of Genetics, San Diego, CA 92121-2233 (United States) and IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States)

    2007-07-27

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

  4. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  5. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  6. A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes.

    Science.gov (United States)

    Ji, Lijun; Qiao, Wei; Zhang, Yuheng; Wu, Huayu; Miao, Shiyong; Cheng, Zhilin; Gong, Qianming; Liang, Ji; Zhu, Aiping

    2017-09-01

    Mechanical properties and anti-infection are two of the most concerned issues for artificial bone grafting materials. Bone regeneration porous scaffolds with sustained drug release were developed by freeze-drying the mixture of nanosized drug-loaded halloysite nanotubes (HNTs) and gelatin. The scaffolds showed porous structure and excellent biocompatibility. The mechanical properties of the obtained composite scaffolds were enhanced significantly by HNTs to >300%, comparing to those of gelatin scaffold, and match to those of natural cancellous bones. The ibuprofen-loaded HNTs incorporated in the scaffolds allowed extended drug release over 100h, comparing to 8h when directly mixed the drug into the gelatin scaffold. The biological properties of the composite scaffolds were investigated by culturing MG63 cells on them. The HNTs/gelatin scaffolds with excellent mechanical properties and sustained drug release could be a promising artificial bone grating material. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  8. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  9. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika; Hama, Adel; Ferro, Magali; Pitsalidis, Charalampos; Oziat, Julie; Iandolo, Donata; Pappa, Anna-Maria; Hadida, Mikhael; Huerta, Miriam; Marchat, David; Mailley, Pascal; Owens, Ró isí n M.

    2017-01-01

    to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring

  10. Alendronate-Eluting Biphasic Calcium Phosphate (BCP Scaffolds Stimulate Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Sung Eun Kim

    2015-01-01

    Full Text Available Biphasic calcium phosphate (BCP scaffolds have been widely used in orthopedic and dental fields as osteoconductive bone substitutes. However, BCP scaffolds are not satisfactory for the stimulation of osteogenic differentiation and maturation. To enhance osteogenic differentiation, we prepared alendronate- (ALN- eluting BCP scaffolds. The coating of ALN on BCP scaffolds was confirmed by scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDS, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR. An in vitro release study showed that release of ALN from ALN-eluting BCP scaffolds was sustained for up to 28 days. In vitro results revealed that MG-63 cells grown on ALN-eluting BCP scaffolds exhibited increased ALP activity and calcium deposition and upregulated gene expression of Runx2, ALP, OCN, and OPN compared with the BCP scaffold alone. Therefore, this study suggests that ALN-eluting BCP scaffolds have the potential to effectively stimulate osteogenic differentiation.

  11. Image-Based Three-Dimensional Analysis to Characterize the Texture of Porous Scaffolds

    Directory of Open Access Journals (Sweden)

    Diana Massai

    2014-01-01

    Full Text Available The aim of the present study is to characterize the microstructure of composite scaffolds for bone tissue regeneration containing different ratios of chitosan/gelatin blend and bioactive glasses. Starting from realistic 3D models of the scaffolds reconstructed from micro-CT images, the level of heterogeneity of scaffold architecture is evaluated performing a lacunarity analysis. The results demonstrate that the presence of the bioactive glass component affects not only macroscopic features such as porosity, but mainly scaffold microarchitecture giving rise to structural heterogeneity, which could have an impact on the local cell-scaffold interaction and scaffold performances. The adopted approach allows to investigate the scale-dependent pore distribution within the scaffold and the related structural heterogeneity features, providing a comprehensive characterization of the scaffold texture.

  12. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair

    NARCIS (Netherlands)

    Guillaume, O.; Geven, M. A.; Sprecher, C. M.; Stadelmann, V. A.; Grijpma, D. W.; Tang, T.T.; Qin, L.; Lai, Y.; Alini, M.; de Bruijn, J. D.; Yuan, H.; Richards, R.G.; Eglin, D.

    2017-01-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated

  13. A comparison of scaffold-free and scaffold-based reconstructed human skin models as alternatives to animal use.

    Science.gov (United States)

    Kinikoglu, Beste

    2017-12-01

    Tissue engineered full-thickness human skin substitutes have various applications in the clinic and in the laboratory, such as in the treatment of burns or deep skin defects, and as reconstructed human skin models in the safety testing of drugs and cosmetics and in the fundamental study of skin biology and pathology. So far, different approaches have been proposed for the generation of reconstructed skin, each with its own advantages and disadvantages. Here, the classic tissue engineering approach, based on cell-seeded polymeric scaffolds, is compared with the less-studied cell self-assembly approach, where the cells are coaxed to synthesise their own extracellular matrix (ECM). The resulting full-thickness human skin substitutes were analysed by means of histological and immunohistochemical analyses. It was found that both the scaffold-free and the scaffold-based skin equivalents successfully mimicked the functionality and morphology of native skin, with complete epidermal differentiation (as determined by the expression of filaggrin), the presence of a continuous basement membrane expressing collagen VII, and new ECM deposition by dermal fibroblasts. On the other hand, the scaffold-free model had a thicker epidermis and a significantly higher number of Ki67-positive proliferative cells, indicating a higher capacity for self-renewal, as compared to the scaffold-based model. 2017 FRAME.

  14. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    Science.gov (United States)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  15. Annealing free, clean graphene transfer using alternative polymer scaffolds.

    Science.gov (United States)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Kaitz, Joshua A; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Dong, Hefei; Haasch, Richard T; Lyding, Joseph W; Pop, Eric

    2015-02-06

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications.

  16. Living bacterial sacrificial porogens to engineer decellularized porous scaffolds.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Decellularization and cellularization of organs have emerged as disruptive methods in tissue engineering and regenerative medicine. Porous hydrogel scaffolds have widespread applications in tissue engineering, regenerative medicine and drug discovery as viable tissue mimics. However, the existing hydrogel fabrication techniques suffer from limited control over pore interconnectivity, density and size, which leads to inefficient nutrient and oxygen transport to cells embedded in the scaffolds. Here, we demonstrated an innovative approach to develop a new platform for tissue engineered constructs using live bacteria as sacrificial porogens. E.coli were patterned and cultured in an interconnected three-dimensional (3D hydrogel network. The growing bacteria created interconnected micropores and microchannels. Then, the scafold was decellularized, and bacteria were eliminated from the scaffold through lysing and washing steps. This 3D porous network method combined with bioprinting has the potential to be broadly applicable and compatible with tissue specific applications allowing seeding of stem cells and other cell types.

  17. 3D printing process of oxidized nanocellulose and gelatin scaffold.

    Science.gov (United States)

    Xu, Xiaodong; Zhou, Jiping; Jiang, Yani; Zhang, Qi; Shi, Hongcan; Liu, Dongfang

    2018-08-01

    For tissue engineering applications tissue scaffolds need to have a porous structure to meet the needs of cell proliferation/differentiation, vascularisation and sufficient mechanical strength for the specific tissue. Here we report the results of a study of the 3D printing process for composite materials based on oxidized nanocellulose and gelatin, that was optimised through measuring rheological properties of different batches of materials after different crosslinking times, simulation of the pneumatic extrusion process and 3D scaffolds fabrication with Solidworks Flow Simulation, observation of its porous structure by SEM, measurement of pressure-pull performance, and experiments aimed at finding out the vitro cytotoxicity and cell morphology. The materials printed are highly porous scaffolds with good mechanical properties.

  18. Design properties of hydrogel tissue-engineering scaffolds

    Science.gov (United States)

    Zhu, Junmin; Marchant, Roger E

    2011-01-01

    This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626

  19. Design and 3D Printing of Scaffolds and Tissues

    Directory of Open Access Journals (Sweden)

    Jia An

    2015-06-01

    Full Text Available A growing number of three-dimensional (3D-printing processes have been applied to tissue engineering. This paper presents a state-of-the-art study of 3D-printing technologies for tissue-engineering applications, with particular focus on the development of a computer-aided scaffold design system; the direct 3D printing of functionally graded scaffolds; the modeling of selective laser sintering (SLS and fused deposition modeling (FDM processes; the indirect additive manufacturing of scaffolds, with both micro and macro features; the development of a bioreactor; and 3D/4D bioprinting. Technological limitations will be discussed so as to highlight the possibility of future improvements for new 3D-printing methodologies for tissue engineering.

  20. Fabrication of scaffolds in tissue engineering: A review

    Science.gov (United States)

    Zhao, Peng; Gu, Haibing; Mi, Haoyang; Rao, Chengchen; Fu, Jianzhong; Turng, Lih-sheng

    2018-03-01

    Tissue engineering (TE) is an integrated discipline that involves engineering and natural science in the development of biological materials to replace, repair, and improve the function of diseased or missing tissues. Traditional medical and surgical treatments have been reported to have side effects on patients caused by organ necrosis and tissue loss. However, engineered tissues and organs provide a new way to cure specific diseases. Scaffold fabrication is an important step in the TE process. This paper summarizes and reviews the widely used scaffold fabrication methods, including conventional methods, electrospinning, three-dimensional printing, and a combination of molding techniques. Furthermore, the differences among the properties of tissues, such as pore size and distribution, porosity, structure, and mechanical properties, are elucidated and critically reviewed. Some studies that combine two or more methods are also reviewed. Finally, this paper provides some guidance and suggestions for the future of scaffold fabrication.

  1. Scaffolding in geometry based on self regulated learning

    Science.gov (United States)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2017-12-01

    This research aim to know the influence of problem based learning model by scaffolding technique on junior high school student’s learning achievement. This research took location on the junior high school in Banyumas. The research data obtained through mathematic learning achievement test and self-regulated learning (SRL) questioner. Then, the data analysis used two ways ANOVA. The results showed that scaffolding has positive effect to the mathematic learning achievement. The mathematic learning achievement use PBL-Scaffolding model is better than use PBL. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  2. Soft chitosan microbeads scaffold for 3D functional neuronal networks.

    Science.gov (United States)

    Tedesco, Maria Teresa; Di Lisa, Donatella; Massobrio, Paolo; Colistra, Nicolò; Pesce, Mattia; Catelani, Tiziano; Dellacasa, Elena; Raiteri, Roberto; Martinoia, Sergio; Pastorino, Laura

    2018-02-01

    The availability of 3D biomimetic in vitro neuronal networks of mammalian neurons represents a pivotal step for the development of brain-on-a-chip experimental models to study neuronal (dys)functions and particularly neuronal connectivity. The use of hydrogel-based scaffolds for 3D cell cultures has been extensively studied in the last years. However, limited work on biomimetic 3D neuronal cultures has been carried out to date. In this respect, here we investigated the use of a widely popular polysaccharide, chitosan (CHI), for the fabrication of a microbead based 3D scaffold to be coupled to primary neuronal cells. CHI microbeads were characterized by optical and atomic force microscopies. The cell/scaffold interaction was deeply characterized by transmission electron microscopy and by immunocytochemistry using confocal microscopy. Finally, a preliminary electrophysiological characterization by micro-electrode arrays was carried out. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Tailored PVA/ECM Scaffolds for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Elena Stocco

    2014-01-01

    Full Text Available Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth. We realized a biohybrid composite scaffold combining a novel and nonspecific extracellular matrix (ECM, which is decellularized Wharton’s jelly ECM, with the biomechanical properties of the synthetic hydrogel polyvinyl alcohol (PVA. Wharton’s jelly ECM was tested for its ability in promoting scaffold colonization by chondrocytes and compared with polyvinyl alcohol itself and the more specific decellularized cartilage matrix. Our preliminary evidences highlighted the chance of using Wharton’s jelly ECM in combination with PVA hydrogels as an innovative and easily available scaffold for cartilage restoration.

  4. Efficient Computational Design of a Scaffold for Cartilage Cell Regeneration

    DEFF Research Database (Denmark)

    Tajsoleiman, Tannaz; Jafar Abdekhodaie, Mohammad; Gernaey, Krist V.

    2018-01-01

    Due to the sensitivity of mammalian cell cultures, understanding the influence of operating conditions during a tissue generation procedure is crucial. In this regard, a detailed study of scaffold based cell culture under a perfusion flow is presented with the aid of mathematical modelling...... and computational fluid dynamics (CFD). With respect to the complexity of the case study, this work focuses solely on the effect of nutrient and metabolite concentrations, and the possible influence of fluid-induced shear stress on a targeted cell (cartilage) culture. The simulation set up gives the possibility...... of predicting the cell culture behavior under various operating conditions and scaffold designs. Thereby, the exploitation of the predictive simulation into a newly developed stochastic routine provides the opportunity of exploring improved scaffold geometry designs. This approach was applied on a common type...

  5. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    Wood, Joshua D; Doidge, Gregory P; Carrion, Enrique A; Koepke, Justin C; Datye, Isha; Behnam, Ashkan; Hewaparakrama, Jayan; Aruin, Basil; Chen, Yaofeng; Lyding, Joseph W; Kaitz, Joshua A; Dong, Hefei; Haasch, Richard T; Pop, Eric

    2015-01-01

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  6. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction

    International Nuclear Information System (INIS)

    Niaza, K V; Senatov, F S; Kaloshkin, S D; Maksimkin, A V; Chukov, D I

    2016-01-01

    In the present work porous PLA scaffolds filled with micro- and nano- HA were studied. Both composites with micro- and nano-HA were obtained by extrusion in the same conditions. Scaffolds were obtained by 3D-printing by fused filament fabrication method. Structure of porous scaffolds was pre-modeled by computer software. Compression and three - point flexural tests were used to study mechanical properties of the scaffolds. (paper)

  7. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Eilbagi, Marjan; Emadi, Rahmatollah; Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Kharaziha, Mahshid, E-mail: ma.kharaziha@gmail.com [Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Valiani, Ali [Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2016-11-01

    Despite the attractive characteristics of three-dimensional pure hydroxyapatite (HA) scaffolds, due to their weak mechanical properties, researches have focused on the development of composite scaffolds via introducing suitable secondary components. The aim of this study was to develop, for the first time, three-dimensional HA-bredigite (Ca{sub 7}MgSi{sub 4}O{sub 16}) scaffolds containing various amounts of bredigite nanopowder (0, 5, 10 and 15 wt.%) using space holder technique. Transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction spectroscopy were applied in order to study the morphology, fracture surface and phase compositions of nanopowders and scaffolds. Furthermore, the effects of scaffold composition on the mechanical properties, bioactivity, biodegradability, and cytotoxicity were also evaluated. Results showed that the composite scaffolds with average pore size in the range of 220–310 μm, appearance porosity of 63.1–75.9% and appearance density of 1.1 ± 0.04 g/cm{sup 3} were successfully developed, depending on bredigite content. Indeed, the micropore size of the scaffolds reduced with increasing bredigite content confirming that the sinterability of the scaffolds was improved. Furthermore, the compression strength and modulus of the scaffolds significantly enhanced via incorporation of bredigite content from 0 to 15 wt.%. The composite scaffolds revealed superior bioactivity and biodegradability with increasing bredigite content. Moreover, MTT assay confirmed that HA-15 wt.% bredigite scaffold significantly promoted cell proliferation compared to tissue culture plate (control) and HA scaffold. Based on these results, three-dimensional HA-bredigite scaffolds could be promising replacements for HA scaffolds in bone regeneration. - Highlights: • Nanostructured hydroxyapatite-bredigite composite scaffolds were developed using space holder technique. • Presence of bredigite

  8. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate

    OpenAIRE

    Boyang Huang; Guilherme Caetano; Cian Vyas; Jonny James Blaker; Carl Diver; Paulo Bártolo

    2018-01-01

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physi...

  9. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study.

    Science.gov (United States)

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold.

  10. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction

    Science.gov (United States)

    Niaza, K. V.; Senatov, F. S.; Kaloshkin, S. D.; Maksimkin, A. V.; Chukov, D. I.

    2016-08-01

    In the present work porous PLA scaffolds filled with micro- and nano- HA were studied. Both composites with micro- and nano-HA were obtained by extrusion in the same conditions. Scaffolds were obtained by 3D-printing by fused filament fabrication method. Structure of porous scaffolds was pre-modeled by computer software. Compression and three - point flexural tests were used to study mechanical properties of the scaffolds.

  11. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.

    Science.gov (United States)

    Vikingsson, L; Claessens, B; Gómez-Tejedor, J A; Gallego Ferrer, G; Gómez Ribelles, J L

    2015-08-01

    In tissue engineering the design and optimization of biodegradable polymeric scaffolds with a 3D-structure is an important field. The porous scaffold provide the cells with an adequate biomechanical environment that allows mechanotransduction signals for cell differentiation and the scaffolds also protect the cells from initial compressive loading. The scaffold have interconnected macro-pores that host the cells and newly formed tissue, while the pore walls should be micro-porous to transport nutrients and waste products. Polycaprolactone (PCL) scaffolds with a double micro- and macro-pore architecture have been proposed for cartilage regeneration. This work explores the influence of the micro-porosity of the pore walls on water permeability and scaffold compliance. A Poly(Vinyl Alcohol) with tailored mechanical properties has been used to simulate the growing cartilage tissue inside the scaffold pores. Unconfined and confined compression tests were performed to characterize both the water permeability and the mechanical response of scaffolds with varying size of micro-porosity while volume fraction of the macro-pores remains constant. The stress relaxation tests show that the stress response of the scaffold/hydrogel construct is a synergic effect determined by the performance of the both components. This is interesting since it suggests that the in vivo outcome of the scaffold is not only dependent upon the material architecture but also the growing tissue inside the scaffold׳s pores. On the other hand, confined compression results show that compliance of the scaffold is mainly controlled by the micro-porosity of the scaffold and less by hydrogel density in the scaffold pores. These conclusions bring together valuable information for customizing the optimal scaffold and to predict the in vivo mechanical behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    International Nuclear Information System (INIS)

    Gao, Shuang; Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun; Xi, Tingfei; Guo, Quanyi

    2017-01-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  13. Comparison of glutaraldehyde and carbodiimides to crosslink tissue engineering scaffolds fabricated by decellularized porcine menisci

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Shuang [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Yuan, Zhiguo; Guo, Weimin; Chen, Mingxue; Liu, Shuyun [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Xi, Tingfei, E-mail: tingfeixi@163.com [Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Shenzhen Institute, Peking University, Shenzhen 518057 (China); Guo, Quanyi, E-mail: doctorguo_301@163.com [Beijing Key Lab of Regenerative Medicine in Orthopaedics, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China); Key Laboratory of Musculoskeletal Trauma & War Injuries, Institute of Orthopaedics, Chinese PLA General Hospital, Beijing 100853 (China)

    2017-02-01

    The objectives of this study were to fabricate porous scaffolds using decellularized meniscus, and to explore a preferable crosslinking condition to enhance mechanical properties of scaffolds. Moreover, the microstructure, porosity, biodegradation and cytotoxicity were also evaluated. EDAC or GTA in different concentration was used to crosslink scaffolds. FTIR demonstrated functional groups change in crosslinking process. SEM photography showed that crosslinked scaffolds had blurry edges, which resulted scaffolds crosslinked by 1.2 mol/l EDAC had smaller porosity than other groups. The structure change enhanced antidegradation property. After immersing in enzyme solution for 96 h, scaffolds crosslinked by GTA and EDAC could maintain their mass > 70% and 80%. Most importantly, mechanical properties of crosslinked scaffolds were also improved. Uncrosslinked Scaffolds had only 0.49 kPa in compression modulus and 12.81 kPa in tensile modulus. The compression and tensile modulus of scaffolds crosslinked by 1.0% GTA were 1.42 and 567.44 kPa respectively. The same value of scaffolds crosslinked by 1.2 mol/l EDAC were 1.49 and 532.50 kPa. Scaffolds crosslinked by 1.0% and 2.5% GTA were toxic to cells, while EDAC groups showed no cytotoxicity. Chondrocytes could proliferate and infiltrate within scaffolds after seeding. Overall, 1.2 mol/l EDAC was a preferable crosslinking condition. - Highlights: • Porous meniscus scaffolds were fabricated using decellularized meniscus tissue. • Mechanical properties of meniscus scaffolds were enhanced by chemical crosslinking. • The crosslinked scaffold showed enhanced anti-degradation properties. • Chondrocytes could infiltrate and proliferate within crosslinked scaffolds.

  14. Decellularized Human Dental Pulp as a Scaffold for Regenerative Endodontics.

    Science.gov (United States)

    Song, J S; Takimoto, K; Jeon, M; Vadakekalam, J; Ruparel, N B; Diogenes, A

    2017-06-01

    Teeth undergo postnatal organogenesis relatively late in life and only complete full maturation a few years after the crown first erupts in the oral cavity. At this stage, development can be arrested if the tooth organ is damaged by either trauma or caries. Regenerative endodontic procedures (REPs) are a treatment alternative to conventional root canal treatment for immature teeth. These procedures rely on the transfer of apically positioned stem cells, including stem cells of the apical papilla (SCAP), into the root canal system. Although clinical success has been reported for these procedures, the predictability of expected outcomes and the organization of the newly formed tissues are affected by the lack of an available suitable scaffold that mimics the complexity of the dental pulp extracellular matrix (ECM). In this study, we evaluated 3 methods of decellularization of human dental pulp to be used as a potential autograft scaffold. Tooth slices of human healthy extracted third molars were decellularized by 3 different methods. One of the methods generated the maximum observed decellularization with minimal impact on the ECM composition and organization. Furthermore, recellularization of the scaffold supported the proliferation of SCAP throughout the scaffold with differentiation into odontoblast-like cells near the dentinal walls. Thus, this study reports that human dental pulp from healthy extracted teeth can be successfully decellularized, and the resulting scaffold supports the proliferation and differentiation of SCAP. The future application of this form of an autograft in REPs can fulfill a yet unmet need for a suitable scaffold, potentially improving clinical outcomes and ultimately promoting the survival and function of teeth with otherwise poor prognosis.

  15. Analogical scaffolding: Making meaning in physics through representation and analogy

    Science.gov (United States)

    Podolefsky, Noah Solomon

    This work reviews the literature on analogy, introduces a new model of analogy, and presents a series of experiments that test and confirm the utility of this model to describe and predict student learning in physics with analogy. Pilot studies demonstrate that representations (e.g., diagrams) can play a key role in students' use of analogy. A new model of analogy, Analogical Scaffolding, is developed to explain these initial empirical results. This model will be described in detail, and then applied to describe and predict the outcomes of further experiments. Two large-scale (N>100) studies will demonstrate that: (1) students taught with analogies, according to the Analogical Scaffolding model, outperform students taught without analogies on pre-post assessments focused on electromagnetic waves; (2) the representational forms used to teach with analogy can play a significant role in student learning, with students in one treatment group outperforming students in other treatment groups by factors of two or three. It will be demonstrated that Analogical Scaffolding can be used to predict these results, as well as finer-grained results such as the types of distracters students choose in different treatment groups, and to describe and analyze student reasoning in interviews. Abstraction in physics is reconsidered using Analogical Scaffolding. An operational definition of abstraction is developed within the Analogical Scaffolding framework and employed to explain (a) why physicists consider some ideas more abstract than others in physics, and (b) how students conceptions of these ideas can be modeled. This new approach to abstraction suggests novel approaches to curriculum design in physics using Analogical Scaffolding.

  16. Engineering bone grafts with enhanced bone marrow and native scaffolds.

    Science.gov (United States)

    Hung, Ben P; Salter, Erin K; Temple, Josh; Mundinger, Gerhard S; Brown, Emile N; Brazio, Philip; Rodriguez, Eduardo D; Grayson, Warren L

    2013-01-01

    The translation of tissue engineering approaches to the clinic has been hampered by the inability to find suitable multipotent cell sources requiring minimal in vitro expansion. Enhanced bone marrow (eBM), which is obtained by reaming long bone medullary canals and isolating the solid marrow putty, has large quantities of stem cells and demonstrates significant potential to regenerate bone tissues. eBM, however, cannot impart immediate load-bearing mechanical integrity or maintain the gross anatomical structure to guide bone healing. Yet, its putty-like consistency creates a challenge for obtaining the uniform seeding necessary to effectively combine it with porous scaffolds. In this study, we examined the potential for combining eBM with mechanically strong, osteoinductive trabecular bone scaffolds for bone regeneration by creating channels into scaffolds for seeding the eBM. eBM was extracted from the femurs of adult Yorkshire pigs using a Synthes reamer-irrigator-aspirator device, analyzed histologically, and digested to extract cells and characterize their differentiation potential. To evaluate bone tissue formation, eBM was seeded into the channels in collagen-coated or noncoated scaffolds, cultured in osteogenic conditions for 4 weeks, harvested and assessed for tissue distribution and bone formation. Our data demonstrates that eBM is a heterogenous tissue containing multipotent cell populations. Furthermore, coating scaffolds with a collagen hydrogel significantly enhanced cellular migration, promoted uniform tissue development and increased bone mineral deposition. These findings suggest the potential for generating customized autologous bone grafts for treating critical-sized bone defects by combining a readily available eBM cell source with decellularized trabecular bone scaffolds. © 2013 S. Karger AG, Basel

  17. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  18. Scaffolds for Tendon and Ligament Repair and Regeneration

    Science.gov (United States)

    Ratcliffe, Anthony; Butler, David L; Dyment, Nathaniel A; Cagle, Paul J; Proctor, Christopher S; Ratcliffe, Seena S; Flatow, Evan L

    2015-01-01

    Enhanced tendon and ligament repair would have a major impact on orthopaedic surgery outcomes, resulting in reduced repair failures and repeat surgeries, more rapid return to function, and reduced health care costs. Scaffolds have been used for mechanical and biologic reinforcement of repair and regeneration with mixed results. This review summarizes efforts made using biologic and synthetic scaffolds using rotator cuff and ACL as examples of clinical applications, discusses recent advances that have shown promising clinical outcomes, and provides insight into future therapy. PMID:25650098

  19. Scaffold architecture and fibrin gels promote meniscal cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Pawelec, K. M., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk; Best, S. M.; Cameron, R. E. [Cambridge Centre for Medical Materials, Materials Science and Metallurgy Department, University of Cambridge, Cambridge CB3 0FS (United Kingdom); Wardale, R. J., E-mail: pawelec.km@gmail.com, E-mail: jw626@cam.ac.uk [Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge CB2 2QQ (United Kingdom)

    2015-01-01

    Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.

  20. Modern materials in fabrication of scaffolds for bone defect replacement

    Science.gov (United States)

    Bazlov, V. A.; Mamuladze, T. Z.; Pavlov, V. V.; Kirilova, I. A.; Sadovoy, M. A.

    2016-08-01

    The article defines the requirements for modern scaffold-forming materials and describes the main advantages and disadvantages of various synthetic materials. Osseointegration of synthetic scaffolds approved for use in medical practice is evaluated. Nylon 618 (certification ISO9001 1093-1-2009) is described as the most promising synthetic material used in medical practice. The authors briefly highlight the issues of individual bone grafting with the use of 3D printing technology. An example of contouring pelvis defect after removal of a giant tumor with the use of 3D models is provided.

  1. Semiotic scaffolding of the social self in reflexivity and friendship

    DEFF Research Database (Denmark)

    Emmeche, Claus

    2015-01-01

    scaffolding is a multi-level phenomenon. Focusing upon levels of semiosis specific to humans, the formation of the personal self and the role of friendship and similar interpersonal relations in this process is explored through Aristotle’s classical idea of the friend as ‘another self’, and sociologist...... Margaret Archer’s empirical and theoretical work on the interplay between individual subjectivity, social structure and interpersonal relations in a dynamics of human agency. It is shown that although processes of reflexivity and friendship can indeed be seen as instances of semiotic scaffolding...

  2. MODEL SCAFFOLDING PEMBELAJARAN MENULIS DENGAN PENDEKATAN PROSES BAGI ANAK TUNARUNGU

    Directory of Open Access Journals (Sweden)

    Yuliyati Endang Purbaningrum Endang Purbaningrum

    2016-10-01

    Full Text Available The aim for this researach is (1 to describe the needs analysis and challenges and (2 to produce the scaffolding draft model in learning writing using process ap-proach combined with the reflective maternal method (MMR. This research develop-ment applies R2D2 model which emphasizes users’ need based on the context (teacher-student with difable  and developed collaboratively. Based on the needs analysis in the field in the first year, scaffolding draft model was produced using approach elaborated with the reflective maternal method (MMR.

  3. Graphene foam as a biocompatible scaffold for culturing human neurons

    Science.gov (United States)

    Mattei, Cristiana; Nasr, Babak; Hudson, Emma J.; Alshawaf, Abdullah J.; Chana, Gursharan; Everall, Ian P.; Dottori, Mirella; Skafidas, Efstratios

    2018-01-01

    In this study, we explore the use of electrically active graphene foam as a scaffold for the culture of human-derived neurons. Human embryonic stem cell (hESC)-derived cortical neurons fated as either glutamatergic or GABAergic neuronal phenotypes were cultured on graphene foam. We show that graphene foam is biocompatible for the culture of human neurons, capable of supporting cell viability and differentiation of hESC-derived cortical neurons. Based on the findings, we propose that graphene foam represents a suitable scaffold for engineering neuronal tissue and warrants further investigation as a model for understanding neuronal maturation, function and circuit formation. PMID:29657752

  4. Scanning probe recognition microscopy investigation of tissue scaffold properties

    Science.gov (United States)

    Fan, Yuan; Chen, Qian; Ayres, Virginia M; Baczewski, Andrew D; Udpa, Lalita; Kumar, Shiva

    2007-01-01

    Scanning probe recognition microscopy is a new scanning probe microscopy technique which enables selective scanning along individual nanofibers within a tissue scaffold. Statistically significant data for multiple properties can be collected by repetitively fine-scanning an identical region of interest. The results of a scanning probe recognition microscopy investigation of the surface roughness and elasticity of a series of tissue scaffolds are presented. Deconvolution and statistical methods were developed and used for data accuracy along curved nanofiber surfaces. Nanofiber features were also independently analyzed using transmission electron microscopy, with results that supported the scanning probe recognition microscopy-based analysis. PMID:18203431

  5. The Effect of Various Media Scaffolding on Increasing Understanding of Students' Geometry Concepts

    Science.gov (United States)

    Sutiarso, Sugeng; Coesamin, M.; Nurhanurawati

    2018-01-01

    This study is a quasi-experimental research with pretest-posttest control group design, which aims to determine (1) the tendency of students in using various media scaffolding based on gender, and (2) effect of media scaffolding on increasing understanding of students' geometry concepts. Media scaffolding used this study is chart, props, and…

  6. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Online Process Scaffolding and Students' Self-Regulated Learning with Hypermedia.

    Science.gov (United States)

    Azevedo, Roger; Cromley, Jennifer G.; Thomas, Leslie; Seibert, Diane; Tron, Myriam

    This study examined the role of different scaffolding instructional interventions in facilitating students' shift to more sophisticated mental models as indicated by both performance and process data. Undergraduate students (n=53) were randomly assigned to 1 of 3 scaffolding conditions (adaptive content and process scaffolding (ACPS), adaptive…

  8. Impedance Spectroscopic Characterisation of Porosity in 3D Cell Culture Scaffolds with Different Channel Networks

    DEFF Research Database (Denmark)

    Canali, Chiara; Mohanty, Soumyaranjan; Heiskanen, Arto

    2015-01-01

    We present the application of electrochemical impedance spectroscopy (EIS) as a method for discriminating between different polydimethylsiloxane (PDMS) scaffolds for three-dimensional (3D) cell cultures. The validity of EIS characterisation for scaffolds having different degree of porosity...... serve as means of single-frequency measurements for fast scaffold characterization combined with in vitro monitoring of 3D cell cultures....

  9. 29 CFR 1926.452 - Additional requirements applicable to specific types of scaffolds.

    Science.gov (United States)

    2010-07-01

    .... (h) Roof bracket scaffolds. (1) Scaffold brackets shall be constructed to fit the pitch of the roof... metal plates and angles. Each pump jack bracket shall have two positive gripping mechanisms to prevent... ensure that it will not chafe at any point where a change in direction occurs, and (iv) The scaffold is...

  10. Directed Self-Inquiry: A Scaffold for Teaching Laboratory Report Writing

    Science.gov (United States)

    Deiner, L. Jay; Newsome, Daniel; Samaroo, Diana

    2012-01-01

    A scaffold was created for the explicit instruction of laboratory report writing. The scaffold breaks the laboratory report into sections and teaches students to ask and answer questions in order to generate section-appropriate content and language. Implementation of the scaffold is done through a series of section-specific worksheets that are…

  11. Dynamic Scaffolding of Socially Regulated Learning in a Computer-Based Learning Environment

    NARCIS (Netherlands)

    Molenaar, I.; Roda, Claudia; van Boxtel, Carla A.M.; Sleegers, P.J.C.

    2012-01-01

    The aim of this study is to test the effects of dynamically scaffolding social regulation of middle school students working in a computer-based learning environment. Dyads in the scaffolding condition (N = 56) are supported with computer-generated scaffolds and students in the control condition (N =

  12. Preparation and biocompatibility evaluation of apatite/wollastonite-derived porous bioactive glass ceramic scaffolds

    International Nuclear Information System (INIS)

    Zhang Hua; Ye Xiaojian; Li Jiashun

    2009-01-01

    An apatite/wollastonite-derived (A/W) porous glass ceramic scaffold with highly interconnected pores was successfully fabricated by adding a plastic porosifier. The morphology, porosity and mechanical strength were characterized. The results showed that the glass ceramic scaffold with controllable pore size and porosity displayed open macropores. In addition, good in vitro bioactivity was found for the scaffold obtained by soaking it in simulated body fluid. Mesenchymal stem cells (MSCs) were cultured, expanded and seeded on the scaffold, and the adhesion and proliferation of MSCs were determined using MTT assay and environmental scanning electron microscopy (ESEM). The results revealed that the scaffold was biocompatible and had no negative effects on the MSCs in vitro. The in vivo biocompatibility and osteogenicity were investigated by implanting both the pure scaffold and the MSC/scaffold construct in rabbit mandibles and studying histologically. The results showed that the glass ceramic scaffold exhibited good biocompatibility and osteoconductivity. Moreover, the introduction of MSCs into the scaffold observably improved the efficiency of new bone formation, especially at the initial stage after implantation. However, the glass ceramic scaffold showed the same good biocompatibility and osteogenicity as the hybrid one at the later stage. These results indicate that porous bioactive scaffolds based on the original apatite-wollastonite glass ceramic fulfil the basic requirements of a bone tissue engineering scaffold.

  13. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    International Nuclear Information System (INIS)

    Chen, Chih-Hao; Lee, Ming-Yih; Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung; Chen, Jyh-Ping

    2014-01-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo

  14. Designing and Implementing Web-Based Scaffolding Tools for Technology-Enhanced Socioscientific Inquiry

    Science.gov (United States)

    Shin, Suhkyung; Brush, Thomas A.; Glazewski, Krista D.

    2017-01-01

    This study explores how web-based scaffolding tools provide instructional support while implementing a socio-scientific inquiry (SSI) unit in a science classroom. This case study focused on how students used web-based scaffolding tools during SSI activities, and how students perceived the SSI unit and the scaffolding tools embedded in the SSI…

  15. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica

    Energy Technology Data Exchange (ETDEWEB)

    Özarslan, Ali Can, E-mail: alicanozarslan@gmail.com; Yücel, Sevil, E-mail: syucel@yildiz.edu.tr

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. - Highlights: • Production of 3-D bioactive glass scaffolds from different silica sources • The effect of biosilica from rice hull ash on the bioactive glass scaffold • Sr additive impact on the bioactivity and biodegradability properties of scaffolds.

  16. Surface modification of polycaprolactone scaffolds fabricated via selective laser sintering for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chih-Hao [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Lee, Ming-Yih [Graduate Institute of Medical Mechatronics, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Shyu, Victor Bong-Hang; Chen, Yi-Chieh; Chen, Chien-Tzung [Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Craniofacial Research Center, Chang Gung University, Kweishann, Taoyuan 333, Taiwan, ROC (China); Chen, Jyh-Ping, E-mail: jpchen@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Kweishan, Taoyuan 333, Taiwan, ROC (China); Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan, ROC (China)

    2014-07-01

    Surface modified porous polycaprolactone scaffolds fabricated via rapid prototyping techniques were evaluated for cartilage tissue engineering purposes. Polycaprolactone scaffolds manufactured by selective laser sintering (SLS) were surface modified through immersion coating with either gelatin or collagen. Three groups of scaffolds were created and compared for both mechanical and biological properties. Surface modification with collagen or gelatin improved the hydrophilicity, water uptake and mechanical strength of the pristine scaffold. From microscopic observations and biochemical analysis, collagen-modified scaffold was the best for cartilage tissue engineering in terms of cell proliferation and extracellular matrix production. Chondrocytes/collagen-modified scaffold constructs were implanted subdermally in the dorsal spaces of female nude mice. Histological and immunohistochemical staining of the retrieved implants after 8 weeks revealed enhanced cartilage tissue formation. We conclude that collagen surface modification through immersion coating on SLS-manufactured scaffolds is a feasible scaffold for cartilage tissue engineering in craniofacial reconstruction. - Highlights: • Selective laser sintered polycaprolactone scaffolds are prepared. • Scaffolds are surface modified through immersion coating with gelatin or collagen. • Collagen-scaffold is the best for cartilage tissue engineering in vitro. • Chondrocytes/collagen-scaffold reveals enhanced cartilage tissue formation in vivo.

  17. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration

    DEFF Research Database (Denmark)

    Zanjanizadeh Ezazi, Nazanin; Shahbazi, Mohammad-Ali; Shatalin, Yuri V.

    2018-01-01

    -conductive scaffolds. Osteoblast cells were perfectly immersed into the gelatin matrix and remained viable for 14 days. Overall, new conductive composite bone scaffolds were created and the obtained results strongly verified the applicability of this conductive scaffold in drug delivery, encouraging its further...

  18. Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template

    DEFF Research Database (Denmark)

    Helmig, Sarah Wendelboe; Rotaru, Alexandru; Arian, Dumitru

    2010-01-01

    DNA origami, the folding of a long single-stranded DNA sequence (scaffold strand) by hundreds of short synthetic oligonucleotides (staple strands) into parallel aligned helices, is a highly efficient method to form advanced self-assembled DNA-architectures. Since molecules and various materials can...... be conjugated to each of the short staple strands, the origami method offers a unique possibility of arranging molecules and materials in well-defined positions on a structured surface. Here we combine the action of light with AFM and DNA nanostructures to study the production of singlet oxygen from a single...... photosensitizer molecule conjugated to a selected DNA origami staple strand on an origami structure. We demonstrate a distance-dependent oxidation of organic moieties incorporated in specific positions on DNA origami by singlet oxygen produced from a single photosensitizer located at the center of each origami....

  19. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Qi Jun; Chen Anmin; You Hongbo; Li Kunpeng; Zhang Di; Guo Fengjing, E-mail: fjguo@tjh.tjmu.edu.cn [Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China)

    2011-02-15

    Stem cell-based tissue engineering has provided an alternative strategy to treat cartilage lesions, and synovium-derived mesenchymal stem cells (SMSCs) are considered as a promising cell source for cartilage repair. In this study, the SMSCs were isolated from rat synovium, and CD105-positive (CD105{sup +}) cells were enriched using magnetic activated cell sorting. Sorted cells were subsequently seeded onto the chitosan-alginate composite three-dimensional (3D) porous scaffolds and cultured in chondrogenic culture medium in the presence of TGF-{beta}{sub 3} and BMP-2 for 2 weeks in vitro. After 2 weeks in culture, scanning electron microscopy results showed that cells attached and proliferated well on scaffolds, and secreted extracellular matrix were also observed. From day 7 to day 14, the total DNA and glucosaminoglycan content of the cells cultured in scaffolds were found to have increased significantly, and cell cycle analyses revealed that the percentage of cells in the S and G2/M phases increased and the percentage of cells in the G0/G1 phase decreased. Compared with non-sorted cells, the sorted cells cultured in scaffolds underwent more chondrogenic differentiation, as evidenced by higher expression of type II collagen and Sox9 at the protein and mRNA levels. The results suggest that CD105{sup +} enriched SMSCs may be a potential cell source for cartilage tissue engineering, and the chitosan-alginate composite 3D porous scaffold could provide a favorable microenvironment for supporting proliferation and chondrogenic differentiation of cells.

  20. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  1. Effects of 3-dimensional culture conditions (collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes.

    Science.gov (United States)

    Daneshmandi, Saeed; Dibazar, Shaghayegh Pishkhan; Fateh, Shirin

    2016-01-01

    In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24 h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-β production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro.

  2. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    Science.gov (United States)

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  3. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.

    Science.gov (United States)

    Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian

    2011-02-01

    The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. CD44+/CD24- breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    Directory of Open Access Journals (Sweden)

    Mi K

    2015-04-01

    Full Text Available Kun Mi,1 Zhihua Xing2 1Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, 2Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Self-assembling peptide nanofiber scaffolds have been shown to be a ­permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24- of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16 peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA and collagen I.Methods: CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2'-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo.Results: The breast cancer cell line MDA-MB-435S contained a high percentage (>99% of CD44+/CD24- cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor

  5. DNA origami-based nanoribbons: assembly, length distribution, and twist

    Energy Technology Data Exchange (ETDEWEB)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C [Lehrstuhl fuer Bioelektronik, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany); Castro, Carlos E, E-mail: simmel@ph.tum.de [Labor fuer Biomolekulare Nanotechnologie, Physik-Department and ZNN/WSI, Technische Universitaet Muenchen, Am Coulombwall 4a, 85748 Garching (Germany)

    2011-07-08

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  6. DNA origami-based nanoribbons: assembly, length distribution, and twist

    International Nuclear Information System (INIS)

    Jungmann, Ralf; Scheible, Max; Kuzyk, Anton; Pardatscher, Guenther; Simmel, Friedrich C; Castro, Carlos E

    2011-01-01

    A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.

  7. Programmed self-assembly of DNA/RNA for biomedical applications

    Science.gov (United States)

    Wang, Pengfei

    Three self-assembly strategies were utilized for assembly of novel functional DNA/RNA nanostructures. RNA-DNA hybrid origami method was developed to fabricate nano-objects (ribbon, rectangle, and triangle) with precisely controlled geometry. Unlike conventional DNA origami which use long DNA single strand as scaffold, a long RNA single strand was used instead, which was folded by short DNA single strands (staples) into prescribed objects through sequence specific hybridization between RNA and DNA. Single stranded tiles (SST) and RNA-DNA hybrid origami were utilized to fabricate a variety of barcode-like nanostructures with unique patterns by expanding a plain rectangle via introducing spacers (10-bp dsDNA segment) between parallel duplexes. Finally, complex 2D array and 3D polyhedrons with multiple patterns within one structure were assembled from simple DNA motifs. Two demonstrations of biomedical applications of DNA nanotechnology were presented. Firstly, lambda-DNA was used as template to direct the fabrication of multi-component magnetic nanoparticle chains. Nuclear magnetic relaxation (NMR) characterization showed superb magnetic relaxativity of the nanoparticle chains which have large potential to be utilized as MRI contrast agents. Secondly, DNA nanotechnology was introduced into the conformational study of a routinely used catalytic DNAzyme, the RNA-cleaving 10-23 DNAzyme. The relative angle between two flanking duplexes of the catalytic core was determined (94.8°), which shall be able to provide a clue to further understanding of the cleaving mechanism of this DNAzyme from a conformational perspective.

  8. The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics.

    Science.gov (United States)

    Yu, Guihua; Kushwaha, Amit; Lee, Jungkyu K; Shaqfeh, Eric S G; Bao, Zhenan

    2011-01-25

    DNA has been recently explored as a powerful tool for developing molecular scaffolds for making reproducible and reliable metal contacts to single organic semiconducting molecules. A critical step in the process of exploiting DNA-organic molecule-DNA (DOD) array structures is the controlled tethering and stretching of DNA molecules. Here we report the development of reproducible surface chemistry for tethering DNA molecules at tunable density and demonstrate shear flow processing as a rationally controlled approach for stretching/aligning DNA molecules of various lengths. Through enzymatic cleavage of λ-phage DNA to yield a series of DNA chains of various lengths from 17.3 μm down to 4.2 μm, we have investigated the flow/extension behavior of these tethered DNA molecules under different flow strengths in the flow-gradient plane. We compared Brownian dynamic simulations for the flow dynamics of tethered λ-DNA in shear, and found our flow-gradient plane experimental results matched well with our bead-spring simulations. The shear flow processing demonstrated in our studies represents a controllable approach for tethering and stretching DNA molecules of various lengths. Together with further metallization of DNA chains within DOD structures, this bottom-up approach can potentially enable efficient and reliable fabrication of large-scale nanoelectronic devices based on single organic molecules, therefore opening opportunities in both fundamental understanding of charge transport at the single molecular level and many exciting applications for ever-shrinking molecular circuits.

  9. Novel biologically-inspired rosette nanotube PLLA scaffolds for improving human mesenchymal stem cell chondrogenic differentiation

    International Nuclear Information System (INIS)

    Childs, Allie; Castro, Nathan J; Zhang, Lijie Grace; Hemraz, Usha D; Fenniri, Hicham

    2013-01-01

    Cartilage defects are a persistent issue in orthopedic tissue engineering where acute and chronic tissue damage stemming from osteoarthritis, trauma, and sport injuries, present a common and serious clinical problem. Unlike bone, cartilage repair continues to be largely intractable due to the tissue's inherently poor regenerative capacity. Thus, the objective of this study is to design a novel tissue engineered nanostructured cartilage scaffold via biologically-inspired self-assembling rosette nanotubes (RNTs) and biocompatible non-woven poly (l-lactic acid) (PLLA) for enhanced human bone marrow mesenchymal stem cell (hMSC) chondrogenic differentiation. Specifically, RNTs are a new class of biomimetic supramolecular nanomaterial obtained through the self-assembly of low-molecular-weight modified guanine/cytosine DNA base hybrids (the G∧C motif) in an aqueous environment. In this study, we synthesized a novel twin G∧C-based RNT (TB-RGDSK) functionalized with cell-favorable arginine–glycine–aspartic acid–serine–lysine (RGDSK) integrin binding peptide and a twin G∧C based RNT with an aminobutane linker molecule (TBL). hMSC adhesion, proliferation and chondrogenic differentiation were evaluated in vitro in scaffold groups consisting of biocompatible PLLA with TBL, 1:9 TB-RGDSK:TBL, and TB-RGDSK, respectively. Our results show that RNTs can remarkably increase total glycosaminoglycan, collagen, and protein production when compared to PLLA controls without nanotubes. Furthermore, the TB-RGDSK with 100% well-organized RGDSK peptides achieved the highest chondrogenic differentiation of hMSCs. The current in vitro study illustrated that RNT nanotopography and surface chemistry played an important role in enhancing hMSC chondrogenic differentiation thus making them promising for cartilage regeneration. (paper)

  10. Computer-aided design of DNA origami structures.

    Science.gov (United States)

    Selnihhin, Denis; Andersen, Ebbe Sloth

    2015-01-01

    The DNA origami method enables the creation of complex nanoscale objects that can be used to organize molecular components and to function as reconfigurable mechanical devices. Of relevance to synthetic biology, DNA origami structures can be delivered to cells where they can perform complicated sense-and-act tasks, and can be used as scaffolds to organize enzymes for enhanced synthesis. The design of DNA origami structures is a complicated matter and is most efficiently done using dedicated software packages. This chapter describes a procedure for designing DNA origami structures using a combination of state-of-the-art software tools. First, we introduce the basic method for calculating crossover positions between DNA helices and the standard crossover patterns for flat, square, and honeycomb DNA origami lattices. Second, we provide a step-by-step tutorial for the design of a simple DNA origami biosensor device, from schematic idea to blueprint creation and to 3D modeling and animation, and explain how careful modeling can facilitate later experimentation in the laboratory.

  11. Toward quantitative fluorescence microscopy with DNA origami nanorulers.

    Science.gov (United States)

    Beater, Susanne; Raab, Mario; Tinnefeld, Philip

    2014-01-01

    The dynamic development of fluorescence microscopy has created a large number of new techniques, many of which are able to overcome the diffraction limit. This chapter describes the use of DNA origami nanostructures as scaffold for quantifying microscope properties such as sensitivity and resolution. The DNA origami technique enables placing of a defined number of fluorescent dyes in programmed geometries. We present a variety of DNA origami nanorulers that include nanorulers with defined labeling density and defined distances between marks. The chapter summarizes the advantages such as practically free choice of dyes and labeling density and presents examples of nanorulers in use. New triangular DNA origami nanorulers that do not require photoinduced switching by imaging transient binding to DNA nanostructures are also reported. Finally, we simulate fluorescence images of DNA origami nanorulers and reveal that the optimal DNA nanoruler for a specific application has an intermark distance that is roughly 1.3-fold the expected optical resolution. © 2014 Elsevier Inc. All rights reserved.

  12. DNA nanostructure-directed assembly of metal nanoparticle superlattices

    Science.gov (United States)

    Julin, Sofia; Nummelin, Sami; Kostiainen, Mauri A.; Linko, Veikko

    2018-05-01

    Structural DNA nanotechnology provides unique, well-controlled, versatile, and highly addressable motifs and templates for assembling materials at the nanoscale. These methods to build from the bottom-up using DNA as a construction material are based on programmable and fully predictable Watson-Crick base pairing. Researchers have adopted these techniques to an increasing extent for creating numerous DNA nanostructures for a variety of uses ranging from nanoelectronics to drug-delivery applications. Recently, an increasing effort has been put into attaching nanoparticles (the size range of 1-20 nm) to the accurate DNA motifs and into creating metallic nanostructures (typically 20-100 nm) using designer DNA nanoshapes as molds or stencils. By combining nanoparticles with the superior addressability of DNA-based scaffolds, it is possible to form well-ordered materials with intriguing and completely new optical, plasmonic, electronic, and magnetic properties. This focused review discusses the DNA structure-directed nanoparticle assemblies covering the wide range of different one-, two-, and three-dimensional systems.

  13. Ethnic differences in disability risk between Dutch and Turkish scaffolders

    NARCIS (Netherlands)

    A. Burdorf (Alex); F.G. Öry; L.A.M. Elders (Leo)

    2004-01-01

    textabstractThe number of native Dutch and Turkish workers receiving a permanent disability pension in the Netherlands is still rising. To assess ethnic differences in disability risk between Dutch and Turkish scaffolders, a retrospective study was conducted within a large

  14. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration.

    Science.gov (United States)

    Bhattacharjee, Promita; Kundu, Banani; Naskar, Deboki; Maiti, Tapas K; Bhattacharya, Debasis; Kundu, Subhas C

    2015-05-01

    Poly-vinyl alcohol and nonmulberry tasar silk fibroin of Antheraea mylitta are blended to fabricate nanofibrous scaffolds for bone regeneration. Nanofibrous matrices are prepared by electrospinning the equal volume ratio blends of silk fibroin (2 and 4 wt%) with poly-vinyl alcohol solution (10 wt%) and designated as 2SF/PVA and 4SF/PVA, respectively with average nanofiber diameters of 177 ± 13 nm (2SF/PVA) and 193 ± 17 nm (4SF/PVA). Fourier transform infrared spectroscopy confirms retention of the secondary structure of fibroin in blends indicating the structural stability of neo-matrix. Both thermal stability and contact angle of the blends decrease with increasing fibroin percentage. Conversely, fibroin imparts mechanical stability to the blends; greater tensile strength is observed with increasing fibroin concentration. Blended scaffolds are biodegradable and support well the neo-bone matrix synthesis by human osteoblast like cells. The findings indicate the potentiality of nanofibrous scaffolds of nonmulberry fibroin as bone scaffolding material. © 2014 Wiley Periodicals, Inc.

  15. Scaffolding Preservice Teachers' WebQuest Design: A Qualitative Study

    Science.gov (United States)

    Wang, Feng; Hannafin, Michael J.

    2009-01-01

    This study examined how participating preservice teachers reported their perceptions and use of different scaffolds provided to support their WebQuest design. Sixteen preservice teachers participated in a succession of course activities designed to guide WebQuest design and development. Results indicated that while participants followed, adapted,…

  16. The Azobenzene Optical Storage Puzzle - Demands on the Polymer Scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, PS

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...

  17. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    % or greater, and erasability. The implications of the main chain nature for polyester morphology and for the permanency of the induced anisotropy are discussed. The design and methods of preparation of other significantly different polymer scaffolds supporting cyanoazobenzene are elaborated. Oligopeptides...

  18. The azobenzene optical storage puzzle - Demands on the polymer scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...

  19. The Bisphosphonate Clodronate Modifying Hydroxyapatite Bioceramics for Bone Scaffold

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    To investigate the efficiency of clodronate modifying HA bioceramics , and to evaluate the effect of clodronate modifying HA bioceramies on the cells in vitro, clodronate modified the porous HA bioceramics for bone scaffold by chelation. The outermost layer of the specimens was analyzed by XPS and FI- IR. The depth profile was investigated by the argon-ion sputtering method. The cell culture test was conducted using MC3 T3-E1 osteoblastic cells. The cells were inoculated and cultured on the scaffolds. Morphological observation of the cells,MTT test and ALP activity test evaluated the cell attachment, proliferation and activity on the materials. Characteristic peaks in XPS and FT-IR spectra indicated clodronate being immobilized on the surface of the bioceramics.The cell culture test in cell quantity and morphology indicated active proliferation of the cells on the scaffolds. The ALP activity of the cells cultured for 3d and 7 d on clodronate- HA bioceramics was slightly higher than that on HA bioceramics, but the difference was not significant. This result indicated that clodronate- HA bioceramics had favorable cytocompatibility to be used as bone scaffold with potential ability to improve osteogenesis.

  20. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  1. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  2. On Mineral Retrosynthesis of a Complex Biogenic Scaffold

    Directory of Open Access Journals (Sweden)

    Ashit Rao

    2017-03-01

    Full Text Available Synergistic relations between organic molecules and mineral precursors regulate biogenic mineralization. Given the remarkable material properties of the egg shell as a biogenic ceramic, it serves as an important model to elucidate biomineral growth. With established roles of complex anionic biopolymers and a heterogeneous organic scaffold in egg shell mineralization, the present study explores the regulation over mineralization attained by applying synthetic polymeric counterparts (polyethylene glycol, poly(acrylic acid, poly(aspartic acid and poly(4-styrenesulfonic acid-co-maleic acid as additives during remineralization of decalcified eggshell membranes. By applying Mg2+ ions as a co-additive species, mineral retrosynthesis is achieved in a manner that modulates the polymorph and structure of mineral products. Notable features of the mineralization process include distinct local wettability of the biogenic organic scaffold by mineral precursors and mineralization-induced membrane actuation. Overall, the form, structure and polymorph of the mineralization products are synergistically affected by the additive and the content of Mg2+ ions. We also revisit the physicochemical nature of the biomineral scaffold and demonstrate the distinct spatial distribution of anionic biomolecules associated with the scaffold-mineral interface, as well as highlight the hydrogel-like properties of mammillae-associated macromolecules.

  3. Impact of Scaffolding and Question Structure on the Gender Gap

    Science.gov (United States)

    Dawkins, Hillary; Hedgeland, Holly; Jordan, Sally

    2017-01-01

    We address previous hypotheses about possible factors influencing the gender gap in attainment in physics. Specifically, previous studies claim that scaffolding may preferentially benefit female students, and we present some alternative conclusions surrounding this hypothesis. By taking both student attainment level and the degree of question…

  4. Scaffolding Java Programming on a Mobile Phone for Novice Learners

    Science.gov (United States)

    Mbogo, Chao; Blake, Edwin; Suleman, Hussein

    2015-01-01

    The ubiquity of mobile phones provides an opportunity to use them as a resource for construction of programs beyond the classroom. However, limitations of mobile phones impede their use as typical programming environments. This research proposes that programming environments on mobile phones should include scaffolding techniques specifically…

  5. SOS: Observation, Intervention, and Scaffolding towards Successful Online Students

    Science.gov (United States)

    Ainsa, Trisha

    2017-01-01

    Research, reflection, and evaluation of online classes indicated a need for graduated scaffolding for first time students experiencing distance learning. In order to promote student engagement in the online learning process, I designed SOS for beginning online students. Sixty-three online students were offered an opportunity to participate in a…

  6. Biocompatibility of two experimental scaffolds for regenerative endodontics

    Directory of Open Access Journals (Sweden)

    Dephne Jack Xin Leong

    2016-05-01

    Full Text Available Objectives The biocompatibility of two experimental scaffolds for potential use in revascularization or pulp regeneration was evaluated. Materials and Methods One resilient lyophilized collagen scaffold (COLL, releasing metronidazole and clindamycin, was compared to an experimental injectable poly(lactic-co-glycolic acid scaffold (PLGA, releasing clindamycin. Human dental pulp stem cells (hDPSCs were seeded at densities of 1.0 × 104, 2.5 × 104, and 5.0 × 104. The cells were investigated by light microscopy (cell morphology, MTT assay (cell proliferation and a cytokine (IL-8 ELISA test (biocompatibility. Results Under microscope, the morphology of cells coincubated for 7 days with the scaffolds appeared healthy with COLL. Cells in contact with PLGA showed signs of degeneration and apoptosis. MTT assay showed that at 5.0 × 104 hDPSCs, COLL demonstrated significantly higher cell proliferation rates than cells in media only (control, p < 0.01 or cells co-incubated with PLGA (p < 0.01. In ELISA test, no significant differences were observed between cells with media only and COLL at 1, 3, and 6 days. Cells incubated with PLGA expressed significantly higher IL-8 than the control at all time points (p < 0.01 and compared to COLL after 1 and 3 days (p < 0.01. Conclusions The COLL showed superior biocompatibility and thus may be suitable for endodontic regeneration purposes.

  7. The assessment of natural scaffolds ability in chondrogenic ...

    African Journals Online (AJOL)

    The ability of cartilage to repair damage is limited due to lack of blood vessels and low cell density. Recently, tissue engineering is considerably preferred to other treatments as a way to solve this problem. Regardless of cell sources, one of the crucial factors in tissue engineering is to select an appropriate scaffold, which is ...

  8. Microcracks induce osteoblast alignment and maturation on hydroxyapatite scaffolds

    Science.gov (United States)

    Shu, Yutian

    Physiological bone tissue is a mineral/collagen composite with a hierarchical structure. The features in bone, such as mineral crystals, fibers, and pores can range from the nanometer to the centimeter in size. Currently available bone tissue scaffolds primarily address the chemical composition, pore size, and pore size distribution. While these design parameters are extensively investigated for mimicking bone function and inducing bone regeneration, little is known about microcracks, which is a prevalent feature found in fractured bone in vivo and associated with fracture healing and repair. Since the purpose of bone tissue engineering scaffold is to enhance bone regeneration, the coincidence of microcracks and bone densification should not be neglected but rather be considered as a potential parameter in bone tissue engineering scaffold design. The purpose of this study is to test the hypothesis that microcracks enhance bone healing. In vitro studies were designed to investigate the osteoblast (bone forming cells) response to microcracks in dense (94%) hydroxyapatite substrates. Microcracks were introduced using a well-established Vickers indentation technique. The results of our study showed that microcracks induced osteoblast alignment, enhanced osteoblast attachment and more rapid maturation. These findings may provide insight into fracture healing mechanism(s) as well as improve the design of bone tissue engineering orthopedic scaffolds for more rapid bone regeneration.

  9. Fostering Analysis in Historical Inquiry through Multimedia Embedded Scaffolding

    Science.gov (United States)

    Hicks, David; Doolittle, Peter E.

    2008-01-01

    This article reports on the findings of a study designed to assess the utility of a multimedia tutorial intended to scaffold the development of historical source analysis through the use of the SCIM strategy. Seventy-seven undergraduate students (29 males, 48 females) with a mean age of 19.4 years engaged in a 2.5-hour tutorial across three…

  10. Scaffolding Collaborative Technical Writing with Procedural Facilitation and Synchronous Discussion

    Science.gov (United States)

    Yeh, Shiou-Wen; Lo, Jia-Jiunn; Huang, Jeng-Jia

    2011-01-01

    With the advent of computer technology, researchers and instructors are attempting to devise computer support for effective collaborative technical writing. In this study, a computer-supported environment for collaborative technical writing was developed. This system (Process-Writing Wizard) provides process-oriented scaffolds and a synchronous…

  11. Progress in scaffold-free bioprinting for cardiovascular medicine.

    Science.gov (United States)

    Moldovan, Nicanor I

    2018-06-01

    Biofabrication of tissue analogues is aspiring to become a disruptive technology capable to solve standing biomedical problems, from generation of improved tissue models for drug testing to alleviation of the shortage of organs for transplantation. Arguably, the most powerful tool of this revolution is bioprinting, understood as the assembling of cells with biomaterials in three-dimensional structures. It is less appreciated, however, that bioprinting is not a uniform methodology, but comprises a variety of approaches. These can be broadly classified in two categories, based on the use or not of supporting biomaterials (known as "scaffolds," usually printable hydrogels also called "bioinks"). Importantly, several limitations of scaffold-dependent bioprinting can be avoided by the "scaffold-free" methods. In this overview, we comparatively present these approaches and highlight the rapidly evolving scaffold-free bioprinting, as applied to cardiovascular tissue engineering. © 2018 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Scaffolding EFL Students' Writing through the Writing Process Approach

    Science.gov (United States)

    Faraj, Avan Kamal Aziz

    2015-01-01

    This research reports a study conducted at Koya University/English Language Department, and it aims at presenting the effect of scaffolding on EFL students' writing ability through the writing process. In this study, the students have taken the role of writers, so they need to follow the same steps that writers apply during their writing process.…

  13. Building bone tissue: matrices and scaffolds in physiology and biotechnology

    Directory of Open Access Journals (Sweden)

    Riminucci M.

    2003-01-01

    Full Text Available Deposition of bone in physiology involves timed secretion, deposition and removal of a complex array of extracellular matrix proteins which appear in a defined temporal and spatial sequence. Mineralization itself plays a role in dictating and spatially orienting the deposition of matrix. Many aspects of the physiological process are recapitulated in systems of autologous or xenogeneic transplantation of osteogenic precursor cells developed for tissue engineering or modeling. For example, deposition of bone sialoprotein, a member of the small integrin-binding ligand, N-linked glycoprotein family, represents the first step of bone formation in ectopic transplantation systems in vivo. The use of mineralized scaffold