WorldWideScience

Sample records for urban watershed modeling

  1. Modeling urbanized watershed flood response changes with distributed hydrological model: key hydrological processes, parameterization and case studies

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to

  2. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  3. Land cover change impact on urban flood modeling (case study: Upper Citarum watershed)

    Science.gov (United States)

    Siregar, R. I.

    2018-03-01

    The upper Citarum River watershed utilizes remote sensing technology in Geographic Information System to provide information on land coverage by interpretation of objects in the image. Rivers that pass through urban areas will cause flooding problems causing disadvantages, and it disrupts community activities in the urban area. Increased development in a city is related to an increase in the number of population growth that added by increasing quality and quantity of life necessities. Improved urban lifestyle changes have an impact on land cover. The impact in over time will be difficult to control. This study aims to analyze the condition of flooding in urban areas caused by upper Citarum watershed land-use change in 2001 with the land cover change in 2010. This modeling analyzes with the help of HEC-RAS to describe flooded inundation urban areas. Land cover change in upper Citarum watershed is not very significant; it based on the results of data processing of land cover has the difference of area that changed is not enormous. Land cover changes for the floods increased dramatically to a flow coefficient for 2001 is 0.65 and in 2010 at 0.69. In 2001, the inundation area about 105,468 hectares and it were about 92,289 hectares in 2010.

  4. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    Science.gov (United States)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  5. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    International Nuclear Information System (INIS)

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-01-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size

  6. Urban Stream Burial Increases Watershed-Scale Nitrate Export.

    Directory of Open Access Journals (Sweden)

    Jake J Beaulieu

    Full Text Available Nitrogen (N uptake in streams is an important ecosystem service that reduces nutrient loading to downstream ecosystems. Here we synthesize studies that investigated the effects of urban stream burial on N-uptake in two metropolitan areas and use simulation modeling to scale our measurements to the broader watershed scale. We report that nitrate travels on average 18 times farther downstream in buried than in open streams before being removed from the water column, indicating that burial substantially reduces N uptake in streams. Simulation modeling suggests that as burial expands throughout a river network, N uptake rates increase in the remaining open reaches which somewhat offsets reduced N uptake in buried reaches. This is particularly true at low levels of stream burial. At higher levels of stream burial, however, open reaches become rare and cumulative N uptake across all open reaches in the watershed rapidly declines. As a result, watershed-scale N export increases slowly at low levels of stream burial, after which increases in export become more pronounced. Stream burial in the lower, more urbanized portions of the watershed had a greater effect on N export than an equivalent amount of stream burial in the upper watershed. We suggest that stream daylighting (i.e., uncovering buried streams can increase watershed-scale N retention.

  7. Modeling urban growth by the use of a multiobjective optimization approach: environmental and economic issues for the Yangtze watershed, China.

    Science.gov (United States)

    Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song

    2014-11-01

    Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern

  8. Evaluating the Performance of Wavelet-based Data-driven Models for Multistep-ahead Flood Forecasting in an Urbanized Watershed

    Science.gov (United States)

    Kasaee Roodsari, B.; Chandler, D. G.

    2015-12-01

    A real-time flood forecast system is presented to provide emergency management authorities sufficient lead time to execute plans for evacuation and asset protection in urban watersheds. This study investigates the performance of two hybrid models for real-time flood forecasting at different subcatchments of Ley Creek watershed, a heavily urbanized watershed in the vicinity of Syracuse, New York. Hybrid models include Wavelet-Based Artificial Neural Network (WANN) and Wavelet-Based Adaptive Neuro-Fuzzy Inference System (WANFIS). Both models are developed on the basis of real time stream network sensing. The wavelet approach is applied to decompose the collected water depth timeseries to Approximation and Detail components. The Approximation component is then used as an input to ANN and ANFIS models to forecast water level at lead times of 1 to 10 hours. The performance of WANN and WANFIS models are compared to ANN and ANFIS models for different lead times. Initial results demonstrated greater predictive power of hybrid models.

  9. Impact of urbanization on the sediment yield in tropical watershed using temporal land-use changes and a GIS-based model

    Directory of Open Access Journals (Sweden)

    Bello Al-Amin D.

    2017-09-01

    Full Text Available Abundant rainfall areas promote sediment yield at both sub-watershed and watershed scale due to soil erosion and increase siltation of river channel, but it can be curtailed through planned urbanization. The urbanization of Skudai watershed is analysed from historical and future perspective. A GIS-based model (Hydrological Simulation Programme-FORTRAN-HSPF is used to modelled sediment flow using basin-wide simulation, and the output result is utilized in evaluating sediment yield reduction due to increased urbanization by swapping multiple temporal land-use of decadent time-steps. The analysis indicates that sediment yield reduces with increase urban built-up and decrease forest and agricultural land. An estimated 12 400 tons of sediment will be reduced for every 27% increase in built-up areas under high rainfall condition and 1 490 tons at low rainfall. The sensitivity analysis of land-use classes shows that built-up, forest and barren are more sensitive to sediment yield reduction compared to wetland and agricultural land at both high and low rainfall. The result of the study suggests that increased urbanization reduced sediment yield in proportion to the rainfall condition and can be used as an alternative approach for soil conservation at watershed scale independent of climate condition.

  10. Sediment sources in an urbanizing, mixed land-use watershed

    Science.gov (United States)

    Nelson, Erin J.; Booth, Derek B.

    2002-07-01

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km 2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concerns over flooding, loss of fish habitat, and degraded water quality. A watershed-scale sediment budget was evaluated to determine the relative effects of land-use practices, including urbanization, on sediment supply and delivery, and to guide management responses towards the most effective source-reduction strategies. Human activity in the watershed, particularly urban development, has caused an increase of nearly 50% in the annual sediment yield, now estimated to be 44 tonnes km -2 yr -1. The main sources of sediment in the watershed are landslides (50%), channel-bank erosion (20%), and road-surface erosion (15%). This assessment characterizes the role of human activity in mixed-use watersheds such as this, and it demonstrates some of the key processes, particularly enhanced stream-channel erosion, by which urban development alters sediment loads.

  11. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-01-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  12. URBAN WATERSHED STUDIES IN SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Cristiano Poleto

    2007-12-01

    Full Text Available One of the greatest problems observed in Brazilian urban watersheds are concerned to the amount of solid residues, domestic sewerage and sediments that are disposed in the rivers and streams that drain those areas. This project aims to present these problems through a study of case taken in an urban watershed in Porto Alegre city, Southern Brazil. For this study, different procedures were used, such as field surveys, interviews with the inhabitants, satellite images, sediment samples, flow measures and morphology assessment of part of the local fluvial system to check the degree of instability of the channel. In 2005, it was verified that 42.57% of the watershed was impermeable, considering the paved streets, the residential and commercial buildings and stone pavements. As there was no sewer treatment, most of this sewerage was directly disposed into the stream and the TOC has reached 20% (m/m. Moreover, the occupation of riparian areas, a great amount of soil exposed in the watershed, the nonpaved streets and a great volume of solid residues were causing the instability in the channel, silting the stream bed. The metals (Zn, Pb and Cr selected for this study are most frequently found in high concentrations in urban areas. The results suggest the occurrence of a high enrichment of the fluvial sediment by these metals. The concentrations of these elements vary temporally during storms due to the input of impervious area runoff containing high concentration of elements associated to vehicular traffic and other anthropogenic activities. Then, it is possible to conclude that the contamination of the urban watershed is reflected in the results obtained in the fluvial suspended sediments.

  13. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Hehuan, E-mail: hehuan86@vt.edu [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Krometis, Leigh-Anne H. [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Kline, Karen [Department of Biological Systems Engineering, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States); Center for Watershed Studies, Virginia Tech, 155 Ag Quad Lane, Blacksburg, VA 24061 (United States)

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to

  14. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed

    International Nuclear Information System (INIS)

    Liao, Hehuan; Krometis, Leigh-Anne H.; Kline, Karen

    2016-01-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126 CFU/100 mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  15. Coupling a continuous watershed-scale microbial fate and transport model with a stochastic dose-response model to estimate risk of illness in an urban watershed.

    Science.gov (United States)

    Liao, Hehuan; Krometis, Leigh-Anne H; Kline, Karen

    2016-05-01

    Within the United States, elevated levels of fecal indicator bacteria (FIB) remain the leading cause of surface water-quality impairments requiring formal remediation plans under the federal Clean Water Act's Total Maximum Daily Load (TMDL) program. The sufficiency of compliance with numerical FIB criteria as the targeted endpoint of TMDL remediation plans may be questionable given poor correlations between FIB and pathogenic microorganisms and varying degrees of risk associated with exposure to different fecal pollution sources (e.g. human vs animal). The present study linked a watershed-scale FIB fate and transport model with a dose-response model to continuously predict human health risks via quantitative microbial risk assessment (QMRA), for comparison to regulatory benchmarks. This process permitted comparison of risks associated with different fecal pollution sources in an impaired urban watershed in order to identify remediation priorities. Results indicate that total human illness risks were consistently higher than the regulatory benchmark of 36 illnesses/1000 people for the study watershed, even when the predicted FIB levels were in compliance with the Escherichia coli geometric mean standard of 126CFU/100mL. Sanitary sewer overflows were associated with the greatest risk of illness. This is of particular concern, given increasing indications that sewer leakage is ubiquitous in urban areas, yet not typically fully accounted for during TMDL development. Uncertainty analysis suggested the accuracy of risk estimates would be improved by more detailed knowledge of site-specific pathogen presence and densities. While previous applications of the QMRA process to impaired waterways have mostly focused on single storm events or hypothetical situations, the continuous modeling framework presented in this study could be integrated into long-term water quality management planning, especially the United States' TMDL program, providing greater clarity to watershed

  16. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Directory of Open Access Journals (Sweden)

    Alonso Ramírez

    2014-06-01

    Full Text Available Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial variability in stream physicochemistry in a highly urbanized watershed in Puerto Rico. The main objective of the study was to describe stream physicochemical characteristics and relate them to urban intensity, e.g., percent impervious surface cover, and watershed infrastructure, e.g., road and pipe densities. The Río Piedras Watershed in the San Juan Metropolitan Area, Puerto Rico, is one of the most urbanized regions on the island. The Río Piedras presented high solute concentrations that were related to watershed factors, such as percent impervious cover. Temporal variability in ion concentrations lacked seasonality, as did all other parameters measured except water temperature, which was lower during winter and highest during summer, as expected based on latitude. Spatially, stream physicochemistry was strongly related to watershed percent impervious cover and also to the density of urban infrastructure, e.g., roads, pipe, and building densities. Although the watershed is serviced by a sewage collection system, illegal discharges and leaky infrastructure are probably responsible for the elevated ion concentration found. Overall, the Río Piedras is an example of the response of a tropical urban watershed after major sewage inputs are removed, thus highlighting the importance of proper infrastructure maintenance and management of runoff to control ion concentrations in tropical streams.

  17. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    Science.gov (United States)

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A coupled model approach to reduce nonpoint-source pollution resulting from predicted urban growth: A case study in the Ambos Nogales watershed

    Science.gov (United States)

    Norman, L.M.; Guertin, D.P.; Feller, M.

    2008-01-01

    The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be

  19. Empirical assessment of effects of urbanization on event flow hydrology in watersheds of Canada's Great Lakes-St Lawrence basin

    Science.gov (United States)

    Trudeau, M. P.; Richardson, Murray

    2016-10-01

    We conducted an empirical hydrological analysis of high-temporal resolution streamflow records for 27 watersheds within 11 river systems in the Greater Toronto Region of the Canadian Great Lakes basin. Our objectives were to model the event-scale flow response of watersheds to urbanization and to test for scale and threshold effects. Watershed areas ranged from 37.5 km2 to 806 km2 and urban percent land cover ranged from less than 0.1-87.6%. Flow records had a resolution of 15-min increments and were available over a 42-year period, allowing for detailed assessment of changes in event-scale flow response with increasing urban land use during the post-freshet period (May 26 to November 15). Empirical statistical models were developed for flow characteristics including total runoff, runoff coefficient, eightieth and ninety-fifth percentile rising limb event runoff and mean rising limb event acceleration. Changes in some of these runoff metrics began at very low urban land use (acceleration increased with increasing urban cover, thus causing 80th percentile runoff depths to be reached sooner. These results indicate the potential for compromised water balance when cumulative changes are considered at the watershed scale. No abrupt or threshold changes in hydrologic characteristics were identified along the urban land use gradient. A positive interaction of urban percent land use and watershed size indicated a scale effect on total runoff. Overall, the results document compromised hydrologic stability attributable to urbanization during a period with no detectable change in rainfall patterns. They also corroborate literature recommendations for spatially distributed low impact urban development techniques; measures would be needed throughout the urbanized area of a watershed to dampen event-scale hydrologic responses to urbanization. Additional research is warranted into event-scale hydrologic trends with urbanization in other regions, in particular rising limb event

  20. Watershed Urbanization Linked to Differences in Stream Bacterial Community Composition

    Directory of Open Access Journals (Sweden)

    Jacob D. Hosen

    2017-08-01

    Full Text Available Urbanization strongly influences headwater stream chemistry and hydrology, but little is known about how these conditions impact bacterial community composition. We predicted that urbanization would impact bacterial community composition, but that stream water column bacterial communities would be most strongly linked to urbanization at a watershed-scale, as measured by impervious cover, while sediment bacterial communities would correlate with environmental conditions at the scale of stream reaches. To test this hypothesis, we determined bacterial community composition in the water column and sediment of headwater streams located across a gradient of watershed impervious cover using high-throughput 16S rRNA gene amplicon sequencing. Alpha diversity metrics did not show a strong response to catchment urbanization, but beta diversity was significantly related to watershed impervious cover with significant differences also found between water column and sediment samples. Samples grouped primarily according to habitat—water column vs. sediment—with a significant response to watershed impervious cover nested within each habitat type. Compositional shifts for communities in urbanized streams indicated an increase in taxa associated with human activity including bacteria from the genus Polynucleobacter, which is widespread, but has been associated with eutrophic conditions in larger water bodies. Another indicator of communities in urbanized streams was an OTU from the genus Gallionella, which is linked to corrosion of water distribution systems. To identify changes in bacterial community interactions, bacterial co-occurrence networks were generated from urban and forested samples. The urbanized co-occurrence network was much smaller and had fewer co-occurrence events per taxon than forested equivalents, indicating a loss of keystone taxa with urbanization. Our results suggest that urbanization has significant impacts on the community composition

  1. Modeling Hydrologic Processes after Vegetation Restoration in an Urban Watershed with HEC-HMS

    Science.gov (United States)

    Stevenson, K.; Kinoshita, A. M.

    2017-12-01

    The San Diego River Watershed in California (USA) is highly urbanized, where stream channel geomorphology are directly affected by anthropogenic disturbances. Flooding and water quality concerns have led to an increased interest in improving the condition of urban waterways. Alvarado Creek, a 1200-meter section of a tributary to the San Diego River will be used as a case study to understand the degree to which restoration efforts reduce the impacts of climate change and anthropogenic activities on hydrologic processes and water quality in urban stream ecosystems. In 2016, non-native vegetation (i.e. Washingtonia spp. (fan palm), Phoenix canariensis (Canary Island palm)) and approximately 7257 kilograms of refuse were removed from the study reach. This research develops the United States Army Corp of Engineers Hydrologic Engineering Center's Hydraulic Modeling System (USACE HEC-HMS) using field-based data to model and predict the short- and long-term impacts of restoration on geomorphic and hydrologic processes. Observations include cross-sectional area, grain-size distributions, water quality, and continuous measurements of streamflow, temperature, and precipitation. Baseline and design storms are simulated before and after restoration. The model will be calibrated and validated using field observations. The design storms represent statistical likelihoods of storms occurrences, and the pre- and post-restoration hydrologic responses will be compared to evaluate the impact of vegetation and waste removal on runoff processes. Ultimately model parameters will be transferred to other urban creeks in San Diego that may potentially undergo restoration. Modeling will be used to learn about the response trajectory of rainfall-runoff processes following restoration efforts in urban streams and guide future management and restoration activities.

  2. Urban Stormwater Temperature Surges: A Central US Watershed Study

    Directory of Open Access Journals (Sweden)

    Sean J. Zeiger

    2015-10-01

    Full Text Available Impacts of urban land use can include increased stormwater runoff temperature (Tw leading to receiving water quality impairment. There is therefore a need to target and mitigate sources of thermal pollution in urban areas. However, complex relationships between urban development, stormwater runoff and stream water heating processes are poorly understood. A nested-scale experimental watershed study design was used to investigate stormwater runoff temperature impacts to receiving waters in a representative mixed-use urbanizing watershed of the central US. Daily maximum Tw exceeded 35.0 °C (threshold for potential mortality of warm-water biota at an urban monitoring site for a total of five days during the study period (2011–2013. Sudden increases of more than 1.0 °C within a 15 min time interval of Tw following summer thunderstorms were significantly correlated (CI = 95%; p < 0.01 to cumulative percent urban land use (r2 = 0.98; n = 29. Differences in mean Tw between monitoring sites were significantly correlated (CI = 95%; p = 0.02 to urban land use practices, stream distance and increasing discharge. The effects of the 2012 Midwest USA drought and land use on Tw were also observed with maximum Tw 4.0 °C higher at an urban monitoring site relative to a rural site for 10.5 h. The current work provides quantitative evidence of acute increases in Tw related to urban land use. Results better inform land managers wishing to create management strategies designed to preserve suitable thermal stream habitats in urbanizing watersheds.

  3. Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida

    Science.gov (United States)

    Lopez, M.A.; Woodham, W.M.

    1983-01-01

    Hydrologic data collected on nine small urban watersheds in the Tampa Bay area of west-central Florida and a method for estimating peak discharges in the study area are described. The watersheds have mixed land use and range in size from 0.34 to 3.45 square miles. Watershed soils, land use, and storm-drainage system data are described. Urban development ranged from a sparsely populated area with open-ditch storm sewers and 19% impervious area to a completely sewered watershed with 61% impervious cover. The U.S. Geological Survey natural-basin and urban-watershed models were calibrated for the nine watersheds using 5-minute interval rainfall data from the Tampa, Florida, National Weather Service rain gage to simulate annual peak discharge for the period 1906-52. A log-Pearson Type III frequency analysis of the simulated annual maximum discharge was used to determine the 2-, 5-, 10-, 25-, 50-, and 100-year flood discharges for each watershed. Flood discharges were related in a multiple-linear regression to drainage area, channel slope, detention storage area, and an urban-development factor determined by the extent of curb and gutter street drainage and storm-sewer system. The average standard error for the regional relations ranged from + or - 32 to + or - 42%. (USGS)

  4. Assessments of urban growth in the Tampa Bay watershed using remote sensing data

    Science.gov (United States)

    Xian, G.; Crane, M.

    2005-01-01

    Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.

  5. Urban Waters and the Patapsco Watershed/Baltimore Region (Maryland)

    Science.gov (United States)

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  6. Modeling the Effects of Onsite Wastewater Treatment Systems on Nitrate Loads Using SWAT in an Urban Watershed of Metropolitan Atlanta.

    Science.gov (United States)

    Hoghooghi, Nahal; Radcliffe, David E; Habteselassie, Mussie Y; Jeong, Jaehak

    2017-05-01

    Onsite wastewater treatment systems (OWTSs) can be a source of nitrogen (N) pollution in both surface and ground waters. In metropolitan Atlanta, GA, >26% of homes are on OWTSs. In a previous article, we used the Soil Water Assessment Tool to model the effect of OWTSs on stream flow in the Big Haynes Creek Watershed in metropolitan Atlanta. The objective of this study was to estimate the effect of OWTSs, including failing systems, on nitrate as N (NO-N) load in the same watershed. Big Haynes Creek has a drainage area of 44 km with mainly urban land use (67%), and most of the homes use OWTSs. A USGS gauge station where stream flow was measured daily and NO-N concentrations were measured monthly was used as the outlet. The model was simulated for 12 yr. Overall, the model showed satisfactory daily stream flow and NO-N loads with Nash-Sutcliffe coefficients of 0.62 and 0.58 for the calibration period and 0.67 and 0.33 for the validation period at the outlet of the Big Haynes Watershed. Onsite wastewater treatment systems caused an average increase in NO-N load of 23% at the watershed scale and 29% at the outlet of a subbasin with the highest density of OWTSs. Failing OWTSs were estimated to be 1% of the total systems and did not have a large impact on stream flow or NO-N load. The NO-N load was 74% of the total N load in the watershed, indicating the important effect of OWTSs on stream loads in this urban watershed. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Science.gov (United States)

    Derek B. Booth; Kristin A. Kraseski; C. Rhett. Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  8. Phosphorus export across an urban to rural gradient in the Chesapeake Bay watershed

    Science.gov (United States)

    Shuiwang Duan; Sujay S. Kaushal; Peter Groffman; Lawrence E. Band; Kenneth Belt

    2012-01-01

    Watershed export of phosphorus (P) from anthropogenic sources has contributed to eutrophication in freshwater and coastal ecosystems. We explore impacts of watershed urbanization on the magnitude and export flow distribution of P along an urban-rural gradient in eight watersheds monitored as part of the Baltimore Ecosystem Study Long-Term Ecological Research site....

  9. The Impact of Drainage Network Structure on Flooding in a Small Urban Watershed in Metropolitan Baltimore, MD

    Science.gov (United States)

    Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.

    2006-12-01

    The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.

  10. How does imperviousness develop and affect runoff generation in an urbanizing watershed?

    Directory of Open Access Journals (Sweden)

    Gerald Krebs

    2013-08-01

    Full Text Available Imperviousness associated with urbanization remains one of the biggest challenges in sustainable urban design. The replacement of forests, marshlands, buffers, and wetlands with impervious surfaces, strongly influences hydrological processes in urbanizing areas. This study analyzed the contribution of four constructed surfaces types – roofs, yards, roads, and an international airport – to surface runoff within a 21 km2 watershed, and presents the development over five decades (1977−2030. The land-cover model, used to assess watershed imperviousness in 2030, utilized coefficients between impervious areas generating surface runoff and the floor area, developed during the study. The conducted imperviousness analysis allowed the evaluation of land-use development impacts on the stream network, and the identification of hydrologically active areas for urban planning and stormwater management. Research revealed the importance of yard imperviousness related to suburban residential housing for stormwater runoff generation, and the impacts of transport-related imperviousness on stormwater runoff.

  11. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B.

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination ( R 2) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  12. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices.

    Science.gov (United States)

    Li, Chongwei; Zhang, Yajuan; Kharel, Gehendra; Zou, Chris B

    2018-06-01

    Nutrient discharge into peri-urban streams and reservoirs constitutes a significant pressure on environmental management, but quantitative assessment of non-point source pollution under climate variability in fast changing peri-urban watersheds is challenging. Soil and Water Assessment Tool (SWAT) was used to simulate water budget and nutrient loads for landscape patterns representing a 30-year progression of urbanization in a peri-urban watershed near Tianjin metropolis, China. A suite of landscape pattern indices was related to nitrogen (N) and phosphorous (P) loads under dry and wet climate using CANOCO redundancy analysis. The calibrated SWAT model was adequate to simulate runoff and nutrient loads for this peri-urban watershed, with Nash-Sutcliffe coefficient (NSE) and coefficient of determination (R 2 ) > 0.70 and percentage bias (PBIAS) between -7 and +18 for calibration and validation periods. With the progression of urbanization, forest remained the main "sink" landscape while cultivated and urban lands remained the main "source" landscapes with the role of orchard and grassland being uncertain and changing with time. Compared to 1984, the landscape use pattern in 2013 increased nutrient discharge by 10%. Nutrient loads modelled under wet climate were 3-4 times higher than that under dry climate for the same landscape pattern. Results indicate that climate change could impose a far greater impact on runoff and nutrient discharge in a peri-urban watershed than landscape pattern change.

  13. ORD’s Urban Watershed Management Branch

    Science.gov (United States)

    This is a poster for the Edison Science Day, tentatively scheduled for June 10, 2009. This poster presentation summarizes key elements of the EPA Office of Research and Development’s (ORD) Urban Watershed Management Branch (UWMB). An overview of the national problems posed by w...

  14. Stormwater management network effectiveness and implications for urban watershed function: A critical review

    Science.gov (United States)

    Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.

    2017-01-01

    Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and

  15. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  16. URBAN FRESHWATER USERS WILLINGNESS TO PAY FOR UPLAND DEGRADED WATERSHED MANAGEMENT: THE CASE OF DECHATU IN DIRE DAWA ADMINISTRATION, ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Alem MEZGEBO

    2016-04-01

    Full Text Available The study assesses urban freshwater users’ perception of watershed degradation and users' willingness to pay for upland degraded watershed management. Cross sectional data was collected from 282 urban freshwater users. A number of causes and effects of watershed degradation and water supply problems are identified. Economic instruments and mechanisms are also identified as the basis of charging and collecting the fee for watershed management, respectively. Besides, contingent valuation result shows that about 82 percent of the respondents were willing to pay for upland degraded watershed management. The mean willingness to pay from the spike model was computed to be 97 Ethiopian birr (ETB per annum for five years whereas the mean willingness to pay from the open-ended elicitation method was computed 70 ETB per year. Urban freshwater user willingness to pay is affected by total income, initial bids, marital status, ownership of house and educational levels. The study recommends that any watershed management activities need to consider the socio-economic variables of the affected respondents. Besides, it is worthy to consider the demand of the urban dweller (downstream users for any upland degraded watershed management.

  17. Effectiveness of low impact development practices in two urbanized watersheds: retrofitting with rain barrel/cistern and porous pavement.

    Science.gov (United States)

    Ahiablame, Laurent M; Engel, Bernard A; Chaubey, Indrajeet

    2013-04-15

    The impacts of urbanization on hydrology and water quality can be minimized with the use of low impact development (LID) practices in urban areas. This study assessed the performance of rain barrel/cistern and porous pavement as retrofitting technologies in two urbanized watersheds of 70 and 40 km(2) near Indianapolis, Indiana. Six scenarios consisting of the watershed existing condition, 25% and 50% implementation of rain barrel/cistern and porous pavement, and 25% rain barrel/cistern combined with 25% porous pavement were evaluated using a proposed LID modeling framework and the Long-Term Hydrologic Impact Assessment (L-THIA)-LID model. The model was calibrated for annual runoff from 1991 to 2000, and validated from 2001 to 2010 for the two watersheds. For the calibration period, R(2) and NSE values were greater than 0.60 and 0.50 for annual runoff and streamflow. Baseflow was not calibrated in this study. During the validation period, R(2) and NSE values were greater than 0.50 for runoff and streamflow, and 0.30 for baseflow in the two watersheds. The various application levels of barrel/cistern and porous pavement resulted in 2-12% reduction in runoff and pollutant loads for the two watersheds. Baseflow loads slightly increased with increase in baseflow by more than 1%. However, reduction in runoff led to reduction in total streamflow and associated pollutant loads by 1-9% in the watersheds. The results also indicate that the application of 50% rain barrel/cistern, 50% porous pavement and 25% rain barrel/cistern combined with 25% porous pavement are good retrofitting options in these watersheds. The L-THIA-LID model can be used to inform management and decision-making for implementation of LID practices at the watershed scale. Copyright © 2013. Published by Elsevier Ltd.

  18. Characterizing urbanization impacts on floodplain through integrated land use, hydrologic, and hydraulic modeling: Applications to a watershed in northwest Houston, TX

    Science.gov (United States)

    Gori, A.; Juan, A.; Blessing, R.; Brody, S.; Bedient, P. B.

    2017-12-01

    The FEMA 100 year floodplain serves as the benchmark for characterizing and managing flood risk in the United States. However, it is usually generated by using methodologies that are too simplistic to accurately depict the spatial reality of flood risk, and often fail to consider non-stationary variables such as changing land use conditions or precipitation patterns. The impacts of these limitations are evidenced in Houston, TX, where rainfall-induced flooding has resulted in billions of dollars in commercial and residential damage over the past two decades, much of which has occurred outside of the 100 year floodplain. Specifically, rapid urbanization has drastically increased overland runoff and resulting peak flows, thereby exposing new areas to flood risks. It is therefore crucial to examine the impacts of future land development on floodplain depth and extent in order to develop effective long-term stormwater management and mitigation strategies. This study presents a methodology for characterizing the impacts of future development on flood risk in an urbanizing watershed by integrating land use projection and high-resolution hydrologic / hydraulic modeling. Development projections are generated by identifying historical land use/ land cover change (LULCC) drivers, which are incorporated into an artificial neural network (ANN) to predict development conditions out to 2040. Hydrologic modeling of current and projected land cover conditions is achieved through a physics-based distributed hydrologic model. Finally, a coupled 1D/2D unsteady hydraulic model is used to simulate floodplain depths and extents, and to generate floodplain maps for all considered scenarios. This methodology is applied to the Cypress Creek watershed in northwest Houston, TX, a partially-developed watershed which is expected to rapidly urbanize for the next few decades. The study quantifies floodplain changes (i.e., extent and depth) and the number of impacted residences, and also

  19. Future scenarios of urbanization and its effects on water quantity and quality in three New England watersheds

    Science.gov (United States)

    Hutyra, L.; Yang, Y.; Kim, J.; Cheng, C.; O'Brien, P.; Rouhani, S.; Douglas, E. M.; Nicolson, C.; Ryan, R.; Schaaf, C.; Warren, P.; Wollheim, W. M.

    2013-12-01

    New England watersheds have been impacted by human development and environmental stressors that are similar to those projected to impact large portions of the United States and the world. These impacts are likely to continue as some parts of the region are projected to lose over 60% of private forestland to development by 2030. Such dramatic changes have important consequences for water quality and quantity. Because of the complex and varied interactions between human and natural systems, simply understanding the processes affecting current and historical conditions in urbanizing watersheds is inadequate to model the future. Understanding future hydrologic conditions is made more difficult because of the uncertainties inherent in projecting future climate conditions. One approach to handling this complexity is to use scenarios to explore a range of potential futures following contrasting trajectories of change. Here we describe how four scenarios of land use change were developed using a stakeholder driven process. We then began using the scenarios in hydrological models to estimate future changes in water quality and quantity. The study area includes three watersheds (the Charles, Neponset and Ipswich) that have undergone varying degrees of urbanization in the greater Boston area of Massachusetts in the northeastern United States. The Charles and Neponset River watersheds are densely populated and include the city of Boston itself. Municipal water supplies in these two watersheds are mostly from the Massachusetts Water Resources Authority (MWRA) sources in western Massachusetts. The Ipswich River watershed is highly suburban, and communities are largely dependent on local water supplies. If the historical urbanization trends continue, the impervious area in the Charles River watershed is projected to increase by 13%, 16% in Neponset River watershed, and 24% in Ipswich River watershed by 2030. For the Charles River watershed, analyses identified hot spots for

  20. Identifying strategic sites for Green-Infrastructures (GI) to manage stormwater in a miscellaneous use urban African watershed

    Science.gov (United States)

    Selker, J. S.; Kahsai, S. K.

    2017-12-01

    Green Infrastructure (GI) or Low impact development (LID), is a land use planning and design approach with the objective of mitigating land development impacts to the environment, and is ever more looked to as a way to lessen runoff and pollutant loading to receiving water bodies. Broad-scale approaches for siting GI/LID have been developed for agricultural watersheds, but are rare for urban watersheds, largely due to greater land use complexity. And it is even more challenging when it comes to Urban Africa due to the combination of poor data quality, rapid and unplanned development, and civic institutions unable to reliably carry out regular maintenance. We present a spacio-temporal simulation-based approach to identify an optimal prioritization of sites for GI/LID based on DEM, land use and land cover. Optimization used is a multi-objective optimization tool along with an urban storm water management model (SWMM) to identify the most cost-effective combination of LID/GI. This was applied to an urban watershed in NW Kampala, Lubigi Catchment (notorious for being heavily flooded every year), with a miscellaneous use watershed in Uganda, as a case-study to demonstrate the approach.

  1. Type and timing of stream flow changes in urbanizing watersheds in the Eastern U.S.

    Directory of Open Access Journals (Sweden)

    Kristina G. Hopkins

    2015-06-01

    Full Text Available Abstract Linking the type and timing of hydrologic changes with patterns of urban growth is essential to identifying the underlying mechanisms that drive declines in urban aquatic ecosystems. In six urbanizing watersheds surrounding three U.S. cities (Baltimore, MD, Boston, MA, and Pittsburgh, PA, we reconstructed the history of development patterns since 1900 and assessed the magnitude and timing of stream flow changes during watershed development. Development reconstructions indicated that the majority of watershed development occurred during a period of peak population growth, typically between 1950 and 1970. Stream flow records indicated significant increases in annual frequency of high-flow events in all six watersheds and increases in annual runoff efficiency in five watersheds. Annual development intensity during the peak growth period had the strongest association with the magnitude of changes in high-flow frequency from the pre- to post-development periods. Results suggest the timing of the peak growth period is particularly important to understanding hydrologic changes, because it can set the type of stormwater infrastructure installed within a watershed. In three watersheds there was a rapid (∼10-15 years shift toward more frequent high-flow events, and in four watersheds there was a shift toward higher runoff efficiency. Breakpoint analyses indicated these shifts occurred between 1969 and 1976 for high-flow frequency and between 1962 and 1984 for runoff efficiency. Results indicated that the timing of high-flow changes were mainly driven by the development trajectory of each watershed, whereas the timing of runoff-efficiency changes were driven by a combination of development trajectories and extreme weather events. Our results underscore the need to refine the causes of urban stream degradation to incorporate the impact of gradual versus rapid urbanization on hydrologic changes and aquatic ecosystem function, as well as to

  2. Stormwater infrastructure controls runoff and dissolved material export from arid urban watersheds.

    OpenAIRE

    Hale, R.L.; Turnbull, L.; Earl, S.R.; Childers, D.L.; Grimm, N.B.

    2015-01-01

    Urbanization alters watershed ecosystem functioning, including nutrient budgets and processes of nutrient retention. It is unknown, however, how variation in stormwater infrastructure design affects the delivery of water and materials from urban watersheds. In this study, we asked: (1) How does stormwater infrastructure design vary over time and space in an arid city (Phoenix, Arizona, USA)?, and (2) How does variation in infrastructure design affect fluxes of dissolved nitrogen (N), phosphor...

  3. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  4. Characterizing Ecosystem and Watershed Response to Atmospheric Loading at the Urban Fringe

    Science.gov (United States)

    Curto, V.; Lopez, S.; Hogue, T.; Rademacher, L.

    2006-12-01

    The southern California region, although highly urbanized and densely populated, is also characterized by steep mountain ranges with extensive forests and diverse ecosystems. Growing population pressure in the region has forced continuing development at the urban fringe. The large mountain systems situated on the windward side of the Los Angeles basin experience high atmospheric nitrogen deposition rates from various urban pollutants. Arroyo Seco, a watershed located on the eastern edge of the Los Angeles basin, is no exception to this trend. The present study uses hydrologic and geochemical data to assess current watershed dynamics and ecosystem responses to the impacts of regional urbanization. The Arroyo Seco stream runs through a deeply incised canyon originating in the San Gabriel Mountains and draining into the Los Angeles River. The current riparian habitat, which comprises only 15 percent of the total land cover within the watershed, contains over 705 species of plants and animals. We focused our studies on the upper reaches of the basin (~18 square miles), which remains undeveloped and consists primarily of chaparral and evergreen forests. This portion of the watershed has an average watershed slope of approximately 6 percent and relatively porous soils. However, estimated runoff ratio from the existing USGS gage and local precipitation gages indicates fairly high runoff (discharge/precipitation ratio of 0.29). Weekly stream samples have been collected over a several year period and analyzed for standard geochemical constituents and stable isotopes to assess deposition impacts on ecosystem function and overall watershed behavior. Stable isotopes of water measured in the weekly Arroyo Seco stream samples deviate from the global meteoric water line (GMWL), particularly during summer months. High evaporative rates in the summer may be responsible for the distinct summer pattern and overall deviation from the GMWL of stream isotope values. An

  5. URBAN STREAM BURIAL INCREASES WATERSHED-SCALE NITRATE EXPORT

    Science.gov (United States)

    Nitrogen (N) uptake in streams is an important ecosystem service that may be affected by the widespread burial of streams in stormwater pipes in urban watersheds. We predicted that stream burial reduces the capacity of streams to remove nitrate (NO3-) from the water column by in...

  6. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    Science.gov (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  7. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  8. Modeling of facade leaching in urban catchments

    Science.gov (United States)

    Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.

    2012-12-01

    Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.

  9. Developing a Three Processes Framework to Analyze Hydrologic Performance of Urban Stormwater Management in a Watershed Scale

    Science.gov (United States)

    Lyu, H.; Ni, G.; Sun, T.

    2016-12-01

    Urban stormwater management contributes to recover water cycle to a nearly natural situation. It is a challenge for analyzing the hydrologic performance in a watershed scale, since the measures are various of sorts and scales and work in different processes. A three processes framework is developed to simplify the urban hydrologic process on the surface and evaluate the urban stormwater management. The three processes include source utilization, transfer regulation and terminal detention, by which the stormwater is controlled in order or discharged. Methods for analyzing performance are based on the water controlled proportions by each process, which are calculated using USEPA Stormwater Management Model. A case study form Beijing is used to illustrate how the performance varies under a set of designed events of different return periods. This framework provides a method to assess urban stormwater management as a whole system considering the interaction between measures, and to examine if there is any weak process of an urban watershed to be improved. The results help to make better solutions of urban water crisis.

  10. Modeling the effects of LID practices on streams health at watershed scale

    Science.gov (United States)

    Shannak, S.; Jaber, F. H.

    2013-12-01

    Increasing impervious covers due to urbanization will lead to an increase in runoff volumes, and eventually increase flooding. Stream channels adjust by widening and eroding stream bank which would impact downstream property negatively (Chin and Gregory, 2001). Also, urban runoff drains in sediment bank areas in what's known as riparian zones and constricts stream channels (Walsh, 2009). Both physical and chemical factors associated with urbanization such as high peak flows and low water quality further stress aquatic life and contribute to overall biological condition of urban streams (Maxted et al., 1995). While LID practices have been mentioned and studied in literature for stormwater management, they have not been studied in respect to reducing potential impact on stream health. To evaluate the performance and the effectiveness of LID practices at a watershed scale, sustainable detention pond, bioretention, and permeable pavement will be modeled at watershed scale. These measures affect the storm peak flows and base flow patterns over long periods, and there is a need to characterize their effect on stream bank and bed erosion, and aquatic life. These measures will create a linkage between urban watershed development and stream conditions specifically biological health. The first phase of this study is to design and construct LID practices at the Texas A&M AgriLife Research and Extension Center-Dallas, TX to collect field data about the performance of these practices on a smaller scale. The second phase consists of simulating the performance of LID practices on a watershed scale. This simulation presents a long term model (23 years) using SWAT to evaluate the potential impacts of these practices on; potential stream bank and bed erosion, and potential impact on aquatic life in the Blunn Watershed located in Austin, TX. Sub-daily time step model simulations will be developed to simulate the effectiveness of the three LID practices with respect to reducing

  11. Baseline for Climate Change: Modeling Watershed Aquatic Biodiversity Relative to Environmental and Anthropogenic Factors

    Energy Technology Data Exchange (ETDEWEB)

    Maurakis, Eugene G

    2010-10-01

    Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledge and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.

  12. Retrospective Review of Watershed Characteristics and a Framework for Future Research in the Sarasota Bay Watershed, Florida

    Science.gov (United States)

    Kish, George R.; Harrison, Arnell S.; Alderson, Mark

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Sarasota Bay Estuary Program conducted a retrospective review of characteristics of the Sarasota Bay watershed in west-central Florida. This report describes watershed characteristics, surface- and ground-water processes, and the environmental setting of the Sarasota Bay watershed. Population growth during the last 50 years is transforming the Sarasota Bay watershed from rural and agriculture to urban and suburban. The transition has resulted in land-use changes that influence surface- and ground-water processes in the watershed. Increased impervious cover decreases recharge to ground water and increases overland runoff and the pollutants carried in the runoff. Soil compaction resulting from agriculture, construction, and recreation activities also decreases recharge to ground water. Conventional approaches to stormwater runoff have involved conveyances and large storage areas. Low-impact development approaches, designed to provide recharge near the precipitation point-of-contact, are being used increasingly in the watershed. Simple pollutant loading models applied to the Sarasota Bay watershed have focused on large-scale processes and pollutant loads determined from empirical values and mean event concentrations. Complex watershed models and more intensive data-collection programs can provide the level of information needed to quantify (1) the effects of lot-scale land practices on runoff, storage, and ground-water recharge, (2) dry and wet season flux of nutrients through atmospheric deposition, (3) changes in partitioning of water and contaminants as urbanization alters predevelopment rainfall-runoff relations, and (4) linkages between watershed models and lot-scale models to evaluate the effect of small-scale changes over the entire Sarasota Bay watershed. As urbanization in the Sarasota Bay watershed continues, focused research on water-resources issues can provide information needed by water

  13. Influence of time of concentration on variation of runoff from a small urbanized watershed

    Science.gov (United States)

    Devendra Amatya; Agnieszka Cupak; Andrzej Walega

    2015-01-01

    The main objective of the paper is to estimate the influence of time of concentration (TC) on maximum flow in an urbanized watershed. The calculations of maximum flow have been carried out using the Rational method, Technical Release 55 (TR55) procedure based on NRCS (National Resources Conservation Services) guidelines, and NRCS-UH rainfall-runoff model. Similarly,...

  14. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  15. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  16. MOBIDIC-U: a watershed-scale model for stormwater attenuation through green infrastructures design

    Science.gov (United States)

    Ercolani, G.; Masseroni, D.; Chiaradia, E. A.; Bischetti, G. B.; Gandolfi, C.; Castelli, F.

    2017-12-01

    Surface water degradation resulting from the effects of urbanization on hydrology, water quality, habitat as well as ecological and environmental compartments represents an issue of primary focus for multiple agencies at the national, regional and local levels. Many management actions are needed throughout urban watersheds to achieve the desired effects on flow mitigation and pollutant reduction, but no single standardized solution can be effective in all locations. In this work, the distributed hydrological model MOBIDIC, already applied for hydrological balance simulations and flood prevention in different Italian regions, is adapted to the urban context (MOBIDIC-U) in order to evaluate alternative plans for stormwater quality management and flow abatement techniques through the adoption of green infrastructures (GIs). In particular the new modules included in MOBIDIC-U allow to (i) automatically define the upstream flow path as well as watershed boundary starting from a selected watershed closure point on the urban drainage network and (ii) obtain suitable graphical outputs for the visualization of flow peak and volume attenuation at the closure point. Moreover, MOBIDIC-U provides a public domain tool capable of evaluating the optimal location, type, and cost of the stormwater management practices needed to meet water quantity and quality goals. Despite the scalability of the model to different urban contexts, the current version of MOBIDIC-U has been developed for the area of the metropolitan city of Milan, Northern Italy. The model is implemented on a GIS platform, which already contains (i) the structure of the urban drainage network of the metropolitan city of Milan; (ii) the database of actual geomorphological and meteorological data for the previous domain (iii) the list of potential GIs, their standard size, installation and maintenance costs. Therefore, MOBIDIC-U provides an easy to use tool to local professionals to design and evaluate urban stormwater

  17. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    Science.gov (United States)

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  18. Priority River Metrics for Residents of an Urbanized Arid Watershed

    Science.gov (United States)

    What indicators to use is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to the general public in an urbanized watershed of the Southwestern U.S. Transcriptions an...

  19. Measuring the Erosion of River Channel Widths Impacted by Watershed Urbanization Using Historic Aerial Photographs and Modern Surveys

    Science.gov (United States)

    Galster, J. C.; Pazzaglia, F. J.; Germanoski, D.

    2007-12-01

    Land use in a watershed exerts a strong influence on trunk channel form and process. Land use changes act over human time scales which is short enough to measure their effects directly using historic aerial photographs. We show that high-resolution topographic surveys comparing channel form for paired watersheds in the Lehigh Valley, PA are indistinguishable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in all respects except they have different amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data suggest that the increase in urban areas that subsequently increases peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river aesthetics.

  20. A Diagnostic Decision Support System for BMP Selection in Small Urban Watersheds

    Science.gov (United States)

    Wang, Y.; Montas, H. J.; Leisnham, P.; Shirmohammadi, A.; Brubaker, K. L.; Reiling, S.

    2013-12-01

    Overall water quality in the United States has improved since the establishment of the Clean Water Act in 1972. While waste water and other point source discharge treatments are expanding and improving in quality, non-point source pollution remains a problem. Best Management Practices (BMPs) are structural and nonstructural methods to mitigate these problems. Much attention has focused on non-point source pollutants in rural areas, where agricultural activities increase the nutrients (fertilizers), toxics (pesticides), and sediments in surface water. Urban and suburban areas also suffer from severe water quantity and quality problems, largely due to stormwater. Low Impact Development (LID), a series of spatially distributed and engineered small-scale hydrologic controls, is an appropriate approach to reduce flow rate and improve urban stormwater quality before it discharges into surface water bodies. This research sought to develop a Diagnostic Decision Support System (DDSS) for urban BMP/LID selection. The process-based hydrologic model, Soil and Water Assessment Tool (SWAT), was used to simulate the hydrologic processes and to estimate related water quality variables. A logic based simple method was developed to identify the critical water quality and quantity hotspots using the SWAT outputs for multiple Hydrologic Response Units (HRUs) within the study watershed. The DDSS consisted of two parts: a Diagnostic Expert System (DES), which identifies the most likely reasons for excessive pollutants; and a Prescriptive Expert System (PES), which selects the best set of spatially distributed BMPs. The DDSS is tested in Watts Branch, a small urban subwatershed in metropolitan Washington D.C. A SWAT model for the watershed was calibrated and validated first. The DDSS was then applied. The final selected series of BMPs was simulated again in the SWAT model for a ten-year period to quantify their effectiveness. The identified hotspots, possible reasons, and BMP solutions

  1. Analysis of long-term trends (1950–2009) in precipitation, runoff and runoff coefficient in major urban watersheds in the United States

    International Nuclear Information System (INIS)

    Velpuri, N M; Senay, G B

    2013-01-01

    This study investigates the long-term trends in precipitation, runoff and runoff coefficient in major urban watersheds in the United States. The seasonal Mann–Kendall trend test was performed on monthly precipitation, runoff and runoff coefficient data from 1950 to 2009 obtained from 62 urban watersheds covering 21 major urban centers in the United States. The results indicate that only five out of 21 urban centers in the United States showed an uptrend in precipitation. Twelve urban centers showed an uptrend in runoff coefficient. However, six urban centers did not show any trend in runoff coefficient, and three urban centers showed a significant downtrend. The highest rate of change in precipitation, runoff and runoff coefficient was observed in the Houston urban watershed. Based on the results obtained, we also attributed plausible causes for the trends. Our analysis indicated that while a human only influence is observed in most of the urban watersheds, a combined climate and human influence is observed in the central United States. (letter)

  2. Spatial variation of dissolved organic matter composition and characteristics in an urbanized watershed

    Science.gov (United States)

    Hsieh, C.; Li, M.

    2013-12-01

    Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their

  3. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    International Nuclear Information System (INIS)

    Ligaray, Mayzonee; Baek, Sang Soo; Kwon, Hye-Ok; Choi, Sung-Deuk; Cho, Kyung Hwa

    2016-01-01

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  4. Watershed-scale modeling on the fate and transport of polycyclic aromatic hydrocarbons (PAHs)

    Energy Technology Data Exchange (ETDEWEB)

    Ligaray, Mayzonee; Baek, Sang Soo [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Kwon, Hye-Ok [Disaster Scientific Investigation Division, National Disaster Management Research Institute, 365 Jongga-ro Jung-gu, Ulsan 44538 (Korea, Republic of); Choi, Sung-Deuk, E-mail: sdchoi@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of); Cho, Kyung Hwa, E-mail: khcho@unist.ac.kr [School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919 (Korea, Republic of)

    2016-12-15

    PAHs are potentially carcinogenic substances that are persistent in the environment. Increasing concentrations of PAHs were observed due to rapid urbanization, thus; monitoring PAHs concentrations is necessary. However, it is expensive to conduct intensive monitoring activities of a large number of PAHs. This study addressed this issue by developing a multimedia model coupled with a hydrological model (i.e., Soil and Water Assessment Tool (SWAT)) for Taehwa River (TR) watershed in Ulsan, the industrial capital of South Korea. The hydrologic module of the SWAT was calibrated, and further used to simulate the fate and transport of PAHs in soil and waterbody. The model demonstrated that the temporal or seasonal variation of PAHs in soil and waterbody can be well reproduced. Meanwhile, the spatial distribution of PAHs showed that urban areas in TR watershed have the highest PAH loadings compared to rural areas. Sensitivity analyses of the PAH soil and PAH water parameters were also able to determine the critical processes in TR watershed: degradation, deposition, volatilization, and wash off mechanism. We hope that this model will be able to aid the stakeholders in: regulating PAH concentrations emitted by various sources; and also apply the model to other Persistent Organic Pollutants (POPs).

  5. Statistical analysis of vegetation and stormwater runoff in an urban watershed during summer and winter storms in Portland, Oregon, U.S

    Science.gov (United States)

    Geoffrey H. Donovan; David T. Butry; Megan Y. Mao

    2016-01-01

    Past research has examined the effect of urban trees, and other vegetation, on stormwater runoff using hydrological models or small-scale experiments. However, there has been no statistical analysis of the influence of vegetation on runoff in an intact urban watershed, and it is not clear how results from small-scale studies scale up to the city level. Researchers...

  6. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system

    Science.gov (United States)

    Mahoney, David Tyler; Fox, James Forrest; Al Aamery, Nabil

    2018-06-01

    Sediment connectivity has been shown in recent years to explain how the watershed configuration controls sediment transport. However, we find no studies develop a watershed erosion modeling framework based on sediment connectivity, and few, if any, studies have quantified sediment connectivity for gently rolling systems. We develop a new predictive sediment connectivity model that relies on the intersecting probabilities for sediment supply, detachment, transport, and buffers to sediment transport, which is integrated in a watershed erosion model framework. The model predicts sediment flux temporally and spatially across a watershed using field reconnaissance results, a high-resolution digital elevation models, a hydrologic model, and shear-based erosion formulae. Model results validate the capability of the model to predict erosion pathways causing sediment connectivity. More notably, disconnectivity dominates the gently rolling watershed across all morphologic levels of the uplands, including, microtopography from low energy undulating surfaces across the landscape, swales and gullies only active in the highest events, karst sinkholes that disconnect drainage areas, and floodplains that de-couple the hillslopes from the stream corridor. Results show that sediment connectivity is predicted for about 2% or more the watershed's area 37 days of the year, with the remaining days showing very little or no connectivity. Only 12.8 ± 0.7% of the gently rolling watershed shows sediment connectivity on the wettest day of the study year. Results also highlight the importance of urban/suburban sediment pathways in gently rolling watersheds, and dynamic and longitudinal distributions of sediment connectivity might be further investigated in future work. We suggest the method herein provides the modeler with an added tool to account for sediment transport criteria and has the potential to reduce computational costs in watershed erosion modeling.

  7. Priority River Metrics for Urban Residents of the Santa Cruz River Watershed

    Science.gov (United States)

    Indicator selection is a persistent question in river and stream assessment and management. We employ qualitative research techniques to identify features of rivers and streams important to urban residents recruited from the general public in the Santa Cruz watershed. Interviews ...

  8. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    Science.gov (United States)

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Fena Valley Reservoir watershed and water-balance model updates and expansion of watershed modeling to southern Guam

    Science.gov (United States)

    Rosa, Sarah N.; Hay, Lauren E.

    2017-12-01

    In 2014, the U.S. Geological Survey, in cooperation with the U.S. Department of Defense’s Strategic Environmental Research and Development Program, initiated a project to evaluate the potential impacts of projected climate-change on Department of Defense installations that rely on Guam’s water resources. A major task of that project was to develop a watershed model of southern Guam and a water-balance model for the Fena Valley Reservoir. The southern Guam watershed model provides a physically based tool to estimate surface-water availability in southern Guam. The U.S. Geological Survey’s Precipitation Runoff Modeling System, PRMS-IV, was used to construct the watershed model. The PRMS-IV code simulates different parts of the hydrologic cycle based on a set of user-defined modules. The southern Guam watershed model was constructed by updating a watershed model for the Fena Valley watersheds, and expanding the modeled area to include all of southern Guam. The Fena Valley watershed model was combined with a previously developed, but recently updated and recalibrated Fena Valley Reservoir water-balance model.Two important surface-water resources for the U.S. Navy and the citizens of Guam were modeled in this study; the extended model now includes the Ugum River watershed and improves upon the previous model of the Fena Valley watersheds. Surface water from the Ugum River watershed is diverted and treated for drinking water, and the Fena Valley watersheds feed the largest surface-water reservoir on Guam. The southern Guam watershed model performed “very good,” according to the criteria of Moriasi and others (2007), in the Ugum River watershed above Talofofo Falls with monthly Nash-Sutcliffe efficiency statistic values of 0.97 for the calibration period and 0.93 for the verification period (a value of 1.0 represents perfect model fit). In the Fena Valley watershed, monthly simulated streamflow volumes from the watershed model compared reasonably well with the

  10. 78 FR 13874 - Watershed Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to...

    Science.gov (United States)

    2013-03-01

    ... EPA's policy to include all comments it receives in the public docket without change and to make the... Modeling To Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Climate Change and Urban... Loads to Climate Change and Urban Development in 20 U.S. Watersheds (EPA/600/R-12/058). EPA also is...

  11. Stream Nitrate Concentrations Diverge at Baseflow and Converge During Storms in Watersheds with Contrasting Urbanization

    Science.gov (United States)

    Carey, R. O.; Wollheim, W. M.; Mulukutla, G. K.; Cook, C. S.

    2013-12-01

    Management of non-point sources is challenging because it requires adequate quantification of non-point fluxes that are highly dynamic over time. Most fluxes occur during storms and are difficult to characterize with grab samples alone in flashy, urban watersheds. Accurate and relatively precise measurements using in situ sensor technology can quantify fluxes continuously, avoiding the uncertainties in extrapolation of infrequently collected grab samples. In situ nitrate (NO3-N) sensors were deployed simultaneously from April to December 2013 in two streams with contrasting urban land uses in an urbanizing New Hampshire watershed (80 km2). Nitrogen non-point fluxes and temporal patterns were evaluated in Beards Creek (forested: 50%; residential: 24%; commercial/institutional/transportation: 7%; agricultural: 6%) and College Brook (forested: 35%; residential: 11%; commercial/institutional/transportation: 20%; agricultural: 17%). Preliminary data indicated NO3-N concentrations in Beards Creek (mean: 0.37 mg/L) were lower than College Brook (mean: 0.60 mg/L), but both streams exhibited rapid increases in NO3-N during the beginning of storms followed by overall dilution. While baseflow NO3-N was greater in College Brook than Beards Creek, NO3-N at the two sites consistently converged during storms. This suggests that standard grab sampling may overestimate fluxes in urban streams, since short-term dilution occurred during periods of highest flow. Analyzing NO3-N flux patterns in smaller urban streams that are directly impacted by watershed activities could help to inform management decisions regarding N source controls, ultimately allowing an assessment of the interactions of climate variability and management actions.

  12. Assessing development pressure in the Chesapeake Bay watershed: an evaluation of two land-use change models.

    Science.gov (United States)

    Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin

    2004-06-01

    Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.

  13. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  14. Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California.

    Science.gov (United States)

    Burke, M P; Hogue, T S; Kinoshita, A M; Barco, J; Wessel, C; Stein, E D

    2013-12-01

    Post-fire runoff has the potential to be a large source of contaminants to downstream areas. However, the magnitude of this effect in urban fringe watersheds adjacent to large sources of airborne contaminants is not well documented. The current study investigates the impacts of wildfire on stormwater contaminant loading from the upper Arroyo Seco watershed, burned in 2009. This watershed is adjacent to the Greater Los Angeles, CA, USA area and has not burned in over 60 years. Consequently, it acts as a sink for regional urban pollutants and presents an opportunity to study the impacts of wildfire. Pre- and post-fire storm samples were collected and analyzed for basic cations, trace metals, and total suspended solids. The loss of vegetation and changes in soil properties from the fire greatly increased the magnitude of storm runoff, resulting in sediment-laden floods carrying high concentrations of particulate-bound constituents. Post-fire concentrations and loads were up to three orders of magnitude greater than pre-fire values for many trace metals, including lead and cadmium. A shift was also observed in the timing of chemical delivery, where maximum suspended sediment, trace metal, and cation concentrations coincided with, rather than preceded, peak discharge in the post-fire runoff, amplifying the fire's impacts on mass loading. The results emphasize the importance of sediment delivery as a primary mechanism for post-fire contaminant transport and suggest that traditional management practices that focus on treating only the early portion of storm runoff may be less effective following wildfire. We also advocate that watersheds impacted by regional urban pollutants have the potential to pose significant risk for downstream communities and ecosystems after fire.

  15. Identification of antibiotic resistant bacteria community and a GeoChip based study of resistome in urban watersheds.

    Science.gov (United States)

    Low, Adrian; Ng, Charmaine; He, Jianzhong

    2016-12-01

    Urban watersheds from point sources are potential reservoirs of antibiotic resistance genes (ARGs). However, few studies have investigated urban watersheds of non-point sources. To understand the type of ARGs and bacteria that might carry such genes, we investigated two non-point source urban watersheds with different land-use profiles. Antibiotic resistance levels of two watersheds (R1, R3) were examined using heterotrophic plate counts (HPC) as a culturing method to obtain counts of bacteria resistant to seven antibiotics belonging to different classes (erythromycin, kanamycin, lincomycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim). From the HPC study, 239 antibiotic resistant bacteria were characterized for resistance to more antibiotics. Furthermore, ARGs and antimicrobial biosynthesis genes were identified using GeoChip version 5.0 to elucidate the resistomes of surface waters in watersheds R1 and R3. The HPC study showed that water samples from R1 had significantly higher counts of bacteria resistant to erythromycin, kanamycin, norfloxacin, sulfanilamide, tetracycline and trimethoprim than those from R3 (Analysis of Similarity (ANOSIM), R = 0.557, p antibiotics tested, lincomycin and trimethoprim resistant bacteria are greater in abundances. The 239 antibiotic resistant isolates represent a subset of resistant bacterial populations, including bacteria not previously known for resistance. Majority of the isolates had resistance to ampicillin, vancomycin, lincomycin and trimethoprim. GeoChip revealed similar ARGs in both watersheds, but with significantly higher intensities for tetX and β-lactamase B genes in R1 than R3. The genes with the highest average normalized intensities in R1 and R3 were tetracycline (tet) and fosfomycin (fosA) resistance genes, respectively. The higher abundance of tetX genes in R1 is congruent with the higher abundance of tetracycline resistant HPC observed in R1 samples. Strong correlations (r ≥ 0.8) of efflux

  16. Application of the SWAT model to the Xiangjiang river watershed in subtropical central China.

    Science.gov (United States)

    Luo, Qiao; Li, Yong; Wang, Kelin; Wu, Jinshui

    2013-01-01

    The Soil and Water Assessment Tool (SWAT) model was applied to simulate the water balance in the Xiangjiang river watershed for current and planning scenarios of land uses. The model was first calibrated for the period from 1998 to 2002 and then validated for the period from 2003 to 2007 using the observed stream flow data from four monitoring gages within the watershed. The determination coefficient of linear regression of the observed and simulated monthly stream flows (R(2)) and their Nash-Sutcliffe Index (NSI) was used to evaluate model performance. All values of R(2) and NSI were above 0.8 and ranged from 0.82 to 0.92, which indicates that the SWAT model was capable of simulating the stream flow in the Xiangjiang river watershed. The calibrated and validated SWAT model was then applied to study the hydrological response of three land use change scenarios. Runoff was reduced by increasing the areas of forest and grassland while simultaneously decreasing the areas of agricultural and urban land. In the recent and future land use planning for the Xiangjiang river watershed, the hydrological effect should be considered in regional water management and erosion control.

  17. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts.

    Science.gov (United States)

    Spromberg, Julann A; Baldwin, David H; Damm, Steven E; McIntyre, Jenifer K; Huff, Michael; Sloan, Catherine A; Anulacion, Bernadita F; Davis, Jay W; Scholz, Nathaniel L

    2016-04-01

    Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning habitats throughout western North America. The migration coincides with increasing seasonal rainfall, which in turn increases storm water run-off, particularly in urban watersheds with extensive impervious land cover. Previous field assessments in urban stream networks have shown that adult coho are dying prematurely at high rates (>50%). Despite significant management concerns for the long-term conservation of threatened wild coho populations, a causal role for toxic run-off in the mortality syndrome has not been demonstrated.We exposed otherwise healthy coho spawners to: (i) artificial storm water containing mixtures of metals and petroleum hydrocarbons, at or above concentrations previously measured in urban run-off; (ii) undiluted storm water collected from a high traffic volume urban arterial road (i.e. highway run-off); and (iii) highway run-off that was first pre-treated via bioinfiltration through experimental soil columns to remove pollutants.We find that mixtures of metals and petroleum hydrocarbons - conventional toxic constituents in urban storm water - are not sufficient to cause the spawner mortality syndrome. By contrast, untreated highway run-off collected during nine distinct storm events was universally lethal to adult coho relative to unexposed controls. Lastly, the mortality syndrome was prevented when highway run-off was pretreated by soil infiltration, a conventional green storm water infrastructure technology.Our results are the first direct evidence that: (i) toxic run-off is killing adult coho in urban watersheds, and (ii) inexpensive mitigation measures can improve water quality and promote salmon survival. Synthesis and applications . Coho salmon, an iconic species with exceptional economic and cultural significance, are an ecological sentinel for the harmful effects of untreated urban run-off. Wild coho populations cannot withstand the high rates of

  18. Application of Watershed Scale Models to Predict Nitrogen Loading From Coastal Plain Watersheds

    Science.gov (United States)

    George M. Chescheir; Glenn P Fernandez; R. Wayne Skaggs; Devendra M. Amatya

    2004-01-01

    DRAINMOD-based watershed models have been developed and tested using data collected from an intensively instrumented research site on Kendricks Creek watershed near Plymouth. NC. These models were applied to simulate the hydrology and nitrate nitrogen (NO3-N) loading from two other watersheds in the Coastal Plain of North Carolina, the 11600 ha Chicod Creek watershed...

  19. Characterising Event-Based DOM Inputs to an Urban Watershed

    Science.gov (United States)

    Croghan, D.; Bradley, C.; Hannah, D. M.; Van Loon, A.; Sadler, J. P.

    2017-12-01

    Dissolved Organic Matter (DOM) composition in urban streams is dominated by terrestrial inputs after rainfall events. Urban streams have particularly strong terrestrial-riverine connections due to direct input from terrestrial drainage systems. Event driven DOM inputs can have substantial adverse effects on water quality. Despite this, DOM from important catchment sources such as road drains and Combined Sewage Overflows (CSO's) remains poorly characterised within urban watersheds. We studied DOM sources within an urbanised, headwater watershed in Birmingham, UK. Samples from terrestrial sources (roads, roofs and a CSO), were collected manually after the onset of rainfall events of varying magnitude, and again within 24-hrs of the event ending. Terrestrial samples were analysed for fluorescence, absorbance and Dissolved Organic Carbon (DOC) concentration. Fluorescence and absorbance indices were calculated, and Parallel Factor Analysis (PARAFAC) was undertaken to aid sample characterization. Substantial differences in fluorescence, absorbance, and DOC were observed between source types. PARAFAC-derived components linked to organic pollutants were generally highest within road derived samples, whilst humic-like components tended to be highest within roof samples. Samples taken from the CSO generally contained low fluorescence, however this likely represents a dilution effect. Variation within source groups was particularly high, and local land use seemed to be the driving factor for road and roof drain DOM character and DOC quantity. Furthermore, high variation in fluorescence, absorbance and DOC was apparent between all sources depending on event type. Drier antecedent conditions in particular were linked to greater presence of terrestrially-derived components and higher DOC content. Our study indicates that high variations in DOM character occur between source types, and over small spatial scales. Road drains located on main roads appear to contain the poorest

  20. Ultra-urban baseflow and stormflow concentrations and fluxes in a watershed undergoing restoration (WS263)

    Science.gov (United States)

    Kenneth T. Belt; William P. Stack; Richard V. Pouyat; Kimberly Burgess; Peter M. Groffman; William M. Frost; Sujay S. Kaushal; Guy. Hager

    2014-01-01

    We discuss the results of sampling baseflow and stormwater runoff in Watershed 263, an ultra-urban catchment in west Baltimore City that is undergoing restoration aimed at both improving water quality as well as the quality of life in its neighborhoods. We focus on urban hydrology and describe the high baseflow and stormwater nutrient, metal, bacterial and other...

  1. Assessment of landscape change and occurrence at watershed ...

    African Journals Online (AJOL)

    ... the southern watershed zones. Monitoring land cover change at the watershed scale is more indicative of impact level and where efforts for managing and conserving the urban landscape should be prioritized. Key words: Urban expansion, land cover type, remote sensing, watershed units, urban landscape conservation.

  2. Modeling the effect of urban infrastructure on hydrologic processes within i-Tree Hydro, a statistically and spatially distributed model

    Science.gov (United States)

    Taggart, T. P.; Endreny, T. A.; Nowak, D.

    2014-12-01

    Gray and green infrastructure in urban environments alters many natural hydrologic processes, creating an urban water balance unique to the developed environment. A common way to assess the consequences of impervious cover and grey infrastructure is by measuring runoff hydrographs. This focus on the watershed outlet masks the spatial variation of hydrologic process alterations across the urban environment in response to localized landscape characteristics. We attempt to represent this spatial variation in the urban environment using the statistically and spatially distributed i-Tree Hydro model, a scoping level urban forest effects water balance model. i-Tree Hydro has undergone expansion and modification to include the effect of green infrastructure processes, road network attributes, and urban pipe system leakages. These additions to the model are intended to increase the understanding of the altered urban hydrologic cycle by examining the effects of the location of these structures on the water balance. Specifically, the effect of these additional structures and functions on the spatially varying properties of interception, soil moisture and runoff generation. Differences in predicted properties and optimized parameter sets between the two models are examined and related to the recent landscape modifications. Datasets used in this study consist of watersheds and sewersheds within the Syracuse, NY metropolitan area, an urban area that has integrated green and gray infrastructure practices to alleviate stormwater problems.

  3. Chapter B. Physical, Chemical, and Biological Responses of Streams to Increasing Watershed Urbanization in the Piedmont Ecoregion of Georgia and Alabama, 2003

    Science.gov (United States)

    Gregory, M. Brian; Calhoun, Daniel L.

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program?s effort to assess the physical, chemical, and biological responses of streams to urbanization, 30 wadable streams were sampled near Atlanta, Ga., during 2002?2003. Watersheds were selected to minimize natural factors such as geology, altitude, and climate while representing a range of urban development. A multimetric urban intensity index was calculated using watershed land use, land cover, infrastructure, and socioeconomic variables that are highly correlated with population density. The index was used to select sites along a gradient from low to high urban intensity. Response variables measured include stream hydrology and water temperature, instream habitat, field properties (pH, conductivity, dissolved oxygen, turbidity), nutrients, pesticides, suspended sediment, sulfate, chloride, Escherichia coli (E. coli) concentrations, and characterization of algal, invertebrate and fish communities. In addition, semipermeablemembrane devices (SPMDs)?passive samplers that concentrate hydrophobic organic contaminants such as polycyclicaromatic hydrocarbons (PAHs)?were used to evaluate water-quality conditions during the 4 weeks prior to biological sampling. Changes in physical, chemical, and biological conditions were evaluated using both nonparametric correlation analysis and nonmetric multidimensional scaling (MDS) ordinations and associated comparisons of dataset similarity matrices. Many of the commonly reported effects of watershed urbanization on streams were observed in this study, such as altered hydrology and increases in some chemical constituent levels. Analysis of water-chemistry data showed that specific conductance, chloride, sulfate, and pesticides increased as urbanization increased. Nutrient concentrations were not directly correlated to increases in development, but were inversely correlated to percent forest in the watershed. Analyses of SPMD-derived data showed that

  4. Modeling of water erosion in the watershed of the siliana KINEROS2 model

    International Nuclear Information System (INIS)

    Raboudi, Abir

    2016-01-01

    The main objective of this work is was the modeling of flowing of the surface and the solid transport within the watershed of Siliana, in the Tunisian backings, by a model which is a physically specialized KINEROS 2. This model allowed us to decide the process of interception of infiltration, flowing of the surface, and of the erosion in small agricultural or urban watershed. KINEROS2 is applied on a watershed of 1039 m 2 and of a perimeter 183,3 km on 20 years over years of observation. We are described the different steps of making use of this model which are: data preparation parameters estimations, the analyses of the principals' parameters sensibility, model calibration and its validity and the overall estimation of solid transport. The KINEROS2 application necessitates the craving of the watershed in plains and channels, which are reported in succession of the upstream towards the downstream taking into consideration the direction of the flowing of the watercourse, of the geology and of the soil occupation of the watershed. Different parameters are calculated (porosity, peak, morphological parameters of plain and channels) estimated (Manning coefficient, net effective ground conductivity) and measured on a plot (spacing, relief). Model adjusting was done on many numeric criteria, which permit to compare and appreciate stand quality, and of validity between the observed and estimated quantities. The stand of observed and estimated hydro grams was carried out learning in mind the sensibility of parameters K, G and n in the model. The model calibration gave some satisfying results highlighted by the errors that don't exceed 4 pour cent for the flow of the liquid peak and 3 pour cent for the volume of the swelling observed and calculated. For the solid transport, the stand was archived by the variation of parameters that are the most sensible (ch) and (spl). The results will be judged acceptable because the mistake doesn't exceed 1%. Sediment

  5. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  6. Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City.

    Science.gov (United States)

    Jujnovsky, Julieta; González-Martínez, Teresa Margarita; Cantoral-Uriza, Enrique Arturo; Almeida-Leñero, Lucia

    2012-03-01

    Studies from the ecosystem services perspective can provide a useful framework because they allow us to fully examine the benefits that humans obtain from socio-ecological systems. Mexico City, the second largest city in the world, has faced severe problems related to water shortages, which have worsened due to increasing population. Demand for space has forced changes in land cover, including covering areas that are essential for groundwater recharge. The city has 880 km(2) of forest areas that are crucial for the water supply. The Magdalena River Watershed was chosen as a model because it is a well-preserved zone within Mexico City and it provides water for the population. The general aim of this study was to assess the ecosystem service of the water supply in the Magdalena River Watershed by determining its water balance (SWAT model) and the number of beneficiaries of the ecosystem services. The results showed that the watershed provides 18.4 hm(3) of water per year. Baseflow was dominant, with a contribution of 85%, while surface runoff only accounted for 15%. The zone provides drinking water to 78,476 inhabitants and could supply 153,203 potential beneficiaries. This work provides an example for understanding how ecosystem processes determine the provision of ecosystem services and benefits to the population in a rural-urban watershed in Mexico City.

  7. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    Science.gov (United States)

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  8. Modeling soil erosion in a watershed

    OpenAIRE

    Lanuza, R.

    1999-01-01

    Most erosion models have been developed based on a plot scale and have limited application to a watershed due to the differences in aerial scale. In order to address this limitation, a GIS-assisted methodology for modeling soil erosion was developed using PCRaster to predict the rate of soil erosion at watershed level; identify the location of erosion prone areas; and analyze the impact of landuse changes on soil erosion. The general methodology of desktop modeling or soil erosion at watershe...

  9. Landscape, vegetation characteristics, and group identity in an urban and suburban watershed: why the 60s matter

    Science.gov (United States)

    Christopher G. Boone; Mary L. Cadenasso; J. Morgan Grove; Kirsten Schwarz; Geoffrey L. Buckley

    2010-01-01

    As highly managed ecosystems, urban areas should reflect the social characteristics of their managers, who are primarily residents. Since landscape features develop over time, we hypothesize that present-day vegetation should also reflect social characteristics of past residents. Using an urban-to-suburban watershed in the Baltimore Metropolitan Region, this paper...

  10. Geospatial Estimates of Road Salt Usage Across a Gradient of Urbanizing Watersheds in Southern Ontario:Thesis for Masters in Spatial Analysis (MSA)

    Science.gov (United States)

    Giberson, G. K.; Oswald, C.

    2015-12-01

    In areas affected by snow, chloride (Cl) salts are widely used as a de-icing agent to improve road conditions. While the improvement in road safety is indisputable, there are environmental consequences to local aquatic ecosystems. In many waterways, Cl concentrations have been increasing since the early 1990s, often exceeding national water quality guidelines. To determine the quantity of Cl that is accumulating in urban and urbanizing watersheds, accurate estimates of road salt usage at the watershed-scale are needed. The complex jurisdictional control over road salt application in southern Ontario lends itself to a geospatial approach for calculating Cl inputs to improve the accuracy of watershed-scale Cl mass balance estimates. This study will develop a geospatial protocol for combining information on road salt applications and road network areas to refine watershed-scale Cl inputs, as well as assess spatiotemporal patterns in road salt application across the southern Ontario study region. The overall objective of this project is to use geospatial methods (predominantly ArcGIS) to develop high-accuracy estimates of road salt usage in urbanizing watersheds in southern Ontario. Specifically, the aims will be to map and summarize the types and areas ("lane-lengths") of roadways in each watershed that have road salt applied to them, to determine the most appropriate source(s) of road salt usage data for each watershed, taking into consideration multiple levels of jurisdiction (e.g. municipal, regional, provincial), to calculate and summarize sub-watershed and watershed-scale road salt usage estimates for multiple years, and to analyze intra-watershed spatiotemporal patterns of road salt usage, especially focusing on impervious surfaces. These analyses will recommend areas of concern exacerbated by high-levels of road salt distribution; recommendations around modifying on-the-ground operations will be the next step in helping to correct these issues.

  11. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  12. Model My Watershed - A Robust Online App to Enable Citizen Scientists to Model Watershed Hydrology and Water Quality at Regulatory-Level Standards

    Science.gov (United States)

    Daniels, M.; Kerlin, S.; Arscott, D.

    2017-12-01

    Citizen-based watershed monitoring has historically lacked scientific rigor and geographic scope due to limitation in access to watershed-level data and the high level skills and resources required to adequately model watershed dynamics. Public access to watershed information is currently routed through a variety of governmental data portals and often requires advanced geospatial skills to collect and present in useable forms. At the same time, tremendous financial resources are being invested in watershed restoration and management efforts, and often these resources pass through local stakeholder groups such as conservation NGO, watershed interest groups, and local municipalities without extensive hydrologic knowledge or access to sophisticated modeling resources. Even governmental agencies struggle to understand how to best steer or prioritize restoration investments. A new app, Model My Watershed, was built to improve access to watershed data and modeling capabilities in a fast, accessible, free web-app format. Working across the contiguous United States, the Model My Watershed app provides land cover, soils, aerial imagery and relief, watershed delineation, and stream network delineation. Users can model watersheds or areas of interest and create management scenarios to evaluate implementation of land cover changes and best management practice implementation with both hydrologic and water quality outputs that meet TMDL regulatory standards.

  13. Asotin Creek Model Watershed Plan

    Energy Technology Data Exchange (ETDEWEB)

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  14. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    Science.gov (United States)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  15. Beyond imperviousness: A statistical approach to identifying functional differences between development morphologies on variable source area-type response in urbanized watersheds

    Science.gov (United States)

    Lim, T. C.

    2016-12-01

    Empirical evidence has shown linkages between urbanization, hydrological regime change, and degradation of water quality and aquatic habitat. Percent imperviousness, has long been suggested as the dominant source of these negative changes. However, recent research identifying alternative pathways of runoff production at the watershed scale have called into question percent impervious surface area's primacy in urban runoff production compared to other aspects of urbanization including change in vegetative cover, imported water and water leakages, and the presence of drainage infrastructure. In this research I show how a robust statistical methodology can detect evidence of variable source area (VSA)-type hydrologic response associated with incremental hydraulic connectivity in watersheds. I then use logistic regression to explore how evidence of VSA-type response relates to the physical and meterological characteristics of the watershed. I find that impervious surface area is highly correlated with development, but does not add significant explanatory power beyond percent developed in predicting VSA-type response. Other aspects of development morphology, including percent developed open space and type of drainage infrastructure also do not add to the explanatory power of undeveloped land in predicting VSA-type response. Within only developed areas, the effect of developed open space was found to be more similar to that of total impervious area than to undeveloped land. These findings were consistent when tested across a national cross-section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds, and a subsample of watersheds confirmed not to be served by combined sewer systems. These findings suggest that land development policies that focus on lot coverage should be revisited, and more focus should be placed on preserving native vegetation and soil conditions alongside development.

  16. The Urban Watershed as a Transformer of DOM Chemistry

    Science.gov (United States)

    Gabor, R. S.; Smith, R. M.; Follstad Shah, J.; Kelso, J. E.; Baker, M. A.; Brooks, P. D.

    2017-12-01

    Growing urban systems stress watersheds, resulting in water quality impacts downstream. Urban stresses can include nutrient runoff from fertilizer, effluent from wastewater treatment plants, and changes in hydrologic routing. Synoptic surveys were performed at two rivers in Salt Lake City, Utah to identify how urbanization drives dissolved organic matter (DOM) chemistry. Red Butte Creek, a small third order stream, flows from a protected mountain environment directly into a highly urbanized mountain area. The organic matter chemistry, as measured by fluorescence, changed dynamics in the urban system, with organic matter demonstrating greater aromaticity and different seasonal patterns than observed in the canyon. Several kilometers downstream of the start of urbanization, the C:N ratio of the organic matter changes from 12.5 to 17.7, at a location where the stream is fed by urban-impacted groundwater, suggesting that subsurface DOC is utilized for microbial respiration in denitrification of urban nitrate inputs. This also corresponds with a shift in the chemistry of the DOM, as measured by fluorescence. Red Butte Creek terminates at the Jordan River, which flows from a highly eutrophic lake and is fed by seven tributaries and five wastewater treatment plants before ending at the Great Salt Lake. The Jordan River is heavily contaminated, with low dissolved oxygen and high nutrient content. The fluorescence index (FI) of DOM in the Jordan River indicates a dominant microbial contribution to the fluorescent organic material, particularly in areas where the dissolved oxygen is low, with the FI becoming less microbial as the DO sag lessens. This corresponds to increasing fluorescence signal in the protein-like area of the fluorescence excitation-emission matrices. Additionally, effluent from four wastewater treatment plants, each with different technologies, had distinct organic matter fluorescence, corresponding with differences in the nitrogen and microbial dynamics

  17. Terrestrially derived glomalin-related soil protein quality as a potential ecological indicator in a peri-urban watershed.

    Science.gov (United States)

    Sui, Xueyan; Wu, Zhipeng; Lin, Chen; Zhou, Shenglu

    2017-07-01

    Glomalin, which sequesters substantial amounts of carbon, plays a critical role in sustaining terrestrial biome functions and contributes to the fate of many pollutants from terrestrial to aquatic ecosystems. Despite having focused on the amount of glomalin produced, very few attempts have been made to understand how landscapes and environmental conditions influence glomalin composition and characteristics. This study focused on glomalin-related soil protein (GRSP) exported as storm runoff including eroded sediment and water that was collected before flowing to surface waters in a peri-urban watershed. GRSP characteristics were assessed by Bradford protein analysis, fluorescence spectroscopy combined with parallel factor analysis (PARAFAC), and the determination of aromaticity based on the specific ultraviolet absorption value (280 nm) and molecular weight. General linear models (GLMs) was established by integrating microbial activity, land cover, water temperature, precipitation, and other solution chemical properties to explain the variations in GRSP characteristics. Results showed that a higher GRSP concentration in agricultural reference sites was produced in the form of specific materials with low molecular weight and aromaticity, as well as high percentage of C1 and C5 components which indicate microbial-processed sources, relative to urbanized and forested sites. Compared with forested land, urbanized land clearly produced runoff GRSP with low molecular weight and aromaticity, as well as more degradation of humic-like materials (C3 component). The highest GLM explaining 89% of the variables, including significant variables (p watershed management and thus protecting aquatic ecosystems.

  18. Evaluating Vegetation Potential for Wildfire Impacted Watershed Using a Bayesian Network Modeling Approach

    Science.gov (United States)

    Jaramillo, L. V.; Stone, M. C.; Morrison, R. R.

    2017-12-01

    Decision-making for natural resource management is complex especially for fire impacted watersheds in the Southwestern US because of the vital importance of water resources, exorbitant cost of fire management and restoration, and the risks of the wildland-urban interface (WUI). While riparian and terrestrial vegetation are extremely important to ecosystem health and provide ecosystem services, loss of vegetation due to wildfire, post-fire flooding, and debris flows can lead to further degradation of the watershed and increased vulnerability to erosion and debris flow. Land managers are charged with taking measures to mitigate degradation of the watershed effectively and efficiently with limited time, money, and data. For our study, a Bayesian network (BN) approach is implemented to understand vegetation potential for Kashe-Katuwe Tent Rocks National Monument in the fire-impacted Peralta Canyon Watershed, New Mexico, USA. We implement both two-dimensional hydrodynamic and Bayesian network modeling to incorporate spatial variability in the system. Our coupled modeling framework presents vegetation recruitment and succession potential for three representative plant types (native riparian, native terrestrial, and non-native) under several hydrologic scenarios and management actions. In our BN model, we use variables that address timing, hydrologic, and groundwater conditions as well as recruitment and succession constraints for the plant types based on expert knowledge and literature. Our approach allows us to utilize small and incomplete data, incorporate expert knowledge, and explicitly account for uncertainty in the system. Our findings can be used to help land managers and local decision-makers determine their plan of action to increase watershed health and resilience.

  19. The role of interior watershed processes in improving parameter estimation and performance of watershed models.

    Science.gov (United States)

    Yen, Haw; Bailey, Ryan T; Arabi, Mazdak; Ahmadi, Mehdi; White, Michael J; Arnold, Jeffrey G

    2014-09-01

    Watershed models typically are evaluated solely through comparison of in-stream water and nutrient fluxes with measured data using established performance criteria, whereas processes and responses within the interior of the watershed that govern these global fluxes often are neglected. Due to the large number of parameters at the disposal of these models, circumstances may arise in which excellent global results are achieved using inaccurate magnitudes of these "intra-watershed" responses. When used for scenario analysis, a given model hence may inaccurately predict the global, in-stream effect of implementing land-use practices at the interior of the watershed. In this study, data regarding internal watershed behavior are used to constrain parameter estimation to maintain realistic intra-watershed responses while also matching available in-stream monitoring data. The methodology is demonstrated for the Eagle Creek Watershed in central Indiana. Streamflow and nitrate (NO) loading are used as global in-stream comparisons, with two process responses, the annual mass of denitrification and the ratio of NO losses from subsurface and surface flow, used to constrain parameter estimation. Results show that imposing these constraints not only yields realistic internal watershed behavior but also provides good in-stream comparisons. Results further demonstrate that in the absence of incorporating intra-watershed constraints, evaluation of nutrient abatement strategies could be misleading, even though typical performance criteria are satisfied. Incorporating intra-watershed responses yields a watershed model that more accurately represents the observed behavior of the system and hence a tool that can be used with confidence in scenario evaluation. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Accounting for small scale heterogeneity in ecohydrologic watershed models

    Science.gov (United States)

    Burke, W.; Tague, C.

    2017-12-01

    Spatially distributed ecohydrologic models are inherently constrained by the spatial resolution of their smallest units, below which land and processes are assumed to be homogenous. At coarse scales, heterogeneity is often accounted for by computing store and fluxes of interest over a distribution of land cover types (or other sources of heterogeneity) within spatially explicit modeling units. However this approach ignores spatial organization and the lateral transfer of water and materials downslope. The challenge is to account both for the role of flow network topology and fine-scale heterogeneity. We present a new approach that defines two levels of spatial aggregation and that integrates spatially explicit network approach with a flexible representation of finer-scale aspatial heterogeneity. Critically, this solution does not simply increase the resolution of the smallest spatial unit, and so by comparison, results in improved computational efficiency. The approach is demonstrated by adapting Regional Hydro-Ecologic Simulation System (RHESSys), an ecohydrologic model widely used to simulate climate, land use, and land management impacts. We illustrate the utility of our approach by showing how the model can be used to better characterize forest thinning impacts on ecohydrology. Forest thinning is typically done at the scale of individual trees, and yet management responses of interest include impacts on watershed scale hydrology and on downslope riparian vegetation. Our approach allow us to characterize the variability in tree size/carbon reduction and water transfers between neighboring trees while still capturing hillslope to watershed scale effects, Our illustrative example demonstrates that accounting for these fine scale effects can substantially alter model estimates, in some cases shifting the impacts of thinning on downslope water availability from increases to decreases. We conclude by describing other use cases that may benefit from this approach

  1. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  2. Bayesian uncertainty assessment of flood predictions in ungauged urban basins for conceptual rainfall-runoff models

    Directory of Open Access Journals (Sweden)

    A. E. Sikorska

    2012-04-01

    Full Text Available Urbanization and the resulting land-use change strongly affect the water cycle and runoff-processes in watersheds. Unfortunately, small urban watersheds, which are most affected by urban sprawl, are mostly ungauged. This makes it intrinsically difficult to assess the consequences of urbanization. Most of all, it is unclear how to reliably assess the predictive uncertainty given the structural deficits of the applied models. In this study, we therefore investigate the uncertainty of flood predictions in ungauged urban basins from structurally uncertain rainfall-runoff models. To this end, we suggest a procedure to explicitly account for input uncertainty and model structure deficits using Bayesian statistics with a continuous-time autoregressive error model. In addition, we propose a concise procedure to derive prior parameter distributions from base data and successfully apply the methodology to an urban catchment in Warsaw, Poland. Based on our results, we are able to demonstrate that the autoregressive error model greatly helps to meet the statistical assumptions and to compute reliable prediction intervals. In our study, we found that predicted peak flows were up to 7 times higher than observations. This was reduced to 5 times with Bayesian updating, using only few discharge measurements. In addition, our analysis suggests that imprecise rainfall information and model structure deficits contribute mostly to the total prediction uncertainty. In the future, flood predictions in ungauged basins will become more important due to ongoing urbanization as well as anthropogenic and climatic changes. Thus, providing reliable measures of uncertainty is crucial to support decision making.

  3. A novel tool for the communication of ecological risk assessment information in an urbanized watershed

    International Nuclear Information System (INIS)

    Zandbergen, P.

    1995-01-01

    A tool was developed for the communication of ecological risk assessment information on various types of point and nonpoint source pollution in the Brunette River watershed, an urbanized watershed in the Lower Mainland of British Columbia. The communication of ecological risks is a complex task, since the outcomes of quantitative ecological risk assessments are often not well understood by interested parties, and the results of the scientific analysis are generally quite different from the public perception of risk. Scientists should try to assist in the effective communication of their analysis by presenting it in a form more accessible to a variety of stakeholders, exposing the assessment process itself and the uncertainties in the analysis. This was attempted in developing a tool for the effective communication of ecological risk assessment information and management alternatives to the community in the watershed. Longstanding concerns over various forms of point and non-point sources of pollution in the watershed have resulted in a major effort to document the releases of pollutants, the exposure pathways, and the consequences for aquatic life. Extensive monitoring of ecosystem parameters, data-integration by means of a Geographic Information System, and the use of numerous databases and sub-models have resulted in the ecological risk assessment of four types of pollution in the watershed: petroleum fuels, metals, pesticides and basic industrial chemicals. Results will be presented of the attempts to integrate this information into a communication tool, which will demonstrate the principles, values and assumptions underlying the scientific analysis, as well as the quantitative end results and inherent uncertainties. The tool has been developed in close cooperation with several scientists who did most of the original data collection and with the feedback from some of the stakeholders in the community

  4. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    Science.gov (United States)

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  5. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    Quito, Ecuador sits high in an Interandean valley (elevation ~2,830 meters) at the foot of Pichincha volcano. Above the city, mountain streams descend from high-altitude Andean páramo grasslands down steep slopes through quebradas (ravines) to the Machángara River. Quito's rapid urban growth, while indicative of the city's economic vitality, has led to the city's expansion along the valley floor, settlements along precarious hillslopes and ravines, disappearance of wetlands, and loss of páramo. The upper reaches of the watersheds are being rapidly settled by migrants whose land-use practices result in contamination of waters. In the densely-settled downstream reaches, urban encroachment has resulted in filling and narrowing of quebradas with garbage and other poor-quality fill. These practices have dramatically altered natural drainage patterns, reduced the flood conveyance capacity of the channels (increasing the flood risk to surrounding communities), and further deteriorated water quality. The city's stormwater, wastewater, and surface waters suffer from untreated pollutant loads, aging pipes, and sewer overflows. In response to environmental degradation of the quebradas, awareness is increasing, at both local community and municipal levels, of the importance of stream corridors for water quality, wildlife, and recreation for nearby residents. Citizen groups have organized volunteer river cleanups, and municipal agencies have committed to implementing ';green infrastructure' solutions to make Quito a healthier habitat for humans and other species. City leaders are evaluating innovative low impact development (LID) methods to help decontaminate surface waters, mitigate urban flooding, and promote sustainable water systems. Quito's municipal water agency, EPMAPS, invited faculty and students from Quito and Berkeley to collaborate with agency staff and citizen groups to analyze opportunities and to develop plans and designs for sustainable infrastructure. To

  6. The economic value of the flow regulation environmental service in a Brazilian urban watershed

    Science.gov (United States)

    Marques, Guilherme F.; de Souza, Verônica B. F. S.; Moraes, Natália V.

    2017-11-01

    Urban flood management have often focused either on the capacity expansion of drainage systems or on artificial detention storage. While flood control should take part early on urban planning, not enough is known to guide such plans and provide incentive to land use decisions that minimize the vulnerability to localized floods. In this paper, we offer a broader perspective on flood protection, by treating the original hydrologic flow regulation as an environmental service, and exploring how the value of this environmental service drives economic land use decisions that convert original (permeable) land into urbanized (impermeable). We investigate the relationship between land use decisions and their hydrologic consequences explicitly, and use this relationship to simulate resulting land use scenarios depending on the value attached to the environmental service of flow regulation. Rainfall-runoff simulation model results are combined to an optimization model based on two-stage stochastic programming approach to model economic land use decisions. The objective function maximizes the total expected land use benefit in an urban area, considering the opportunity cost of permeable areas in the first stage and the resulting loss of the environmental service of flow regulation on the second stage, under several probable hydrological events. A watershed in the city of Belo Horizonte, Brazil, is used to demonstrate the approach. Different values attached to the environmental service were tested, from zero to higher than the opportunity cost of land, and artificial detention infrastructure was included to calculate the resulting land use change and the loss in the environmental service value. Results indicate that by valuing the environmental service loss and discounting it from the economic benefits of land use, alternative solutions to land use are found, with decreased peak flows and lower flood frequency. Combined solutions including structural and non

  7. Model My Watershed: A high-performance cloud application for public engagement, watershed modeling and conservation decision support

    Science.gov (United States)

    Aufdenkampe, A. K.; Tarboton, D. G.; Horsburgh, J. S.; Mayorga, E.; McFarland, M.; Robbins, A.; Haag, S.; Shokoufandeh, A.; Evans, B. M.; Arscott, D. B.

    2017-12-01

    The Model My Watershed Web app (https://app.wikiwatershed.org/) and the BiG-CZ Data Portal (http://portal.bigcz.org/) and are web applications that share a common codebase and a common goal to deliver high-performance discovery, visualization and analysis of geospatial data in an intuitive user interface in web browser. Model My Watershed (MMW) was designed as a decision support system for watershed conservation implementation. BiG CZ Data Portal was designed to provide context and background data for research sites. Users begin by creating an Area of Interest, via an automated watershed delineation tool, a free draw tool, selection of a predefined area such as a county or USGS Hydrological Unit (HUC), or uploading a custom polygon. Both Web apps visualize and provide summary statistics of land use, soil groups, streams, climate and other geospatial information. MMW then allows users to run a watershed model to simulate different scenarios of human impacts on stormwater runoff and water-quality. BiG CZ Data Portal allows users to search for scientific and monitoring data within the Area of Interest, which also serves as a prototype for the upcoming Monitor My Watershed web app. Both systems integrate with CUAHSI cyberinfrastructure, including visualizing observational data from CUAHSI Water Data Center and storing user data via CUAHSI HydroShare. Both systems also integrate with the new EnviroDIY Water Quality Data Portal (http://data.envirodiy.org/), a system for crowd-sourcing environmental monitoring data using open-source sensor stations (http://envirodiy.org/mayfly/) and based on the Observations Data Model v2.

  8. Effect of detention basin release rates on flood flows - Application of a model to the Blackberry Creek Watershed in Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Murphy, Elizabeth A.; Straub, Timothy D.

    2009-01-01

    The effects of stormwater detention basins with specified release rates are examined on the watershed scale with a Hydrological Simulation Program - FORTRAN (HSPF) continuous-simulation model. Modeling procedures for specifying release rates from detention basins with orifice and weir discharge configurations are discussed in this report. To facilitate future detention modeling as a tool for watershed management, a chart relating watershed impervious area to detention volume is presented. The report also presents a case study of the Blackberry Creek watershed in Kane County, Ill., a rapidly urbanizing area seeking to avoid future flood damages from increased urbanization, to illustrate the effects of various detention basin release rates on flood peaks and volumes and flood frequencies. The case study compares flows simulated with a 1996 land-use HSPF model to those simulated with four different 2020 projected land-use HSPF model scenarios - no detention, and detention basins with release rates of 0.08, 0.10, and 0.12 cubic feet per second per acre (ft3/s-acre), respectively. Results of the simulations for 15 locations, which included the downstream ends of all tributaries and various locations along the main stem, showed that a release rate of 0.10 ft3/s-acre, in general, can maintain postdevelopment 100-year peak-flood discharge at a similar magnitude to that of 1996 land-use conditions. Although the release rate is designed to reduce the 100-year peak flow, reduction of the 2-year peak flow is also achieved for a smaller proportion of the peak. Results also showed that the 0.10 ft3/s-acre release rate was less effective in watersheds with relatively high percentages of preexisting (1996) development than in watersheds with less preexisting development.

  9. [Watershed water environment pollution models and their applications: a review].

    Science.gov (United States)

    Zhu, Yao; Liang, Zhi-Wei; Li, Wei; Yang, Yi; Yang, Mu-Yi; Mao, Wei; Xu, Han-Li; Wu, Wei-Xiang

    2013-10-01

    Watershed water environment pollution model is the important tool for studying watershed environmental problems. Through the quantitative description of the complicated pollution processes of whole watershed system and its parts, the model can identify the main sources and migration pathways of pollutants, estimate the pollutant loadings, and evaluate their impacts on water environment, providing a basis for watershed planning and management. This paper reviewed the watershed water environment models widely applied at home and abroad, with the focuses on the models of pollutants loading (GWLF and PLOAD), water quality of received water bodies (QUAL2E and WASP), and the watershed models integrated pollutant loadings and water quality (HSPF, SWAT, AGNPS, AnnAGNPS, and SWMM), and introduced the structures, principles, and main characteristics as well as the limitations in practical applications of these models. The other models of water quality (CE-QUAL-W2, EFDC, and AQUATOX) and watershed models (GLEAMS and MIKE SHE) were also briefly introduced. Through the case analysis on the applications of single model and integrated models, the development trend and application prospect of the watershed water environment pollution models were discussed.

  10. Subdivision of Texas watersheds for hydrologic modeling.

    Science.gov (United States)

    2009-06-01

    The purpose of this report is to present a set of findings and examples for subdivision of watersheds for hydrologic modeling. Three approaches were used to examine the impact of watershed subdivision on modeled hydrologic response: (1) An equal-area...

  11. Effect of watershed urbanization on N2O emissions from the Chongqing metropolitan river network, China

    Science.gov (United States)

    He, Yixin; Wang, Xiaofeng; Chen, Huai; Yuan, Xingzhong; Wu, Ning; Zhang, Yuewei; Yue, Junsheng; Zhang, Qiaoyong; Diao, Yuanbin; Zhou, Lilei

    2017-12-01

    Watershed urbanization, an integrated anthropogenic perturbation, is another considerable global concern in addition to that of global warming and may significantly enrich the N loadings of watersheds, which then greatly influences the nitrous oxide (N2O) production and fluxes of these aquatic systems. However, little is known about the N2O dynamics in human-dominated metropolitan river networks. In this study, we present the temporal and spatial variations in N2O saturation and emission in the Chongqing metropolitan river network, which is undergoing intensified urbanization. The N2O saturation and fluxes at 84 sampling sites ranged from 126% to 10536% and from 4.5 to 1566.8 μmol N2O m-2 d-1, with means of 1780% and 261 μmol N2O m-2 d-1. The riverine N2O saturation and fluxes increased along with the urbanization gradient and urbanization rate, with disproportionately higher values in urban rivers due to the N2O-rich sewage inputs and enriched in situ N substrates. We found a clear seasonal pattern of N2O saturation, which was co-regulated by both water temperature and precipitation. Regression analysis indicated that the N substrates and dissolved oxygen (DO) that controlled nitrogen metabolism acted as good predictors of the N2O emissions of urban river networks. Particularly, phosphorus (P) and hydromorphological factors (water velocity, river size and bottom substrate) had stronger relationships with the N2O saturation and could also be used to predict the N2O emission hotspots in regions with rapid urbanization. In addition, the default emission factors (EF5-r) used in the Intergovernmental Panel on Climate Change (IPCC) methodology may need revision given the differences among the physical and chemical factors in different rivers, especially urban rivers.

  12. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  13. Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR

    Science.gov (United States)

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future

  14. Improving Watershed-Scale Hydrodynamic Models by Incorporating Synthetic 3D River Bathymetry Network

    Science.gov (United States)

    Dey, S.; Saksena, S.; Merwade, V.

    2017-12-01

    Digital Elevation Models (DEMs) have an incomplete representation of river bathymetry, which is critical for simulating river hydrodynamics in flood modeling. Generally, DEMs are augmented with field collected bathymetry data, but such data are available only at individual reaches. Creating a hydrodynamic model covering an entire stream network in the basin requires bathymetry for all streams. This study extends a conceptual bathymetry model, River Channel Morphology Model (RCMM), to estimate the bathymetry for an entire stream network for application in hydrodynamic modeling using a DEM. It is implemented at two large watersheds with different relief and land use characterizations: coastal Guadalupe River basin in Texas with flat terrain and a relatively urban White River basin in Indiana with more relief. After bathymetry incorporation, both watersheds are modeled using HEC-RAS (1D hydraulic model) and Interconnected Pond and Channel Routing (ICPR), a 2-D integrated hydrologic and hydraulic model. A comparison of the streamflow estimated by ICPR at the outlet of the basins indicates that incorporating bathymetry influences streamflow estimates. The inundation maps show that bathymetry has a higher impact on flat terrains of Guadalupe River basin when compared to the White River basin.

  15. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  16. Continuous hydrologic simulation and flood-frequency, hydraulic, and flood-hazard analysis of the Blackberry Creek watershed, Kane County, Illinois

    Science.gov (United States)

    Soong, David T.; Straub, Timothy D.; Murphy, Elizabeth A.

    2006-01-01

    Results of hydrologic model, flood-frequency, hydraulic model, and flood-hazard analysis of the Blackberry Creek watershed in Kane County, Illinois, indicate that the 100-year and 500-year flood plains range from approximately 25 acres in the tributary F watershed (a headwater subbasin at the northeastern corner of the watershed) to almost 1,800 acres in Blackberry Creek main stem. Based on 1996 land-cover data, most of the land in the 100-year and 500-year flood plains was cropland, forested and wooded land, and grassland. A relatively small percentage of urban land was in the flood plains. The Blackberry Creek watershed has undergone rapid urbanization in recent decades. The population and urbanized lands in the watershed are projected to double from the 1990 condition by 2020. Recently, flood-induced damage has occurred more frequently in urbanized areas of the watershed. There are concerns about the effect of urbanization on flood peaks and volumes, future flood-mitigation plans, and potential effects on the water quality and stream habitats. This report describes the procedures used in developing the hydrologic models, estimating the flood-peak discharge magnitudes and recurrence intervals for flood-hazard analysis, developing the hydraulic model, and the results of the analysis in graphical and tabular form. The hydrologic model, Hydrological Simulation Program-FORTRAN (HSPF), was used to perform the simulation of continuous water movements through various patterns of land uses in the watershed. Flood-frequency analysis was applied to an annual maximum series to determine flood quantiles in subbasins for flood-hazard analysis. The Hydrologic Engineering Center-River Analysis System (HEC-RAS) hydraulic model was used to determine the 100-year and 500-year flood elevations, and to determine the 100-year floodway. The hydraulic model was calibrated and verified using high water marks and observed inundation maps for the July 17-18, 1996, flood event. Digital

  17. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    Science.gov (United States)

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  18. Stream Nitrogen Inputs Reflect Groundwater Across a Snowmelt-Dominated Montane to Urban Watershed.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Eiriksson, David; Brooks, Paul D; Baker, Michelle A; Bowen, Gabriel J; Bowling, David R

    2016-02-02

    Snowmelt dominates the hydrograph of many temperate montane streams, yet little work has characterized how streamwater sources and nitrogen (N) dynamics vary across wildland to urban land use gradients in these watersheds. Across a third-order catchment in Salt Lake City, Utah, we asked where and when groundwater vs shallow surface water inputs controlled stream discharge and N dynamics. Stream water isotopes (δ(2)H and δ(18)O) reflected a consistent snowmelt water source during baseflow. Near-chemostatic relationships between conservative ions and discharge implied that groundwater dominated discharge year-round across the montane and urban sites, challenging the conceptual emphasis on direct stormwater inputs to urban streams. Stream and groundwater NO3(-) concentrations remained consistently low during snowmelt and baseflow in most montane and urban stream reaches, indicating effective subsurface N retention or denitrification and minimal impact of fertilizer or deposition N sources. Rather, NO3(-) concentrations increased 50-fold following urban groundwater inputs, showing that subsurface flow paths potentially impact nutrient loading more than surficial land use. Isotopic composition of H2O and NO3(-) suggested that snowmelt-derived urban groundwater intercepted NO3(-) from leaking sewers. Sewer maintenance could potentially mitigate hotspots of stream N inputs at mountain/valley transitions, which have been largely overlooked in semiarid urban ecosystems.

  19. Spatially explicit scenario analysis for hydrologic services in an urbanizing agricultural watershed

    Science.gov (United States)

    Qiu, J.; Booth, E.; Carpenter, S. R.; Turner, M.

    2013-12-01

    The sustainability of hydrologic services (benefits to people generated by terrestrial ecosystem effects on freshwater) is challenged by changes in climate and land use. Despite the importance of hydrologic services, few studies have investigated how the provision of ecosystem services related to freshwater quantity and quality may vary in magnitude and spatial pattern for alternative future trajectories. Such analyses may provide useful information for sustaining freshwater resources in the face of a complex and uncertain future. We analyzed the supply of multiple hydrologic services from 2010 to 2070 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) What are the potential trajectories for the supply of hydrologic services under contrasting but plausible future scenarios? (ii) Where on the landscape is the delivery of hydrologic services most vulnerable to future changes? The Nested Watershed scenario represents extreme climate change (warmer temperatures and more frequent extreme events) and a concerted response from institutions, whereas in the Investment in Innovation scenario, climate change is less severe and technological innovations play a major role. Despite more extreme climate in the Nested Watershed scenario, all hydrologic services (i.e., freshwater supply, surface water quality, flood regulation) were maintained or enhanced (~30%) compared to the 2010 baseline, by strict government interventions that prioritized freshwater resources. Despite less extreme climate in the Investment in Innovation scenario and advances in green technology, only surface water quality and flood regulation were maintained or increased (~80%); freshwater supply declined by 25%, indicating a potential future tradeoff between water quality and quantity. Spatially, the locations of greatest vulnerability (i.e., decline) differed by service and among scenarios. In the Nested Watershed scenario, although

  20. Using high-performance mathematical modelling tools to predict erosion and sediment fluxes in peri-urban catchments

    Science.gov (United States)

    Pereira, André; Conde, Daniel; Ferreira, Carla S. S.; Walsh, Rory; Ferreira, Rui M. L.

    2017-04-01

    Deforestation and urbanization generally lead to increased soil erosion andthrough the indirect effect of increased overland flow and peak flood discharges. Mathematical modelling tools can be helpful for predicting the spatial distribution of erosion and the morphological changes on the channel network. This is especially useful to predict the impacts of land-use changes in parts of the watershed, namely due to urbanization. However, given the size of the computational domain (normally the watershed itself), the need for high spatial resolution data to model accurately sediment transport processes and possible need to model transcritical flows, the computational cost is high and requires high-performance computing techniques. The aim of this work is to present the latest developments of the hydrodynamic and morphological model STAV2D and its applicability to predict runoff and erosion at watershed scale. STAV2D was developed at CEris - Instituto Superior Técnico, Universidade de Lisboa - as a tool particularly appropriated to model strong transient flows in complex and dynamic geometries. It is based on an explicit, first-order 2DH finite-volume discretization scheme for unstructured triangular meshes, in which a flux-splitting technique is paired with a reviewed Roe-Riemann solver, yielding a model applicable to discontinuous flows over time-evolving geometries. STAV2D features solid transport in both Euleran and Lagrangian forms, with the aim of describing the transport of fine natural sediments and then the large individual debris. The model has been validated with theoretical solutions and laboratory experiments (Canelas et al., 2013 & Conde et al., 2015). STAV-2D now supports fully distributed and heterogeneous simulations where multiple different hardware devices can be used to accelerate computation time within a unified Object-Oriented approach: the source code for CPU and GPU has the same compilation units and requires no device specific branches, like

  1. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Directory of Open Access Journals (Sweden)

    V. Mitroi

    2014-09-01

    Full Text Available The (reconstruction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and “classical” ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  2. Life cycle implications of urban green infrastructure

    International Nuclear Information System (INIS)

    Spatari, Sabrina; Yu Ziwen; Montalto, Franco A.

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. - Highlights: → LCA methods can identify environmental tradeoffs for urban low impact development. → Energy and GHG payback time is sensitive to LID construction material choice. → LCA of LID upscaled from street to watershed level is expected to be nonlinear. - The benefits of low impact development and green infrastructure in cities can be modeled using life cycle assessment to understand and guide decisions for meeting sustainability goals.

  3. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    Science.gov (United States)

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  4. Watershed modeling applications in south Texas

    Science.gov (United States)

    Pedraza, Diana E.; Ockerman, Darwin J.

    2012-01-01

    Watershed models can be used to simulate natural and human-altered processes including the flow of water and associated transport of sediment, chemicals, nutrients, and microbial organisms within a watershed. Simulation of these processes is useful for addressing a wide range of water-resource challenges, such as quantifying changes in water availability over time, understanding the effects of development and land-use changes on water resources, quantifying changes in constituent loads and yields over time, and quantifying aquifer recharge temporally and spatially throughout a watershed.

  5. Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863

  6. Comparison of the Prevalences and Diversities of Listeria Species and Listeria monocytogenes in an Urban and a Rural Agricultural Watershed.

    Science.gov (United States)

    Stea, Emma C; Purdue, Laura M; Jamieson, Rob C; Yost, Chris K; Truelstrup Hansen, Lisbeth

    2015-06-01

    Foods and related processing environments are commonly contaminated with the pathogenic Listeria monocytogenes. To investigate potential environmental reservoirs of Listeria spp. and L. monocytogenes, surface water and point source pollution samples from an urban and a rural municipal water supply watershed in Nova Scotia, Canada, were examined over 18 months. Presumptive Listeria spp. were cultured from 72 and 35% of rural and urban water samples, respectively, with 24% of the positive samples containing two or three different Listeria spp. The L. innocua (56%) and L. welshimeri (43%) groups were predominant in the rural and urban watersheds, respectively. Analysis by the TaqMan assay showed a significantly (P monocytogenes of 62% versus 17% by the culture-based method. Both methods revealed higher prevalences in the rural watershed and during the fall and winter seasons. Elevated Escherichia coli (≥ 100 CFU/100 ml) levels were not associated with the pathogen regardless of the detection method. Isolation of Listeria spp. were associated with 70 times higher odds of isolating L. monocytogenes (odds ratio = 70; P monocytogenes isolates, followed by IVb (16.1%), IIb (15.8%), and IIc (0.4%). L. monocytogenes was detected in cow feces and raw sewage but not in septic tank samples. Pulsotyping of representative water (n = 54) and local human (n = 19) isolates suggested genetic similarities among some environmental and human L. monocytogenes isolates. In conclusion, temperate surface waters contain a diverse Listeria species population and could be a potential reservoir for L. monocytogenes, especially in rural agricultural watersheds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Application of the ReNuMa model in the Sha He river watershed: tools for watershed environmental management.

    Science.gov (United States)

    Sha, Jian; Liu, Min; Wang, Dong; Swaney, Dennis P; Wang, Yuqiu

    2013-07-30

    Models and related analytical methods are critical tools for use in modern watershed management. A modeling approach for quantifying the source apportionment of dissolved nitrogen (DN) and associated tools for examining the sensitivity and uncertainty of the model estimates were assessed for the Sha He River (SHR) watershed in China. The Regional Nutrient Management model (ReNuMa) was used to infer the primary sources of DN in the SHR watershed. This model is based on the Generalized Watershed Loading Functions (GWLF) and the Net Anthropogenic Nutrient Input (NANI) framework, modified to improve the characterization of subsurface hydrology and septic system loads. Hydrochemical processes of the SHR watershed, including streamflow, DN load fluxes, and corresponding DN concentration responses, were simulated following calibrations against observations of streamflow and DN fluxes. Uncertainty analyses were conducted with a Monte Carlo analysis to vary model parameters for assessing the associated variations in model outputs. The model performed accurately at the watershed scale and provided estimates of monthly streamflows and nutrient loads as well as DN source apportionments. The simulations identified the dominant contribution of agricultural land use and significant monthly variations. These results provide valuable support for science-based watershed management decisions and indicate the utility of ReNuMa for such applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Food Sources and Accessibility and Waste Disposal Patterns across an Urban Tropical Watershed: Implications for the Flow of Materials and Energy

    Directory of Open Access Journals (Sweden)

    Diana C. Garcia-Montiel

    2014-03-01

    Full Text Available Appraising the social-ecological processes influencing the inflow, transformation, and storage of materials and energy in urban ecosystems requires scientific attention. This appraisal can provide an important tool for assessing the sustainability of cities. Socioeconomic activities are mostly responsible for these fluxes, which are well manifested in the household unit. Human behavior associated with cultural traditions, belief systems, knowledge, and lifestyles are important drivers controlling the transfer of materials throughout the urban environment. Within this context, we explored three aspects of household consumption and waste disposal activities along the Río Piedras Watershed in the San Juan metropolitan area of Puerto Rico. These included: the source of food consumed by residents, recycling activities, and trends in connection to the municipality's sewerage system. We randomly interviewed 440 households at 6 sites along the watershed. We also conducted analysis to estimate accessibility to commercial food services for residents in the study areas. Our surveys revealed that nearly all interviewed households (~97% consumed products from supermarkets. In neighborhoods of the upper portion of the watershed, where residential density is low with large areas of vegetative cover, more than 60% of residents consumed food items cultivated in their yards. Less than 36% of residents in the in densely urbanized parts of the lower portion of the watershed consumed items from their yards. Accessibility to commercial stores for food consumption contrasted among study sites. Recycling activities were mostly carried out by residents in the lower portion of the watershed, with better access to recycling programs provided by the municipality. The surveys also revealed that only 4 to 17% of residences in the upper watershed are connected to the sewerage system whereas the large majority uses septic tanks for septic water disposal. For these residents

  9. Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA

    Science.gov (United States)

    Allert, Ann L.; Cole-Neal, Cavelle L.; Fairchild, James F.

    2012-01-01

    Deicers such as sodium chloride and calcium chloride are used to treat snow and ice on road surfaces and have been identified as potential stressors on aquatic life. Hinkson Creek is an urban stream on the Missouri 303(d) list of impaired waters and is classified as impaired due to urban non-point source pollution. A 7-day toxicity test using Ceriodaphnia dubia was conducted to assess the toxicity of stream water during snowmelt at seven sites within the Hinkson Creek watershed. Chloride concentrations at two sites (Site 6, 1252 mg Cl/L; Site 4, 301 mg Cl/L) exceeded the U.S. Environmental Protection Agency chronic criterion (230 mg Cl/L). Survival (30 %) and total reproduction (6.9 young/adult) of C. dubia at Site 6 was significantly lower than survival (100 %) and total reproduction (30.4 young/adult) at Site 1 (reference site). Results indicate that chloride concentrations are elevated above water-quality criteria and that chloride may be a significant chemical stressor for macroinvertebrate communities during winter low-flow conditions in the Hinkson Creek watershed.

  10. Watershed System Model: The Essentials to Model Complex Human-Nature System at the River Basin Scale

    Science.gov (United States)

    Li, Xin; Cheng, Guodong; Lin, Hui; Cai, Ximing; Fang, Miao; Ge, Yingchun; Hu, Xiaoli; Chen, Min; Li, Weiyue

    2018-03-01

    Watershed system models are urgently needed to understand complex watershed systems and to support integrated river basin management. Early watershed modeling efforts focused on the representation of hydrologic processes, while the next-generation watershed models should represent the coevolution of the water-land-air-plant-human nexus in a watershed and provide capability of decision-making support. We propose a new modeling framework and discuss the know-how approach to incorporate emerging knowledge into integrated models through data exchange interfaces. We argue that the modeling environment is a useful tool to enable effective model integration, as well as create domain-specific models of river basin systems. The grand challenges in developing next-generation watershed system models include but are not limited to providing an overarching framework for linking natural and social sciences, building a scientifically based decision support system, quantifying and controlling uncertainties, and taking advantage of new technologies and new findings in the various disciplines of watershed science. The eventual goal is to build transdisciplinary, scientifically sound, and scale-explicit watershed system models that are to be codesigned by multidisciplinary communities.

  11. Polar pesticide contamination of an urban and peri-urban tropical watershed affected by agricultural activities (Yaoundé, Center Region, Cameroon).

    Science.gov (United States)

    Branchet, Perrine; Cadot, Emmanuelle; Fenet, Hélène; Sebag, David; Ngatcha, Benjamin Ngounou; Borrell-Estupina, Valérie; Ngoupayou, Jules Remy Ndam; Kengne, Ives; Braun, Jean-Jacques; Gonzalez, Catherine

    2018-04-18

    Urban agriculture is crucial to local populations, but the risk of it contaminating water has rarely been documented. The aim of this study was to assess pesticide contamination of surface waters from the Méfou watershed (Yaoundé, Cameroon) by 32 selected herbicides, fungicides, and insecticides (mainly polar) according to their local application, using both grab sampling and polar organic compounds integrative samplers (POCIS). Three sampling campaigns were conducted in the March/April and October/November 2015 and June/July 2016 rainy seasons in urban and peri-urban areas. The majority of the targeted compounds were detected. The quantification frequencies of eight pesticides were more than 20% with both POCIS and grab sampling, and that of diuron and atrazine reached 100%. Spatial differences in contamination were evidenced with higher contamination in urban than peri-urban rivers. In particular, diuron was identified as an urban contaminant of concern because its concentrations frequently exceeded the European water quality guideline of 0.200 μg/L in freshwater and may thus represent an ecological risk due to a risk quotient > 1 for algae observed in 94% of grab samples. This study raises concerns about the impacts of urban agriculture on the quality of water resources and to a larger extent on the health of the inhabitants of cities in developing countries. Graphical abstract ᅟ.

  12. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  13. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  14. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  15. Background, short-term and potential long-term denitrification capacity of soils in urbanized coastal watersheds on Kiawah Island, South Carolina, USA

    Science.gov (United States)

    S.R. Drescher; A.J. Lewitus; S.D. Brown

    2006-01-01

    Urbanization is escalating in many coastal areas of the US and is associated with deteriorating water quality. Often the associated changes in land use result in an overabundance of nutrients and other types of pollution entering ground and surface waters. It is important that we understand biogeochemical transformation processes on urbanizing watersheds if we are to...

  16. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    Science.gov (United States)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  17. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have

  18. Life cycle implications of urban green infrastructure.

    Science.gov (United States)

    Spatari, Sabrina; Yu, Ziwen; Montalto, Franco A

    2011-01-01

    Low Impact Development (LID) is part of a new paradigm in urban water management that aims to decentralize water storage and movement functions within urban watersheds. LID strategies can restore ecosystem functions and reduce runoff loadings to municipal water pollution control facilities (WPCF). This research examines the avoided energy and greenhouse gas (GHG) emissions of select LID strategies using life cycle assessment (LCA) and a stochastic urban watershed model. We estimate annual energy savings and avoided GHG emissions of 7.3 GJ and 0.4 metric tons, respectively, for a LID strategy implemented in a neighborhood in New York City. Annual savings are small compared to the energy and GHG intensity of the LID materials, resulting in slow environmental payback times. This preliminary analysis suggests that if implemented throughout an urban watershed, LID strategies may have important energy cost savings to WPCF, and can make progress towards reducing their carbon footprint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. The experimental watersheds in Slovenia

    International Nuclear Information System (INIS)

    Sraj, M; Rusjan, S; Petan, S; Vidmar, A; Mikos, M; Globevnik, L; Brilly, M

    2008-01-01

    Experimental watersheds are critical to the advancement of hydrological science. By setting up three experimental watersheds, Slovenia also obtained its grounds for further development of the science and discipline. In the Dragonja experimental watershed the studies are focused on the afforestation of the watershed in a mediterranean climate, on the Reka river the water balance in a partly karstic area is examined, and on the case of the Glinscica stream the implications of the urban environment are studied. We have obtained valuable experience and tested new measuring equipment on all three experimental watersheds. Measurements and analysis on the experimental watersheds improved the current understanding of hydrological processes. They resulted in several PhD Theses, Master Theses and scientific articles. At the same time the experimental watersheds provide support to the teaching and studying process.

  20. Weather models as virtual sensors to data-driven rainfall predictions in urban watersheds

    Science.gov (United States)

    Cozzi, Lorenzo; Galelli, Stefano; Pascal, Samuel Jolivet De Marc; Castelletti, Andrea

    2013-04-01

    Weather and climate predictions are a key element of urban hydrology where they are used to inform water management and assist in flood warning delivering. Indeed, the modelling of the very fast dynamics of urbanized catchments can be substantially improved by the use of weather/rainfall predictions. For example, in Singapore Marina Reservoir catchment runoff processes have a very short time of concentration (roughly one hour) and observational data are thus nearly useless for runoff predictions and weather prediction are required. Unfortunately, radar nowcasting methods do not allow to carrying out long - term weather predictions, whereas numerical models are limited by their coarse spatial scale. Moreover, numerical models are usually poorly reliable because of the fast motion and limited spatial extension of rainfall events. In this study we investigate the combined use of data-driven modelling techniques and weather variables observed/simulated with a numerical model as a way to improve rainfall prediction accuracy and lead time in the Singapore metropolitan area. To explore the feasibility of the approach, we use a Weather Research and Forecast (WRF) model as a virtual sensor network for the input variables (the states of the WRF model) to a machine learning rainfall prediction model. More precisely, we combine an input variable selection method and a non-parametric tree-based model to characterize the empirical relation between the rainfall measured at the catchment level and all possible weather input variables provided by WRF model. We explore different lead time to evaluate the model reliability for different long - term predictions, as well as different time lags to see how past information could improve results. Results show that the proposed approach allow a significant improvement of the prediction accuracy of the WRF model on the Singapore urban area.

  1. Hydro-ecological degradation due to human impacts in the Twin Streams Watershed, Auckland, New Zealand

    Science.gov (United States)

    Torrecillas Nunez, C.; Miguel-rodriguez, A.

    2012-12-01

    As a collaborative project between the Faculties of Engineering of the University of Sinaloa, Mexico and the University of Auckland, an inter-disciplinary team researched historical information, monitoring results and modelling completed over the last ten years to establish the cause-effect relationship of development and human impacts in the watershed and recommend strategies to offset them .The research program analyzed the performance of the Twin Streams watershed over time with modelling of floods, hydrological disturbance indicators, analysis of water quality and ecological information, cost / benefit, harbor modelling and contaminant loads. The watershed is located in the west of Auckland and comprises 10,356 hectare: 8.19% ecologically protected area, 29.70% buffer zone, 6.67% peri-urban, 30.98% urban, 16.04% parks, and 8.42% other; average impermeability is 19.1%. Current population is 129,475 (2011) forecast to grow to 212,798 by 2051. The watershed includes 317.5 km of streams that drain to the Waitemata Harbor. The human impact can be traced back to the 1850s when the colonial settlers logged the native forests, dammed streams and altered the channel hydro-ecology resulting in significant erosion, sediment and changes to flows. In the early 1900s native vegetation started to regenerate in the headwaters, while agriculture and horticulture become established in rest of the watershed leading to the use of quite often very harmful pesticides and insecticides, such as DDT which is still detected in current environmental monitoring programs, and more erosion and channel alterations. As land become unproductive in the 1950s it stared to be urbanized, followed by more intensive urban development in the 1990s. Curiously there was no regulatory regime to control land use in the early stages and consequently over 400 houses were built in the floodplains, as well there were no legislation to control environmental impacts until 1991. Consequently today there is a

  2. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to rapid urbanization.

    Science.gov (United States)

    Ozsoy, Gokhan; Aksoy, Ertugrul

    2015-07-01

    This paper integrates the Revised Universal Soil Loss Equation (RUSLE) with a GIS model to investigate the spatial distribution of annual soil loss and identify areas of soil erosion risk in the Uluabat sub-watershed, an important agricultural site in Bursa Province, Turkey. The total soil loss from water erosion was 473,274 Mg year(-1). Accordingly, 60.3% of the surveyed area was classified into a very low erosion risk class while 25.7% was found to be in high and severe erosion risk classes. Soil loss had a close relationship with land use and topography. The most severe erosion risk typically occurs on ridges and steep slopes where agriculture, degraded forest, and shrubs are the main land uses and cover types. Another goal of this study was to use GIS to reveal the multi-year urbanization status caused by rapid urbanization that constitutes another soil erosion risk in this area. Urbanization has increased by 57.7% and the most areal change was determined in class I lands at a rate of 80% over 25 years. Urbanization was identified as one of the causes of excessive soil loss in the study area.

  3. Monitoring deforestation and urbanization growth in rawal watershed area using remote sensing and gis techniques

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ashraf, A.

    2011-01-01

    The Rawal watershed in Pothwar region of Pakistan has undergone significant changes in its environmental conditions and landuse activities due to numerous socio-economic and natural factors. These ultimately influence the livelihood of the inhabitants of the area. The connected environmental changes are resulting in accelerated land degradation, deforestation, and landslides. In the present study, spatio-temporal behaviour of landuse/landcover in the Rawal watershed area was investigated using Remote Sensing (RS) and Geographical Information System (GIS) techniques. Satellite image data of LANDSAT ETM+ of 1992, 2000 and 2010 periods were processed and analyzed for detecting land use change and identifying risk prone locations in the watershed area. The study results revealed significant changes in the coverage of conifer forest (34 % decrease), scrub forest (29 % decrease) and settlement (231 % increase) during the decade 1992-2010. The rate of decline in conifer class is about 19 ha/annum while that of scrub class is 223 ha/annum. In both the cases, the rates of decrease were higher during the period 1992-2000 than the period 2000-2010. The Agriculture land has shown an increase of about 1.8% while built-up land had increased almost four folds, i.e. from 2.6 % in 1992 to 8.7 % in 2010. The growth in urbanization may result in further loss of forest cover in the watershed area. The findings of the study could help in developing effective strategies for future resource management and conservation, as well as for controlling land degradation in the watershed area. (author)

  4. Integrated Modeling System for Analysis of Watershed Water Balance: A Case Study in the Tims Branch Watershed, South Carolina

    Science.gov (United States)

    Setegn, S. G.; Mahmoudi, M.; Lawrence, A.; Duque, N.

    2015-12-01

    The Applied Research Center at Florida International University (ARC-FIU) is supporting the soil and groundwater remediation efforts of the U.S. Department of Energy (DOE) Savannah River Site (SRS) by developing a surface water model to simulate the hydrology and the fate and transport of contaminants and sediment in the Tims Branch watershed. Hydrological models are useful tool in water and land resource development and decision-making for watershed management. Moreover, simulation of hydrological processes improves understanding of the environmental dynamics and helps to manage and protect water resources and the environment. MIKE SHE, an advanced integrated modeling system is used to simulate the hydrological processes of the Tim Branch watershed with the objective of developing an integrated modeling system to improve understanding of the physical, chemical and biological processes within the Tims Branch watershed. MIKE SHE simulates water flow in the entire land based phase of the hydrological cycle from rainfall to river flow, via various flow processes such as, overland flow, infiltration, evapotranspiration, and groundwater flow. In this study a MIKE SHE model is developed and applied to the Tim branch watershed to study the watershed response to storm events and understand the water balance of the watershed under different climatic and catchment characteristics. The preliminary result of the integrated model indicated that variation in the depth of overland flow highly depend on the amount and distribution of rainfall in the watershed. The ultimate goal of this project is to couple the MIKE SHE and MIKE 11 models to integrate the hydrological component in the land phase of hydrological cycle and stream flow process. The coupled MIKE SHE/MIKE 11 model will further be integrated with an Ecolab module to represent a range of water quality, contaminant transport, and ecological processes with respect to the stream, surface water and groundwater in the Tims

  5. Integrated Approach to Inform the New York City Water Supply System Coupling SAR Remote Sensing Observations and the SWAT Watershed Model

    Science.gov (United States)

    Tesser, D.; Hoang, L.; McDonald, K. C.

    2017-12-01

    Efforts to improve municipal water supply systems increasingly rely on an ability to elucidate variables that drive hydrologic dynamics within large watersheds. However, fundamental model variables such as precipitation, soil moisture, evapotranspiration, and soil freeze/thaw state remain difficult to measure empirically across large, heterogeneous watersheds. Satellite remote sensing presents a method to validate these spatially and temporally dynamic variables as well as better inform the watershed models that monitor the water supply for many of the planet's most populous urban centers. PALSAR 2 L-band, Sentinel 1 C-band, and SMAP L-band scenes covering the Cannonsville branch of the New York City (NYC) water supply watershed were obtained for the period of March 2015 - October 2017. The SAR data provides information on soil moisture, free/thaw state, seasonal surface inundation, and variable source areas within the study site. Integrating the remote sensing products with watershed model outputs and ground survey data improves the representation of related processes in the Soil and Water Assessment Tool (SWAT) utilized to monitor the NYC water supply. PALSAR 2 supports accurate mapping of the extent of variable source areas while Sentinel 1 presents a method to model the timing and magnitude of snowmelt runoff events. SMAP Active Radar soil moisture product directly validates SWAT outputs at the subbasin level. This blended approach verifies the distribution of soil wetness classes within the watershed that delineate Hydrologic Response Units (HRUs) in the modified SWAT-Hillslope. The research expands the ability to model the NYC water supply source beyond a subset of the watershed while also providing high resolution information across a larger spatial scale. The global availability of these remote sensing products provides a method to capture fundamental hydrology variables in regions where current modeling efforts and in situ data remain limited.

  6. Spatial connectivity, scaling, and temporal trajectories as emergent urban stormwater impacts

    Science.gov (United States)

    Jovanovic, T.; Gironas, J. A.; Hale, R. L.; Mejia, A.

    2016-12-01

    Urban watersheds are structurally complex systems comprised of multiple components (e.g., streets, pipes, ponds, vegetated swales, wetlands, riparian corridors, etc.). These multiple engineered components interact in unanticipated and nontrivial ways with topographic conditions, climate variability, land use/land cover changes, and the underlying eco-hydrogeomorphic dynamics. Such interactions can result in emergent urban stormwater impacts with cascading effects that can negatively influence the overall functioning of the urban watershed. For example, the interaction among many detention ponds has been shown, in some situations, to synchronize flow volumes and ultimately lead to downstream flow amplifications and increased pollutant mobilization. Additionally, interactions occur at multiple temporal and spatial scales requiring that urban stormwater dynamics be represented at the long-term temporal (decadal) and across spatial scales (from the single lot to the watershed scale). In this study, we develop and implement an event-based, high-resolution, network hydro-engineering model (NHEM), and demonstrate an approach to reconstruct the long-term regional infrastructure and land use/land cover conditions of an urban watershed. As the study area, we select an urban watershed in the metropolitan area of Scottsdale, Arizona. Using the reconstructed landscapes to drive the NHEM, we find that distinct surficial, hydrologic connectivity patterns result from the intersection of hydrologic processes, infrastructure, and land use/land cover arrangements. These spatial patters, in turn, exhibit scaling characteristics. For example, the scaling of urban watershed dispersion mechanisms shows altered scaling exponents with respect to pre-urban conditions. For example, the scaling exponent associated with geomorphic dispersion tends to increase for urban conditions, reflecting increased surficial path heterogeneity. Both the connectivity and scaling results can be used to

  7. Model Calibration in Watershed Hydrology

    Science.gov (United States)

    Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh

    2009-01-01

    Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.

  8. Valuing Non-market Benefits of Rehabilitation of Hydrologic Cycle Improvements in the Anyangcheon Watershed: Using Mixed Logit Models

    Science.gov (United States)

    Yoo, J.; Kong, K.

    2010-12-01

    This research the findings from a discrete-choice experiment designed to estimate the economic benefits associated with the Anyangcheon watershed improvements in Rep. of Korea. The Anyangcheon watershed has suffered from streamflow depletion and poor stream quality, which often negatively affect instream and near-stream ecologic integrity, as well as water supply. Such distortions in the hydrologic cycle mainly result from rapid increase of impermeable area due to urbanization, decreases of baseflow runoff due to groundwater pumping, and reduced precipitation inputs driven by climate forcing. As well, combined sewer overflows and increase of non-point source pollution from urban regions decrease water quality. The appeal of choice experiments (CE) in economic analysis is that it is based on random utility theory (McFadden, 1974; Ben-Akiva and Lerman, 1985). In contrast to contingent valuation method (CVM), which asks people to choose between a base case and a specific alternative, CE asks people to choice between cases that are described by attributes. The attributes of this study were selected from hydrologic vulnerability components that represent flood damage possibility, instreamflow depletion, water quality deterioration, form of the watershed and tax. Their levels were divided into three grades include status quo. Two grades represented the ideal conditions. These scenarios were constructed from a 35 orthogonal main effect design. This design resulted in twenty-seven choice sets. The design had nine different choice scenarios presented to each respondent. The most popular choice models in use are the conditional logit (CNL). This model provides closed-form choice probability calculation. The shortcoming of CNL comes from irrelevant alternatives (IIA). In this paper, the mixed logit (ML) is applied to allow the coefficient’s variation for random taste heterogeneity in the population. The mixed logit model(with normal distributions for the attributes) fit the

  9. Urban base flow with low impact development

    Science.gov (United States)

    Bhaskar, Aditi; Hogan, Dianna M.; Archfield, Stacey A.

    2016-01-01

    A novel form of urbanization, low impact development (LID), aims to engineer systems that replicate natural hydrologic functioning, in part by infiltrating stormwater close to the impervious surfaces that generate it. We sought to statistically evaluate changes in a base flow regime because of urbanization with LID, specifically changes in base flow magnitude, seasonality, and rate of change. We used a case study watershed in Clarksburg, Maryland, in which streamflow was monitored during whole-watershed urbanization from forest and agricultural to suburban residential development using LID. The 1.11-km2 watershed contains 73 infiltration-focused stormwater facilities, including bioretention facilities, dry wells, and dry swales. We examined annual and monthly flow during and after urbanization (2004–2014) and compared alterations to nearby forested and urban control watersheds. We show that total streamflow and base flow increased in the LID watershed during urbanization as compared with control watersheds. The LID watershed had more gradual storm recessions after urbanization and attenuated seasonality in base flow. These flow regime changes may be because of a reduction in evapotranspiration because of the overall decrease in vegetative cover with urbanization and the increase in point sources of recharge. Precipitation that may once have infiltrated soil, been stored in soil moisture to be eventually transpired in a forested landscape, may now be recharged and become base flow. The transfer of evapotranspiration to base flow is an unintended consequence to the water balance of LID.

  10. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  11. Stochastic Watershed Models for Risk Based Decision Making

    Science.gov (United States)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  12. Looking for a relevant potential evapotranspiration model at the watershed scale

    Science.gov (United States)

    Oudin, L.; Hervieu, F.; Michel, C.; Perrin, C.; Anctil, F.; Andréassian, V.

    2003-04-01

    In this paper, we try to identify the most relevant approach to calculate Potential Evapotranspiration (PET) for use in a daily watershed model, to try to bring an answer to the following question: "how can we use commonly available atmospheric parameters to represent the evaporative demand at the catchment scale?". Hydrologists generally see the Penman model as the ideal model regarding to its good adequacy with lysimeter measurements and its physically-based formulation. However, in real-world engineering situations, where meteorological stations are scarce, hydrologists are often constrained to use other PET formulae with less data requirements or/and long-term average of PET values (the rationale being that PET is an inherently conservative variable). We chose to test 28 commonly used PET models coupled with 4 different daily watershed models. For each test, we compare both PET input options: actual data and long-term average data. The comparison is made in terms of streamflow simulation efficiency, over a large sample of 308 watersheds. The watersheds are located in France, Australia and the United States of America and represent varied climates. Strikingly, we find no systematic improvements of the watershed model efficiencies when using actual PET series instead of long-term averages. This suggests either that watershed models may not conveniently use the climatic information contained in PET values or that formulae are only awkward indicators of the real PET which watershed models need.

  13. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff Prediction

    Directory of Open Access Journals (Sweden)

    Muhammad Ajmal

    2016-01-01

    Full Text Available A major structural inconsistency of the traditional curve number (CN model is its dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA procedure is another inherent limitation of the model. To circumvent those problems, we used a variable initial abstraction after ensembling the traditional CN model and a French four-parameter (GR4J model to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff transformation at the watershed scale, our new parameterization designates intrinsic parameters and uses a simple structure. It exhibited more accurate and consistent results than earlier methods in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In addition, based on different performance evaluation indicators, the runoff reproduction results show that the proposed model produced more consistent results for dry, normal, and wet watershed conditions than the other models used in this study.

  14. Analysis of flood vulnerability in urban area; a case study in deli watershed

    Science.gov (United States)

    Indrawan, I.; Siregar, R. I.

    2018-03-01

    Based on the National Disaster Management Agency of Indonesia, the distribution of disasters and victims died until the year 2016 is the largest flood disaster. Deli River is a river that has the greatest flood potential through Medan City. In Deli Watershed, flow discharge affected by the discharge from its tributaries, the high rainfall intensity and human activity. We should anticipate reducing and preventing the occurrence of losses due to flood damage. One of the ways to anticipate flood disaster is to predict which part of urban area is would flood. The objective of this study is to analyze the flood inundation areas due to overflow of Deli River through Medan city. Two-dimensional modeling by HEC-RAS 5.0.3 is a widely used hydraulic software tool developed by the U.S Army Corps of Engineers, which combined with the HEC-HMS for hydrological modeling. The result shows flood vulnerability in Medan by a map to present the spot that vulnerable about flood. The flooded area due to the overflowing of Deli River consists of seven sub districts, namely Medan Johor, Medan Selayang, Medan Kota, Medan Petisah, Medan Maimun, Medan Perjuangan and Medan Barat.

  15. Applying Spatially Distributed Rainfall to a Hydrological Model in a Tropical Watershed, Manoa Watershed, in Hawaii

    Science.gov (United States)

    Huang, Y. F.; Tsang, Y. P.

    2017-12-01

    Rainfall in Hawaii is characterized with high spatial and temporal variability. In the south side of Oahu, the Manoa watershed, with an area of 11 km2, has the annual maximum rainfall of 3900mm and the minimum rainfall of 1000 mm. Despite this high spatial heterogeneity, the rain gage network seems insufficiently capture this pattern. When simulating stream flow and predicting floods with hydrological models in Hawaii, the model performance is often unsatisfactory because of inadequate representation of rainfall data. Longman et al. (in prep.) have developed the spatially distributed daily rainfall across the Hawaiian Islands by applying ordinary kriging, yet these data have not been applied to hydrological models. In this study, we used the Soil and Water Assessment Tool (SWAT) model to assess the streamflow simulation by applying spatially-distributed rainfall in the Manoa watershed. We first used point daily-rainfall at Lyon Arboretum from National Center of Environmental Information (NCEI) as the uniform rainfall input. Secondly, we summarized sub-watershed mean rainfall from the daily spatial-statistical rainfall. Both rainfall data are available from 1999 to 2014. The SWAT was set up for five-year warm-up, nine-year calibration, and two-year validation. The model parameters were calibrated and validated with four U.S. Geological Survey stream gages. We compared the calibrated watershed parameters, characteristics, and assess the streamflow hydrographs from these two rainfall inputs. The differences and improvement of using spatially distributed rainfall input in SWAT were discussed. In addition to improving the model by the representation of rainfall, this study helped us having a better understanding of the watershed hydrological response in Hawaii.

  16. The hydrological calibration and validation of a complexly-linked watershed reservoir model for the Occoquan watershed, Virginia

    Science.gov (United States)

    Xu, Zhongyan; Godrej, Adil N.; Grizzard, Thomas J.

    2007-10-01

    SummaryRunoff models such as HSPF and reservoir models such as CE-QUAL-W2 are used to model water quality in watersheds. Most often, the models are independently calibrated to observed data. While this approach can achieve good calibration, it does not replicate the physically-linked nature of the system. When models are linked by using the model output from an upstream model as input to a downstream model, the physical reality of a continuous watershed, where the overland and waterbody portions are parts of the whole, is better represented. There are some additional challenges in the calibration of such linked models, because the aim is to simulate the entire system as a whole, rather than piecemeal. When public entities are charged with model development, one of the driving forces is to use public-domain models. This paper describes the use of two such models, HSPF and CE-QUAL-W2, in the linked modeling of the Occoquan watershed located in northern Virginia, USA. The description of the process is provided, and results from the hydrological calibration and validation are shown. The Occoquan model consists of six HSPF and two CE-QUAL-W2 models, linked in a complex way, to simulate two major reservoirs and the associated drainage areas. The overall linked model was calibrated for a three-year period and validated for a two-year period. The results show that a successful calibration can be achieved using the linked approach, with moderate additional effort. Overall flow balances based on the three-year calibration period at four stream stations showed agreement ranging from -3.95% to +3.21%. Flow balances for the two reservoirs, compared via the daily water surface elevations, also showed good agreement ( R2 values of 0.937 for Lake Manassas and 0.926 for Occoquan Reservoir), when missing (un-monitored) flows were included. Validation of the models ranged from poor to fair for the watershed models and excellent for the waterbody models, thus indicating that the

  17. Watershed Modeling Applications with the Open-Access Modular Distributed Watershed Educational Toolbox (MOD-WET) and Introductory Hydrology Textbook

    Science.gov (United States)

    Huning, L. S.; Margulis, S. A.

    2014-12-01

    Traditionally, introductory hydrology courses focus on hydrologic processes as independent or semi-independent concepts that are ultimately integrated into a watershed model near the end of the term. When an "off-the-shelf" watershed model is introduced in the curriculum, this approach can result in a potential disconnect between process-based hydrology and the inherent interconnectivity of processes within the water cycle. In order to curb this and reduce the learning curve associated with applying hydrologic concepts to complex real-world problems, we developed the open-access Modular Distributed Watershed Educational Toolbox (MOD-WET). The user-friendly, MATLAB-based toolbox contains the same physical equations for hydrological processes (i.e. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) that are presented in the companion e-textbook (http://aqua.seas.ucla.edu/margulis_intro_to_hydro_textbook.html) and taught in the classroom. The modular toolbox functions can be used by students to study individual hydrologic processes. These functions are integrated together to form a simple spatially-distributed watershed model, which reinforces a holistic understanding of how hydrologic processes are interconnected and modeled. Therefore when watershed modeling is introduced, students are already familiar with the fundamental building blocks that have been unified in the MOD-WET model. Extensive effort has been placed on the development of a highly modular and well-documented code that can be run on a personal computer within the commonly-used MATLAB environment. MOD-WET was designed to: 1) increase the qualitative and quantitative understanding of hydrological processes at the basin-scale and demonstrate how they vary with watershed properties, 2) emphasize applications of hydrologic concepts rather than computer programming, 3) elucidate the underlying physical processes that can often be obscured with a complicated

  18. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    Science.gov (United States)

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  19. Hydrologic impact of urbanization with extensive stormwater infiltration

    DEFF Research Database (Denmark)

    Locatelli, Luca; Mark, Ole; Mikkelsen, Peter Steen

    2017-01-01

    This paper presents a novel modeling analysis of a 40-year-long dataset to examine the impact of urbanization, with widespread stormwater infiltration, on groundwater levels and the water balance of a watershed. A dataset on the hydrologic impact of urbanization with extensive stormwater...

  20. Simulation of rain in the watershed Ghezala by KINEROS 2 model

    International Nuclear Information System (INIS)

    Marghmi, Afef

    2010-01-01

    The objective of this study is modeling runoff by hydrological, distributed physically based Model, KINEROS2. This model has allowed after calibration to analyze and simulate the hydrological behavior of the watershed Ghezala .The Watershed Ghezala is located in north of Tunisia, in the governorate of Bizerte. It belongs to the bioclimatic mild winter. It covers an area of 4723h, at this watershed; the dominating slop is between 8and 15 pour cent which covers the almost area of the watershed. Dominant type of soil is Calcareous brown guy covering almost 54 pour cent of its total area; Land cover is characterized by the dominance of grain covering 73 pour cent of watershed area. KINEROS2 requires the division of the watershed into plain and channels cascading from upstream to downstream taking into consideration of flow, the geology and land cover of the watershed. During the calibration observed and simulated hydrographs, it must be based on the more sensitive parameters of the model: K (saturated hydraulic conductivity) G (net effective capillary conductivity) and n (parameter Mannig). The calibration's result shows that the error does not exceed, 1pour cent for liquid peak flows of flood hydrographs observed and simulated, 17pour cent for the volume of raw observed and simulated. Thus, the analysis of the hydrological behavior of the watershed studied through the hydrological response to a solicitation (intensity of rain: rain), simulates flood by applying the KINEROS2 model and observing the quantity of water flowing at the outflow of the system (flood hydrograph or rainfall).

  1. Methodology and application of combined watershed and ground-water models in Kansas

    Science.gov (United States)

    Sophocleous, M.; Perkins, S.P.

    2000-01-01

    Increased irrigation in Kansas and other regions during the last several decades has caused serious water depletion, making the development of comprehensive strategies and tools to resolve such problems increasingly important. This paper makes the case for an intermediate complexity, quasi-distributed, comprehensive, large-watershed model, which falls between the fully distributed, physically based hydrological modeling system of the type of the SHE model and the lumped, conceptual rainfall-runoff modeling system of the type of the Stanford watershed model. This is achieved by integrating the quasi-distributed watershed model SWAT with the fully-distributed ground-water model MODFLOW. The advantage of this approach is the appreciably smaller input data requirements and the use of readily available data (compared to the fully distributed, physically based models), the statistical handling of watershed heterogeneities by employing the hydrologic-response-unit concept, and the significantly increased flexibility in handling stream-aquifer interactions, distributed well withdrawals, and multiple land uses. The mechanics of integrating the component watershed and ground-water models are outlined, and three real-world management applications of the integrated model from Kansas are briefly presented. Three different aspects of the integrated model are emphasized: (1) management applications of a Decision Support System for the integrated model (Rattlesnake Creek subbasin); (2) alternative conceptual models of spatial heterogeneity related to the presence or absence of an underlying aquifer with shallow or deep water table (Lower Republican River basin); and (3) the general nature of the integrated model linkage by employing a watershed simulator other than SWAT (Wet Walnut Creek basin). These applications demonstrate the practicality and versatility of this relatively simple and conceptually clear approach, making public acceptance of the integrated watershed modeling

  2. Mitigation of Flood Hazards Through Modification of Urban Channels and Floodplains

    Science.gov (United States)

    Miller, A. J.; Lee, G.; Bledsoe, B. P.; Stephens, T.

    2017-12-01

    Small urban watersheds with high percent impervious cover and dense road and storm-drain networks are highly responsive to short-duration high-intensity rainfall events that lead to flash floods. The Baltimore metropolitan area has some of the flashiest urban watersheds in the conterminous U.S., high frequency of channel incision in affected areas, and a large number of watershed restoration projects designed to restore ecosystem services through reconnection of the channel with the floodplain. A question of key importance in these and other urban watersheds is to what extent we can mitigate flood hazards and urban stream syndrome through restoration activities that modify the channel and valley floor. Local and state governments have invested resources in repairing damage caused by extreme events like the July 30, 2016 Ellicott City flood in the Tiber River watershed, as well as more frequent high flows in other local urban streams. Recent reports have investigated how much flood mitigation may be achieved through modification of the channel and floodplain to enhance short-term storage of flood waters on the valley floor or in other subsurface structures, as compared with increasing stormwater management in the headwaters. Ongoing research conducted as part of the UWIN (Urban Water Innovation Network) program utilizes high-resolution topographic point clouds derived by processing of photographs from hand-held cameras or video frames from drone overflights. These are used both to track geomorphic change and to assess flood response with 2d hydraulic modeling tools under alternative mitigation scenarios. Assessment metrics include variations in inundation extent, water depth, hydrograph attenuation, and temporal and spatial characteristics of the 2d depth-averaged velocity field. Examples from diverse urban watersheds are presented to illustrate the range of anticipated outcomes and potential constraints on the effectiveness of downstream vs. headwater mitigation

  3. A sensitivity analysis of regional and small watershed hydrologic models

    Science.gov (United States)

    Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.

    1975-01-01

    Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.

  4. Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System

    Science.gov (United States)

    Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.

    2017-12-01

    Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented

  5. A Method for Gauging Landscape Change as a Prelude to Urban Watershed Regeneration: The Case of the Carioca River, Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Vera Regina Tangari

    2012-08-01

    Full Text Available Natural systems undergo processes, flows, and rhythms that differ from those of urban sociocultural systems. While the former takes place over eras or many generations, the latter may occur within years or even months. Natural systems change includes no principle of intentional progress or enhancement of complexity. In contrast, sociocultural systems change occurs through inherited characteristics, learning, and cultural transmission [1]. Both are dynamic, heterogeneous, and vulnerable to regime shifts, and are inextricably linked. The interrelations among natural and anthropogenic factors affecting sustainability vary spatially and temporally. This paper focuses on landscape changes along the Carioca River valley in Rio de Janeiro, located in the Brazilian Neotropical Southeastern Region, and its implications for local urban sustainability. The study incorporates a transdisciplinary approach that integrates landscape ecology and urban morphology methodologies to gauge landscape change and assess social-ecological systems dynamics. The methodology includes a variety of landscape change assessments; including on-site landscape ecological, landscape morphology, biological and urbanistic surveys, to gauge urban watershed quality. It presents an adapted inventory for assessment of urban tropical rivers, Neotropical Urban Stream Visual Assessment Protocol (NUSVAP, and correlates the level of stream and rainforest integrity to local urban environmental patterns and processes. How can urban regional land managers, planners and communities work together to promote shifts toward more desirable configurations and processes? An understanding of the transient behavior of social-ecological systems and how they respond to change and disturbance is fundamental to building appropriate management strategies and fostering resilience, regenerative capacity, and sustainable development in urban watersheds. The sociocultural patterns, processes and dynamics of Rio

  6. Watershed characterization and analysis using the VELMA ...

    Science.gov (United States)

    We developed a broadly applicable watershed simulator – VELMA (Visualizing Ecosystem and Land Management Assessments) – to characterize hydrological and ecological processes essential to the healthy functioning of watersheds, and to identify best management practices (BMPs) for restoring ecosystem services such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. VELMA has been applied to agricultural, forest, rangeland and arctic watersheds across North America. Urban applications are under development. This seminar will discuss how VELMA is being used to help inform (1) salmon recovery planning in Puget Sound, and (2) water quality protection in Chesapeake Bay agricultural landscapes. These examples highlight the importance of model validation; how VELMA is being linked with additional models to aid BMP identification; and how the model is being transferred to community groups, tribes, and state and federal agencies engaged in environmental decision making. This invited seminar for the Washington State Department of Ecology will provide an overview of EPA’s VELMA watershed simulator and its applications for identifying best management practices for protecting and restoring vital ecosystem services, such as provisioning of clean water, food and fiber, and habitat for fish and wildlife. After the seminar, the presenter will meet with Department of Ecology staff to discuss the feasibility of including VELMA in their Puget Sound

  7. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Science.gov (United States)

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    .83%), Native Forest + Rural Anthropic + Secondary Vegetation + Forestry (43.81%), Urban Anthropic/Urban Area (39.85%), and also Urban Anthropic/Expansion areas (3.01%). Mean annual rainfall is 1337 mm, maximum temperatures range from 10.5°C to 41.6°C and minimum temperatures range from -1.80°C and 26°C, weak winds, occasionally over 5 m/s. Conducting an environmental assessment in this watershed is essential for environmental and land management. However, these assessments are not conducted in all watersheds and, when they are, their frequency is not sufficiency to allow for continuous monitoring, in order to model and predict scenarios, with a view to adopt medium and long-term measures for environmental protection.

  8. Coupling impervious surface rate derived from satellite remote sensing with distributed hydrological model for highly urbanized watershed flood forecasting

    Science.gov (United States)

    Dong, L.

    2017-12-01

    Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin

  9. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    Science.gov (United States)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  10. Water quality trading opportunities in two sub-watersheds in the northern Lake Okeechobee watershed.

    Science.gov (United States)

    Corrales, Juliana; Naja, G Melodie; Bhat, Mahadev G; Miralles-Wilhelm, Fernando

    2017-07-01

    For decades, the increase of nutrient enrichment has threatened the ecological integrity and economic sustainability of many rivers, lakes, and coastal waters, including Lake Okeechobee, the second largest freshwater lake in the contiguous United States. Water quality trading programs have been an area of active development to both, reduce nutrient pollution and minimize abatement costs. The objective of this study was to apply a comprehensive modeling framework, integrating a hydrologic-water quality model with an economic model, to assess and compare the cost-effectiveness of a water quality trading program over a command-and-control approach in order to reduce phosphorus loadings to Lake Okeechobee. The Upper Kissimmee (UK) and Taylor Creek/Nubbin Slough (TCNS) sub-watersheds, identified as major sources of total phosphorus (TP) loadings to the lake, were selected for this analysis. The effect of different caps on the market potential was assessed while considering four factors: the least-cost abatement solutions, credit prices, potential cost savings, and credit supply and demand. Hypothetical trading scenarios were also developed, using the optimal caps selected for the two sub-watersheds. In both sub-watersheds, a phosphorus credit trading program was less expensive than the conventional command-and-control approach. While attaining cost-effectiveness, keeping optimal credit prices, and fostering market competition, phosphorus reduction targets of 46% and 32% were selected as the most appropriate caps in the UK and TCNS sub-watersheds, respectively. Wastewater treatment facilities and urban areas in the UK, and concentrated animal feeding operations in the TCNS sub-watershed were identified as potential credit buyers, whereas improved pastures were identified as the major credit sellers in both sub-watersheds. The estimated net cost savings resulting from implementing a phosphorus trading program in the UK and TCNS sub-watersheds were 76% ($ 34.9 million per

  11. Application of the Soil and Water Assessment Tool (SWAT Model on a small tropical island (Great River Watershed, Jamaica as a tool in Integrated Watershed and Coastal Zone Management

    Directory of Open Access Journals (Sweden)

    Orville P. Grey

    2014-09-01

    Full Text Available The Great River Watershed, located in north-west Jamaica, is critical for development, particularly for housing, tourism, agriculture, and mining. It is a source of sediment and nutrient loading to the coastal environment including the Montego Bay Marine Park. We produced a modeling framework using the Soil and Water Assessment Tool (SWAT and GIS. The calculated model performance statistics for high flow discharge yielded a Nash-Sutcliffe Efficiency (NSE value of 0.68 and a R² value of 0.70 suggesting good measured and simulated (calibrated discharge correlation. Calibration and validation results for streamflow were similar to the observed streamflows. For the dry season the simulated urban landuse scenario predicted an increase in surface runoff in excess of 150%. During the wet season it is predicted to range from 98 to 234% presenting a significant risk of flooding, erosion and other environmental issues. The model should be used for the remaining 25 watersheds in Jamaica and elsewhere in the Caribbean. The models suggests that projected landuse changes will have serious impacts on available water (streamflow, stream health, potable water treatment, flooding and sensitive coastal ecosystems.

  12. Simulation of Nitrogen and Phosphorus Load Runoff by a GIS-based Distributed Model for Chikugo River Watershed

    Science.gov (United States)

    Iseri, Haruka; Hiramatsu, Kazuaki; Harada, Masayoshi

    A distributed model was developed in order to simulate the process of nitrogen and phosphorus load runoff in the semi-urban watershed of the Chikugo River, Japan. A grid of cells 1km in size was laid over the study area, and several input variables for each cell area including DEM, land use and statistical data were extracted by GIS. In the process of water runoff, hydrograph calculated at Chikugo Barrage was in close agreement with the observed one, which achieved Nash-Sutcliffe coefficient of 0.90. In addition, the model simulated reasonably well the movement of TN and TP at each station. The model was also used to analyze three scenarios based on the watershed management: (1) reduction of nutrient loads from livestock farm, (2) improvement of septic tanks' wastewater treatment system and (3) application of purification function of paddy fields. As a result, effectiveness of management strategy in each scenario depended on land use patterns. The reduction rates of nutrient load effluent in scenarios (1) and (3) were higher than that in scenario (2). The present result suggests that an appropriate management of livestock farm together with the effective use of paddy environment would have significant effects on the reduction of nutrient loads. A suitable management strategy should be planned based on the land use pattern in the watershed.

  13. Guiding principles for management of forested, agricultural, and urban watersheds

    Science.gov (United States)

    Pamela J. Edwards; Jon E. Schoonover; Karl W.J. Williard

    2015-01-01

    Human actions must be well planned and include consideration of their potential influences on water and aquatic ecosystems - such consideration is the foundation of watershed management. Watersheds are the ideal land unit for managing and protecting water resources and aquatic health because watersheds integrate the physical, biological and chemical processes within...

  14. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model

    Science.gov (United States)

    Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter

    2010-01-01

    This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.

  15. Application of snowmelt runoff model (SRM in mountainous watersheds: A review

    Directory of Open Access Journals (Sweden)

    Shalamu Abudu

    2012-06-01

    Full Text Available The snowmelt runoff model (SRM has been widely used in simulation and forecast of streamflow in snow-dominated mountainous basins around the world. This paper presents an overall review of worldwide applications of SRM in mountainous watersheds, particularly in data-sparse watersheds of northwestern China. Issues related to proper selection of input climate variables and parameters, and determination of the snow cover area (SCA using remote sensing data in snowmelt runoff modeling are discussed through extensive review of literature. Preliminary applications of SRM in northwestern China have shown that the model accuracies are relatively acceptable although most of the watersheds lack measured hydro-meteorological data. Future research could explore the feasibility of modeling snowmelt runoff in data-sparse mountainous watersheds in northwestern China by utilizing snow and glacier cover remote sensing data, geographic information system (GIS tools, field measurements, and innovative ways of model parameterization.

  16. Application of SELECT and SWAT models to simulate source load, fate, and transport of fecal bacteria in watersheds.

    Science.gov (United States)

    Ranatunga, T.

    2017-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads from SELECT model were input to the SWAT model, and simulate the bacteria transport through the land and in-stream. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on regional land use, population and household forecast (up to 2040). Based on the reductions required to meet the water quality standards in-stream, the corresponding required source load reductions were estimated.

  17. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Flash flood hazard assessment through modelling in small semi-arid watersheds. The example of the Beni Mellal watershed in Morocco

    Science.gov (United States)

    Werren, G.; Balin, D.; Reynard, E.; Lane, S. N.

    2012-04-01

    Flood modelling is essential for flood hazard assessment. Modelling becomes a challenge in small, ungauged watersheds prone to flash floods, like the ones draining the town of Beni Mellal (Morocco). Four temporary streams meet in the urban area of Beni Mellal, producing every year sheet floods, harmful to infrastructure and to people. Here, statistical analysis may not give realistic results, but the study of these repeated real flash flood events may provide a better understanding of watershed specific hydrology. This study integrates a larger cooperation project between Switzerland and Morroco, aimed at knowledge transfer in disaster risk reduction, especially through hazard mapping and land-use planning, related to implementation of hazard maps. Hydrologic and hydraulic modelling was carried out to obtain hazard maps. An important point was to find open source data and methods that could still produce a realistic model for the area concerned, in order to provide easy-to-use, cost-effective tools for risk management in developing countries like Morocco, where routine data collection is largely lacking. The data used for modelling is the Web available TRMM 3-Hour 0.25 degree rainfall data provided by the Tropical Rainfall Measurement Mission Project (TRMM). Hydrologic modelling for discharge estimation was undertaken using methods available in the HEC-HMS software provided by the US Army Corps of Engineers® (USACE). Several transfer models were used, so as to choose the best-suited method available. As no model calibration was possible for no measured flow data was available, a one-at-the-time sensitivity analysis was performed on the parameters chosen, in order to detect their influence on the results. But the most important verification method remained field observation, through post-flood field campaigns aimed at mapping water surfaces and depths in the flooded areas, as well as river section monitoring, where rough discharge estimates could be obtained using

  19. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.

    Science.gov (United States)

    Zeiger, Sean J; Hubbart, Jason A

    2016-12-01

    There is an ongoing need to validate the accuracy of predictive model simulated pollutant yields, particularly from multiple-land-use (i.e. forested, agricultural, and urban) watersheds. However, there are seldom sufficient observed data sets available that supply requisite spatial and temporal resolution and coupled multi-parameter constituents for rigorous model performance assessment. Four years of hydroclimate and water quality data were used to validate SWAT model estimates of monthly stream flow, suspended sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen from 5 nested-scale gauging sites located in a multiple-land-use watershed of the central USA. The uncalibrated SWAT model satisfactorily simulated monthly stream flow with Nash-Sutcliffe efficiency (NSE) values ranging from 0.50 near the headwaters, to 0.75 near the watershed outlet. However, the uncalibrated model did not accurately simulate monthly sediment, total phosphorus, nitrate, nitrite, ammonium, and total inorganic nitrogen with NSE valuesSWAT model to multiple gauging sites within the watershed improved estimates of monthly stream flow (NSE=0.83), sediment (NSE=0.78), total phosphorus (NSE=0.81), nitrate (NSE=0.90), and total inorganic nitrogen (NSE=0.86). However, NSE values were model performance decreased for sediment, nitrate, and total inorganic nitrogen during the validation period with NSE valuesSWAT model to multiple gauging sites and provide guidance to SWAT model (or similar models) users wishing to improve model performance at multiple scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Spatial modeling on the upperstream of the Citarum watershed: An application of geoinformatics

    Science.gov (United States)

    Ningrum, Windy Setia; Widyaningsih, Yekti; Indra, Tito Latif

    2017-03-01

    The Citarum watershed is the longest and the largest watershed in West Java, Indonesia, located at 106°51'36''-107°51' E and 7°19'-6°24'S across 10 districts, and serves as the water supply for over 15 million people. In this area, the water criticality index is concerned to reach the balance between water supply and water demand, so that in the dry season, the watershed is still able to meet the water needs of the society along the Citarum river. The objective of this research is to evaluate the water criticality index of Citarum watershed area using spatial model to overcome the spatial dependencies in the data. The result of Lagrange multiplier diagnostics for spatial dependence results are LM-err = 34.6 (p-value = 4.1e-09) and LM-lag = 8.05 (p-value = 0.005), then modeling using Spatial Lag Model (SLM) and Spatial Error Model (SEM) were conducted. The likelihood ratio test show that both of SLM dan SEM model is better than OLS model in modeling water criticality index in Citarum watershed. The AIC value of SLM and SEM model are 78.9 and 51.4, then the SEM model is better than SLM model in predicting water criticality index in Citarum watershed.

  1. Upscaling from research watersheds: an essential stage of trustworthy general-purpose hydrologic model building

    Science.gov (United States)

    McNamara, J. P.; Semenova, O.; Restrepo, P. J.

    2011-12-01

    Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in

  2. Development of urban runoff model FFC-QUAL for first-flush water-quality analysis in urban drainage basins.

    Science.gov (United States)

    Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae

    2018-01-01

    An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Uneven Access and Underuse of Ecological Amenities in Urban Parks of the Río Piedras Watershed

    Directory of Open Access Journals (Sweden)

    Luis E. Santiago

    2014-03-01

    Full Text Available The association between consumption of ecological amenities in a park setting and improved physical and mental health substantiates the need for improved accessibility to green areas in lower-income neighborhoods. We measured green area accessibility, considering income variation, and park use in a densely populated tropical urban watershed. Park use was explored with 442 in-person interviews, and U.S. Census and Puerto Rico Commonwealth data were used to measure accessibility. Nearly 20% of residents earning ≤ $15,000 lived within park service areas with the highest crime incidence in the region, whereas 90% of those earning > $75,000 lived within park service areas with lower crime rates. Innovative nonexclusionary activities such as growing vegetable gardens are needed to attract lower-income residents and increase their sense of safety in urban parks.

  4. Hydrologic impacts of climate change and urbanization in Las Vegas Wash Watershed, Nevada

    Science.gov (United States)

    In this study, a cell-based model for the Las Vegas Wash (LVW) Watershed in Clark County, Nevada, was developed by combining the traditional hydrologic modeling methods (Thornthwaite’s water balance model and the Soil Conservation Survey’s Curve Number method) with the pixel-base...

  5. Development and testing of watershed-scale models for poorly drained soils

    Science.gov (United States)

    Glenn P. Fernandez; George M. Chescheir; R. Wayne Skaggs; Devendra M. Amatya

    2005-01-01

    Watershed-scale hydrology and water quality models were used to evaluate the crrmulative impacts of land use and management practices on dowrzstream hydrology and nitrogen loading of poorly drained watersheds. Field-scale hydrology and nutrient dyyrutmics are predicted by DRAINMOD in both models. In the first model (DRAINMOD-DUFLOW), field-scale predictions are coupled...

  6. Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed

    Science.gov (United States)

    Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy

    2015-09-01

    Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.

  7. Watershed and Economic Data InterOperability (WEDO): Facilitating Discovery, Evaluation and Integration through the Sharing of Watershed Modeling Data

    Science.gov (United States)

    Watershed and Economic Data InterOperability (WEDO) is a system of information technologies designed to publish watershed modeling studies for reuse. WEDO facilitates three aspects of interoperability: discovery, evaluation and integration of data. This increased level of interop...

  8. Hydrological modeling of the Ribeirão das Posses – An assessment based on the Agricultural Ecosystem Services (AgES watershed model

    Directory of Open Access Journals (Sweden)

    Patrícia Porta Nova da Cruz

    2017-05-01

    Full Text Available Southeastern Brazil has recently experienced drought conditions that have impacted watershed conservation and the management of water quality and quantity for agricultural and urban demands. The Ribeirão das Posses watershed is being monitored as a headwater of the Jaguarí River, which is one of the contributing rivers of the Cantareira Reservoir Complex in the state of São Paulo. The landscape has changed over the last century from native forests to more homogeneous vegetation for pastures, crops and some forest plantations of eucalyptus, which have cumulative impacts on water yield and quality. Currently, the Projeto Conservador das Águas (Water Conservationist Project has planted small areas with native species vegetation in order to recover degraded areas. The objective of this study was to evaluate the quantity of water in the Ribeirão das Posses Basin by both measurements and by simulating hydrological responses. The Agricultural Ecosystem Services (AgES watershed model was applied to simulate water movement and storage among land areas. The simulation period was from 2009 to 2014, because the daily streamflow and meteorological data were available for model calibration and testing. We discuss data input requirements, model calibration to fit measured streamflow, and sensitivity to spatially variable rainfall inputs. The calibrated model may be used to estimate streamflow during periods of missing data, and in the future to estimate impacts of land use changes on stream water quantity and quality. Such information can be used in programs of payments for ecosystem services.

  9. Accuracy Analysis and Parameters Optimization in Urban Flood Simulation by PEST Model

    Science.gov (United States)

    Keum, H.; Han, K.; Kim, H.; Ha, C.

    2017-12-01

    The risk of urban flooding has been increasing due to heavy rainfall, flash flooding and rapid urbanization. Rainwater pumping stations, underground reservoirs are used to actively take measures against flooding, however, flood damage from lowlands continues to occur. Inundation in urban areas has resulted in overflow of sewer. Therefore, it is important to implement a network system that is intricately entangled within a city, similar to the actual physical situation and accurate terrain due to the effects on buildings and roads for accurate two-dimensional flood analysis. The purpose of this study is to propose an optimal scenario construction procedure watershed partitioning and parameterization for urban runoff analysis and pipe network analysis, and to increase the accuracy of flooded area prediction through coupled model. The establishment of optimal scenario procedure was verified by applying it to actual drainage in Seoul. In this study, optimization was performed by using four parameters such as Manning's roughness coefficient for conduits, watershed width, Manning's roughness coefficient for impervious area, Manning's roughness coefficient for pervious area. The calibration range of the parameters was determined using the SWMM manual and the ranges used in the previous studies, and the parameters were estimated using the automatic calibration method PEST. The correlation coefficient showed a high correlation coefficient for the scenarios using PEST. The RPE and RMSE also showed high accuracy for the scenarios using PEST. In the case of RPE, error was in the range of 13.9-28.9% in the no-parameter estimation scenarios, but in the scenario using the PEST, the error range was reduced to 6.8-25.7%. Based on the results of this study, it can be concluded that more accurate flood analysis is possible when the optimum scenario is selected by determining the appropriate reference conduit for future urban flooding analysis and if the results is applied to various

  10. ROLE OF WATERSHED SUBDIVISION ON MODELING THE EFFECTIVENESS OF BEST MANAGEMENT PRACTICES WITH SWAT

    Science.gov (United States)

    Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivisio...

  11. Modelling the Impacts of Changing Land Cover/Land Use and Climate on Flooding in the Elk River Watershed, British Columbia

    Science.gov (United States)

    Barnes, C. C.; Byrne, J. M.; Hopkinson, C.; MacDonald, R. J.; Johnson, D. L.

    2015-12-01

    The Elk River is a mountain watershed located along the eastern border of British Columbia, Canada. The Elk River is confined by railway bridges, roads, and urban areas. Flooding has been a concern in the valley for more than a century. The most recent major flood event occurred in 2013 affecting several communities. River modifications such as riprapped dykes, channelization, and dredging have occurred in an attempt to reduce inundation, with limited success. Significant changes in land cover/land use (LCLU) such as natural state to urban, forestry practices, and mining from underground to mountaintop/valley fill have changed terrain and ground surfaces thereby altering water infiltration and runoff processes in the watershed. Future climate change in this region is expected to alter air temperature and precipitation as well as produce an earlier seasonal spring freshet potentially impacting future flood events. The objective of this research is to model historical and future hydrological conditions to identify flood frequency and risk under a range of climate and LCLU change scenarios in the Elk River watershed. Historic remote sensing data, forest management plans, and mining industry production/post-mining reclamation plans will be used to create a predictive past and future LCLU time series. A range of future air temperature and precipitation scenarios will be developed based on accepted Global Climate Modelling (GCM) research to examine how the hydrometeorological conditions may be altered under a range of future climate scenarios. The GENESYS (GENerate Earth SYstems Science input) hydrometeorological model will be used to simulate climate and LCLU to assess historic and potential future flood frequency and magnitude. Results will be used to create innovative flood mitigation, adaptation, and management strategies for the Elk River with the intent of being wildlife friendly and non-destructive to ecosystems and habitats for native species.

  12. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    Science.gov (United States)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  13. Modelling of the estimated contributions of different sub-watersheds and sources to phosphorous export and loading from the Dongting Lake watershed, China.

    Science.gov (United States)

    Hou, Ying; Chen, Weiping; Liao, Yuehua; Luo, Yueping

    2017-11-03

    Considerable growth in the economy and population of the Dongting Lake watershed in Southern China has increased phosphorus loading to the lake and resulted in a growing risk of lake eutrophication. This study aimed to reveal the spatial pattern and sources of phosphorus export and loading from the watershed. We applied an export coefficient model and the Dillon-Rigler model to quantify contributions of different sub-watersheds and sources to the total phosphorus (TP) export and loading in 2010. Together, the upper and lower reaches of the Xiang River watershed and the Dongting Lake Area contributed 60.9% of the TP exported from the entire watershed. Livestock husbandry appeared to be the largest anthropogenic source of TP, contributing more than 50% of the TP exported from each secondary sub-watersheds. The actual TP loading to the lake in 2010 was 62.9% more than the permissible annual TP loading for compliance with the Class III water quality standard for lakes. Three primary sub-watersheds-the Dongting Lake Area, the Xiang River, and the Yuan River watersheds-contributed 91.2% of the total TP loading. As the largest contributor among all sources, livestock husbandry contributed nearly 50% of the TP loading from the Dongting Lake Area and more than 60% from each of the other primary sub-watersheds. This study provides a methodology to identify the key sources and locations of TP export and loading in large lake watersheds. The study can provide a reference for the decision-making for controlling P pollution in the Dongting Lake watershed.

  14. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  15. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  16. Workshop to transfer VELMA watershed model results to Washington state tribes and state agencies engaged in watershed restoration and salmon recovery planning

    Science.gov (United States)

    An EPA Western Ecology Division (WED) watershed modeling team has been working with the Snoqualmie Tribe Environmental and Natural Resources Department to develop VELMA watershed model simulations of the effects of historical and future restoration and land use practices on strea...

  17. Development of Land Segmentation, Stream-Reach Network, and Watersheds in Support of Hydrological Simulation Program-Fortran (HSPF) Modeling, Chesapeake Bay Watershed, and Adjacent Parts of Maryland, Delaware, and Virginia

    Science.gov (United States)

    Martucci, Sarah K.; Krstolic, Jennifer L.; Raffensperger, Jeff P.; Hopkins, Katherine J.

    2006-01-01

    The U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program Office, Interstate Commission on the Potomac River Basin, Maryland Department of the Environment, Virginia Department of Conservation and Recreation, Virginia Department of Environmental Quality, and the University of Maryland Center for Environmental Science are collaborating on the Chesapeake Bay Regional Watershed Model, using Hydrological Simulation Program - FORTRAN to simulate streamflow and concentrations and loads of nutrients and sediment to Chesapeake Bay. The model will be used to provide information for resource managers. In order to establish a framework for model simulation, digital spatial datasets were created defining the discretization of the model region (including the Chesapeake Bay watershed, as well as the adjacent parts of Maryland, Delaware, and Virginia outside the watershed) into land segments, a stream-reach network, and associated watersheds. Land segmentation was based on county boundaries represented by a 1:100,000-scale digital dataset. Fifty of the 254 counties and incorporated cities in the model region were divided on the basis of physiography and topography, producing a total of 309 land segments. The stream-reach network for the Chesapeake Bay watershed part of the model region was based on the U.S. Geological Survey Chesapeake Bay SPARROW (SPAtially Referenced Regressions On Watershed attributes) model stream-reach network. Because that network was created only for the Chesapeake Bay watershed, the rest of the model region uses a 1:500,000-scale stream-reach network. Streams with mean annual streamflow of less than 100 cubic feet per second were excluded based on attributes from the dataset. Additional changes were made to enhance the data and to allow for inclusion of stream reaches with monitoring data that were not part of the original network. Thirty-meter-resolution Digital Elevation Model data were used to delineate watersheds for each

  18. A Customizable Dashboarding System for Watershed Model Interpretation

    Science.gov (United States)

    Easton, Z. M.; Collick, A.; Wagena, M. B.; Sommerlot, A.; Fuka, D.

    2017-12-01

    Stakeholders, including policymakers, agricultural water managers, and small farm managers, can benefit from the outputs of commonly run watershed models. However, the information that each stakeholder needs is be different. While policy makers are often interested in the broader effects that small farm management may have on a watershed during extreme events or over long periods, farmers are often interested in field specific effects at daily or seasonal period. To provide stakeholders with the ability to analyze and interpret data from large scale watershed models, we have developed a framework that can support custom exploration of the large datasets produced. For the volume of data produced by these models, SQL-based data queries are not efficient; thus, we employ a "Not Only SQL" (NO-SQL) query language, which allows data to scale in both quantity and query volumes. We demonstrate a stakeholder customizable Dashboarding system that allows stakeholders to create custom `dashboards' to summarize model output specific to their needs. Dashboarding is a dynamic and purpose-based visual interface needed to display one-to-many database linkages so that the information can be presented for a single time period or dynamically monitored over time and allows a user to quickly define focus areas of interest for their analysis. We utilize a single watershed model that is run four times daily with a combined set of climate projections, which are then indexed, and added to an ElasticSearch datastore. ElasticSearch is a NO-SQL search engine built on top of Apache Lucene, a free and open-source information retrieval software library. Aligned with the ElasticSearch project is the open source visualization and analysis system, Kibana, which we utilize for custom stakeholder dashboarding. The dashboards create a visualization of the stakeholder selected analysis and can be extended to recommend robust strategies to support decision-making.

  19. Land cover mapping and change detection in urban watersheds using QuickBird high spatial resolution satellite imagery

    Science.gov (United States)

    Hester, David Barry

    The objective of this research was to develop methods for urban land cover analysis using QuickBird high spatial resolution satellite imagery. Such imagery has emerged as a rich commercially available remote sensing data source and has enjoyed high-profile broadcast news media and Internet applications, but methods of quantitative analysis have not been thoroughly explored. The research described here consists of three studies focused on the use of pan-sharpened 61-cm spatial resolution QuickBird imagery, the spatial resolution of which is the highest of any commercial satellite. In the first study, a per-pixel land cover classification method is developed for use with this imagery. This method utilizes a per-pixel classification approach to generate an accurate six-category high spatial resolution land cover map of a developing suburban area. The primary objective of the second study was to develop an accurate land cover change detection method for use with QuickBird land cover products. This work presents an efficient fuzzy framework for transforming map uncertainty into accurate and meaningful high spatial resolution land cover change analysis. The third study described here is an urban planning application of the high spatial resolution QuickBird-based land cover product developed in the first study. This work both meaningfully connects this exciting new data source to urban watershed management and makes an important empirical contribution to the study of suburban watersheds. Its analysis of residential roads and driveways as well as retail parking lots sheds valuable light on the impact of transportation-related land use on the suburban landscape. Broadly, these studies provide new methods for using state-of-the-art remote sensing data to inform land cover analysis and urban planning. These methods are widely adaptable and produce land cover products that are both meaningful and accurate. As additional high spatial resolution satellites are launched and the

  20. Innovative Stormwater Quality Tools by SARA for Holistic Watershed Master Planning

    Science.gov (United States)

    Thomas, S. M.; Su, Y. C.; Hummel, P. R.

    2016-12-01

    Stormwater management strategies such as Best Management Practices (BMP) and Low-Impact Development (LID) have increasingly gained attention in urban runoff control, becoming vital to holistic watershed master plans. These strategies can help address existing water quality impairments and support regulatory compliance, as well as guide planning and management of future development when substantial population growth and urbanization is projected to occur. However, past efforts have been limited to qualitative planning due to the lack of suitable tools to conduct quantitative assessment. The San Antonio River Authority (SARA), with the assistance of Lockwood, Andrews & Newnam, Inc. (LAN) and AQUA TERRA Consultants (a division of RESPEC), developed comprehensive hydrodynamic and water quality models using the Hydrological Simulation Program-FORTRAN (HSPF) for several urban watersheds in the San Antonio River Basin. These models enabled watershed management to look at water quality issues on a more refined temporal and spatial scale than the limited monitoring data. They also provided a means to locate and quantify potential water quality impairments and evaluate the effects of mitigation measures. To support the models, a suite of software tools were developed. including: 1) SARA Timeseries Utility Tool for managing and processing of large model timeseries files, 2) SARA Load Reduction Tool to determine load reductions needed to achieve screening levels for each modeled constituent on a sub-basin basis, and 3) SARA Enhanced BMP Tool to determine the optimal combination of BMP types and units needed to achieve the required load reductions. Using these SARA models and tools, water quality agencies and stormwater professionals can determine the optimal combinations of BMP/LID to accomplish their goals and save substantial stormwater infrastructure and management costs. The tools can also help regulators and permittees evaluate the feasibility of achieving compliance

  1. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  2. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    Science.gov (United States)

    Walker, J.F.

    1993-01-01

    Although considerable effort has been expended during the past two decades to control nonpoint-source contamination of streams and lakes in urban and rural watersheds, little has been published on the effectiveness of various management practices at the watershed scale. This report presents a discussion of several parametric and nonparametric statistical techniques for detecting changes in water-chemistry data. The need for reducing the influence of natural variability was recognized and accomplished through the use of regression equations. Traditional analyses have focused on fixed-frequency instantaneous concentration data; this report describes the use of storm load data as an alternative.

  3. Relation of watershed setting and stream nutrient yields at selected sites in central and eastern North Carolina, 1997-2008

    Science.gov (United States)

    Harden, Stephen L.; Cuffney, Thomas F.; Terziotti, Silvia; Kolb, Katharine R.

    2013-01-01

    than 10 percent point-source flow contributions to streamflow had higher yields relative to undeveloped watersheds (having less than 10 and 15 percent developed and agricultural land uses, respectively) and watersheds with relatively low agricultural land use (between 15 and 30 percent). The statistical tests further indicated that the median annual yields for total P were statistically higher for watersheds with high agricultural land use (greater than 30 percent) compared to the undeveloped watersheds and watersheds with low agricultural land use. The total P yields also were higher for watersheds with low urban land use (between 10 and 30 percent developed land) compared to the undeveloped watersheds. The study data indicate that grouping and examining stream nutrient yields based on the land-use classifications used in this report can be useful for characterizing relations between watershed settings and nutrient yields in streams located throughout central and eastern North Carolina. Compiled study data also were analyzed with four regression tree models as a means of determining which watershed environmental variables or combination of variables result in basins that are likely to have high or low nutrient yields. The regression tree analyses indicated that some of the environmental variables examined in this study were useful for predicting yields of nitrate, total N, and total P. When the median annual nutrient yields for all 48 sites were evaluated as a group (Model 1), annual point-source flow yields had the greatest influence on nitrate and total N yields observed in streams, and annual streamflow yields had the greatest influence on yields of total P. The Model 1 results indicated that watersheds with higher annual point-source flow yields had higher annual yields of nitrate and total N, and watersheds with higher annual streamflow yields had higher annual yields of total P. When sites with high point-source flows (greater than 10 percent of total streamflow

  4. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  5. Daily Streamflow Predictions in an Ungauged Watershed in Northern California Using the Precipitation-Runoff Modeling System (PRMS): Calibration Challenges when nearby Gauged Watersheds are Hydrologically Dissimilar

    Science.gov (United States)

    Dhakal, A. S.; Adera, S.

    2017-12-01

    Accurate daily streamflow prediction in ungauged watersheds with sparse information is challenging. The ability of a hydrologic model calibrated using nearby gauged watersheds to predict streamflow accurately depends on hydrologic similarities between the gauged and ungauged watersheds. This study examines daily streamflow predictions using the Precipitation-Runoff Modeling System (PRMS) for the largely ungauged San Antonio Creek watershed, a 96 km2 sub-watershed of the Alameda Creek watershed in Northern California. The process-based PRMS model is being used to improve the accuracy of recent San Antonio Creek streamflow predictions generated by two empirical methods. Although San Antonio Creek watershed is largely ungauged, daily streamflow data exists for hydrologic years (HY) 1913 - 1930. PRMS was calibrated for HY 1913 - 1930 using streamflow data, modern-day land use and PRISM precipitation distribution, and gauged precipitation and temperature data from a nearby watershed. The PRMS model was then used to generate daily streamflows for HY 1996-2013, during which the watershed was ungauged, and hydrologic responses were compared to two nearby gauged sub-watersheds of Alameda Creek. Finally, the PRMS-predicted daily flows between HY 1996-2013 were compared to the two empirically-predicted streamflow time series: (1) the reservoir mass balance method and (2) correlation of historical streamflows from 80 - 100 years ago between San Antonio Creek and a nearby sub-watershed located in Alameda Creek. While the mass balance approach using reservoir storage and transfers is helpful for estimating inflows to the reservoir, large discrepancies in daily streamflow estimation can arise. Similarly, correlation-based predicted daily flows which rely on a relationship from flows collected 80-100 years ago may not represent current watershed hydrologic conditions. This study aims to develop a method of streamflow prediction in the San Antonio Creek watershed by examining PRMS

  6. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model

    OpenAIRE

    Shimaa M. Ghoraba

    2015-01-01

    Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT). It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the manage...

  7. Effect and relevance of the artificial drainage system when assessing the hydrologic impact of the imperviousness distribution within the watershed

    Science.gov (United States)

    Thenoux, M.; Gironas, J. A.; Mejia, A.

    2013-12-01

    Cities and urban growth have relevant environmental and social impacts, which could eventually be enhanced or reduced during the urban planning process. From the point of view of hydrology, impermeability and natural soil compaction are one of the main problems that urbanization brings to watershed. Previous studies demonstrate and quantify the impacts of the distribution of imperviousness in a watershed, both on runoff volumes and flow, and the quality and integrity of streams and receiving bodies. Moreover, some studies have investigated the optimal distribution of imperviousness, based on simulating different scenarios of land use change and its effects on runoff, mostly at the outlet of the watershed. However, these studies typically do not address the impact of artificial drainage system associated with the imperviousness scenarios, despite it is known that storm sewer coverage affects the flow accumulation and generation of flow hydrographs. This study seeks to quantify the effects and relevance of the artificial system when it comes to assess the hydrological impacts of the spatial distribution of imperviousness and to determine the characteristics of this influence. For this purpose, an existing model to generate imperviousness distribution scenarios is coupled with a model developed to automatically generate artificial drainage networks. These models are applied to a natural watershed to generate a variety of imperviousness and storm sewer layout scenarios, which are evaluate with a morphoclimatic instantaneous unit hydrograph model. We first tested the ability of this approach to represent the joint effects of imperviousness (i.e. level and distribution) and storm sewer coverage. We then quantified the effects of these variables on the hydrological response, considering also different return period in order to take into account the variability of the precipitation regime. Overall, we show that the layout and spatial coverage of the storm sewer system

  8. Forecasting urban growth across the United States-Mexico border

    Science.gov (United States)

    Norman, L.M.; Feller, M.; Phillip, Guertin D.

    2009-01-01

    The sister-city area of Nogales, Arizona, and Nogales, Sonora, Mexico, is known collectively as Ambos (both) Nogales. This area was historically one city and was administratively divided by the Gadsden Purchase in 1853. These arid-lands have limited and sensitive natural resources. Environmental planning can support sustainable development to accommodate the predicted influx of population. The objective of this research is to quantify the amount of predicted urban growth for the Ambos Nogales watershed to support future planning for sustainable development. Two modeling regimes are explored. Our goal is to identify possible growth patterns associated with the twin-city area as a whole and with the two cities modeled as separate entities. We analyzed the cross-border watershed using regression analysis from satellite images from 1975, 1983, 1996, and 2002 and created urban area classifications. We used these classifications as input to the urban growth model, SLEUTH, to simulate likely patterns of development and define projected conversion probabilities. Model results indicate that the two cities are undergoing very different patterns of change and identify locations of expected growth based on historical development. Growth in Nogales, Arizona is stagnant while the urban area in Nogales, Sonora is exploding. This paper demonstrates an application that portrays how future binational urban growth could develop and affect the environment. This research also provides locations of potential growth for use in city planning.

  9. Modelling and assessment of urban flood hazards based on rainfall intensity-duration-frequency curves reformation

    OpenAIRE

    Ghazavi, Reza; Moafi Rabori, Ali; Ahadnejad Reveshty, Mohsen

    2016-01-01

    Estimate design storm based on rainfall intensity–duration–frequency (IDF) curves is an important parameter for hydrologic planning of urban areas. The main aim of this study was to estimate rainfall intensities of Zanjan city watershed based on overall relationship of rainfall IDF curves and appropriate model of hourly rainfall estimation (Sherman method, Ghahreman and Abkhezr method). Hydrologic and hydraulic impacts of rainfall IDF curves change in flood properties was evaluated via Stormw...

  10. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  11. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  12. Modeling of phosphorus fluxes produced by wild fires at watershed scales.

    Science.gov (United States)

    Matyjasik, M.; Hernandez, M.; Shaw, N.; Baker, M.; Fowles, M. T.; Cisney, T. A.; Jex, A. P.; Moisen, G.

    2017-12-01

    River runoff is one of the controlling processes in the terrestrial phosphorus cycle. Phosphorus is often a limiting factor in fresh water. One of the factors that has not been studied and modeled in detail is phosporus flux produced from forest wild fires. Phosphate released by weathering is quickly absorbed in soils. Forest wild fires expose barren soils to intensive erosion, thus releasing relatively large fluxes of phosphorus. Measurements from three control burn sites were used to correlate erosion with phosphorus fluxes. These results were used to model phosphorus fluxes from burned watersheds during a five year long period after fires occurred. Erosion in our model is simulated using a combination of two models: the WEPP (USDA Water Erosion Prediction Project) and the GeoWEPP (GIS-based Water Erosion Prediction Project). Erosion produced from forest disturbances is predicted for any watershed using hydrologic, soil, and meteorological data unique to the individual watersheds or individual slopes. The erosion results are modified for different textural soil classes and slope angles to model fluxes of phosphorus. The results of these models are calibrated using measured concentrations of phosphorus for three watersheds located in the Interior Western United States. The results will help the United States Forest Service manage phosporus fluxes in national forests.

  13. Modeling Mitigation Activities in North Carolina Watersheds

    Science.gov (United States)

    Garcia, A. M.

    2017-12-01

    Nutrient enrichment and excessive sediment loadings have contributed to the degradation of rivers, lakes and estuaries in North Carolina. The North Carolina Department of Environmental Quality (NCDEQ) has implemented several basin-wide nutrient and sediment management strategies, yet gaps remain in understanding the impact of these strategies given the complexities in quantifying the processes that govern the transport of nutrient and sediment. In particular, improved assessment of the status of nutrient and sediment loadings to lakes and estuaries throughout the state is needed, including characterizing their sources and describing the relative contributions of different areas. The NCDEQ Division of Mitigation Services (DMS) uses watershed planning to identify and prioritize the best locations to implement stream, wetland, and riparian-buffer restoration to improve water quality. To support better decision-making for watershed restoration activities we are developing a SPARROW (SPAtially Referenced Regressions On Watershed attributes) model framework specifically for North Carolina. The SPARROW analysis (developed by the U.S. Geological Survey) relates water-quality monitoring data to better understand the effects of human activities and natural processes on surface-water quality. The core of the model consists of using a nonlinear-regression equation to describe the non-conservative transport of contaminants from point and nonpoint sources on land to rivers, lakes and estuaries through the stream and river network. In this presentation, preliminary total Nitrogen, total Phosphorus, and Total Suspended Solids (TSS) NC-SPARROW models are described that illustrate the SPARROW modeling framework incorporating specific restoration datasets and activity metrics, such as extent of riparian buffer and easements.

  14. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Directory of Open Access Journals (Sweden)

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern

  15. Integrated research - water quality, sociological, economic, and modeling - in a regulated watershed: Jordan Lake, NC

    Science.gov (United States)

    Deanna Osmond; Mazdak Arabi; Caela O' Connell; Dana Hoag; Dan Line; Marzieh Motallebi; Ali Tasdighi

    2016-01-01

    Jordan Lake watershed is regulated by state rules in order to reduce nutrient loading from point and both agricultural and urban nonpoint sources. The agricultural community is expected to reduce nutrient loading by specific amounts that range from 35 - 0 percent nitrogen, and 5 - 0 percent phosphorus.

  16. Evaluation of low impact development approach for mitigating flood inundation at a watershed scale in China.

    Science.gov (United States)

    Hu, Maochuan; Sayama, Takahiro; Zhang, Xingqi; Tanaka, Kenji; Takara, Kaoru; Yang, Hong

    2017-05-15

    Low impact development (LID) has attracted growing attention as an important approach for urban flood mitigation. Most studies evaluating LID performance for mitigating floods focus on the changes of peak flow and runoff volume. This paper assessed the performance of LID practices for mitigating flood inundation hazards as retrofitting technologies in an urbanized watershed in Nanjing, China. The findings indicate that LID practices are effective for flood inundation mitigation at the watershed scale, and especially for reducing inundated areas with a high flood hazard risk. Various scenarios of LID implementation levels can reduce total inundated areas by 2%-17% and areas with a high flood hazard level by 6%-80%. Permeable pavement shows better performance than rainwater harvesting against mitigating urban waterlogging. The most efficient scenario is combined rainwater harvesting on rooftops with a cistern capacity of 78.5 mm and permeable pavement installed on 75% of non-busy roads and other impervious surfaces. Inundation modeling is an effective approach to obtaining the information necessary to guide decision-making for designing LID practices at watershed scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    Science.gov (United States)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-01-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  18. Evaluation of antibiotic resistance analysis and ribotyping for identification of faecal pollution sources in an urban watershed.

    Science.gov (United States)

    Moore, D F; Harwood, V J; Ferguson, D M; Lukasik, J; Hannah, P; Getrich, M; Brownell, M

    2005-01-01

    The accuracy of ribotyping and antibiotic resistance analysis (ARA) for prediction of sources of faecal bacterial pollution in an urban southern California watershed was determined using blinded proficiency samples. Antibiotic resistance patterns and HindIII ribotypes of Escherichia coli (n = 997), and antibiotic resistance patterns of Enterococcus spp. (n = 3657) were used to construct libraries from sewage samples and from faeces of seagulls, dogs, cats, horses and humans within the watershed. The three libraries were analysed to determine the accuracy of host source prediction. The internal accuracy of the libraries (average rate of correct classification, ARCC) with six source categories was 44% for E. coli ARA, 69% for E. coli ribotyping and 48% for Enterococcus ARA. Each library's predictive ability towards isolates that were not part of the library was determined using a blinded proficiency panel of 97 E. coli and 99 Enterococcus isolates. Twenty-eight per cent (by ARA) and 27% (by ribotyping) of the E. coli proficiency isolates were assigned to the correct source category. Sixteen per cent were assigned to the same source category by both methods, and 6% were assigned to the correct category. Addition of 2480 E. coli isolates to the ARA library did not improve the ARCC or proficiency accuracy. In contrast, 45% of Enterococcus proficiency isolates were correctly identified by ARA. None of the methods performed well enough on the proficiency panel to be judged ready for application to environmental samples. Most microbial source tracking (MST) studies published have demonstrated library accuracy solely by the internal ARCC measurement. Low rates of correct classification for E. coli proficiency isolates compared with the ARCCs of the libraries indicate that testing of bacteria from samples that are not represented in the library, such as blinded proficiency samples, is necessary to accurately measure predictive ability. The library-based MST methods used in

  19. Gender sensitive education in watershed management to support environmental friendly city

    Science.gov (United States)

    Asteria, D.; Budidarmono; Herdiansyah, H.; Ni’mah, N. L.

    2018-03-01

    This study is about gender-sensitive perspective in watershed management education program as one of capacity building for citizens in watershed management with community-based strategy to support environmental friendly cities and security for women from flood disasters. Involving women and increasing women’s active participation in sustainable watershed management is essential in urban area. In global warming and climate change situations, city management should be integrated between social aspect and environmental planning. This study used mix method (concurrent embedded type, with quantitative as primary method) with research type is descriptive-explanatory. The result of this study is education strategies with gender approaches and affirmative action through emancipation approach and local knowledge from women’s experiences can increase women’s participation. Women’s empowerment efforts need integrated intervention and collaboration from government, NGO, and other stakeholders to optimize women’s role in watershed management for support environmental friendly city. The implication of this study is an educational strategy on watershed conservation with gender perspective to offer social engineering alternatives for decision makers to policy of sustainable watershed management in urban area related to flood mitigation efforts.

  20. Distributed modeling of radiocesium washoff from the experimental watershed plots of the Fukushima fallout zone

    Science.gov (United States)

    Kivva, Sergei; Zheleznyak, Mark; Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Wakiyama Yoshifumi Wakiyama, Yoshifumi

    2015-04-01

    The distributed hydrological "rainfall- runoff" models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed models of the radionuclide washoff from the watersheds. The field studies provided on the Chernobyl and Fukushima catchments provides a unique data sets for the comparative testing and improvements of the modeling tools for the watersheds located in the areas of the very different geographical and hydro-meteorological condition The set of USLE experimental plots has been established by CRIED, University of Tsukuba after the Fukushima accident to study soil erosion and 137Cs wash off from the watersheds (Onda et al, 2014). The distributed watershed models of surface and subsurface flow, sediment and radionuclide transport has been used to simulate the radionuclide transport in the basin Dnieper River, Ukraine and the watersheds of Prefecture Fuksuhima. DHSVM-R is extension of the distributed hydrological model DHSVM (Lettenmayer, Wigmosta et al, 1996-2014) by the including into it the module of the watershed radionuclide transport. DHSVM is a physically based, distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one-dimensional equations. The surface flow submodel of DHSMV has been modified: four-directions schematization for the model's cells has been replaced by the eight-directions scheme, more numerically efficient finite -differences scheme was implemented. The new module of radionuclide wash-off from catchment and transport via stream network in soluble phase and on suspended sediments including bottom-water exchange processes was developed for DHSMV-R. DHSVM-R was implemented recently within Swedish- Ukrainian ENSURE project for the modeling of 234U wash-off from the

  1. Change detection of runoff-urban growth relationship in urbanised watershed

    International Nuclear Information System (INIS)

    Abas, Aisya Azizah; Hashim, Mazlan

    2014-01-01

    Urban growth has negative environmental impacts that create water-based disasters such as flash floods and storm runoff causing billions of dollars worth of damage each year. Due to serious flash floods in urbanised areas of Malaysia, water resource management is a vital issue. This paper reports on a study that has been carried out using remote sensing techniques and hydrological modelling for examining the spatial patterns changes of urban areas and its impacts on surface runoff. The estimation of surface runoff based on the Soil Conservation Service Curve Number (SCS CN) method was performed by integrating both remote sensing and Geographic Information System (GIS) techniques. Remote sensing is a data sources for monitoring urban growth by quantifying the changes of urban area and its environmental impact are then analysed by using a GIS-based hydrological model. By linking the integrated approach of remote sensing and GIS, the relationship of runoff with urban expansion are further examined. Hence, the changes in runoff due to urbanisation are analysed. This methodology is applied to the central region of Malaysia in Kuala Lumpur, where rapid urban growth has occurred over the last decade. The results showed that there was a significant between spatial patterns of urban growth and estimated runoff depth. The increase in runoff from year 2000, 2006 and 2010 are estimated about five percent

  2. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Science.gov (United States)

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  3. Projecting land-use and land cover change in a subtropical urban watershed

    Science.gov (United States)

    John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu

    2018-01-01

    Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...

  4. Urbanization effects on the hydrology of the Atlanta, Georgia (USA)

    Science.gov (United States)

    Peters, N.E.; Rose, S.

    2001-01-01

    For the period from 1958 to 1996, streamflow and rainfall characteristics of a highly urbanized watershed were compared with less-urbanized and non-urbanized watersheds in the vicinity of Atlanta, Georgia (USA). Water levels in several wells completed in surficial and crystalline-rock aquifers also were evaluated. Annual runoff coefficients (runoff as a fractional percentage of precipitation) ranged from 0.31 to 0.34 and were not significantly different for the urban stream (Peachtree Creek). Peak flows for the largest 25 stormflows at Peachtree Creek were 30% to 80% greater than peak flows for the other streams. A 2-day storm recession constant for Peachtree Creek was much larger, that is streamflow decreased more rapidly than for the other streams. Average low flow of Peachtree Creek was 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of storm water and the paving of groundwater recharge areas. The timing of groundwater level variations was similar annually in each well, reflecting the seasonal recharge. Although water level monitoring only began during the late 1970s and early 1980s for the two urban wells, water levels in these wells have been declining compared to non-urban wells since then. The water level decline is attributed to decreased groundwater recharge in the urban watersheds due to increased imperviousness and related rapid storm runoff. Likewise, the increased urbanization from the 1960s to the 1990s of the Peachtree Creek watershed produced more runoff than urbanization in the less urbanized Big Creek and Sweetwater Creek watersheds.

  5. Modeling conservation practices in APEX: From the field to the watershed

    Science.gov (United States)

    The evaluation of USDA conservation programs is required as part of the Conservation Effects Assessment Project (CEAP). The Agricultural Policy/Environmental eXtender (APEX) model was applied to the St. Joseph River Watershed, one of CEAP’s benchmark watersheds. Using a previously calibrated and val...

  6. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  7. Impacts of land-use change on the water cycle of urban areas within the Upper Great Lakes drainage basin

    Science.gov (United States)

    Bowling, L. C.; Cherkauer, K. A.; Pijanowski, B. C.; Niyogi, D.

    2006-12-01

    Urbanization is altering the global landscape at an unprecedented rate. This form of land cover/land-use change (LCLUC) can significantly reduce infiltration and runoff response times, and alter heat and water vapor fluxes, which can further alter surface-forced regional circulation patterns and modulate precipitation volume and intensity. Spatial patterns of future LCLUC are projected using the Land Transformation Model (LTM), enhanced to incorporate dynamic landcover, economics and policy using Bayesian Belief Networks (LTM- BBN). Different land use scenarios predicted by the LTM-BBN as well as a pre-development scenario are represented through the Unified Noah Land Surface Model (LSM) with an enhanced urban canopy model, embedded in the Weather Research and Forecasting (WRF) model. The coupled WRF-Noah LSM model will be used to investigate the connections between land-use, hydrometeorology and the atmosphere, through analysis of water and energy balances over several urbanized watersheds within the Upper Great Lakes region. Preliminary results focus on a single watershed, the White River in Indiana, which includes the city of Indianapolis. Coupled WRF-Noah simulations made using pre and post-development land use maps provide a 7 year climatology of convective storm morphology around the urban center. Precipitation and other meteorological variables from the WRF-Noah simulations are used to drive simulations of the White River watershed using the Variable Infiltration Capacity (VIC) macroscale hydrologic model. The VIC model has been modified to represent urban areas and has been calibrated for modern flow regimes in the White River watershed. Pre- and post-development VIC simulations are used to assess the impact of Indianapolis area infiltration changes. Finally, VIC model simulations utilizing projected land use change from 2005 through 2040 for the Indianapolis metropolitan area explore the magnitude of future hydrologic change, especially peak flow response

  8. Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed.

    Science.gov (United States)

    Kirs, Marek; Kisand, Veljo; Wong, Mayee; Caffaro-Filho, Roberto A; Moravcik, Philip; Harwood, Valerie J; Yoneyama, Bunnie; Fujioka, Roger S

    2017-06-01

    Indicator bacteria, which are conventionally used to evaluate recreational water quality, can originate from various non-human enteric and extra-enteric sources, hence they may not be indicative of human health risk nor do they provide information on the sources of contamination. In this study we utilized traditional (enterococci and Escherichia coli) and alternative (Clostridium perfringens) indicator bacteria, F + -specific coliphage, molecular markers for microorganisms associated with human sewage (human-associated Bacteroides and polyomaviruses), and microbial community analysis tools (16S rRNA gene fragment amplicon sequencing), to identify and evaluate human sewage-related impact in the Manoa watershed in Honolulu, Hawaii. Elevated concentrations of enterococci (geometric mean ranging from 1604 to 2575 CFU 100 mL -1 ) and C. perfringens (45-77 CFU 100 mL -1 ) indicated impairment of the urbanized section of the stream, while indicator bacteria concentrations decreased downstream in the tidally influenced Ala Wai Canal. The threshold values triggering water quality violation notifications in Hawaii were exceeded in 33.3-75.0% of samples collected at sites in the urbanized section of Manoa Stream, but were not exceeded in any of the samples collected at an upstream site located in a forested area. Correlation between indicator bacteria concentrations and rainfall amounts was weak to moderate but significant (E. coli R = 0.251, P = 0.009; enterococci R = 0.369, P watershed, it was lower in the impaired section. Leaking sewer systems and illegal cross-connections are implicated in the impairment of the watershed, hence both the sewer and the storm water lines should be routinely inspected. Collectively, our data suggest that information derived from the analysis of microbial communities complements current marker-based microbial source tracking techniques and environmental monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Modeling of water erosion by seagis model. Case Watershed Dam Siliana

    International Nuclear Information System (INIS)

    Chabaan, Chayma

    2016-01-01

    water erosion is a complicated phenomenon, largely obvious in north Africa, especially in the watershed of Siliana, where natural factors and the aggressiveness of the environment do affect the loss of soil there, which characterized by a form so uneven with attitudes that vary from 700 to 1350 m rigid going from 5 to 10 pour cent and sometimes more. Moreover, it has drained with a thick hydrographic network. Generally, water erosion depends of the importance and the frequent agent factor of this erosion ( rain and streaming), soil type, the topography and the occupation of soil. The usage of mathematic models has to take on consideration of these parameters. The main objective of this work consist in developing put into affect a geomatic approach of stimulation which aims at estimate in time and space, the impact of the climate, and the soil occupation on the water erosion and the transportation of the sediments diversions into sliding of a small watershed. Locally, this approach allows evaluating the parameters of water erosion of SEAGIS model (USLE/RUSLE) to an extent that is identifies and drowing the emergency areas of intervention in the watershed of Siliana.

  10. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  11. Morphological changes and hydrodynamic effects of the urbanization process of river Tamanduateí watershed – Metropolitan area of São Paulo

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Moroz-Caccia Gouveia

    2017-08-01

    Full Text Available Relying on Anthropogenic and Historical Geomorphology, this paper presents methodology applied to the River Tamanduateí watershed for qualitative and quantitative analysis of changes resulting from the urbanization process in physical systems, from the geomorphological cartography. The approach has as its main premise consider the human actions into the landscape as geomorphological nature of actions whose effects can be measured using indicators and benchmarks. Among other analysis, the identification of the original or pre-urban characteristics and anthropogenic changes allowed us to estimate the loss of the water storage capacity due to the suppression of river plains and changes in hydrodynamic balance in the areas of hydrographic basin.

  12. Quantifying the Influence of Urbanization on a Coastal Floodplain

    Science.gov (United States)

    Sebastian, A.; Juan, A.; Bedient, P. B.

    2016-12-01

    The U.S. Gulf Coast is the fastest growing region in the United States; between 1960 and 2010, the number of housing units along the Gulf of Mexico increased by 246%, vastly outpacing growth in other parts of the country (NOAA 2013). Numerous studies have shown that increases in impervious surface associated with urbanization reduce infiltration and increase surface runoff. While empirical evidence suggests that changes in land use are leading to increased flood damage in overland areas, earlier studies have largely focused on the impacts of urbanization on surface runoff and watershed hydrology, rather than quantifying its influence on the spatial extent of flooding. In this study, we conduct a longitudinal assessment of the evolution of flood risk since 1970 in an urbanizing coastal watershed. Utilizing the distributed hydrologic model, Vflo®, in combination with the hydraulic model, HEC-RAS, we quantify the impact of localized land use/land cover (LULC) change on the spatial extent of flooding in the watershed and the underlying flood hazard structure. The results demonstrate that increases in impervious cover between 1970 and 2010 (34%) and 2010 and 2040 (18%) increase the size of the floodplain by 26 and 17%, respectively. Furthermore, the results indicate that the depth and frequency of flooding in neighborhoods within the 1% floodplain have increased substantially (see attached figure). Finally, this analysis provides evidence that outdated FEMA floodplain maps could be underestimating the extent of the floodplain by upwards of 25%, depending on the rate of urbanization in the watershed; and, that by incorporating physics-based distributed hydrologic models into floodplain studies, floodplain maps can be easily updated to reflect the most recent LULC information available. The methods presented in this study have important implications for the development of mitigation strategies in coastal areas, such as deterring future development in flood prone areas

  13. Assessment of terrain slope influence in SWAT modeling of Andean watersheds

    Science.gov (United States)

    Yacoub, C.; Pérez-Foguet, A.

    2009-04-01

    Hydrological processes in the Andean Region are difficult to model. Large range of altitudes involved (from over 4000 meters above sea level, masl, to zero) indicates the high variability of rainfall, temperature and other climate variables. Strong runoff and extreme events as landslides and floods are the consequence of high slopes of terrain, especially in the upper part of the basins. Strong seasonality of rain and complex ecosystems (vulnerable to climate changes and anthropogenic activities) helps these processes. Present study focuses in a particular watershed from Peruvian Andes, the Jequetepeque River. The distributed watershed simulation model, Soil and Water Assessment Tool (SWAT) is applied to model run-off and sediments transport through the basin with data from 1997 to 2006. Specifically, the study focuses in the assessment of the influence of considering terrain slope variation in the definition of Hydrographical Response Units within SWAT. The Jequetepeque watershed (4 372.5 km2) is located in the north part of Peru. River flows east to west, to the Pacific Ocean. Annual average precipitation ranges from 0 to 1100 mm and altitude from 0 to 4188 masl. The "Gallito Ciego" reservoir (400 masl) separates upper-middle part from lower part of the watershed. It stores water for supplying the people from the big cities on the coast and for extensive agriculture uses. Upper-middle part of the watershed covers 3564.8 km2. It ranges from 400 to 4188 masl in no more that 80 km, with slopes up to 20%. Main activities are agricultural and livestock and mining and about 80% of the population are rural. Annual mean temperature drops from 25.4 °C at the reservoir to less than 4 °C in the upper part. Also the highest rainfall variability is found in the upper-middle part of the watershed. Erosion produced by extreme events like 1997/98 "el Niño" Phenomenon is silting the reservoir faster than expected. Moreover, anthropogenic activities like agriculture and

  14. Nitrogen cycling process rates across urban ecosystems.

    Science.gov (United States)

    Reisinger, Alexander J; Groffman, Peter M; Rosi-Marshall, Emma J

    2016-09-21

    Nitrogen (N) pollution of freshwater, estuarine, and marine ecosystems is widespread and has numerous environmental and economic impacts. A portion of this excess N comes from urban watersheds comprised of natural and engineered ecosystems which can alter downstream N export. Studies of urban N cycling have focused on either specific ecosystems or on watershed-scale mass balances. Comparisons of specific N transformations across ecosystems are required to contextualize rates from individual studies. Here we reviewed urban N cycling in terrestrial, aquatic, and engineered ecosystems, and compared N processing in these urban ecosystem types to native reference ecosystems. We found that net N mineralization and net nitrification rates were enhanced in urban forests and riparian zones relative to reference ecosystems. Denitrification was highly variable across urban ecosystem types, but no significant differences were found between urban and reference denitrification rates. When focusing on urban streams, ammonium uptake was more rapid than nitrate uptake in urban streams. Additionally, reduction of stormwater runoff coupled with potential decreases in N concentration suggests that green infrastructure may reduce downstream N export. Despite multiple environmental stressors in urban environments, ecosystems within urban watersheds can process and transform N at rates similar to or higher than reference ecosystems. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  16. Potential stream density in Mid-Atlantic US watersheds.

    Science.gov (United States)

    Elmore, Andrew J; Julian, Jason P; Guinn, Steven M; Fitzpatrick, Matthew C

    2013-01-01

    Stream network density exerts a strong influence on ecohydrologic processes in watersheds, yet existing stream maps fail to capture most headwater streams and therefore underestimate stream density. Furthermore, discrepancies between mapped and actual stream length vary between watersheds, confounding efforts to understand the impacts of land use on stream ecosystems. Here we report on research that predicts stream presence from coupled field observations of headwater stream channels and terrain variables that were calculated both locally and as an average across the watershed upstream of any location on the landscape. Our approach used maximum entropy modeling (MaxEnt), a robust method commonly implemented to model species distributions that requires information only on the presence of the entity of interest. In validation, the method correctly predicts the presence of 86% of all 10-m stream segments and errors are low (stream density and compare our results with the National Hydrography Dataset (NHD). We find that NHD underestimates stream density by up to 250%, with errors being greatest in the densely urbanized cities of Washington, DC and Baltimore, MD and in regions where the NHD has never been updated from its original, coarse-grain mapping. This work is the most ambitious attempt yet to map stream networks over a large region and will have lasting implications for modeling and conservation efforts.

  17. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  18. Modeling nutrient sources, transport and management strategies in a coastal watershed, Southeast China.

    Science.gov (United States)

    Zhou, Pei; Huang, Jinliang; Hong, Huasheng

    2018-01-01

    Integrated watershed management requires an analytical model capable of revealing the full range of impacts that would be caused by the uses and developments in the watershed. The SPAtially Referenced Regressions On Watershed Attributes (SPARROW) model was developed in this study to provide empirical estimates of the sources, transport of total nitrogen (TN) and total phosphorus (TP) and to develop nutrient management strategies in the Jiulong River Watershed, southeast China that has enormous influence on the region's ecological safety. We calibrated the model using data related to daily streamflow, monthly TN and TP concentrations in 2014 at 30 locations. The model produced R 2 values for TN with 0.95 and TP with 0.94. It was found that for the entire watershed, TN came from fertilizer application (43%), livestock breeding (39%) and sewage discharge (18%), while TP came from livestock breeding (46%), fertilizer application (46%), and industrial discharge (8%). Fifty-eight percent of the TN and 80% of the TP in upstream reaches are delivered to the outlets of North and West rivers. A scenario analysis with SPARROW was coupled to develop suitable management strategies. Results revealed that controlling nutrient sources was effective in improving water quality. Normally sharp reduction in nutrient sources is not operational feasible. Hence, it is recommended that preventing nutrient on land from entering into the river as a suitable strategy in watershed management. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effects of Urban Stormwater Infrastructure and Spatial Scale on Nutrient Export and Runoff from Semi-Arid Urban Catchments

    Science.gov (United States)

    Hale, R. L.; Turnbull, L.; Earl, S.; Grimm, N. B.

    2011-12-01

    There has been an abundance of literature on the effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs as well as hydrology. Less is known, however, about nutrient transport processes and processing in urban watersheds. Engineered drainage systems are likely to play a significant role in controlling the transport of water and nutrients downstream, and variability in these systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 12 watersheds ranging in scale from 5 to 17000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (density residential), but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or modified washes, and retention basins. At the outlet of each of these catchments we monitored rainfall and discharge, and sampled stormwater throughout runoff events for dissolved nitrogen (N), phosphorus (P), and organic carbon (oC). Urban stormwater infrastructure is characterized by a range of hydrologic connectivity. Piped watersheds are highly connected and runoff responds linearly to rainfall events, in contrast to watersheds drained with retention basins and washes, where runoff exhibits a nonlinear threshold response to rainfall events. Nutrient loads from piped watersheds scale linearly with total storm rainfall. Because of frequent flushing, nutrient concentrations from these sites are lower than from wash and retention basin drained sites and total nutrient loads exhibit supply limitation, e.g., nutrient loads are poorly predicted by storm rainfall and are strongly controlled by factors that determine the amount of nutrients stored within the watershed, such as antecedent dry days. In contrast, wash and retention basin-drained watersheds exhibit transport limitation. These watersheds flow less frequently than pipe

  20. Estimating erosion in a riverine watershed: Bayou Liberty-Tchefuncta River in Louisiana.

    Science.gov (United States)

    Martin, August; Gunter, James T; Regens, James L

    2003-01-01

    GOAL, SCOPE, BACKGROUND: Sheet erosion from agricultural, forest and urban lands may increase stream sediment loads as well as transport other pollutants that adversely affect water quality, reduce agricultural and forest production, and increase infrastructure maintenance costs. This study uses spatial analysis techniques and a numerical modeling approach to predict areas with the greatest sheet erosion potential given different soils disturbance scenarios. A Geographic Information System (GIS) and the Universal Soil Loss Equation (USLE) were used to estimate sheet erosion from 0.64 ha parcels of land within the watershed. The Soil Survey of St. Tammany Parish, Louisiana was digitized, required soil attributes entered into the GIS database, and slope factors determined for each 80 x 80 meter parcel in the watershed. The GIS/USLE model used series-specific erosion K factors, a rainfall factor of 89, and a GIS database of scenario-driven cropping and erosion control practice factors to estimate potential soil loss due to sheet erosion. A general trend of increased potential sheet erosion occurred for all land use categories (urban, agriculture/grasslands, forests) as soil disturbance increases from cropping, logging and construction activities. Modeling indicated that rapidly growing urban areas have the greatest potential for sheet erosion. Evergreen and mixed forests (production forest) had lower sheet erosion potentials; with deciduous forests (mostly riparian) having the least sheet erosion potential. Erosion estimates from construction activities may be overestimated because of the value chosen for the erosion control practice factor. This study illustrates the ease with which GIS can be integrated with the Universal Soil Loss Equation to identify areas with high sheet erosion potential for large scale management and policy decision making. The GIS/USLE modeling approach used in this study offers a quick and inexpensive tool for estimating sheet erosion within

  1. Flood hazards in an urbanizing watershed in Riyadh, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Hatim O. Sharif

    2016-03-01

    Full Text Available Riyadh, the capital of the Kingdom of Saudi Arabia, has experienced unusual levels of urbanization in the past few decades, making it one of the fastest growing cities in the world. This paper examines flood hazards in the rapidly urbanizing catchment of Al-Aysen in Riyadh. Remote sensing and geographic information system techniques were employed to obtain and prepare input data for hydrologic and hydraulic models, with the former based on the very popular curve number approach. Due to the limited nature of the rainfall data, observations from two rain gauges in the vicinity of the catchment were used to estimate design storms. The hydrologic model was run in a semi-distributed mode by dividing the catchment into many sub-catchments. The impact of urbanization on run-off volume and peak discharge resulting from different storms was investigated, with various urbanization scenarios simulated. Flood hazard zones and affected streets were also identified through hydrologic/hydraulic model simulation. The mismatch between administrative and catchment boundaries can create problems in flood risk management for similar cities since hydrologic processes and flood hazards are based on the hydrologic connectivity. Since flooding events impact the road network and create driving hazards, governmental decision-makers must take the necessary precautions to protect drivers in these situations.

  2. Modeled Watershed Runoff Associated with Variations in Precipitation Data with Implications for Contaminant Fluxes

    Science.gov (United States)

    Watershed-scale fate and transport models are important tools for estimating the sources, transformation, and transport of contaminants to surface water systems. Precipitation is one of the primary inputs to watershed biogeochemical models, influencing changes in the water budge...

  3. Analysis of sensitivity of simulated recharge to selected parameters for seven watersheds modeled using the precipitation-runoff modeling system

    Science.gov (United States)

    Ely, D. Matthew

    2006-01-01

    Recharge is a vital component of the ground-water budget and methods for estimating it range from extremely complex to relatively simple. The most commonly used techniques, however, are limited by the scale of application. One method that can be used to estimate ground-water recharge includes process-based models that compute distributed water budgets on a watershed scale. These models should be evaluated to determine which model parameters are the dominant controls in determining ground-water recharge. Seven existing watershed models from different humid regions of the United States were chosen to analyze the sensitivity of simulated recharge to model parameters. Parameter sensitivities were determined using a nonlinear regression computer program to generate a suite of diagnostic statistics. The statistics identify model parameters that have the greatest effect on simulated ground-water recharge and that compare and contrast the hydrologic system responses to those parameters. Simulated recharge in the Lost River and Big Creek watersheds in Washington State was sensitive to small changes in air temperature. The Hamden watershed model in west-central Minnesota was developed to investigate the relations that wetlands and other landscape features have with runoff processes. Excess soil moisture in the Hamden watershed simulation was preferentially routed to wetlands, instead of to the ground-water system, resulting in little sensitivity of any parameters to recharge. Simulated recharge in the North Fork Pheasant Branch watershed, Wisconsin, demonstrated the greatest sensitivity to parameters related to evapotranspiration. Three watersheds were simulated as part of the Model Parameter Estimation Experiment (MOPEX). Parameter sensitivities for the MOPEX watersheds, Amite River, Louisiana and Mississippi, English River, Iowa, and South Branch Potomac River, West Virginia, were similar and most sensitive to small changes in air temperature and a user-defined flow

  4. DEVELOP Chesapeake Bay Watershed Hydrology - UAV Sensor Web

    Science.gov (United States)

    Holley, S. D.; Baruah, A.

    2008-12-01

    The Chesapeake Bay is the largest estuary in the United States, with a watershed extending through six states and the nation's capital. Urbanization and agriculture practices have led to an excess runoff of nutrients and sediment into the bay. Nutrients and sediment loading stimulate the growth of algal blooms associated with various problems including localized dissolved oxygen deficiencies, toxic algal blooms and death of marine life. The Chesapeake Bay Program, among other stakeholder organizations, contributes greatly to the restoration efforts of the Chesapeake Bay. These stakeholders contribute in many ways such as monitoring the water quality, leading clean-up projects, and actively restoring native habitats. The first stage of the DEVELOP Chesapeake Bay Coastal Management project, relating to water quality, contributed to the restoration efforts by introducing NASA satellite-based water quality data products to the stakeholders as a complement to their current monitoring methods. The second stage, to be initiated in the fall 2008 internship term, will focus on the impacts of land cover variability within the Chesapeake Bay Watershed. Multiple student led discussions with members of the Land Cover team at the Chesapeake Bay Program Office in the DEVELOP GSFC 2008 summer term uncovered the need for remote sensing data for hydrological mapping in the watershed. The Chesapeake Bay Program expressed in repeated discussions on Land Cover mapping that significant portions of upper river areas, streams, and the land directly interfacing those waters are not accurately depicted in the watershed model. Without such hydrological mapping correlated with land cover data the model will not be useful in depicting source areas of nutrient loading which has an ecological and economic impact in and around the Chesapeake Bay. The fall 2008 DEVELOP team will examine the use of UAV flown sensors in connection with in-situ and Earth Observation satellite data. To maximize the

  5. Improving Baseline Model Assumptions: Evaluating the Impacts of Typical Methodological Approaches in Watershed Models

    Science.gov (United States)

    Muenich, R. L.; Kalcic, M. M.; Teshager, A. D.; Long, C. M.; Wang, Y. C.; Scavia, D.

    2017-12-01

    Thanks to the availability of open-source software, online tutorials, and advanced software capabilities, watershed modeling has expanded its user-base and applications significantly in the past thirty years. Even complicated models like the Soil and Water Assessment Tool (SWAT) are being used and documented in hundreds of peer-reviewed publications each year, and likely more applied in practice. These models can help improve our understanding of present, past, and future conditions, or analyze important "what-if" management scenarios. However, baseline data and methods are often adopted and applied without rigorous testing. In multiple collaborative projects, we have evaluated the influence of some of these common approaches on model results. Specifically, we examined impacts of baseline data and assumptions involved in manure application, combined sewer overflows, and climate data incorporation across multiple watersheds in the Western Lake Erie Basin. In these efforts, we seek to understand the impact of using typical modeling data and assumptions, versus using improved data and enhanced assumptions on model outcomes and thus ultimately, study conclusions. We provide guidance for modelers as they adopt and apply data and models for their specific study region. While it is difficult to quantitatively assess the full uncertainty surrounding model input data and assumptions, recognizing the impacts of model input choices is important when considering actions at the both the field and watershed scales.

  6. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  7. Flood Simulation Using WMS Model in Small Watershed after Strong Earthquake -A Case Study of Longxihe Watershed, Sichuan province, China

    Science.gov (United States)

    Guo, B.

    2017-12-01

    Mountain watershed in Western China is prone to flash floods. The Wenchuan earthquake on May 12, 2008 led to the destruction of surface, and frequent landslides and debris flow, which further exacerbated the flash flood hazards. Two giant torrent and debris flows occurred due to heavy rainfall after the earthquake, one was on August 13 2010, and the other on August 18 2010. Flash floods reduction and risk assessment are the key issues in post-disaster reconstruction. Hydrological prediction models are important and cost-efficient mitigation tools being widely applied. In this paper, hydrological observations and simulation using remote sensing data and the WMS model are carried out in the typical flood-hit area, Longxihe watershed, Dujiangyan City, Sichuan Province, China. The hydrological response of rainfall runoff is discussed. The results show that: the WMS HEC-1 model can well simulate the runoff process of small watershed in mountainous area. This methodology can be used in other earthquake-affected areas for risk assessment and to predict the magnitude of flash floods. Key Words: Rainfall-runoff modeling. Remote Sensing. Earthquake. WMS.

  8. Distributed models of radionuclide transport on watersheds: development and implementation for the Chernobyl and Fukushima catchments

    Energy Technology Data Exchange (ETDEWEB)

    Kivva, S.; Zheleznyak, M. [Institute of Environmental Radioactivity, Fukushima University (Japan)

    2014-07-01

    The distributed hydrological 'rainfall- runoff' models provide possibilities of the physically based simulation of surface and subsurface flow on watersheds based on the GIS processed data. The success of such modeling approaches for the predictions of the runoff and soil erosion provides a basis for the implementation of the distributed radionuclide transport watershed models. Two distributed watershed models of radionuclide transport - RUNTOX and DHSVM-R have been used to simulate the radionuclide transport in the basin of the Dnieper River, Ukraine and watersheds of Prefecture Fukushima. RUNTOX is used for the simulation of radionuclide wash off from the experimental plots and small watersheds, and DHSVM-R is used for medium and large watersheds RUNTOX is two dimensional distributed hydrological model based on the finite-difference solution of the coupled equations the surface flow, subsurface flow, groundwater flow and advection- dispersion equations of the sediments (eroded soil) and radionuclide transport in liquid and solid phases, taking into parameterize the radionuclide exchanges between liquid and solid phases.. This model has been applied to the experimental plots in Ukraine after the Chernobyl accident and experimental plots in the Fukushima Prefecture. The experience of RUNTOX development and application has been used for the extension of the distributed hydrological model DHSVM by the including of the module of the watershed radionuclide transport. The updated model was named by DHSMV-R. The original DHSVM (Distributed Hydrology Soil Vegetation Model) was developed in the University of Washington and Pacific Northwest National Laboratories. DHSVM is a physical distributed hydrology-vegetation model for complex terrain based on the numerical solution of the network of one dimensional equations. The model accounts explicitly for the spatial distribution of land-surface processes, and can be applied over a range of scales, from plot to large

  9. Integration of aspect and slope in snowmelt runoff modeling in a mountain watershed

    Directory of Open Access Journals (Sweden)

    Shalamu Abudu

    2016-10-01

    Full Text Available This study assessed the performances of the traditional temperature-index snowmelt runoff model (SRM and an SRM model with a finer zonation based on aspect and slope (SRM + AS model in a data-scarce mountain watershed in the Urumqi River Basin, in Northwest China. The proposed SRM + AS model was used to estimate the melt rate with the degree-day factor (DDF through the division of watershed elevation zones based on aspect and slope. The simulation results of the SRM + AS model were compared with those of the traditional SRM model to identify the improvements of the SRM + AS model's performance with consideration of topographic features of the watershed. The results show that the performance of the SRM + AS model has improved slightly compared to that of the SRM model. The coefficients of determination increased from 0.73, 0.69, and 0.79 with the SRM model to 0.76, 0.76, and 0.81 with the SRM + AS model during the simulation and validation periods in 2005, 2006, and 2007, respectively. The proposed SRM + AS model that considers aspect and slope can improve the accuracy of snowmelt runoff simulation compared to the traditional SRM model in mountain watersheds in arid regions by proper parameterization, careful input data selection, and data preparation.

  10. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  11. [Coupling SWAT and CE-QUAL-W2 models to simulate water quantity and quality in Shanmei Reservoir watershed].

    Science.gov (United States)

    Liu, Mei-Bing; Chen, Dong-Ping; Chen, Xing-Wei; Chen, Ying

    2013-12-01

    A coupled watershed-reservoir modeling approach consisting of a watershed distributed model (SWAT) and a two-dimensional laterally averaged model (CE-QUAL-W2) was adopted for simulating the impact of non-point source pollution from upland watershed on water quality of Shanmei Reservoir. Using the daily serial output from Shanmei Reservoir watershed by SWAT as the input to Shanmei Reservoir by CE-QUAL-W2, the coupled modeling was calibrated for runoff and outputs of sediment and pollutant at watershed scale and for elevation, temperature, nitrate, ammonium and total nitrogen in Shanmei Reservoir. The results indicated that the simulated values agreed fairly well with the observed data, although the calculation precision of downstream model would be affected by the accumulative errors generated from the simulation of upland model. The SWAT and CE-QUAL-W2 coupled modeling could be used to assess the hydrodynamic and water quality process in complex watershed comprised of upland watershed and downstream reservoir, and might further provide scientific basis for positioning key pollution source area and controlling the reservoir eutrophication.

  12. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  13. Assessment of soil erosion risk in Komering watershed, South Sumatera, using SWAT model

    Science.gov (United States)

    Salsabilla, A.; Kusratmoko, E.

    2017-07-01

    Changes in land use watershed led to environmental degradation. Estimated loss of soil erosion is often difficult due to some factors such as topography, land use, climate and human activities. This study aims to predict soil erosion hazard and sediment yield using the Soil and Water Assessment Tools (SWAT) hydrological model. The SWAT was chosen because it can simulate the model with limited data. The study area is Komering watershed (806,001 Ha) in South Sumatera Province. There are two factors land management intervention: 1) land with agriculture, and 2) land with cultivation. These factors selected in accordance with the regulations of spatial plan area. Application of the SWAT demonstrated that the model can predict surface runoff, soil erosion loss and sediment yield. The erosion risk for each watershed can be classified and predicted its changes based on the scenarios which arranged. In this paper, we also discussed the relationship between the distribution of erosion risk and watershed's characteristics in a spatial perspective.

  14. Telemetric system for hydrology and water quality monitoring in watersheds of northern New Mexico, USA.

    Science.gov (United States)

    Meyer, Michael L; Huey, Greg M

    2006-05-01

    This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.

  15. Defining and predicting urban-wildland interface zones using a GIS-based model

    Science.gov (United States)

    Lawrence R. Gering; Angel V. Chun; Steve Anderson

    2000-01-01

    Resource managers are beginning to experience a deluge of management conflicts as urban population centers expand into formerly wildland settings. Fire suppression, recreational, watershed management, and traditional forest management practices are activities that have become contentious in many locales. A better understanding of the interface zone between these two...

  16. Comparison of computer models for estimating hydrology and water quality in an agricultural watershed

    Science.gov (United States)

    Various computer models, ranging from simple to complex, have been developed to simulate hydrology and water quality from field to watershed scales. However, many users are uncertain about which model to choose when estimating water quantity and quality conditions in a watershed. This study compared...

  17. A Workflow to Model Microbial Loadings in Watersheds

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  18. Interacting With A Near Real-Time Urban Digital Watershed Using Emerging Geospatial Web Technologies

    Science.gov (United States)

    Liu, Y.; Fazio, D. J.; Abdelzaher, T.; Minsker, B.

    2007-12-01

    The value of real-time hydrologic data dissemination including river stage, streamflow, and precipitation for operational stormwater management efforts is particularly high for communities where flash flooding is common and costly. Ideally, such data would be presented within a watershed-scale geospatial context to portray a holistic view of the watershed. Local hydrologic sensor networks usually lack comprehensive integration with sensor networks managed by other agencies sharing the same watershed due to administrative, political, but mostly technical barriers. Recent efforts on providing unified access to hydrological data have concentrated on creating new SOAP-based web services and common data format (e.g. WaterML and Observation Data Model) for users to access the data (e.g. HIS and HydroSeek). Geospatial Web technology including OGC sensor web enablement (SWE), GeoRSS, Geo tags, Geospatial browsers such as Google Earth and Microsoft Virtual Earth and other location-based service tools provides possibilities for us to interact with a digital watershed in near-real-time. OGC SWE proposes a revolutionary concept towards a web-connected/controllable sensor networks. However, these efforts have not provided the capability to allow dynamic data integration/fusion among heterogeneous sources, data filtering and support for workflows or domain specific applications where both push and pull mode of retrieving data may be needed. We propose a light weight integration framework by extending SWE with open source Enterprise Service Bus (e.g., mule) as a backbone component to dynamically transform, transport, and integrate both heterogeneous sensor data sources and simulation model outputs. We will report our progress on building such framework where multi-agencies" sensor data and hydro-model outputs (with map layers) will be integrated and disseminated in a geospatial browser (e.g. Microsoft Virtual Earth). This is a collaborative project among NCSA, USGS Illinois Water

  19. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    Science.gov (United States)

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were

  20. Performance comparison of land change modeling techniques for land use projection of arid watersheds

    Directory of Open Access Journals (Sweden)

    S.M. Tajbakhsh

    2018-07-01

    Full Text Available The change of land use/land cover has been known as an imperative force in environmental alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of two major types of land change modeling techniques via a three dimensional approach in Birjand urban watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suitability and transition potential mappers, i.e. fuzzy analytic hierarchy process and artificial neural network-multi layer perceptron was used to simulate land use map. Validation metrics, quantity disagreement, allocation disagreement and figure of merit in a three-dimensional space were used to perform model validation. Utilizing the fuzzy-analytic hierarchy processsimulation of total landscape in the target point 2015, quantity error, the figure of merit and allocation error were 2%, 18.5% and 8%, respectively. However, Artificial neural network-multi layer perceptron simulation led to a marginal improvement in figure of merit, i.e. 3.25%.

  1. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model.

    Science.gov (United States)

    Larose, M; Heathman, G C; Norton, L D; Engel, B

    2007-01-01

    One of the major factors contributing to surface water contamination in agricultural areas is the use of pesticides. The Soil and Water Assessment Tool (SWAT) is a hydrologic model capable of simulating the fate and transport of pesticides in an agricultural watershed. The SWAT model was used in this study to estimate stream flow and atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) losses to surface water in the Cedar Creek Watershed (CCW) within the St. Joseph River Basin in northeastern Indiana. Model calibration and validation periods consisted of five and two year periods, respectively. The National Agricultural Statistics Survey (NASS) 2001 land cover classification and the Soil Survey Geographic (SSURGO) database were used as model input data layers. Data from the St. Joseph River Watershed Initiative and the Soil and Water Conservation Districts of Allen, Dekalb, and Noble counties were used to represent agricultural practices in the watershed which included the type of crops grown, tillage practices, fertilizer, and pesticide application rates. Model results were evaluated based on efficiency coefficient values, standard statistical measures, and visual inspection of the measured and simulated hydrographs. The Nash and Sutcliffe model efficiency coefficients (E(NS)) for monthly and daily stream flow calibration and validation ranged from 0.51 to 0.66. The E(NS) values for atrazine calibration and validation ranged from 0.43 to 0.59. All E(NS) values were within the range of acceptable model performance standards. The results of this study indicate that the model is an effective tool in capturing the dynamics of stream flow and atrazine concentrations on a large-scale agricultural watershed in the midwestern USA.

  2. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  3. Asotin Creek model watershed plan: Asotin County, Washington

    International Nuclear Information System (INIS)

    1995-01-01

    The Northwest Power Planning Council completed its ''Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ''four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ''Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity

  4. Integrating topography, hydrology and rock structure in weathering rate models of spring watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; Weijden, C.H. van der

    2012-01-01

    Weathering rate models designed for watersheds combine chemical data of discharging waters with morphologic and hydrologic parameters of the catchments. At the spring watershed scale, evaluation of morphologic parameters is subjective due to difficulties in conceiving the catchment geometry.

  5. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

    International Nuclear Information System (INIS)

    Grimm, J.W.; Lynch, J.A.

    2005-01-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8 km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8 km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate. - A linear least-squares regression approach was used to develop daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed

  6. Quality of runoff from small watersheds in the Twin Cities Metropolitan Area, Minnesota - A project plan

    Science.gov (United States)

    Ayers, M.A.; Payne, G.A.; Oberts, Gary L.

    1980-01-01

    A program of water-quality sampling to define the relationships between land use, watershed characteristics, and the quantity, quality, and timing of runoff has been started for the Twin Cities metropolitan area of Minnesota. Ten major watersheds were chosen as representative of conditions in the metropolitan area. Each will be sampled at one location near the outlet. Six of the watersheds are agricultural and range in size from 14.3 to 82.9 square miles. The four remaining watersheds are urbanized and range in size from 1.22 to 31.7 square miles. In addition, seven urban subwatersheds, which range in size from 0.12 to 0.47 square miles and reflect a dominant land-use type, will be sampled.

  7. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  8. Development of a Watershed-Scale Long-Term Hydrologic Impact Assessment Model with the Asymptotic Curve Number Regression Equation

    Directory of Open Access Journals (Sweden)

    Jichul Ryu

    2016-04-01

    Full Text Available In this study, 52 asymptotic Curve Number (CN regression equations were developed for combinations of representative land covers and hydrologic soil groups. In addition, to overcome the limitations of the original Long-term Hydrologic Impact Assessment (L-THIA model when it is applied to larger watersheds, a watershed-scale L-THIA Asymptotic CN (ACN regression equation model (watershed-scale L-THIA ACN model was developed by integrating the asymptotic CN regressions and various modules for direct runoff/baseflow/channel routing. The watershed-scale L-THIA ACN model was applied to four watersheds in South Korea to evaluate the accuracy of its streamflow prediction. The coefficient of determination (R2 and Nash–Sutcliffe Efficiency (NSE values for observed versus simulated streamflows over intervals of eight days were greater than 0.6 for all four of the watersheds. The watershed-scale L-THIA ACN model, including the asymptotic CN regression equation method, can simulate long-term streamflow sufficiently well with the ten parameters that have been added for the characterization of streamflow.

  9. Evaluation of landscape change in the Vidoca Stream Watershed, São José dos Campos, SP, Brazil

    Directory of Open Access Journals (Sweden)

    Ademir Fernando Morelli

    2007-12-01

    Full Text Available Hydrographic basins in urban areas frequently undergo drastic landscape changes. This work analyzed the landscape transformation of Vidoca Stream Watershed in the period from 1500 to 2003. Based on Remote Sensing and GIS techniques it was found that: a Between 1500 and 1953 natural vegetation classes which included Alluvial Semi-decidual Seasonal Forest, Mountainous Semi-decidual Seasonal Forest and Open Arboreal Savannah changed to anthropic fields and grasslands; b From 1954 to 1985, just before the massive urban occupation of the area, there was a short period of regeneration of the Alluvial Semi-decidual Seasonal Forest above the Carvalho Pinto Highway; later on, the grasslands changed to anthropic fields; c From 1986 to 1997, a fast urbanization process occurred and resulted in the replacement of the grassland and anthropic fields by urban constructions; d From 1998 to 2003, with the consolidation of the urbanization process, the urban occupation reached the boundaries of the plateau and the lowlands of the watershed, resulting in soil impermeabilization. The results of this research indicated that the urbanization process was not controlled in spite of restricted legislation and environmental degradation occurred in this studied watershed along of the study period.

  10. Energy-Water Modeling and Impacts at Urban and Infrastructure Scales

    Science.gov (United States)

    Saleh, F.; Pullen, J. D.; Schoonen, M. A.; Gonzalez, J.; Bhatt, V.; Fellows, J. D.

    2017-12-01

    We converge multi-disciplinary, multi-sectoral modeling and data analysis tools on an urban watershed to examine the feedbacks of concentrated and connected infrastructure on the environment. Our focus area is the Lower Hudson River Basin (LHRB). The LHRB captures long-term and short- term energy/water stressors as it represents: 1) a coastal environment subject to sea level rise that is among the fastest in the East impacted by a wide array of various storms; 2) one of the steepest gradients in population density in the US, with Manhattan the most densely populated coastal county in the nation; 3) energy/water infrastructure serving the largest metropolitan area in the US; 4) a history of environmental impacts, ranging from heatwaves to hurricanes, that can be used to hindcast; and 5) a wealth of historic and real-time data, extensive monitoring facilities and existing specific sector models that can be leveraged. We detail two case studies on "water infrastructure and stressors", and "heatwaves and energy-water demands." The impact of a hypothetical failure of Oradell Dam (on the Hackensack River, a tributary of the Hudson River) coincident with a hurricane, and urban power demands under current and future heat waves are examined with high-resolution (meter to km scale) earth system models to illustrate energy water nexus issues where detailed predictions can shape response and mitigation strategies.

  11. The Lower Chesapeake Bay LTAR: A coastal urban-agricultural region

    Science.gov (United States)

    Mccarty, G.; Alfieri, J. G.; Cavigelli, M.; Cosh, M. H.; Hapeman, C. J.; Kustas, W. P.; Maul, J.; Mirsky, S.; Pooler, M.; Sadeghi, A. M.; Schomberg, H.; Timlin, D. J.; Rice, C. P.

    2015-12-01

    The Chesapeake Bay, located in the mid-Atlantic region of the U.S., is the largest estuary in North America. The watershed area includes six states from New York to Virginia and is nearly 167,000 km2 in size with more than 150 rivers and streams entering the 300-km Bay main stem. Forested and agricultural lands make up 58 and 22 percent of the land use, respectively. Nearly 9 percent is urban and suburban use, and the watershed is home to over 17 million people. However, the population is expected to reach 19 million by 2025, raising the potential for conflict between the agricultural and urban communities over land and water use and in protecting natural resources, especially in the lower portion of the Chesapeake Bay watershed. The Lower Chesapeake Bay study area, part of the USDA-ARS Long-Term Agroecosystem Research (LTAR) network, will provide much-needed data to support decisions at this critical agriculture-urban interface. Current long-term projects seek to assess the economic, production, and environmental performance of conventional and organic cropping systems and to evaluate the resilience of these systems to climate change. Large-scale studies are being conducted to examine the effects of land-use and landscape characteristics on ecosystem services and on energy, water, nutrient, carbon, and pest dynamics within watersheds. New in-situ measurement and remote sensor technologies are being considered with the expectancy that the data streams will be available on-line and for use in modeling. Results and outcomes of these research efforts will greatly benefit the national LTAR network and will be applicable to other US coastal urban-agricultural regions.

  12. Multi-scale trends analysis of landscape stressors in an urbanizing coastal watershed

    Science.gov (United States)

    Anthropogenic land based stressors within a watershed can deliver major impacts to downstream and adjacent coastal waterways affecting water quality and estuarine habitats. Our research focused on a subset of non-point sources of watershed stressors specifically, human population...

  13. Quantifying nutrient export and deposition with a dynamic landscape evolution model for the lake Bolsena watershed, Italy

    Science.gov (United States)

    Pelorosso, Raffaele; Temme, Arnoud; Gobattoni, Federica; Leone, Antonio

    2010-05-01

    Excessive nutrient loads from upstream watershed activities such as agriculture, hydrological modifications, and urban runoff, have been identified as the leading cause of deterioration in assessed lakes and reservoirs (USEPA, 2000; Leone et al., 2001; Leone et al., 2003). Excessive nutrient transport into lakes and reservoirs may accelerate eutrophication rates, causing negative impacts on aesthetic and water quality. As reservoirs become eutrophic, they are depleted in oxygen and enriched in suspended solids, with heavy consequences for ecosystems and natural habitats. Management of nutrient loads into reservoirs requires knowledge of nutrient transport and delivery from the watershed-stream system (Ripa, 2003). Managing uncultivated lands in watersheds may be a cost effective way to improve water quality in agricultural landscapes, and recent advances in landscape ecology highlight important relationships between the structural configuration of these lands and nutrient redistribution (e.g., Forman 1987; Barrett and others 1990). Many studies have been carried out to underline and explain how landscape characteristics and structure may affect these processes. In these studies, relations between land cover and nutrient storage were analyzed using geographic information systems (GIS) (e.g. Lucas, 2002). Nutrients are generally transported from the landscape into streams during runoff events; however, they may also enter stream flow from other sources such as groundwater recharge and point source effluent discharges (Lucas, 2002; Nielsen, 2007; Waldron, 2008; Castillo, 2009). Water moves nutrients and delivers them to downstream water bodies such as lakes and reservoirs so that erosion phenomena play an essential role in determining nutrients fluxes and deposition. On the one hand, several hydrological models take into account nutrients reactions, movements and deposition - coupling soil erosion processes with transport equations (Bartley, 2004; Lű, 2010). On the

  14. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Runoff and sediment yield model for predicting nuclide transport in watersheds using BIOTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Wenzel, W.J.

    1990-09-01

    The environmental risk simulation model BIOTRAN was interfaced with a series of new subroutines (RUNOFF, GEOFLX, EROSON, and AQUIFER) to predict the movement of nuclides, elements, and pertinent chemical compounds in association with sediments through lateral and channel flow of runoff water. In addition, the movement of water into and out of segmented portions of runoff channels was modeled to simulate the dynamics of moisture flow through specified aquifers within the watershed. The BIOTRAN soil water flux subroutine, WATFLX, was modified to interface the relationships found in the SPUR model for runoff and sediment transport into channels with the particle sorting relationships to predict radionuclide enrichment and movement in watersheds. The new subroutines were applied specifically to Mortandad Canyon within Los Alamos National Laboratory by simultaneous simulation of eight surface vegetational subdivisions and associated channel and aquifer segments of this watershed. This report focuses on descriptions of the construction and rationale for the new subroutines and on discussing both input characteristics and output relationships to known runoff events from Mortandad Canyon. Limitations of the simplified input on model behavior are also discussed. Uranium-238 was selected as the nuclide for demonstration of the model because it could be assumed to be homogeneously distributed over the watershed surface. 22 refs., 18 figs., 9 tabs.

  16. Causes and consequences of ecosystem service regionalization in a coastal suburban watershed

    Science.gov (United States)

    Wollheim, Wilfred M.; Mark B. Green,; Pellerin, Brian A.; Morse, Nathaniel B.; Hopkinson, Charles S.

    2015-01-01

    The demand for ecosystem services and the ability of natural ecosystems to provide those services evolve over time as population, land use, and management practices change. Regionalization of ecosystem service activity, or the expansion of the area providing ecosystem services to a population, is a common response in densely populated coastal regions, with important consequences for watershed water and nitrogen (N) fluxes to the coastal zone. We link biophysical and historical information to explore the causes and consequences of change in ecosystem service activity—focusing on water provisioning and N regulation—from 1850 to 2010 in a coastal suburban watershed, the Ipswich River watershed in northeastern Massachusetts, USA. Net interbasin water transfers started in the late 1800s due to regionalization of water supply for use by larger populations living outside the Ipswich watershed boundaries, reaching a peak in the mid-1980s. Over much of the twentieth century, about 20 % of river runoff was diverted from reaching the estuary, with greater proportions during drought years. Ongoing regionalization of water supply has contributed to recent declines in diversions, influenced by socioecological feedbacks resulting from the river drying and fish kills. Similarly, the N budget has been greatly perturbed since the suburban era began in the 1950s due to food and lawn fertilizer imports and human waste release. However, natural ecosystems are able to remove most of this anthropogenic N, mitigating impacts on the coastal zone. We propose a conceptual model whereby the amount and type of ecosystem services provided by coastal watersheds in urban regions expand and contract over time as regional population expands and ecosystem services are regionalized. We hypothesize that suburban watersheds can be hotspots of ecosystem service sources because they retain sufficient ecosystem function to still produce services that meet increasing demand from the local population

  17. Exploring the Variability of Short-term Precipitation and Hydrological Response of Small Czech Watersheds

    Science.gov (United States)

    Kavka, Petr; Strouhal, Ludek; Weyskrabova, Lenka; Müller, Miloslav; Kozant, Petr

    2017-04-01

    The short-term rainfall temporal distribution is known to have a significant effect on the small watersheds' hydrological response. In Czech Republic there are limited publicly available data on rainfall patterns of short-term precipitation. On one side there are catalogues of very short-term synthetic rainfalls used in urban drainage planning and on the other side hourly distribution of daily totals of rainfalls with long return period for larger catchments analyses. This contribution introduces the preliminary outcomes of a running three years' project, which should bridge this gap and provide such data and methodology to the community of scientists, state administration as well as design planners. Six generalized 6-hours hyetographs with 1 minute resolution were derived from 10 years of radar and gauging stations data. These hyetographs are accompanied with information concerning the region of occurrence as well as their frequency related to the rainfall amount. In the next step these hyetographs are used in a complex sensitivity analysis focused on a rainfall-runoff response of small watersheds. This analysis takes into account the uncertainty related to type of the hydrological model, watershed characteristics and main model routines parameterization. Five models with different methods and structure are considered and each model is applied on 5 characteristic watersheds selected from a classification of 7700 small Czech watersheds. For each combination of model and watershed 30, rainfall scenarios were simulated and other scenarios will be used to address the parameters uncertainty. In the last step the variability of outputs will be assessed in the context of economic impacts on design of landscape water structures or mitigation measures. The research is supported by the grant QJ1520265 of the Czech Ministry of Agriculture, rainfall data were provided by the Czech Hydrometeorological Institute.

  18. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    Science.gov (United States)

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Watershed Scale Impacts of Stormwater Green Infrastructure ...

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, Baltimore County, MD, Montgomery County, MD, and Washington, DC, were selected based on the availability of data on SGI, water quality, and stream flow. The watershed scale impact of SGI was evaluated by assessing how increased spatial density of SGI correlates with stream hydrology and nitrogen exports over space and time. The most common SGI types were detention ponds (58%), followed by marshes (12%), sand filters (9%), wet ponds (7%), infiltration trenches (4%), and rain gardens (2%). When controlling for watersheds size and percent impervious surface cover, watersheds with greater amounts of SGI (>10% SGI) have 44% lower peak runoff, 26% less frequent runoff events, and 26% less variable runoff than watersheds with lower SGI. Watersheds with more SGI also show 44% less NO3− and 48% less total nitrogen exports compared to watersheds with minimal SGI. There was no significant reduction in combined sewer overflows in watersheds with greater SGI. Based on specific SGI types, infiltration trenches (R2 = 0.35) showed the strongest correlation with hydrologic metrics, likely due to their ability to attenuate flow, while bioretention (R2 = 0.19) and wet ponds (R2 = 0.12) showed stronger

  20. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  1. Placing the pieces: Reconstructing the original property mosaic in a warrant and patent watershed

    Science.gov (United States)

    Bain, D.J.; Brush, G.S.

    2005-01-01

    Recent research shows that land use history is an important determinant of current ecosystem function. In the United States, characterization of land use change following European settlement requires reconstruction of the original property mosaic. However, this task is difficult in unsystematically surveyed areas east of the Appalachian Mountains. The Gwynns Falls watershed (Baltimore, MD) was originally surveyed in the 1600-1700s under a system of warrants and patents (commonly known as 'metes and bounds'). A method for the reconstruction and mapping of warrant and patent properties is presented and used to map the original property mosaic in the Gwynns Falls watershed. Using the mapped mosaic, the persistence of properties and property lines in the current Gwynns Falls landscape is considered. The results of this research indicate that as in agricultural areas, the original property lines in the Gwynns Falls watershed are persistent. At the same time, the results suggest that the property mosaic in heavily urbanized/suburbanized areas is generally 'reset.' Further, trends in surveying technique, parcel size, and settlement patterns cause property line density and property shape complexity to increase in the less urbanized upper watershed. The persistence of original patterns may be damping expression of heterogeneity gradients in this urban landscape. This spatial pattern of complexity in the original mosaic is directly opposite of hypothesized patterns of landscape heterogeneity arising from urbanization. The technique reported here and the resulting observations are important for landscape pattern studies in areas settled under unsystematic survey systems, especially the heavily urbanized areas of the eastern United States. ?? 2004 Kluwer Academic Publishers.

  2. Evaluation of spatial plan in controlling stream flow rate in Wakung Watershed, Pemalang, Central Java, Indonesia

    Science.gov (United States)

    Anwar, Y.; Setyasih, I.; Setiawan, M. A.; Christanto, N.

    2018-04-01

    Evaluation study for such a regional spatial plan (RTRW) in Indonesia has not been evaluated for its effectiveness in controlling the surface run off that contributed to streamflow. This necessity can be accomplishsed by applying a modeling approach, such as Soil Water Assessment Tool (SWAT). The objectives of this research are 1) to simulate the streamflow of Wakung watershed based on actual landuse, 2) to predict streamflow of Wakung watershed based on RTRW, and 3) to evaluate the effectiveness of the RTRW of Pemalang District in controling streamflow rate at Wakung Watershed. ArcSWAT model was used to determine the erosion rate prediction. The model was then calibrated by using SWATCUP. Model performance were tested by using R2 and ENS. The calibration and validation results showed that R2 and ENS (monthly) > 0.5. The result of SWAT simulation in Wakung sub-watershed reaching 161 - 4950 m3/s/years for W-A scenario (actual landuse and weather data of 2013), for scenario W-R (RTRW and weather data of 2013), 330 - 4919 m3/s/year. The comparison between actual and spatial plan land use data for stream flow is showing that the W-A scenario is lower than the W-R scenario in 19 sub watersheds. This is because there are many plans for adding land use for urban and intensive horticulture land in areas with steep slopes (> 25%). This condition is caused by the demands of fulfilling the needs of settlement and food for people in the Wakung watershed.

  3. Assessment of watershed scale nitrogen cycling and dynamics by hydrochemical modeling

    Science.gov (United States)

    Onishi, T.; Hiramatsu, K.; Somura, H.

    2017-12-01

    Nitrogen cycling in terrestrial areas is affecting water quality and ecosystem of aquatic area such as lakes and oceans through rivers. Owing to the intensive researches on nitrogen cycling in each different type of ecosystem, we acquired rich knowledge on nitrogen cycling of each ecosystem. On the other hand, since watershed are composed of many different kinds of ecosystems, nitrogen cycling in a watershed as a complex of these ecosystems is not well quantified. Thus, comprehensive understanding of nitrogen cycling of watersheds by modelling efforts are required. In this study, we attempted to construct hydrochemical model of the Ise Bay watershed to reproduce discharge, TN, and NO3 concentration. The model is based on SWAT (Soil and Water Assessment Tools) model. As anthropogenic impacts related to both hydrological cycling and nitrogen cycling, agricultural water intake/drainage, and domestic water intake/drainage were considered. In addition, fertilizer input to agricultural lands were also considered. Calibration period and validation period are 2004-2006, and 2007-2009, respectively. As a result of calibration using 2000 times LCS (Latin Cubic Sampling) method, discharge of rivers were reproduced fairly well with NS of 0.6-0.8. In contrast, the calibration result of TN and NO3 concentration tended to show overestimate values in spite of considering parameter uncertainties. This implies that unimplemented denitrification processes in the model. Through exploring the results, it is indicated that riparian areas, and agricultural drainages might be important spots for denitrification. Based on the result, we also attempted to evaluate the impact of climate change on nitrogen cycling. Though it is fully explored, this result will also be reported.

  4. Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories

    Science.gov (United States)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra

    2016-02-01

    In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.

  5. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    's widely used in the world. Watershed models can be characterized by the high number of processes associated simulated. The estimation of these processes is also data intensive, requiring data on topography, land use / land cover, agriculture practices, soil type, precipitation, temperature, relative humidity, wind and radiation. Every year new data is being made available namely by satellite, that has allow to improve the quality of model input and also the calibration of the models (Galvão et. al, 2004b). Tools to cope with the vast amount of data have been developed: data formatting, data retrieving, data bases, metadata bases. The high number of processes simulated in watershed models makes them very wide in terms of output. The SWAT model outputs were modified to produce MOHID compliant result files (time series and HDF). These changes maintained the integrity of the original model, thus guarantying that results remain equal to the original version of SWAT. This allowed to output results in MOHID format, thus making it possible to immediately process it with MOHID visualization and data analysis tools (Chambel-Leitão et. al 2007; Trancoso et. al, 2009). Besides SWAT was modified to produce results files in HDF5 format, this allows the visualization of watershed properties (modeled by SWAT) in animated maps using MOHID GIS. The modified version of SWAT described here has been applied to various national and European projects. Results of the application of this modified version of SWAT to estimate hydrology and nutrients loads to estuaries and water bodies will be shown (Chambel-Leitão, 2008; Yarrow & Chambel-Leitão 2008; Chambel-Leitão et. al 2008; Yarrow & P. Chambel-Leitão, 2007; Yarrow & P. Chambel-Leitão, 2007; Coelho et. al., 2008). Keywords: Watershed models, SWAT, MOHID LAND, Hydrology, Nutrient Loads Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 19, 563

  6. An approach to measure parameter sensitivity in watershed hydrologic modeling

    Data.gov (United States)

    U.S. Environmental Protection Agency — Abstract Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier...

  7. South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) Systems Thinking

    Science.gov (United States)

    South Platte Watershed from the Headwaters to the Denver Metropolitan Area (Colorado) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating

  8. Integration of a Hydrological Model within a Geographical Information System: Application to a Forest Watershed

    Directory of Open Access Journals (Sweden)

    Dimitris Fotakis

    2014-03-01

    Full Text Available Watershed simulation software used for operational purposes must possess both dependability of results and flexibility in parameter selection and testing. The UBC watershed model (UBCWM contains a wide spectrum of parameters expressing meteorological, geological, as well as ecological watershed characteristics. The hydrological model was coupled to the MapInfo GIS and the software created was named Watershed Mapper (WM. WM is endowed with several features permitting operational utilization. These include input data and basin geometry visualization, land use/cover and soil simulation, exporting of statistical results and thematic maps and interactive variation of disputed parameters. For the application of WM two hypothetical scenarios of forest fires were examined in a study watershed. Four major rainfall events were selected from 12-year daily precipitation data and the corresponding peak flows were estimated for the base line data and hypothetical scenarios. A significant increase was observed as an impact of forest fires on peak flows. Due to its flexibility the combined tool described herein may be utilized in modeling long-term hydrological changes in the context of unsteady hydrological analyses.

  9. Identification of drought in Dhalai river watershed using MCDM and ANN models

    Science.gov (United States)

    Aher, Sainath; Shinde, Sambhaji; Guha, Shantamoy; Majumder, Mrinmoy

    2017-03-01

    An innovative approach for drought identification is developed using Multi-Criteria Decision Making (MCDM) and Artificial Neural Network (ANN) models from surveyed drought parameter data around the Dhalai river watershed in Tripura hinterlands, India. Total eight drought parameters, i.e., precipitation, soil moisture, evapotranspiration, vegetation canopy, cropping pattern, temperature, cultivated land, and groundwater level were obtained from expert, literature and cultivator survey. Then, the Analytic Hierarchy Process (AHP) and Analytic Network Process (ANP) were used for weighting of parameters and Drought Index Identification (DII). Field data of weighted parameters in the meso scale Dhalai River watershed were collected and used to train the ANN model. The developed ANN model was used in the same watershed for identification of drought. Results indicate that the Limited-Memory Quasi-Newton algorithm was better than the commonly used training method. Results obtained from the ANN model shows the drought index developed from the study area ranges from 0.32 to 0.72. Overall analysis revealed that, with appropriate training, the ANN model can be used in the areas where the model is calibrated, or other areas where the range of input parameters is similar to the calibrated region for drought identification.

  10. Effect of residential development on stream phosphorus dynamics in headwater suburbanizing watersheds of southern Ontario, Canada.

    Science.gov (United States)

    Duval, Tim P

    2018-10-01

    Suburban landscapes are known to have degraded water quality relative to natural settings, including increased total phosphorus (TP) levels; however, the effect of subdivision construction activities on stream TP dynamics are less understood. This study measured TP and its constituents particulate, dissolved organic, and dissolved inorganic phosphorus (PP, DOP, and DIP, respectively) in two headwater streams of contrasting urbanization activity to examine whether the land-use conversion process itself contributed to TP concentrations and export. The nested watershed undergoing significant active residential community construction contained large areas of cleared former agricultural field and associated sediment mounds with elevated soil TP (~1000 mg kg -1 ), and twice as many stormwater management (SWM) ponds than the watershed with completed suburban communities. Daily stream sampling for six months revealed limited differences in TP between urbanized and urbanizing watersheds regardless of season or stream flow condition; however, the forms of TP varied significantly. The proportion of TP as DOP was consistently higher in the urbanizing stream relative to the urban stream, which was in line with significant decreases in DOP concentration as proportion of cleared former agricultural land decreased and density of SWM ponds increased. The DOP, and to a lesser extent DIP and PP, dynamics resulted in a 2.5× greater areal export of TP from a small watershed actively being suburbanized during the study period compared to the larger watershed with greater land urbanized 3-5 years ago. The results of this study suggest stream TP concentrations are relatively unresponsive to active versus established suburban cover, but the forms of TP can be quite different, and the period of home construction can increase phosphorus (P) delivery to and export through nearby streams. This information can aid land managers and urban planners update best management practices to

  11. Effects of Urbanization on the Flow Regimes of Semi-Arid Southern California Streams

    Science.gov (United States)

    Hawley, R. J.; Bledsoe, B. P.; Stein, E. D.

    2010-12-01

    Stream channel erosion and associated habitat degradation are pervasive in streams draining urban areas in the southwestern US. The prevalence of these impacts results from the inherent sensitivity of streams in semi-arid climates to changes in flow and sediment regimes, and past inattention to management of geomorphically effective flows. Addressing this issue is difficult due to the lack of data linking ranges of flow (from small to large runoff events) to geomorphic channel response. Forty-three U. S. Geological Survey gages with record lengths greater than ~15 yrs and watershed areas less than ~250 square kilometers were used to empirically model the effects of urbanization on streams in southern California. The watersheds spanned a gradient of urban development and ranged from 0 to 23% total impervious area in 2001. With little flow control at the subdivision scale to date, most impervious area in the region is relatively well-connected to surface-drainage networks. Consequently, total impervious area was an effective surrogate for urbanization, and emerged as a significant (p approach expands on previous scaling procedures to produce histogram-style cumulative flow duration graphs for ungaged sites based on urbanization extent and other watershed descriptors. Urbanization resulted in proportionally-longer durations of all geomorphically-effective flows, with a more pronounced effect on the durations of moderate flows. For example, an average watershed from the study domain with ~20% imperviousness could experience five times as many days of mean daily flows on the order of 100 cfs (3 cubic meters per second) and approximately three times as many days on the order of 1,000 cfs (30 cubic meters per second) relative to the undeveloped setting. Increased duration of sediment-transporting flows is a primary driver of accelerated changes in channel form that are often concurrent with urbanization throughout southern California, particularly in unconfined, fine

  12. Modeling precipitation-runoff relationships to determine water yield from a ponderosa pine forest watershed

    Science.gov (United States)

    Assefa S. Desta

    2006-01-01

    A stochastic precipitation-runoff modeling is used to estimate a cold and warm-seasons water yield from a ponderosa pine forested watershed in the north-central Arizona. The model consists of two parts namely, simulation of the temporal and spatial distribution of precipitation using a stochastic, event-based approach and estimation of water yield from the watershed...

  13. Trail Creek II: Modeling Flow and E. Coli Concentrations in a Small Urban Stream using SWAT

    Science.gov (United States)

    Radcliffe, D. E.; Saintil, T.

    2017-12-01

    Pathogens are one of the leading causes of stream and river impairment in the State of Georgia. The common presence of fecal bacteria is driven by several factors including rapid population growth stressing pre-existing and ageing infrastructure, urbanization and poor planning, increase percent imperviousness, urban runoff, municipal discharges, sewage, pet/wildlife waste and leaky septic tanks. The Trail Creek watershed, located in Athens-Clarke County, Georgia covers about 33 km2. Stream segments within Trail Creek violate the GA standard due to high levels of fecal coliform bacteria. In this study, the Soil and Water Assessment Tool (SWAT) modeling software was used to predict E. coli bacteria concentrations during baseflow and stormflow. Census data from the county was used for human and animal population estimates and the Fecal Indicator Tool to generate the number of colony forming units of E. Coli for each source. The model was calibrated at a daily time step with one year of monitored streamflow and E. coli bacteria data using SWAT-CUP and the SUFI2 algorithm. To simulate leaking sewer lines, we added point sources in the five subbasins in the SWAT model with the greatest length of sewer line within 50 m of the stream. The flow in the point sources were set to 5% of the stream flow and the bacteria count set to that of raw sewage (30,000 cfu/100 mL). The calibrated model showed that the average load during 2003-2013 at the watershed outlet was 13 million cfu per month. Using the calibrated model, we simulated scenarios that assumed leaking sewers were repaired in one of the five subbasins with point sources. The reduction ranged from 10 to 46%, with the largest reduction in subbasin in the downtown area. Future modeling work will focus on the use of green infrastructure to address sources of bacteria.

  14. United States‐Mexican border watershed assessment: Modeling nonpoint source pollution in Ambos Nogales

    Science.gov (United States)

    Norman, Laura M.

    2007-01-01

    Ecological considerations need to be interwoven with economic policy and planning along the United States‐Mexican border. Non‐point source pollution can have significant implications for the availability of potable water and the continued health of borderland ecosystems in arid lands. However, environmental assessments in this region present a host of unique issues and problems. A common obstacle to the solution of these problems is the integration of data with different resolutions, naming conventions, and quality to create a consistent database across the binational study area. This report presents a simple modeling approach to predict nonpoint source pollution that can be used for border watersheds. The modeling approach links a hillslopescale erosion‐prediction model and a spatially derived sediment‐delivery model within a geographic information system to estimate erosion, sediment yield, and sediment deposition across the Ambos Nogales watershed in Sonora, Mexico, and Arizona. This paper discusses the procedures used for creating a watershed database to apply the models and presents an example of the modeling approach applied to a conservation‐planning problem.

  15. A Workflow to Model Microbial Loadings in Watersheds (proceedings)

    Science.gov (United States)

    Many watershed models simulate overland and instream microbial fate and transport, but few actually provide loading rates on land surfaces and point sources to the water body network. This paper describes the underlying general equations for microbial loading rates associated wit...

  16. Geomorphology-based unit hydrograph models for flood risk management: case study in Brazilian watersheds with contrasting physiographic characteristics

    Directory of Open Access Journals (Sweden)

    SAMUEL BESKOW

    2018-05-01

    Full Text Available ABSTRACT Heavy rainfall in conjunction with an increase in population and intensification of agricultural activities have resulted in countless problems related to flooding in watersheds. Among the techniques available for direct surface runoff (DSR modeling and flood risk management are the Unit Hydrograph (UH and Instantaneous Unit Hydrograph (IUH. This study focuses on the evaluation of predictive capability of two conceptual IUH models (Nash and Clark, considering their original (NIUH and CIUH and geomorphological approaches (NIUHGEO and CIUHGEO, and their advantages over two traditional synthetics UH models - Triangular (TUH and Dimensionless (DUH, to estimate DSR hydrographs taking as reference two Brazilian watersheds with contrasting geomorphological and climatic characteristics. The main results and conclusions were: i there was an impact of the differences in physiographical characteristics between watersheds, especially those parameters associated with soil; the dominant rainfall patterns in each watershed had an influence on flood modeling; and ii CIUH was the most satisfactory model for both watersheds, followed by NIUH, and both models had substantial superiority over synthetic models traditionally employed; iii although geomorphological approaches for IUH had performances slightly better than TUH and DUH, they should not be considered as standard tools for flood modeling in these watersheds.

  17. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources.

    Science.gov (United States)

    Yang, Xiaoying; Liu, Qun; Luo, Xingzhang; Zheng, Zheng

    2017-08-16

    Fast economic development, burgeoning population growth, and rapid urbanization have led to complex pollution sources contributing to water quality deterioration simultaneously in many developing countries including China. This paper explored the use of spatial regression to evaluate the impacts of watershed characteristics on ambient total nitrogen (TN) concentration in a heavily polluted watershed and make predictions across the region. Regression results have confirmed the substantial impact on TN concentration by a variety of point and non-point pollution sources. In addition, spatial regression has yielded better performance than ordinary regression in predicting TN concentrations. Due to its best performance in cross-validation, the river distance based spatial regression model was used to predict TN concentrations across the watershed. The prediction results have revealed a distinct pattern in the spatial distribution of TN concentrations and identified three critical sub-regions in priority for reducing TN loads. Our study results have indicated that spatial regression could potentially serve as an effective tool to facilitate water pollution control in watersheds under diverse physical and socio-economical conditions.

  18. Monitoring Stream Nutrient Concentration Trends in a Mixed-Land-Use Watershed

    Science.gov (United States)

    Zeiger, S. J.; Hubbart, J. A.

    2014-12-01

    Mixed-land use watersheds are often a complex patchwork of forested, agricultural, and urban land-uses where differential land-use mediated non-point source pollution can significantly impact water quality. Stream nitrogen and phosphorus concentrations serve as important variables for quantifying land use effects on non-point source pollution in receiving waters and relative impacts on aquatic biota. The Hinkson Creek Watershed (HCW) is a representative mixed land use urbanizing catchment (231 km2) located in central Missouri, USA. A nested-scale experimental watershed study including five permanent hydroclimate stations was established in 2009 to provide quantitative understanding of multiple land use impacts on nutrient loading. Spectrophotometric analysis was used to quantify total inorganic nitrogen (TIN) and total phosphorus (TP as PO4) regimes. Results (2010 - 2013) indicate average nitrate (NO3-) concentration (mg/l) range of 0.28 to 0.46 mg/l, nitrite (NO2-) range of 0.02 to 0.03 mg/l, ammonia (NH3) ranged from 0.04 to 0.08 mg/l, and TP range of 0.26 to 0.39 mg/l. With n=858, NO3-, NO2-, NH3, and TP concentrations were significantly (CI=95%, p=0.00) higher in the subbasin with the greatest percent cumulative agricultural land use (57%). NH3 and TP concentrations were significantly (CI=95%, p=0.00) higher (with the exception of the agricultural subbasin) in the subbasin with the greatest percent cumulative urban land use (26%). Results from multiple regression analyses showed percent cumulative agricultural and urban land uses accounted for 85% and 96% of the explained variance in TIN loading (CI=95%, p=0.08) and TP loading (CI=95%, p=0.02), respectively, between gauging sites. These results improve understanding of agricultural and urban land use impacts on nutrient concentrations in mixed use watersheds of the Midwest and have implications for nutrient reduction programs in the Mississippi River Basin and hypoxia reductions in the Gulf of Mexico, USA.

  19. Watershed Modeling System Hydrological Simulation Program; Watershed Model User Documentation and Tutorial

    National Research Council Canada - National Science Library

    Dellman, Patrick

    2002-01-01

    .... This analysis helps predict possible environmental problems in the watershed. With the growing need to care for and monitor the effects of man on the environment, it became apparent that a method for rapid analysis of those effects was needed...

  20. Code modernization and modularization of APEX and SWAT watershed simulation models

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) and APEX (Agricultural Policy / Environmental eXtender) are respectively large and small watershed simulation models derived from EPIC Environmental Policy Integrated Climate), a field-scale agroecology simulation model. All three models are coded in FORTRAN an...

  1. A watershed modeling approach to streamflow reconstruction from tree-ring records

    International Nuclear Information System (INIS)

    Saito, Laurel; Biondi, Franco; Salas, Jose D; Panorska, Anna K; Kozubowski, Tomasz J

    2008-01-01

    Insight into long-term changes of streamflow is critical for addressing implications of global warming for sustainable water management. To date, dendrohydrologists have employed sophisticated regression techniques to extend runoff records, but this empirical approach cannot directly test the influence of watershed factors that alter streamflow independently of climate. We designed a mechanistic watershed model to calculate streamflows at annual timescales using as few inputs as possible. The model was calibrated for upper reaches of the Walker River, which straddles the boundary between the Sierra Nevada of California and the Great Basin of Nevada. Even though the model incorporated simplified relationships between precipitation and other components of the hydrologic cycle, it predicted water year streamflows with correlations of 0.87 when appropriate precipitation values were used

  2. Mud, models, and managers: Reaching consensus on a watershed strategy for sediment load reduction

    Science.gov (United States)

    Wilcock, P. R.; Cho, S. J.; Gran, K.; Belmont, P.; Hobbs, B. F.; Heitkamp, B.; Marr, J. D.

    2017-12-01

    Agricultural nonpoint source sediment pollution is a leading cause of impairment of U.S. waters. Sediment sources are often on private land, such that solutions require not only considerable investment, but broad acceptance among landowners. We present the story of a participatory modeling exercise whose goal was to develop a consensus strategy for reducing sediment loading from the Greater Blue Earth River Basin, a large (9,200 km2) watershed in southern Minnesota dominated by row crop agriculture. The Collaborative for Sediment Source Reduction was a stakeholder group of farmers, industry representatives, conservation groups, and regulatory agencies. We used a participatory modeling approach to promote understanding of the problem, to define the scope of solutions acceptable to farmers, to develop confidence in a watershed model, and to reach consensus on a watershed strategy. We found that no existing watershed model could provide a reliable estimate of sediment response to management actions and developed a purpose-built model that could provide reliable, transparent, and fast answers. Because increased stream flow was identified as an important driver of sediment loading, the model and solutions included both hydrologic and sediment transport components. The model was based on an annual sediment budget with management actions serving to proportionally reduce both sediment sources and sediment delivery. Importantly, the model was developed in collaboration with stakeholders, such that a shared understanding emerged regarding of the modeling challenges and the reliability of information used to strongly constrain model output. The simplicity of the modeling approach supported stakeholder engagement and understanding, thereby lowering the social barrier between expert modeler and concerned stakeholder. The consensus strategy focused on water storage higher in the watershed in order to reduce river discharge and the large supply of sediment from near

  3. Climate change impacts in Zhuoshui watershed, Taiwan

    Science.gov (United States)

    Chao, Yi-Chiung; Liu, Pei-Ling; Cheng, Chao-Tzuen; Li, Hsin-Chi; Wu, Tingyeh; Chen, Wei-Bo; Shih, Hung-Ju

    2017-04-01

    There are 5.3 typhoons hit Taiwan per year on average in last decade. Typhoon Morakot in 2009, the most severe typhoon, causes huge damage in Taiwan, including 677 casualty and roughly NT 110 billion (3.3 billion USD) in economic loss. Some researches documented that typhoon frequency will decrease but increase in intensity in western North Pacific region. It is usually preferred to use high resolution dynamical model to get better projection of extreme events; because coarse resolution models cannot simulate intense extreme events. Under that consideration, dynamical downscaling climate data was chosen to describe typhoon satisfactorily. One of the aims for Taiwan Climate Change Projection and Information Platform (TCCIP) is to demonstrate the linkage between climate change data and watershed impact models. The purpose is to understand relative disasters induced by extreme rainfall (typhoons) under climate change in watersheds including landslides, debris flows, channel erosion and deposition, floods, and economic loss. The study applied dynamic downscaling approach to release climate change projected typhoon events under RCP 8.5, the worst-case scenario. The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability (TRIGRS) and FLO-2D models, then, were used to simulate hillslope disaster impacts in the upstream of Zhuoshui River. CCHE1D model was used to elevate the sediment erosion or deposition in channel. FVCOM model was used to asses a flood impact in urban area in the downstream. Finally, whole potential loss associate with these typhoon events was evaluated by the Taiwan Typhoon Loss Assessment System (TLAS) under climate change scenario. Results showed that the total loss will increase roughly by NT 49.7 billion (1.6 billion USD) in future in Zhuoshui watershed in Taiwan. The results of this research could help to understand future impact; however model bias still exists. Because typhoon track is a critical factor to consider regional

  4. Dendritic Connectivity, Heterogeneity, and Scaling in Urban Stormwater Networks: Implications for Socio-Hydrology

    Science.gov (United States)

    Mejia, A.; Jovanovic, T.; Hale, R. L.; Gironas, J. A.

    2017-12-01

    Urban stormwater networks (USNs) are unique dendritic (tree-like) structures that combine both artificial (e.g., swales and pipes) and natural (e.g., streams and wetlands) components. They are central to stream ecosystem structure and function in urban watersheds. The emphasis of conventional stormwater management, however, has been on localized, temporal impacts (e.g., changes to hydrographs at discrete locations), and the performance of individual stormwater control measures. This is the case even though control measures are implemented to prevent impacts on the USN. We develop a modeling approach to retrospectively study hydrological fluxes and states in USNs and apply the model to an urban watershed in Scottsdale, Arizona, USA. Using outputs from the model, we analyze over space and time the network properties of dendritic connectivity, heterogeneity, and scaling. Results show that as the network growth over time, due to increasing urbanization, it tends to become more homogenous in terms of topological features but increasingly heterogeneous in terms of dynamic features. We further use the modeling results to address socio-hydrological implications for USNs. We find that the adoption over time of evolving management strategies (e.g., widespread implementation of vegetated swales and retention ponds versus pipes) may be locally beneficial to the USN but benefits may not propagate systematically through the network. The latter can be reinforced by sudden, perhaps unintended, changes to the overall dendritic connectivity.

  5. Autonomous watersheds: Reducing flooding and stream erosion through real-time control

    Science.gov (United States)

    Kerkez, B.; Wong, B. P.

    2017-12-01

    We introduce an analytical toolchain, based on dynamical system theory and feedback control, to determine how many control points (valves, gates, pumps, etc.) are needed to transform urban watersheds from static to adaptive. Advances and distributed sensing and control stand to fundamentally change how we manage urban watersheds. In lieu of new and costly infrastructure, the real-time control of stormwater systems will reduce flooding, mitigate stream erosion, and improve the treatment of polluted runoff. We discuss the how open source technologies, in the form of wireless sensor nodes and remotely-controllable valves (open-storm.org), have been deployed to build "smart" stormwater systems in the Midwestern US. Unlike "static" infrastructure, which cannot readily adapt to changing inputs and land uses, these distributed control assets allow entire watersheds to be reconfigured on a storm-by-storm basis. Our results show how the control of even just a few valves within urban catchments (1-10km^2) allows for the real-time "shaping" of hydrographs, which reduces downstream erosion and flooding. We also introduce an equivalence framework that can be used by decision-makers to objectively compare investments into "smart" system to more traditional solutions, such as gray and green stormwater infrastructure.

  6. Calibration and validation of the SWAT model for a forested watershed in coastal South Carolina

    Science.gov (United States)

    Devendra M. Amatya; Elizabeth B. Haley; Norman S. Levine; Timothy J. Callahan; Artur Radecki-Pawlik; Manoj K. Jha

    2008-01-01

    Modeling the hydrology of low-gradient coastal watersheds on shallow, poorly drained soils is a challenging task due to the complexities in watershed delineation, runoff generation processes and pathways, flooding, and submergence caused by tropical storms. The objective of the study is to calibrate and validate a GIS-based spatially-distributed hydrologic model, SWAT...

  7. Patterns of Wastewater Infrastructure along a Gradient of Coastal Urbanization: A Study of the Puget Sound Region

    Directory of Open Access Journals (Sweden)

    Daniele Spirandelli

    2015-11-01

    Full Text Available The aim of this paper is to explore patterns of wastewater infrastructures (sewers vs. septic tanks in urbanizing watersheds across a coastal metropolitan region. This research combines an urban-rural gradient with spatial metrics at the patch and watershed scale (proportion of parcels on a treatment system, septic density, lot size and percent imperviousness to analyze wastewater patterns in the Puget Sound, WA, USA. Results show that most urban residential parcels are hooked up to a sewer, although there remain urban residences on a septic tank with small lots. I find a complex arrangement of wastewater treatment in suburban watersheds representing a patchwork of parcels on sewers and septic tanks. Sewers dominate in total numbers, while the density of septic tanks is highest in this portion of the urban gradient. Lot size decreases from rural to urban; however, it varies depending on the type of wastewater treatment system. In urban watersheds, lots on septic tanks are significantly smaller than lots in suburban and rural watersheds and of a similar size compared to lots on sewers. I also find a significant difference in the amount of impervious surfaces in watersheds dominated by sewers vs. septic tanks. In the urban portion of the gradient, the amount of paved surfaces in parcels with septic tanks is also similar in level as parcels with sewers. I discuss how these patterns emerge from the interplay of biophysical, socio-economic and technological factors and how different regulatory regimes for septic tanks and sewers may further induce these patterns.

  8. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  9. Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  10. Watersheds in Baltimore, Maryland: understanding and application of integrated ecological and social processes

    Science.gov (United States)

    Steward T.A. Pickett; Kenneth T. Belt; Michael F. Galvin; Peter M. Groffman; J. Morgan Grove; Donald C. Outen; Richard V. Pouyat; William P. Stack; Mary L. Cadenasso

    2007-01-01

    The Water and Watersheds program has made significant and lasting contributions to the basic understanding of the complex ecological system of Baltimore, MD. Funded at roughly the same time as the urban Long- Term Ecological Research (LTER) project in Baltimore, the Water and Watersheds grant and the LTER grant together established the Baltimore Ecosystem Study (BES)...

  11. Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina

    Science.gov (United States)

    Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila

    2007-01-01

    Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...

  12. Improving the temporal transposability of lumped hydrological models on twenty diversified U.S. watersheds

    Directory of Open Access Journals (Sweden)

    G. Seiller

    2015-03-01

    Full Text Available Study region: Twenty diversified U.S. watersheds. Study focus: Identifying optimal parameter sets for hydrological modeling on a specific catchment remains an important challenge for numerous applied and research projects. This is particularly the case when working under contrasted climate conditions that question the temporal transposability of the parameters. Methodologies exist, mainly based on Differential Split Sample Tests, to examine this concern. This work assesses the improved temporal transposability of a multimodel implementation, based on twenty dissimilar lumped conceptual structures and on twenty U.S. watersheds, over the performance of the individual models. New hydrological insights for the region: Individual and collective temporal transposabilities are analyzed and compared on the twenty studied watersheds. Results show that individual models performances on contrasted climate conditions are very dissimilar depending on test period and watershed, without the possibility to identify a best solution in all circumstances. They also confirm that performance and robustness are clearly enhanced using an ensemble of rainfall-runoff models instead of individual ones. The use of (calibrated weight averaged multimodels further improves temporal transposability over simple averaged ensemble, in most instances, confirming added-value of this approach but also the need to evaluate how individual models compensate each other errors. Keywords: Rainfall-runoff modeling, Multimodel approach, Differential Split Sample Test, Deterministic combination, Outputs averaging

  13. A Stochastic Water Balance Framework for Lowland Watersheds

    Science.gov (United States)

    Thompson, Sally; MacVean, Lissa; Sivapalan, Murugesu

    2017-11-01

    The water balance dynamics in lowland watersheds are influenced not only by local hydroclimatic controls on energy and water availability, but also by imports of water from the upstream watershed. These imports result in a stochastic extent of inundation in lowland watersheds that is determined by the local flood regime, watershed topography, and the rate of loss processes such as drainage and evaporation. Thus, lowland watershed water balances depend on two stochastic processes—rainfall and local inundation dynamics. Lowlands are high productivity environments that are disproportionately associated with urbanization, high productivity agriculture, biodiversity, and flood risk. Consequently, they are being rapidly altered by human development—generally with clear economic and social motivation—but also with significant trade-offs in ecosystem services provision, directly related to changes in the components and variability of the lowland water balance. We present a stochastic framework to assess the lowland water balance and its sensitivity to two common human interventions—replacement of native vegetation with alternative land uses, and construction of local flood protection levees. By providing analytical solutions for the mean and PDF of the water balance components, the proposed framework provides a mechanism to connect human interventions to hydrologic outcomes, and, in conjunction with ecosystem service production estimates, to evaluate trade-offs associated with lowland watershed development.

  14. Application of the SWAT model to an endorheic watershed in the Central Spanish Pre-Pyrenees: Methodological approach and preliminary results

    Science.gov (United States)

    Gaspar, Leticia; White, Sue; Navas, Ana; López-Vicente, Manuel; Palazón, Leticia

    2013-04-01

    Modelling runoff and sediment transport at watershed scale are key tools to predict hydrological and sediment processes, identify soil sediment sources and estimate sediment yield, with the purpose of better managing soil and water resources. This study aims to apply the SWAT model in an endorheic watershed in the Central Spanish Pre-Pyrenees, where there have been a number of previous field-based studies on sediment sources and transfers. The Soil and Water Assessment Tool (SWAT) is a process based semi-distributed watershed scale hydrologic model, which can provide a high level of spatial detail by allowing the watershed to be divided into sub-basins. This study addresses the challenge of applying the SWAT model to an endorheic watershed that drains to a central lake, without external output, and without a network of permanent rivers. In this case it has been shown that the SWAT model does not correctly reproduce the stream network when using automatic watershed delineation, even with a high resolution Digital Elevation Model (5 x 5 metres). For this purpose, different approaches needed to be considered, such as i) user-defined watersheds and streams, ii) burning in a stream network or iii) modelling each sub-watershed separately. The objective of this study was to develop a new methodological approach for correctly simulating the main hydrological processes in an endorheic and complex karst watershed of the Spanish Pre-Pyrenees. The Estanque de Arriba Lake watershed (74 ha) is an endorheic system located in the Spanish Central Pre-Pyrenees. This watershed holds a small and permanent lake of fresh water (1.7 ha) and is a Site of Community Importance (European NATURA 2000 network). The study area is characterized by an abrupt topography with altitude range between 679 and 862 m and an average slope gradient of 24 %. Steep slopes (> 24 %) occupy the northern part of the watershed, whereas gentle slopes (

  15. Predicting Bacteria Removal by Enhanced Stormwater Control Measures (SCMs) at the Watershed Scale

    Science.gov (United States)

    Wolfand, J.; Bell, C. D.; Boehm, A. B.; Hogue, T. S.; Luthy, R. G.

    2017-12-01

    Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Fecal indicator bacteria are present in high concentrations in stormwater and are strictly regulated in receiving waters; yet, their fate and transport in urban stormwater is poorly understood. Stormwater control measures (SCMs) are often used to treat, infiltrate, and release urban runoff, but field measurements show that the removal of bacteria by these structural solutions is limited (median log removal = 0.24, n = 370). Researchers have therefore looked to improve bacterial removal by enhancing SCMs through alterations in flow regimes or adding geomedia such as biochar. The present research seeks to develop a model to predict removal of fecal indicator bacteria by enhanced SCMs at the watershed scale in a semi-arid climate. Using the highly developed Ballona Creek watershed (290 km2) located in Los Angeles County as a case study, a hydrologic model is coupled with a stochastic water quality model to predict E. coli concentration near the outfall of the Ballona Creek, Santa Monica Bay. A hydrologic model was developed using EPA SWMM, calibrated for flow from water year 1998-2006 (NSE = 0.94; R2 = 0.94), and validated from water year 2007-2015 (NSE = 0.90; R2 = 0.93). This bacterial loading model was then linked to EPA SUSTAIN and a SCM bacterial removal script to simulate log removal of bacteria by various SCMs and predict bacterial concentrations in Ballona Creek. Preliminary results suggest small enhancements to SCMs that improve bacterial removal (<0.5 log removal) may offer large benefits to surface water quality and enable communities such as Los Angeles to meet their regulatory requirements.

  16. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina

    Science.gov (United States)

    D.M. Amatya; M.K. Jha.

    2011-01-01

    Modeling the hydrology of low�]gradient forested watersheds on shallow, poorly drained soils of the coastal plain is a challenging task due to complexities in watershed delineation, microtopography, evapotranspiration, runoff generation processes and pathways including flooding and submergence caused by tropical storms, and complexity of vegetation species....

  17. Advancement in Watershed Modelling Using Dynamic Lateral and Longitudinal Sediment (Dis)connectivity Prediction

    Science.gov (United States)

    Mahoney, D. T.; al Aamery, N. M. H.; Fox, J.

    2017-12-01

    The authors find that sediment (dis)connectivity has seldom taken precedence within watershed models, and the present study advances this modeling framework and applies the modeling within a bedrock-controlled system. Sediment (dis)connectivity, defined as the detachment and transport of sediment from source to sink between geomorphic zones, is a major control on sediment transport. Given the availability of high resolution geospatial data, coupling sediment connectivity concepts within sediment prediction models offers an approach to simulate sediment sources and pathways within a watershed's sediment cascade. Bedrock controlled catchments are potentially unique due to the presence of rock outcrops causing longitudinal impedance to sediment transport pathways in turn impacting the longitudinal distribution of the energy gradient responsible for conveying sediment. Therefore, the authors were motivated by the need to formulate a sediment transport model that couples sediment (dis)connectivity knowledge to predict sediment flux for bedrock controlled catchments. A watershed-scale sediment transport model was formulated that incorporates sediment (dis)connectivity knowledge collected via field reconnaissance and predicts sediment flux through coupling with the Partheniades equation and sediment continuity model. Sediment (dis)connectivity was formulated by coupling probabilistic upland lateral connectivity prediction with instream longitudinal connectivity assessments via discretization of fluid and sediment pathways. Flux predictions from the upland lateral connectivity model served as an input to the instream longitudinal connectivity model. Disconnectivity in the instream model was simulated via the discretization of stream reaches due to barriers such as bedrock outcroppings and man-made check dams. The model was tested for a bedrock controlled catchment in Kentucky, USA for which extensive historic water and sediment flux data was available. Predicted sediment

  18. Potential human pathogenic bacteria in a mixed urban watershed as revealed by pyrosequencing.

    Directory of Open Access Journals (Sweden)

    A Mark Ibekwe

    Full Text Available Current microbial source tracking (MST methods for water depend on testing for fecal indicator bacterial counts or specific marker gene sequences to identify fecal contamination where potential human pathogenic bacteria could be present. In this study, we applied 454 high-throughput pyrosequencing to identify bacterial pathogen DNA sequences, including those not traditionally monitored by MST and correlated their abundances to specific sources of contamination such as urban runoff and agricultural runoff from concentrated animal feeding operations (CAFOs, recreation park area, waste-water treatment plants, and natural sites with little or no human activities. Samples for pyrosequencing were surface water, and sediment collected from 19 sites. A total of 12,959 16S rRNA gene sequences with average length of ≤400 bp were obtained, and were assigned to corresponding taxonomic ranks using ribosomal database project (RDP, Classifier and Greengenes databases. The percent of total potential pathogens were highest in urban runoff water (7.94%, agricultural runoff sediment (6.52%, and Prado Park sediment (6.00%, respectively. Although the numbers of DNA sequence tags from pyrosequencing were very high for the natural site, corresponding percent potential pathogens were very low (3.78-4.08%. Most of the potential pathogenic bacterial sequences identified were from three major phyla, namely, Proteobacteria, Bacteroidetes, and Firmicutes. The use of deep sequencing may provide improved and faster methods for the identification of pathogen sources in most watersheds so that better risk assessment methods may be developed to enhance public health.

  19. Ground Water is a Chronic Source of Chloride to Surface Water of an Urban Stream Exposed to Road Salt in a Chesapeake Bay Watershed

    Science.gov (United States)

    Mayer, P.; Doheny, E.; Kaushal, S.; Groffman, P.; Striz, E.

    2006-05-01

    Recent evidence from the mid-Atlantic suggests that freshwater supplies are threatened by chronic chloride inputs from road salts applied to improve highway safety. Elevated chloride levels also may limit the ability of aquatic systems to microbially process nitrate nitrogen, a nutrient whose elevated levels pose human and ecological threats. Understanding the behavior of chloride in urban watersheds where road salts are applied is critical to predicting subsequent impacts to ecosystem health and drinking water supplies. Here we report on a long-term study of water chemistry in Minebank Run, a recently restored stream in an urban watershed of Towson, MD that receives chronic chloride inputs from the 695 Beltway highway and connecting arteries. Chloride, sodium, and specific conductance were greatly elevated in the both surface water and ground water of Minebank Run, spiking in correspondence to road salt application in the winter. Chloride levels were consistently higher in ground water of the bank side of a minor roadway and downstream of the 695 Beltway. Surface water chloride levels remained elevated throughout the year apparently because ground water continued to supply surface water with chloride even after road salt application ceased. Thus, ground water may represent a chronic source of chloride to surface water, thereby contributing to the upward trend in freshwater salinity in urbanizing areas. Stream susceptibility to road salt impacts may depend upon ground water hydrology and stream geomorphology. However, geomorphic stream restoration practices widely used in the mid-Atlantic are not designed to address salinity effects. Source control of road salts may be necessary to reduce environmental risk.

  20. The Virtual Watershed Observatory: Cyberinfrastructure for Model-Data Integration and Access

    Science.gov (United States)

    Duffy, C.; Leonard, L. N.; Giles, L.; Bhatt, G.; Yu, X.

    2011-12-01

    The Virtual Watershed Observatory (VWO) is a concept where scientists, water managers, educators and the general public can create a virtual observatory from integrated hydrologic model results, national databases and historical or real-time observations via web services. In this paper, we propose a prototype for automated and virtualized web services software using national data products for climate reanalysis, soils, geology, terrain and land cover. The VWO has the broad purpose of making accessible water resource simulations, real-time data assimilation, calibration and archival at the scale of HUC 12 watersheds (Hydrologic Unit Code) anywhere in the continental US. Our prototype for model-data integration focuses on creating tools for fast data storage from selected national databases, as well as the computational resources necessary for a dynamic, distributed watershed simulation. The paper will describe cyberinfrastructure tools and workflow that attempts to resolve the problem of model-data accessibility and scalability such that individuals, research teams, managers and educators can create a WVO in a desired context. Examples are given for the NSF-funded Shale Hills Critical Zone Observatory and the European Critical Zone Observatories within the SoilTrEC project. In the future implementation of WVO services will benefit from the development of a cloud cyber infrastructure as the prototype evolves to data and model intensive computation for continental scale water resource predictions.

  1. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region

    Science.gov (United States)

    Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.

    2018-01-01

    The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing

  2. Evaluating watershed protection programs in New York City's Cannonsville Reservoir source watershed using SWAT-HS

    Science.gov (United States)

    Hoang, L.; Mukundan, R.; Moore, K. E.; Owens, E. M.; Steenhuis, T. S.

    2017-12-01

    New York City (NYC)'s reservoirs supply over one billion gallons of drinking water each day to over nine million consumers in NYC and upstate communities. The City has invested more than $1.5 billion in watershed protection programs to maintain a waiver from filtration for the Catskill and Delaware Systems. In the last 25 years, the NYC Department of Environmental Protection (NYCDEP) has implemented programs in cooperation with upstate communities that include nutrient management, crop rotations, improvement of barnyards and manure storage, implementing tertiary treatment for Phosphorus (P) in wastewater treatment plants, and replacing failed septic systems in an effort to reduce P loads to water supply reservoirs. There have been several modeling studies evaluating the effect of agricultural Best Management Practices (BMPs) on P control in the Cannonsville watershed in the Delaware System. Although these studies showed that BMPs would reduce dissolved P losses, they were limited to farm-scale or watershed-scale estimates of reduction factors without consideration of the dynamic nature of overland flow and P losses from variable source areas. Recently, we developed the process-based SWAT-Hillslope (SWAT-HS) model, a modified version of the Soil and Water Assessment Tool (SWAT) that can realistically predict variable source runoff processes. The objective of this study is to use the SWAT-HS model to evaluate watershed protection programs addressing both point and non-point sources of P. SWAT-HS predicts streamflow very well for the Cannonsville watershed with a daily Nash Sutcliffe Efficiency (NSE) of 0.85 at the watershed outlet and NSE values ranging from 0.56 - 0.82 at five other locations within the watershed. Based on good hydrological prediction, we applied the model to predict P loads using detailed P inputs that change over time due to the implementation of watershed protection programs. Results from P model predictions provide improved projections of P

  3. A Stochastic Multi-Media Model of Microbial Transport in Watersheds

    Science.gov (United States)

    Yeghiazarian, L.; Safwat, A.; Whiteaker, T.; Teklitz, A.; Nietch, C.; Maidment, D. R.; Best, E. P.

    2012-12-01

    Fecal contamination is the leading cause of surface-water impairment in the US, and fecal pathogens are capable of triggering massive outbreaks of gastrointestinal disease. The difficulty in prediction of water contamination has its roots in the stochastic variability of fecal pathogens in the environment, and in the complexity of microbial dynamics and interactions on the soil surface and in water. To address these challenges, we have developed a stochastic model whereby the transport of microorganisms in watersheds is considered in two broad categories: microorganisms that are attached to mineral or organic substrates in suspended sediment; and unattached microorganisms suspended in overland flow. The interactions of microorganisms with soil particles on the soil surface and in the overland flow lead to transitions of microorganisms between solid and aqueous media. The strength of attachment of microorganisms to soil particles is determined by the chemical characteristics of soils which are highly correlated with the particle size. The particle size class distribution in the suspended sediment is predicted by the Water Erosion Prediction Project (WEPP). The model is integrated with ArcGIS, resulting in a general transport-modeling framework applicable to a variety of biological and chemical surface water contaminants. Simulations are carried out for a case study of contaminant transport in the East Fork Little Miami River Watershed in Ohio. Model results include the spatial probability distribution of microbes in the watershed and can be used for assessment of (1) mechanisms dominating microbial transport, and (2) time and location of highest likelihood of microbial occurrence, thus yielding information on best water sampling strategies.

  4. Spatial interactions among ecosystem services in an urbanizing agricultural watershed.

    Science.gov (United States)

    Qiu, Jiangxiao; Turner, Monica G

    2013-07-16

    Understanding spatial distributions, synergies, and tradeoffs of multiple ecosystem services (benefits people derive from ecosystems) remains challenging. We analyzed the supply of 10 ecosystem services for 2006 across a large urbanizing agricultural watershed in the Upper Midwest of the United States, and asked the following: (i) Where are areas of high and low supply of individual ecosystem services, and are these areas spatially concordant across services? (ii) Where on the landscape are the strongest tradeoffs and synergies among ecosystem services located? (iii) For ecosystem service pairs that experience tradeoffs, what distinguishes locations that are "win-win" exceptions from other locations? Spatial patterns of high supply for multiple ecosystem services often were not coincident; locations where six or more services were produced at high levels (upper 20th percentile) occupied only 3.3% of the landscape. Most relationships among ecosystem services were synergies, but tradeoffs occurred between crop production and water quality. Ecosystem services related to water quality and quantity separated into three different groups, indicating that management to sustain freshwater services along with other ecosystem services will not be simple. Despite overall tradeoffs between crop production and water quality, some locations were positive for both, suggesting that tradeoffs are not inevitable everywhere and might be ameliorated in some locations. Overall, we found that different areas of the landscape supplied different suites of ecosystem services, and their lack of spatial concordance suggests the importance of managing over large areas to sustain multiple ecosystem services.

  5. Modelling Snowmelt Runoff under Climate Change Scenarios in an Ungauged Mountainous Watershed, Northwest China

    Directory of Open Access Journals (Sweden)

    Yonggang Ma

    2013-01-01

    Full Text Available An integrated modeling system has been developed for analyzing the impact of climate change on snowmelt runoff in Kaidu Watershed, Northwest China. The system couples Hadley Centre Coupled Model version 3 (HadCM3 outputs with Snowmelt Runoff Model (SRM. The SRM was verified against observed discharge for outlet hydrological station of the watershed during the period from April to September in 2001 and generally performed well for Nash-Sutcliffe coefficient (EF and water balance coefficient (RE. The EF is approximately over 0.8, and the water balance error is lower than ± 10%, indicating reasonable prediction accuracy. The Statistical Downscaling Model (SDSM was used to downscale coarse outputs of HadCM3, and then the downscaled future climate data were used as inputs of the SRM. Four scenarios were considered for analyzing the climate change impact on snowmelt flow in the Kaidu Watershed. And the results indicated that watershed hydrology would alter under different climate change scenarios. The stream flow in spring is likely to increase with the increased mean temperature; the discharge and peck flow in summer decrease with the decreased precipitation under Scenarios 1 and 2. Moreover, the consideration of the change in cryosphere area would intensify the variability of stream flow under Scenarios 3 and 4. The modeling results provide useful decision support for water resources management.

  6. Scientific and technical advisory committee review of the nutrient inputs to the watershed model

    Science.gov (United States)

    The following is a report by a STAC Review Team concerning the methods and documentation used by the Chesapeake Bay Partnership for evaluation of nutrient inputs to Phase 6 of the Chesapeake Bay Watershed Model. The “STAC Review of the Nutrient Inputs to the Watershed Model” (previously referred to...

  7. Impact of urbanization on flood of Shigu creek in Dongguan city

    Science.gov (United States)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  8. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    Science.gov (United States)

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  9. A watershed-scale goals approach to assessing and funding wastewater infrastructure.

    Science.gov (United States)

    Rahm, Brian G; Vedachalam, Sridhar; Shen, Jerry; Woodbury, Peter B; Riha, Susan J

    2013-11-15

    Capital needs during the next twenty years for public wastewater treatment, piping, combined sewer overflow correction, and storm-water management are estimated to be approximately $300 billion for the USA. Financing these needs is a significant challenge, as Federal funding for the Clean Water Act has been reduced by 70% during the last twenty years. There is an urgent need for new approaches to assist states and other decision makers to prioritize wastewater maintenance and improvements. We present a methodology for performing an integrated quantitative watershed-scale goals assessment for sustaining wastewater infrastructure. We applied this methodology to ten watersheds of the Hudson-Mohawk basin in New York State, USA that together are home to more than 2.7 million people, cover 3.5 million hectares, and contain more than 36,000 km of streams. We assembled data on 183 POTWs treating approximately 1.5 million m(3) of wastewater per day. For each watershed, we analyzed eight metrics: Growth Capacity, Capacity Density, Soil Suitability, Violations, Tributary Length Impacted, Tributary Capital Cost, Volume Capital Cost, and Population Capital Cost. These metrics were integrated into three goals for watershed-scale management: Tributary Protection, Urban Development, and Urban-Rural Integration. Our results demonstrate that the methodology can be implemented using widely available data, although some verification of data is required. Furthermore, we demonstrate substantial differences in character, need, and the appropriateness of different management strategies among the ten watersheds. These results suggest that it is feasible to perform watershed-scale goals assessment to augment existing approaches to wastewater infrastructure analysis and planning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Improved daily precipitation nitrate and ammonium concentration models for the Chesapeake Bay Watershed.

    Science.gov (United States)

    Grimm, J W; Lynch, J A

    2005-06-01

    Daily precipitation nitrate and ammonium concentration models were developed for the Chesapeake Bay Watershed (USA) using a linear least-squares regression approach and precipitation chemistry data from 29 National Atmospheric Deposition Program/National Trends Network (NADP/NTN) sites. Only weekly samples that comprised a single precipitation event were used in model development. The most significant variables in both ammonium and nitrate models included: precipitation volume, the number of days since the last event, a measure of seasonality, latitude, and the proportion of land within 8km covered by forest or devoted to industry and transportation. Additional variables included in the nitrate model were the proportion of land within 0.8km covered by water and/or forest. Local and regional ammonia and nitrogen oxide emissions were not as well correlated as land cover. Modeled concentrations compared very well with event chemistry data collected at six NADP/AirMoN sites within the Chesapeake Bay Watershed. Wet deposition estimates were also consistent with observed deposition at selected sites. Accurately describing the spatial distribution of precipitation volume throughout the watershed is important in providing critical estimates of wet-fall deposition of ammonium and nitrate.

  11. Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Dave

    1995-04-01

    The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

  12. Pataha Creek Model Watershed : January 2000-December 2002 Habitat Conservation Projects.

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Duane G.

    2003-04-01

    The projects outlined in detail on the attached project reports were implemented from calendar year 2000 through 2002 in the Pataha Creek Watershed. The Pataha Creek Watershed was selected in 1993, along with the Tucannon and Asotin Creeks, as model watersheds by NPPC. In previous years, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and were the main focus of the implementation phase of the watershed plan. These practices were the main focus of the watershed plan to reduce the majority of the sediment entering the stream. Prior to 2000, several bank stabilization projects were installed but the installation costs became prohibitive and these types of projects were reduced in numbers over the following years. The years 2000 through 2002 were years where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. The Pataha Creek has steelhead in the upper reaches and native and planted rainbow trout in the mid to upper portion. Suckers, pikeminow and shiners inhabit the lower portion because of the higher water temperatures and lack of vegetation. The improvement of riparian habitat will improve habitat for the desired fish species. The lower portion of the Pataha Creek could eventually develop into spawning and rearing habitat for chinook salmon if some migration barriers are removed and habitat is restored. The upland projects completed during 2000 through 2002 were practices that reduce erosion from the cropland. Three-year continuous no-till projects were finishing up and the monitoring of this particular practice is ongoing. Its direct impact on soil erosion along with the economical aspects is being studied. Other practices such as terrace, waterway, sediment

  13. Land Use and Climate Alter Carbon Dynamics in Watersheds of Chesapeake Bay

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Grese, M.; Pennino, M. J.; Belt, K. T.; Findlay, S.; Groffman, P. M.; Mayer, P. M.; Murthy, S.; Blomquist, J.

    2011-12-01

    There have been long-term changes in the quantity of organic carbon in streams and rivers globally. Shifts in the quality of organic carbon due to environmental changes may also impact downstream ecosystem metabolism and fate and transport of contaminants. We investigated long-term impacts of land use and hydrologic variability on organic carbon transport in watersheds of the Baltimore Long-Term Ecological Research (LTER) site and large rivers of the Chesapeake Bay. In small and medium-sized watersheds of the Baltimore LTER site, urban land use increased organic carbon concentrations in streams several-fold compared to forest and agricultural watersheds. Enzymatic activities of stream microbes were significantly altered across watershed land use during a record wet year. During the wet year, short-term bioassays showed that bioavailable dissolved organic carbon varied seasonally, but comprised a substantial proportion of the dissolved organic carbon pool. Similarly, measurements of biochemical oxygen demand across hydrologic variability suggest that reactive organic carbon export from small and medium-sized urban watersheds during storms can be substantial. At a larger regional scale, major tributaries such as the Potomac, Susquehanna, Patuxent, and Choptank rivers also showed similar variability as smaller watersheds in quantity and quality of organic carbon based on land use and climate. There were distinct isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices for rivers influenced by different land uses. Stable isotopic values of d13C of particulate organic matter and fluorescence excitation emission matrices showed marked seasonal changes in organic matter quality during spring floods in the Potomac River at Washington D.C. Across watershed size, there appeared to be differences in seasonal cycles of organic carbon quality and this may have been based on the degree of hydrologic connectivity between watersheds and

  14. Stormwater Infrastructure Effects on Urban Nitrogen Budgets

    Science.gov (United States)

    Hale, R. L.; Turnbull, L.; Earl, S.; Moratto, S.; Shorts, D.; Grimm, N. B.

    2012-12-01

    The effects of urbanization on downstream ecosystems, particularly due to changes in nutrient inputs and altered hydrology are well studied. Less is known, however, about nutrient transport and processing within urban watersheds. Previous research has focused on the roles of land cover and land use but drainage system design and configuration also are apt to play a significant role in controlling the transport of water and nutrients downstream. Furthermore, variability in drainage systems within and between cities may lead to differences in the effects of urbanization on downstream ecosystems over time and space. We established a nested stormwater sampling network with 10 watersheds ranging in size from 5 to 22,000 ha in the Indian Bend Wash watershed in Scottsdale, AZ. Small (density residential) but were drained by a variety of stormwater infrastructure including surface runoff, pipes, natural or engineered washes, and retention basins. We quantified discharge and precipitation at the outflow of each subwatershed and collected stormwater and rainfall samples for analyses of dissolved nitrogen species and δ15N, δ18O and Δ17O isotopes of nitrate (NO3) over two years. We also measured potential denitrification rates in washes and retention basins within our sites, and collected soil and pavement samples to describe pools of N within our watersheds. We used these data in combination with literature data on soil N transformations to construct N budgets for each watershed for a single event and at annual scales. We found that stormwater infrastructure type strongly affects N retention. Watersheds with surface or pipe drainage were sources of N downstream, whereas watersheds drained by washes or retention basins retained 70-99% of N inputs in rainfall. Event scale N retention was strongly correlated with hydrologic connectivity, as measured by runoff coefficients. Differences in δ15N, δ18O, and Δ17O isotopes of NO3 suggested that watersheds with decreased

  15. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT ...

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment tool (AGWA) is a GIS interface jointly developed by the USDA Agricultural Research Service, the U.S. Environmental Protection Agency, the University of Arizona, and the University of Wyoming to automate the parameterization and execution of the Soil Water Assessment Tool (SWAT) and KINEmatic Runoff and EROSion (KINEROS2) hydrologic models. The application of these two models allows AGWA to conduct hydrologic modeling and watershed assessments at multiple temporal and spatial scales. AGWA’s current outputs are runoff (volumes and peaks) and sediment yield, plus nitrogen and phosphorus with the SWAT model. AGWA uses commonly available GIS data layers to fully parameterize, execute, and visualize results from both models. Through an intuitive interface the user selects an outlet from which AGWA delineates and discretizes the watershed using a Digital Elevation Model (DEM) based on the individual model requirements. The watershed model elements are then intersected with soils and land cover data layers to derive the requisite model input parameters. The chosen model is then executed, and the results are imported back into AGWA for visualization. This allows managers to identify potential problem areas where additional monitoring can be undertaken or mitigation activities can be focused. AGWA also has tools to apply an array of best management practices. There are currently two versions of AGWA available; AGWA 1.5 for

  16. Modeling Fate and Transport of Fecal Coliform Bacteria Using SWAT 2005 (Case Study: Jajrood River Watershed, Iran)

    Science.gov (United States)

    Maghrebi, M.; Tajrishy, M.

    2010-12-01

    Jajrood River watershed is one of the main drinking water resources of the capital city of Tehran, Iran. In addition it has been available as many recreational usages especially in the warm months. As a result of being located near one of the crowded cities of the world, a variety of microbial pollutions is commonly perceived in the Jajrood River. Among them, there are strong concerns about fecal coliform bacteria concentration. This article aimed to model fate and transport of fecal coliform bacteria in Jajrood River watershed using Soil and Water Assessment Tool (SWAT) model version 2005. Potential pollutant sources in the study area were detected and quantified for modeling purposes. In spite of being lack of knowledge about bacteria die-off rate in small river bodies, as well as in other watershed-based forms, fecal coliform bacteria die-off rates were estimated using both laboratory and field data investigations with some simplifications. The SWAT model was calibrated over an extended time period (1997-2002) for this watershed. The river flow calibrated using SUFI-2 software and resulted in a very good outputs (R2=0.82, E=0.81). Furthermore SWAT model was validated over January 2003 to September 2005 in the study area and has resulted in good outputs (R2=0.61, E=0.57). This research illustrates SWAT 2005 capability to model fecal coliform bacteria in a populated watershed, and deals with most of watershed microbial pollution sources that are usually observed in developing countries. Fecal coliform concentration simulation results were mostly in the same order in comparison with real data. However, Differences were judged to be related to lack of input data. In this article different aspects of SWAT capabilities for modeling of fecal coliform bacteria concentration will be reviewed and it will present new insights in bacteria modeling procedures especially for mountainous, high populated and small sized watersheds.

  17. ASSESSMENT OF WATER BALANCE OF A WATERSHED USING SWAT MODEL FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    Sandra George; Sathian, K.K.

    2016-01-01

    An attempt has been made in this study to assess the hydrological behavior of the Kurumali sub basin of Karuvannur river basin using SWAT model and other geospatial technologies. All the thematic maps and attribute information of the watershed have been collected from various Government agencies. SWAT model has been set up for the Kurumali sub basin by inputting the digital thematic maps, physical properties of soil and climatic parameters. Total area of the watershed corresponding to the out...

  18. Multiobjective Optimization Combining BMP Technology and Land Preservation for Watershed-based Stormwater Management

    Science.gov (United States)

    McGarity, A. E.

    2009-12-01

    Recent progress has been made developing decision-support models for optimal deployment of best management practices (BMP’s) in an urban watershed to achieve water quality goals. One example is the high-level screening model StormWISE, developed by the author (McGarity, 2006) that uses linear and nonlinear programming to narrow the search for optimal solutions to certain land use categories and drainage zones. Another example is the model SUSTAIN developed by USEPA and Tetra Tech (Lai, et al., 2006), which builds on the work of Yu, et al., 2002), that uses a detailed, computationally intensive simulation model driven by a genetic solver to select optimal BMP sites. However, a model that deals only with best management practice (BMP) site selections may fail to consider solutions that avoid future nonpoint pollutant loadings by preserving undeveloped land. This paper presents results of a recently completed research project in which water resource engineers partnered with experienced professionals at a land conservation trust to develop a multiobjective model for watershed management. The result is a revised version of StormWISE that can be used to identify optimal, cost-effective combinations of easements and similar land preservation tools for undeveloped sites along with low impact development (LID) and BMP technologies for developed sites. The goal is to achieve the watershed-wide limits on runoff volume and pollutant loads that are necessary to meet water quality goals as well as ecological benefits associated with habitat preservation and enhancement. A nonlinear programming formulation is presented for the extended StormWISE model that achieves desired levels of environmental benefits at minimum cost. Tradeoffs between different environmental benefits are generated by multiple runs of the model while varying the levels of each environmental benefit obtained. The model is solved using piecewise linearization of environmental benefit functions where each

  19. Use of Artificial Neural Network Models to Predict Indicator Organism Concentrations in an Urban Watershed

    Science.gov (United States)

    Mas, D. M.; Ahlfeld, D. P.

    2004-05-01

    Forecasting stream water quality is important for numerous aspects of resource protection and management. Fecal coliform and enteroccocus are primary indicator organisms used to assess potential pathogen contamination. Consequently, modeling the occurrence and concentration of fecal coliform and enterococcus is an important tool in watershed management. In addition, analyzing the relationship between model input and predicted indicator organisms is useful for elucidating possible sources of contamination and mechanisms of transport. While many process-based, statistical, and empirical models exist for water quality prediction, artificial neural network (ANN) models are increasingly being used for forecasting of water resources variables because ANNs are often capable of modeling complex systems for which behavioral rules are either unknown or difficult to simulate. The performance of ANNs compared to more established modeling approaches such as multiple linear regression (MLR) remains an importance research question. Data collected the U.S. Geological Survey in the lower Charles River in Massachusetts, USA in 1999-2000 was examined to determine correlation between various water quality constituents and indicator organisms and to explore the relationship between rainfall characteristics and indicator organism concentrations. Using the results of the statistical analysis to guide the selection of explanatory variables, MLR was performed to develop predictive equations for wet weather and dry weather conditions. The results show that the best-performing predictor variables are generally consistent for both indicator organisms considered. In addition, the regression equations show increasing indicator organism concentrations as a function of suspended sediment concentrations and length of time since last precipitation event, suggesting accumulation and wash off as a key mechanism of pathogen transport under wet weather conditions. This research also presents the

  20. Watershed-scale modeling of streamflow change in incised montane meadows

    Science.gov (United States)

    Essaid, Hedeff I.; Hill, Barry R.

    2014-01-01

    Land use practices have caused stream channel incision and water table decline in many montane meadows of the Western United States. Incision changes the magnitude and timing of streamflow in water supply source watersheds, a concern to resource managers and downstream water users. The hydrology of montane meadows under natural and incised conditions was investigated using watershed simulation for a range of hydrologic conditions. The results illustrate the interdependence between: watershed and meadow hydrology; bedrock and meadow aquifers; and surface and groundwater flow through the meadow for the modeled scenarios. During the wet season, stream incision resulted in less overland flow and interflow and more meadow recharge causing a net decrease in streamflow and increase in groundwater storage relative to natural meadow conditions. During the dry season, incision resulted in less meadow evapotranspiration and more groundwater discharge to the stream causing a net increase in streamflow and a decrease in groundwater storage relative to natural meadow conditions. In general, for a given meadow setting, the magnitude of change in summer streamflow and long-term change in watershed groundwater storage due to incision will depend on the combined effect of: reduced evapotranspiration in the eroded meadow; induced groundwater recharge; replenishment of dry season groundwater storage depletion in meadow and bedrock aquifers by precipitation during wet years; and groundwater storage depletion that is not replenished by precipitation during wet years.

  1. Increase in flood risk resulting from climate change in a developed urban watershed - the role of storm temporal patterns

    Science.gov (United States)

    Hettiarachchi, Suresh; Wasko, Conrad; Sharma, Ashish

    2018-03-01

    The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA) Atlas 14 intensity-duration-frequency (IDF) relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1) How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2) Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081-2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results also show that regional

  2. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  3. Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay

    National Research Council Canada - National Science Library

    Donigian, Anthony

    1998-01-01

    ... state of-the-art watershed modeling capability that includes detailed soil process simulation for agricultural areas, linked to an instream water quality and nutrient model capable of representing...

  4. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach

    Science.gov (United States)

    Rose, S.; Peters, N.E.

    2001-01-01

    For the period from 1958 to 1996, streamflow characteristics of a highly urbanized watershed were compared with less-urbanized and non-urbanized watersheds within a 20 000 km2 region in the vicinity of Atlanta, Georgia: In the Piedmont and Blue Ridge physiographic provinces of the southeastern USA. Water levels in several wells completed in surficial and crystalline-rock aquifers were also evaluated. Data were analysed for seven US Geological Survey (USGS) stream gauges, 17 National Weather Service rain gauges, and five USGS monitoring wells. Annual runoff coefficients (RCs; runoff as a fractional percentage of precipitation) for the urban stream (Peachtree Creek) were not significantly greater than for the less-urbanized watersheds. The RCs for some streams were similar to others and the similar streams were grouped according to location. The RCs decreased from the higher elevation and higher relief watersheds to the lower elevation and lower relief watersheds: Values were 0.54 for the two Blue Ridge streams. 0.37 for the four middle Piedmont streams (near Atlanta), and 0.28 for a southern Piedmont stream. For the 25 largest stormflows, the peak flows for Peachtree Creek were 30% to 100% greater then peak flows for the other stream. The storm recession period for the urban stream was 1-2 days less than that for the other streams and the recession was characterized by a 2-day storm recession constant that was, on average, 40 to 100% greater, i.e. streamflow decreased more rapidly than for the other streams. Baseflow recession constants ranged from 35 to 40% lower for Peachtree Creek than for the other streams; this is attributed to lower evapotranspiration losses, which result in a smaller change in groundwater storage than in the less-urbanized watersheds. Low flow of Peachtree Creek ranged from 25 to 35% less than the other streams, possibly the result of decreased infiltration caused by the more efficient routing of stormwater and the paving of groundwater

  5. Application of TREECS Modeling System to Strontium-90 for Borschi Watershed near Chernobyl, Ukraine

    International Nuclear Information System (INIS)

    Johnson, Billy E.; Dortch, Mark S.

    2014-01-01

    The Training Range Environmental Evaluation and Characterization System (TREECS™) ( (http://el.erdc.usace.army.mil/treecs/)) is being developed by the U.S. Army Engineer Research and Development Center (ERDC) for the U.S. Army to forecast the fate of munitions constituents (MC) (such as high explosives (HE) and metals) found on firing/training ranges, as well as those subsequently transported to surface water and groundwater. The overall purpose of TREECS™ is to provide environmental specialists with tools to assess the potential for MC migration into surface water and groundwater systems and to assess range management strategies to ensure protection of human health and the environment. The multimedia fate/transport models within TREECS™ are mathematical models of reduced form (e.g., reduced dimensionality) that allow rapid application with less input data requirements compared with more complicated models. Although TREECS™ was developed for the fate of MC from military ranges, it has general applicability to many other situations requiring prediction of contaminant (including radionuclide) fate in multi-media environmental systems. TREECS™ was applied to the Borschi watershed near the Chernobyl Nuclear Power Plant, Ukraine. At this site, TREECS™ demonstrated its use as a modeling tool to predict the fate of strontium 90 ( 90 Sr). The most sensitive and uncertain input for this application was the soil-water partitioning distribution coefficient (K d ) for 90 Sr. The TREECS™ soil model provided reasonable estimates of the surface water export flux of 90 Sr from the Borschi watershed when using a K d for 90 Sr of 200 L/kg. The computed export for the year 2000 was 0.18% of the watershed inventory of 90 Sr compared to the estimated export flux of 0.14% based on field data collected during 1999–2001. The model indicated that assumptions regarding the form of the inventory, whether dissolved or in solid phase form, did not appreciably affect export

  6. Bacteria transport simulation using APEX model in the Toenepi watershed, New Zealand

    Science.gov (United States)

    The Agricultural Policy/Environmental eXtender (APEX) model is a distributed, continuous, daily-time step small watershed-scale hydrologic and water quality model. In this study, the newly developed fecal-derived bacteria fate and transport subroutine was applied and evalated using APEX model. The e...

  7. Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed-An empirical model

    Science.gov (United States)

    Ator, Scott W.; Brakebill, John W.; Blomquist, Joel D.

    2011-01-01

    Spatially Referenced Regression on Watershed Attributes (SPARROW) was used to provide empirical estimates of the sources, fate, and transport of total nitrogen (TN) and total phosphorus (TP) in the Chesapeake Bay watershed, and the mean annual TN and TP flux to the bay and in each of 80,579 nontidal tributary stream reaches. Restoration efforts in recent decades have been insufficient to meet established standards for water quality and ecological conditions in Chesapeake Bay. The bay watershed includes 166,000 square kilometers of mixed land uses, multiple nutrient sources, and variable hydrogeologic, soil, and weather conditions, and bay restoration is complicated by the multitude of nutrient sources and complex interacting factors affecting the occurrence, fate, and transport of nitrogen and phosphorus from source areas to streams and the estuary. Effective and efficient nutrient management at the regional scale in support of Chesapeake Bay restoration requires a comprehensive understanding of the sources, fate, and transport of nitrogen and phosphorus in the watershed, which is only available through regional models. The current models, Chesapeake Bay nutrient SPARROW models, version 4 (CBTN_v4 and CBTP_v4), were constructed at a finer spatial resolution than previous SPARROW models for the Chesapeake Bay watershed (versions 1, 2, and 3), and include an updated timeframe and modified sources and other explantory terms.

  8. Watershed-based survey designs

    Science.gov (United States)

    Detenbeck, N.E.; Cincotta, D.; Denver, J.M.; Greenlee, S.K.; Olsen, A.R.; Pitchford, A.M.

    2005-01-01

    Watershed-based sampling design and assessment tools help serve the multiple goals for water quality monitoring required under the Clean Water Act, including assessment of regional conditions to meet Section 305(b), identification of impaired water bodies or watersheds to meet Section 303(d), and development of empirical relationships between causes or sources of impairment and biological responses. Creation of GIS databases for hydrography, hydrologically corrected digital elevation models, and hydrologic derivatives such as watershed boundaries and upstream–downstream topology of subcatchments would provide a consistent seamless nationwide framework for these designs. The elements of a watershed-based sample framework can be represented either as a continuous infinite set defined by points along a linear stream network, or as a discrete set of watershed polygons. Watershed-based designs can be developed with existing probabilistic survey methods, including the use of unequal probability weighting, stratification, and two-stage frames for sampling. Case studies for monitoring of Atlantic Coastal Plain streams, West Virginia wadeable streams, and coastal Oregon streams illustrate three different approaches for selecting sites for watershed-based survey designs.

  9. Impacts of Land Use Change on the Natural Flow Regime: A Case Study in the Meramec River Watershed in Eastern Missouri, USA

    Science.gov (United States)

    Wu, C. L.; Knouft, J.; Chu, M.

    2017-12-01

    The natural flow regime within a watershed can be considered as the expected temporal patterns of streamflow variation in the absence of human impacts. While ecosystems have evolved to function under these conditions, the natural flow regime of most rivers has been significantly altered by human activities. Land use change, including the development of agriculture and urbanization, is a primary cause of the loss of natural flow regimes. These changes have altered discharge volume, timing, and variability, and consequently affected the structure and functioning of river ecosystems. The Meramec River watershed is located in east central Missouri and changes in land use have been the primary factor impacting flow regimes across the watershed. In this study, a watershed model, the Soil and Water Assessment Tool (SWAT), was developed to simulate a long-term time series of streamflow (1978-2014) within the watershed. Model performance was evaluated using statistical metrics and graphical technique including R-squared, Nash-Sutcliffe efficiency, cumulative error, and 1:1-ratio comparison between observed and simulated variables. The calibrated and validated SWAT model was then used to quantify the responses of the watershed when it was a forested natural landscape. An Indicator of Hydrologic Alteration (IHA) approach was applied to characterize the flow regime under the current landcover conditions as well as the simulated natural flow regime under the no land use change scenario. Differences in intra- and inter-annual ecologically relevant flow metrics were then compared using SWAT model outputs in conjunction with the IHA approach based on model outputs from current and no land use change conditions. This study provides a watershed-scale understanding of effects of land use change on a river's flow variability and provides a framework for the development of restoration plans for heavily altered watersheds.

  10. Hydrological modeling of the Simly Dam watershed (Pakistan using GIS and SWAT model

    Directory of Open Access Journals (Sweden)

    Shimaa M. Ghoraba

    2015-09-01

    Full Text Available Modern mathematical models have been developed for studying the complex hydrological processes of a watershed and their direct relation to weather, topography, geology and land use. In this study the hydrology of Simly Dam watershed located in Saon River basin at the north-east of Islamabad is modeled, using the Soil and Water Assessment Tool (SWAT. It aims to simulate the stream flow, establish the water balance and estimate the monthly volume inflow to Simly Dam in order to help the managers to plan and handle this important reservoir. The ArcSWAT interface implemented in the ArcGIS software was used to delineate the study area and its sub-components, combine the data layers and edit the model database. The model was calibrated from 1990 to 2001 and evaluated from 2002 to 2011. Based on four recommended statistical coefficients, the evaluation indicates a good performance for both calibration and validation periods and acceptable agreement between measured and simulated values of both annual and monthly scale discharge. The water balance components were correctly estimated and the Simly Dam inflow was successfully reproduced with Coefficient of Determination (R2 of 0.75. These results revealed that if properly calibrated, SWAT model can be used efficiently in semi-arid regions to support water management policies.

  11. Predicting watershed post-fire sediment yield with the InVEST sediment retention model: Accuracy and uncertainties

    Science.gov (United States)

    Sankey, Joel B.; McVay, Jason C.; Kreitler, Jason R.; Hawbaker, Todd J.; Vaillant, Nicole; Lowe, Scott

    2015-01-01

    Increased sedimentation following wildland fire can negatively impact water supply and water quality. Understanding how changing fire frequency, extent, and location will affect watersheds and the ecosystem services they supply to communities is of great societal importance in the western USA and throughout the world. In this work we assess the utility of the InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs) Sediment Retention Model to accurately characterize erosion and sedimentation of burned watersheds. InVEST was developed by the Natural Capital Project at Stanford University (Tallis et al., 2014) and is a suite of GIS-based implementations of common process models, engineered for high-end computing to allow the faster simulation of larger landscapes and incorporation into decision-making. The InVEST Sediment Retention Model is based on common soil erosion models (e.g., USLE – Universal Soil Loss Equation) and determines which areas of the landscape contribute the greatest sediment loads to a hydrological network and conversely evaluate the ecosystem service of sediment retention on a watershed basis. In this study, we evaluate the accuracy and uncertainties for InVEST predictions of increased sedimentation after fire, using measured postfire sediment yields available for many watersheds throughout the western USA from an existing, published large database. We show that the model can be parameterized in a relatively simple fashion to predict post-fire sediment yield with accuracy. Our ultimate goal is to use the model to accurately predict variability in post-fire sediment yield at a watershed scale as a function of future wildfire conditions.

  12. Urban sprawl leaves its PAH signature

    Science.gov (United States)

    Van Metre, P.C.; Mahler, B.J.; Furlong, E.T.

    2000-01-01

    The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by previous coring studies that reported decreasing concentrations of PAHs after reaching highs in the 1950s. Concurrent with the increase in concentrations is a change in the assemblage of PAHs that indicates the increasing trends are driven by combustion sources. The increase in PAH concentrations tracks closely with increases in automobile use, even in watersheds that have not undergone substantial changes in urban land-use levels since the 1970s.The increasing vehicle traffic associated with urban sprawl in the United States is frequently linked to degradation of air quality, but its effect on aquatic sediment is less well-recognized. This study evaluates trends in PAHs, a group of contaminants with multiple urban sources, in sediment cores from 10 reservoirs and lakes in six U.S. metropolitan areas. The watersheds chosen represent a range in degree and age of urbanization. Concentrations of PAHs in all 10 reservoirs and lakes increased during the past 20-40 years. PAH contamination of the most recently deposited sediment at all sites exceeded sediment-quality guidelines established by Environment Canada, in some cases by several orders of magnitude. These results add a new chapter to the story told by

  13. Comparisons of remotely sensed and model-simulated soil moisture over a heterogenous watershed

    International Nuclear Information System (INIS)

    Lin, D.S.; Wood, E.F.; Troch, P.A.; Mancini, M.; Jackson, T.J.

    1994-01-01

    Soil moisture estimates from a distributed hydrologic model and two microwave airborne sensors (Push Broom Microwave Radiometer and Synthetic Aperture Radar) are compared with ground measurements on two different scales, using data collected during afield experiment over a 7.4-km 2 heterogeneous watershed located in central Pennsylvania. It is found that both microwave sensors and the hydrologic model successfully reflect the temporal variation of soil moisture. Watershed-averaged soil moistures estimated by the microwave sensors are in good agreement with ground measurements. The hydrologic model initialized by stream flow records yields estimates that are wetter than observations. The preliminary test of utilizing remotely sensed information as a feedback to correct the initial state of the hydrologic model shows promising results. (author)

  14. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  15. Multiscale Modeling of Radioisotope Transfers in Watersheds, Rivers, Reservoirs and Ponds of Fukushima Prefecture

    Science.gov (United States)

    Zheleznyak, M.; Kivva, S.; Nanba, K.; Wakiyama, Y.; Konoplev, A.; Onda, Y.; Gallego, E.; Papush, L.; Maderych, V.

    2015-12-01

    The highest densities of the radioisotopes in fallout from the Fukushima Daiichi NPP in March 2011 were measured at the north eastern part of Fukushima Prefecture. The post-accidental aquatic transfer of cesium -134/137 includes multiscale processes: wash-off from the watersheds in solute and with the eroded soil, long-range transport in the rivers, deposition and resuspension of contaminated sediments in reservoirs and floodplains. The models of EU decision support system RODOS are used for predicting dynamics of 137Cs in the Fukushima surface waters and for assessing efficiency of the remediation measures. The transfer of 137Cs through the watershed of Niida River was simulated by DHSVM -R model that includes the modified code of the distributed hydrological and sediment transport model DHSVM (Lettenmayer, Wigmosta et al.) and new module of radionuclide transport. DHSMV-R was tested by modelling the wash-off from the USLE experimental plots in Fukushima prefecture. The model helps to quantify the influence of the differentiators of Fukushima and Chernobyl watersheds, - intensity of extreme precipitation and steepness of watershed, on the much higher values of the ratio "particulated cesium /soluted cesium" in Fukushima rivers than in Chernobyl rivers. Two dimensional model COASTOX and three dimensional model THREETOX are used to simulate the fate of 137Cs in water and sediments of reservoirs in the Manogawa River, Otagawa River, Mizunashigawa River, which transport 137Cs from the heavy contaminated watersheds to the populated areas at the Pacific coast. The modeling of the extreme floods generated by typhoons shows the resuspension of the bottom sediments from the heavy contaminated areas in reservoirs at the mouths of inflowing rivers at the peaks of floods and then re-deposition of 137Cs downstream in the deeper areas. The forecasts of 137Cs dynamics in bottom sediments of the reservoirs were calculated for the set of the scenarios of the sequences of the high

  16. Modeled Watershed Runoff Associated with Variations in Precipitation Data, with Implications for Contaminant Fluxes: Initial Results

    Science.gov (United States)

    Precipitation is one of the primary forcing functions of hydrologic and watershed fate and transport models; however, in light of advances in precipitation estimates across watersheds, data remain highly uncertain. A wide variety of simulated and observed precipitation data are a...

  17. Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed

    NARCIS (Netherlands)

    Sameer Saran,; Sterk, G.; Kumar, S.

    2007-01-01

    Land use/cover is an important watershed surface characteristic that affects surface runoff and erosion. Many of the available hydrological models divide the watershed into Hydrological Response Units (HRU), which are spatial units with expected similar hydrological behaviours. The division into

  18. Evaluating Hydrologic Transience in Watershed Delineation, Numerical Modeling and Solute Transport in the Great Basin. Clayton Valley, Nevada

    Science.gov (United States)

    Underdown, C. G.; Boutt, D. F.; Hynek, S. A.; Munk, L. A.

    2017-12-01

    Importance of transience in managed groundwater systems is generally determined by timeframe of management decisions. Watersheds with management times shorter than the aquifer (watershed) response time, or the time it takes a watershed to recover from a change in hydrologic state, would not include the new state and are treated as steady-state. However, these watersheds will experience transient response between hydrologic states. Watershed response time is a function of length. Therefore flat, regional watersheds characteristic of the Great Basin have long response times. Defining watershed extents as the area in which the water budget is balanced means inputs equal outputs. Steady-state budgets in the Great Basin have been balanced by extending watershed boundaries to include more area for recharge; however, the length and age of requisite flow paths are poorly constrained and often unrealistic. Inclusion of stored water in hydrologic budget calculations permits water balance within smaller contributing areas. As groundwater flow path lengths, depths, and locations differ between steady-state and transient systems, so do solute transport mechanisms. To observe how transience affects response time and solute transport, a refined (transient) version of the USGS steady-state groundwater flow model of the Great Basin is evaluated. This model is used to assess transient changes in contributing area for Clayton Valley, a lithium-brine producing endorheic basin in southwestern Nevada. Model runs of various recharge, discharge and storage bounds are created from conceptual models based upon historical climate data. Comparing results of the refined model to USGS groundwater observations allows for model validation and comparison against the USGS steady-state model. The transient contributing area to Clayton Valley is 85% smaller than that calculated from the steady-state solution, however several long flow paths important to both water and solute budgets at Clayton Valley

  19. Temporal and spatial trends in sediment contaminants associated with toxicity in California watersheds

    International Nuclear Information System (INIS)

    Siegler, Katie; Phillips, Bryn M.; Anderson, Brian S.; Voorhees, Jennifer P.; Tjeerdema, Ron S.

    2015-01-01

    California's Stream Pollution Trends program (SPoT) assesses long-term water quality trends, using 100 base-of-the-watershed sampling sites. Annual statewide sediment surveys from 2008 to 2012 identified consistent levels of statewide toxicity (19%), using the freshwater amphipod Hyalella azteca. Significant contaminant trends included a decrease in PCBs, stable concentrations of metals and PAHs, and a statewide increase in detections and concentrations of pyrethroid pesticides. The pyrethroid pesticide bifenthrin was detected in 69% of samples (n = 410). Detection of toxicity increased in a subset of samples tested at a more environmentally relevant test temperature (15 °C), and the magnitude of toxicity was much greater, indicating pyrethroid pesticides as a probable cause. Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. Principal components analysis related pyrethroids, metals and total organic carbon to urban land use. - Highlights: • Toxicity and contaminant concentrations were higher in urban dominated watersheds. • Average and range of total pyrethroid concentrations increased between 2008 and 2012. • Pyrethroid toxicity thresholds (LC50) were exceeded in 83% of samples with high toxicity. - Detections and concentrations of current use pesticides are increasing in California urban watersheds, while legacy organochlorine contaminants are decreasing statewide.

  20. Proceedings of a USGS Workshop on Facing Tomorrow's Challenges Along the U.S.-Mexico Border - Monitoring, Modeling, and Forecasting Change Within the Arizona-Sonora Transboundary Watersheds

    Science.gov (United States)

    Norman, Laura M.; Hirsch, Derrick D.; Ward, A. Wesley

    2008-01-01

    INTRODUCTION TO THE WORKSHOP PROCEEDINGS Competition for water resources, habitats, and urban areas in the Borderlands has become an international concern. In the United States, Department of Interior Bureaus, Native American Tribes, and other State and Federal partners rely on the U.S. Geological Survey (USGS) to provide unbiased science and leadership in the Borderlands region. Consequently, the USGS hosted a workshop, ?Facing Tomorrow?s Challenges along the U.S.-Mexico Border,? on March 20?22, 2007, in Tucson, Ariz., focused specifically on monitoring, modeling, and forecasting change within the Arizona-Sonora Transboundary Watersheds

  1. SWAT-based streamflow and embayment modeling of Karst-affected Chapel branch watershed, South Carolina

    Science.gov (United States)

    Devendra Amatya; M. Jha; A.E. Edwards; T.M. Williams; D.R. Hitchcock

    2011-01-01

    SWAT is a GIS-based basin-scale model widely used for the characterization of hydrology and water quality of large, complex watersheds; however, SWAT has not been fully tested in watersheds with karst geomorphology and downstream reservoir-like embayment. In this study, SWAT was applied to test its ability to predict monthly streamflow dynamics for a 1,555 ha karst...

  2. Measuring the impacts of natural amenities and the US-Mexico Border, on housing values in the Santa Cruz Watershed, using spatially-weighted hedonic modeling

    Science.gov (United States)

    Amaya, Gladys; Norman, Laura M.; Frisvold, George

    2011-01-01

    Assessing the sustainability of International policy or urban development requires consideration of the impacts of these decisions on Ecosystem Services, or the values that humans receive from the ecosystem, including market-land price, environmental, and human well-being values. Hedonic modeling helps to identify the market land price, considering the price is determined by multiple factors affecting it. In U.S. portions of the bi-national Santa Cruz Watershed (SCW), situated at the Arizona-Sonora International border, natural amenities like the riparian corridor and green space have been documented as positive amenities that boost local real estate.

  3. Nitrogen Saturation in Highly Retentive Watersheds?

    Science.gov (United States)

    Daley, M. L.; McDowell, W. H.

    2009-12-01

    Watershed managers are often concerned with minimizing the amount of N delivered to N-limited estuaries and coastal zones. A major concern is that watersheds might reach N saturation, in which N delivered to coastal zones increases due to declines in the efficiency of N retention despite constant or even reduced N inputs. We have quantified long-term changes in N inputs (atmospheric deposition, imported food and agricultural fertilizers), outputs (N concentration and export) and retention in the urbanizing Lamprey River watershed in coastal NH. Overall, the Lamprey watershed is 70% forested, receives about 13.5 kg N/ha/yr and has a high rate of annual N retention (85%). Atmospheric deposition (8.7 kg/ha/yr) is the largest N input to the watershed. Of the 2.2 kg N/ha/yr exported in the Lamprey River, dissolved organic N (DON) is the dominant form (50% of total) and it varies spatially throughout the watershed with wetland cover. Nitrate accounts for 30% of the N exported, shows a statistically significant increase from 1999 to 2009, and its spatial variability in both concentration and export is related to human population density. In sub-basins throughout the Lamprey, inorganic N retention is high (85-99%), but the efficiency of N retention declines sharply with increased human population density and associated anthropogenic N inputs. N assimilation in the vegetation, denitrification to the atmosphere and storage in the groundwater pool could all be important contributors to the current high rates of N retention. The temporal and spatial patterns that we have observed in nitrate concentration and export are driven by increases in N inputs and impervious surfaces over time, but the declining efficiency of N retention suggests that the watershed may also be reaching N saturation. The downstream receiving estuary, Great Bay, already suffers from low dissolved oxygen levels and eelgrass loss in part due to N loading from the Lamprey watershed. Targeting and reducing

  4. Nitrate in watersheds: straight from soils to streams?

    Science.gov (United States)

    Sudduth, Elizabeth B.; Perakis, Steven S.; Bernhardt, Emily S.

    2013-01-01

    Human activities are rapidly increasing the global supply of reactive N and substantially altering the structure and hydrologic connectivity of managed ecosystems. There is long-standing recognition that N must be removed along hydrologic flowpaths from uplands to streams, yet it has proven difficult to assess the generality of this removal across ecosystem types, and whether these patterns are influenced by land-use change. To assess how well upland nitrate (NO3-) loss is reflected in stream export, we gathered information from >50 watershed biogeochemical studies that reported nitrate concentrations ([NO3-]) for stream water and for either upslope soil solution or groundwater NO3- to examine whether stream export of NO3- accurately reflects upland NO3- losses. In this dataset, soil solution and streamwater [NO3-] were correlated across 40 undisturbed forest watersheds, with streamwater [NO3-] typically half (median = 50%) soil solution [NO3-]. A similar relationship was seen in 10 disturbed forest watersheds. However, for 12 watersheds with significant agricultural or urban development, the intercept and slope were both significantly higher than the relationship seen in forest watersheds. Differences in concentration between soil solution or groundwater and stream water may be attributed to biological uptake, microbial processes including denitrification, and/or preferential flow routing. The results of this synthesis are consistent with the hypotheses that undisturbed watersheds have a significant capacity to remove nitrate after it passes below the rooting zone and that land use changes tend to alter the efficiency or the length of watershed flowpaths, leading to reductions in nitrate removal and increased stream nitrate concentrations.

  5. Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-10-01

    Full Text Available Pressure on existing water resources in China is expected to increase with undergoing rapid demographic transformation, economic development, and global climate changes. We investigate the economy-wide impacts of projected urban population growth and economic structural change on water use and allocation in China. Using a multi-regional CGE (Computable General Equilibrium model, TERM (The Enormous Regional Model, we explore the implications of selected future water scenarios for China’s nine watershed regions. Our results indicate that urbanization and industrial transformation in China will raise the opportunity cost of water use and increase the competition for water between non-agricultural users and irrigation water users. The growth in water demand for domestic and industrial uses reduces the amount of water allocated to agriculture, particularly lower-value and water-intensive field crops. As a response, farmers have the incentive to shift their agricultural operations from traditional field crop production to higher-value livestock or intensive crop production. In addition, our results suggest that growing water demand due to urbanization and industrial transformation will raise the shadow price of water in all nine river basins. Finally, we find that national economic growth is largely attributable to urbanization and non-agricultural productivity growth.

  6. A critical review of integrated urban water modellingUrban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  7. Quasi-Empirical and Spatio-Temporal Vulnerability Modeling of Environmental Risks Posed to a Watershed

    Science.gov (United States)

    Rozario, Papia Faustina

    Water quality assessment is crucial in investigating impairment within agricultural watersheds. Seasonal and spatial variations on land can directly affect the adjoining riverine systems. Studies have revealed that agricultural activities are often major contributors to altering water quality of surface waters. A common means of addressing this issue is through the establishment and monitoring the health of riparian vegetation buffers along those areas of stream channels that would be most susceptible to the threat. Remote sensing and Geographic Information Systems (GIS) offer a means by which impaired areas can be identified, so that subsequent action toward the establishment of riparian zones can be taken. Modeling the size and rate of land use and land cover (LULC) change is an effective method of projecting localized impairment. This study presents an integrated model utilizing Analytical Hierarchical Process (AHP), Markov Chain Monte Carlo (MCMC) simulations, and geospatial analyses to address areas of impairment within the Pipestem Creek watershed, a part of the Missouri Watershed James Sub-region of North Dakota, USA. The rate and direction of LULC change was analyzed through this model and its impact on the ambient water and soil quality was studied. Tasseled Cap Greenness Index (TCGI) was used to determine the loss of forested land within the watershed from 1976 to 2015. Research results validated temporal and spatial relations of LULC dynamics to nutrient concentrations especially those that would be noted at the mouth of the watershed. It was found that the levels of Total Dissolved Solids (TDS) were much higher for the years 2014 to 2016 with a discernible increased localized alkalizing effect within the watershed. Fallow areas were seen to produce significant amounts of sediment loads from the sub-watershed. LULC distribution from 2007 to 2015 show that it is possible to project future land use change patterns. About 89.90% likelihood of increment in

  8. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Science.gov (United States)

    Penny, Gopal; Srinivasan, Veena; Dronova, Iryna; Lele, Sharachchandra; Thompson, Sally

    2018-01-01

    The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2 = 0.95). We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation) and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed runoff. Independently of

  9. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  10. Inputs and Fluvial Transport of Pharmaceutical Chemicals in An Urban Watershed

    Science.gov (United States)

    Foster, G. D.; Shala, L.

    2006-05-01

    Pharmaceuticals and personal care products (PPCPs) are classes of emerging chemical contaminants thought to enter the aquatic environment primarily through wastewater treatment plant (WTP) discharges. As the use of drugs is expected to rise with the aging demographics of the human population and with more river water being diverted to meet potable water demands, the presence of PPCPs in surface water is becoming an issue of public concern. The intent of our study was to quantify potential WTP inputs of PPCPs to rivers in the Wasington, DC (USA) region, and to investigate the fluvial transport of PPCPs in the Anacostia River (AR), the mainstem of a highly contaminated urban watershed in Washington, DC. The approach was to sample WTP water at various stages of treatment, and to measure seasonal concentrations of PPCPs in fluvial transport in the AR. Surface water from the AR was collected through the use of automated samplers during normal flow and storm flow regimes near the head of tide of the AR, just upstream from the confluence of the Northeast (NE) and Northwest (NW) Branches, the two prominent drainages in the watershed. The water samples were filtered to separate river particles from water, and the filtered water was extracted using solid phase extraction (SPE) cartridges. The filters were extracted by sonication in methanol. The SPE and filter extracts were analyzed for a group of widely distributed PPCPs as trimethylsilyl derivatives by using gas chromatography/mass spectrometry. The most frequently detected PPCPs at WTPs included ibuprofen, caffeine, naproxen and triclosan, which ranged from 45 μg/L (caffeine) to 5 μg/L (triclosan) in WTP influent and from 0.08 μg/L (triclosan) to 0.02 μg/L (ibuprofen) in effluent water. Similar PPCPs were detected in both the NE and NW Branches of the AR, but higher concentrations on average were observed in the NE Branch, which receives WTP effluent upstream from the sampling point. The incidence of PPCPs correlated

  11. Preliminary United States-Mexico border watershed analysis, twin cities area of Nogales, Arizona and Nogales, Sonora

    Science.gov (United States)

    Brady, Laura Margaret; Gray, Floyd; Castaneda, Mario; Bultman, Mark; Bolm, Karen Sue

    2002-01-01

    The United States - Mexico border area faces the challenge of integrating aspects of its binational physical boundaries to form a unified or, at least, compatible natural resource management plan. Specified geospatial components such as stream drainages, mineral occurrences, vegetation, wildlife, and land-use can be analyzed in terms of their overlapping impacts upon one another. Watersheds have been utilized as a basic unit in resource analysis because they contain components that are interrelated and can be viewed as a single interactive ecological system. In developing and analyzing critical regional natural resource databases, the Environmental Protection Agency (EPA) and other federal and non-governmental agencies have adopted a ?watershed by watershed? approach to dealing with such complicated issues as ecosystem health, natural resource use, urban growth, and pollutant transport within hydrologic systems. These watersheds can facilitate the delineation of both large scale and locally important hydrologic systems and urban management parameters necessary for sustainable, diversified land-use. The twin border cities area of Nogales, Sonora and Nogales, Arizona, provide the ideal setting to demonstrate the utility and application of a complete, cross-border, geographic information systems (GIS) based, watershed analysis in the characterization of a wide range of natural resource as well as urban features and their interactions. In addition to the delineation of a unified, cross-border watershed, the database contains sewer/water line locations and status, well locations, geology, hydrology, topography, soils, geomorphology, and vegetation data, as well as remotely sensed imagery. This report is preliminary and part of an ongoing project to develop a GIS database that will be widely accessible to the general public, researchers, and the local land management community with a broad range of application and utility.

  12. Estimating the Effect of Urban Growth on Annual Runoff Volume Using GIS in the Erbil Sub-Basin of the Kurdistan Region of Iraq

    Directory of Open Access Journals (Sweden)

    Hasan Mohammed Hameed

    2017-02-01

    Full Text Available The growth and spread of impervious surfaces within urbanizing catchment areas pose signiificant threats to the quality of natural and built-up environments. Impervious surfaces prevent water infiltration into the soil, resulting in increased runoff generation. The Erbil Sub-basin was selected because the impervious cover is increasing rapidly and is affecting the hydrological condition of the watershed. The overall aim of this study is to examine the impact of urban growth and other changes in land use on runoff response during the study period of 1984 to 2014. The study describes long-term hydrologic responses within the rapidly developing catchment area of Erbil city, in the Kurdistan Region of Iraq. Data from six rainfall stations in and around the Erbil Sub-basin were used. A Digital Elevation Model (DEM was also used to extract the distribution of the drainage network. Historical levels of urban growth and the corresponding impervious areas, as well as land use/land cover changes were mapped from 1984 to 2014 using a temporal satellite image (Landsat to determine land use/land cover changes. Land use/land cover was combined with a hydrological model (SCS-CN to estimate the volume of runoff from the watershed. The study indicates that the urbanization of the watershed has increased the impervious land cover by 71% for the period from 1984 to 2004 and by 51% from 2004 to 2014. The volume of runoff was 85% higher in 2014 as compared to 1984 due to the increase in the impervious surface area; this is attributed to urban growth. The study also points out that the slope of the watershed in the Erbil sub-basin should be taken into account in surface runoff estimation as the upstream part of the watershed has a high gradient and the land is almost barren with very little vegetation cover; this causes an increase in the velocity of the flow and increases the risk of flooding in Erbil city.

  13. Analysis of streamflow distribution of non-point source nitrogen export from long-term urban-rural catchments to guide watershed management in the Chesapeake Bay watershed

    Science.gov (United States)

    Duncan, J. M.; Band, L. E.; Groffman, P.

    2017-12-01

    Discharge, land use, and watershed management practices (stream restoration and stormwater control measures) have been found to be important determinants of nitrogen (N) export to receiving waters. We used long-term water quality stations from the Baltimore Ecosystem Study Long-Term Ecological Research (BES LTER) Site to quantify nitrogen export across streamflow conditions at the small watershed scale. We calculated nitrate and total nitrogen fluxes using methodology that allows for changes over time; weighted regressions on time, discharge, and seasonality. Here we tested the hypotheses that a) while the largest N stream fluxes occur during storm events, there is not a clear relationship between N flux and discharge and b) N export patterns are aseasonal in developed watersheds where sources are larger and retention capacity is lower. The goal is to scale understanding from small watersheds to larger ones. Developing a better understanding of hydrologic controls on nitrogen export is essential for successful adaptive watershed management at societally meaningful spatial scales.

  14. Participatory Modeling Processes to Build Community Knowledge Using Shared Model and Data Resources and in a Transboundary Pacific Northwest Watershed (Nooksack River Basin, Washington, USA)

    Science.gov (United States)

    Bandaragoda, C.; Dumas, M.

    2014-12-01

    As with many western US watersheds, the Nooksack River Basin faces strong pressures associated with climate variability and change, rapid population growth, and deep-rooted water law. This transboundary basin includes contributing areas in British Columbia, Canada, and has a long history of joint data collection, model development, and facilitated communication between governmental (federal, tribal, state, local), environmental, timber, agricultural, and recreational user groups. However, each entity in the watershed responds to unique data coordination, information sharing, and adaptive management regimes and thresholds, further increasing the complexity of watershed management. Over the past four years, participatory methods were used to compile and review scientific data and models, including fish habitat (endangered salmonid species), channel hydraulics, climate data, agricultural, municipal and industrial water use, and integrated watershed scale distributed hydrologic models from over 15 years of projects (from jointly funded to independent shared work by individual companies, agencies, and universities). A specific outcome of the work includes participatory design of a collective problem statement used for guidance on future investment of shared resources and development of a data-generation process where modeling results are communicated in a three-tiers for 1) public/decision-making, 2) technical, and 3) research audiences. We establish features for successful participation using tools that are iteratively developed, tested for usability through incremental knowledge building, and designed to provide rigor in modeling. A general outcome of the work is ongoing support by tribal, state, and local governments, as well as the agricultural community, to continue the generation of shared watershed data using models in a dynamic legal and regulatory setting, where two federally recognized tribes have requested federal court resolution of federal treaty rights

  15. Design and impact assessment of watershed investments: An approach based on ecosystem services and boundary work

    Energy Technology Data Exchange (ETDEWEB)

    Adem Esmail, Blal, E-mail: blal.ademesmail@unitn.it; Geneletti, Davide

    2017-01-15

    Watershed investments, whose main aim is to secure water for cities, represent a promising opportunity for large-scale sustainability transitions in the near future. If properly designed, they promote activities in the watershed that enhance ecosystem services while protecting nature and biodiversity, as well as achieving other societal goals. In this paper, we build on the concepts of ecosystem services and boundary work, to develop and test an operative approach for designing and assessing the impact of watershed investments. The approach is structured to facilitate negotiations among stakeholders. Its strategic component includes setting the agenda; defining investment scenarios; and assessing the performance of watershed investments as well as planning for a follow-up. Its technical component concerns data processing; tailoring spatially explicit ecosystem service models; hence their application to design a set of “investment portfolios”, generate future land use scenarios, and model impacts on selected ecosystem services. A case study illustrates how the technical component can be developed in a data scarce context in sub-Saharan Africa in a way that is functional to support the steps of the strategic component. The case study addresses soil erosion and water scarcity-related challenges affecting Asmara, a medium-sized city in Eritrea, and considers urban water security and rural poverty alleviation as two illustrative objectives, within a ten-year planning horizon. The case study results consist in spatially explicit data (investment portfolio, land use scenario, impact on ecosystem services), which were aggregated to quantitatively assess the performance of different watershed investments scenarios, in terms of changes in soil erosion control. By addressing stakeholders' concerns of credibility, saliency, and legitimacy, the approach is expected to facilitate negotiation of objectives, definition of scenarios, and assessment of alternative watershed

  16. Design and impact assessment of watershed investments: An approach based on ecosystem services and boundary work

    International Nuclear Information System (INIS)

    Adem Esmail, Blal; Geneletti, Davide

    2017-01-01

    Watershed investments, whose main aim is to secure water for cities, represent a promising opportunity for large-scale sustainability transitions in the near future. If properly designed, they promote activities in the watershed that enhance ecosystem services while protecting nature and biodiversity, as well as achieving other societal goals. In this paper, we build on the concepts of ecosystem services and boundary work, to develop and test an operative approach for designing and assessing the impact of watershed investments. The approach is structured to facilitate negotiations among stakeholders. Its strategic component includes setting the agenda; defining investment scenarios; and assessing the performance of watershed investments as well as planning for a follow-up. Its technical component concerns data processing; tailoring spatially explicit ecosystem service models; hence their application to design a set of “investment portfolios”, generate future land use scenarios, and model impacts on selected ecosystem services. A case study illustrates how the technical component can be developed in a data scarce context in sub-Saharan Africa in a way that is functional to support the steps of the strategic component. The case study addresses soil erosion and water scarcity-related challenges affecting Asmara, a medium-sized city in Eritrea, and considers urban water security and rural poverty alleviation as two illustrative objectives, within a ten-year planning horizon. The case study results consist in spatially explicit data (investment portfolio, land use scenario, impact on ecosystem services), which were aggregated to quantitatively assess the performance of different watershed investments scenarios, in terms of changes in soil erosion control. By addressing stakeholders' concerns of credibility, saliency, and legitimacy, the approach is expected to facilitate negotiation of objectives, definition of scenarios, and assessment of alternative watershed

  17. Influence of solid waste and topography on urban floods: The case of Mexico City.

    Science.gov (United States)

    Zambrano, Luis; Pacheco-Muñoz, Rodrigo; Fernández, Tania

    2018-02-24

    Floods in cities are increasingly common as a consequence of multifactor watershed dynamics, including geomorphology, land-use changes and land subsidence. However, urban managers have focused on infrastructure to address floods by reducing blocked sewage infrastructure, without significant success. Using Mexico City as a case study, we generated a spatial flood risk model with geomorphology and anthropogenic variables. The results helped contrast the implications of different public policies in land use and waste disposal, and correlating them with flood hazards. Waste disposal was only related to small floods. 58% of the city has a high risk of experiencing small floods, and 24% of the city has a risk for large floods. Half of the population with the lowest income is located in the high-risk areas for large floods. These models are easy to build, generate fast results and are able to help to flood policies, by understanding flood interactions in urban areas within the watershed.

  18. Water quantity and quality at the urban-rural interface

    Science.gov (United States)

    Ge Sun; B. Graeme Lockaby

    2012-01-01

    Population growth and urban development dramatically alter natural watershed ecosystem structure and functions and stress water resources. We review studies on the impacts of urbanization on hydrologic and biogeochemical processes underlying stream water quantity and water quality issues, as well as water supply challenges in an urban environment. We conclude that...

  19. Increase in flood risk resulting from climate change in a developed urban watershed – the role of storm temporal patterns

    Directory of Open Access Journals (Sweden)

    S. Hettiarachchi

    2018-03-01

    Full Text Available The effects of climate change are causing more frequent extreme rainfall events and an increased risk of flooding in developed areas. Quantifying this increased risk is of critical importance for the protection of life and property as well as for infrastructure planning and design. The updated National Oceanic and Atmospheric Administration (NOAA Atlas 14 intensity–duration–frequency (IDF relationships and temporal patterns are widely used in hydrologic and hydraulic modeling for design and planning in the United States. Current literature shows that rising temperatures as a result of climate change will result in an intensification of rainfall. These impacts are not explicitly included in the NOAA temporal patterns, which can have consequences on the design and planning of adaptation and flood mitigation measures. In addition there is a lack of detailed hydraulic modeling when assessing climate change impacts on flooding. The study presented in this paper uses a comprehensive hydrologic and hydraulic model of a fully developed urban/suburban catchment to explore two primary questions related to climate change impacts on flood risk. (1 How do climate change effects on storm temporal patterns and rainfall volumes impact flooding in a developed complex watershed? (2 Is the storm temporal pattern as critical as the total volume of rainfall when evaluating urban flood risk? We use the NOAA Atlas 14 temporal patterns, along with the expected increase in temperature for the RCP8.5 scenario for 2081–2100, to project temporal patterns and rainfall volumes to reflect future climatic change. The model results show that different rainfall patterns cause variability in flood depths during a storm event. The changes in the projected temporal patterns alone increase the risk of flood magnitude up to 35 %, with the cumulative impacts of temperature rise on temporal patterns and the storm volume increasing flood risk from 10 to 170 %. The results

  20. Relationships Between Land Use and Stream Nutrient Concentrations in a Highly Urbanized Tropical Region of Brazil: Thresholds and Riparian Zones.

    Science.gov (United States)

    Tromboni, F; Dodds, W K

    2017-07-01

    Nutrient enrichment in streams due to land use is increasing globally, reducing water quality and causing eutrophication of downstream fresh and coastal waters. In temperate developed countries, the intensive use of fertilizers in agriculture is a main driver of increasing nutrient concentrations, but high levels and fast rates of urbanization can be a predominant issue in some areas of the developing world. We investigated land use in the highly urbanized tropical State of Rio de Janeiro, Brazil. We collected total nitrogen, total phosphorus, and inorganic nutrient data from 35 independent watersheds distributed across the State and characterized land use at a riparian and entire watershed scales upstream from each sample station, using ArcGIS. We used regression models to explain land use influences on nutrient concentrations and to assess riparian protection relationships to water quality. We found that urban land use was the primary driver of nutrient concentration increases, independent of the scale of analyses and that urban land use was more concentrated in the riparian buffer of streams than in the entire watersheds. We also found significant thresholds that indicated strong increases in nutrient concentrations with modest increases in urbanization reaching maximum nutrient concentrations between 10 and 46% urban cover. These thresholds influenced calculation of reference nutrient concentrations, and ignoring them led to higher estimates of these concentrations. Lack of sewage treatment in concert with urban development in riparian zones apparently leads to the observation that modest increases in urban land use can cause large increases in nutrient concentrations.

  1. Urban ecosystem modeling and global change: Potential for rational urban management and emissions mitigation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin; Fath, Brian D.

    2014-01-01

    Urbanization is a strong and extensive driver that causes environmental pollution and climate change from local to global scale. Modeling cities as ecosystems has been initiated by a wide range of scientists as a key to addressing challenging problems concomitant with urbanization. In this paper, ‘urban ecosystem modeling (UEM)’ is defined in an inter-disciplinary context to acquire a broad perception of urban ecological properties and their interactions with global change. Furthermore, state-of-the-art models of urban ecosystems are reviewed, categorized as top-down models (including materials/energy-oriented models and structure-oriented models), bottom-up models (including land use-oriented models and infrastructure-oriented models), or hybrid models thereof. Based on the review of UEM studies, a future framework for explicit UEM is proposed based the integration of UEM approaches of different scales, guiding more rational urban management and efficient emissions mitigation. - Highlights: • Urban ecosystems modeling (UEM) is defined in an interdisciplinary context. • State-of-the-art models for UEM are critically reviewed and compared. • An integrated framework for explicit UEM is proposed under global change. - State-of-the-art models of urban ecosystem modeling (UEM) are reviewed for rational urban management and emissions mitigation

  2. Trees and Streets as Drivers of Urban Stormwater Nutrient Pollution.

    Science.gov (United States)

    Janke, Benjamin D; Finlay, Jacques C; Hobbie, Sarah E

    2017-09-05

    Expansion of tree cover is a major management goal in cities because of the substantial benefits provided to people, and potentially to water quality through reduction of stormwater volume by interception. However, few studies have addressed the full range of potential impacts of trees on urban runoff, which includes deposition of nutrient-rich leaf litter onto streets connected to storm drains. We analyzed the influence of trees on stormwater nitrogen and phosphorus export across 19 urban watersheds in Minneapolis-St. Paul, MN, U.S.A., and at the scale of individual streets within one residential watershed. Stormwater nutrient concentrations were highly variable across watersheds and strongly related to tree canopy over streets, especially for phosphorus. Stormwater nutrient loads were primarily related to road density, the dominant control over runoff volume. Street canopy exerted opposing effects on loading, where elevated nutrient concentrations from trees near roads outweighed the weak influence of trees on runoff reduction. These results demonstrate that vegetation near streets contributes substantially to stormwater nutrient pollution, and therefore to eutrophication of urban surface waters. Urban landscape design and management that account for trees as nutrient pollution sources could improve water quality outcomes, while allowing cities to enjoy the myriad benefits of urban forests.

  3. Bank-derived material dominates fluvial sediment in a suburban Chesapeake Bay watershed

    Science.gov (United States)

    Cashman, M. J.; Gellis, A.; Gorman-Sanisaca, L.; Noe, G. B.; Cogliandro, V.; Baker, A.

    2017-12-01

    Excess fine sediment is a leading cause of ecological degradation within the Chesapeake Bay watershed. The Piedmont physiographic province, which includes parts of the Washington, D.C. metro area, has the highest sediment yields in the Chesapeake Bay. In order to effectively employ sediment mitigation measures, it is necessary to identify and quantify the contributions of sediments sources within rapidly urbanizing areas in the Piedmont. This sediment fingerprinting study examines the inputs of various sediment sources to Upper Difficult Run (14.2 km2; 22.6% impervious surface), an urbanized watershed in Fairfax County, Virginia. A source sediment library was constructed from collections of stream bank material, forest soils, and road dust from across the watershed. Target fluvial sediments were collected from fine channel margin deposits and from suspended sediment using an autosampler during 16 storm events from 2008 - 2012. Apportionment of the target samples to the source sediments was performed using Sed_SAT, a publically available toolkit for sediment fingerprinting. Bed sediment was found to be dominated by stream bank sources (mean: 96%), with minor contributions from forest (4%) and no detectable contribution from roads (0%). Suspended fine sediments were also found to predominantly originate from stream bank sources (SSC-weighted mean: 91%), with minor contributions from roads (8%), and negligible contributions from forests (1%). Stream bank sources dominated at all discharges, with the greatest contributions from overland sources found only at low discharges. On the rising limb of the hydrograph and at peak flow, sediment concentrations increased due to increasing contributions of bank material rather than surface erosion caused by overland flow. Results demonstrate that stream bank erosion is responsible for the vast majority of fine sediment occurring in this suburban basin of the Chesapeake Bay watershed. This is likely a consequence of storm

  4. Modeling Urban Collaborative Growth Dynamics Using a Multiscale Simulation Model for the Wuhan Urban Agglomeration Area, China

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2018-05-01

    Full Text Available Urban agglomeration has become the predominant form of urbanization in China. In this process, spatial interaction evidently played a significant role in promoting the collaborative development of these correlated cities. The traditional urban model’s focus on individual cities should be transformed to an urban system model. In this study, a multi-scale simulation model has been proposed to simulate the agglomeration development process of the Wuhan urban agglomeration area by embedding the multi-scale spatial interaction into the transition rule system of cellular automata (CA. A system dynamic model was used to predict the demand for new urban land at an aggregated urban agglomeration area scale. A data field approach was adopted to measuring the interaction of intercity at city scale. Neighborhood interaction was interpreted with a logistic regression method at the land parcel scale. Land use data from 1995, 2005, and 2015 were used to calibrate and evaluate the model. The simulation results show that there has been continuing urban growth in the Wuhan urban agglomeration area from 1995 to 2020. Although extension-sprawl was the predominant pattern of urban spatial expansion, the trend of extensive growth to intensive growth is clear during the entire period. The spatial interaction among these cities has been reinforced, which guided the collaborative development and formed the regional urban system network.

  5. Long-term modeling of soil C erosion and sequestration at the small watershed scale

    International Nuclear Information System (INIS)

    Izaurralde, R.C.; Thomson, A.M.; Williams, J.R.; Post, W.M.; McGill, W.B.; Owens, L.B.; Lal, R.

    2007-01-01

    The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion-deposition processes on the C balance of three small watersheds (∼1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 ± 22 kg C ha -1 year -1 compared favorably against the observed 31 ± 12 kg C ha -1 year -1 in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha -1 ). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha -1 in W128 and 50.4 Mg C ha -1 in W188) were off by -1 . Simulated eroded C re-deposited inside (30-212 kg C ha -1 year -1 ) or outside (73 -1 79 kg C ha -1 year -1 ) watershed boundaries compared in magnitude to a

  6. Nutrient Reduction in Agricultural Green Infrastructure: An Analysis of the Raccoon River Watershed

    Directory of Open Access Journals (Sweden)

    James F. Canning

    2018-06-01

    Full Text Available Agricultural intensification has had the undesirable effect of degrading water quality throughout the United States. Nitrate pollution presents a difficult problem for rural and urban communities, and it contributes to the immense Gulf of Mexico Hypoxia Zone. Current U.S. policy prohibits regulation of agricultural runoff because it is a nonpoint source. The Raccoon River Watershed upstream of Des Moines, Iowa, USA has some of the highest nitrate levels in the nation, and the drinking water utility in Des Moines unsuccessfully pursued litigation against drainage districts in the watershed. We propose a cooperative solution between urban residents and upstream rural residents—namely, the installation of agricultural green infrastructure in the form of riparian buffers throughout the watershed enabled by the principles of water quality trading. We compare this distributed, green approach with a centralized, gray approach (i.e., building a new nitrate removal facility at the drinking water utility. Using terrain analysis, we determined that first-order streams are the most fitting location for riparian buffers. We estimate the buffer installation to cost between $155–$185 million; maintenance of the current nitrate removal facility will cost $72 million, while a new facility could cost up to $184 million. Riparian buffer installation offers more indirect, non-quantified benefits than maintaining or building new centralized, gray treatment (e.g., living-wage jobs and in-stream water quality improvement. Our analysis could act as a model for water quality trading and distributed agricultural green infrastructure in other communities facing similar water quality challenges.

  7. Channel erosion in a rapidly urbanizing region of Tijuana, Mexico: Enlargement downstream of channel hardpoints

    Science.gov (United States)

    Taniguchi, Kristine; Biggs, Trent; Langendoen, Eddy; Castillo, Carlos; Gudiño, Napoleon; Yuan, Yongping; Liden, Douglas

    2016-04-01

    Urban-induced erosion in Tijuana, Mexico, has led to excessive sediment deposition in the Tijuana Estuary in the United States. Urban areas in developing countries, in contrast to developed countries, are characterized by much lower proportions of vegetation and impervious surfaces due to limited access to urban services such as road paving and landscaping, and larger proportions of exposed soils. In developing countries, traditional watershed scale variables such as impervious surfaces may not be good predictors of channel enlargement. In this research, we surveyed the stream channel network of an erodible tributary of the Tijuana River Watershed, Los Laureles Canyon, at 125 locations, including repeat surveys from 2008. Structure from Motion (SfM) and 3D photo-reconstruction techniques were used to create digital terrain models of stream reaches upstream and downstream of channel hardpoints. Channels are unstable downstream of hardpoints, with incision up to 2 meters and widening up to 12 meters. Coordinated channelization is essential to avoid piece-meal approaches that lead to channel degradation. Watershed impervious area is not a good predictor of channel erosion due to the overriding importance of hardpoints and likely to the high sediment supply from the unpaved roads which prevents channel erosion throughout the stream network.

  8. A Watershed Scale Life Cycle Assessment Framework for Hydrologic Design

    Science.gov (United States)

    Tavakol-Davani, H.; Tavakol-Davani, PhD, H.; Burian, S. J.

    2017-12-01

    Sustainable hydrologic design has received attention from researchers with different backgrounds, including hydrologists and sustainability experts, recently. On one hand, hydrologists have been analyzing ways to achieve hydrologic goals through implementation of recent environmentally-friendly approaches, e.g. Green Infrastructure (GI) - without quantifying the life cycle environmental impacts of the infrastructure through the ISO Life Cycle Assessment (LCA) method. On the other hand, sustainability experts have been applying the LCA to study the life cycle impacts of water infrastructure - without considering the important hydrologic aspects through hydrologic and hydraulic (H&H) analysis. In fact, defining proper system elements for a watershed scale urban water sustainability study requires both H&H and LCA specialties, which reveals the necessity of performing an integrated, interdisciplinary study. Therefore, the present study developed a watershed scale coupled H&H-LCA framework to bring the hydrology and sustainability expertise together to contribute moving the current wage definition of sustainable hydrologic design towards onto a globally standard concept. The proposed framework was employed to study GIs for an urban watershed in Toledo, OH. Lastly, uncertainties associated with the proposed method and parameters were analyzed through a robust Monte Carlo simulation using parallel processing. Results indicated the necessity of both hydrologic and LCA components in the design procedure in order to achieve sustainability.

  9. Pathogen Transport and Fate Modeling in the Upper Salem River Watershed Using SWAT Model

    Science.gov (United States)

    SWAT (Soil and Water Assessment Tool) is a dynamic watershed model that is applied to simulate the impact of land management practices on water quality over a continuous period. The Upper Salem River, located in Salem County New Jersey, is listed by the New Jersey Department of ...

  10. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA.

    Science.gov (United States)

    Cho, Kyung Hwa; Pachepsky, Yakov A; Kim, Joon Ha; Kim, Jung-Woo; Park, Mi-Hyun

    2012-10-01

    This study assessed fecal coliform contamination in the Wachusett Reservoir Watershed in Massachusetts, USA using Soil and Water Assessment Tool (SWAT) because bacteria are one of the major water quality parameters of concern. The bacteria subroutine in SWAT, considering in-stream bacteria die-off only, was modified in this study to include solar radiation-associated die-off and the contribution of wildlife. The result of sensitivity analysis demonstrates that solar radiation is one of the most significant fate factors of fecal coliform. A water temperature-associated function to represent the contribution of beaver activity in the watershed to fecal contamination improved prediction accuracy. The modified SWAT model provides an improved estimate of bacteria from the watershed. Our approach will be useful for simulating bacterial concentrations to provide predictive and reliable information of fecal contamination thus facilitating the implementation of effective watershed management. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Application of the target fish community model to an urban river system.

    Science.gov (United States)

    Meixler, Marcia S

    2011-04-01

    Several models have been developed to assess the biological integrity of aquatic systems using fish community data. One of these, the target fish community (TFC) model, has been used primarily to assess the biological integrity of larger, mainstem rivers in southern New England with basins characterized by dispersed human activities. We tested the efficacy of the TFC approach to specify the fish community in the highly urbanized Charles River watershed in eastern Massachusetts. To create a TFC for the Charles River we assembled a list of fish species that historically inhabited the Charles River watershed, identified geomorphically and zoogeographically similar reference rivers regarded as being in high quality condition, amassed fish survey data for the reference rivers, and extracted from the collections the information needed to define a TFC. We used a similarity measurement method to assess the extent to which the study river community complies with the TFC and an inference approach to summarize the manner in which the existing fish community differed from target conditions. The five most abundant species in the TFC were common shiners (34%), fallfish (17%) redbreast sunfish (11%), white suckers (8%), and American eel (7%). Three of the five species predicted to be most abundant in the TFC were scarce or absent in the existing river community. Further, the river was dominated by macrohabitat generalists (99%) while the TFC was predicted to contain 19% fluvial specialist species, 43% fluvial dependent species, and 38% macrohabitat generalist species. In addition, while the target community was dominated by fish intolerant (37%) and moderately tolerant (39%) of water quality degradation, the existing community was dominated by tolerant individuals (59%) and lacked intolerant species expected in the TFC. Similarity scores for species, habitat use specialization, and water quality degradation tolerance categories were 28%, 35% and 66%, respectively. The clear

  12. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    Science.gov (United States)

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  13. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options

    Science.gov (United States)

    Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Moglen, Glenn E.; Angermeier, Paul L.; Hilderbrand, Robert H.; Dettinger, Mike; Hayhoe, Katharine

    2015-01-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades.

  14. Analysis of Land Use Change and Urbanization in the Kucukcekmece Water Basin (Istanbul, Turkey) with Temporal Satellite Data using Remote Sensing and GIS.

    Science.gov (United States)

    Coskun, H Gonca; Alganci, Ugur; Usta, Gokce

    2008-11-13

    Accurate and timely information about land use and land cover (LULC) and its changes in urban areas are crucial for urban land management decision-making, ecosystem monitoring and urban planning. Also, monitoring and representation of urban sprawl and its effects on the LULC patterns and hydrological processes of an urbanized watershed is an essential part of water resource planning and management. This paper presents an image analysis study using multi temporal digital satellite imagery of LULC and changes in the Kucukcekmece Watershed (Metropolitan Istanbul, Turkey) from 1992 to 2006. The Kucukcekmece Basin includes portions of the Kucukcekmece District within the municipality of Istanbul so it faces a dramatic urbanization. An urban monitoring analysis approach was first used to implement a land cover classification. A change detection method controlled with ground truth information was then used to determine changes in land cover. During the study period, the variability and magnitude of hydrological components based on land-use patterns were cumulatively influenced by urban sprawl in the watershed. The proposed approach, which uses a combination of Remote Sensing (RS) and Geographical Information System (GIS) techniques, is an effective tool that enhances land-use monitoring, planning, and management of urbanized watersheds.

  15. Spatially-Distributed Stream Flow and Nutrient Dynamics Simulations Using the Component-Based AgroEcoSystem-Watershed (AgES-W) Model

    Science.gov (United States)

    Ascough, J. C.; David, O.; Heathman, G. C.; Smith, D. R.; Green, T. R.; Krause, P.; Kipka, H.; Fink, M.

    2010-12-01

    The Object Modeling System 3 (OMS3), currently being developed by the USDA-ARS Agricultural Systems Research Unit and Colorado State University (Fort Collins, CO), provides a component-based environmental modeling framework which allows the implementation of single- or multi-process modules that can be developed and applied as custom-tailored model configurations. OMS3 as a “lightweight” modeling framework contains four primary foundations: modeling resources (e.g., components) annotated with modeling metadata; domain specific knowledge bases and ontologies; tools for calibration, sensitivity analysis, and model optimization; and methods for model integration and performance scalability. The core is able to manage modeling resources and development tools for model and simulation creation, execution, evaluation, and documentation. OMS3 is based on the Java platform but is highly interoperable with C, C++, and FORTRAN on all major operating systems and architectures. The ARS Conservation Effects Assessment Project (CEAP) Watershed Assessment Study (WAS) Project Plan provides detailed descriptions of ongoing research studies at 14 benchmark watersheds in the United States. In order to satisfy the requirements of CEAP WAS Objective 5 (“develop and verify regional watershed models that quantify environmental outcomes of conservation practices in major agricultural regions”), a new watershed model development approach was initiated to take advantage of OMS3 modeling framework capabilities. Specific objectives of this study were to: 1) disaggregate and refactor various agroecosystem models (e.g., J2K-S, SWAT, WEPP) and implement hydrological, N dynamics, and crop growth science components under OMS3, 2) assemble a new modular watershed scale model for fully-distributed transfer of water and N loading between land units and stream channels, and 3) evaluate the accuracy and applicability of the modular watershed model for estimating stream flow and N dynamics. The

  16. Export Mechanisms of Persistent Toxic Substances (PTSs) in Urban Land Uses during Rainfall-Runoff Events: Experimental and Modeling Studies

    Science.gov (United States)

    Zheng, Y.; Luo, X.; Lin, Z.

    2016-12-01

    study in Beijing, China. Overall, our studies advanced the understanding of nonpoint source pollution of PTSs in the urban environment. The quantitative approaches developed can help improve existing nonpoint source pollution models. The study results also have important implications to watershed water quality management.

  17. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    Science.gov (United States)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  18. An integrated system dynamics model developed for managing lake water quality at the watershed scale.

    Science.gov (United States)

    Liu, Hui; Benoit, Gaboury; Liu, Tao; Liu, Yong; Guo, Huaicheng

    2015-05-15

    A reliable system simulation to relate socioeconomic development with water environment and to comprehensively represent a watershed's dynamic features is important. In this study, after identifying lake watershed system processes, we developed a system dynamics modeling framework for managing lake water quality at the watershed scale. Two reinforcing loops (Development and Investment Promotion) and three balancing loops (Pollution, Resource Consumption, and Pollution Control) were constituted. Based on this work, we constructed Stock and Flow Diagrams that embedded a pollutant load model and a lake water quality model into a socioeconomic system dynamics model. The Dianchi Lake in Yunnan Province, China, which is the sixth largest and among the most severely polluted freshwater lakes in China, was employed as a case study to demonstrate the applicability of the model. Water quality parameters considered in the model included chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP). The business-as-usual (BAU) scenario and three alternative management scenarios on spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2), and structural adjustment of agriculture (S3), were simulated to assess the effectiveness of certain policies in improving water quality. Results showed that S2 is most effective scenario, and the COD, TN, and TP concentrations in Caohai in 2030 are 52.5, 10.9, and 0.8 mg/L, while those in Waihai are 9.6, 1.2, and 0.08 mg/L, with sustained development in the watershed. Thus, the model can help support the decision making required in development and environmental protection strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Application of a virtual watershed in academic education

    Directory of Open Access Journals (Sweden)

    A. L. Horn

    2005-01-01

    Full Text Available Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with the watershed: a simplified artificial weather scenario based on long-term data of a German weather station as well as an unmodified data record. The input data and parameters are compiled according to the conventions of the SWAT 2000 hydrological model. KIELSHED-1 is mainly used for education, and illustrative application examples, i.e. calculation of water balance, model calibration, development of land use scenarios, give an insight to the capabilities of the virtual watershed.

  20. Development and evaluation of a watershed-scale hybrid hydrologic model

    OpenAIRE

    Cho, Younghyun

    2016-01-01

    A watershed-scale hybrid hydrologic model (Distributed-Clark), which is a lumped conceptual and distributed feature model, was developed to predict spatially distributed short- and long-term rainfall runoff generation and routing using relatively simple methodologies and state-of-the-art spatial data in a GIS environment. In Distributed-Clark, spatially distributed excess rainfall estimated with the SCS curve number method and a GIS-based set of separated unit hydrographs (spatially distribut...

  1. The impact of watershed management on coastal morphology: A case study using an integrated approach and numerical modeling

    Science.gov (United States)

    Samaras, Achilleas G.; Koutitas, Christopher G.

    2014-04-01

    Coastal morphology evolves as the combined result of both natural- and human- induced factors that cover a wide range of spatial and temporal scales of effect. Areas in the vicinity of natural stream mouths are of special interest, as the direct connection with the upstream watershed extends the search for drivers of morphological evolution from the coastal area to the inland as well. Although the impact of changes in watersheds on the coastal sediment budget is well established, references that study concurrently the two fields and the quantification of their connection are scarce. In the present work, the impact of land-use changes in a watershed on coastal erosion is studied for a selected site in North Greece. Applications are based on an integrated approach to quantify the impact of watershed management on coastal morphology through numerical modeling. The watershed model SWAT and a shoreline evolution model developed by the authors (PELNCON-M) are used, evaluating with the latter the performance of the three longshore sediment transport rate formulae included in the model formulation. Results document the impact of crop abandonment on coastal erosion (agricultural land decrease from 23.3% to 5.1% is accompanied by the retreat of ~ 35 m in the vicinity of the stream mouth) and show the effect of sediment transport formula selection on the evolution of coastal morphology. Analysis denotes the relative importance of the parameters involved in the dynamics of watershed-coast systems, and - through the detailed description of a case study - is deemed to provide useful insights for researchers and policy-makers involved in their study.

  2. Long-term modeling of soil C erosion and sequestration at the small watershed scale

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, R.C.; Thomson, A.M. [The Joint Global Change Research Institute, 8400 Baltimore Avenue, Suite 201, College Park, MD 20740-2496 (United States); Williams, J.R. [Blacklands Research Center, Texas A and M University, 808 East Blacklands Road, Temple, TX 76502 (United States); Post, W.M. [Oak Ridge National Laboratory, Building 1509, Bethel Valley Road, PO Box 2008 MS6335, Oak Ridge, TN 537831-6335 (United States); McGill, W.B. [College of Science and Management, University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9 (Canada); Owens, L.B. [North Appalachian Experimental Watershed, USDA-Agricultural Research Station, 28850 SR 621, Coshocton, OH 43812-0488 (United States); Lal, R. [School of Natural Resources Food, Agricultural and Environmental Sciences, The Ohio State University, 422B Kottman Hall, 2021 Coffey Road, Columbus, OH 43210 (United States)

    2007-01-15

    The soil C balance is determined by the difference between inputs (e.g., plant litter, organic amendments, depositional C) and outputs (e.g., soil respiration, dissolved organic C leaching, and eroded C). There is a need to improve our understanding of whether soil erosion is a sink or a source of atmospheric CO2. The objective of this paper is to discover the long-term influence of soil erosion on the C cycle of managed watersheds near Coshocton, OH. We hypothesize that the amount of eroded C that is deposited in or out of a watershed compares in magnitude to the soil C changes induced via microbial respiration. We applied the erosion productivity impact calculator (EPIC) model to evaluate the role of erosion-deposition processes on the C balance of three small watersheds ({approx}1 ha). Experimental records from the USDA North Appalachian Experimental Watershed facility north of Coshocton, OH were used in the study. Soils are predominantly silt loam and have developed from loess-like deposits over residual bedrock. Management practices in the three watersheds have changed over time. Currently, watershed 118 (W118) is under a corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) no till rotation, W128 is under conventional till continuous corn, and W188 is under no till continuous corn. Simulations of a comprehensive set of ecosystem processes including plant growth, runoff, and water erosion were used to quantify sediment C yields. A simulated sediment C yield of 43 {+-} 22 kg C ha{sup -1} year{sup -1} compared favorably against the observed 31 {+-} 12 kg C ha{sup -1} year{sup -1} in W118. EPIC overestimated the soil C stock in the top 30-cm soil depth in W118 by 21% of the measured value (36.8 Mg C ha{sup -1}). Simulations of soil C stocks in the other two watersheds (42.3 Mg C ha{sup -1} in W128 and 50.4 Mg C ha{sup -1} in W188) were off by <1 Mg C ha{sup -1}. Simulated eroded C re-deposited inside (30-212 kg C ha{sup -1} year{sup -1}) or outside (73{sup -1}79 kg

  3. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    Science.gov (United States)

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of

  5. Assessment of Runoff and Sediment Yields Using the AnnAGNPS Model in a Three-Gorge Watershed of China

    Directory of Open Access Journals (Sweden)

    Hongwei Nan

    2012-05-01

    Full Text Available Soil erosion has been recognized as one of the major threats to our environment and water quality worldwide, especially in China. To mitigate nonpoint source water quality problems caused by soil erosion, best management practices (BMPs and/or conservation programs have been adopted. Watershed models, such as the Annualized Agricultural Non-Point Source Pollutant Loading model (AnnAGNPS, have been developed to aid in the evaluation of watershed response to watershed management practices. The model has been applied worldwide and proven to be a very effective tool in identifying the critical areas which had serious erosion, and in aiding in decision-making processes for adopting BMPs and/or conservation programs so that cost/benefit can be maximized and non-point source pollution control can be achieved in the most efficient way. The main goal of this study was to assess the characteristics of soil erosion, sediment and sediment delivery of a watershed so that effective conservation measures can be implemented. To achieve the overall objective of this study, all necessary data for the 4,184 km2 Daning River watershed in the Three-Gorge region of the Yangtze River of China were assembled. The model was calibrated using observed monthly runoff from 1998 to 1999 (Nash-Sutcliffe coefficient of efficiency of 0.94 and R2 of 0.94 and validated using the observed monthly runoff from 2003 to 2005 (Nash-Sutcliffe coefficient of efficiency of 0.93 and R2 of 0.93. Additionally, the model was validated using annual average sediment of 2000–2002 (relative error of −0.34 and 2003–2004 (relative error of 0.18 at Wuxi station. Post validation simulation showed that approximately 48% of the watershed was under the soil loss tolerance released by the Ministry of Water Resources of China (500 t·km−2·y−1. However, 8% of the watershed had soil erosion of exceeding 5,000 t·km−2

  6. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  7. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    Science.gov (United States)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10

  8. Development of Urban Inundation Warning Model at Cyclic Artificial Water Way in Song-do International City, Republic of Korea

    Science.gov (United States)

    Lee, T.; Lee, C.; Kim, H.

    2016-12-01

    Abstract Song-do international city was constructed by reclaiming land from the coastal waters of Yeonsu-gu, Incheon Metropolitan City, Republic of Korea. The □-shaped cyclic artificial water way has been considered for improving water quality, waterfront and internal drainage in Song-do international city. By improving water quality, various marine facilities, such as marina, artificial beach, marine terminal, and so on, will be set up around the artificial water way for the waterfront. Since the water stage of the artificial water way changes depending on water gates operations, it is necessary to develop an urban inundation warning model to evaluate safeties of the waterfront facilities and its passengers. By considering characteristics of urban watershed, we calculate discharge flowing into the water way using XP-SWMM model. As a result of estimating 100-year flood frequency, although there are slight differences in drainage sections, the maximum flood discharge occurs in 90-min rainfall duration. In order to consider impacts of tide and hydraulic structure, we establish Inland drainage plans through the analysis of unsteady flow using HEC-RAS. The urban inundation warning model is configured to issue a warning when the water plain elevation exceeds EL. 1.5m which is usually managed at EL. 1.0m. In this study, the design flood stage of artificial water way and urban inundation warning model are developed for Song-do international city, and therefore it is expected that a reliability of management and operation of the waterfront facilities is improved. Keywords : Artificial Water Way; Waterfront; Urban Inundation Warning Model. Acknowlegement This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  9. Using Agent-Based Modeling to Enhance System-Level Real-time Control of Urban Stormwater Systems

    Science.gov (United States)

    Rimer, S.; Mullapudi, A. M.; Kerkez, B.

    2017-12-01

    The ability to reduce combined-sewer overflow (CSO) events is an issue that challenges over 800 U.S. municipalities. When the volume of a combined sewer system or wastewater treatment plant is exceeded, untreated wastewater then overflows (a CSO event) into nearby streams, rivers, or other water bodies causing localized urban flooding and pollution. The likelihood and impact of CSO events has only exacerbated due to urbanization, population growth, climate change, aging infrastructure, and system complexity. Thus, there is an urgent need for urban areas to manage CSO events. Traditionally, mitigating CSO events has been carried out via time-intensive and expensive structural interventions such as retention basins or sewer separation, which are able to reduce CSO events, but are costly, arduous, and only provide a fixed solution to a dynamic problem. Real-time control (RTC) of urban drainage systems using sensor and actuator networks has served as an inexpensive and versatile alternative to traditional CSO intervention. In particular, retrofitting individual stormwater elements for sensing and automated active distributed control has been shown to significantly reduce the volume of discharge during CSO events, with some RTC models demonstrating a reduction upwards of 90% when compared to traditional passive systems. As more stormwater elements become retrofitted for RTC, system-level RTC across complete watersheds is an attainable possibility. However, when considering the diverse set of control needs of each of these individual stormwater elements, such system-level RTC becomes a far more complex problem. To address such diverse control needs, agent-based modeling is employed such that each individual stormwater element is treated as an autonomous agent with a diverse decision making capabilities. We present preliminary results and limitations of utilizing the agent-based modeling computational framework for the system-level control of diverse, interacting

  10. Future trends in urbanization and coastal water pollution in the Bay of Bengal: the lived experience

    NARCIS (Netherlands)

    Zinia, N.J.; Kroeze, C.

    2015-01-01

    The Bay of Bengal includes coastal seas of several countries, including Bangladesh, India, and Myanmar. We present scenarios for future river export of eutrophying nutrients into the Bay of Bengal, and the role of urbanization therein. We used NEWS (Nutrient Export from WaterSheds) model to analyze

  11. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  12. Modeling urban fire growth

    International Nuclear Information System (INIS)

    Waterman, T.E.; Takata, A.N.

    1983-01-01

    The IITRI Urban Fire Spread Model as well as others of similar vintage were constrained by computer size and running costs such that many approximations/generalizations were introduced to reduce program complexity and data storage requirements. Simplifications were introduced both in input data and in fire growth and spread calculations. Modern computational capabilities offer the means to introduce greater detail and to examine its practical significance on urban fire predictions. Selected portions of the model are described as presently configured, and potential modifications are discussed. A single tract model is hypothesized which permits the importance of various model details to be assessed, and, other model applications are identified

  13. Development, calibration, and analysis of a hydrologic and water-quality model of the Delaware Inland Bays watershed

    Science.gov (United States)

    Gutierrez-Magness, Angelica L.; Raffensperger, Jeff P.

    2003-01-01

    Excessive nutrients and sediment are among the most significant environmental stressors in the Delaware Inland Bays (Rehoboth, Indian River, and Little Assawoman Bays). Sources of nutrients, sediment, and other contaminants within the Inland Bays watershed include point-source discharges from industries and wastewater-treatment plants, runoff and infiltration to ground water from agricultural fields and poultry operations, effluent from on-site wastewater disposal systems, and atmospheric deposition. To determine the most effective restoration methods for the Inland Bays, it is necessary to understand the relative distribution and contribution of each of the possible sources of nutrients, sediment, and other contaminants. A cooperative study involving the Delaware Department of Natural Resources and Environmental Control, the Delaware Geological Survey, and the U.S. Geological Survey was initiated in 2000 to develop a hydrologic and water-quality model of the Delaware Inland Bays watershed that can be used as a water-resources planning and management tool. The model code Hydrological Simulation Program - FORTRAN (HSPF) was used. The 719-square-kilometer watershed was divided into 45 model segments, and the model was calibrated using streamflow and water-quality data for January 1999 through April 2000 from six U.S. Geological Survey stream-gaging stations within the watershed. Calibration for some parameters was accomplished using PEST, a model-independent parameter estimator. Model parameters were adjusted systematically so that the discrepancies between the simulated values and the corresponding observations were minimized. Modeling results indicate that soil and aquifer permeability, ditching, dominant land-use class, and land-use practices affect the amount of runoff, the mechanism or flow path (surface flow, interflow, or base flow), and the loads of sediment and nutrients. In general, the edge-of-stream total suspended solids yields in the Inland Bays

  14. Using AGWA and the KINEROS2 Model-to-Model Green Infrastructure in Two Typical Residential Lots in Prescott, AZ

    Science.gov (United States)

    The Automated Geospatial Watershed Assessment (AGWA) Urban tool provides a step-by-step process to model subdivisions using the KINEROS2 model, with and without Green Infrastructure (GI) practices. AGWA utilizes the Kinematic Runoff and Erosion (KINEROS2) model, an event driven, ...

  15. Watershed-scale evaluation of the Water Erosion Prediction Project (WEPP) model in the Lake Tahoe basin

    Science.gov (United States)

    Erin S. Brooks; Mariana Dobre; William J. Elliot; Joan Q. Wu; Jan Boll

    2016-01-01

    Forest managers need methods to evaluate the impacts of management at the watershed scale. The Water Erosion Prediction Project (WEPP) has the ability to model disturbed forested hillslopes, but has difficulty addressing some of the critical processes that are important at a watershed scale, including baseflow and water yield. In order to apply WEPP to...

  16. Phosphorus run-off assessment in a watershed.

    Science.gov (United States)

    Chebud, Yirgalem; Naja, Ghinwa M; Rivero, Rosanna

    2011-01-01

    The Watershed Assessment Model was used to simulate the runoff volume, peak flows, and non-point source phosphorus loadings from the 5870 km(2) Lake Okeechobee watershed as a case study. The results were compared to on-site monitoring to verify the accuracy of the method and to estimate the observed/simulated error. In 2008, the total simulated phosphorus contribution was 9634, 6524 and 3908 kg (P) y(-1) from sod farms, citrus farms and row crop farmlands, respectively. Although the dairies represent less than 1% of the total area of Kissimmee basin, the simulated P load from the dairies (9283 kg (P) y(-1) in 2008) made up 5.4% of the total P load during 2008. On average, the modeled P yield rates from dairies, sod farms and row crop farmlands are 3.85, 2.01 and 0.86 kg (P) ha(-1) y(-1), respectively. The maximum sediment simulated phosphorus yield rate is about 2 kg (P) ha(-1) and the particulate simulated phosphorus contribution from urban, improved pastures and dairies to the total phosphorus load was estimated at 9%, 3.5%, and 1%, respectively. Land parcels with P oversaturated soil as well as the land parcels with high phosphorus assimilation and high total phosphorus contribution were located. The most critical sub-basin was identified for eventual targeting by enforced agricultural best management practices. Phosphorus load, including stream assimilation, incoming to Lake Okeechobee from two selected dairies was also determined.

  17. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    in receiving waters, urban flooding etc. WSUD structures are generally small, decentralized systems intended to manage stormwater near the source. Many of these alternative techniques are based on infiltration which can affect both the urban sewer system and urban groundwater levels if widely implemented......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality......, and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...

  18. Using Remotely Sensed Data and Watershed and Hydrodynamic Models to Evaluate the Effects of Land Cover Land Use Change on Aquatic Ecosystems in Mobile Bay, AL

    Science.gov (United States)

    Al-Hamdan, Mohammad Z.; Estes, Maurice G., Jr.; Judd, Chaeli; Thom, Ron; Woodruff, Dana; Ellis, Jean T.; Quattrochi, Dale; Watson, Brian; Rodriquez, Hugo; Johnson, Hoyt

    2012-01-01

    Alabama coastal systems have been subjected to increasing pressure from a variety of activities including urban and rural development, shoreline modifications, industrial activities, and dredging of shipping and navigation channels. The impacts on coastal ecosystems are often observed through the use of indicator species. One such indicator species for aquatic ecosystem health is submerged aquatic vegetation (SAV). Watershed and hydrodynamic modeling has been performed to evaluate the impact of land cover land use (LCLU) change in the two counties surrounding Mobile Bay (Mobile and Baldwin) on SAV stressors and controlling factors (temperature, salinity, and sediment) in the Mobile Bay estuary. Watershed modeling using the Loading Simulation Package in C++ (LSPC) was performed for all watersheds contiguous to Mobile Bay for LCLU scenarios in 1948, 1992, 2001, and 2030. Remotely sensed Landsat-derived National Land Cover Data (NLCD) were used in the 1992 and 2001 simulations after having been reclassified to a common classification scheme. The Prescott Spatial Growth Model was used to project the 2030 LCLU scenario based on current trends. The LSPC model simulations provided output on changes in flow, temperature, and sediment for 22 discharge points into the estuary. These results were inputted in the Environmental Fluid Dynamics Computer Code (EFDC) hydrodynamic model to generate data on changes in temperature, salinity, and sediment on a grid throughout Mobile Bay and adjacent estuaries. The changes in the aquatic ecosystem were used to perform an ecological analysis to evaluate the impact on SAV habitat suitability. This is the key product benefiting the Mobile Bay coastal environmental managers that integrates the influences of temperature, salinity, and sediment due to LCLU driven flow changes with the restoration potential of SAVs. Data products and results are being integrated into NOAA s EcoWatch and Gulf of Mexico Data Atlas online systems for

  19. The biogeochemical fingerprint of urbanization: increasing carbon quality in Maine headwater streams

    Science.gov (United States)

    Parr, T.; Cronan, C.; Ohno, T.; Simon, K. S.

    2012-12-01

    Conversion of land cover to urban use is an accelerating global phenomenon. Physical landscape change manifests as the replacement of forests, grasslands, and wetlands with buildings, novel vegetation, and infrastructure. This physical change also brings with it a change in the human management of the landscape for aesthetic and practical purposes (i.e. road salt applications). Although urbanization's effects on inorganic nutrients have been well studied, far less is known about the interactive influences of urbanization and urban landscape management practices on dissolved organic matter (DOM), a key energy source essential to ecosystem function. We examined the seasonal abundance and composition of DOM, nutrients, and common cations in 116 small streams along a gradient of urbanization (0-60% total watershed imperviousness, TWI), in Maine, USA. Dissolved organic carbon concentration ranged from 0.5 to 20 ppm with no clear relationship to watershed urbanization. In contrast, DOM composition, quantified with specific ultra violet absorbance at 254 nm (SUVA_{254}), fluorescence indices, and parallel factor analysis (PARAFAC), changed considerably with increasing urbanization. SUVA_{254} indicated a shift from higher molecular weight humic compounds (SUVA_{254}>4) toward lower molecular weight compounds (SUVA_{254}road salt application may mobilize base cations into streams draining urbanized watersheds. There was a strong negative relationship between humic-like DOM components and Ca^{2+} (R^2=0.3-0.5, psalts over a natural range (0 - 6 mM) showed that ^{2+} cations (esp. Ca^{2+}) preferentially flocculated the humic fraction of DOM (R^2=0.6-0.9, premoving terrestrial C from the aquatic DOM pool in urban landscapes.

  20. Spatial characterization of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore, India

    Directory of Open Access Journals (Sweden)

    G. Penny

    2018-01-01

    Full Text Available The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede the understanding of hydrological change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy watershed in southern India, surface water inflows to major reservoirs decreased over a 40-year period during which urbanization, groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple, interacting drivers combined with limited hydrological monitoring make attribution of the causes of diminishing water resources in the watershed challenging and impede effective policy responses. To mitigate these challenges, we developed a novel, spatially distributed dataset to understand hydrological change by characterizing the residual trends in surface water extent that remain after controlling for precipitation variations and comparing the trends with historical land use maps to assess human drivers of change. Using an automated classification approach with subpixel unmixing, we classified water extent in nearly 1700 man-made lakes, or tanks, in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water extent of tanks (R2  =  0.95. We modeled the water extent of 42 clusters of tanks in a multiple regression on simple hydrological covariates (including precipitation and time. Inter-annual variability in precipitation accounted for 63 % of the predicted variability in water extent. However, precipitation did not exhibit statistically significant trends in any part of the watershed. After controlling for precipitation variability, we found statistically significant temporal trends in water extent, both positive and negative, in 13 of the clusters. Based on a water balance argument, we inferred that these trends likely reflect a non-stationary relationship between precipitation and watershed

  1. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    Directory of Open Access Journals (Sweden)

    Stéphanie Piel

    2012-12-01

    Full Text Available This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  2. Down by the riverside: urban riparian ecology

    Science.gov (United States)

    Peter M. Groffman; Daniel J. Bain; Lawrence E. Band; Kenneth T. Belt; Grace S. Brush; J. Morgan Grove; Richard V. Pouyat; Ian C. Yesilonis; Wayne C. Zipperer

    2003-01-01

    Riparian areas are hotspots of interactions between plants, soil, water, microbes, and people. While urban land use change has been shown to have dramatic effects on watershed hydrology, there has been surprisingly little analysis of its effects on riparian areas. Here we examine the ecology of urban riparian zones, focusing on work done in the Baltimore Ecosystem...

  3. Multi-Scale Soil Moisture Monitoring and Modeling at ARS Watersheds for NASA's Soil Moisture Active Passive (SMAP) Calibration/Validation Mission

    Science.gov (United States)

    Coopersmith, E. J.; Cosh, M. H.

    2014-12-01

    NASA's SMAP satellite, launched in November of 2014, produces estimates of average volumetric soil moisture at 3, 9, and 36-kilometer scales. The calibration and validation process of these estimates requires the generation of an identically-scaled soil moisture product from existing in-situ networks. This can be achieved via the integration of NLDAS precipitation data to perform calibration of models at each ­in-situ gauge. In turn, these models and the gauges' volumetric estimations are used to generate soil moisture estimates at a 500m scale throughout a given test watershed by leveraging, at each location, the gauge-calibrated models deemed most appropriate in terms of proximity, calibration efficacy, soil-textural similarity, and topography. Four ARS watersheds, located in Iowa, Oklahoma, Georgia, and Arizona are employed to demonstrate the utility of this approach. The South Fork watershed in Iowa represents the simplest case - the soil textures and topography are relative constants and the variability of soil moisture is simply tied to the spatial variability of precipitation. The Little Washita watershed in Oklahoma adds soil textural variability (but remains topographically simple), while the Little River watershed in Georgia incorporates topographic classification. Finally, the Walnut Gulch watershed in Arizona adds a dense precipitation network to be employed for even finer-scale modeling estimates. Results suggest RMSE values at or below the 4% volumetric standard adopted for the SMAP mission are attainable over the desired spatial scales via this integration of modeling efforts and existing in-situ networks.

  4. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Science.gov (United States)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  5. Desertification Assessment Using MEDALUS Model in Watershed Oued El Maleh, Morocco

    Directory of Open Access Journals (Sweden)

    Hicham Lahlaoi

    2017-07-01

    Full Text Available Along with being a dynamic process that affects large areas, desertification is also one of the most serious problems in many countries. The effects of this phenomenon threaten the sustainability of natural resources, namely water resources, agricultural production and major basic infrastructure, specifically roads and habitations. Several factors exacerbate this phenomenon such as the climate dryness, the geological and morphological characteristics of the terrain, the irrational use of space, population growth and the over-exploitation of vegetation and water resources. This work aims to evaluate the desertification index in the Oued-El-Maleh watershed, through the integration of key factors involved in the MEDALUS model (Mediterranean Desertification and Land Use within a GIS. The model includes among its indexes: climate, vegetation, soil and management. Each index was obtained by the combination of sub-indexes. All the factors, measured and integrated into a geographic information system, enabled us to spatialize, on a synthetic map, the degree of the desertification effect throughout the watershed. This map is a managing tool available for decision-making regarding the selection of priority areas in the fight against desertification. High sensitivity to desertification class represents only 35% of the watershed. This class is concentrated in the north of the study area that corresponds to plains and low altitude. This could be explained by the dominance of agro-pastoral activity and the presence of a big population pressure.

  6. Nitrogen Assessment in the Nooksack-Abbotsford-Sumas Transboundary Watershed

    Science.gov (United States)

    Lin, J.; Compton, J.; Baron, J.; Schwede, D. B.; Bittman, S.; Hooper, D. U.; Kiffney, P.; Embertson, N.; Carey, B.; MacKay, H.; Black, R.; Bahr, G.; Harrison, J.; Davidson, E. A.

    2017-12-01

    The Nooksack-Abbotsford-Sumas (NAS) Transboundary Watershed, which spans a portion of the western interface of British Columbia, Washington State, as well as the Lummi Nation and the Nooksack Tribal lands, supports agriculture, estuarine fisheries, diverse wildlife, and urban areas. Excess N has contributed to surface and ground water pollution, shellfish closure, and impaired air quality (such as haze or smog) in some areas in the watershed. The goal of this project is to determine the distribution and quantities of N fluxes of the watershed using site-specific and high-resolution data on N that originates from energy use, transportation, fertilization, wastewater treatment plants (WWTP), animal feeding and manure production, crops and more. This project is one of seven international demonstration projects contributing knowledge of regional N budgets and collaborative approaches toward N management as part of the International Nitrogen Management System (INMS). Successful N reduction relies on the partnership of all stakeholders with appropriate institutions to integrate science, outreach and management efforts. This project will bring together stakeholders on both sides of the international border for a first comprehensive, quantitative characterization of all N inventories and fluxes across this international watershed. Using crop-specific fertilizer application rates and wind-shield-survey land use data, we estimated that the annual fertilizer N input to the U.S. portion of the watershed was about 3779 metric tons (MT), which is very close to the USGS estimate of 3955 MT. Based on county level animal census data, we estimated total excretion N from major livestock (cattle) to be 7895 MT on the U.S. side. Using existing model results from other studies, we estimated that the annual N loading on the U.S. side was about 351 MT from point sources, 527 MT from atmospheric deposition, and about 7 MT from alder fixation. The preliminary results demonstrate an

  7. Socioecological revitalization of an urban watershed

    Science.gov (United States)

    Guy W Hager; Kenneth T. Belt; William Stack; Kimberly Burgess; J. Morgan Grove; Bess Caplan; Mary Hardcastle; Desiree Shelley; Steward T.A. Pickett; Peter M. Groffman

    2013-01-01

    Older, economically troubled urban neighborhoods present multiple challenges to environmental quality. Here, we present results from an initiative in Baltimore, Maryland, where water-quality improvements were rooted in a socioecological framework that highlighted the interactions between biogeophysical dynamics and social actors and institutions. This framework led to...

  8. Estimation of the peak factor based on watershed characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier, Jean; Nolin, Simon; Ruest, Benoit [BPR Inc., Quebec, (Canada)

    2010-07-01

    Hydraulic modeling and dam structure design require the river flood flow as a primary input. For a given flood event, the ratio of peak flow over mean daily flow defines the peak factor. The peak factor value is dependent on the watershed and location along the river. The main goal of this study consisted in finding a relationship between watershed characteristics and this peak factor. Regression analyses were carried out on 53 natural watersheds located in the southern part of the province of Quebec using data from the Centre d'expertise hydrique du Quebec (CEHQ). The watershed characteristics included in the analyses were the watershed area, the maximum flow length, the mean slope, the lake proportion and the mean elevation. The results showed that watershed area and length are the major parameters influencing the peak factor. Nine natural watersheds were also used to test the use of a multivariable model in order to determine the peak factor for ungauged watersheds.

  9. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale

    Science.gov (United States)

    Abouali, Mohammad; Nejadhashemi, A. Pouyan; Daneshvar, Fariborz; Adhikari, Umesh; Herman, Matthew R.; Calappi, Timothy J.; Rohn, Bridget G.

    2017-09-01

    Excessive nutrient use in agricultural practices is a major cause of water quality degradation around the world, which results in eutrophication of the freshwater systems. Among the nutrients, phosphorus enrichment has recently drawn considerable attention due to major environmental issues such as Lake Erie and Chesapeake Bay eutrophication. One approach for mitigating the impacts of excessive nutrients on water resources is the implementation of wetlands. However, proper site selection for wetland implementation is the key for effective water quality management at the watershed scale, which is the goal of this study. In this regard, three conventional and two pseudo-random targeting methods were considered. A watershed model called the Soil and Water Assessment Tool (SWAT) was coupled with another model called System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) to simulate the impacts of wetland implementation scenarios in the Saginaw River watershed, located in Michigan. The inter-group similarities of the targeting strategies were investigated and it was shown that the level of similarity increases as the target area increases (0.54-0.86). In general, the conventional targeting method based on phosphorus load generated per unit area at the subwatershed scale had the highest average reduction among all the scenarios (44.46 t/year). However, when considering the total area of implemented wetlands, the conventional method based on long-term impacts of wetland implementation showed the highest amount of phosphorus reduction (36.44 t/year).

  10. A coupled modeling framework for sustainable watershed management in transboundary river basins

    Directory of Open Access Journals (Sweden)

    H. F. Khan

    2017-12-01

    Full Text Available There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural–human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM framework consisting of a process-based semi-distributed hydrologic model (SWAT and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food–water–energy–environment (FWEE nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of

  11. A coupled modeling framework for sustainable watershed management in transboundary river basins

    Science.gov (United States)

    Furqan Khan, Hassaan; Yang, Y. C. Ethan; Xie, Hua; Ringler, Claudia

    2017-12-01

    There is a growing recognition among water resource managers that sustainable watershed management needs to not only account for the diverse ways humans benefit from the environment, but also incorporate the impact of human actions on the natural system. Coupled natural-human system modeling through explicit modeling of both natural and human behavior can help reveal the reciprocal interactions and co-evolution of the natural and human systems. This study develops a spatially scalable, generalized agent-based modeling (ABM) framework consisting of a process-based semi-distributed hydrologic model (SWAT) and a decentralized water system model to simulate the impacts of water resource management decisions that affect the food-water-energy-environment (FWEE) nexus at a watershed scale. Agents within a river basin are geographically delineated based on both political and watershed boundaries and represent key stakeholders of ecosystem services. Agents decide about the priority across three primary water uses: food production, hydropower generation and ecosystem health within their geographical domains. Agents interact with the environment (streamflow) through the SWAT model and interact with other agents through a parameter representing willingness to cooperate. The innovative two-way coupling between the water system model and SWAT enables this framework to fully explore the feedback of human decisions on the environmental dynamics and vice versa. To support non-technical stakeholder interactions, a web-based user interface has been developed that allows for role-play and participatory modeling. The generalized ABM framework is also tested in two key transboundary river basins, the Mekong River basin in Southeast Asia and the Niger River basin in West Africa, where water uses for ecosystem health compete with growing human demands on food and energy resources. We present modeling results for crop production, energy generation and violation of eco

  12. Development of a "Hydrologic Equivalent Wetland" Concept for Modeling Cumulative Effects of Wetlands on Watershed Hydrology

    Science.gov (United States)

    Wang, X.; Liu, T.; Li, R.; Yang, X.; Duan, L.; Luo, Y.

    2012-12-01

    Wetlands are one of the most important watershed microtopographic features that affect, in combination rather than individually, hydrologic processes (e.g., routing) and the fate and transport of constituents (e.g., sediment and nutrients). Efforts to conserve existing wetlands and/or to restore lost wetlands require that watershed-level effects of wetlands on water quantity and water quality be quantified. Because monitoring approaches are usually cost or logistics prohibitive at watershed scale, distributed watershed models, such as the Soil and Water Assessment Tool (SWAT), can be a best resort if wetlands can be appropriately represented in the models. However, the exact method that should be used to incorporate wetlands into hydrologic models is the subject of much disagreement in the literature. In addition, there is a serious lack of information about how to model wetland conservation-restoration effects using such kind of integrated modeling approach. The objectives of this study were to: 1) develop a "hydrologic equivalent wetland" (HEW) concept; and 2) demonstrate how to use the HEW concept in SWAT to assess effects of wetland restoration within the Broughton's Creek watershed located in southwestern Manitoba of Canada, and of wetland conservation within the upper portion of the Otter Tail River watershed located in northwestern Minnesota of the United States. The HEWs were defined in terms of six calibrated parameters: the fraction of the subbasin area that drains into wetlands (WET_FR), the volume of water stored in the wetlands when filled to their normal water level (WET_NVOL), the volume of water stored in the wetlands when filled to their maximum water level (WET_MXVOL), the longest tributary channel length in the subbasin (CH_L1), Manning's n value for the tributary channels (CH_N1), and Manning's n value for the main channel (CH_N2). The results indicated that the HEW concept allows the nonlinear functional relations between watershed processes

  13. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    Energy Technology Data Exchange (ETDEWEB)

    Luo Yuzhou [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China); Zhang Xuyang [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Liu Xingmei [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Soil, Water and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Ficklin, Darren [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Zhang Minghua [Department of Land, Air and Water Resources, University of California, Davis, CA 95616 (United States); Institute of Watershed Science and Environmental Ecology, Wenzhou Medical College, Wenzhou, 325000 (China)], E-mail: mhzhang@ucdavis.edu

    2008-12-15

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application.

  14. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California

    International Nuclear Information System (INIS)

    Luo Yuzhou; Zhang Xuyang; Liu Xingmei; Ficklin, Darren; Zhang Minghua

    2008-01-01

    The hydrology, sediment, and pesticide transport components of the Soil and Water Assessment Tool (SWAT) were evaluated on the northern San Joaquin Valley watershed of California. The Nash-Sutcliffe coefficients for monthly stream flow and sediment load ranged from 0.49 to 0.99 over the watershed during the study period of 1992-2005. The calibrated SWAT model was applied to simulate fate and transport processes of two organophosphate pesticides of diazinon and chlorpyrifos at watershed scale. The model generated satisfactory predictions of dissolved pesticide loads relative to the monitoring data. The model also showed great success in capturing spatial patterns of dissolved diazinon and chlorpyrifos loads according to the soil properties and landscape morphology over the large agricultural watershed. This study indicated that curve number was the major factor influencing the hydrology while pesticide fate and transport were mainly affected by surface runoff and pesticide application and in the study area. - Major factors governing the instream loads of organophosphate pesticides are magnitude and timing of surface runoff and pesticide application

  15. Hydrological Modeling of Watersheds Using the Only Corresponding Competitor Method: The Case of M'Zab Basin, South East Algeria

    OpenAIRE

    Oulad Naoui Noureddine; Cherif ELAmine; Djehiche Abdelkader

    2017-01-01

    Water resources management includes several disciplines; the modeling of rainfall-runoff relationship is the most important discipline to prevent natural risks. There are several models to study rainfall-runoff relationship in watersheds. However, the majority of these models are not applicable in all basins of the world. In this study, a new stochastic method called The Only Corresponding Competitor method (OCC) was used for the hydrological modeling of M’ZAB Watershed (South East of Alge...

  16. Determination of Water Quality Status at Sampean Watershed Bondowoso Residence Using Storet Method

    Science.gov (United States)

    Sugiyarto; Hariono, B.; Destarianto, P.; Nuruddin, M.

    2018-01-01

    Sampean watershed has an important social and economic function for the people surroundings. Sampean watershed wich cover Bondowoso and Situbondo residence is an urban watershed that has strategic value for national context needs special traetment. Construction activity at upper and lower course of Sampean watershed is highly intensive and growth of inhabitant also increase. The change of land utilization and increase of settlement area at upper, midlle, and lower course caused polutant infiltration to Sampean river watershed so it has impact on water quality. The source of pollution at Sampean river comes from domestic waste, industrial waste, agricultural waste and animal husbandry waste. The purpose of this research is to determine load of pollution and analize the pollution load carrying capacity at Sampean watershed. The data used in this research are rainfall, river flow rate and water quality at 6 certain points within 3 years during 2014 until 2016. The method to determine overall pollution rate is STORET (Storage and Retrieval of Water Quality Data System) method. The analysis results for the first, second, third and forth grade are -24 (moderate quality), -12 (moderate quality), -2 (good quality), and 0 (good quality) respectively.

  17. Applying soil property information for watershed assessment.

    Science.gov (United States)

    Archer, V.; Mayn, C.; Brown, S. R.

    2017-12-01

    The Forest Service uses a priority watershed scheme to guide where to direct watershed restoration work. Initial assessment was done across the nation following the watershed condition framework process. This assessment method uses soils information for a three step ranking across each 12 code hydrologic unit; however, the soil information used in the assessment may not provide adequate detail to guide work on the ground. Modern remote sensing information and terrain derivatives that model the environmental gradients hold promise of showing the influence of soil forming factors on watershed processes. These small scale data products enable the disaggregation of coarse scale soils mapping to show continuous soil property information across a watershed. When this information is coupled with the geomorphic and geologic information, watershed specialists can more aptly understand the controlling influences of drainage within watersheds and focus on where watershed restoration projects can have the most success. A case study on the application of this work shows where road restoration may be most effective.

  18. Dynamics and ecological risk assessment of chromophoric dissolved organic matter in the Yinma River Watershed: Rivers, reservoirs, and urban waters.

    Science.gov (United States)

    Li, Sijia; Zhang, Jiquan; Guo, Enliang; Zhang, Feng; Ma, Qiyun; Mu, Guangyi

    2017-10-01

    The extensive use of a geographic information system (GIS) and remote sensing in ecological risk assessment from a spatiotemporal perspective complements ecological environment management. Chromophoric dissolved organic matter (CDOM), which is a complex mixture of organic matter that can be estimated via remote sensing, carries and produces carcinogenic disinfection by-products and organic pollutants in various aquatic environments. This paper reports the first ecological risk assessment, which was conducted in 2016, of CDOM in the Yinma River watershed including riverine waters, reservoir waters, and urban waters. Referring to the risk formation theory of natural disaster, the entropy evaluation method and DPSIR (driving force-pressure-state-impact-response) framework were coupled to establish a hazard and vulnerability index with multisource data, i.e., meteorological, remote sensing, experimental, and socioeconomic data, of this watershed. This ecological vulnerability assessment indicator system contains 23 indicators with respect to ecological sensitivity, ecological pressure, and self-resilience. The characteristics of CDOM absorption parameters from different waters showed higher aromatic content and molecular weights in May because of increased terrestrial inputs. The assessment results indicated that the overall ecosystem risk in the study area was focused in the extremely, heavily, and moderately vulnerable regions. The ecological risk assessment results objectively reflect the regional ecological environment and demonstrate the potential of ecological risk assessment of pollutants over traditional chemical measurements. Copyright © 2017. Published by Elsevier Inc.

  19. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    Science.gov (United States)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  20. Urban Land Allocation Model of Territorial Expansion by Urban Planners and Housing Developers

    Directory of Open Access Journals (Sweden)

    Carolina Cantergiani

    2017-12-01

    Full Text Available Agent-based models have recently been proposed as potential tools to support urban planning due to their capacity to simulate complex behaviors. The complexity of the urban development process arises from strong interactions between various components driven by different agents. AMEBA (agent-based model for the evolution of urban areas is a prototype of an exploratory, spatial, agent-based model that considers the main agents involved in the urban development process (urban planners, developers, and the population. The prototype consists of three submodels (one for each agent that have been developed independently and present the same structure. However, the first two are based on a land use allocation technique, and the last one, as well as their integration, on an agent-based model approach. This paper describes the conceptualization and performance of the submodels that represent urban planners and developers, who are the agents responsible for officially launching expansion and defining the spatial allocation of urban land. The prototype was tested in the Corredor del Henares (an urban–industrial area in the Region of Madrid, Spain, but is sufficiently flexible to be adapted to other study areas and generate different future urban growth contexts. The results demonstrate that this combination of agents can be used to explore various policy-relevant research questions, including urban system interactions in adverse political and socioeconomic scenarios.

  1. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  2. Plant species richness and abundance in residential yards across a tropical watershed: implications for urban sustainability

    Directory of Open Access Journals (Sweden)

    Cristina P. Vila-Ruiz

    2014-09-01

    Full Text Available Green spaces within residential areas provide important contributions to the sustainability of urban systems. Therefore, studying the characteristics of these areas has become a research priority in cities worldwide. This project evaluated various aspects of the plant biodiversity of residential yards (i.e., front yards and back yards within the Río Piedras watershed in the San Juan metropolitan area of Puerto Rico. Our work included gathering information on vegetation composition and abundance of woody species (i.e., trees, shrubs, palms, ferns and large herbs (>2 m height, species origin (native vs. introduced, and species uses (ornamental, food, and medicinal plants. A total of 424 yards were surveyed within an area of 187,191 m². We found 383 woody species, with shrubs being the most abundant plant habitat. As expected, residential yards hosted a disproportionate amount of introduced species (69.5%. The most common shrub species were all non-native ornamentals, whereas the most common tree species included food trees as well as ornamental plants and two native species. Front yards hosted more ornamental species per unit area than backyards, while the latter had more food plants. The high amount of introduced species may present a challenge in terms of implementation of plant conservation initiatives if there is no clear definition of urban conservation goals. On the other hand, the high frequency of yards containing food plants may facilitate the development of residential initiatives that could provide future adaptive capacity to food shortages.

  3. Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation of River Flow Prediction

    Directory of Open Access Journals (Sweden)

    Iwan Ridwansyah

    2014-04-01

    Full Text Available Increasing of natural resources utilization as a result of population growth and economic development has caused severe damage on the watershed. The impacts of natural disasters such as floods, landslides and droughts become more frequent. Cisadane Catchment Area is one of 108 priority watershed in Indonesia. SWAT is currently applied world wide and considered as a versatile model that can be used to integrate multiple environmental processes, which support more effective watershed management and the development of better informed policy decision. The objective of this study is to examine the applicability of SWAT model for modeling mountainous catchments, focusing on Cisadane catchment Area in west Java Province, Indonesia. The SWAT model simulation was done for the periods of 2005 – 2010 while it used landuse information in 2009. Methods of Sequential Uncertainty Fitting ver. 2 (SUFI2 and combine with manual calibration were used in this study to calibrate a rainfall-runoff. The Calibration is done on 2007 and the validation on 2009, the R2 and Nash Sutchliffe Efficiency (NSE of the calibration were 0.71 and 0.72 respectively and the validation are 0.708 and 0.7 respectively. The monthly average of surface runoff and total water yield from the simulation were 27.7 mm and 2718.4 mm respectively. This study showed SWAT model can be a potential monitoring tool especially for watersheds in Cisadane Catchment Area or in the tropical regions. The model can be used for another purpose, especially in watershed management.

  4. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.

    Science.gov (United States)

    Winchell, Michael F; Peranginangin, Natalia; Srinivasan, Raghavan; Chen, Wenlin

    2018-05-01

    Recent national regulatory assessments of potential pesticide exposure of threatened and endangered species in aquatic habitats have led to increased need for watershed-scale predictions of pesticide concentrations in flowing water bodies. This study was conducted to assess the ability of the uncalibrated Soil and Water Assessment Tool (SWAT) to predict annual maximum pesticide concentrations in the flowing water bodies of highly vulnerable small- to medium-sized watersheds. The SWAT was applied to 27 watersheds, largely within the midwest corn belt of the United States, ranging from 20 to 386 km 2 , and evaluated using consistent input data sets and an uncalibrated parameterization approach. The watersheds were selected from the Atrazine Ecological Exposure Monitoring Program and the Heidelberg Tributary Loading Program, both of which contain high temporal resolution atrazine sampling data from watersheds with exceptionally high vulnerability to atrazine exposure. The model performance was assessed based upon predictions of annual maximum atrazine concentrations in 1-d and 60-d durations, predictions critical in pesticide-threatened and endangered species risk assessments when evaluating potential acute and chronic exposure to aquatic organisms. The simulation results showed that for nearly half of the watersheds simulated, the uncalibrated SWAT model was able to predict annual maximum pesticide concentrations within a narrow range of uncertainty resulting from atrazine application timing patterns. An uncalibrated model's predictive performance is essential for the assessment of pesticide exposure in flowing water bodies, the majority of which have insufficient monitoring data for direct calibration, even in data-rich countries. In situations in which SWAT over- or underpredicted the annual maximum concentrations, the magnitude of the over- or underprediction was commonly less than a factor of 2, indicating that the model and uncalibrated parameterization

  5. A risk explicit interval linear programming model for uncertainty-based environmental economic optimization in the Lake Fuxian watershed, China.

    Science.gov (United States)

    Zhang, Xiaoling; Huang, Kai; Zou, Rui; Liu, Yong; Yu, Yajuan

    2013-01-01

    The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP) method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP) and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers' preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of "low risk and high return efficiency" in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  6. A Risk Explicit Interval Linear Programming Model for Uncertainty-Based Environmental Economic Optimization in the Lake Fuxian Watershed, China

    Directory of Open Access Journals (Sweden)

    Xiaoling Zhang

    2013-01-01

    Full Text Available The conflict of water environment protection and economic development has brought severe water pollution and restricted the sustainable development in the watershed. A risk explicit interval linear programming (REILP method was used to solve integrated watershed environmental-economic optimization problem. Interval linear programming (ILP and REILP models for uncertainty-based environmental economic optimization at the watershed scale were developed for the management of Lake Fuxian watershed, China. Scenario analysis was introduced into model solution process to ensure the practicality and operability of optimization schemes. Decision makers’ preferences for risk levels can be expressed through inputting different discrete aspiration level values into the REILP model in three periods under two scenarios. Through balancing the optimal system returns and corresponding system risks, decision makers can develop an efficient industrial restructuring scheme based directly on the window of “low risk and high return efficiency” in the trade-off curve. The representative schemes at the turning points of two scenarios were interpreted and compared to identify a preferable planning alternative, which has the relatively low risks and nearly maximum benefits. This study provides new insights and proposes a tool, which was REILP, for decision makers to develop an effectively environmental economic optimization scheme in integrated watershed management.

  7. Variable Width Riparian Model Enhances Landscape and Watershed Condition

    Science.gov (United States)

    Abood, S. A.; Spencer, L.

    2017-12-01

    Riparian areas are ecotones that represent about 1% of USFS administered landscape and contribute to numerous valuable ecosystem functions such as wildlife habitat, stream water quality and flows, bank stability and protection against erosion, and values related to diversity, aesthetics and recreation. Riparian zones capture the transitional area between terrestrial and aquatic ecosystems with specific vegetation and soil characteristics which provide critical values/functions and are very responsive to changes in land management activities and uses. Two staff areas at the US Forest Service have coordinated on a two phase project to support the National Forests in their planning revision efforts and to address rangeland riparian business needs at the Forest Plan and Allotment Management Plan levels. The first part of the project will include a national fine scale (USGS HUC-12 digits watersheds) inventory of riparian areas on National Forest Service lands in western United States with riparian land cover, utilizing GIS capabilities and open source geospatial data. The second part of the project will include the application of riparian land cover change and assessment based on selected indicators to assess and monitor riparian areas on annual/5-year cycle basis.This approach recognizes the dynamic and transitional nature of riparian areas by accounting for hydrologic, geomorphic and vegetation data as inputs into the delineation process. The results suggest that incorporating functional variable width riparian mapping within watershed management planning can improve riparian protection and restoration. The application of Riparian Buffer Delineation Model (RBDM) approach can provide the agency Watershed Condition Framework (WCF) with observed riparian area condition on an annual basis and on multiple scales. The use of this model to map moderate to low gradient systems of sufficient width in conjunction with an understanding of the influence of distinctive landscape

  8. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit

    2011-05-01

    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  9. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  10. Agricultural watershed modeling: a review for hydrology and soil erosion processes

    Directory of Open Access Journals (Sweden)

    Carlos Rogério de Mello

    2016-02-01

    Full Text Available ABSTRACT Models have been used by man for thousands of years to control his environment in a favorable way to better human living conditions. The use of hydrologic models has been a widely effective tool in order to support decision makers dealing with watersheds related to several economic and social activities, like public water supply, energy generation, and water availability for agriculture, among others. The purpose of this review is to briefly discuss some models on soil and water movement on landscapes (RUSLE, WEPP, GeoWEPP, LASH, DHSVM and AnnAGNPS to provide information about them to help and serve in a proper manner in order to discuss particular problems related to hydrology and soil erosion processes. Models have been changed and evaluated significantly in recent years, highlighting the use of remote sense, GIS and automatic calibration process, allowing them capable of simulating watersheds under a given land-use and climate change effects. However, hydrology models have almost the same physical structure, which is not enough for simulating problems related to the long-term effects of different land-uses. That has been our challenge for next future: to understand entirely the hydrology cycle, having as reference the critical zone, in which the hydrological processes act together from canopy to the bottom of aquifers.

  11. Hydrological modelling in sandstone rocks watershed

    Science.gov (United States)

    Ponížilová, Iva; Unucka, Jan

    2015-04-01

    The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of

  12. Simulation of the water balance of boreal watersheds of northeastern British Columbia, Canada using MIKE SHE, an integrated hydrological model

    Science.gov (United States)

    Abadzadesahraei, S.; Déry, S.; Rex, J. F.

    2016-12-01

    Northeastern British Columbia (BC) is undergoing rapid development for oil and gas extraction, largely depending on subsurface hydraulic fracturing (fracking), which relies on available freshwater. Even though this industrial activity has made substantial contributions to regional and provincial economies, it is important to ensure that sufficient and sustainable water supplies are available for all those dependent on the resource, including ecological systems. Further, BC statistics predict that the northeastern region's population will increase by 30% over the next 25 years, thereby amplifying the demands of domestic and industrial water usage. Hence, given the increasing demands for surface water in the complex wetlands of northeastern BC, obtaining accurate long-term water balance information is of vital importance. Thus, this study aims to simulate the 1979-2014 water balance at two boreal watersheds using the MIKE SHE model. More specifically, this research intends to quantify the historical, and regional, water budgets and their associated hydrological processes at two boreal watersheds—the Coles Lake and Tsea Lake watersheds—in northeastern BC. The development of coupled groundwater and surface water model of these watersheds are discussed. The model setup, calibration process, and results are presented, focusing on the water balance of boreal watersheds. Hydrological components within these watersheds are quantified through a combination of intensive fieldwork, observational data, analysis and numerical modeling. The output from the model provides important information for decision makers to manage water resources in northeastern BC. Keywords: Northeastern BC; boreal watershed; water balance; MIKE SHE hydrological model.

  13. Identification of Watershed-scale Critical Source Areas Using Bayesian Maximum Entropy Spatiotemporal Analysis

    Science.gov (United States)

    Roostaee, M.; Deng, Z.

    2017-12-01

    The states' environmental agencies are required by The Clean Water Act to assess all waterbodies and evaluate potential sources of impairments. Spatial and temporal distributions of water quality parameters are critical in identifying Critical Source Areas (CSAs). However, due to limitations in monetary resources and a large number of waterbodies, available monitoring stations are typically sparse with intermittent periods of data collection. Hence, scarcity of water quality data is a major obstacle in addressing sources of pollution through management strategies. In this study spatiotemporal Bayesian Maximum Entropy method (BME) is employed to model the inherent temporal and spatial variability of measured water quality indicators such as Dissolved Oxygen (DO) concentration for Turkey Creek Watershed. Turkey Creek is located in northern Louisiana and has been listed in 303(d) list for DO impairment since 2014 in Louisiana Water Quality Inventory Reports due to agricultural practices. BME method is proved to provide more accurate estimates than the methods of purely spatial analysis by incorporating space/time distribution and uncertainty in available measured soft and hard data. This model would be used to estimate DO concentration at unmonitored locations and times and subsequently identifying CSAs. The USDA's crop-specific land cover data layers of the watershed were then used to determine those practices/changes that led to low DO concentration in identified CSAs. Primary results revealed that cultivation of corn and soybean as well as urban runoff are main contributing sources in low dissolved oxygen in Turkey Creek Watershed.

  14. Watershed monitoring and modelling and USA regulatory compliance.

    Science.gov (United States)

    Turner, B G; Boner, M C

    2004-01-01

    The aim of the Columbus program was to implement a comprehensive watershed monitoring-network including water chemistry, aquatic biology and alternative sensors to establish water environment health and methods for determining future restoration progress and early warning for protection of drinking water supplies. The program was implemented to comply with USA regulatory requirements including Total Maximum Daily Load (TMDL) rules of the Clean Water Act (CWA) and Source Water Assessment and Protection (SWAP) rules under the Safe Drinking Water Act (SDWA). The USEPA Office of Research and Development and the Water Environment Research Foundation provided quality assurance oversight. The results obtained demonstrated that significant wet weather data is necessary to establish relationships between land use, water chemistry, aquatic biology and sensor data. These measurements and relationships formed the basis for calibrating the US EPA BASINS Model, prioritizing watershed health and determination of compliance with water quality standards. Conclusions specify priorities of cost-effective drainage system controls that attenuate stormwater flows and capture flushed pollutants. A network of permanent long-term real-time monitoring using combination of continuous sensor measurements, water column sampling and aquatic biology surveys and a regional organization is prescribed to protect drinking water supplies and measure progress towards water quality targets.

  15. Prediction of Land Use Change in Long Island Sound Watersheds Using Nighttime Light Data

    Directory of Open Access Journals (Sweden)

    Ruiting Zhai

    2016-12-01

    Full Text Available The Long Island Sound Watersheds (LISW are experiencing significant land use/cover change (LUCC, which affects the environment and ecosystems in the watersheds through water pollution, carbon emissions, and loss of wildlife. LUCC modeling is an important approach to understanding what has happened in the landscape and what may change in the future. Moreover, prospective modeling can provide sustainable and efficient decision support for land planning and environmental management. This paper modeled the LUCCs between 1996, 2001 and 2006 in the LISW in the New England region, which experienced an increase in developed area and a decrease of forest. The low-density development pattern played an important role in the loss of forest and the expansion of urban areas. The key driving forces were distance to developed areas, distance to roads, and social-economic drivers, such as nighttime light intensity and population density. In addition, this paper compared and evaluated two integrated LUCC models—the logistic regression–Markov chain model and the multi-layer perception–Markov chain (MLP–MC model. Both models achieved high accuracy in prediction, but the MLP–MC model performed slightly better. Finally, a land use map for 2026 was predicted by using the MLP–MC model, and it indicates the continued loss of forest and increase of developed area.

  16. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model

    Science.gov (United States)

    Li, Ji; Chen, Yangbo; Wang, Huanyu; Qin, Jianming; Li, Jie; Chiao, Sen

    2017-03-01

    Long lead time flood forecasting is very important for large watershed flood mitigation as it provides more time for flood warning and emergency responses. The latest numerical weather forecast model could provide 1-15-day quantitative precipitation forecasting products in grid format, and by coupling this product with a distributed hydrological model could produce long lead time watershed flood forecasting products. This paper studied the feasibility of coupling the Liuxihe model with the Weather Research and Forecasting quantitative precipitation forecast (WRF QPF) for large watershed flood forecasting in southern China. The QPF of WRF products has three lead times, including 24, 48 and 72 h, with the grid resolution being 20 km  × 20 km. The Liuxihe model is set up with freely downloaded terrain property; the model parameters were previously optimized with rain gauge observed precipitation, and re-optimized with the WRF QPF. Results show that the WRF QPF has bias with the rain gauge precipitation, and a post-processing method is proposed to post-process the WRF QPF products, which improves the flood forecasting capability. With model parameter re-optimization, the model's performance improves also. This suggests that the model parameters be optimized with QPF, not the rain gauge precipitation. With the increasing of lead time, the accuracy of the WRF QPF decreases, as does the flood forecasting capability. Flood forecasting products produced by coupling the Liuxihe model with the WRF QPF provide a good reference for large watershed flood warning due to its long lead time and rational results.

  17. The Reynolds Creek Experimental Watershed: A Hydro-Geo-Climatic Observatory for the 21^{st} Century

    Science.gov (United States)

    Marks, D.; Seyfried, M.; Flerchinger, G.

    2006-12-01

    Long-term hydro-climatic data on a watershed scale are critical to improving our understanding of basic hydrologic and ecologic processes because they provide a context to assess inter-annual variability and allow us to document longer-term trends. In addition, a scientific infrastructure that captures the spatial variations within a watershed are required to identify recharge areas, describe the amount and timing of streamflow generation and understand the variability of vegetation. These basic data, combined with soil microclimate information, are required to describe the milieu for geochemical weathering and soil formation. Data from watersheds that include significant human activities, such as grazing, farming, irrigation, and urbanization, represent conditions typical to most watersheds and are critical for determining the signature of human induced changes on hydrologic processes and the water cycle. The Reynolds Creek Experimental Watershed (RCEW), a 239 km2 drainage in the Owyhee Mountains near Boise, Idaho, was added to the USDA Agricultural Research Service watershed program in 1960. The vision for RCEW as an outdoor laboratory to support watershed research was described 1965 in the first volume of Water Resources Research [Robins et al., 1965]. The RCEW has supported a sustained data collection network for over 45 years. The first 35 years of data were presented in a series of papers in 2001 [Marks, 2001]. More recently, there has been an effort to better describe spatial variations within the watershed, and research is currently supported by 9 weirs, 32 primary and 5 secondary meteorological measurement stations, 26 precipitation stations, 8 snow course and 5 snow study sites, and 5 eddy covariance systems. In addition, soil microclimate (moisture and temperature) profile data are collected eight sites with surface data collected at an additional 19 sites. These support a wide range of experimental investigations including snow hydrology and physics

  18. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    Science.gov (United States)

    Villarini, Gabriele; Smith, James A.; Serinaldi, Francesco; Bales, Jerad; Bates, Paul D.; Krajewski, Witold F.

    2009-08-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110km) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1mskm to a maximum of 5.1mskm. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2mskm). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2mskm ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades.

  19. WATERSHED BASED WEB GIS: CASE STUDY OF PALOPO WATERSHED AREA SOUTH SULAWESI, INDONESIA

    Directory of Open Access Journals (Sweden)

    Jalaluddin Rumi PRASAD

    2017-09-01

    Full Text Available Data and land resource information complete, accurate, and current is an input in management planning, evaluation, and monitoring Watershed. Implementation of this research is conducted with optimum utilization of secondary data that is supported by direct field measurement data, digitalizing the maps associated, Geographic Information Systems modeling, and model calibration. This research has resulted in a Geographic Information System Management of potential Watershed GIS Web-based or abbreviated WEB GIS MPPDAS using Palopo watershed area, South Sulawesi as a case study sites for the development of a prototype that consists of three applications the main website ie Web Portal, Web GIS, and Web Tutorial. The system is built to show online (and offline maps watershed in the administrative area of Palopo along with the location of its potential accumulated in the four (4 groups of layers, including groups of main layer (2 layer, a group of base layer (14 layers, groups of thematic layers (12 layers, a group of policy layer (8 layer. In addition to display a map, use the WEB application of GIS MPPDAS can also use tools or controls in the application to perform analyzes in its monitoring and evaluation, including: Geocoding, Add layer, Digitizing, Selection, Measurements, Graph, Filtering, Geolocation, Overlay cartographic, and etc.

  20. Analysis of climate change impact on runoff and sediment delivery in a Great Lake watershed using SWAT

    Science.gov (United States)

    Verma, S.; Bhattarai, R.; Cooke, R.

    2011-12-01

    The green house gas loading of the atmosphere has been increasing since the mid 19th century which threatens to dramatically change the earth's climate in the 21st Century. Scientific evidences show that earth's global average surface temperature has risen some 0.75°C (1.3°F) since 1850. Third Assessment Report (TAR) from the Intergovernmental Panel on Climate Change (IPCC) concluded that human activities have increased the atmospheric concentration of greenhouse gases (GHGs), which will result in a warming world and other changes in the climate. TAR has projected an increase in globally average surface temperature of 1.4 to 5.8 °C and an increase in precipitation of 5 to 20 % over the period of 1990 to 2100. Assuming a global temperature increase of between 2.8 and 5.2 °C, it was estimated a 7-15% increase in global evaporation and precipitation rates. Global warming and subsequent climate change could raise sea level by several tens of centimeters in the next fifty years. Such a rise may erode beaches, worsen coastal flooding and threaten water quality in estuaries and aquifers. With the climate already changing and further change in climate highly likely to happen, study of impact of climate and the adaptation is a necessary component of any response to climate change. The objective of this study is to analyze the impact of climate change on runoff and sediment delivery in a Great Lake watershed located in Northern Ohio. Maumee River watershed is predominantly an agricultural watershed with an area of 6330 sq mile and drains to Lake Erie. Agricultural area covers about 89.9% of the watershed while wooded area covers 7.3%, 1.2% is urban area and other land uses account for 1.6%. Water Quality Laboratory, Heidelberg College has monitored the watershed for last 25 years. The Soil and Water Assessment Tool (SWAT) model is used for both water quantity and water quality simulations for past and future scenarios. SWAT is a continuous, long-term watershed scale

  1. Watershed analysis

    Science.gov (United States)

    Alan Gallegos

    2002-01-01

    Watershed analyses and assessments for the Kings River Sustainable Forest Ecosystems Project were done on about 33,000 acres of the 45,500-acre Big Creek watershed and 32,000 acres of the 85,100-acre Dinkey Creek watershed. Following procedures developed for analysis of cumulative watershed effects (CWE) in the Pacific Northwest Region of the USDA Forest Service, the...

  2. Analyzing coastal turbidity under complex terrestrial loads characterized by a 'stress connectivity matrix' with an atmosphere-watershed-coastal ocean coupled model

    Science.gov (United States)

    Yamamoto, Takahiro; Nadaoka, Kazuo

    2018-04-01

    Atmospheric, watershed and coastal ocean models were integrated to provide a holistic analysis approach for coastal ocean simulation. The coupled model was applied to coastal ocean in the Philippines where terrestrial sediment loads provided from several adjacent watersheds play a major role in influencing coastal turbidity and are partly responsible for the coastal ecosystem degradation. The coupled model was validated using weather and hydrologic measurement to examine its potential applicability. The results revealed that the coastal water quality may be governed by the loads not only from the adjacent watershed but also from the distant watershed via coastal currents. This important feature of the multiple linkages can be quantitatively characterized by a "stress connectivity matrix", which indicates the complex underlying structure of environmental stresses in coastal ocean. The multiple stress connectivity concept shows the potential advantage of the integrated modelling approach for coastal ocean assessment, which may also serve for compensating the lack of measured data especially in tropical basins.

  3. Distribution of antibiotic resistance in urban watershed in Japan

    International Nuclear Information System (INIS)

    Ham, Young-Sik; Kobori, Hiromi; Kang, Joo-Hyon; Matsuzaki, Takayuki; Iino, Michiyo; Nomura, Hayashi

    2012-01-01

    Antibiotic-resistant E. coli concentrations showed large spatial and temporal variations, with greater concentrations observed in tributaries and downstream than in the upstream and midstream. Twenty percent of the geometric mean concentrations of antibiotic-resistant E. coli in the Tama River basin (Japan) exceeded the maximum acceptable concentration of indicator E. coli established by the USEPA. The indicator E. coli concentrations were positively correlated with those of antibiotic-resistant E. coli and multiple-antibiotic-resistant E. coli (resistance to more than two kinds of antibiotics), respectively, but not the detection rate of antibiotic-resistant E. coli, implying that use of antibiotic-resistant E. coli concentration rather than the detection rate can be a better approach for water quality assessment. Multiple-antibiotic-resistant E. coli is a useful indicator for estimating the resistance diffusion, water quality degradation and public health risk potential. This assessment provides beneficial information for setting national regulatory or environmental standards and managing integrated watershed areas. - Highlights: ► We extensively observed antibiotic-resistant E. coli (AREc) in Tama River (Japan). ► AREc count rather than the detection rate is better approach for water quality test. ► Multiple-AREc is resistant to the antibiotic to which single-AREc has no resistance. ► Multiple-AREc increase will accelerate the diffusion of antibiotic resistance. - Multiple-antibiotic-resistant E. coli in the watershed can cause the diffusion of conventionally rare antibiotic resistance.

  4. Modeling rock weathering in small watersheds

    NARCIS (Netherlands)

    Pacheco, F.A.L.; van der Weijden, C.H.

    2014-01-01

    Many mountainous watersheds are conceived as aquifer media where multiple groundwater flow systems have developed (Tóth, 1963), and as bimodal landscapes where differential weathering of bare and soil-mantled rock has occurred (Wahrhaftig, 1965). The results of a weathering algorithm (Pacheco and

  5. Application of a virtual watershed in academic education

    OpenAIRE

    Horn , A. L.; Hörmann , G.; Fohrer , N.

    2005-01-01

    International audience; Hydrologic models of watersheds often represent complex systems which are difficult to understand regarding to their structure and dynamics. Virtual watersheds, i.e. watersheds which exist only in the virtual reality of a computer system, are an approach to simplify access to this real-world complexity. In this study we present the virtual watershed KIELSHED-1, a 117 km2 v-shaped valley with grassland on a "Cambisol" soil type. Two weather scenarios are delivered with ...

  6. Spatial stochastic regression modelling of urban land use

    International Nuclear Information System (INIS)

    Arshad, S H M; Jaafar, J; Abiden, M Z Z; Latif, Z A; Rasam, A R A

    2014-01-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable

  7. Evaluation of the WRF-Urban Modeling System Coupled to Noah and Noah-MP Land Surface Models Over a Semiarid Urban Environment

    Science.gov (United States)

    Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang

    2018-03-01

    We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.

  8. Geomorphic effects of rural-to-urban land use conversion on three streams in the Central Redbed Plains of Oklahoma

    Science.gov (United States)

    Kang, Ranbir S.; Marston, Richard A.

    2006-09-01

    This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover). The three streams have very low gradients (channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.

  9. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    Science.gov (United States)

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  10. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  11. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.

    Science.gov (United States)

    Hu, X; McIsaac, G F; David, M B; Louwers, C A L

    2007-01-01

    Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.

  12. Urban Sprawl Analysis and Modeling in Asmara, Eritrea

    Directory of Open Access Journals (Sweden)

    Mussie G. Tewolde

    2011-09-01

    Full Text Available The extension of urban perimeter markedly cuts available productive land. Hence, studies in urban sprawl analysis and modeling play an important role to ensure sustainable urban development. The urbanization pattern of the Greater Asmara Area (GAA, the capital of Eritrea, was studied. Satellite images and geospatial tools were employed to analyze the spatiotemporal urban landuse changes. Object-Based Image Analysis (OBIA, Landuse Cover Change (LUCC analysis and urban sprawl analysis using Shannon Entropy were carried out. The Land Change Modeler (LCM was used to develop a model of urban growth. The Multi-layer Perceptron Neural Network was employed to model the transition potential maps with an accuracy of 85.9% and these were used as an input for the ‘actual’ urban modeling with Markov chains. Model validation was assessed and a scenario of urban land use change of the GAA up to year 2020 was presented. The result of the study indicated that the built-up area has tripled in size (increased by 4,441 ha between 1989 and 2009. Specially, after year 2000 urban sprawl in GAA caused large scale encroachment on high potential agricultural lands and plantation cover. The scenario for year 2020 shows an increase of the built-up areas by 1,484 ha (25% which may cause further loss. The study indicated that the land allocation system in the GAA overrode the landuse plan, which caused the loss of agricultural land and plantation cover. The recommended policy options might support decision makers to resolve further loss of agricultural land and plantation cover and to achieve sustainable urban development planning in the GAA.

  13. Application of the ecosystem diagnosis and treatment method to the Grande Ronde Model Watershed project. Final report

    International Nuclear Information System (INIS)

    Mobrand, L.; Lestelle, L.

    1997-01-01

    In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershed Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action

  14. Application of the Ecosystem Diagnosis and Treatment Method to the Grande Ronde Model Watershed project : Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Mobrand, Lars Erik; Lestelle, Lawrence C.

    1997-01-01

    In the spring of 1994 a technical planning support project was initiated by the Grande Ronde Model Watershed Board of Directors (Board) with funding from the Bonneville Power Administration. The project was motivated by a need for a science based method for prioritizing restoration actions in the basin that would promote effectiveness and accountability. In this section the authors recall the premises for the project. The authors also present a set of recommendations for implementing a watershed planning process that incorporates a science-based framework to help guide decision making. This process is intended to assist the Grande Ronde Model Watershed Board in its effort to plan and implement watershed improvement measures. The process would also assist the Board in coordinating its efforts with other entities in the region. The planning process is based on an approach for developing an ecosystem management strategy referred to as the Ecosystem Diagnosis and Treatment (EDT) method (Lichatowich et al. 1995, Lestelle et al. 1996). The process consists of an on-going planning cycle. Included in this cycle is an assessment of the ability of the watershed to support and sustain natural resources and other economic and societal values. This step in the process, which the authors refer to as the diagnosis, helps guide the development of actions (also referred to as treatments) aimed at improving the conditions of the watershed to achieve long-term objectives. The planning cycle calls for routinely reviewing and updating, as necessary, the basis for the diagnosis and other analyses used by the Board in adopting actions for implementation. The recommendations offered here address this critical need to habitually update the information used in setting priorities for action.

  15. Assessing the Impacts of Climate and Land Use Change on Streamflow and Nutrient Loading in the Arroyo Colorado Watershed in Southern Texas

    Science.gov (United States)

    Osidele, O.; Sun, A.; Green, R.

    2011-12-01

    , streamflow and nutrient loading simulations for the Arroyo Colorado Watershed are based on the application of the Soil and Water Assessment Tool (SWAT) model driven by projected future climatic conditions generated from five global circulation models under three greenhouse gas emission scenarios. Land use change data are incorporated based on various remote sensing earth observation products including NASA's Moderate Resolution Imaging Spectroradiometer datasets and Landsat images in the multiagency National Land Cover Database. Population change and urbanization are considered in terms of changes in permitted wastewater treatment discharges. The findings of this study indicate that hydrological models like SWAT are useful tools for evaluating the watershed impacts from global climate change scenarios. In developing climate adaption plans, such models should include significant interactions among various local water management systems driven by population growth and urbanization in communities, and site-specific agricultural water use.

  16. Urban Effects on Microbial Processes and Food Webs in Coastal Watershed Streams

    Science.gov (United States)

    We conducted a stream survey in the Narragansett Bay Watershed that targeted a gradient of development intensity and examined how associated changes in nutrients, carbon, and stressors affected periphyton and macroinvertebrates. Concentrations of nutrients, cations, and anions we...

  17. Contributions of human activities to suspended-sediment yield during storm events from a steep, small, tropical watershed, American Samoa

    Science.gov (United States)

    Messina, A. T.; Biggs, T. W.

    2014-12-01

    Anthropogenic watershed disturbance by agriculture, deforestation, roads, and urbanization can alter the timing, composition, and mass of sediment loads to adjacent coral reefs, causing enhanced sediment stress on corals near the outlets of impacted watersheds like Faga'alu, American Samoa. To quantify the increase in sediment loading to the adjacent priority coral reef experiencing sedimentation stress, suspended-sediment yield (SSY) from undisturbed and human-disturbed portions of a small, steep, tropical watershed was measured during baseflow and storm events of varying magnitude. Data on precipitation, discharge, turbidity, and suspended-sediment concentration (SSC) were collected over three field campaigns and continuous monitoring from January 2012 to March 2014, which included 88 storm events. A combination of paired- and nested-watershed study designs using sediment budget, disturbance ratio, and sediment rating curve methodologies was used to quantify the contribution of human-disturbed areas to total SSY. SSC during base- and stormflows was significantly higher downstream of an open-pit aggregate quarry, indicating the quarry is a key sediment source requiring sediment discharge mitigation. Comparison of event-wise SSY from the upper, undisturbed watershed, and the lower, human-disturbed watershed showed the Lower watershed accounted for more than 80% of total SSY on average, and human activities have increased total sediment loading to the coast by approximately 200%. Four storm characteristics were tested as predictors of event SSY using Pearson's and Spearman's correlation coefficients. Similar to mountainous watersheds in semi-arid and temperate watersheds, SSY from both the undisturbed and disturbed watersheds had the highest correlation with event maximum discharge, Qmax (Pearson's R=0.88 and 0.86 respectively), and were best fit by a power law relationship. The resulting model of event-SSY from Faga'alu is being incorporated as part of a larger

  18. Smart Mobility Stakeholders - Curating Urban Data & Models

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, Joshua [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-01

    This presentation provides an overview of the curation of urban data and models through engaging SMART mobility stakeholders. SMART Mobility Urban Science Efforts are helping to expose key data sets, models, and roles for the U.S. Department of Energy in engaging across stakeholders to ensure useful insights. This will help to support other Urban Science and broader SMART initiatives.

  19. Modelling and observing urban climate in the Netherlands

    International Nuclear Information System (INIS)

    Van Hove, B.; Steeneveld, G.J.; Heusinkveld, B.; Holtslag, B.; Jacobs, C.; Ter Maat, H.; Elbers, J.; Moors, E.

    2011-06-01

    The main aims of the present study are: (1) to evaluate the performance of two well-known mesoscale NWP (numerical weather prediction) models coupled to a UCM (Urban Canopy Models), and (2) to develop a proper measurement strategy for obtaining meteorological data that can be used in model evaluation studies. We choose the mesoscale models WRF (Weather Research and Forecasting Model) and RAMS (Regional Atmospheric Modeling System), respectively, because the partners in the present project have a large expertise with respect to these models. In addition WRF and RAMS have been successfully used in the meteorology and climate research communities for various purposes, including weather prediction and land-atmosphere interaction research. Recently, state-of-the-art UCM's were embedded within the land surface scheme of the respective models, in order to better represent the exchange of heat, momentum, and water vapour in the urban environment. Key questions addressed here are: What is the general model performance with respect to the urban environment?; How can useful and observational data be obtained that allow sensible validation and further parameterization of the models?; and Can the models be easily modified to simulate the urban climate under Dutch climatic conditions, urban configuration and morphology? Chapter 2 reviews the available Urban Canopy Models; we discuss their theoretical basis, the different representations of the urban environment, the required input and the output. Much of the information was obtained from the Urban Surface Energy Balance: Land Surface Scheme Comparison project (PILPS URBAN, PILPS stands for Project for Inter-comparison of Land-Surface Parameterization Schemes). This project started in March 2008 and was coordinated by the Department of Geography, King's College London. In order to test the performance of our models we participated in this project. Chapter 3 discusses the main results of the first phase of PILPS URBAN. A first

  20. Application Of GIS Software For Erosion Control In The Watershed Scale

    Directory of Open Access Journals (Sweden)

    C. Setyawan

    2017-01-01

    Full Text Available Land degradation in form of soil erosion due to uncontrolled farming is occurred in many watersheds of Indonesia particularly in Java Island. Soil erosion is decreasing watershed function as a rainwater harvesting area. Good conservation practices need to be applied to prevent more degradation. This study aims to investigate the effectiveness of land conservation practice for erosion control through land use modeling in the watershed scale. The modeling was applied in the Sempor watershed Indonesia. Three scenarios of land use were used for modeling. Soil erosion measurement and land use modeling were performed by using Universal Soil Loss Equation USLE method and Geographic Information System GIS software ArcGIS 10.1. Land use modeling was conducted by increasing permanent vegetation coverage from existing condition 4 to 10 20 and 30. The result showed that the modeling can reduce heavy class erosion about 15-37 of total area. GIS provides a good tool for erosion control modeling in the watershed scale.

  1. Assessment of stormwater runoff management practices and BMPs under soil sealing: A study case in a peri-urban watershed of the metropolitan area of Rome (Italy).

    Science.gov (United States)

    Recanatesi, Fabio; Petroselli, Andrea; Ripa, Maria Nicolina; Leone, Antonio

    2017-10-01

    By 2006, almost 100,000 km 2 of EU soil (2.3% of the whole territory) had been sealed, with a per capita quota of 200 m 2 of sealed surface for each EU citizen. Italy, in 2016, recorded a soil sealing rate of 2.8% of the entire territory. In this context, the urban expansion which occurred in past decades is considered one of the main causes of the increase in flood frequency and intensity in small catchments, causing both social and financial damage. In the present paper, the positive impact of introducing Best Management Practices (BMPs) at urban scale is assessed, with particular regard to the decreasing of flood prone areas. A suburban watershed of the metropolitan area of Rome has been selected for a study case, as its soil sealing rate can be considered paradigmatic at this scale. Starting from the analysis of rainfall events occurring between 2008 and 2011 which caused millions of euros worth of damage, and using a high resolution data set in a GIS environment, two scenarios, with and without BMP introduction, are evaluated applying a rainfall-runoff model and a bidimensional hydraulic model. From a comparison of the flood maps with and without the introduction of BMPs, it was determined that in 90% of the circumstances the employment of the BMPs would completely remove the hydraulic risk, while in the remaining 10% the BMP would at least reduce the areas subjected to flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Application of Large-Scale, Multi-Resolution Watershed Modeling Framework Using the Hydrologic and Water Quality System (HAWQS

    Directory of Open Access Journals (Sweden)

    Haw Yen

    2016-04-01

    Full Text Available In recent years, large-scale watershed modeling has been implemented broadly in the field of water resources planning and management. Complex hydrological, sediment, and nutrient processes can be simulated by sophisticated watershed simulation models for important issues such as water resources allocation, sediment transport, and pollution control. Among commonly adopted models, the Soil and Water Assessment Tool (SWAT has been demonstrated to provide superior performance with a large amount of referencing databases. However, it is cumbersome to perform tedious initialization steps such as preparing inputs and developing a model with each changing targeted study area. In this study, the Hydrologic and Water Quality System (HAWQS is introduced to serve as a national-scale Decision Support System (DSS to conduct challenging watershed modeling tasks. HAWQS is a web-based DSS developed and maintained by Texas A & M University, and supported by the U.S. Environmental Protection Agency. Three different spatial resolutions of Hydrologic Unit Code (HUC8, HUC10, and HUC12 and three temporal scales (time steps in daily/monthly/annual are available as alternatives for general users. In addition, users can specify preferred values of model parameters instead of using the pre-defined sets. With the aid of HAWQS, users can generate a preliminarily calibrated SWAT project within a few minutes by only providing the ending HUC number of the targeted watershed and the simulation period. In the case study, HAWQS was implemented on the Illinois River Basin, USA, with graphical demonstrations and associated analytical results. Scientists and/or decision-makers can take advantage of the HAWQS framework while conducting relevant topics or policies in the future.

  3. Coupled effects of natural and anthropogenic controls on seasonal and spatial variations of river water quality during baseflow in a coastal watershed of Southeast China.

    Directory of Open Access Journals (Sweden)

    Jinliang Huang

    Full Text Available Surface water samples of baseflow were collected from 20 headwater sub-watersheds which were classified into three types of watersheds (natural, urban and agricultural in the flood, dry and transition seasons during three consecutive years (2010-2012 within a coastal watershed of Southeast China. Integrating spatial statistics with multivariate statistical techniques, river water quality variations and their interactions with natural and anthropogenic controls were examined to identify the causal factors and underlying mechanisms governing spatiotemporal patterns of water quality. Anthropogenic input related to industrial effluents and domestic wastewater, agricultural activities associated with the precipitation-induced surface runoff, and natural weathering process were identified as the potential important factors to drive the seasonal variations in stream water quality for the transition, flood and dry seasons, respectively. All water quality indicators except SRP had the highest mean concentrations in the dry and transition seasons. Anthropogenic activities and watershed characteristics led to the spatial variations in stream water quality in three types of watersheds. Concentrations of NH(4(+-N, SRP, K(+, COD(Mn, and Cl- were generally highest in urban watersheds. NO3(-N Concentration was generally highest in agricultural watersheds. Mg(2+ concentration in natural watersheds was significantly higher than that in agricultural watersheds. Spatial autocorrelations analysis showed similar levels of water pollution between the neighboring sub-watersheds exhibited in the dry and transition seasons while non-point source pollution contributed to the significant variations in water quality between neighboring sub-watersheds. Spatial regression analysis showed anthropogenic controls played critical roles in variations of water quality in the JRW. Management implications were further discussed for water resource management. This research

  4. Watershed Models for Decision Support for Inflows to Potholes Reservoir, Washington

    Science.gov (United States)

    Mastin, Mark C.

    2009-01-01

    A set of watershed models for four basins (Crab Creek, Rocky Ford Creek, Rocky Coulee, and Lind Coulee), draining into Potholes Reservoir in east-central Washington, was developed as part of a decision support system to aid the U.S. Department of the Interior, Bureau of Reclamation, in managing water resources in east-central Washington State. The project is part of the U.S. Geological Survey and Bureau of Reclamation collaborative Watershed and River Systems Management Program. A conceptual model of hydrology is outlined for the study area that highlights the significant processes that are important to accurately simulate discharge under a wide range of conditions. The conceptual model identified the following factors as significant for accurate discharge simulations: (1) influence of frozen ground on peak discharge, (2) evaporation and ground-water flow as major pathways in the system, (3) channel losses, and (4) influence of irrigation practices on reducing or increasing discharge. The Modular Modeling System was used to create a watershed model for the four study basins by combining standard Precipitation Runoff Modeling System modules with modified modules from a previous study and newly modified modules. The model proved unreliable in simulating peak-flow discharge because the index used to track frozen ground conditions was not reliable. Mean monthly and mean annual discharges were more reliable when simulated. Data from seven USGS streamflow-gaging stations were used to compare with simulated discharge for model calibration and evaluation. Mean annual differences between simulated and observed discharge varied from 1.2 to 13.8 percent for all stations used in the comparisons except one station on a regional ground-water discharge stream. Two thirds of the mean monthly percent differences between the simulated mean and the observed mean discharge for these six stations were between -20 and 240 percent, or in absolute terms, between -0.8 and 11 cubic feet per

  5. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  6. The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane

    2000-01-01

    The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...

  7. Uncertainty in BMP evaluation and optimization for watershed management

    Science.gov (United States)

    Chaubey, I.; Cibin, R.; Sudheer, K.; Her, Y.

    2012-12-01

    Use of computer simulation models have increased substantially to make watershed management decisions and to develop strategies for water quality improvements. These models are often used to evaluate potential benefits of various best management practices (BMPs) for reducing losses of pollutants from sources areas into receiving waterbodies. Similarly, use of simulation models in optimizing selection and placement of best management practices under single (maximization of crop production or minimization of pollutant transport) and multiple objective functions has increased recently. One of the limitations of the currently available assessment and optimization approaches is that the BMP strategies are considered deterministic. Uncertainties in input data (e.g. precipitation, streamflow, sediment, nutrient and pesticide losses measured, land use) and model parameters may result in considerable uncertainty in watershed response under various BMP options. We have developed and evaluated options to include uncertainty in BMP evaluation and optimization for watershed management. We have also applied these methods to evaluate uncertainty in ecosystem services from mixed land use watersheds. In this presentation, we will discuss methods to to quantify uncertainties in BMP assessment and optimization solutions due to uncertainties in model inputs and parameters. We have used a watershed model (Soil and Water Assessment Tool or SWAT) to simulate the hydrology and water quality in mixed land use watershed located in Midwest USA. The SWAT model was also used to represent various BMPs in the watershed needed to improve water quality. SWAT model parameters, land use change parameters, and climate change parameters were considered uncertain. It was observed that model parameters, land use and climate changes resulted in considerable uncertainties in BMP performance in reducing P, N, and sediment loads. In addition, climate change scenarios also affected uncertainties in SWAT

  8. Macroinvertebrate-based assessment of biological condition at selected sites in the Eagle River watershed, Colorado, 2000-07

    Science.gov (United States)

    Zuellig, Robert E.; Bruce, James F.; Healy, Brian D.; Williams, Cory A.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Colorado River Water Conservation District, Eagle County, Eagle River Water and Sanitation District, Upper Eagle Regional Water Authority, Colorado Department of Transportation, City of Aurora, Town of Eagle, Town of Gypsum, Town of Minturn, Town of Vail, Vail Resorts, Colorado Springs Utilities, Denver Water, and the U.S. Department of Agriculture Forest Service (FS), compiled macroinvertebrate (73 sites, 124 samples) data previously collected in the Eagle River watershed from selected USGS and FS studies, 2000-07. These data were analyzed to assess the biological condition (that is, biologically ?degraded? or ?good?) at selected sites in the Eagle River watershed and determine if site class (for example, urban or undeveloped) described biological condition. An independently developed predictive model was applied to calculate a site-specific measure of taxonomic completeness for macroinvertebrate communities, where taxonomic completeness was expressed as the ratio of observed (O) taxa to those expected (E) to occur at each site. Macroinvertebrate communities were considered degraded at sites were O/E values were less than 0.80, indicating that at least 20 percent of expected taxa were not observed. Sites were classified into one of four classes (undeveloped, adjacent road or highway or both, mixed, urban) using a combination of riparian land-cover characteristics, examination of topographic maps and aerial imagery, screening for exceedances in water-quality standards, and best professional judgment. Analysis of variance was used to determine if site class accounted for variability in mean macroinvertebrate O/E values. Finally, macroinvertebrate taxa observed more or less frequently than expected at urban sites were indentified. This study represents the first standardized assessment of biological condition of selected sites distributed across the Eagle River watershed. Of the 73 sites evaluated, just over

  9. Estimation model of soil freeze-thaw erosion in Silingco watershed wetland of Northern Tibet.

    Science.gov (United States)

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions.

  10. Modelling land use/cover changes with markov-cellular automata in Komering Watershed, South Sumatera

    Science.gov (United States)

    Kusratmoko, E.; Albertus, S. D. Y.; Supriatna

    2017-01-01

    This research has a purpose to study and develop a model that can representing and simulating spatial distribution pattern of land use change in Komering watershed. The Komering watershed is one of nine sub Musi river basin and is located in the southern part of Sumatra island that has an area of 8060,62 km2. Land use change simulations, achieved through Markov-cellular automata (CA) methodologies. Slope, elevation, distance from road, distance from river, distance from capital sub-district, distance from settlement area area were driving factors that used in this research. Land use prediction result in 2030 also shows decrease of forest acreage up to -3.37%, agricultural land decreased up to -2.13%, and open land decreased up to -0.13%. On the other hand settlement area increased up to 0.07%, and plantation land increased up to 5.56%. Based on the predictive result, land use unconformity percentage to RTRW in Komering watershed is 18.62 % and land use conformity is 58.27%. Based on the results of the scenario, where forest in protected areas and agriculture land are maintained, shows increase the land use conformity amounted to 60.41 % and reduce unconformity that occur in Komering watershed to 17.23 %.

  11. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    Science.gov (United States)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  12. How much certainty is enough? Validation of a nutrient retention model for prioritizing watershed conservation in North Carolina

    Science.gov (United States)

    Hamel, P.; Chaplin-Kramer, R.; Benner, R.

    2013-12-01

    Context Quantifying ecosystems services, nature's benefits to people, is an area of active research in water resource management. Increasingly, water utilities and basin management authorities are interested in optimizing watershed scale conservation strategies to mitigate the economic and environmental impacts of land-use and hydrological changes. While many models are available to represent hydrological processes in a spatially explicit way, large uncertainties remain associated with i) the biophysical outputs of these models (e.g., nutrient concentration at a given location), and ii) the service valuation method to support specific decisions (e.g., targeting conservation areas based on their contribution to retaining nutrient). Better understanding these uncertainties and their impact on the decision process is critical for establishing credibility of such models in a planning context. Methods To address this issue in an emerging payments for watershed services program in the Cape Fear watershed, North Carolina, USA, we tested and validated the use of a nutrient retention model (InVEST) for targeting conservation activities. Specifically, we modeled water yield and nutrient transport throughout the watershed and valued the retention service provided by forested areas. Observed flow and water quality data at multiple locations allowed calibration of the model at the watershed level as well as the subwatershed level. By comparing the results from each model parameterization, we were able to assess the uncertainties related to both the model structure and parameter estimation. Finally, we assessed the use of the model for climate scenario simulation by characterizing its ability to represent inter-annual variability. Results and discussion The spatial analyses showed that the two calibration approaches could yield distinct parameter sets, both for the water yield and the nutrient model. These results imply a difference in the absolute nutrient concentration

  13. Remotely-Sensed Urban Wet-Landscapes AN Indicator of Coupled Effects of Human Impact and Climate Change

    Science.gov (United States)

    Ji, Wei

    2016-06-01

    This study proposes the concept of urban wet-landscapes (loosely-defined wetlands) as against dry-landscapes (mainly impervious surfaces). The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change - human built-up impact and climate (precipitation) variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.

  14. REMOTELY-SENSED URBAN WET-LANDSCAPES: AN INDICATOR OF COUPLED EFFECTS OF HUMAN IMPACT AND CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    W. Ji

    2016-06-01

    Full Text Available This study proposes the concept of urban wet-landscapes (loosely-defined wetlands as against dry-landscapes (mainly impervious surfaces. The study is to examine whether the dynamics of urban wet-landscapes is a sensitive indicator of the coupled effects of the two major driving forces of urban landscape change – human built-up impact and climate (precipitation variation. Using a series of satellite images, the study was conducted in the Kansas City metropolitan area of the United States. A rule-based classification algorithm was developed to identify fine-scale, hidden wetlands that could not be appropriately detected based on their spectral differentiability by a traditional image classification. The spatial analyses of wetland changes were implemented at the scales of metropolitan, watershed, and sub-watershed as well as based on the size of surface water bodies in order to reveal urban wetland change trends in relation to the driving forces. The study identified that wet-landscape dynamics varied in trend and magnitude from the metropolitan, watersheds, to sub-watersheds. The study also found that increased precipitation in the region in the past decades swelled larger wetlands in particular while smaller wetlands decreased mainly due to human development activities. These findings suggest that wet-landscapes, as against the dry-landscapes, can be a more effective indicator of the coupled effects of human impact and climate change.

  15. Modeling nutrient in-stream processes at the watershed scale using Nutrient Spiralling metrics

    Science.gov (United States)

    Marcé, R.; Armengol, J.

    2009-07-01

    One of the fundamental problems of using large-scale biogeochemical models is the uncertainty involved in aggregating the components of fine-scale deterministic models in watershed applications, and in extrapolating the results of field-scale measurements to larger spatial scales. Although spatial or temporal lumping may reduce the problem, information obtained during fine-scale research may not apply to lumped categories. Thus, the use of knowledge gained through fine-scale studies to predict coarse-scale phenomena is not straightforward. In this study, we used the nutrient uptake metrics defined in the Nutrient Spiralling concept to formulate the equations governing total phosphorus in-stream fate in a deterministic, watershed-scale biogeochemical model. Once the model was calibrated, fitted phosphorus retention metrics where put in context of global patterns of phosphorus retention variability. For this purpose, we calculated power regressions between phosphorus retention metrics, streamflow, and phosphorus concentration in water using published data from 66 streams worldwide, including both pristine and nutrient enriched streams. Performance of the calibrated model confirmed that the Nutrient Spiralling formulation is a convenient simplification of the biogeochemical transformations involved in total phosphorus in-stream fate. Thus, this approach may be helpful even for customary deterministic applications working at short time steps. The calibrated phosphorus retention metrics were comparable to field estimates from the study watershed, and showed high coherence with global patterns of retention metrics from streams of the world. In this sense, the fitted phosphorus retention metrics were similar to field values measured in other nutrient enriched streams. Analysis of the bibliographical data supports the view that nutrient enriched streams have lower phosphorus retention efficiency than pristine streams, and that this efficiency loss is maintained in a wide

  16. Watershed Planning within a Quantitative Scenario Analysis Framework.

    Science.gov (United States)

    Merriam, Eric R; Petty, J Todd; Strager, Michael P

    2016-07-24

    There is a critical need for tools and methodologies capable of managing aquatic systems within heavily impacted watersheds. Current efforts often fall short as a result of an inability to quantify and predict complex cumulative effects of current and future land use scenarios at relevant spatial scales. The goal of this manuscript is to provide methods for conducting a targeted watershed assessment that enables resource managers to produce landscape-based cumulative effects models for use within a scenario analysis management framework. Sites are first selected for inclusion within the watershed assessment by identifying sites that fall along independent gradients and combinations of known stressors. Field and laboratory techniques are then used to obtain data on the physical, chemical, and biological effects of multiple land use activities. Multiple linear regression analysis is then used to produce landscape-based cumulative effects models for predicting aquatic conditions. Lastly, methods for incorporating cumulative effects models within a scenario analysis framework for guiding management and regulatory decisions (e.g., permitting and mitigation) within actively developing watersheds are discussed and demonstrated for 2 sub-watersheds within the mountaintop mining region of central Appalachia. The watershed assessment and management approach provided herein enables resource managers to facilitate economic and development activity while protecting aquatic resources and producing opportunity for net ecological benefits through targeted remediation.

  17. Coastal watershed management across an international border in the Tijuana River watershed

    Science.gov (United States)

    Fernandez, Linda

    2005-05-01

    The paper develops and applies a game theoretic model of upstream and downstream countries to examine cooperative and noncooperative strategies of a common watershed. The application to the Tijuana River watershed shared by the United States and Mexico provides quantification of the strategies for internalizing water quality externalities to upstream and downstream originating from sedimentation. Results show that different transfer payments, such as the Chander/Tulkens cost sharing rule and the Shapley value, imply the size of the existing transfer from downstream to upstream could increase the amount currently allocated.

  18. Numerical modeling of watershed-scale radiocesium transport coupled with biogeochemical cycling in forests

    Science.gov (United States)

    Mori, K.; Tada, K.; Tawara, Y.; Tosaka, H.; Ohno, K.; Asami, M.; Kosaka, K.

    2015-12-01

    Since the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident, intensive monitoring and modeling works on radionuclide transfer in environment have been carried out. Although Cesium (Cs) concentration has been attenuating due to both physical and environmental half-life (i.e., wash-off by water and sediment), the attenuation rate depends clearly on the type of land use and land cover. In the Fukushima case, studying the migration in forest land use is important for predicting the long-term behavior of Cs because most of the contaminated region is covered by forests. Atmospheric fallout is characterized by complicated behavior in biogeochemical cycle in forests which can be described by biotic/abiotic interactions between many components. In developing conceptual and mathematical model on Cs transfer in forest ecosystem, defining the dominant components and their interactions are crucial issues (BIOMASS, 1997-2001). However, the modeling of fate and transport in geosphere after Cs exports from the forest ecosystem is often ignored. An integrated watershed modeling for simulating spatiotemporal redistribution of Cs that includes the entire region from source to mouth and surface to subsurface, has been recently developed. Since the deposited Cs can migrate due to water and sediment movement, the different species (i.e., dissolved and suspended) and their interactions are key issues in the modeling. However, the initial inventory as source-term was simplified to be homogeneous and time-independent, and biogeochemical cycle in forests was not explicitly considered. Consequently, it was difficult to evaluate the regionally-inherent characteristics which differ according to land uses, even if the model was well calibrated. In this study, we combine the different advantages in modeling of forest ecosystem and watershed. This enable to include more realistic Cs deposition and time series of inventory can be forced over the land surface. These processes are integrated

  19. Soil depth modelling using terrain analysis and satellite imagery: the case study of Qeshlaq mountainous watershed (Kurdistan, Iran

    Directory of Open Access Journals (Sweden)

    Salahudin Zahedi

    2017-09-01

    Full Text Available Soil depth is a major soil characteristic, which is commonly used in distributed hydrological modelling in order to present watershed subsurface attributes. This study aims at developing a statistical model for predicting the spatial pattern of soil depth over the mountainous watershed from environmental variables derived from a digital elevation model (DEM and remote sensing data. Among the explanatory variables used in the models, seven are derived from a 10 m resolution DEM, namely specific catchment area, wetness index, aspect, slope, plan curvature, elevation and sediment transport index. Three variables landuse, NDVI and pca1 are derived from Landsat8 imagery, and are used for predicting soil depth by the models. Soil attributes, soil moisture, topographic curvature, training samples for each landuse and major vegetation types are considered at 429 profiles within four subwatersheds. Random forests (RF, support vector machine (SVM and artificial neural network (ANN are used to predict soil depth using the explanatory variables. The models are run using 336 data points in the calibration dataset with all 31 explanatory variables, and soil depth as the response of the models. Mean decrease permutation accuracy is performed on Variable selection. Testing dataset is done with the model soil depth values at testing locations (93 points using different efficiency criteria. Prediction error is computed for both the calibration and testing datasets. Results show that the variables landuse, specific surface area, slope, pca1, NDVI and aspect are the most important explanatory variables in predicting soil depth. RF and SVM models are appropriate for the mountainous watershed areas that have been limited in the depth of the soil and ANN model is more suitable for watershed with the fields of agricultural and deep soil depth.

  20. Simulation of streamflow in the Pleasant, Narraguagus, Sheepscot, and Royal Rivers, Maine, using watershed models

    Science.gov (United States)

    Dudley, Robert W.; Nielsen, Martha G.

    2011-01-01

    The U.S. Geological Survey (USGS) began a study in 2008 to investigate anticipated changes in summer streamflows and stream temperatures in four coastal Maine river basins and the potential effects of those changes on populations of endangered Atlantic salmon. To achieve this purpose, it was necessary to characterize the quantity and timing of streamflow in these rivers by developing and evaluating a distributed-parameter watershed model for a part of each river basin by using the USGS Precipitation-Runoff Modeling System (PRMS). The GIS (geographic information system) Weasel, a USGS software application, was used to delineate the four study basins and their many subbasins, and to derive parameters for their geographic features. The models were calibrated using a four-step optimization procedure in which model output was evaluated against four datasets for calibrating solar radiation, potential evapotranspiration, annual and seasonal water balances, and daily streamflows. The calibration procedure involved thousands of model runs that used the USGS software application Luca (Let us calibrate). Luca uses the Shuffled Complex Evolution (SCE) global search algorithm to calibrate the model parameters. The calibrated watershed models performed satisfactorily, in that Nash-Sutcliffe efficiency (NSE) statistic values for the calibration periods ranged from 0.59 to 0.75 (on a scale of negative infinity to 1) and NSE statistic values for the evaluation periods ranged from 0.55 to 0.73. The calibrated watershed models simulate daily streamflow at many locations in each study basin. These models enable natural resources managers to characterize the timing and amount of streamflow in order to support a variety of water-resources efforts including water-quality calculations, assessments of water use, modeling of population dynamics and migration of Atlantic salmon, modeling and assessment of habitat, and simulation of anticipated changes to streamflow and water temperature