WorldWideScience

Sample records for urban water quality

  1. Effects of urbanization on water quality variables along urban ...

    African Journals Online (AJOL)

    This study focuses on water quality of permanent and temporary water bodies along the urban and suburban gradients of Chennai City, South India. Water samples were analyzed for their major elements and nutrients. The results indicated that the response of water quality variables was different when compared to urban ...

  2. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  3. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  4. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-06-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  5. Water quantity and quality at the urban-rural interface

    Science.gov (United States)

    Ge Sun; B. Graeme Lockaby

    2012-01-01

    Population growth and urban development dramatically alter natural watershed ecosystem structure and functions and stress water resources. We review studies on the impacts of urbanization on hydrologic and biogeochemical processes underlying stream water quantity and water quality issues, as well as water supply challenges in an urban environment. We conclude that...

  6. Impact of urban sprawl on water quality in eastern Massachusetts, USA.

    Science.gov (United States)

    Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan

    2007-08-01

    A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.

  7. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  8. Impact of urbanization on inflows and water quality of rawal lake

    International Nuclear Information System (INIS)

    Awais, M.; Afzal, M.

    2016-01-01

    Two phenomena playing important role in affecting water resources all over the world are: urbanization and climate changes. Urban and peri-urban water bodies are very vulnerable to these phenomena in terms of quality and quantity protection. This study was aimed to perceive the impact of ever-increasing urbanization on water quality in the catchment area of Rawal Lake. Rawal Lake supplies water for domestic use to Rawalpindi city and Cantonment area. The water was found biologically unfit for human consumption due to total and faecal coliforms counts higher than WHO limits. Similarly, turbidity and calcium was more than WHO standards. There should be detailed study on climate change parallel to urbanization in the Rawal catchment to quantify its impacts on water quality and inflows. (author)

  9. Temporal and spatial variations in the relationship between urbanization and water quality.

    Science.gov (United States)

    Ren, Lijun; Cui, Erqian; Sun, Haoyu

    2014-12-01

    With the development of economy, most of Chinese cities are at the stage of rapid urbanization in recent years, which has caused many environmental problems, especially the serious deterioration of water quality. Therefore, the research of the relationship between urbanization and water quality has important theoretical and practical significance, and it is also the main restriction factor in the urbanization advancement. In this work, we investigated the impact of urbanization on the water quality of the nearby river. We established a comprehensive environmental assessment framework by combining urbanization and water quality, and one model was designed to examine the impact of urbanization on the water quality in Jinan from 2001 to 2010 with factor component analysis. The assessment of urbanization level was accomplished using a comprehensive index system, which was based on four aspects: demographic urbanization, economic urbanization, land urbanization, and social urbanization. In addition, synthetic pollution index method was utilized to assess the water pollution of Xiaoqing River in the study area. Through the analysis of regression curves, we conclude that (1) when the urbanization level is below 25 %, the relationship is low and irregular; (2) if the urbanization level varies between 25 and 40 %, there will be an irreversible degradation of stream water quality; (3) there is a positive correlation between urbanization and pollution levels of urban river after the adjustment period; and (4) land and demographic aspects have the highest independent contribution. This study is a useful reference for policymakers in terms of economic and environmental management.

  10. Compost improves urban soil and water quality

    Science.gov (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  11. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    Science.gov (United States)

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  12. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China

    International Nuclear Information System (INIS)

    Wang Junying; Da Liangjun; Song Kun; Li Bailian

    2008-01-01

    As the economic and financial center of China, Shanghai has experienced an extensive urban expansion since the early 1980s, with an attendant cost in environmental degradation. We use an integrated pollution index to study the temporal variations of surface water quality in urban, suburban and rural areas between 1982 and 2005. Data on monitored cross-sections were collected from the Shanghai Environmental Monitoring Center. The results indicated that the spatial pattern of surface water quality was determined by the level of urbanization. Surface water qualities in urban and suburban areas were improved by strengthening the environmental policies and management, but were worsening in rural areas. The relationship between economic growth and surface water quality in Shanghai showed an inversed-U-shaped curve, which reflected a similar pattern in most developed countries. This research suggests that decision makers and city officials should be more aware of the recent pollution increases in Shanghai. - An integrated pollution index documents the deterioration of water quality in greater Shanghai, recently most serious in rural sections

  13. Adaptive capacity based water quality resilience transformation and policy implications in rapidly urbanizing landscapes

    International Nuclear Information System (INIS)

    Li, Yi; Degener, Jan; Gaudreau, Matthew; Li, Yangfan; Kappas, Martin

    2016-01-01

    Resilience-based management focuses on specific attributes or drivers of complex social-ecological systems, in order to operationalize and promote guiding principles for water quality management in urban systems. We therefore propose a resilience lens drawing on the theory of adaptive capacity and adaptive cycle to evaluate the urban resilience between water quality and land use type. Our findings show that the resilience of water quality variables, which were calculated based on their adaptive capacities, showed adaptive and sustainable trends with dramatic fluctuation. NH_3-N, Cadmium and Total Phosphorus experienced the most vulnerable shifts in the built-up area, agricultural areas, and on bare land. Our framework provided a consistent and repeatable approach to address uncertainty inherent in the resilience of water quality in different landscapes, as well as an approach to monitor variables over time with respect to national water quality standards. Ultimately, we pointed to the political underpinnings for risk mitigation and managing resilient urban system in a particular coastal urban setting. - Highlights: • Integrated framework to analyze the resilience of urban land-water systems • Addressed the changes of adaptive capacity based resilience and transitions • Applied four transition phases of adaptive cycle to water quality management

  14. Adaptive capacity based water quality resilience transformation and policy implications in rapidly urbanizing landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: ly463526@gmail.com [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Degener, Jan [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Gaudreau, Matthew [Balsillie School of International Affairs, Faculty of Environment, University of Waterloo, 67 Erb Street West, Waterloo, ON N2L 6C2 (Canada); Li, Yangfan, E-mail: yangf@xmu.edu.cn [Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Kappas, Martin [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany)

    2016-11-01

    Resilience-based management focuses on specific attributes or drivers of complex social-ecological systems, in order to operationalize and promote guiding principles for water quality management in urban systems. We therefore propose a resilience lens drawing on the theory of adaptive capacity and adaptive cycle to evaluate the urban resilience between water quality and land use type. Our findings show that the resilience of water quality variables, which were calculated based on their adaptive capacities, showed adaptive and sustainable trends with dramatic fluctuation. NH{sub 3}-N, Cadmium and Total Phosphorus experienced the most vulnerable shifts in the built-up area, agricultural areas, and on bare land. Our framework provided a consistent and repeatable approach to address uncertainty inherent in the resilience of water quality in different landscapes, as well as an approach to monitor variables over time with respect to national water quality standards. Ultimately, we pointed to the political underpinnings for risk mitigation and managing resilient urban system in a particular coastal urban setting. - Highlights: • Integrated framework to analyze the resilience of urban land-water systems • Addressed the changes of adaptive capacity based resilience and transitions • Applied four transition phases of adaptive cycle to water quality management.

  15. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  16. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, purban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.

  17. Trend analysis of a tropical urban river water quality in Malaysia.

    Science.gov (United States)

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  18. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  19. Towards a peri-urban political ecology of water quality decline

    NARCIS (Netherlands)

    Karpouzoglou, Timothy; Marshall, Fiona; Mehta, Lyla

    2018-01-01

    Recent years have witnessed an expanding body of peri-urban and urban scholarship. However, recent scholarship has yet to adequately address the central role of politics and power shaping water quality decline. The article focuses on the trans-Hindon region which is part of Ghaziabad city, close to

  20. Impact of development and urbanization on variation of water quality ...

    African Journals Online (AJOL)

    The spatial and temporal variations of the physico-chemical water quality parameters, microfauna and micro-flora composition of the Nima Creek in Accra vividly illustrate the environmental problems associated with water bodies in a community where development and urbanization are in progress. Monthly water and ...

  1. Performance of biotic indices in comparison to chemical-based Water Quality Index (WQI) in evaluating the water quality of urban river.

    Science.gov (United States)

    Wan Abdul Ghani, Wan Mohd Hafezul; Abas Kutty, Ahmad; Mahazar, Mohd Akmal; Al-Shami, Salman Abdo; Ab Hamid, Suhaila

    2018-04-19

    In order to evaluate the water quality of one of the most polluted urban river in Malaysia, the Penchala River, performance of eight biotic indices, Biomonitoring Working Party (BMWP), BMWP Thai , BMWP Viet , Average Score Per Taxon (ASPT), ASPT Thai , BMWP Viet , Family Biotic Index (FBI), and Singapore Biotic Index (SingScore), was compared. The water quality categorization based on these biotic indices was then compared with the categorization of Malaysian Water Quality Index (WQI) derived from measurements of six water physicochemical parameters (pH, BOD, COD, NH 3 -N, DO, and TSS). The river was divided into four sections: upstream section (recreational area), middle stream 1 (residential area), middle stream 2 (commercial area), and downstream. Abundance and diversity of the macroinvertebrates were the highest in the upstream section (407 individual and H' = 1.56, respectively), followed by the middle stream 1 (356 individual and H' = 0.82). The least abundance was recorded in the downstream section (214 individual). Among all biotic indices, BMWP was the most reliable in evaluating the water quality of this urban river as their classifications were comparable to the WQI. BMWPs in this study have strong relationships with dissolved oxygen (DO) content. Our results demonstrated that the biotic indices were more sensitive towards organic pollution than the WQI. BMWP indices especially BMWP Viet were the most reliable and could be adopted along with the WQI for assessment of water quality in urban rivers.

  2. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Pacific Northwest National Laboratory, Richland WA USA; Yearsley, John [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Baptiste, Marisa [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA; Cao, Qian [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Lettenmaier, Dennis P. [Department of Geography, University of California Los Angeles, Los Angeles CA USA; Nijssen, Bart [Department of Civil and Environmental Engineering, University of Washington, Seattle WA USA

    2016-08-22

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution. DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and

  3. A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin

    Science.gov (United States)

    Carstens, D.; Amer, R. M.

    2017-12-01

    The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that

  4. Ground-water quality beneath an urban residential and commercial area, Montgomery, Alabama, 1999-2000

    Science.gov (United States)

    Robinson, James L.

    2002-01-01

    The Black Warrior River aquifer, which is composed of the Coker, Gordo, and Eutaw Formations, supplies more than 50 percent of the ground water used for public water supply in the Mobile River Basin. The city of Montgomery, Alabama, is partially built upon a recharge area for the Black Warrior River aquifer, and is one of many major population centers that depend on the Black Warrior River aquifer for public water supply. To represent the baseline ground-water quality in the Black Warrior River aquifer, water samples were collected from 30 wells located in a low-density residential or rural setting; 9 wells were completed in the Coker Formation, 9 wells in the Gordo Formation, and 12 wells in the Eutaw Formation. To describe the ground-water quality beneath Montgomery, Alabama, water samples also were collected from 30 wells located in residential and commercial areas of Montgomery, Alabama; 16 wells were completed in the Eutaw Formation, 8 wells in alluvial deposits, and 6 wells in terrace deposits. The alluvial and terrace deposits directly overlie the Eutaw Formation with little or no hydraulic separation. Ground-water samples collected from both the rural and urban wells were analyzed for physical properties, major ions, nutrients, metals, volatile organic compounds, and pesticides. Samples from the urban wells also were analyzed for bacteria, chlorofluorocarbons, dissolved gases, and sulfur hexafluoride. Ground-water quality beneath the urban area was compared to baseline water quality in the Black Warrior River aquifer.Compared to the rural wells, ground-water samples from urban wells contained greater concentrations or more frequent detections of chloride and nitrate, and the trace metals aluminium, chromium, cobalt, copper, nickel, and zinc. Pesticides and volatile organic compounds were detected more frequently and in greater concentrations in ground-water samples collected from urban wells than in ground-water samples from rural wells.The Spearman rho

  5. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  6. Prediction of water quality variation caused by dredging urban river-bed

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hong-Je; Lee, Byung-Ho; Kim, Jung-Sik [University of Ulsan, Ulsan(Korea); Lee, Kun-Bae [Metropolitan City Hall of Ulsan, Ulsan(Korea)

    2002-04-30

    The purpose of this study was to examine the effect of water quality improvement due to dredging the bottom deposit at the downstream of a urban river. The finite difference method was used to analyze the water quality variations caused by the depths of dredging and intercepting ratios of the goal years. 21 boring points were selected along the 11.2 Km river reach running through a metropolitan city. The pollution levels of the deposits from the bored points were examined by the leaching test. The improvement effect of the water quality, measured as changes of COD, were carried at under drought, minimal, and normal flow. The result indicates that the dredging of the contaminated sludge contributes the improvement of the water quality. (author). 10 refs., 8 tabs., 7 figs.

  7. Rural and Urban Differences in Air Quality, 2008-2012, and Community Drinking Water Quality, 2010-2015 - United States.

    Science.gov (United States)

    Strosnider, Heather; Kennedy, Caitlin; Monti, Michele; Yip, Fuyuen

    2017-06-23

    The places in which persons live, work, and play can contribute to the development of adverse health outcomes. Understanding the differences in risk factors in various environments can help to explain differences in the occurrence of these outcomes and can be used to develop public health programs, interventions, and policies. Efforts to characterize urban and rural differences have largely focused on social and demographic characteristics. A paucity of national standardized environmental data has hindered efforts to characterize differences in the physical aspects of urban and rural areas, such as air and water quality. 2008-2012 for air quality and 2010-2015 for water quality. Since 2002, CDC's National Environmental Public Health Tracking Program has collaborated with federal, state, and local partners to gather standardized environmental data by creating national data standards, collecting available data, and disseminating data to be used in developing public health actions. The National Environmental Public Health Tracking Network (i.e., the tracking network) collects data provided by national, state, and local partners and includes 21 health outcomes, exposures, and environmental hazards. To assess environmental factors that affect health, CDC analyzed three air-quality measures from the tracking network for all counties in the contiguous United States during 2008-2012 and one water-quality measure for 26 states during 2010-2015. The three air-quality measures include 1) total number of days with fine particulate matter (PM 2.5 ) levels greater than the U.S. Environmental Protection Agency's (EPA's) National Ambient Air Quality Standards (NAAQS) for 24-hour average PM 2.5 (PM 2.5 days); 2) mean annual average ambient concentrations of PM 2.5 in micrograms per cubic meter (mean PM 2.5 ); and 3) total number of days with maximum 8-hour average ozone concentrations greater than the NAAQS (ozone days). The water-quality measure compared the annual mean

  8. Effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek, Indianapolis, Indiana

    Science.gov (United States)

    Martin, Jeffrey D.

    1995-01-01

    In 1986, the U.S. Geological Survey and the Indianapolis Department of Public Works began a study to evaluate the effects of combined-sewer overflows and urban runoff discharging to Fall Geek on the White River. This report describes the effects of combined-sewer overflows and urban runoff on the water quality of Fall Creek during summer 1987 by comparing the water quality during base flow with that during storm runoff and by comparing water quality in the urbanized area with that in the less urbanized area upstream from the combined-sewer overflows. Data were collected at three streamflow-gaging stations located upstream from, downstream from, and in the middle of 27 combined-sewer overflows on Fall Creek. The most downstream station also was immediately downstream from the discharge of filter backwash from a water-treatment plant for public supply.

  9. Development of urban runoff model FFC-QUAL for first-flush water-quality analysis in urban drainage basins.

    Science.gov (United States)

    Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae

    2018-01-01

    An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  11. Urban drinking water quality: A survey of selected literature. Issues in urban sustainability No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Pip, E

    1993-01-01

    This literature survey covers a variety of issues relating to the quality of the urban water supply. It begins with a brief historical overview, and goes on to look at the health and politics of water, including issues of contamination. Next, it discusses water quantity including the main uses to which we put our water supply, and means of regulating or charging for usage. The main part of the report deals with water quality, describing how drinking water is assessed in terms of physical, chemical and biological parameters which are deemed to be important because of health or aesthetic reasons. Municipal water treatment and distribution discusses storage and disinfection, followed by a discussion of other treatments such as fluoridation and aeration. Incidental effects of distribution looks at a variety of other related issues such as asbestos fibres or metals in water.

  12. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom

    Directory of Open Access Journals (Sweden)

    James D. Miller

    2017-08-01

    New hydrological insights: There is a lack of nationally research focused on the dual impacts of climate change and urbanisation on flooding and water quality in UK urban areas. This is despite there being a clear acceptance that flood risk is increasing, water quality is generally not meeting desirable levels, and that combined population and climate change projections pose a pressing challenge. The available evidence has been found to be of medium-high confidence that both pressures will result in (i an increase in pluvial and fluvial flood risk, and (ii further reduction in water quality caused by point source pollution and altered flow regimes. Evidence concerning urban groundwater flooding, diffuse pollution and water temperature was found to be more sparse and was ascribed a low-medium confidence that both pressures will further exacerbate existing issues. The confidence ascribed to evidence was also found to reflect the utility of current science for setting policy and urban planning. Recurring factors that limit the utility of evidence for managing the urban environment includes: (i climate change projection uncertainty and suitability, (ii lack of sub-daily projections for storm rainfall, (iii the complexity of managing and modelling the urban environment, and (iv lack of probable national-scale future urban land-use projections. Suitable climate products are increasingly being developed and their application in applied urban research is critical in the wake of a series of extreme flooding events across the UK and timely for providing state-of-the-art evidence on which to base possible future water quality legislation in a post Brexit-WFD era.

  13. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  14. Temporal water quality response in an urban river: a case study in peninsular Malaysia

    Science.gov (United States)

    VishnuRadhan, Renjith; Zainudin, Zaki; Sreekanth, G. B.; Dhiman, Ravinder; Salleh, Mohd. Noor; Vethamony, P.

    2017-05-01

    Ambient water quality is a prerequisite for the health and self-purification capacity of riverine ecosystems. To understand the general water quality situation, the time series data of selected water quality parameters were analyzed in an urban river in Peninsular Malaysia. In this regard, the stations were selected from the main stem of the river as well as from the side channel. The stations located at the main stem of the river are less polluted than that in the side channel. Water Quality Index scores indicated that the side channel station is the most polluted, breaching the Class IV water quality criteria threshold during the monitoring period, followed by stations at the river mouth and the main channel. The effect of immediate anthropogenic waste input is also evident at the side channel station. The Organic Pollution Index of side channel station is (14.99) 3 times higher than at stations at river mouth (4.11) and 6 times higher than at the main channel (2.57). The two-way ANOVA showed significant difference among different stations. Further, the factor analysis on water quality parameters yielded two significant factors. They discriminated the stations into two groups. The land-use land cover classification of the study area shows that the region near the sampling sites is dominated by urban settlements (33.23 %) and this can contribute significantly to the deterioration of ambient river water quality. The present study estimated the water quality condition and response in the river and the study can be an immediate yardstick for base lining river water quality, and a basis for future water quality modeling studies in the region.

  15. Urban Water and Riverine Quality: Participatory Science in Singapore

    Science.gov (United States)

    Higgitt, D. L.

    2011-12-01

    Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.

  16. Improved or Unimproved Urban Areas Effect on Soil and Water Quality

    Directory of Open Access Journals (Sweden)

    Sally D. Logsdon

    2017-04-01

    Full Text Available Construction in urban areas usually results in compacted soil, which restricts plant growth and infiltration. Nutrients may be lost in storm runoff water and sediment. The purpose of this study was to determine if existing lawns benefit from aeration and surface compost additions without the negative impact of nutrient loss in runoff. Four sets of lawns were compared, with or without compost plus aeration, as a paired comparison. Surface bulk density was significantly reduced in the treated lawns (1.32 versus 1.42 Mg·m−3. Visual evaluation of soil structure showed improvement in the treated lawns. Of fifteen measurement dates over four years, four dates showed significantly higher surface soil water contents in the treated lawns compared with the untreated lawns. When compared over time, three of the four treated lawns had significantly higher soil water content than the untreated lawns. Nutrient concentrations in rainfall simulator runoff were not significantly different between treated and control lawns, which showed that compost did not negatively impact water quality. Compost and aeration helped restore soil quality for urban soils of recent construction.

  17. Water Quality Dynamics of Urban Water Bodies during Flooding in Can Tho City, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-04-01

    Full Text Available Water pollution associated with flooding is one of the major problems in cities in the global South. However, studies of water quality dynamics during flood events are not often reported in literature, probably due to difficult conditions for sampling during flood events. Water quality parameters in open water (canals, rivers, and lakes, flood water on roads and water in sewers have been monitored during the extreme fluvial flood event on 7 October 2013 in the city of Can Tho, Vietnam. This is the pioneering study of urban flood water pollution in real time in Vietnam. The results showed that water quality is very dynamic during flooding, especially at the beginning of the event. In addition, it was observed that the pathogen and contaminant levels in the flood water are almost as high as in sewers. The findings show that population exposed to flood water runs a health risk that is nearly equal to that of being in contact with sewer water. Therefore, the people of Can Tho not only face physical risk due to flooding, but are also exposed to health risks.

  18. Urban groundwater quality in sub-Saharan Africa: current status and implications for water security and public health

    Science.gov (United States)

    Lapworth, D. J.; Nkhuwa, D. C. W.; Okotto-Okotto, J.; Pedley, S.; Stuart, M. E.; Tijani, M. N.; Wright, J.

    2017-06-01

    Groundwater resources are important sources of drinking water in Africa, and they are hugely important in sustaining urban livelihoods and supporting a diverse range of commercial and agricultural activities. Groundwater has an important role in improving health in sub-Saharan Africa (SSA). An estimated 250 million people (40% of the total) live in urban centres across SSA. SSA has experienced a rapid expansion in urban populations since the 1950s, with increased population densities as well as expanding geographical coverage. Estimates suggest that the urban population in SSA will double between 2000 and 2030. The quality status of shallow urban groundwater resources is often very poor due to inadequate waste management and source protection, and poses a significant health risk to users, while deeper borehole sources often provide an important source of good quality drinking water. Given the growth in future demand from this finite resource, as well as potential changes in future climate in this region, a detailed understanding of both water quantity and quality is required to use this resource sustainably. This paper provides a comprehensive assessment of the water quality status, both microbial and chemical, of urban groundwater in SSA across a range of hydrogeological terrains and different groundwater point types. Lower storage basement terrains, which underlie a significant proportion of urban centres in SSA, are particularly vulnerable to contamination. The relationship between mean nitrate concentration and intrinsic aquifer pollution risk is assessed for urban centres across SSA. Current knowledge gaps are identified and future research needs highlighted.

  19. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  20. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  1. The role of the water tankers market in water stressed semi-arid urban areas:Implications on water quality and economic burden.

    Science.gov (United States)

    Constantine, Kinda; Massoud, May; Alameddine, Ibrahim; El-Fadel, Mutasem

    2017-03-01

    Population growth and development are associated with increased water demand that often exceeds the capacity of existing resources, resulting in water shortages, particularly in urban areas, where more than 60% of the world's population resides. In many developing communities, shortages often force households to depend on water tankers amongst other potential sources for the delivery of water for domestic and/or potable use. While water tankers have become an integral part of the water supply system in many countries, the sector is often unregulated and operates with little governmental supervision. Users are invariably unaware of the origin or the quality of purchased water. In an effort to better assess this sector, a field survey of water vending wells and tankers coupled with a water quality sampling and analysis program was implemented in a pilot semi-arid urban area (Beirut, Lebanon) to shed light on the environmental and socio-economic impacts of the water tanker sector. Total dissolved solids (TDS), chloride (Cl - ), and microbial loads exceeded drinking water quality standards. While TDS and Cl - levels were mostly due to saltwater intrusion in coastal wells, tankers were found to be a significant source of total coliforms. Delivered water costs varied depending on the tanker size, the quality of the distributed water, and pre-treatment used, with a markup of nearly 8-24 folds of the public water supply and an equivalent economic burden of 16% of the average household income excluding environmental externalities of water quality. The study concludes with a management framework towards consumer protection under integrated supply and demand side measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  3. Use of neural networks for monitoring surface water quality changes in a neotropical urban stream.

    Science.gov (United States)

    da Costa, Andréa Oliveira Souza; Silva, Priscila Ferreira; Sabará, Millôr Godoy; da Costa, Esly Ferreira

    2009-08-01

    This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.

  4. [Effect of antecedent dry period on water quality of urban storm runoff pollution].

    Science.gov (United States)

    Bian, Bo

    2009-12-01

    Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.

  5. Urbanization, housing and environmental quality indicators ...

    African Journals Online (AJOL)

    Urbanization, housing and environmental quality indicators. ... Journal of Agriculture, Forestry and the Social Sciences ... Urbanization ideally should also imply an enhancement of housing quality and other components of human settlements such as power supply, portable water, good roads, proper refuse and sewage ...

  6. Frequency analysis of urban runoff quality in an urbanizing catchment of Shenzhen, China

    Science.gov (United States)

    Qin, Huapeng; Tan, Xiaolong; Fu, Guangtao; Zhang, Yingying; Huang, Yuefei

    2013-07-01

    This paper investigates the frequency distribution of urban runoff quality indicators using a long-term continuous simulation approach and evaluates the impacts of proposed runoff control schemes on runoff quality in an urbanizing catchment in Shenzhen, China. Four different indicators are considered to provide a comprehensive assessment of the potential impacts: total runoff depth, event pollutant load, Event Mean Concentration, and peak concentration during a rainfall event. The results obtained indicate that urban runoff quantity and quality in the catchment have significant variations in rainfall events and a very high rate of non-compliance with surface water quality regulations. Three runoff control schemes with the capacity to intercept an initial runoff depth of 5 mm, 10 mm, and 15 mm are evaluated, respectively, and diminishing marginal benefits are found with increasing interception levels in terms of water quality improvement. The effects of seasonal variation in rainfall events are investigated to provide a better understanding of the performance of the runoff control schemes. The pre-flood season has higher risk of poor water quality than other seasons after runoff control. This study demonstrates that frequency analysis of urban runoff quantity and quality provides a probabilistic evaluation of pollution control measures, and thus helps frame a risk-based decision making for urban runoff quality management in an urbanizing catchment.

  7. Applications of geographic information system and expert system for urban runoff and water quality management

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Beum-Hee [Pai Chai University, Taejeon(Korea)

    2001-06-30

    It is very important to select appropriate methods of collecting, predicting, and analyzing information for the development of urban water resources and the prevention of disasters. Thus, in this study an accurate data generation method is developed using Geographic Information System (GIS) and Remote Sensing (RS). The methods of development and application of an expert system are suggested to solve more efficiently the problems of water resources and quality induced by the rapid urbanization. The time-varying data in a large region, the An-Yang Cheon watershed, were reasonably obtained by the application of the GIS using ARC/INFO and RS data. The ESPE (Expert System for Parameter Estimation), an expert system is developed using the CLIPS 6.0. The simulated results showed agreement with the measured data globally. These methods are expected to efficiently simulate the runoff and water quality in the rapidly varying urban area. (author). 10 refs., 4 tabs., 10 figs.

  8. Water Quality and Environmental Flow Management in Rapidly Urbanizing Shenzhen Estuary Area, China

    Science.gov (United States)

    Qin, H.; Su, Q.

    2011-12-01

    Shenzhen estuary is located in a rapidly urbanizing coastal region of Southeast China, and forms the administrative border between mainland China and Hong Kong. It receives the waters of the Shenzhen River, where it enters the Deep Bay. The estuary has great ecological importance with the internationally recognized mangrove wetlands, which provides a habitat for some rare and endangered waterfowl and migratory birds.Water quality in the esturay has deteriorated not only due to increasing wastewater discharges from domestic and industrial sources, but also as a consequence of decreasing base environmental flow during rapid urbanization in the Shenzhen River catchment since 1980s. Measures to improve water quality of the estuary include not only reducing pollutant inputs by intercepting wastewater, but also increasing environmental flow by reusing reclaimed wastewater or withdrawing nearshore seawater into the river. However, salinity alternation due to flow increase is deemed to have impacts on the mangrove wetland ecosystem. In this paper, Environmental Fluid Dynamics Code (EFDC) is used to simulate hydrodynamics, salinity, and water quality condition in the Shenzhen estuary. After calibration and validation, the model is used to evaluate effects of various control measures on water quality improvement and salinity alteration in the estuary. The results indicate that implementing different measures independently does not reach the goals of water quality improvement; furthermore, increasing environmental flow by importing nearshore seawater may greatly increase the salinity in the Shenzhen River, destroy the fresh ecosystem of the river and have non-negligible impacts on the mangrove wetland ecosystem. Based on the effectiveness and impacts of the measures, an integrated measure, which combine pollutant loads reduction and environmental flow increase by reusing reclaimed wastewater, is proposed to achieve water environmental sustainability in the study area.

  9. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development

    Directory of Open Access Journals (Sweden)

    Hua-peng Qin

    2014-10-01

    Full Text Available Surface water quality deterioration is a serious problem in many rapidly urbanizing catchments in developing countries. There is currently a lack of studies that quantify water quality variation (deterioration or otherwise due to both socio-economic and infrastructure development in a catchment. This paper investigates the causes of water quality changes over the rapid urbanization period of 1985–2009 in the Shenzhen River catchment, China and examines the changes in relation to infrastructure development and socio-economic policies. The results indicate that the water quality deteriorated rapidly during the earlier urbanization stages before gradually improving over recent years, and that rapid increases in domestic discharge were the major causes of water quality deterioration. Although construction of additional wastewater infrastructure can significantly improve water quality, it was unable to dispose all of the wastewater in the catchment. However, it was found that socio-economic measures can significantly improve water quality by decreasing pollutant load per gross regional production (GRP or increasing labor productivity. Our findings suggest that sustainable development during urbanization is possible, provided that: (1 the wastewater infrastructure should be constructed timely and revitalized regularly in line with urbanization, and wastewater treatment facilities should be upgraded to improve their nitrogen and phosphorus removal efficiencies; (2 administrative regulation policies, economic incentives and financial policies should be implemented to encourage industries to prevent or reduce the pollution at the source; (3 the environmental awareness and education level of local population should be increased; (4 planners from various sectors should consult each other and adapt an integrated planning approach for socio-economic and wastewater infrastructure development.

  10. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    Science.gov (United States)

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  11. Watershed features and stream water quality: Gaining insight through path analysis in a Midwest urban landscape, USA

    Science.gov (United States)

    Jiayu Wu; Timothy W. Stewart; Janette R. Thompson; Randy Kolka; Kristie J. Franz

    2015-01-01

    Urban stream condition is often degraded by human activities in the surrounding watershed. Given the complexity of urban areas, relationships among variables that cause stream degradation can be difficult to isolate. We examined factors affecting stream condition by evaluating social, terrestrial, stream hydrology and water quality variables from 20 urban stream...

  12. Urban Waters Small Grants 101

    Science.gov (United States)

    General information on Urban Waters Small Grants is provided in this document. Grantees are listed by themes, including Environmental Justice, Water Quality, Job Training and Creation, and Green Infrastructure.

  13. Situational analysis of the microbial water quality in a peri-urban catchment in South Africa

    CSIR Research Space (South Africa)

    Venter, SN

    1997-01-01

    Full Text Available A situational analysis of a peri-urban catchment experiencing microbial water quality problems was carried out using data collected over two and a half years. The water and land use in the area was determined. The main sources of pollution were...

  14. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    Science.gov (United States)

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  15. Adaptive measurements of urban runoff quality

    Science.gov (United States)

    Wong, Brandon P.; Kerkez, Branko

    2016-11-01

    An approach to adaptively measure runoff water quality dynamics is introduced, focusing specifically on characterizing the timing and magnitude of urban pollutographs. Rather than relying on a static schedule or flow-weighted sampling, which can miss important water quality dynamics if parameterized inadequately, novel Internet-enabled sensor nodes are used to autonomously adapt their measurement frequency to real-time weather forecasts and hydrologic conditions. This dynamic approach has the potential to significantly improve the use of constrained experimental resources, such as automated grab samplers, which continue to provide a strong alternative to sampling water quality dynamics when in situ sensors are not available. Compared to conventional flow-weighted or time-weighted sampling schemes, which rely on preset thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were autonomously triggered in response to features in the underlying hydrograph and real-time weather forecasts. The study watershed did not exhibit a strong first flush and intraevent concentration variability was driven by flow acceleration, wherein the largest loadings of TSS and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The scalability of the proposed method is discussed in the context of larger sensor network deployments, as well the potential to improving control of urban water quality.

  16. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  17. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  18. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  19. Water Recycling via Aquifers for Sustainable Urban Water Quality Management: Current Status, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Elise Bekele

    2018-04-01

    Full Text Available Managed aquifer recharge (MAR is used worldwide in urban environments to replenish groundwater to provide a secure and sustainable supply of potable and non-potable water. It relies on natural treatment processes within aquifers (i.e., filtration, sorption, and degradation, and in some cases involves infiltration through the unsaturated zone to polish the given source water, e.g., treated wastewater, stormwater, or rainwater, to the desired quality prior to reuse. Whilst MAR in its early forms has occurred for millennia, large-scale schemes to replenish groundwater with advanced treated reclaimed water have come to the fore in cities such as Perth, Western Australia, Monterey, California, and Changwon, South Korea, as water managers consider provision for projected population growth in a drying climate. An additional bonus for implementing MAR in coastal aquifers is assisting in the prevention of seawater intrusion. This review begins with the rationale for large-scale MAR schemes in an Australian urban context, reflecting on the current status; describes the unique benefits of several common MAR types; and provides examples from around the world. It then explores several scientific challenges, ranging from quantifying aquifer removal for various groundwater contaminants to assessing risks to human health and the environment, and avoiding adverse outcomes from biogeochemical changes induced by aquifer storage. Scientific developments in the areas of water quality assessments, which include molecular detection methods for microbial pathogens and high resolution analytical chemistry methods for detecting trace chemicals, give unprecedented insight into the “polishing” offered by natural treatment. This provides opportunities for setting of compliance targets for mitigating risks to human health and maintaining high performance MAR schemes.

  20. Urban water-quality modelling: implementing an extension to Multi-Hydro platform for real case studies

    Science.gov (United States)

    Hong, Yi; Giangola-Murzyn, Agathe; Bonhomme, Celine; Chebbo, Ghassan; Schertzer, Daniel

    2015-04-01

    During the last few years, the physically based and fully distributed numerical platform Multi-Hydro (MH) has been developed to simulate hydrological behaviours in urban/peri-urban areas (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This hydro-dynamical platform is open-access and has a modular structure, which is designed to be easily scalable and transportable, in order to simulate the dynamics and complex interactions of the water cycle processes in urban or peri-urban environment (surface hydrology, urban groundwater infrastructures and infiltration). Each hydrological module relies on existing and widely validated open source models, such as TREX model (Velleux, 2005) for the surface module, SWMM model (Rossman, 2010) for the drainage module and VS2DT model (Lappala et al., 1987) for the soil module. In our recent studies, an extension of MH has been set up by connecting the already available water-quality computational components among different modules, to introduce a pollutant transport modelling into the hydro-dynamical platform. As for the surface module in two-dimensions, the concentration of particles in flow is expressed by sediment advection equation, the settling of suspended particles is calculated with a simplified settling velocity formula, while the pollutant wash-off from a given land-use is represented as a mass rate of particle removal from the bottom boundary over time, based on transport capacity, which is computed by a modified form of Universal Soil Loss Equation (USLE). Considering that the USLE is originally conceived to predict soil losses caused by runoff in agriculture areas, several adaptations were needed to use it for urban areas, such as the alterations of USLE parameters according to different criterions, the definition of the appropriate initial dust thickness corresponding to various land-uses, etc. Concerning the drainage module, water quality routing within pipes assumes that the conduit

  1. Analyzing the Relative Linkages of Land Use and Hydrologic Variables with Urban Surface Water Quality using Multivariate Techniques

    Science.gov (United States)

    Ahmed, S.; Abdul-Aziz, O. I.

    2015-12-01

    We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.

  2. Human factors and tidal influences on water quality of an urban river in Can Tho, a major city of the Mekong Delta, Vietnam.

    Science.gov (United States)

    Ozaki, Hirokazu; Co, Thi Kinh; Le, Anh Kha; Pham, Viet Nu; Nguyen, Van Be; Tarao, Mitsunori; Nguyen, Huu Chiem; Le, Viet Dung; Nguyen, Hieu Trung; Sagehashi, Masaki; Ninomiya-Lim, Sachi; Gomi, Takashi; Hosomi, Masaaki; Takada, Hideshige

    2014-02-01

    In this study, we focused on water quality in an urban canal and the Mekong River in the city of Can Tho, a central municipality of the Mekong Delta region, southern Vietnam. Water temperature, pH, electrical conductivity, BOD5, CODCr, Na(+), Cl(-), NH4 (+)-N, SO4 (2-)-S, NO3 (-)-N, and NO2 (-)-N for both canal and river, and tide level of the urban canal, were monitored once per month from May 2010 to April 2012. The urban canal is subject to severe anthropogenic contamination, owing to poor sewage treatment. In general, water quality in the canal exhibited strong tidal variation, poorer at lower tides and better at higher tides. Some anomalies were observed, with degraded water quality under some high-tide conditions. These were associated with flow from the upstream residential area. Therefore, it was concluded that water quality in the urban canal changed with a balance between dilution effects and extent of contaminant supply, both driven by tidal fluctuations in the Mekong River.

  3. Understanding the role of land use in urban stormwater quality management.

    Science.gov (United States)

    Goonetilleke, Ashantha; Thomas, Evan; Ginn, Simon; Gilbert, Dale

    2005-01-01

    Urbanisation significantly impacts water environments with increased runoff and the degradation of water quality. The management of quantity impacts are straight forward, but quality impacts are far more complex. Current approaches to safeguard water quality are largely ineffective and guided by entrenched misconceptions with a primary focus on 'end-of-pipe' solutions. The outcomes of a research study presented in the paper, which investigated relationships between water quality and six different land uses offer practical guidance in the planning of future urban developments. In terms of safeguarding water quality, high-density residential development which results in a relatively smaller footprint would be the preferred option. The research study outcomes bring into question a number of fundamental concepts and misconceptions routinely accepted in stormwater quality management. The research findings confirmed the need to move beyond customary structural measures and identified the key role that urban planning can play in safeguarding urban water environments.

  4. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Directory of Open Access Journals (Sweden)

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern

  5. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  6. Water quality measure in urban basin of Fossolo; Le misure di qualita` nel bacino urbano Fossolo

    Energy Technology Data Exchange (ETDEWEB)

    Artina, Sandro; Maglionico, Marco; Marinelli, Alberto [Bologna, Univ. (Italy); Raffaelli, Giuseppe; Anzalone, Claudio [Consorzio A.Co.Se.R., Bologna (Italy); Lanzarini, Sergio; Guzzinati, Ermes [AMIU, Bologna (Italy)

    1997-03-01

    Water quantity and quality characteristics of a combined sewer system in a 40 ha urban catchment in the vicinity of Bologna have been studied for two years. The catchment, having residential characteristics with about 10000 inhabitants, is loaded with heavy traffic. The drainage network ends with a main duct having a multicenter cross section of 1800 mm x 1440 mm. The monitoring phase has pointed out how some quality parameters often trespass the Italian regulations on water quality. Moreover, it has been observed how BOD{sub 5}, COD and Suspended Solids are strictly correlated.

  7. RAINWATER MANAGEMENT AIMING TO IMPROVE THE QUALITY OF URBAN SURFACE RUNOFF

    Directory of Open Access Journals (Sweden)

    I. HAIDU

    2015-10-01

    Full Text Available Rainwater Management Aiming to Improve the Quality of Urban Surface Runoff. Currently many urban areas experience the quality degradation of rooftop runoff and accumulated rainwater. The present study aims to estimate the volume of water draining from rooftops within an area of 0.68 km² in the municipality of Cluj-Napoca. The volume of water flowing from rooftops presents a beneficial alternative not only for collecting rainwater for later use, but also for reducing the volume of water and for improving surface runoff quality in urban areas. The procedure was based on the Michel Simplified SCS-CN model, a derived variant of the most popular hydrological model, the Soil Conservation Service Curve Number (SCS-CN. The results of the applied method reveal that the highest rooftop runoff water values correspond to the summer months, these being based on daily rainfall data. Estimating the volume of water draining from rooftops for future harvesting is an important step in the sustainable management of rainwater in urban areas and in improving water quality.

  8. Urban stormwater harvesting and reuse: a probe into the chemical, toxicology and microbiological contaminants in water quality.

    Science.gov (United States)

    Chong, Meng Nan; Sidhu, Jatinder; Aryal, Rupak; Tang, Janet; Gernjak, Wolfgang; Escher, Beate; Toze, Simon

    2013-08-01

    Stormwater is one of the last major untapped urban water resources that can be exploited as an alternative water source in Australia. The information in the current Australian Guidelines for Water Recycling relating to stormwater harvesting and reuse only emphasises on a limited number of stormwater quality parameters. In order to supply stormwater as a source for higher value end-uses, a more comprehensive assessment on the potential public health risks has to be undertaken. Owing to the stochastic variations in rainfall, catchment hydrology and also the types of non-point pollution sources that can provide contaminants relating to different anthropogenic activities and catchment land uses, the characterisation of public health risks in stormwater is complex, tedious and not always possible through the conventional detection and analytical methods. In this study, a holistic approach was undertaken to assess the potential public health risks in urban stormwater samples from a medium-density residential catchment. A combined chemical-toxicological assessment was used to characterise the potential health risks arising from chemical contaminants, while a combination of standard culture methods and quantitative polymerase chain reaction (qPCR) methods was used for detection and quantification of faecal indicator bacteria (FIB) and pathogens in urban stormwater. Results showed that the concentration of chemical contaminants and associated toxicity were relatively low when benchmarked against other alternative water sources such as recycled wastewater. However, the concentrations of heavy metals particularly cadmium and lead have exceeded the Australian guideline values, indicating potential public health risks. Also, high numbers of FIB were detected in urban stormwater samples obtained from wet weather events. In addition, qPCR detection of human-related pathogens suggested there are frequent sewage ingressions into the urban stormwater runoff during wet weather events

  9. Spatial and temporal patterns of surface water quality and ichthyotoxicity in urban and rural river basins in Texas

    Science.gov (United States)

    VanLandeghem, Matthew M.; Meyer, Matthew D.; Cox, Stephen B.; Sharma, Bibek; Patino, Reynaldo

    2012-01-01

    The Double Mountain Fork Brazos River (Texas, USA) consists of North (NF) and South Forks (SF). The NF receives urban runoff and twice-reclaimed wastewater effluent, whereas the SF flows through primarily rural areas. The objective of this study was to determine and compare associations between standard water quality variables and ichthyotoxicity at a landscape scale that included urban (NF) and rural (SF) sites. Five NF and three SF sites were sampled quarterly from March 2008 to March 2009 for specific conductance, salinity, hardness, pH, temperature, and turbidity; and a zebrafish (Danio rerio) embryo bioassay was used to determine ichthyotoxicity. Metal and nutrient concentrations at all sites were also measured in addition to standard water quality variables in spring 2009. Principal component analyses identified hardness, specific conductance, and salinity as the water variables that best differentiate the urban NF (higher levels) from rural SF habitat. Nutrient levels were also higher in the NF, but no landscape scale patterns in metal concentrations were observed. Ichthyotoxicity was generally higher in NF water especially in winter, and multiple regression analyses suggested a positive association between water hardness and ichthyotoxicity. To test for the potential influence of the toxic golden alga (Prymnesium parvum) on overall ichthyotoxicity, a cofactor known to enhance golden alga toxin activity was used in the bioassays. Golden alga ichthyotoxicity was detected in the NF but not the SF, suggesting golden alga may have contributed to overall ichthyotoxicity in the urban but not in the rural system. In conclusion, the physicochemistry of the urban-influenced NF water was conducive to the expression of ichthyotoxicity and also point to water hardness as a novel factor influencing golden alga ichthyotoxicity in surface waters.

  10. Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, Dmitry, E-mail: d.kirsanov@gmail.com [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Legin, Evgeny [Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Sensor Systems LLC, St. Petersburg (Russian Federation); Zagrebin, Anatoly; Ignatieva, Natalia; Rybakin, Vladimir [Institute of Limnology, Russian Academy of Sciences, St. Petersburg (Russian Federation); Legin, Andrey [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation)

    2014-05-01

    Highlights: • -Daphnia magna bioassay can be simulated with multisensor system. • Urban water toxicity can be predicted from potentiometric ET data. • Independent test set validation confirms statistical significance of the results. - Abstract: Toxicity is one of the key parameters of water quality in environmental monitoring. However, being evaluated as a response of living beings (as their mobility, fertility, death rate, etc.) to water quality, toxicity can only be assessed with the help of these living beings. This imposes certain restrictions on toxicity bioassay as an analytical method: biotest organisms must be properly bred, fed and kept under strictly regulated conditions and duration of tests can be quite long (up to several days), thus making the whole procedure the prerogative of the limited number of highly specialized laboratories. This report describes an original application of potentiometric multisensor system (electronic tongue) when the set of electrochemical sensors was calibrated against Daphnia magna death rate in order to perform toxicity assessment of urban waters without immediate involvement of living creatures. PRM (partial robust M) and PLS (projections on latent structures) regression models based on the data from this multisensor system allowed for prediction of toxicity of unknown water samples in terms of biotests but in the fast and simple instrumental way. Typical errors of water toxicity predictions were below 20% in terms of Daphnia death rate which can be considered as a good result taking into account the complexity of the task.

  11. Water availability, water quality water governance: the future ahead

    Science.gov (United States)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  12. Urban Evolution: The Role of Water

    Directory of Open Access Journals (Sweden)

    Sujay S. Kaushal

    2015-07-01

    Full Text Available The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1 urban drainage from stream burial to stormwater management; (2 sewage flows and water quality in response to wastewater treatment; (3 amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4 salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban

  13. Stormwater Priority Pollutants Versus Surface Water Quality Criteria

    DEFF Research Database (Denmark)

    Eriksson, Eva; Ledin, Anna; Baun, Anders

    2011-01-01

    Stormwater in urban areas comprises of a substantial part of the urban water cycle, dominating the flow in many small urban streams, and the pollution levels are sizeable. No stormwater quality criteria were found here and no European or national emission limit values exist. Stormwater pollutants...... however are present in levels exceeding most of the regulated surface water quality criteria and environmental quality standards. Therefore catchment characterisation is needed to chose suitable treatment prior to discharge into receiving surface waters, as the mixing may be insufficient in small streams....

  14. Sustainable urban environmental quality

    Directory of Open Access Journals (Sweden)

    Tošković Dobrivoje

    2004-01-01

    Full Text Available MEANING as the essential element of urban quality. The role of the three main factors for the urban quality achievement: PLANNING, DEVELOPMENT and PEOPLE. Next to that, it is important to assume the identity of the local CONTEXT as the essential base for designing and shaping of form development. The problems of the quality achievements in the situation of the permanent changes. In such an environment - the RENEWAL of the towns become the basic strategic orientation requiring - evaluation of the development policy instruments. On the road of changes there are PROBLEMS of a strategic nature which should be, firstly, defined and, then, solved before entering in the process of structuring and arrangement. One of these problems is NEW versus OLD. Transition to a new policy of urbanism relying, first of all, on the private investors and international funds of the local authorities - call for a NEW STRATEGY in urbanism, in the context of the sustainability of environment. The sustainability of quality and the categories of the influencing factors. The sustainability of quality as a twofold process of urban design. The quality of environment as an aesthetic phenomenon. The urban situation and environmental quality: feasibility of changes and effects; the environmental capacity as an indicator and quality determinant. The urban quality and international experience. The evaluation of our urban situation. INSTEAD OF CONCLUSION: A general review on the visions and urban quality policy and planning. Toward an evaluation of urban environmental quality: negative and positive indicators; sustainable communities environmental ruling and urban quality planning.

  15. Urbanism & urban qualities New data and methodologies

    DEFF Research Database (Denmark)

    2009-01-01

    The interest in urban spaces and their qualities has become stronger in recent years. A substantial volume of projects aims to create attractive urban spaces reasons of Sustainability, Quality of Life and urban vitality. But who actually uses the urban spaces, which urban spaces are used? How do...... they use them? What characterizes the good urban space? And how and by who is it evaluated? How is a better co-operation between urban space researchers, decision makers and users established? Is it the right urban spaces which receive investments? How can research optimize the basis for decisions......?   Proceedings from the conference "Urbanism & urban qualities - new data & methodologies" held 24th of June 2009 at The Royal Danish Academy of Fine Arts in Copenhagen....

  16. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  17. Water quality in okara and its suburbs

    International Nuclear Information System (INIS)

    Butt, M.T.; Imtiaz, N.; Athar, M.

    2007-01-01

    Ground water samples (70), collected from Okara and its sburbs were studied. Thirty samples were collected from municipal supply of urban areas while forty from deep water pumps of non-urban areas. The samples were investigated for various physiochemical parameters. Outcome of the study is that ground water of municipal supply area is suitable for human consumption while the water quality of non supply area is slightly brackish to saline and nitrate content is high above the acceptable levels of drinking water quality. (author)

  18. Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas).

    Science.gov (United States)

    Wetz, Michael S; Hayes, Kenneth C; Fisher, Kelsey V B; Price, Lynn; Sterba-Boatwright, Blair

    2016-03-15

    Results are presented from a study of water quality dynamics in a shallow subtropical estuary, Oso Bay, Texas, which has a watershed that has undergone extensive urbanization in recent decades. High inorganic nutrient, dissolved organic matter and chlorophyll concentrations, as well as low pH (Oso Bay that receives wastewater effluent. Despite being shallow (Oso Bay, suggesting that it may be exported to adjacent Corpus Christi Bay and contribute to seasonal hypoxia development in that system as well. These results argue for wastewater nutrient input reductions in order to alleviate the symptoms of eutrophication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Storm water and wastewater management for improving water quality

    NARCIS (Netherlands)

    Boogaard, Floris; Vojinovic, Zoran; Heikoop, Rick

    Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of

  20. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin - Ground-water quality in an urban part of the Twin Cities Metropolitan area, Minnesota, 1996

    Science.gov (United States)

    Andrews, W.J.; Fong, A.L.; Harrod, Leigh; Dittes, M.E.

    1998-01-01

    In the spring of 1996, the Upper Mississippi River Basin Study Unit of the National Water-Quality Assessment Program drilled 30 shallow monitoring wells in a study area characterized by urban residential and commercial land uses. The monitoring wells were installed in sandy river-terrace deposits adjacent to the Mississippi River in Anoka and Hennepin Counties, Minnesota, in areas where urban development primarily occurred during the past 30 years.

  1. Microbiological quality of water from hand-dug wells used for domestic purposes in urban communities in Kumasi, Ghana

    DEFF Research Database (Denmark)

    Akple, M.; Keraita, Bernard; Konradsen, Flemming

    2011-01-01

    Assessment was done on the microbiological quality of water in hand-dug wells in urban communities in Kumasi, Ghana. A total of 256 water samples were taken from eight wells and examined for faecal coliforms, enterococci and helminths. High contamination levels were recorded in the wells, more so...

  2. Modeling water quality in an urban river using hydrological factors--data driven approaches.

    Science.gov (United States)

    Chang, Fi-John; Tsai, Yu-Hsuan; Chen, Pin-An; Coynel, Alexandra; Vachaud, Georges

    2015-03-15

    Contrasting seasonal variations occur in river flow and water quality as a result of short duration, severe intensity storms and typhoons in Taiwan. Sudden changes in river flow caused by impending extreme events may impose serious degradation on river water quality and fateful impacts on ecosystems. Water quality is measured in a monthly/quarterly scale, and therefore an estimation of water quality in a daily scale would be of good help for timely river pollution management. This study proposes a systematic analysis scheme (SAS) to assess the spatio-temporal interrelation of water quality in an urban river and construct water quality estimation models using two static and one dynamic artificial neural networks (ANNs) coupled with the Gamma test (GT) based on water quality, hydrological and economic data. The Dahan River basin in Taiwan is the study area. Ammonia nitrogen (NH3-N) is considered as the representative parameter, a correlative indicator in judging the contamination level over the study. Key factors the most closely related to the representative parameter (NH3-N) are extracted by the Gamma test for modeling NH3-N concentration, and as a result, four hydrological factors (discharge, days w/o discharge, water temperature and rainfall) are identified as model inputs. The modeling results demonstrate that the nonlinear autoregressive with exogenous input (NARX) network furnished with recurrent connections can accurately estimate NH3-N concentration with a very high coefficient of efficiency value (0.926) and a low RMSE value (0.386 mg/l). Besides, the NARX network can suitably catch peak values that mainly occur in dry periods (September-April in the study area), which is particularly important to water pollution treatment. The proposed SAS suggests a promising approach to reliably modeling the spatio-temporal NH3-N concentration based solely on hydrological data, without using water quality sampling data. It is worth noticing that such estimation can be

  3. Missing the link: urban stormwater quality and resident behaviour

    African Journals Online (AJOL)

    the linkages between what they do on the land and impacts on urban rivers. The findings suggest ... the impact of poorly-treated wastewater being discharged into urban river ..... discharge, water quality, ecological conditions) that is balanced.

  4. Pollution from urban development and setback outfalls as a catchment management measure for river water quality improvement

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Urban development causes an increase in fine sediment and heavy metal stormwater pollution. Pollution load estimation theorises that stormwater pollutant load and type are strongly, directly influenced by contributing catchment land use. The research presented investigates the validity of these assumptions using an extensive novel field data set of 53 catchments. This research has investigated the relationships between land use and pollutant concentrations (Cu, Zn, Pb, Ni, Ca, Ba, Sn, Mn) in urban stormwater outfall sediments. Cartographic and aerial photography data have been utilised to delineate the surface and subsurface contributing catchment land use. A zoned sub-catchment approach to catchment characterisation of stormwater pollutant concentration has been defined and tested. This method effectively describes the specific land use influence on pollutant concentrations at the stormwater outfall, showing strong dependency with road length, brake points, impervious area and open space. Road networks and open space are found to influence land use, and thus stormwater pollution, closer to stormwater outfall/receiving waterbody suggesting storage, treatment, assimilation, loss or dilution of the land use influence further away from stormwater outfall. An empirical description has been proposed with which to predict outfall pollutant contributions to the receiving urban waterbody based on catchment land use information. With the definition and quantification of contributing catchment specific fine sediment and urban heavy metal pollutants, the influence of urban stormwater outfall management on the receiving watercourse has been considered. The locations of stormwater outfalls, and their proximity to the receiving waterway, are known as key water quality and river health influences. Water quality benefits from the implementation of stormwater outfalls set back from the receiving waterway banks have been investigated using the catchment case study. Setback outfalls

  5. Rainfall, runoff, and water-quality data for the urban storm-water program in the Albuquerque, New Mexico, metropolitan area, water year 2004

    Science.gov (United States)

    Kelly, Todd; Romero, Orlando; Jimenez, Mike

    2006-01-01

    Urbanization has dramatically increased precipitation runoff to the system of drainage channels and natural stream channels in the Albuquerque, New Mexico, metropolitan area. Rainfall and runoff data are important for planning and designing future storm-water conveyance channels in newly developing areas. Storm-water quality also is monitored in accordance with the National Pollutant Discharge Elimination System mandated by the U.S. Environmental Protection Agency. The Albuquerque Metropolitan Arroyo Flood Control Authority, the City of Albuquerque, and the U.S. Geological Survey began a cooperative program to collect hydrologic data to assist in assessing the quality and quantity of surface-water resources in the Albuquerque area. This report presents water-quality, streamflow, and rainfall data collected from October 1, 2003, to September 30, 2004 (water year 2004). Also provided is a station analysis for each of the 18 streamflow-gaging sites and 39 rainfall-gaging sites, which includes a description of monitoring equipment, problems associated with data collection during the year, and other information used to compute streamflow discharges or rainfall records. A hydrographic comparison shows the effects that the largest drainage channel in the metropolitan area, the North Floodway Channel, has on total flow in the Rio Grande.

  6. [Influence of green roof application on water quantity and quality in urban region].

    Science.gov (United States)

    Wang, Shu-Min; Li, Xing-Yang; Zhang, Jun-Hua; Yu, Hui; Hao, You-Zhi; Yang, Wan-Yi

    2014-07-01

    Green roof is widely used in advanced stormwater management as a major measure now. Taking Huxi catchment in Chongqing University as the study area, the relationships between green roof installation with runoff volume and water quality in urban region were investigated. The results showed that roof greening in the urban region contributed to reducing the runoff volume and pollution load. In addition, the spatial distribution and area of green roof also had effects on the runoff water quality. With the conditions that the roof area was 25% of the total watershed area, rainfall duration was 15 min and rainfall intensity was 14.8 mm x h(-1), the peak runoff and total runoff volume were reduced by 5.3% and 31%, the pollution loads of total suspended solid (TSS), total phosphorus (TP) and total nitrogen (TN) decreased by 40.0%, 31.6% and 29.8%, their peak concentrations decreased by 21.0%, 16.0% and -12.2%, and the EMCs (event mean concentrations) were cut down by 13.1%, 0.9% and -1.7%, respectively, when all impervious roofs were greened in the research area. With the increase of roof greening rate, the reduction rates of TSS and TP concentrations increased, while the reduction rate of TN concentration decreased on the whole. Much more improvement could be obtained with the use of green roofs near the outlet of the watershed.

  7. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  8. Sidestream Elevated Pool Aeration, a Technology for Improving Water Quality in Urban Rivers

    Science.gov (United States)

    Motta, D.; Garcia, T.; Abad, J. D.; Bombardelli, F. A.; Waratuke, A.; Garcia, M. H.

    2010-12-01

    Dissolved Oxygen (DO) levels are frequently depleted in rivers located in urban areas, as in the case of the Matanza-Riachuelo River in Buenos Aires, Argentina. This stream receives both domestic and industrial loads which have received minor or no treatment before being discharged into the water body. Major sources of pollution include, but are not limited, to leather and meat packing industries. Additionally, deep slow moving water in the river is associated with limited reaeration and facilitates deposition of organic-rich sediment, therefore exacerbating the DO consumption through sediment oxygen demand. In this study we assessed the efficiency of Sidestream Elevated Pool Aeration (SEPA) stations as a technology for alleviating conditions characterized by severely low DO levels. A SEPA station takes water from the stream at low DO concentrations, through a screw pump; then, water is transported to an elevated pool from where it flows over a series of weirs for water reaeration; finally, the aerated water is discharged back into the river sufficiently downstream from the intake point. This system mimics a phenomenon that occurs in mountain streams, where water is purified by bubbling over rocks. The impact of the use of SEPA stations on the DO concentrations in the Matanza-Riachuelo River was evaluated at both local and reach scales: this was done by deploying and monitoring an in situ pilot SEPA station, and by performing numerical modeling for the evaluation of the hydrodynamics in the SEPA station and the water quality in the reach where SEPA stations are planned to be implemented. An efficiency of aeration of 99% was estimated from DO measurements in the pilot SEPA, showing the potential of this technology for DO recovery in urban streams. Three-dimensional hydrodynamic modeling, besides assisting in the design of the pilot SEPA, has allowed for designing a prototype SEPA to be built soon. Finally, one-dimensional water quality modeling has provided the

  9. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  10. Ecological attributes of the benthic community and indices of water quality in urban, rural and preserved environments

    Directory of Open Access Journals (Sweden)

    Claudia Eiko Yoshida

    Full Text Available INTRODUCTION: Reference streams are pristine streams, untouched or unaltered by man, it being possible to use their environmental characteristics as quality threshold values. Besides the organic impacts measured via water quality biological monitoring programs, it has become necessary to evaluate the relationship between alterations in the landscape of streams and surrounding areas and changes in the structure of the macroinvertebrate community; AIM: The objective of the present study was to correlate the changes in the landscape with the ecological attributes of the community and indices of water quality, and to recommend reference condition values for the integrity of streams in the region of Jundiai (SP; METHODS: The benthic fauna were sampled in three urban streams, three rural streams and three preserved streams during July 2010, using a Surber-type sampler. The characteristics of the landscape were evaluated by means of Diversity of Habitat; the community, analyzed for several biodiversity indices, and; the water quality assessed using the indices River-BCI, BMWP-CETEC (CETEC - Science and Technology Center, ASPT and SOMI (SOMI - Serra dos Órgãos Multimetric Index (Serra dos Órgãos is a mountain range national park in the state of Rio de Janeiro; RESULTS: The structure and the composition of the communities varied according to the stream and this was reflected in the values of the biological and environmental quality indices. The best conditions were found in preserved streams, intermediate streams and rural streams while the worst conditions were found in the urban streams. The significant Pearson correlations (r > 0.73 and P < 0.05 between the diversity of habitat index and the ecological and water quality index attributes in the streams of Jundiai demonstrated that diversity of habitat may be a good predictor of the environmental characteristics evaluated.

  11. Point-Source Contributions to the Water Quality of an Urban Stream

    Science.gov (United States)

    Little, S. F. B.; Young, M.; Lowry, C.

    2014-12-01

    Scajaquada Creek, which runs through the heart of the city of Buffalo, is a prime example of the ways in which human intervention and local geomorphology can impact water quality and urban hydrology. Beginning in the 1920's, the Creek has been partially channelized and connected to Buffalo's combined sewer system (CSS). At Forest Lawn Cemetery, where this study takes place, Scajaquada Creek emerges from a 3.5-mile tunnel built to route stream flow under the city. Collocated with the tunnel outlet is a discharge point for Buffalo's CSS, combined sewer outlet (CSO) #53. It is at this point that runoff and sanitary sewage discharge regularly during rain events. Initially, this study endeavored to create a spatial and temporal picture for this portion of the Creek, monitoring such parameters as conductivity, dissolved oxygen, pH, temperature, and turbidity, in addition to measuring Escherichia coli (E. coli) concentrations. As expected, these factors responded directly to seasonality, local geomorphology, and distance from the point source (CSO #53), displaying a overall, linear response. However, the addition of nitrate and phosphate testing to the study revealed an entirely separate signal from that previously observed. Concentrations of these parameters did not respond to location in the same manner as E. coli. Instead of decreasing with distance from the CSO, a distinct periodicity was observed, correlating with a series of outflow pipes lining the stream banks. It is hypothesized that nitrate and phosphate occurring in this stretch of Scajaquada Creek originate not from the CSO, but from fertilizers used to maintain the lawns within the subwatershed. These results provide evidence of the complexity related to water quality issues in urban streams as a result of point- and nonpoint-source hydrologic inputs.

  12. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  13. Future scenarios of urbanization and its effects on water quantity and quality in three New England watersheds

    Science.gov (United States)

    Hutyra, L.; Yang, Y.; Kim, J.; Cheng, C.; O'Brien, P.; Rouhani, S.; Douglas, E. M.; Nicolson, C.; Ryan, R.; Schaaf, C.; Warren, P.; Wollheim, W. M.

    2013-12-01

    New England watersheds have been impacted by human development and environmental stressors that are similar to those projected to impact large portions of the United States and the world. These impacts are likely to continue as some parts of the region are projected to lose over 60% of private forestland to development by 2030. Such dramatic changes have important consequences for water quality and quantity. Because of the complex and varied interactions between human and natural systems, simply understanding the processes affecting current and historical conditions in urbanizing watersheds is inadequate to model the future. Understanding future hydrologic conditions is made more difficult because of the uncertainties inherent in projecting future climate conditions. One approach to handling this complexity is to use scenarios to explore a range of potential futures following contrasting trajectories of change. Here we describe how four scenarios of land use change were developed using a stakeholder driven process. We then began using the scenarios in hydrological models to estimate future changes in water quality and quantity. The study area includes three watersheds (the Charles, Neponset and Ipswich) that have undergone varying degrees of urbanization in the greater Boston area of Massachusetts in the northeastern United States. The Charles and Neponset River watersheds are densely populated and include the city of Boston itself. Municipal water supplies in these two watersheds are mostly from the Massachusetts Water Resources Authority (MWRA) sources in western Massachusetts. The Ipswich River watershed is highly suburban, and communities are largely dependent on local water supplies. If the historical urbanization trends continue, the impervious area in the Charles River watershed is projected to increase by 13%, 16% in Neponset River watershed, and 24% in Ipswich River watershed by 2030. For the Charles River watershed, analyses identified hot spots for

  14. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  15. Urbanizing rural waters

    NARCIS (Netherlands)

    Hommes, Lena; Boelens, Rutgerd

    2017-01-01

    This article studies how urbanization processes and associated rural-urban water transfers in the Lima region (Peru) create water control hierarchies that align the municipal drinking water company, hydropower plants and rural communities on unequal positions. By scrutinizing the history of water

  16. Urban Stormwater Quality: Linking Pesticide Variability To Our Sustainable Water Future

    Science.gov (United States)

    Rippy, M.; Deletic, A.; Gernjak, W.

    2015-12-01

    Climate change and global population growth demand creative, multidisciplinary, and multi-benefit approaches for sustaining adequate fresh water resources and protecting ecosystem health. Currently, a driving factor of aquatic ecosystem degradation (stormwater) is also one of the largest untapped urban freshwater resources. This suggests that ecosystem protection and potable water security might both be achieved via treating and capturing stormwater for human use (e.g., potable substitution). The viability of such a scheme, however, depends on 1) initial stormwater quality (e.g., the contaminants present and their associated human/environmental health risks), 2) the spatial and temporal variability of contaminants in stormwater, and 3) the capacity of existing technologies to treat those contaminants to fit for purpose standards. Here we present results from a four year study of urban stormwater conducted across ten catchments and four states in Australia that addresses these three issues relative to stormwater pesticides. In total, 19 pesticides were detected across all sites and times. In general, pesticide concentrations were lower than has been reported in other countries, including the United States, Canada and Europe. This is reflected in few exceedences of public health (< 1%) and aquatic ecosystem standards (0% for invertebrates and fish, < 1% for algae and plants). Interestingly, pesticide patterns were found to be stable across seasons, and years, but varied across catchments. These catchment-specific fingerprints may reflect preferential commercial product use, as they map closely to co-occurrence patterns in registered Australian products. Importantly, the presence of catchment-specific pesticide variability has clear management implications; namely, urban stormwater must be managed at the catchment level and target local contaminant suites in order to best achieve desired human use and environmental protection standards.

  17. Microbial quality and molecular identification of cultivable microorganisms isolated from an urban drinking water distribution system (Limassol, Cyprus).

    Science.gov (United States)

    Botsaris, George; Kanetis, Loukas; Slaný, Michal; Parpouna, Christiana; Makris, Konstantinos C

    2015-12-01

    Microorganisms can survive and multiply in aged urban drinking water distribution systems, leading to potential health risks. The objective of this work was to investigate the microbial quality of tap water and molecularly identify its predominant cultivable microorganisms. Tap water samples collected from 24 different households scattered in the urban area of Limassol, Cyprus, were microbiologically tested following standard protocols for coliforms, E. coli, Pseudomonas spp., Enterococcus spp., and total viable count at 22 and 37 °C. Molecular identification was performed on isolated predominant single colonies using 16SrRNA sequencing. Approximately 85% of the household water samples were contaminated with one or more microorganisms belonging to the genera of Pseudomonas, Corynebacterium, Agrobacterium, Staphylococcus, Bacillus, Delftia, Acinetobacter, Enterococcus, Enterobacter, and Aeromonas. However, all samples tested were free from E. coli. This is the first report in Cyprus molecularly confirming specific genera of relevant microbial communities in tap water.

  18. The Impacts of Spatiotemporal Landscape Changes on Water Quality in Shenzhen, China.

    Science.gov (United States)

    Liu, Zhenhuan; Yang, Haiyan

    2018-05-22

    The urban landscape in China has changed rapidly over the past four decades, which has led to various environmental consequences, such as water quality degradation at the regional scale. To improve water restoration strategies and policies, this study assessed the relationship between water quality and landscape change in Shenzhen, China, using panel regression analysis. The results show that decreases in natural and semi-natural landscape compositions have had significant negative effects on water quality. Landscape composition and configuration changes accounted for 39⁻58% of the variation in regional water quality degradation. Additionally, landscape fragmentation indices, such as patch density (PD) and the number of patches (NP), are important indicators of the drivers of water quality degradation. PD accounted for 2.03⁻5.44% of the variability in water quality, while NP accounted for -1.63% to -4.98% of the variability. These results indicate that reducing landscape fragmentation and enhancing natural landscape composition at the watershed scale are vital to improving regional water quality. The study findings suggest that urban landscape optimization is a promising strategy for mitigating urban water quality degradation, and the results can be used in policy making for the sustainable development of the hydrological environment in rapidly urbanizing areas.

  19. Microbiological quality of drinking water of urban and rural communities, Brazil

    Directory of Open Access Journals (Sweden)

    Giovani Nogueira

    2003-04-01

    Full Text Available OBJECTIVE: To evaluate the microbiological quality of treated and untreated water samples came from urban and rural communities and to examine the relationship between coliforms occurrence and average water temperature, and a comparison of the rainfall levels. METHODS: A sample of 3,073 untreated and treated (chlorinated water from taps (1,594, reservoir used to store treated water (1,033, spring water (96 and private well (350 collected for routine testing between 1996 and 1999 was analyzed by the multiple dilution tube methods used to detect the most probable number of total and fecal coliforms. These samples were obtained in the region of Maringá, state of Paraná, Brazil. RESULTS: The highest numbers water samples contaminated by TC (83% and FC (48% were found in the untreated water. TC and FC in samples taken from reservoirs used to store treated water was higher than that from taps midway along distribution lines. Among the treated water samples examined, coliform bacteria were found in 171 of the 1,033 sampling reservoirs. CONCLUSIONS: Insufficient treatment or regrowth is suggested by the observation that more than 17% of these treated potable water contained coliform. TC and FC positive samples appear to be similar and seasonally influenced in treated water. Two different periods must be considered for the occurrence of both TC and FC positive samples: (i a warm-weather period (September-March with high percentage of contaminated samples; and (ii cold-weather period (April-August were they are lower. Both TC and TF positive samples declined with the decreased of water temperature.

  20. Microbiological quality of drinking water of urban and rural communities, Brazil

    Directory of Open Access Journals (Sweden)

    Nogueira Giovani

    2003-01-01

    Full Text Available OBJECTIVE: To evaluate the microbiological quality of treated and untreated water samples came from urban and rural communities and to examine the relationship between coliforms occurrence and average water temperature, and a comparison of the rainfall levels. METHODS: A sample of 3,073 untreated and treated (chlorinated water from taps (1,594, reservoir used to store treated water (1,033, spring water (96 and private well (350 collected for routine testing between 1996 and 1999 was analyzed by the multiple dilution tube methods used to detect the most probable number of total and fecal coliforms. These samples were obtained in the region of Maringá, state of Paraná, Brazil. RESULTS: The highest numbers water samples contaminated by TC (83% and FC (48% were found in the untreated water. TC and FC in samples taken from reservoirs used to store treated water was higher than that from taps midway along distribution lines. Among the treated water samples examined, coliform bacteria were found in 171 of the 1,033 sampling reservoirs. CONCLUSIONS: Insufficient treatment or regrowth is suggested by the observation that more than 17% of these treated potable water contained coliform. TC and FC positive samples appear to be similar and seasonally influenced in treated water. Two different periods must be considered for the occurrence of both TC and FC positive samples: (i a warm-weather period (September-March with high percentage of contaminated samples; and (ii cold-weather period (April-August were they are lower. Both TC and TF positive samples declined with the decreased of water temperature.

  1. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region

    International Nuclear Information System (INIS)

    Li, Yangfan; Li, Yi; Wu, Wei

    2016-01-01

    The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. - Graphical abstract: Fig. Threshold models and resilience management for water quality. Display Omitted - Highlights: • Coupling urbanization and water environmental system. • Developing threshold models of the coupled land-water systems. • Nonlinear relations between water quality variables and landscape metrics. • Enhancing resilience management of coastal rapid urbanization. - We develop environmental threshold models and provide their implications on resilience management for a coupled land-water system with rapid urbanization.

  2. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    Science.gov (United States)

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  3. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning.

    Science.gov (United States)

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  4. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    Directory of Open Access Journals (Sweden)

    Jiajie Cao

    2017-01-01

    Full Text Available As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  5. Water quality and ecological condition of urban streams in Independence, Missouri, June 2005 through December 2008

    Science.gov (United States)

    Christensen, D.; Harris, Thomas E.; Niesen, Shelley L.

    2010-01-01

    To identify the sources of selected constituents in urban streams and better understand processes affecting water quality and their effects on the ecological condition of urban streams and the Little Blue River in Independence, Missouri the U.S. Geological Survey in cooperation with the City of Independence Water Pollution Control Department initiated a study in June 2005 to characterize water quality and evaluate the ecological condition of streams within Independence. Base-flow and stormflow samples collected from five sites within Independence, from June 2005 to December 2008, were used to characterize the physical, chemical, and biologic effects of storm runoff on the water quality in Independence streams and the Little Blue River. The streams draining Independence-Rock Creek, Sugar Creek, Mill Creek, Fire Prairie Creek, and the Little Blue River-drain to the north and the Missouri River. Two small predominantly urban streams, Crackerneck Creek [12.9-square kilometer (km2) basin] and Spring Branch Creek (25.4-km2 basin), were monitored that enter into the Little Blue River between upstream and downstream monitoring sites. The Little Blue River above the upstream site is regulated by several reservoirs, but streamflow is largely uncontrolled. The Little Blue River Basin encompasses 585 km2 with about 168 km2 or 29 percent of the basin lying within the city limits of Independence. Water-quality samples also were collected for Rock Creek (24.1-km2 basin) that drains the western part of Independence. Data collection included streamflow, physical properties, dissolved oxygen, chloride, metals, nutrients, common organic micro-constituents, and fecal indicator bacteria. Benthic macroinvertebrate community surveys and habitat assessments were conducted to establish a baseline for evaluating the ecological condition and health of streams within Independence. Additional dry-weather screenings during base flow of all streams draining Independence were conducted to

  6. Evaluation of water quality index for River Sabarmati, Gujarat, India

    Science.gov (United States)

    Shah, Kosha A.; Joshi, Geeta S.

    2017-06-01

    An attempt has been made to develop water quality index (WQI), using six water quality parameters pH, dissolved oxygen, biochemical oxygen demand, electrical conductivity, nitrate nitrogen and total coliform measured at three different stations along the Sabarmati river basin from the year 2005 to 2008. Rating scale is developed based on the tolerance limits of inland waters and health point of view. Weighted arithmetic water quality index method was used to find WQI along the stretch of the river basin. It was observed from this study that the impact of human activity and sewage disposal in the river was severe on most of the parameters. The station located in highly urban area showed the worst water quality followed by the station located in moderately urban area and lastly station located in a moderately rural area. It was observed that the main cause of deterioration in water quality was due to the high anthropogenic activities, illegal discharge of sewage and industrial effluent, lack of proper sanitation, unprotected river sites and urban runoff.

  7. Stream-Groundwater Interaction Buffers Seasonal Changes in Urban Stream Water Quality

    Science.gov (United States)

    Ledford, S. H.; Lautz, L. K.

    2013-12-01

    Urban streams in the northeastern United States have large road salt inputs during winter, increased nonpoint sources of inorganic nitrogen, and decreased short-term and permanent storage of nutrients. Meadowbrook Creek, a first order stream in Syracuse, New York, flows along a negative urbanization gradient, from a channelized and armored stream running through the middle of a roadway to a pool-riffle stream meandering through a broad, vegetated floodplain with a riparian aquifer. In this study we investigated how reconnection to groundwater and introduction of riparian vegetation impacted surface water chemistry by making bi-weekly longitudinal surveys of stream water chemistry in the creek from May 2012 until June 2013. Chloride concentrations in the upstream, urban reach of Meadowbrook Creek were strongly influenced by discharge of road salt to the creek during snow melt events in winter and by the chemistry of water draining an upstream retention basin in summer. Chloride concentrations ranged from 161.2 mg/L in August to 2172 mg/L in February. Chloride concentrations in the downstream, 'connected' reach had less temporal variation, ranging from 252.0 mg/L in August to 1049 mg/L in January, and were buffered by groundwater discharge, as the groundwater chloride concentrations during the sampling period ranged from 84.0 to 655.4 mg/L. Groundwater discharge resulted in higher chloride concentrations in summer and lower concentrations in winter in the connected reach relative to the urban reach, minimizing annual variation. In summer, there was little-to-no nitrate in the urban reach due to a combination of limited sources and high primary productivity. In contrast, during the summer, nitrate concentrations reached over 1 mg N/L in the connected reach due to the presence of riparian vegetation and lower nitrate uptake due to cooler temperatures and shading. During the winter, when temperatures fell below freezing, nitrate concentrations in the urban reach

  8. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  9. Urban Waters Partnership

    Science.gov (United States)

    Includes information on 14 Federal member agencies for the Urban Waters Federal Partnership and 19 designated urban waters locations and the local stakeholder groups and activities. Content was formerly at www.epa.gov/urbanwaters/

  10. A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System

    Directory of Open Access Journals (Sweden)

    David J. Beale

    2017-03-01

    Full Text Available A multi-omics approach was applied to an urban river system (the Brisbane River (BR, Queensland, Australia in order to investigate surface water quality and characterize the bacterial population with respect to water contaminants. To do this, bacterial metagenomic amplicon-sequencing using Illumina next-generation sequencing (NGS of the V5–V6 hypervariable regions of the 16S rRNA gene and untargeted community metabolomics using gas chromatography coupled with mass spectrometry (GC-MS were utilized. The multi-omics data, in combination with fecal indicator bacteria (FIB counts, trace metal concentrations (by inductively coupled plasma mass spectrometry (ICP-MS and in-situ water quality measurements collected from various locations along the BR were then used to assess the health of the river ecosystem. Sites sampled represented the transition from less affected (upstream to polluted (downstream environments along the BR. Chemometric analysis of the combined datasets indicated a clear separation between the sampled environments. Burkholderiales and Cyanobacteria were common key factors for differentiation of pristine waters. Increased sugar alcohol and short-chain fatty acid production was observed by Actinomycetales and Rhodospirillaceae that are known to form biofilms in urban polluted and brackish waters. Results from this study indicate that a multi-omics approach enables a deep understanding of the health of an aquatic ecosystem, providing insight into the bacterial diversity present and the metabolic output of the population when exposed to environmental contaminants.

  11. Living Shorelines: Assessing Geomorphic Change and Water Quality in an Urban Waterway

    Science.gov (United States)

    Huggins, A.; Schwartz, M. C.; Schmutz, P. P.

    2017-12-01

    In recent years, alternative strategies for shoreline armoring have become increasingly popular with coastal property owners. In Northwest Florida, local agencies implemented plans to attenuate wave action and reduce landward shore recession in an urban bayou by installing living shorelines. Living shorelines are constructed in the inter-tidal zones and incorporate both hard and soft structured stabilization. Generally, the hard component is fossilized oyster shells and the soft component is planted intertidal vegetation, such as Spartina alterniflora (Smooth cordgrass) and Juncus roemererianus (Black needlerush). Living shorelines were intended to comprise both ecological and societal implications by significantly slowing erosion processes for property owners, by utilizing oyster beds to improve water quality, and by fostering new ecological habitats in the marsh grasses. The issue presented with living shoreline management is long-term studies have not been carried out on these engineered systems. For this study, geospatial technology was utilized to create 3D images of terrain by interpolation of data points using a TotalStation to compute geomorphic change. Additionally, water samples were analyzed using traditional wet chemistry laboratory methods to determine total oxidized nitrogen (TON), ammonium, and orthophosphate content in water. Over a short three-month preliminary study, sediment accretion was observed primarily within the vegetation with the bulk of the erosion occurring around the oyster beds. TON was detected at levels between 10 µM and 30 µM, ammonium up to 5 µM, and orthophosphate was only detected in very low levels, consistently quality data will be used to establish baseline data for future research to determine volumetric geomorphic change,and to set a standard for water quality trends, surrounding oyster beds and vegetation in response to climatic events.

  12. Management of drinking water quality in Pakistan

    International Nuclear Information System (INIS)

    Javed, A.A.

    2003-01-01

    Drinking water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants, or by anthropogenic activities. The poor bacteriological quality of drinking water has frequently resulted in high incidence of water borne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking water supplies to consumers. (author)

  13. Urban "accidental" wetlands mediate water quality and heat exposure for homeless populations in a desert city

    Science.gov (United States)

    Palta, M.

    2015-12-01

    In urban settings where humans interact in complex ways with ecosystems, there may be hidden or unanticipated benefits (services) or harm (disservices) conferred by the built environment. We examined interactions of a highly vulnerable population, the homeless, with urban waterways and wetlands in the desert city of Phoenix, Arizona, U.S.A. Climate change models project increases in heat, droughts, and extreme floods for the southwestern U.S. These projected changes pose a number of problems for sustainability and quality of future water supply, and the ability of human populations to mitigate heat stress and avoid fatalities. Urban wetlands that are created "accidentally" (by water pooling in abandoned areas of the landscape) have many structural (e.g., soils and hydrology) and functional (e.g., high denitrification) elements that mimic natural, unaltered aquatic systems. Accidental wetland systems in the dry bed of the Salt River, fed by storm and waste water from urban Phoenix, are located within economically depressed sections of the city, and show the potential for pollutant and heat mitigation. We used a mixed-method socio-ecological approach to examine wetland ecosystem functions and the ways in which homeless populations utilize Salt River wetlands for ecosystem services. Interviews and trash surveys indicated that homeless people are accessing and utilizing the wetlands as a source of running water, for sanitary and heat mitigation services, and for recreation and habitation. Environmental monitoring demonstrated that the wetlands can provide a reliable source of running water, nutrient and pathogen removal, heat mitigation, and privacy, but they may also pose a health risk to individuals coming in contact with the water through drinking or bathing. Whether wetlands provided a net benefit vs. harm varied according to site, season, and particular service, and several tradeoffs were identified. For example, heat is highest during the summer storm season

  14. Quantifying tap-to-household water quality deterioration in urban communities in Vellore, India: The impact of spatial assumptions.

    Science.gov (United States)

    Alarcon Falconi, Tania M; Kulinkina, Alexandra V; Mohan, Venkata Raghava; Francis, Mark R; Kattula, Deepthi; Sarkar, Rajiv; Ward, Honorine; Kang, Gagandeep; Balraj, Vinohar; Naumova, Elena N

    2017-01-01

    Municipal water sources in India have been found to be highly contaminated, with further water quality deterioration occurring during household storage. Quantifying water quality deterioration requires knowledge about the exact source tap and length of water storage at the household, which is not usually known. This study presents a methodology to link source and household stored water, and explores the effects of spatial assumptions on the association between tap-to-household water quality deterioration and enteric infections in two semi-urban slums of Vellore, India. To determine a possible water source for each household sample, we paired household and tap samples collected on the same day using three spatial approaches implemented in GIS: minimum Euclidean distance; minimum network distance; and inverse network-distance weighted average. Logistic and Poisson regression models were used to determine associations between water quality deterioration and household-level characteristics, and between diarrheal cases and water quality deterioration. On average, 60% of households had higher fecal coliform concentrations in household samples than at source taps. Only the weighted average approach detected a higher risk of water quality deterioration for households that do not purify water and that have animals in the home (RR=1.50 [1.03, 2.18], p=0.033); and showed that households with water quality deterioration were more likely to report diarrheal cases (OR=3.08 [1.21, 8.18], p=0.02). Studies to assess contamination between source and household are rare due to methodological challenges and high costs associated with collecting paired samples. Our study demonstrated it is possible to derive useful spatial links between samples post hoc; and that the pairing approach affects the conclusions related to associations between enteric infections and water quality deterioration. Copyright © 2016 Elsevier GmbH. All rights reserved.

  15. Water Quality Management of Beijing in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    At present, Beijing's water resources are insufficient and will become the limiting factor for sustainable development for the city in the near future. Although efforts have been made to control pollution, water quality degradation has occurred in some of the important surface water supplies, aggravating the water resource shortage. At present, approximately three quarters of the city's wastewater is discharged untreated into the urban river system, resulting in serious pollution and negatively influencing the urban landscape and quality of daily life. To counteract these measures, the city has implemented a comprehensive "Water Quality Management Plan" for the region, encompassing water pollution control, prevention of water body degradation, and improved water quality.The construction of municipal wastewater treatment plants is recognised as fundamental to controlling water pollution, and full secondary treatment is planned to be in place by the year 2015. Significant work is also required to expand the service area of the municipal sewage system and to upgrade and renovate the older sewer systems. The limitation on available water resources has also seen the emphasis shift to low water using industries and improved water conservation. Whilst industrial output has increased steadily over the past 10-15 years at around 10% per annum, industrial water usage has remained relatively constant. Part of the city's water quality management plan has been to introduce a strict discharge permit system, encouraging many industries to install on-site treatment facilities.

  16. Public-Private Partnerships in China’s Urban Water Sector

    Science.gov (United States)

    Mol, Arthur P. J.; Fu, Tao

    2008-01-01

    During the past decades, the traditional state monopoly in urban water management has been debated heavily, resulting in different forms and degrees of private sector involvement across the globe. Since the 1990s, China has also started experiments with new modes of urban water service management and governance in which the private sector is involved. It is premature to conclude whether the various forms of private sector involvement will successfully overcome the major problems (capital shortage, inefficient operation, and service quality) in China’s water sector. But at the same time, private sector involvement in water provisioning and waste water treatments seems to have become mainstream in transitional China. PMID:18256780

  17. Leveraging Spatial Data to Assess Where Sewers Leak and Impinge on Urban Water Quality

    Science.gov (United States)

    Holden, P. A.; Roehrdanz, P.; Lee, D. G.; Feraud, M.; Maier, M.; Means, J. C.; Snyder, S.

    2017-12-01

    In the modern urban water environment (UWE), engineered systems provide wastewater collection, treatment, and reuse; stormwater and graywater management; and potable water treatment, distribution and conservation. Underpinning such systems are physical, private and public, infrastructures whose integrities impinge on major goals of protecting groundwater and surface water resources, managing flooding, and securing safe drinking water. Here we study sanitary sewers, i.e. the main pipes in wastewater collection systems that improve public health by reducing pathogen exposure, and that afford reclaiming water for beneficial reuse. We ask: what is the relationship between sanitary sewer integrity and nearby water quality? Research methods include acquiring spatially defined sewer metadata that are analyzed using a published pipe leakage algorithm with variables of age, depth, materials of construction, length, diameter, slope, and nature of overburden. By executing the algorithm within a geographical information system (GIS), coupled with relating leakage probabilities to shallow groundwater table proximities—also digitally assembled, from well depth data—maps of wastewater exfiltration scores were produced for a city. Field sampling shallow groundwater allowed assessing concentrations of wastewater indicator compounds including personal care products and pharmaceuticals (PCPPs), and showing positive relationships between wastewater exfiltration scores and tryptophan-like fluorescence (TLF), reactive nitrogen species, an artificial sweetener acesulfame, and a stable isotope of oxygen (δ18O). The approach is extended to surface waters, where exfiltrating wastewater may transport from leaking sanitary sewers through the unsaturated zone to nearby storm drains or to storm drains that are submerged in contaminated groundwater. Spatially assessing sewer interactions within the UWE, as such, could aid urban infrastructure management and investment.

  18. Impacts of the Urbanization Process on Water Quality of Brazilian Savanna Rivers: The Case of Preto River in Formosa, Goiás State, Brazil

    Directory of Open Access Journals (Sweden)

    Nayara Luiz Pires

    2015-08-01

    Full Text Available The release of domestic sewage in water resources is a practical feature of the urbanization process, and this action causes changes that may impair the environmental balance and the water quality for several uses. The aim of this study was to evaluate the influence of urbanization on the surface water quality of the Preto River throughout the town of Formosa, Goiás, Brazil. Samples were collected at five points along the river, spatially distributed from one side to the other of the town of Formosa, from May to October of 2012. Data were subjected to descriptive statistics, as well as variance and cluster analysis. Point P2, the first point after the city, showed the worst water quality indicators, mainly with respect to the total and fecal coliform parameters, as well as nitrate concentrations. These results may be related to the fact that this point is located on the outskirts of the town, an area under urbanization and with problems of sanitation, including absence of sewage collection and treatment. The data observed in this monitoring present a public health concern because the water body is used for bathing, mainly in parts of Feia Lagoon. The excess of nutrients is a strong indicator of water eutrophication and should alert decision-makers to the need for preservation policies.

  19. Storms do not alter long-term watershed development influences on coastal water quality.

    Science.gov (United States)

    Chen, Yushun; Cebrian, Just; Lehrter, John; Christiaen, Bart; Stutes, Jason; Goff, Josh

    2017-09-15

    A twelve year (2000-2011) study of three coastal lagoons in the Gulf of Mexico was conducted to assess the impacts of local watershed development and tropical storms on water quality. The lagoons have similar physical and hydrological characteristics, but differ substantially in the degree of watershed urban development and nutrient loading rates. In total the lagoons experienced 22 storm events during the period studied. Specifically, we examine (1) whether there are influences on water quality in the lagoons from watershed development, (2) whether there are influences on water quality in the lagoons from storm activity, and (3) whether water quality is affected to a greater degree by watershed development versus storm activity. The two urbanized lagoons typically showed higher water-column nitrate, dissolved organic nitrogen, and phosphate compared with the non-urbanized lagoon. One of the urbanized lagoons had higher water-column chlorophyll a concentrations than the other two lagoons on most sampling dates, and higher light extinction coefficients on some sampling dates. The non-urbanized lagoon had higher water-column dissolved oxygen concentrations than other lagoons on many sampling dates. Our results suggest long-term influences of watershed development on coastal water quality. We also found some evidence of significant storm effects on water quality, such as increased nitrate, phosphate, and dissolved oxygen, and decreased salinity and water temperature. However, the influences of watershed development on water quality were greater. These results suggest that changes in water quality induced by human watershed development pervade despite the storm effects. These findings may be useful for environmental management since they suggest that storms do not profoundly alter long-term changes in water quality that resulted from human development of watersheds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Water quality-based real time control of integrated urban drainage: a preliminary study from Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Lund Christensen, Margit; Thirsing, Carsten

    2013-01-01

    Global Real Time Control (RTC) of urban drainage systems is increasingly seen as cost-effective solution for responding to increasing performance demands. This study investigated the potential for including water-quality based RTC into the global control strategy which is under implementation...... in the Lynetten catchment (Copenhagen, Denmark). Two different strategies were simulated, considering: (i) water quality at the wastewater treatment plant (WWTP) inlet and (ii) pollution discharge to the bathing areas. These strategies were included in the Dynamic Overflow Risk Assessment (DORA) RTC strategy......, which allows for prioritization of the discharge points in the systems according to their sensitivity. A conceptual hydrological model was used to assess the performance of the integrated control strategy over an entire year. The simulation results showed the benefits of the proposed approaches...

  1. Effects of suburban development on runoff generation and water quality

    OpenAIRE

    Sillanpää, Nora

    2013-01-01

    Urbanization leads to changes in natural catchment characteristics by increasing the imper-vious coverage and drainage efficiency, which enhance flooding, erosion and water quality problems in the receiving waters. Year-round monitoring of catchment-scale hydrological and water quality variables is needed to produce data resources for the development of urban drainage design principles for various management purposes in cold climate. The aim of this thesis was to investigate the impacts of ur...

  2. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  3. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    Science.gov (United States)

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  4. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    Science.gov (United States)

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  5. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  6. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  7. Water-quality assessment of part of the Upper Mississippi River Basin, Minnesota and Wisconsin - Ground-water quality in three different land-use areas, 1996-98

    Science.gov (United States)

    Fong, Alison L.

    2000-01-01

    The surficial sand and gravel aquifer is susceptible to effects from land-use in the Upper Mississippi River Basin study unit of the National Water-Quality Assessment (NAWQA) Program. The purpose of this report is to describe the ground-water quality and the assessment of how different land-uses affect the shallow ground-water quality in the surficial sand and gravel aquifer. Ground-water quality was compared in three different land-use areas; an urban residential/commercial area on the edge of the Anoka Sand Plain in a portion of the Twin Cities metropolitan area (urban study), an intensive agricultural area in the Anoka Sand Plain (agricultural study), and a forested area in the Bemidji-Bagley Sand Plain (forested study). Ground water was sampled and analyzed for about 200 constituents, including physical parameters, major ions, selected trace elements, nutrients, dissolved organic carbon, selected pesticides, selected volatile organic compounds (VOCs), and tritium. The urban study wells were sampled during June and July 1996. The agricultural study wells were sampled during May and September 1998. The forested study wells were sampled during June 1998.

  8. Evaluation of water quality in the Rimac River Basin of Peru: Huaycoloro urban subbasin

    Science.gov (United States)

    Baldeón Quispe, W.; Vela Cardich, R.; Huamán Paredes, F.

    2013-05-01

    In Peru, the increasing water scarcity and quality deterioration caused public health problems and deterioration of ecosystems that are exacerbated during periods of drought. The most populated basin is the Rimac River which rises in the Andes, between 4000 and 6000 meters and flow into the Pacific Ocean. This basin has pollution problems and a clear example is the Huaycoloro urban subbasin that originated in 2005, the creation of multi-sectoral technical committee for the recovery of health and environmental quality of the Huaycoloro subbasin (DIGESA, 2006a). The objective of this work is the need to generate and evaluate information on water quality in the Huaycoloro subbasin, quantifying physicochemical and microbiological parameters in four monitoring stations for a period from October 1, 2006 to April 24, 2010. The monitoring was conducted in the dry season because the Huaycoloro subbasin is a dry riverbed and therefore this is the critical period for evaluation. Initially samples were taken every two weeks during the months of October and November 2006. In 2007 were sampled monthly in April, June and September. In the years 2008, 2009 and 2010 surveys were conducted once a year, in the months of October, May and April respectively. Wide variations in the results of the various parameters analyzed in each of the stations mainly be explained by differences in the frequency of discharge of domestic and industrial effluent without prior treatment, effluent turn change in quantity and quality according to the various processes associated with each activity. Domestic effluents from populations that do not have sewer, industrial effluents from tannery correspond to activities, laundry, dairy, brewing and other. During field trips, we could be determined, in some instances, significant changes in water quality in a short period of time (one hour or less), manifested by changes in color fluctuations of water and the solids content in suspension. We obtained total

  9. Wet-weather urban discharges: implications from adopting the revised European Directive concerning the quality of bathing water.

    Science.gov (United States)

    David, L M; Matos, J S

    2005-01-01

    Wet weather urban discharges are responsible for bathing water contamination. The proposal for a revised EU Directive concerning the quality of bathing water imposes significantly more stringent requirements for the management of bathing water quality, with particularly important repercussions on beaches subjected to short-term pollution incidents. The paper reviews the aspects from EU legislation most directly related to the problem of wet-weather discharges, placing special emphasis on the recent revision process of the Directive on bathing water quality, and evaluates the benefits of some potential solutions based on continuous modelling of a combined sewer system. Increasing the sewer system storage capacity or the STP hydraulic capacity may substantially reduce the untreated discharge volumes, but spill frequency reductions under 2 to 3 spill days per bathing season will hardly be achieved. Results show the severe strains that local rainfall patterns would place on compliance with the Commission's proposal for a revised Directive and highlight the importance of the changes introduced in the amended proposal recently approved by the Council, making it less prescriptive if adequate measures are adopted to prevent bathers' exposure to short-term pollution incidents.

  10. Klang River water quality modelling using music

    Science.gov (United States)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  11. Microbial quality of reclaimed water for urban reuses: Probabilistic risk-based investigation and recommendations.

    Science.gov (United States)

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-01-15

    Although Canada has abundant freshwater resources, many cities still experience seasonal water shortage. Supply-side and demand-side management is a core strategy to address this water shortage. Under this strategy, reclaimed water, which the Canadian public is willing to use for non-potable purposes, is an option. However, no universal guidelines exist for reclaimed water use. Despite the federal government's long-term goal to develop guidelines for many water reuse applications, guidelines have only been prescribed for reclaimed water use in toilet and urinal flushing in Canada. At the provincial level, British Columbia (BC) has promulgated guidelines for wide applications of reclaimed water but only at broad class levels. This research has investigated and proposed probabilistic risk-based recommended values for microbial quality of reclaimed water in various non-potable urban reuses. The health risk was estimated by using quantitative microbial risk assessment. Two-dimensional Monte Carlo simulations were used in the analysis to include variability and uncertainty in input data. The proposed recommended values are based on the indicator organism E. coli. The required treatment levels for reuse were also estimated. In addition, the recommended values were successfully applied to three wastewater treatment effluents in the Okanagan Valley, BC, Canada. The health risks associated with other bacterial pathogens (Campylobacter jejuni and Salmonella spp.), virus (adenovirus, norovirus, and rotavirus), and protozoa (Cryptosporidium parvum and Giardia spp.), were also estimated. The estimated risks indicate the effectiveness of the E. coli-based water quality recommended values. Sensitivity analysis shows the pathogenic E. coli ratio and morbidity are the most sensitive input parameters for all water reuses. The proposed recommended values could be further improved by using national or regional data on water exposures, disease burden per case, and the susceptibility

  12. Microbial quality of drinking water from groundtanks and tankers at ...

    African Journals Online (AJOL)

    Drinking water quality was investigated at source and corresponding point-of-use in 2 peri-urban areas receiving drinking water either by communal water tanker or by delivery directly from the distribution system to household-based groundtanks with taps. Water quality variables measured were heterotrophic bacteria, total ...

  13. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  14. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S. [Finnish Meteorological Inst., Helsinki (Finland)

    1995-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  15. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S [Finnish Meteorological Inst., Helsinki (Finland)

    1996-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  16. Health Impact Assessment of New Urban Water Concepts

    NARCIS (Netherlands)

    Sales Ortells, H.

    2015-01-01

    Water features in urban areas are increasingly perceived by citizens as a positive element because they provide aesthetic quality to the neighbourhood and offer recreation opportunities. They may also lead, however, to increased health risks due to the potential presence of waterborne pathogens.

  17. COMPARISON OF WATER RATES IAP RISK INDICES AND THE QUALITY OF DRINKING WATER IRCA USED FOR DETERMINING THE QUALITY OF DRINKING WATER

    Directory of Open Access Journals (Sweden)

    Javier Mauricio González Díaz

    2010-05-01

    Full Text Available This work discusses the results of a technical and operative diagnosis of the urban system of aqueduct of the municipality of Villapinzón. Water quality and public service characteristics were determined assessed against the legal principles of continuity, quality and coverage of the domiciliary public service law. Drinking water quality was evaluated according to the methodology established by Resolution 2115 de 2007 of the Ministerial de la Protection Social de Colombia. In addition, a new methodology is suggested and the calculated indexes are compared to those determined by resolution 2115 de 2007. An analysis of the results indicates the proposed methodology is more reliable than the current methodology for determining water quality criteria.

  18. iSPUW: integrated sensing and prediction of urban water for sustainable cities

    Science.gov (United States)

    Noh, S. J.; Nazari, B.; Habibi, H.; Norouzi, A.; Nabatian, M.; Seo, D. J.; Bartos, M. D.; Kerkez, B.; Lakshman, L.; Zink, M.; Lee, J.

    2016-12-01

    Many cities face tremendous water-related challenges in this Century of the City. Urban areas are particularly susceptible not only to excesses and shortages of water but also to impaired water quality. To addresses these challenges, we synergistically integrate advances in computing and cyber-infrastructure, environmental modeling, geoscience, and information science to develop integrative solutions for urban water challenges. In this presentation, we describe the various efforts that are currently ongoing in the Dallas-Fort Worth Metroplex (DFW) area for iSPUW: real-time high-resolution flash flood forecasting, inundation mapping for large urban areas, crowdsourcing of water observations in urban areas, real-time assimilation of crowdsourced observations for street and river flooding, integrated control of lawn irrigation and rainwater harvesting for water conservation and stormwater management, feature mining with causal discovery for flood prediction, and development of the Arlington Urban Hydroinformatics Testbed. Analyzed is the initial data of sensor network for water level and lawn monitoring, and cellphone applications for crowdsourcing flood reports. New data assimilation approaches to deal with categorical and continuous observations are also evaluated via synthetic experiments.

  19. Value of Clean Water Resources: Estimating the Water Quality Improvement in Metro Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2017-12-01

    Full Text Available While having many positive impacts, a tremendous economic performance and rapid industrial expansion over the last decades in the Philippines has had negative effects that have resulted in unfavorable hydrological and ecological changes in most urban river systems and has created environmental problems. Usually, these effects would not be part of a systematic assessment of urban water benefits. To address the issue, this study investigates the relationship between poor water quality and resident’s willingness to pay (WTP for improved water quality in Metro Manila. By employing a contingent valuation method (CVM, this paper estimates the benefits of the provision of clean water quality (swimmable and fishable in waterbodies of Metro Manila for its residents. Face-to-face interviews were completed with 240 randomly selected residents. Residents expressed a mean WTP of PHP102.44 (USD2.03 for a swimmable water quality (good quality and a mean WTP of PHP102.39 (USD2.03 for fishable water quality (moderate quality. The aggregation of this mean willingness-to-pay value amounted to annual economic benefits from PHP9443 billion to PHP9447 billion (approx. USD190 million per year for all taxpayers in Metro Manila. As expected, these estimates could inform local decision-makers about the benefits of future policy interventions aimed at improving the quality of waterbodies in Metro Manila.

  20. Saline sewage treatment and source separation of urine for more sustainable urban water management.

    Science.gov (United States)

    Ekama, G A; Wilsenach, J A; Chen, G H

    2011-01-01

    While energy consumption and its associated carbon emission should be minimized in wastewater treatment, it has a much lower priority than human and environmental health, which are both closely related to efficient water quality management. So conservation of surface water quality and quantity are more important for sustainable development than green house gas (GHG) emissions per se. In this paper, two urban water management strategies to conserve fresh water quality and quantity are considered: (1) source separation of urine for improved water quality and (2) saline (e.g. sea) water toilet flushing for reduced fresh water consumption in coastal and mining cities. The former holds promise for simpler and shorter sludge age activated sludge wastewater treatment plants (no nitrification and denitrification), nutrient (Mg, K, P) recovery and improved effluent quality (reduced endocrine disruptor and environmental oestrogen concentrations) and the latter for significantly reduced fresh water consumption, sludge production and oxygen demand (through using anaerobic bioprocesses) and hence energy consumption. Combining source separation of urine and saline water toilet flushing can reduce sewer crown corrosion and reduce effluent P concentrations. To realize the advantages of these two approaches will require significant urban water management changes in that both need dual (fresh and saline) water distribution and (yellow and grey/brown) wastewater collection systems. While considerable work is still required to evaluate these new approaches and quantify their advantages and disadvantages, it would appear that the investment for dual water distribution and wastewater collection systems may be worth making to unlock their benefits for more sustainable urban development.

  1. Causality Between Urban Concentration and Environmental Quality

    Directory of Open Access Journals (Sweden)

    Amin Pujiati

    2015-08-01

    Full Text Available Population is concentrated in urban areas can cause the external diseconomies on environment if it exceeds the carrying capacity of the space and the urban economy. Otherwise the quality of the environment is getting better, led to the concentration of population in urban areas are increasingly high. This study aims to analyze the relationship of causality between the urban concentration and environmental quality in urban agglomeration areas. The data used in the study of secondary data obtained from the Central Bureau of statistics and the City Government from 2000 to 2013. The analytical method used is the Granger causality and descriptive. Granger causality study results showed no pattern of reciprocal causality, between urban concentration and the quality of the environment, but there unidirectional relationship between the urban concentration and environmental quality. This means that increasing urban concentration led to decreased environmental quality.

  2. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  3. [Study on the optimization of monitoring indicators of drinking water quality during health supervision].

    Science.gov (United States)

    Ye, Bixiong; E, Xueli; Zhang, Lan

    2015-01-01

    To optimize non-regular drinking water quality indices (except Giardia and Cryptosporidium) of urban drinking water. Several methods including drinking water quality exceed the standard, the risk of exceeding standard, the frequency of detecting concentrations below the detection limit, water quality comprehensive index evaluation method, and attribute reduction algorithm of rough set theory were applied, redundancy factor of water quality indicators were eliminated, control factors that play a leading role in drinking water safety were found. Optimization results showed in 62 unconventional water quality monitoring indicators of urban drinking water, 42 water quality indicators could be optimized reduction by comprehensively evaluation combined with attribute reduction of rough set. Optimization of the water quality monitoring indicators and reduction of monitoring indicators and monitoring frequency could ensure the safety of drinking water quality while lowering monitoring costs and reducing monitoring pressure of the sanitation supervision departments.

  4. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  5. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    Science.gov (United States)

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  6. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  7. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  8. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  9. Assessing the state of environmental quality in cities – A multi-component urban performance (EMCUP) index

    International Nuclear Information System (INIS)

    Stossel, Zeev; Kissinger, Meidad; Meir, Avinoam

    2015-01-01

    Urban environmental quality indices can provide policy makers and the public with valuable information. However, common assessment tools have several shortcomings: most indices do leave out some important components of the state of urban environmental quality; they use a relative assessment in which urban environmental performance is evaluated relative to other cities, not against established environmental benchmarks; and only a few assessment tools compare urban performance to environmental quality standards. This paper presents a new multi component urban performance (EMCUP) index aiming to tackle those shortcomings. It analyses the overall state of urban environmental quality by using a list of indicators to evaluate key urban environmental quality topics such as air, water, open space, sanitation and solid waste. It presents an absolute score calculated in relation to both the standard and desired optimum levels. The use of the index is demonstrated by three Israeli cities. - Highlights: • The index provides a new framework for analyzing the overall urban environmental quality. • The index scores are calculated based on environmental standards and desired optimum benchmark values. • The paper demonstrates the gap between the state of existing urban environmental quality and the desired goals. - Introducing a multi component urban performance (EMCUP) index, which measures urban environmental quality related to environmental benchmarks.

  10. Management of source and drinking-water quality in Pakistan.

    Science.gov (United States)

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  11. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  12. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  13. Impact of green roofs on stormwater quality in a South Australian urban environment.

    Science.gov (United States)

    Razzaghmanesh, M; Beecham, S; Kazemi, F

    2014-02-01

    Green roofs are an increasingly important component of water sensitive urban design systems and can potentially improve the quality of urban runoff. However, there is evidence that they can occasionally act as a source rather than a sink for pollutants. In this study, the water quality of the outflow from both intensive and extensive green roof systems were studied in the city of Adelaide, South Australia over a period of nine months. The aim was to examine the effects of different green roof configurations on stormwater quality and to compare this with runoff from aluminium and asphalt roofs as control surfaces. The contaminant concentrations in runoff from both intensive and extensive green roofs generally decreased during the study period. A comparison between the two types of green roof showed that except for some events for EC, TDS and chloride, the values of the parameters such as pH, turbidity, nitrate, phosphate and potassium in intensive green roof outflows were higher than in the outflows from the extensive green roofs. These concentrations were compared to local, state, national and international water quality guidelines in order to investigate the potential for outflow runoff from green roofs to be reused for potable and non-potable purposes. The study found that green roof outflow can provide an alternative water source for non-potable purposes such as urban landscape irrigation and toilet flushing. © 2013.

  14. Águas urbanas Urban waters

    Directory of Open Access Journals (Sweden)

    Carlos E. M. Tucci

    2008-01-01

    Full Text Available As águas urbanas geralmente incluem abastecimento de água e saneamento. Nessa perspectiva, saneamento envolve a coleta de tratamento de efluentes domésticos e industriais, não inclui drenagem urbana, gestão dos resíduos sólidos, porque ainda perdura uma visão desatualizada da gestão das águas urbanas da cidade. Águas urbanas envolvem componentes que permitem o desenvolvimento ambiental sustentável e utilizam os conceitos da gestão integrada dos recursos hídricos (GIRH, necessários para planejamento, implementação e manutenção da infra-estrutura da cidade. Nesse contexto, ficam denominados Gestão Integrada das Águas Urbanas. Neste artigo, analisam-se o desenvolvimento urbano e suas relações com as águas urbanas no Brasil. A gestão dos recursos hídricos no Brasil é realizada por bacias hidrográficas, e o domínio é federal ou estadual. Examinam-se as possibilidades de gestão da água na cidade e na bacia hidrográfica no contexto institucional brasileiro.Urban Waters systems generally include both water supply & sanitation facilities (WSS. Sanitation refers to domestic and industrial sewage collecting and treatment; it does not include urban stormwater or solid waste management systems. Urban water form components of a sustainable urban environment and the use of the integrated water resource management (IWRM concepts are needed for planning, implementation and maintenance of urban infrastructure. In urban environment, IWRM is referred to specifically as Integrated Urban Water Management (IUWM. In this paper urban development and its relations with urban waters in Brazil are assessed. Management of Water Resources in Brazil is developed by basins and the administration is Federal or from the state. This article assess the alternatives of water management in the city and the basin in the Brazilian institutional environment.

  15. Chironomus larvae (Chironomidae: Diptera as water quality indicators along an environmental gradient in a neotropical urban stream

    Directory of Open Access Journals (Sweden)

    Nadja Gomes Machado

    2015-04-01

    Full Text Available Anthropogenic interference in urban lotic systems is a factor affecting the biota of waterbodies. Aquatic macro invertebrates are an important food source for fish and are valuable indicators of water quality. The objective of this work was to study Chironomus larvae (Chironomidae: Diptera distribution along an environmental gradient in Barbado Stream, Cuiabá, MT, Brazil. No individual Chironomus was found in the springs of Barbado Stream, which may indicate preservation of the area. During the study period, we found 40.3 and 94.4 individuals/m2 at points 3 and 4 (low course, respectively. There is eutrophication in these sites due to domestic sewage discharges, indicating low quality water. The Barbado Stream needs restoration projects that include an awareness of the residents of their neighborhood’s environmental importance, and investments in the sanitation sector to prioritize the collection and treatment of wastewater and solid waste collection.

  16. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  17. Urban water restrictions: Attitudes and avoidance

    Science.gov (United States)

    Cooper, Bethany; Burton, Michael; Crase, Lin

    2011-12-01

    In most urban cities across Australia, water restrictions remain the dominant policy mechanism to restrict urban water consumption. The extensive adoption of water restrictions as a means to limit demand, over several years, means that Australian urban water prices have consistently not reflected the opportunity cost of water. Given the generally strong political support for water restrictions and the likelihood that they will persist for some time, there is value in understanding households' attitudes in this context. More specifically, identifying the welfare gains associated with avoiding urban water restrictions entirely would be a nontrivial contribution to our knowledge and offer insights into the benefits of alternative policy responses. This paper describes the results from a contingent valuation study that investigates consumers' willingness to pay to avoid urban water restrictions. Importantly, the research also investigates the influence of cognitive and exogenous dimensions on the utility gain associated with avoiding water restrictions. The results provide insights into the impact of the current policy mechanism on economic welfare.

  18. Water quality study of Sunter River in Jakarta, Indonesia

    Science.gov (United States)

    Martinus, Y.; Astono, W.; Hendrawan, D.

    2018-01-01

    Sunter River flows in the city of Jakarta with the designation of river water for agricultural purposes, and can be utilized for urban business and hydroelectric power industry. This study aims to determine the Sunter River water quality based on physical and chemical parameters. Water sampling was conducted 2 times which done in April and May with 5 sampling stations for measuring. The samples was analayzed in the laboratory according SNI methods for parameters BOD, COD, PO4 3-, NO3, Oil & Grease and Detergents. The quality status of Sunter River is determined by the Pollutant Index method. The results show that the water quality of Sunter River is influenced by organic parameter as dominant pollutant with COD concentration ranging from 48 mg/l - 182.4 mg/l and BOD concentration ranging from 14.69 mg/L - 98.91 mg/L. The Pollution Index calculation results show that the water quality status of Sunter River is moderate polluted with IP 6.47. The source of pollutants generally comes from the urban drainage channels, tributaries, and slaughtering industry. The results of this study expected to be use by the government to improve the water quality of Sunter River for better environment.

  19. Water quality for the year 2000

    International Nuclear Information System (INIS)

    Newman, A.

    1991-01-01

    Under an umbrella labeled Water Quality 2000, 86 organizations - ranging from the Natural Resources Defense Council to the Chemical Manufacturers Association - have reached a consensus on the major water quality problems currently facing the US. Their broad-based conclusions have been released in a report entitled Challenges for the Future, which represents one step in an ongoing discussion among representatives of these diverse groups on improving water quality. Although the report presents a long-term view, William Matuszeski from EPA described the document as a superb background for the upcoming debate over reauthorization of the Clean Water Act. In general terms, the report cites the major sources of current water problems as agricultural and urban runoff, especially following storms; airborne pollutants; continued dumping of toxic wastes; accidental spills; overharvesting of fish and shellfish; habitat competition from exotic species; and land and water use practices. This article summarizes some of the findings

  20. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  1. A New Empirical Sewer Water Quality Model for the Prediction of WWTP Influent Quality

    NARCIS (Netherlands)

    Langeveld, J.G.; Schilperoort, R.P.S.; Rombouts, P.M.M.; Benedetti, L.; Amerlinck, Y.; de Jonge, J.; Flameling, T.; Nopens, I.; Weijers, S.

    2014-01-01

    Modelling of the integrated urban water system is a powerful tool to optimise wastewater system performance or to find cost-effective solutions for receiving water problems. One of the challenges of integrated modelling is the prediction of water quality at the inlet of a WWTP. Recent applications

  2. Urban air quality management. V. 1

    International Nuclear Information System (INIS)

    1997-01-01

    This is the first in a series of reports commissioned by the International Petroleum Industry Environmental Conservation Association (IPIECA) to represent members' views on the management of urban air quality in the growing cities in developing countries. In this report, a general, science based framework is provided as a basis for understanding the nature of the problem in any specific urban area, the range of solutions that might be available, and the potential impact of each solution and its least cost privatisation. The topics covered are: a process for urban air quality management; setting air quality targets; a structured approach to the assessment of current and future air quality modelling methodologies; identification and collation of air quality model input data; development of socio-economic scenarios -long-term trend forecasting; cost effectiveness studies; the IPIECA approach to urban air quality management - development of partnerships; encouraging commitment to implementation of programme recommendations. (7 figures; 2 tables; 18 references). (UK)

  3. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale.

    Science.gov (United States)

    Livesley, S J; McPherson, G M; Calfapietra, C

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being. Copyright © by the American Society of Agronomy, Crop Science Society of

  4. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    OpenAIRE

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and...

  5. Incorporating green infrastructure into water resources management plans to address water quality impairments

    Science.gov (United States)

    Managers of urban watersheds with excessive nutrient loads are more frequently turning to green infrastructure (GI) to manage their water quality impairments. The effectiveness of GI is dependent on a number of factors, including (1) the type and placement of GI within the waters...

  6. How can water quality be improved when the urban waste water directive has been fulfilled? A case study of the Lot river (France).

    Science.gov (United States)

    Garnier, Josette; Ramarson, Antsiva; Thieu, Vincent; Némery, Julien; Théry, Sylvain; Billen, Gilles; Coynel, Alexandra

    2018-02-15

    The Lot river, a major tributary of the downstream Garonne river, the largest river on the Northern side of the Pyrenees Mountains, was intensively studied in the 1970s. A pioneering program called "Lot Rivière Claire" provided a diagnosis of water quality at the scale of the whole watershed and proposed an ambitious program to manage nutrient pollution and eutrophication largely caused by urban wastewater releases. Later on, the implementation of European directives from 1991 to 2000 resulted in the nearly complete treatment of point sources of pollution in spite of a doubling of the basin's population. At the outlet of the Lot river, ammonium and phosphate contamination which respectively peaked to 1 mg N-NH 4 L -1 and 0.3 mg P-PO 4 L -1 in the 1980s returned to much lower levels in recent years (0.06 mg N-NH 4 L -1 and 0.02 mg P-PO 4 L -1 ), a reduction by a factor 15. However, during this time, nitrate contamination has regularly increased since the 1980s, from 0.5 to 1.2 mg N-NO 3 L -1 in average, owing to the intensification of agriculture and livestock farming. Application of the Riverstrahler model allowed us to simulate the water quality of the Lot drainage network for the 2002-2014 period. We showed that, with respect to algal requirements, phosphorus and silica are well balanced, but nitrogen remains largely in excess over phosphorus and silica. This imbalance can be problematic for the ecological status of the water bodies. Using the model, for simulating various scenarios of watershed management, we showed that improvement of urban wastewater treatment would not result in any significant change in the river's water quality. Even though arable land occupies a rather limited fraction of the watershed area, only the adoption of better farming practices or more radical changes in the agro-food system could reverse the trend of increasing nitrate contamination.

  7. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  8. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  9. Model of urban water management towards water sensitive city: a literature review

    Science.gov (United States)

    Maftuhah, D. I.; Anityasari, M.; Sholihah, M.

    2018-04-01

    Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.

  10. Quality of water in alluvial aquifers in eastern Iowa

    Science.gov (United States)

    Savoca, Mark E.; Sadorf, Eric M.; Linhart, S. Michael; Barnes, Kimberlee K.

    2001-01-01

    The goal of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program is to assess the status and trends in the quality of the Nation's surface and ground water, and to better understand the natural and human factors affecting water quality. The Eastern Iowa Basins study unit encompasses an area of about 50,500 square kilometers (19,500 square miles) in eastern Iowa and southern Minnesota and is one of 59 study units in the NAWQA program. Land-use studies are an important component of the NAWQA program, and are designed to assess the concentration and distribution of water-quality constituents in recently recharged ground water associated with the most significant land use and hydrogeologic settings within a study unit. The focus of the land-use study in the Eastern Iowa Basins study unit is agricultural and urban land uses and alluvial aquifers. Agriculture is the dominant land use in the study unit. Urban areas, although not extensive, represent important potential source areas of contaminants associated with residential, commercial, and industrial activities. Alluvial aquifers are present throughout much of the study unit, and constitute a major ground-water supply that is susceptible to contamination from land-use activities.

  11. DETERMINING INDICATORS OF URBAN HOUSEHOLD WATER CONSUMPTION THROUGH MULTIVARIATE STATISTICAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Gledsneli Maria Lima Lins

    2010-12-01

    Full Text Available Water has a decisive influence on populations’ life quality – specifically in areas like urban supply, drainage, and effluents treatment – due to its sound impact over public health. Water rational use constitutes the greatest challenge faced by water demand management, mainly with regard to urban household water consumption. This makes it important to develop researches to assist water managers and public policy-makers in planning and formulating water demand measures which may allow urban water rational use to be met. This work utilized the multivariate techniques Factor Analysis and Multiple Linear Regression Analysis – in order to determine the participation level of socioeconomic and climatic variables in monthly urban household consumption changes – applying them to two districts of Campina Grande city (State of Paraíba, Brazil. The districts were chosen based on socioeconomic criterion (income level so as to evaluate their water consumer’s behavior. A 9-year monthly data series (from year 2000 up to 2008 was utilized, comprising family income, water tariff, and quantity of household connections (economies – as socioeconomic variables – and average temperature and precipitation, as climatic variables. For both the selected districts of Campina Grande city, the obtained results point out the variables “water tariff” and “family income” as indicators of these district’s household consumption.

  12. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  13. Assessment of domestic water quality: case study, Beirut, Lebanon.

    Science.gov (United States)

    Korfali, Samira Ibrahim; Jurdi, Mey

    2007-12-01

    In urban cities, the environmental services are the responsibility of the public sector, where piped water supply is the norm for urban household. Likewise, in Beirut City (capital of Lebanon) official water authorities are the main supplier of domestic water through a network of piping system that leaks in many areas. Beirut City and its suburbs are overpopulated since it is the residence of 1/3 of the Lebanese citizens. Thus, Beirut suffers deficiency in meeting its water demand. Water rationing, as a remedial action, is firmly established since four decades by the Lebanese Water Authorities. Consumers resorted then to private wells to supplement their domestic water needs. Consequently, household water quality is influenced by external factors relating to well water characteristics and internal factors depending on the types of the pipes of the distribution network and cross connections to sewer pipes. These factors could result in chemical and microbial contamination of drinking water. The objective of this study is to investigate domestic water quality variation in Beirut City emerging form the aforementioned factors. The presented work encircles a typical case study of Beirut City (Ras Beirut). Results showed deterioration pattern in domestic water quality. The predicted metal species and scales within the water pipes of distribution network depended on water pH, hardness, sulfate, chloride, and iron. The corrosion of iron pipes mainly depended on Mg hardness.

  14. Microbiological quality of packaged drinking water brands marketed ...

    African Journals Online (AJOL)

    The sale and consumption of packaged water is increasing by the day in Nigeria and this increase is attributed to the fact that there is inadequate supply of portable water in urban areas. This study investigated the bacteriological quality of packaged water at point-of-sale in Minna, North central Nigeria with emphasis on the ...

  15. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    Science.gov (United States)

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  16. An Expert System Applied in Construction Water Quality Monitoring

    OpenAIRE

    Leila Ooshaksaraie; Noor E.A. Basri

    2011-01-01

    Problem statement: An untoward environmental impact of urban growth in Malaysia has been deterioration in a number of watercourses due to severe siltation and other pollutants from the construction site. Water quality monitoring is a plan for decision makers to take into account the adverse impacts of construction activities on the receiving water bodies. It is also a process for collecting the construction water quality monitoring, baseline data and standard level. Approa...

  17. Lauryl alkylbenzene sulfonates in the urban water cycle (Toulouse, France)

    OpenAIRE

    Breton, Audrey; Vignoles, Christian; Montréjaud-Vignoles, Mireille

    2010-01-01

    Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of laurylalkylbenzene sulfonates in a separated sewer system. An analytical method by solid-phase extraction and liquid chromatography coupled with mass spectrometry detection was developed providing ...

  18. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    Science.gov (United States)

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. ASSESSMENT OF URBAN BUILT ENVIRONMENT QUALITY ON THE URBANIZED TERRITORIES: INTERREGIONAL COMPARISONS

    Directory of Open Access Journals (Sweden)

    Ovsiannikova T. Yu.

    2015-06-01

    Full Text Available The urbanization and growth of a cities role, formation of cities as reference points of regions economic development are modern global tendencies. Cities concentrate human and investment resources on their territory, so in large part cities cause competitiveness of the regions in the global market. For preservation of competitive advantages regions need to form on the urbanized territories not only the favorable environment for business, but also for the population life. This paper deals with the problem of an assessment of urban built environment quality, due to urban built environment is a space-material basis of life quality of the population on the urbanized territories. The role of the cities in social and economic development of regions and their considerable influence on competitiveness of territories in the global competition for economic resources are proved. The method of assessment of urban built environment quality on the basis of calculation of an integrated index is proposed. Interregional comparisons on the example of regions of the Siberian and Ural Federal districts are completed. The offered method of assessment of urban built environment quality allows to range the urbanized territories on usefulness for living, to reveal most and the least developed spheres of city infrastructure.

  20. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    Science.gov (United States)

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  1. Case study on rehabilitation of a polluted urban water body in Yangtze River Basin.

    Science.gov (United States)

    Wu, Juan; Cheng, Shuiping; Li, Zhu; Guo, Weijie; Zhong, Fei; Yin, Daqiang

    2013-10-01

    In the past three decades, the fast development of economy and urbanization has caused increasingly severe pollutions of urban water bodies in China. Consequently, eutrophication and deterioration of aquatic ecosystem, which is especially significant for aquatic vegetation, inevitably became a pervasive problem across the Yangtze River Basin. To rehabilitate the degraded urban water bodies, vegetation replanting is an important issue to improve water quality and to rehabilitate ecosystem. As a case study, a representative polluted urban river, Nanfeihe River, in Hefei City, Anhui Province, was chosen to be a rehabilitation target. In October 2009 and May 2010, 13 species of indigenous and prevalent macrophytes, including seven species emergent, one species floating leaved, and five species submersed macrophytes, were planted along the bank slopes and in the river. Through 1.5 years' replanting practice, the water quality and biodiversity of the river had been improved. The concentrations of total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4 (+)-N) declined by 46.0, 39.5, and 60.4 %, respectively. The species of macrophytes increased from 14 to 60, and the biodiversity of phytoplankton rose significantly in the river (purban waters restoration in the middle-downstream area of Yangtze River Base.

  2. Principles of urban quality of life for a neighborhood

    Directory of Open Access Journals (Sweden)

    Hamam Serag El Din

    2013-04-01

    Full Text Available Urban quality of life is a notion that has been discussed recently in various studies as a response to many problems facing the new towns all over the world as well as in Egypt. The purpose of this paper is to decompose the term urban quality of life into other more precise terms such as quality, quality of life and urban/urban planning. The paper also aims to address the notion of sustainable development and tries to understand its relationship with the notion of quality of life. Further, it deduces urban quality of life definition and dimensions. On the other hand this paper discusses contemporary urban planning theories and approaches raised in the late of twentieth century in order to provide a high and sustainable quality of life and protect the natural environment. Finally, a matrix concluding the relationship between the principles of these contemporary urban planning theories and approaches and urban quality of life dimensions is developed, in order to achieve a set of principles that address environmental, physical, mobility, social, psychological, economical and political concerns called urban quality of life principles. These principles represent a guide useful for participants of the design process and for policy makers.

  3. A critical review of integrated urban water modelling – Urban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  4. Balancing urban and peri-urban exchange: water geography of rural livelihoods in Mexico.

    Science.gov (United States)

    Díaz-Caravantes, Rolando E

    2012-01-01

    The peri-urban area is the region where there is a more dynamic interaction between the urban and rural. The peri-urban area supplies natural resources, such as land for urban expansion and agricultural products to feed the urban population. In arid and semi-arid lands, such as northern Mexico, these areas may also be the source of water for the city's domestic demand. In addition, scholars argue that peri-urban residents may have a more advantageous geographical position for selling their labour and agricultural products in cities and, by doing so, sustaining their livelihoods. A considerable number of studies have examined the peri-urban to urban natural resources transfer in terms of land annexation, housing construction, and infrastructure issues; however, the study of the effects of the reallocation of peri-urban water resources to serve urban needs is critical as well because the livelihoods of peri-urban residents, such as those based on agriculture and livestock, depend on water availability. In the case of Hermosillo there is a tremendous pressure on the water resources of peri-urban small farm communities or ejidos because of urban demand. Based on interviews and structured surveys with producers and water managers, this paper examines how peri-urban livelihoods have been reshaped by the reallocation of the city's natural resources in many cases caused some ejido members or ejidatarios to lose livelihoods.

  5. An Assessment of the Relationship between Urban Air Quality and Environmental Urban Factors in Urban Regeneration Areas

    Directory of Open Access Journals (Sweden)

    Yakup Egercioglu

    2016-06-01

    Full Text Available Urban air pollution has been increasing due to ever increasing population, rapid urbanization, industrialization, energy usage, traffic density. The purpose of the study is to examine the relation between urban air quality and urban environmental factors in urban regeneration areas. Two common air polluters (SO2 and PM10 are considered in the study. The data are collected for Cigli district, including the level of air pollutants, the local natural gas service lines and planning decisions for the years between 2007 and 2011. According to the examinations, urban environmental factors and planning decisions affect the urban air quality in urban regeneration areas.

  6. Threshold and resilience management of coupled urbanization and water environmental system in the rapidly changing coastal region.

    Science.gov (United States)

    Li, Yangfan; Li, Yi; Wu, Wei

    2016-01-01

    The concept of thresholds shows important implications for environmental and resource management. Here we derived potential landscape thresholds which indicated abrupt changes in water quality or the dividing points between exceeding and failing to meet national surface water quality standards for a rapidly urbanizing city on the Eastern Coast in China. The analysis of landscape thresholds was based on regression models linking each of the seven water quality variables to each of the six landscape metrics for this coupled land-water system. We found substantial and accelerating urban sprawl at the suburban areas between 2000 and 2008, and detected significant nonlinear relations between water quality and landscape pattern. This research demonstrated that a simple modeling technique could provide insights on environmental thresholds to support more-informed decision making in land use, water environmental and resilience management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Application of water quality index to evaluate groundwater quality (temporal and spatial variation) of an intensively exploited aquifer (Puebla valley, Mexico).

    Science.gov (United States)

    Salcedo-Sánchez, Edith R; Garrido Hoyos, Sofía E; Esteller Alberich, Ma Vicenta; Martínez Morales, Manuel

    2016-10-01

    The spatial and temporal variation of water quality in the urban area of the Puebla Valley aquifer was evaluated using historical and present data obtained during this investigation. The current study assessed water quality based on the Water Quality Index developed by the Canadian Council of Ministers of the Environment (CCME-WQI), which provides a mathematical framework to evaluate the quality of water in combination with a set of conditions representing quality criteria, or limits. This index is flexible regarding the type and number of variables used by the evaluation given that the variables of interest are selected according to the characteristics and objectives of development, conservation and compliance with regulations. The CCME-WQI was calculated using several variables that assess the main use of the wells in the urban area that is public supply, according to criteria for human use and consumption established by Mexican law and international standards proposed by the World Health Organization. The assessment of the index shows a gradual deterioration in the quality of the aquifer over time, as the amount of wells with excellent quality have decreased and those with lower index values (poor quality) have increased throughout the urban area of the Puebla Valley aquifer. The parameters affecting groundwater quality are: total dissolved solids, sulfate, calcium, magnesium and total hardness.

  8. Modelling transport of storm-water pollutants using the distributed Multi-Hydro platform on an urban catchment near Paris

    Science.gov (United States)

    Hong, Yi; Bonhomme, Celine; Giangola-Murzyn, Agathe; Schertzer, Daniel; Chebbo, Ghassan

    2015-04-01

    Nowadays, the increasingly use of vehicles causes expanding contaminated storm-water runoff from roads and the associated quarters. Besides, the current utilization of city's separated sewer systems underlines the needs for evaluating precisely the growing impact of these polluted effluents on receiving water bodies. Nevertheless, traditional means of water quality modelling had shown its limits (Kanso, 2004), more accurate modelling schemes are hence required. In this paper, we found that the application of physically based and fully distributed model coupled with detailed high-resolution data is a promising approach to reproduce the various dynamics and interactions of water quantity/quality processes in urban or peri-urban environment. Over recent years, the physically based and spatially distributed numerical platform Multi-Hydro (MH) has been developed at Ecole des Ponts ParisTech (El-Tabach et al. , 2009 ; Gires et al., 2013 ; Giangola-Murzyn et al., 2014). This platform is particularly adapted for representing the hydrological processes for medium size watersheds, including the surface runoff, drainage water routing and the infiltrations on permeable zones. It is formed by the interactive coupling of several independent modules, which depend on generally used open-access models. In the framework of the ANR (French National Agency for Research) Trafipollu project, a new extension of MH, MH-quality, was set up for the water-quality modelling. MH-quality was used for the simulation of pollutant transport on a peri-urban and highly trafficked catchment located near Paris (Le Perreux-sur-Marne, 0.2 km2). The set-up of this model is based on the detailed description of urban land use features. For this purpose, 15 classes of urban land uses relevant to water quality modelling were defined in collaboration with the National Institute of Geography of France (IGN) using Digital Orthophoto Quadrangles (5cm). The delimitation of the urban catchment was then performed

  9. Assessing the Total Economic Value of Improving Water Quality to Inform Water Resources Management: Evidence and Challenges from Southeast Asia

    Science.gov (United States)

    Jalilov, S.; Fukushi, K.

    2016-12-01

    Population growth, high rates of economic development and rapid urbanization in the developing countries of Southeast Asia (SEA) have resulted in degradation and depletion of natural resources, including water resources and related ecosystem services. Many urban rivers in the region are highly polluted with domestic, industrial and agricultural wastes. Policymakers are often aware of the direct value of water resources for domestic and industrial consumption, but they often underestimate the indirect value of these functions, since they are not exchanged in the market and do not appear in national income accounts. Underestimation of pollution and over-exploitation of water resources result in a loss of these benefits and have adverse impacts on nearby residents, threatening the long-term sustainable development of natural resources in the region. Behind these constraints lies a lack of knowledge (ignorance) from governments that a clean water environment could bring significant economic benefits. This study has been initiated to tackle this issue and to foster a more rational approach for sustainable urban development in Metro Manila in the Philippines. We applied a Contingent Valuation Method (CVM) based on Computer-Assisted Personal Interviewing (CAPI) technique. Results show that users are willing to pay up to PHP 102.42 (2.18) monthly to improve quality of urban waterbodies whereas nonusers are willing to pay up to PHP 366.53 (7.80) as one-time payment towards water quality improvement. The estimated monetary value of water quality improvements would be a useful variable in cost-benefit analyses of various water quality-related policies, in both public and private sectors in Metro Manila. This survey design could serve as a useful template for similar water quality studies in other SEA countries.

  10. Creating prototypes for cooling urban water bodies

    NARCIS (Netherlands)

    Cortesoao, Joao; Klok, E.J.; Lenzholzer, Sanda; Jacobs, C.M.J.; Kluck, J.

    2017-01-01

    Abstract When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e

  11. Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2018-01-01

    Full Text Available The design, development, and operation of current and future urban water infrastructure in many parts of the world increasingly rely on and apply the principles of sustainable development. However, this approach suffers from a lack of the necessary knowledge, skills, and practice of how sustainable development can be attained and promoted in a given city. This paper presents the framework of an integrated systems approach analysis that deals with the abovementioned issues. The “Water and Urban Initiative” project, which was implemented by the United Nations University’s Institute for the Advanced Study of Sustainability, focused on urban water and wastewater systems, floods, and their related health risk assessment, and the economics of water quality improvements. A team of researchers has investigated issues confronting cities in the developing countries of Southeast Asia, in relation to sustainable urban water management in the face of such ongoing changes as rapid population growth, economic development, and climate change; they have also run future scenarios and proposed policy recommendations for decision-makers in selected countries in Southeast Asia. The results, lessons, and practical recommendations of this project could contribute to the ongoing policy debates and decision-making processes in these countries.

  12. The Effect of Ambient Water Quality on Lakefront Property Values: Evidence from Coeur d'Alene, Idaho

    Science.gov (United States)

    Liao, H.

    2015-12-01

    Climate warming is causing water temperatures to increase and subsequent changes in water quality. To develop innovative approaches for mitigating the possible negative social consequences of such changes, more research efforts are needed to investigate how people perceive and respond to ambient water quality. This research examines the amenity value of water quality in the areas centered on Lake Coeur d'Alene of Northern Idaho. Through a hedonic analysis, we find that two important water-quality variables have had significant effects on lakefront property values, including Secchi disc reading, a technical measure of water clarity, and the presence of Eurasian watermilfoil, an aquatic invasive species. We further explore the spatial heterogeneity of water-quality benefits along the urban-rural gradient and find that access to urban amenities has strengthened the water-quality benefits in the lakefront housing market. Our findings could be used to incentivize private property owners and stakeholders to commit time and funding to cope with the potential degradation of water quality under climate change.

  13. Impacts of Land Use on Surface Water Quality in a Subtropical River Basin: A Case Study of the Dongjiang River Basin, Southeastern China

    Directory of Open Access Journals (Sweden)

    Jiao Ding

    2015-08-01

    Full Text Available Understanding the relationship between land use and surface water quality is necessary for effective water management. We estimated the impacts of catchment-wide land use on water quality during the dry and rainy seasons in the Dongjiang River basin, using remote sensing, geographic information systems and multivariate statistical techniques. The results showed that the 83 sites can be divided into three groups representing different land use types: forest, agriculture and urban. Water quality parameters exhibited significant variations between the urban-dominated and forest-dominated sites. The proportion of forested land was positively associated with dissolved oxygen concentration but negatively associated with water temperature, electrical conductivity, permanganate index, total phosphorus, total nitrogen, ammonia nitrogen, nitrate nitrogen and chlorophyll-a. The proportion of urban land was strongly positively associated with total nitrogen and ammonia nitrogen concentrations. Forested and urban land use had stronger impacts on water quality in the dry season than in the rainy season. However, agricultural land use did not have a significant impact on water quality. Our study indicates that urban land use was the key factor affecting water quality change, and limiting point-source waste discharge in urban areas during the dry season would be critical for improving water quality in the study area.

  14. Disconnecting the autopilot in urban water projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Marina Bergen; Øhlenschlæger, Ny

    2011-01-01

    How can we motivate urban planners, water utilities and house owners to collaborate about sustainable urban water projects and to aim for solutions that go beyond the narrow perspective of individual stakeholder interests? A concept for framing a multidisciplinary learning process is developed...... the early stages of an urban water project. To realise new sustainable urban water designs a project team will need to engage and get acceptance from internal and external stakeholders, and this calls for communication and social skills rather than technical skills. The paper identifies potential...

  15. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Elizabeth; Bain, Robert [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Wright, Jim [Geography and Environment, University of Southampton, Southampton (United Kingdom); Aondoakaa, Stephen [Geography and Environmental Management, University of Abuja, Abuja (Nigeria); School of Geography, University of Nottingham, Nottingham (United Kingdom); Hossain, Rifat [World Health Organization, Geneva (Switzerland); Bartram, Jamie, E-mail: jbartram@unc.edu [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States)

    2014-08-15

    rural dichotomy. - Highlights: • Urban improved sources of a given type are no more contaminated than rural ones. • Fecal contamination is 1.6–2.3 times more likely in rural areas, combining sources. • We find no evidence to justify different urban and rural water quality standards. • Comparisons of urban and rural areas are sensitive to definitions of urban extent.

  16. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria

    International Nuclear Information System (INIS)

    Christenson, Elizabeth; Bain, Robert; Wright, Jim; Aondoakaa, Stephen; Hossain, Rifat; Bartram, Jamie

    2014-01-01

    rural dichotomy. - Highlights: • Urban improved sources of a given type are no more contaminated than rural ones. • Fecal contamination is 1.6–2.3 times more likely in rural areas, combining sources. • We find no evidence to justify different urban and rural water quality standards. • Comparisons of urban and rural areas are sensitive to definitions of urban extent

  17. [Research on evaluation of water quality of Beijing urban stormwater runoff].

    Science.gov (United States)

    Hou, Pei-Qiang; Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Zhou, Xiao-Ping

    2012-01-01

    The natural rainwater and stormwater runoff samples from three underlying surfaces (rooftop, campus road and ring road) were sampled and analyzed from July to October, 2010 in Beijing. Eight rainfall events were collected totally and thirteen water quality parameters were measured in each event. Grey relationship analysis and principal component analysis were applied to assess composite water quality and identify the main pollution sources of stormwater runoff. The results show that the composite water quality of ring road runoff is mostly polluted, and then is rooftop runoff, campus road runoff and rainwater, respectively. The composite water quality of ring road runoff is inferior to V class of surface water, while rooftop runoff, campus road runoff and rainwater are in II class of surface water. The mean concentration of TN and NH4(+)-N in rainwater and runoff is 5.49-11.75 mg x L(-1) and 2.90-5.67 mg x L(-1), respectively, indicating that rainwater and runoff are polluted by nitrogen (N). Two potential pollution sources are identified in ring road runoff: (1) P, SS and organic pollutant are possibly related to debris which is from vehicle tyre and material of ring road; (2) N and dissolved metal have relations with automobile exhaust emissions and bulk deposition.

  18. Efficient Assessment of the Environment for Integral Urban Water Management

    Science.gov (United States)

    Rost, Grit; Londong, Jörg

    2015-04-01

    Introduction: Sustainable water supply and sanitation is fundamental, especially in countries that are also particularly vulnerable to water-related problems. The Integrated Water Resources Management (IWRM) approach makes sure that water management is organised in a transdisciplinary way taking into account the river basin, the hydrologic system and the appendant organisation like culture, law and economics. The main objective of IWRM is the sustainable organisation of water resources quality and quantity (GWP and INBO 2009). However there are more important targets in sustainable use of water resources. New sanitation systems are focussing on adding value and maintaining essential resources in circular flow. Focussing on material fluxes can contribute on water quality, food security, sustainable use of renewable energy, adaption on water scarcity and also on rising water and sanitation demand because of rapid urban and suburban growth (Price and Vojinović 2011; Rost et al 2013; Stäudel et al 2014). Problem: There are several planning tools for IWRM as well as for urban water management. But to complete the IWRM approach for the resource oriented concept a systematic assessment tool is missing. The assessment of crucial indicators obviously requires a lot of data from different subjects/disciplines, in different scales of detail and in different accuracy and in data acquisition (Karthe et al 2014). On the one hand there will be data abundance and on the other hand the data can be unavailable or unfeasible for example because of scale and specification(Rost et al 2013). Such a complex integrated concept requires a clearly worked out structure for the way of managing and priority setting. Purpose: To get systematic in the complex planning process the toolbox model is going to develop. The assessment of the environmental screening (one part of the toolbox) is going to be presented in this paper. The first step of assessment leans on the assertion that each of the

  19. Evaluatiopn of Strategies for Modifying Urban Storm Water Drainage System Using Risk-based Criteria

    Directory of Open Access Journals (Sweden)

    mahsa soleimani

    2016-01-01

    Full Text Available Appropriate modification of existing urban storm water drainage networks may help reduce network inundation and flood-borne pollution risks. It will, therefore, be necessary to analyze the risks associated with water quantity and quality during urban flooding before any reconstruction strategies can be identified that are adaptable to, or compatible with, urban sustainable development strategies. In this paper, three network modification strategies are evaluated against the three criteria of network inundation at different sections, flood pollution risks, and modification plan costs. The modification strategies evaluated include the conventional approach of increasing conduit dimensions as well as the two novels swale and bio-retention systems. The strategies are then prioritised using a Multi-Criteria Decision Analysis (MCDA method. The application of the proposed methodology is illustrated in the case study of urban storm water drainage systems in the Golestan City in Tehran Province for which a hydrological and hydraulic simulation model has been developed using the SWMM software. The results show that the swale system is the best strategy with an approximate cost of 20 billion Rials (almost US$ 6 million. Compared to the existing system in operation, the proposed system will be capable of reducing 59% of the quantitative risk of flooding (inundation and 26% of the water quality risk (pollution loads.

  20. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  1. Lesotho - Urban and Peri-Urban Water and Metolong Dam

    Data.gov (United States)

    Millennium Challenge Corporation — Early on, MCC and the evaluator decided to focus the Urban and Peri-Urban Water evaluation on Package 1 infrastructure, which benefited Maseru and Mazenod. MCC later...

  2. A national look at water quality

    Science.gov (United States)

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  3. Measure for Measure: Urban Water and Energy

    Science.gov (United States)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  4. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  5. Water and sanitation hygiene knowledge attitude practice in urban slum settings.

    Science.gov (United States)

    Joshi, Ashish; Prasad, Satish; Kasav, Jyoti B; Segan, Mehak; Singh, Awnish K

    2013-11-18

    Access to improved drinking water, sanitation and hygiene is one of the prime concerns around the globe. This study aimed at assessing water and sanitation hygiene-related attitude and practices, and quality of water in urban slums of south Delhi, India. This pilot cross sectional study was performed during July 2013 across four urban slums of South Delhi. A convenient sample of 40 participants was enrolled. A modified version of previously validated questionnaire was used to gather information on socio-demographics, existing water and sanitation facilities and water treatment practices. Water quality testing was additionally performed using hydrogen sulphide (H2S) vials. Average age of participants was 36 years (SD=10). 83% of the participants perceived gastrointestinal tract infection as the most important health problem. 75% of the participants did not use any method for drinking water treatment. 45% of the participants consumed water from privately-owned tube well/ bore well. Water shortage lasted two days or more (50%) at a stretch with severe scarcity occurring twice a year (40%). Females aged 15 years and above were largely responsible (93%) for fetching water from water source. 45% of the participants had toilets within their households. 53% of drinking water samples collected from storage containers showed positive bacteriological contamination. There is an urgent need to develop family centered educational programs that would enhance awareness about water treatment methods that are cost effective and easily accessible.

  6. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    Science.gov (United States)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  7. Urban water management : Modelling, simulation and control of the activated sludge process

    OpenAIRE

    Ekman, Mats

    2003-01-01

    During the last few decades, wastewater treatment processes in urban water management have become more and more efficient and complex. Several factors such as urbanization, stricter legislations on effluent quality, economics, increased knowledge of the involved biological, chemical and physical processes as well as technical achievements have been important incentives for the development of more efficient procedures for wastewater treatment plants. Future requirements on more sustainable urb...

  8. Urban water metabolism efficiency assessment: integrated analysis of available and virtual water.

    Science.gov (United States)

    Huang, Chu-Long; Vause, Jonathan; Ma, Hwong-Wen; Yu, Chang-Ping

    2013-05-01

    Resolving the complex environmental problems of water pollution and shortage which occur during urbanization requires the systematic assessment of urban water metabolism efficiency (WME). While previous research has tended to focus on either available or virtual water metabolism, here we argue that the systematic problems arising during urbanization require an integrated assessment of available and virtual WME, using an indicator system based on material flow analysis (MFA) results. Future research should focus on the following areas: 1) analysis of available and virtual water flow patterns and processes through urban districts in different urbanization phases in years with varying amounts of rainfall, and their environmental effects; 2) based on the optimization of social, economic and environmental benefits, establishment of an indicator system for urban WME assessment using MFA results; 3) integrated assessment of available and virtual WME in districts with different urbanization levels, to facilitate study of the interactions between the natural and social water cycles; 4) analysis of mechanisms driving differences in WME between districts with different urbanization levels, and the selection of dominant social and economic driving indicators, especially those impacting water resource consumption. Combinations of these driving indicators could then be used to design efficient water resource metabolism solutions, and integrated management policies for reduced water consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  10. Urban and peri-urban agricultural production in Beijing municipality and its impact on water quality

    NARCIS (Netherlands)

    Wolf, J.; Wijk, van M.S.; Cheung, X.; Hu, Y.; Diepen, van C.A.; Jongbloed, A.W.; Keulen, van H.; Lu, C.H.; Roeter, R.

    2003-01-01

    This paper reviews water use and water resource issues in Beijing Municipality, the main trends in the agricultural production systems in and around the city with respect to land use, input use, production and economic role, and the impacts of agricultural activities on water quality. Rapid

  11. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    Science.gov (United States)

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  12. CEER 2014 Dedicated Session Proposal: Restoring Water Quality along with Restoring the Gulf of Mexico

    Science.gov (United States)

    This session focuses on the importance of restoring water quality as part of the larger Gulf of Mexico restoration efforts. Water quality has been identified as a significant indicator of water body condition, and Gulf waters have been impacted by increased urban development, agr...

  13. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone.

    Science.gov (United States)

    Van Dolah, Robert F; Riekerk, George H M; Bergquist, Derk C; Felber, Jordan; Chestnut, David E; Holland, A Fredrick

    2008-02-01

    Land cover patterns were evaluated in 29 estuarine watersheds of South Carolina to determine relationships between urban/suburban development and estuarine habitat quality. Principal components analysis and Pearson product moment correlation analyses were used to examine the relationships between ten land cover categories and selected measures of nutrient or bacterial enrichment in the water column and contaminant enrichment in sediments. These analyses indicated strong relationships between land cover categories representing upland development and a composite measure of 24 inorganic and organic contaminants using the Effect Range Median-Quotient (ERM-Q). Similar relationships also were observed for the summed concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. Data obtained from tidal creeks generally showed stronger correlations between urban/suburban land use and pesticides and metals compared to data obtained from larger open water habitats. Correlations between PAH concentrations and the urban/suburban land cover categories were similar between creek and open water habitats. PCB concentrations generally showed very little relationship to any of the land cover categories. Measures of nutrient enrichment, which included total Kjeldahl nitrogen (TKN), nitrate-nitrite, phosphorus, chlorophyll-a, and total organic carbon, were generally not significantly correlated with any land cover categories, whereas fecal coliform bacteria were significantly and positively correlated with the urban/suburban land cover categories and negatively correlated with the non-urban land cover categories. Fecal coliform correlations were stronger using data from the open water sites than from the tidal creek sites. Both ERM-Q and fecal coliform concentrations were much greater and more pervasive in watersheds with relatively high (>50%) urban/suburban cover compared to watersheds with low (urban/suburban cover. These

  14. Intelligent Metering for Urban Water: A Review

    OpenAIRE

    Rodney Stewart; Stuart White; Candice Moy; Ariane Liu; Pierre Mukheibir; Damien Giurco; Thomas Boyle

    2013-01-01

    This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering) has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been ...

  15. Urban influence on the water quality of the Uberaba River basin: an ecotoxicological assessment

    Directory of Open Access Journals (Sweden)

    Ana Luisa Curado

    2018-03-01

    Full Text Available Ecotoxicological tests applied to Tradescantia pallida, Allium cepa and Lactuca sativa were used to assess the quality of the Uberaba River basin under urban area influence. Water samples were collected at eight different points during the dry season. The samples were assessed using the following toxicity indicators: micronuclei percentage in T. pallida pollen grains (TRAD-MN, seed germination, root growth, mitotic index (MI and micronuclei in A. cepa root-cells, and seed germination and root growth in L. sativa. Water physicochemical parameters such as temperature, dissolved oxygen (DO, pH and electric conductivity were assessed in situ. The three plant species were efficient bio-indicators, since they presented good cost-benefit and fast and easily interpreted results, thus completing the physicochemical parameters. There was strong correlation between seed germination and root growth among the ecotoxicological parameters assessed in L. sativa and A. cepa. The micronuclei percentage in T. pallida and the MI in A. cepa presented strong correlation with water electric conductivity and moderate and negative correlation with DO. Water electric conductivity ranged from 75 to 438 µS.cm-1; and the DO concentrations ranged from 0.5 to 6.9 mg.L-1. The importance of pollution control measures in the Uberaba River basin stands out. From the supply-water capture point, the basin is strongly affected by pollution, mainly in the tributaries that cross the city. It presents a short, or almost absent, riparian forest line, residues on the river banks, and it is impacted by discharges of untreated sewage, among other anthropic actions.

  16. Urban rivers - the principle of immissions as a new planning strategy in urban drainage

    International Nuclear Information System (INIS)

    Wittenberg, D.

    1992-01-01

    A new planning strategy for urban drainage systems is developed and applicated on two case studies. The concept is basing on the idea of inclusion of water quality aspects of the receiving systems as limiting values into planning guidelines. As a new instrument for the execution of this immission oriented planning a hydrodynamic water quality model for urban rivers is developed in the central part of the treatise. Two case studies are used for the application of the immission oriented planning strategy. As a main result from these applications it is easily to be seen that the inclusion of water quality aspects into the main standards for dimensioning and construction of sewer systems and treatment plants leads to a better protection of water quality in urban waters. A set up of the principle of immissions unconditionally requires a new definition of several normally used official standards for urban drainage systems. (orig.) [de

  17. [Research on spatial differentiation of urban stormwater runoff quality by source area monitoring].

    Science.gov (United States)

    Li, Li-Qing; Zhu, Ren-Xiao; Guo, Shu-Gang; Yin, Cheng-Qing

    2010-12-01

    Runoff samples were collected from 14 source areas in Hanyang district during four rain events in an attempt to investigate the spatial differentiation and influencing factors of urban stormwater runoff quality. The outcomes are expected to offer practical guidance in sources control of urban runoff pollution. The results revealed that particle-bound proportion of chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) in stormwater runoff were 58% +/- 17%, 65% +/- 13% and 92% +/- 6%, respectively. The fractions of ammonia, nitrate and dissolved organic nitrogen were homogeneous in dissolved nitrogen composition. Urban surface function, traffic volume, land use, population density, and street sweeping practice are the main factors determining spatial differentiation of urban surface runoff quality. The highest magnitude of urban stormwater runoff pollution was expected in the old urban residential area, followed by general residential with restaurants, commercial and transport area, new developments and green land. In addition, the magnitude of road stormwater runoff pollution is positively correlated to traffic volume, in the following order: the first trunk road > the second trunk road > minor road. Street sweeping and critical source areas controls should be implemented to mitigate the adverse effects of urban stormwater runoff on receive waters.

  18. URBAN LANDSCAPE QUALITY AND FACTORS THAT HAVE INFLUENCE ON LANDSCAPE QUALITY IN LATGALE REGION

    OpenAIRE

    Matisovs, Ivars

    2005-01-01

    The paper deals with urban landscape individualities in the cities and towns of Latgale region. Also show facilities and methods of integrated assessment of urban landscape quality. Article provides information about specifics of urban landscape and factors, that have influence on landscape quality. The paper presents the results of Daugavpils and Rēzekne urban landscape quality complex assessment, that have been realised in 2003- 2005. This results don’t establish significant disparities bet...

  19. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  20. Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996-2006

    Science.gov (United States)

    Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.

    2010-01-01

    As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically

  1. Wastewater treatment and reuse in urban agriculture: exploring the food, energy, water, and health nexus in Hyderabad, India

    Science.gov (United States)

    Miller-Robbie, Leslie; Ramaswami, Anu; Amerasinghe, Priyanie

    2017-07-01

    Nutrients and water found in domestic treated wastewater are valuable and can be reutilized in urban agriculture as a potential strategy to provide communities with access to fresh produce. In this paper, this proposition is examined by conducting a field study in the rapidly developing city of Hyderabad, India. Urban agriculture trade-offs in water use, energy use and GHG emissions, nutrient uptake, and crop pathogen quality are evaluated, and irrigation waters of varying qualities (treated wastewater, versus untreated water and groundwater) are compared. The results are counter-intuitive, and illustrate potential synergies and key constraints relating to the food-energy-water-health (FEW-health) nexus in developing cities. First, when the impact of GHG emissions from untreated wastewater diluted in surface streams is compared with the life cycle assessment of wastewater treatment with reuse in agriculture, the treatment-plus-reuse case yields a 33% reduction in life cycle system-wide GHG emissions. Second, despite water cycling benefits in urban agriculture, only contamination and farmer behavior and harvesting practices. The study uncovers key physical, environmental, and behavioral factors that constrain benefits achievable at the FEW-health nexus in urban areas.

  2. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  3. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    Science.gov (United States)

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  4. Drinking Water Quality Surveillance in a Vulnerable Urban Ward of Ahmedabad.

    Science.gov (United States)

    Iyer, Veena; Choudhury, Nandini; Azhar, Gulrez Shah; Somvanshi, Bhushan

    2014-05-01

    The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of quality, quantity, accessibility, affordability and continuity were assessed in one vulnerable ward of Ahmedabad-a fast growing city in Western India. Interviews with key informants of the ward office, health centre and water supply department, secondary analysis and mapping of field test reports and a questionnaire-based survey of different household types were conducted. We found that Ahmedabad Municipal Corporation (AMC) supplies water to the ward intermittently for two hours during the day. Housing society clusters supplement their AMC water supply with untested bore-well water. The water quality surveillance system is designed for a twenty-four-hour piped distribution of treated surface water. However, in order to maintain surveillance over an intermittent supply that includes ground water, the sampling process should include periodic surveys of water actually consumed by the citizens. The laboratory capacity of the Central Water Testing Laboratory should expand to include more refined tests for microbial and chemical contamination.

  5. Increasing urban water self-sufficiency: New era, new challenges

    DEFF Research Database (Denmark)

    Rygaard, Martin; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2011-01-01

    and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional...... pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten...... amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We...

  6. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    Science.gov (United States)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  7. An assessment of groundwater quality using water quality index in Chennai, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    I Nanda Balan

    2012-01-01

    Full Text Available Context : Water, the elixir of life, is a prime natural resource. Due to rapid urbanization in India, the availability and quality of groundwater have been affected. According to the Central Groundwater Board, 80% of Chennai′s groundwater has been depleted and any further exploration could lead to salt water ingression. Hence, this study was done to assess the groundwater quality in Chennai city. Aim : To assess the groundwater quality using water quality index in Chennai city. Materials and Methods: Chennai city was divided into three zones based on the legislative constituency and from these three zones three locations were randomly selected and nine groundwater samples were collected and analyzed for physiochemical properties. Results: With the exception of few parameters, most of the water quality assessment parameters showed parameters within the accepted standard values of Bureau of Indian Standards (BIS. Except for pH in a single location of zone 1, none of the parameters exceeded the permissible values for water quality assessment as prescribed by the BIS. Conclusion: This study demonstrated that in general the groundwater quality status of Chennai city ranged from excellent to good and the groundwater is fit for human consumption based on all the nine parameters of water quality index and fluoride content.

  8. The effects of sewer infrastructure on water quality: implications for land use studies.

    Science.gov (United States)

    Vrebos, Dirk; Staes, Jan; Meire, Patrick

    2010-05-01

    The European Water Framework Directive requires a good ecological status of the European water bodies and the necessary measures to obtain this have to be implemented. The water quality of a river is the result of complex anthropogenic systems (buildings, waste water treatment infrastructure, regulations, etc.) and biogeochemical and eco-hydrological interactions. It is therefore essential to obtain more insight in the factors that determine the water quality in a river. Research into the relation between land use and water quality is necessary. Human activities have a huge impact on the flow regimes and associated water quality of river systems. Effects of land use bound activities on water quality are often investigated, but these studies generally ignore the hydrological complexity of a human influenced catchment. Infrastructure like sewer systems and wastewater treatment plants (WWTP) can displace huge quantities of polluted water. The transfers change flow paths, displace water between catchments and change the residence time of the system. If we want to correctly understand the effect of land use distribution on water quality we have to take these sewer systems into account. In this study we analyse the relation between land use and water quality in the Nete catchment (Belgium) and investigate the impact of the sewage infrastructure on this relation. The Nete catchment (1.673 km²) is a mosaic of semi natural, agricultural and urbanized areas and the land use is very fragmented. For the moment 74% of the households within the catchment are connected to a WWTP. The discharges from these WWTP's compose 15% of the total discharge of the Nete. Based on a runoff model the surface of upstream land use was calculated for 378 points. These data were then corrected for the impact of WWTP's. Using sewage infrastructure plans, urban areas connected to a WWTP were added to the upstream land use of the WWTP's water receiving stream. In order to understand the effect of

  9. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia

    Institute of Scientific and Technical Information of China (English)

    John C.Radcliffe; Declan Page; Bruce Naumann; Peter Dillon

    2017-01-01

    Australia has developed extensive policies and guidelines for the management of its water.The City of Salisbury,located within metropolitan Adelaide,South Australia,developed rapidly through urbanisation from the 1970s.Water sensitive urban design principles were adopted to maximise the use of the increased run-off generated by urbanisation and ameliorate flood risk.Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquifer for subsequent irrigation.This paper outlines how a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies.Salisbury's success with stormwater harvesting led to the formation of a pioneering water business that includes linking projects from nine sites to provide a non-potable supply of 5 × 106 m3 ·year-1.These installations hosted a number of applied research projects addressing well configuration,water quality,reliability and economics and facilitated the evaluation of its system as a potential potable water source.The evaluation showed that while untreated stormwater contained contaminants,subsurface storage and end-use controls were sufficient to make recovered water safe for public open space irrigation,and with chlorination,acceptable for third pipe supplies.Drinking water quality could be achieved by adding microfiltration,disinfection with UV and chlorination.The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems.The full cost of supply was determined to be AUD$1.57 m-3 for non-potable water for public open space irrigation,much cheaper than mains water,AUD $3.45 m-3 at that time.Producing and storing potable water was found to cost AUD$1.96 to $2.24 m-3.

  10. Explore the advantage of High-frequency Water Quality Data in Urban Surface Water: A Case Study in Bristol, UK

    Science.gov (United States)

    Chen, Y.; Han, D.

    2017-12-01

    Water system is an essential component in a smart city for its sustainability and resilience. The freshness and beauty of the water body would please people as well as benefit the local aquatic ecosystems. Water quality monitoring approach has evolved from the manual lab-based monitoring approach to the manual in-situ monitoring approach, and finally to the latest wireless-sensor-network (WSN) based solutions in recent decades. The development of the in-situ water quality sensors enable humans to collect high-frequency and real-time water quality data. This poster aims to explore the advantages of the high-frequency water quality data over the low-frequency data collected manually. The data is collected by a remote real-time high-frequency water quality monitor system based on the cutting edge smart city infrastructure in Bristol - `Bristol Is Open'. The water quality of Bristol Floating Harbour is monitored which is the focal area of Bristol with new buildings and features redeveloped in the past decades. This poster will first briefly introduce the water quality monitoring system, followed by the analysis of the advantages of the sub-hourly water quality data. Thus, the suggestion on the monitoring frequency will be given.

  11. Quality and rural-urban comparison of tuberculosis care in Rivers State, Nigeria.

    Science.gov (United States)

    Tobin-West, Charles Ibiene; Isodje, Anastasia

    2016-01-01

    Nigeria ranks among countries with the highest burden of tuberculosis. Yet evidence continues to indicate poor treatment outcomes which have been attributed to poor quality of care. This study aims to identify some of the systemic problems in order to inform policy decisions for improved quality of services and treatment outcomes in Nigeria. A comparative assessment of the quality of TB care in rural and urban health facilities was carried out between May and June 2013, employing the Donabedian model of quality assessment. Data was analysed using the SPSS software package version 20.0. The level of significance was set at p facility infrastructures were more constrained in the urban than rural settings. Both the urban and rural facilities lacked adequate facilities for infection control such as, running water, air filter respirators, hand gloves and extractor fans. Health education and HIV counselling and testing (HCT) were limited in rural facilities compared to urban facilities. Although anti-TB drugs were generally available in both settings, the DOTS strategy in patient care was completely ignored. Finally, laboratory support for diagnosis and patient monitoring was limited in the rural facilities. The study highlights suboptimal quality of TB care in Rivers State with limitations in health education and HCT of patients for HIV as well as laboratory support for TB care in rural health facilities. We, therefore, recommend that adequate infection control measures, strict observance of the DOTS strategy and sufficient laboratory support be provided to TB clinics in the State.

  12. Quality index of the surface water of Amazonian rivers in industrial areas in Pará, Brazil.

    Science.gov (United States)

    Medeiros, Adaelson Campelo; Faial, Kleber Raimundo Freitas; do Carmo Freitas Faial, Kelson; da Silva Lopes, Iris Danielly; de Oliveira Lima, Marcelo; Guimarães, Raphael Mendonça; Mendonça, Neyson Martins

    2017-10-15

    In this study was to evaluate the waters quality of the Murucupi River, located in urban agglomerate area and intense industrial activity in Barcarena City, Pará State. The Arapiranga River in Abaetetuba City was used as control area (Background), next to Barcarena. Was used the Water Quality Index (WQI) based on nine variables analized. Waters quality of the Arapiranga and Murucupi rivers were regular to good and bad to good, respectively. Anthropogenic influence on the Murucupi River was higher, mainly by the disposal of domestic effluents from the urban agglomerate and of the industrial waste tailing basins upstream of this river. Due to its less inhabited environment and further away from the area urban and industrial, the Arapiranga River was more preserved. Waters pollution of around these area is increasingly intense, and restricted its uses for various purposes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Science.gov (United States)

    These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership is co-chaired by the U.S. Dept. of Housing and Urban Development and the U.S. Environmental Protection Agency. There are also a number of other federal agencies engaged in projects with Tribal, State, and local officials, and community stakeholders. Like many western river ecosystems, the Middle Rio Grande faces numerous challenges in balancing competing needs within a finite water supply and other resource constrains. Historical practices by our ancestors and immigrants to the Middle Rio Grande have established the conditions that we have inherited. Long-term drought exacerbated by climate change is changing conditions that affect natural and human communities as we strive to improve our precious Rio Grande.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will reconnect our urban communities, particularly those that are overburdened or economically distressed, with the waterway by improving coordination among federal agencies and collaborating with community-led revitalization efforts. Our projects will improve our community water systems and promote their economic, environmental and social benefits. Specifically, the Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will support the development of the Valle de Oro

  14. Study on Microbiological Quality of Rural and Urban Drinking Water in Distribution Systems of Ijroud, Zanjan in 2013-2015

    Directory of Open Access Journals (Sweden)

    Zahra Tohidloo

    2017-12-01

    Full Text Available Background: Providing safe drinking water has critical importance to human societies. The aim of this study was to investigate microbiological quality of drinking water in distribution system of urban and rural regions of Ijroud, in Zanjan province. Methods: In present descriptive study, the microbiological examination of drinking water was conducted in 15 facilities with 401 samples. Transportation and test procedures were according to standard methods for the examination of water and wastewater. Results: Total number of microbial samples were 401 and 66.66% of them were positive for total and fecal coliforms. Also, water of 10 villages were not suitable for drinking with respecting to national standards. In addition, samples of only 5 villages were suitable for human consumption. The range of fecal coliforms in distribution networks' samples were from 4 to 75 MPN/100 ml. Conclusion: This study showed that as microbiological aspect, drinking water is not potable in some rural communities. The consumption of drinking water in this distribution networks can threaten the health of consumers, thus, the water supply organizations have to improve operation and maintenance measurements due to prevent the spread of water-borne diseases.

  15. Waste water as a source for secondary resources and linkage to other urban systems

    NARCIS (Netherlands)

    Agudelo Vera, C.M.; Mels, A.R.; Rijnaarts, H.H.M.

    2010-01-01

    Urban metabolism studies have shown that, in terms of sheer mass, water is the largest and the most vital component. Population growth and higher living standards will cause ever increasing demands for good quality municipal and industrial water, and ever increasing sewage flows within a limited

  16. Quantitative Assessment of Water Use Efficiency in Urban and Domestic Buildings

    Directory of Open Access Journals (Sweden)

    Vicente Santiago-Fandiño

    2013-08-01

    Full Text Available This paper discusses the potential of water savings at property, household and urban levels, through the application of environmentally sound technologies (ESTs, as well as their quantification using the software Wise Water. Household centered measures are identified that allow for significant reduction of drinking water consumption with comparatively small effort, and without limitation of comfort. Furthermore, a method for the estimation of water recycling, for rainwater harvesting and for the utilization potential as locally available renewable freshwater is presented. Based on this study, the average drinking water consumption in urban households of industrialized countries could be reduced by approximately one third, without significant investment costs, either within the framework of new constructions or by the remodeling of water and sanitation systems in residential buildings. By using a secondary water quality, the drinking water demand could even be reduced by 50%. In the case of an area-wide application, the overall fresh water demand of cities and the exploitation of fresh water resources could be significantly reduced. Due to the comparability of the domestic water use of the investigated households, the findings are internationally transferable, for example to countries in Europe, Asia, and also the USA.

  17. Developing a stochastic conflict resolution model for urban runoff quality management: Application of info-gap and bargaining theories

    Science.gov (United States)

    Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra

    2016-02-01

    In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.

  18. Uncertainty propagation in urban hydrology water quality modelling

    NARCIS (Netherlands)

    Torres Matallana, Arturo; Leopold, U.; Heuvelink, G.B.M.

    2016-01-01

    Uncertainty is often ignored in urban hydrology modelling. Engineering practice typically ignores uncertainties and uncertainty propagation. This can have large impacts, such as the wrong dimensioning of urban drainage systems and the inaccurate estimation of pollution in the environment caused

  19. Multiple lines of evidence to identify sewage as the cause of water quality impairment in an urbanized tropical watershed.

    Science.gov (United States)

    Kirs, Marek; Kisand, Veljo; Wong, Mayee; Caffaro-Filho, Roberto A; Moravcik, Philip; Harwood, Valerie J; Yoneyama, Bunnie; Fujioka, Roger S

    2017-06-01

    Indicator bacteria, which are conventionally used to evaluate recreational water quality, can originate from various non-human enteric and extra-enteric sources, hence they may not be indicative of human health risk nor do they provide information on the sources of contamination. In this study we utilized traditional (enterococci and Escherichia coli) and alternative (Clostridium perfringens) indicator bacteria, F + -specific coliphage, molecular markers for microorganisms associated with human sewage (human-associated Bacteroides and polyomaviruses), and microbial community analysis tools (16S rRNA gene fragment amplicon sequencing), to identify and evaluate human sewage-related impact in the Manoa watershed in Honolulu, Hawaii. Elevated concentrations of enterococci (geometric mean ranging from 1604 to 2575 CFU 100 mL -1 ) and C. perfringens (45-77 CFU 100 mL -1 ) indicated impairment of the urbanized section of the stream, while indicator bacteria concentrations decreased downstream in the tidally influenced Ala Wai Canal. The threshold values triggering water quality violation notifications in Hawaii were exceeded in 33.3-75.0% of samples collected at sites in the urbanized section of Manoa Stream, but were not exceeded in any of the samples collected at an upstream site located in a forested area. Correlation between indicator bacteria concentrations and rainfall amounts was weak to moderate but significant (E. coli R = 0.251, P = 0.009; enterococci R = 0.369, P watershed, it was lower in the impaired section. Leaking sewer systems and illegal cross-connections are implicated in the impairment of the watershed, hence both the sewer and the storm water lines should be routinely inspected. Collectively, our data suggest that information derived from the analysis of microbial communities complements current marker-based microbial source tracking techniques and environmental monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Urban Quality Development & Management

    DEFF Research Database (Denmark)

    Lehmann, Martin; Fryd, Ole

    2008-01-01

    Purpose: The purpose of this article is to describe and discuss the development and the structure of a new international master on the subject of Urban Quality Development & Management, and explore the potential of the process and the outcome in serving as models adoptable by faculty at other......: Urban quality development and management is dependent on human resource development, institutionalised networks and confident exchange of knowledge, and must identify and incorporate multiple environmental, social, economic and cultural aspects. The authors find that at the core of innovative societies......, an interlinkage exists between practice (business, civil society, governance) and theory (research, education). The case illustrates how a new curriculum takes time to develop and implement and how it relies on confidence and trust between partners, in this case cities and universities, before being able to plant...

  1. Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment

    Science.gov (United States)

    A Proposed Strategy for San Joaquin River Basin Water Quality Monitoring and Assessment was published in 2010, and a Strawman Proposal was developed in 2012 by the Coalition for Urban/Rural Environmental Stewardship, California Water Resources Board, EPA.

  2. Spatial patterning of water quality in Biscayne Bay, Florida as a function of land use and water management.

    Science.gov (United States)

    Caccia, Valentina G; Boyer, Joseph N

    2005-11-01

    An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.

  3. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  4. Master in Urban Quality

    DEFF Research Database (Denmark)

    2006-01-01

    Development and content of an international Master in Urban Quality development and management. The work has been done in a cooperation between Berlage institut, Holland; Chulalongkorn University, Thailand; Mahidol University, Thailand; University Kebangsaan Malaysia, Malaysia; og Aalborg...

  5. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  6. Triangulating the Sociohydrology of Water Supply, Quality and Forests in the Triangle

    Science.gov (United States)

    Band, L. E.

    2016-12-01

    The North Carolina Research Triangle is among the most rapidly growing metropolitan areas in the United States, with decentralized governance split among several different municipalities, counties and water utilities. Historically smaller populations, plentiful rainfall, and riparian rights based water law provided both a sense of security for water resources and influenced the development of separate infrastructure systems across the region. The growth of water demand with rising populations with typical suburban sprawl, the development of multi-use reservoirs immediately downstream of urban areas, and increased hydroclimate variability have raised the potential for periodic water scarcity coupled with increasing eutrophication of water supplies. We discuss the interactions and tradeoffs between management of emerging water scarcity, quality and forest biodiversity in the Triangle as a model for the US Southeast. Institutional stakeholders include water supply and stormwater utilities, environmental NGOs, federal, state, county and municipal governments, developers and home owner associations. We emphasize principles of ecohydrologic resilience learned in heavily instrumented research watersheds, adapted to rapidly developing urban systems, and including socioeconomic and policy dynamics. Significant 20th century reforestation of central North Carolina landscapes have altered regional water balances, while providing both flood and water quality mitigation. The regrowth forest is dynamic and heterogeneous in water use based on age class and species distribution, with substantial plantation and natural regeneration. Forecasts of land use and forest structural and compositional change are based on scenario socioeconomic development, climate change and forecast wood product markets. Urban forest and green infrastructure has the potential to mediate the trade-offs and synergies of these goals, but is in a very nascent state. Computational tools to assess policy

  7. Spatial and Temporal Variations in Diatoms from la Chaine des Lacs Urban Watershed, Nord-Pas France, in Relation to Water Quality

    Science.gov (United States)

    Noble, P. J.; Van de Vijver, B.; Verleyen, E.; Prygiel, J.; Ivanovsky, A.; Lesven, L.; Billon, G.

    2016-12-01

    Diatom analysis was conducted on lake sediments in la Chaîne des Lacs (CDL), a shallow eutrophic urban park and storm control system in Villeneuve d'Ascq, France, to address both the present day water quality, and the evolution of this urban system over its 40 year history. The main lake, Lac du Héron (LDH), received recent attention because of water quality problems, including eutrophication, harmful algal blooms, and invasion by the macrophyte Elodea in 2012. A total of 17 sites were collected in CDL, 11 of which were in LDH, to document spatial variability, and a 26cm long core addresses historical changes. The bulk of the diatom assemblage in LDH can be classified as both eutrophic and moderately metal tolerant, using modern national diatom indices developed and used by the French regional water agencies. Surface sediment samples within LDH show large spatial variations in %Cocconeis placentula whose habitat is epiphytic growth on Elodea. Other variation is reflected in the phytoplankton composition both spatially, and interannually. Aulacoseira muzzanensis and Cyclostephanos dubius showed greater abundance in the open water habitats in LDH, whereas sites in CDL outside of LDH had greater Cyclotella meneghiniana. Temporally, Stephanodicsus (largely S. hantzschii), the dominant diatom in early spring, were present in greater abundances in the 2016 surface sediment samples than in any of the 2015 samples. One possible explanation is that the 2016 samples, taken March 30th, preferentially preserved the early spring Stephanodiscus bloom, in contrast to the 2015 samples, which were taken in January. The sediment core provides an historical record, where the uppermost 4cm plot with the bulk of the LDH surface samples and contain abundant Cocconeis, 4 -14cm is phytoplankton-rich, largely Cyclostephanos dubius and Aulacoseira muzzanensis, and represents a less weed-choked environment prior to the 2012 Elodea invasion. The base of the core is dominated by Amphora and

  8. Steering urban environmental quality in a multi-level governance context. How can devolution be the solution to pollution?

    NARCIS (Netherlands)

    Stigt, van Rien; Driessen, Peter P.J.; Spit, Tejo

    2016-01-01

    Devolution is advocated as a solution to scale mismatches in urban environmental governance. However, urban environmental quality is a multi-scalar issue: its various aspects – noise, soil, odour, air, water et cetera – are influenced by processes at multiple spatial and temporal scales. Decisions

  9. Telemetric system for hydrology and water quality monitoring in watersheds of northern New Mexico, USA.

    Science.gov (United States)

    Meyer, Michael L; Huey, Greg M

    2006-05-01

    This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.

  10. A Practical Review of Integrated Urban Water Models: Applications as Decision Support Tools and Beyond

    Science.gov (United States)

    Mosleh, L.; Negahban-Azar, M.

    2017-12-01

    The integrated urban water management has become a necessity due to the high rate of urbanization, water scarcity, and climate variability. Climate and demographic changes, shifting the social attitude toward the water usage, and insufficiencies in system resilience increase the pressure on the water resources. Alongside with the water management, modeling urban water systems have progressed from traditional view to comprise alternatives such as decentralized water and wastewater systems, fit-for-purpose practice, graywater/rainwater reuse, and green infrastructure. While there are review papers available focusing on the technical part of the models, they seem to be more beneficial for model developers. Some of the models analyze a number of scenarios considering factors such as climate change and demography and their future impacts. However, others only focus on quality and quantity of water in a supply/demand approach. For example, optimizing the size of water or waste water store, characterizing the supply and quantity of urban stormwater and waste water, and link source of water to demand. A detailed and practical comparison of such models has become a necessity for the practitioner and policy makers. This research compares more than 7 most commonly used integrated urban water cycle models and critically reviews their capabilities, input requirements, output and their applications. The output of such detailed comparison will help the policy makers for the decision process in the built environment to compare and choose the best models that meet their goals. The results of this research show that we need a transition from developing/using integrated water cycle models to integrated system models which incorporate urban water infrastructures and ecological and economic factors. Such models can help decision makers to reflect other important criteria but with the focus on urban water management. The research also showed that there is a need in exploring

  11. Evaluation of nonpoint-source contamination, Wisconsin: Land-use and Best-Management-Practices inventory, selected streamwater-quality data, urban-watershed quality assurance and quality control, constituent loads in rural streams, and snowmelt-runoff analysis, water year 1994

    Science.gov (United States)

    Walker, J.F.; Graczyk, D.J.; Corsi, S.R.; Owens, D.W.; Wierl, J.A.

    1995-01-01

    The objective of the watershed-management evaluation monitoring program in Wisconsin is to evaluate the effectiveness of best-management practices (BMP) for controlling nonpoint-source contamination in rural and urban watersheds. This report is an annual summary of the data collected for the program by the U.S Geological Survey and a report of the results of several different detailed analyses of the data. A land-use and BMP inventory is ongoing for 12 evaluation monitoring projects to track the sources of nonpoint-source pollution in each watershed and to document implementation of BMP's that may cause changes in the water quality of streams. Updated information is gathered each year, mapped, and stored in a geographic-information-system data base. Summaries of data collected during water years 1989-94 are presented. A water year is the period beginning October 1 and ending September 30; the water year is designated by the calendar year in which it ends. Suspended-sediment and total-phosphorus data (storm loads and annual loads) are summarized for eight rural sites. For all sites, the annual suspended-sediment or suspended-solids load for water year 1993 exceeded the average for the period of data collection; the minimum annual loads were transported in water year 1991 or 1992. Continuous dissolved-oxygen data were collected at seven rural sites during water year 1994. Data for water years 1990-93 are summarized and plotted in terms of percentage of time that a particular concentration is equaled or exceeded. Dissolved-oxygen concentrations in four streams were less than 9 mg/L at least 50 percent of the time, a condition that fails to meet suggested criterion for coldwater streams. The dissolved-oxygen probability curve for one of the coldwater streams is markedly different than the curves for the other streams, perhaps because of differences in aquatic biomass. Blank quality-assurance samples were collected at two of the urban evaluation monitoring sites to

  12. Urbanization eases water crisis in China

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Ji, Chen

    2012-01-01

    Socioeconomic development in China has resulted in rapid urbanization, which includes a large amount of people making the transition from rural areas to cities. Many have speculated that this mass migration may have worsened the water crisis in many parts of the country. However, this study shows that the water crisis would be more severe if the rural-to-urban migration did not occur.

  13. [Monitoring and analysis on evolution process of rainfall runoff water quality in urban area].

    Science.gov (United States)

    Dong, Wen; Li, Huai-En; Li, Jia-Ke

    2013-02-01

    In order to find the water quality evolution law and pollution characteristics of the rainfall runoff from undisturbed to the neighborhood exit, 6 times evolution process of rainfall runoff water quality were monitored and analyzed from July to October in 2011, and contrasted the clarification efficiency of the grassland to the roof runoff rudimentarily at the same time. The research showed: 1. the results of the comparison from "undisturbed, rainfall-roof, rainfall runoff-road, rainfall-runoff the neighborhood exit runoff " showed that the water quality of the undisturbed rain was better than that from the roof and the neighborhood exist, but the road rainfall runoff water quality was the worst; 2. the average concentrations of the parameters such as COD, ammonia nitrogen and total nitrogen all exceeded the Fifth Class of the Surface Water Quality Standard except for the soluble total phosphorus from undisturbed rainfall to the neighborhood exit; 3. the runoff water quality of the short early fine days was better than that of long early fine days, and the last runoff water quality was better than that of the initial runoff in the same rainfall process; 4. the concentration reduction of the grassland was notable, and the reduction rate of the grassland which is 1.0 meter wide of the roof runoff pollutants such as COD and nitrogen reached 30%.

  14. Surface-Water Quality Conditions and Long-Term Trends at Selected Sites within the Ambient Water-Quality Monitoring Network in Missouri, Water Years 1993-2008

    Science.gov (United States)

    Barr, Miya N.; Davis, Jerri V.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, collects data pertaining to the surface-water resources of Missouri. These data are collected as part of the Missouri Ambient Water-Quality Monitoring Network and constitute a valuable source of reliable, impartial, and timely information for developing an improved understanding of water resources in the State. Six sites from the Ambient Water-Quality Monitoring Network, with data available from the 1993 through 2008 water years, were chosen to compare water-quality conditions and long-term trends of dissolved oxygen, selected physical properties, total suspended solids, dissolved nitrate plus nitrite as nitrogen, total phosphorous, fecal indicator bacteria, and selected trace elements. The six sites used in the study were classified in groups corresponding to the physiography, main land use, and drainage basin size, and represent most stream types in Missouri. Long-term trends in this study were analyzed using flow-adjusted and non-flow adjusted models. Highly censored datasets (greater than 5 percent but less than 50 percent censored values) were not flow-adjusted. Trends that were detected can possibly be related to changes in agriculture or urban development within the drainage basins. Trends in nutrients were the most prevalent. Upward flow-adjusted trends in dissolved nitrate plus nitrite (as nitrogen) concentrations were identified at the Elk River site, and in total phosphorus concentrations at the South Fabius and Grand River sites. A downward flow-adjusted trend was identified in total phosphorus concentrations from Wilson Creek, the only urban site in the study. The downward trend in phosphorus possibly was related to a phosphorus reduction system that began operation in 2001 at a wastewater treatment plant upstream from the sampling site. Total suspended solids concentrations indicated an upward non-flow adjusted trend at the two northern sites (South Fabius

  15. U.S. Midwestern Residents Perceptions of Water Quality

    Directory of Open Access Journals (Sweden)

    Lois Wright Morton

    2011-02-01

    Full Text Available The plurality of conservation and environmental viewpoints often challenge community leaders and government agency staff as they seek to engage citizens and build partnerships around watershed planning and management to solve complex water quality issues. The U.S. Midwest Heartland region (covering the states of Missouri, Kansa, Iowa, and Nebraska is dominated by row crop production and animal agriculture, where an understanding of perceptions held by residents of different locations (urban, rural non-farm, and rural farm towards water quality and the environment can provide a foundation for public deliberation and decision making. A stratified random sample mail survey of 1,042 Iowa, Kansas, Missouri, and Nebraska residents (54% response rate reveals many areas of agreement among farm, rural non-farm, and those who live in towns on the importance of water issues including the importance and use of water resources; beliefs about water quality and perceptions of impaired water quality causality; beliefs about protecting local waters; and environmental attitudes. With two ordinal logistic models, we also found that respondents with strong environmental attitudes have the least confidence in ground and surface water quality. The findings about differences and areas of agreement among the residents of different sectors can provide a communication bridge among divergent viewpoints and assist local leaders and agency staff as they seek to engage the public in discussions which lead to negotiating solutions to difficult water issues.

  16. Water quality and small-scale land use mapping in the South-Chinese megacity Guangzhou

    Science.gov (United States)

    Strohschoen, R.; Azzam, R.; Baier, K.

    2011-12-01

    Since China adopted its "open-door" policy in 1978/ 79, the Pearl River Delta became one of the most rapid and dynamic urbanizing areas in East Asia due to migration, industrialization and globalization processes. The study area Guangzhou grew from a small town to a megacity with some 15 million inhabitants within less than 30 years. The rapid population growth and the urban and industrial expansion led to a remarkably increasing demand for freshwater, a high water consume and a rising sewage production. While economy and house constructions developed very fast, the expansion of water infrastructures could not keep pace with the urban growth. The consequences arising out of these situations are a serious deterioration of the surface and groundwater resources but also a degradation of living conditions and a threat to human health, particularly of the urban poor. In contrast to other studies that often consider the surface water quality outside Guangzhou, our focus was put on the urban Pearl River and its tributaries as well as urban groundwater and tap water. The study was conducted to spatially investigate the present status of the water quality in view of the concurrent formal and informal anthropogenic influences. Additional land use mapping was undertaken to analyze the interrelations between different land use types and water quality and to determine local pollution hotspots which should be taken into particular consideration of future city planning. Supplementing interviews were hold to find out usage patterns of groundwater and strategies to cope with both insufficient tap water quality and water infrastructures. A total of 74 surface water samples and 16 groundwater samples of privately and publicly accessible wells were taken at the beginning of the rainy season in May 2010. Those samples were partly compared to measurements carried out from 2007-2009, where adequate. Further, 15 tap water samples were taken in 2007/ 08 to draw conclusions about possible

  17. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    Science.gov (United States)

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  18. Water quality of streams in Johnson County, Kansas, 2002-07

    Science.gov (United States)

    Rasmussen, T.J.

    2009-01-01

    Water quality of streams in Johnson County, Kansas was evaluated from October 2002 through December 2007 in a cooperative study between the U.S. Geological Survey and the Johnson County Stormwater Management Program. Water quality at 42 stream sites, representing urban and rural basins, was characterized by evaluating benthic macroinvertebrates, water (discrete and continuous data), and/or streambed sediment. Point and nonpoint sources and transport were described for water-quality constituents including suspended sediment, dissolved solids and major ions, nutrients (nitrogen and phosphorus), indicator bacteria, pesticides, and organic wastewater and pharmaceutical compounds. The information obtained from this study is being used by city and county officials to develop effective management plans for protecting and improving stream quality. This fact sheet summarizes important results from three comprehensive reports published as part of the study and available on the World Wide Web at http://ks.water.usgs.gov/Kansas/studies/qw/joco/. ?? 2009 ASCE.

  19. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  20. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  1. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    Science.gov (United States)

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural

  2. Hydrology, water quality, and response to changes in phosphorus loading of Minocqua and Kawaguesaga Lakes, Oneida County, Wisconsin, with special emphasis on effects of urbanization

    Science.gov (United States)

    Garn, Herbert S.; Robertson, Dale M.; Rose, William J.; Saad, David A.

    2010-01-01

    Minocqua and Kawaguesaga Lakes are 1,318- and 690-acre interconnected lakes in the popular recreation area of north-central Wisconsin. The lakes are the lower end of a complex chain of lakes in Oneida and Vilas Counties, Wis. There is concern that increased stormwater runoff from rapidly growing residential/commercial developments and impervious surfaces from the urbanized areas of the Town of Minocqua and Woodruff, as well as increased effluent from septic systems around their heavily developed shoreline has increased nutrient loading to the lakes. Maintaining the quality of the lakes to sustain the tourist-based economy of the towns and the area was a concern raised by the Minocqua/Kawaguesaga Lakes Protection Association. Following several small studies, a detailed study during 2006 and 2007 was done by the U.S. Geological Survey, in cooperation with the Minocqua/Kawaguesaga Lakes Protection Association through the Town of Minocqua to describe the hydrology and water quality of the lakes, quantify the sources of phosphorus including those associated with urban development and to better understand the present and future effects of phosphorus loading on the water quality of the lakes. The water quality of Minocqua and Kawaguesaga Lakes appears to have improved since 1963, when a new sewage-treatment plant was constructed and its discharge was bypassed around the lakes, resulting in a decrease in phosphorus loading to the lakes. Since the mid-1980s, the water quality of the lakes has changed little in response to fluctuations in phosphorus loading from the watershed. From 1986 to 2009, summer average concentrations of near-surface total phosphorus in the main East Basin of Minocqua Lake fluctuated from 0.009 mg/L to 0.027 mg/L but generally remained less than 0.022 mg/L, indicating that the lake is mesotrophic. Phosphorus concentrations from 1988 through 1996, however, were lower than the long-term average, possibly the result of an extended drought in the area

  3. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  4. National trends in drinking water quality violations.

    Science.gov (United States)

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  5. Ground-Water Quality and its Relation to Land Use on Oahu, Hawaii, 2000-01

    Science.gov (United States)

    Hunt, Charles D.

    2003-01-01

    Water quality in the main drinking-water source aquifers of Oahu was assessed by a one-time sampling of untreated ground water from 30 public-supply wells and 15 monitoring wells. The 384 square-mile study area, which includes urban Honolulu and large tracts of forested, agricultural, and suburban residential lands in central Oahu, accounts for 93 percent of the island's ground-water withdrawals. Organic compounds were detected in 73 percent of public-supply wells, but mostly at low concentrations below minimum reporting levels. Concentrations exceeded drinking-water standards in just a few cases: the solvent trichloroethene and the radionuclide radon-222 exceeded Federal standards in one public-supply well each, and the fumigants 1,2-dibromo-3-chloropropane (DBCP) and 1,2,3-trichloropropane (TCP) exceeded State standards in three public-supply wells each. Solvents, fumigants, trihalomethanes, and herbicides were prevalent (detected in more than 30 percent of samples) but gasoline components and insecticides were detected in few wells. Most water samples contained complex mixtures of organic compounds: multiple solvents, fumigants, or herbicides, and in some cases compounds from two or all three of these classes. Characteristic suites of chemicals were associated with particular land uses and geographic locales. Solvents were associated with central Oahu urban-military lands whereas fumigants, herbicides, and fertilizer nutrients were associated with central Oahu agricultural lands. Somewhat unexpectedly, little contamination was detected in Honolulu where urban density is highest, most likely as a consequence of sound land-use planning, favorable aquifer structure, and less intensive application of chemicals (or of less mobile chemicals) over recharge zones in comparison to agricultural areas. For the most part, organic and nutrient contamination appear to reflect decades-old releases and former land use. Most ground-water ages were decades old, with recharge

  6. Comparison of Tillandsia usneoides (Spanish moss) water and leachate dynamics between urban and pristine barrier island maritime oak forests

    Science.gov (United States)

    Van Stan, J. T.; Stubbins, A.; Reichard, J. S.; Wright, K.; Jenkins, R. B.

    2013-12-01

    Epiphyte coverage on forest canopies can drastically alter the volume and chemical composition of rainwater reaching soils. Along subtropical and tropical coastlines Tillandisa usneoides L. (Spanish moss), in particular, can envelop urban and natural tree crowns. Several cities actively manage their 'moss' covered forest to enhance aesthetics in the most active tourist areas (e.g., Savannah GA, St. Augustine FL, Charleston SC). Since T. usneoides survives through atmospheric water and solute exchange from specialized trichomes (scales), we hypothesized that T. usneoides water storage dynamics and leachate chemistry may be altered by exposure to this active urban atmosphere. 30 samples of T. usneoides from managed forests around the tourist center of Savannah, Georgia, USA were collected to compare with 30 samples from the pristine maritime live oak (Quercus virginiana Mill.) forests of a nearby undeveloped barrier island (St. Catherines Island, Georgia, USA). Maximum water storage capacities were determined via submersion (for all 60 samples) along with dissolved ion (DI) and organic matter (DOM) concentrations (for 15 samples each) after simulated throughfall generation using milliQ ultrapurified water. Further, DOM quality was evaluated (for 15 samples each) using absorbance and fluorescence spectroscopy (EEMS). Results show significant alterations to water storage dynamics, DI, DOM, and DOM quality metrics under urban atmospheric conditions, suggesting modified C and water cycling in urban forest canopies that may, in turn, influence intrasystem nutrient cycles in urban catchment soils or streams via runoff.

  7. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    Science.gov (United States)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  8. Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.

    Science.gov (United States)

    Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène

    2009-09-01

    A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.

  9. Household characteristics affecting drinking water quality and human health

    International Nuclear Information System (INIS)

    Kausar, S.; Maann, A.A.; Zafar, I.; Ali, T.

    2009-01-01

    Pakistan's water crisis, especially serious water shortages have had a great impact on the health of the general population. Today majority of Pakistanis have no access to improved water sources which force people to consume polluted drinking water that results in the shape of waterborne diseases. In addition to this, household characteristics, includes mother's education and family income, also have an impact on drinking water quality and ultimately on human health. This study was conducted in three districts of Province Punjab both in urban and rural areas. The sample size of this study was 600 females of age group 20-60 years. From the data, it was concluded that mother's education and family income were affecting drinking water quality and human health. As the mother's years of education increased, the health issues decreased. Similarly, as the level of income increased, people suffered from water related diseases decreased. (author)

  10. Quality of urban forest carbon credits

    Science.gov (United States)

    Neelam C. Poudyala; Jacek P. Siry; J.M. Bowker

    2011-01-01

    While the urban forest is considered an eligible source of carbon offset credits, little is known about its market potential and the quality aspects of the credits. As credit suppliers increase in number and credit buyers become more interested in purchasing carbon credits, it is unclear whether and how urban forest carbon credits can perform relative to the other...

  11. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  12. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  13. Protection of Urban Water body Infrastructure - Policy Requirements

    Science.gov (United States)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  14. Development of Urban Inundation Warning Model at Cyclic Artificial Water Way in Song-do International City, Republic of Korea

    Science.gov (United States)

    Lee, T.; Lee, C.; Kim, H.

    2016-12-01

    Abstract Song-do international city was constructed by reclaiming land from the coastal waters of Yeonsu-gu, Incheon Metropolitan City, Republic of Korea. The □-shaped cyclic artificial water way has been considered for improving water quality, waterfront and internal drainage in Song-do international city. By improving water quality, various marine facilities, such as marina, artificial beach, marine terminal, and so on, will be set up around the artificial water way for the waterfront. Since the water stage of the artificial water way changes depending on water gates operations, it is necessary to develop an urban inundation warning model to evaluate safeties of the waterfront facilities and its passengers. By considering characteristics of urban watershed, we calculate discharge flowing into the water way using XP-SWMM model. As a result of estimating 100-year flood frequency, although there are slight differences in drainage sections, the maximum flood discharge occurs in 90-min rainfall duration. In order to consider impacts of tide and hydraulic structure, we establish Inland drainage plans through the analysis of unsteady flow using HEC-RAS. The urban inundation warning model is configured to issue a warning when the water plain elevation exceeds EL. 1.5m which is usually managed at EL. 1.0m. In this study, the design flood stage of artificial water way and urban inundation warning model are developed for Song-do international city, and therefore it is expected that a reliability of management and operation of the waterfront facilities is improved. Keywords : Artificial Water Way; Waterfront; Urban Inundation Warning Model. Acknowlegement This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  15. Environmental impact of leachate characteristics on water quality.

    Science.gov (United States)

    Cumar, Sampath Kumar Mandyam; Nagaraja, Balasubramanya

    2011-07-01

    Improper urbanization and industrialization are causing a critical stress on groundwater quality in urban areas of the developing countries. The present study under investigation describes the pollution caused by leachate from a waste management site in southwestern Bangalore city causing pollution of the surface water and groundwater reserves. The characterization of 20 groundwater samples and Haralukunte lake sample indicated high pollution of these water reserves by leachate entry into the groundwater and surface water sources. The study area focuses around the solid waste management site, carrying out bio-composting and vermi-composting of municipal solid waste. Further investigations on the severe health problems faced by the public in the study area has revealed a clear pointer towards the usage of polluted water for rearing live-stock, farming, and domestic activities. The characterization of the leachate with high values of BOD at 1,450 mg/l, TDS at 17,200 mg/l, nitrates at 240 mg/l, and MPN at 545/100 ml indicates a clear nuisance potential, which has been substantiated by the characterization of lake water sample with chlorides at 3,400 mg/l, TDS at 8,020 mg/l, and lead and cadmium at 0.18 and 0.08 mg/l, respectively. Analysis of groundwater samples shows alarming physicochemical values closer to the waste disposal site and relatively reduced values away from the source of the waste management site. Bureau of Indian Standards have been adapted as the benchmark for the analysis and validation of observed water quality criteria.

  16. Comparative assessment for future prediction of urban water environment using WEAP model: A case study of Kathmandu, Manila and Jakarta

    Science.gov (United States)

    Kumar, Pankaj; Yoshifumi, Masago; Ammar, Rafieiemam; Mishra, Binaya; Fukushi, Ken

    2017-04-01

    Uncontrolled release of pollutants, increasing extreme weather condition, rapid urbanization and poor governance posing a serious threat to sustainable water resource management in developing urban spaces. Considering half of the world's mega-cities are in the Asia and the Pacific with 1.7 billion people do not access to improved water and sanitation, water security through its proper management is both an increasing concern and an imperative critical need. This research work strives to give a brief glimpse about predicted future water environment in Bagmati, Pasig and Ciliwung rivers from three different cities viz. Manila, Kathmandu and Jakarta respectively. Hydrological model used here to foresee the collective impacts of rapid population growth because of urbanization as well as climate change on unmet demand and water quality in near future time by 2030. All three rivers are major source of water for different usage viz. domestic, industrial, agriculture and recreation but uncontrolled withdrawal and sewerage disposal causing deterioration of water environment in recent past. Water Evaluation and Planning (WEAP) model was used to model river water quality pollution future scenarios using four indicator species i.e. Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD) and Nitrate (NO3). Result for simulated water quality as well as unmet demand for year 2030 when compared with that of reference year clearly indicates that not only water quality deteriorates but also unmet demands is increasing in future course of time. This also suggests that current initiatives and policies for water resource management are not sufficient enough and hence immediate and inclusive action through transdisciplinary research.

  17. Optimal Management of Water, Nutrient and Carbon Cycles of Green Urban Spaces

    Science.gov (United States)

    Revelli, R.; Pelak, N. F., III; Porporato, A. M.

    2016-12-01

    The urban ecosystem is a complex, metastable system with highly coupled flows of mass, energy, people and capital. Their sustainability is in part linked to the existence of green spaces which provide important ecosystem services, whose sustainable management requires quantification of their benefits in terms of impacts on water, carbon and energy fluxes. An exploration of problems of optimal management of such green urban spaces and the related biogeochemical fluxes is presented, extending probabilistic ecohydrological models of the soil-plant system to the urban context, where biophysical and ecological conditions tend to be radically different from the surrounding rural and natural environment (e.g. heat islands, air and water pollution, low quality soils, etc…). The coupled soil moisture, nutrient and plant dynamics are modeled to compute water requirements, carbon footprint, nutrient demand and losses, and related fluxes under different design, management and climate scenarios. The goal is to provide operative rules for a sustainable water use through focused irrigation and fertilization strategies, optimal choice of plants, soil and cultivation conditions, accounting for the typical hydroclimatic variability that occur in the urban environment. This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 701914. The work is also cofounded by USDA Agricultural Research Service cooperative agreement 58-6408-3-027; National Science Foundation (NSF) grants: EAR-1331846, EAR-1316258, and the DGE-1068871 and FESD EAR-1338694.

  18. Perceptions of using low-quality irrigation water in vegetable production in Morogoro, Tanzania

    DEFF Research Database (Denmark)

    Mayilla, Winfrida; Keraita, Bernard; Ngowi, Helena

    2017-01-01

    This study was conducted to examine perceptions of the farmers and key informants on the use of low-quality irrigation water for vegetable production in urban and peri-urban areas in Morogoro, Tanzania. The methods used to collect data were farmer surveys (n = 60), focus group discussions (n = 4)...... in formulating policies and creating health promotion awareness for safe use of low-quality water for benefit maximization and health risk reduction....... of buying commercial fertilizers, vegetable production all year round, sustainable income generation from selling vegetables and also jobs creation in the community among farmers and vegetable sellers. Findings from Mann–Whitney U test and Kruskal–Wallis test score on farmers perception scales indicate...

  19. Indicating anthropogenic effectson urban water system - indicators and extension

    Science.gov (United States)

    Strauch, G.; Ufz-Team

    2003-04-01

    Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments

  20. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    Science.gov (United States)

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  1. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  2. Drinking water quality in urban areas of pakistan a case study of gujranwala city

    International Nuclear Information System (INIS)

    Haydar, S.; Rashid, H.

    2016-01-01

    A study was conducted to evaluate the drinking water quality of Gujranwala city. Samples were collected from 16 locations including: 4 tube wells, 4 overhead reservoirs (OHR) and 8 house connections. Twelve physicochemical and two bacteriological parameters were tested, before and after monsoon and compared with National Standards for Drinking Water Quality (NSDWQ). The results demonstrated that most of the physicochemical parameters, except lead, nickle and chromium were within NSDWQ before and after monsoon. Bacteriological and heavy metal contamination was found before and after the monsoon. Possible reasons of contamination are: no disinfection, old and leaking water pipes, poor drainage during monsoon and possible cross connections between water and sewerage lines. It is recommended to practice disinfection, laying of water and sewerage pipes on opposite sides of streets and periodic water quality monitoring. (author)

  3. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    Science.gov (United States)

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  4. Evaluating Urban Quality: Indicators and Assessment Tools for Smart Sustainable Cities

    Directory of Open Access Journals (Sweden)

    Chiara Garau

    2018-02-01

    Full Text Available The analysis of urban sustainability is key to urban planning, and its usefulness extends to smart cities. Analyses of urban quality typically focus on applying methodologies that evaluate quality objectives at environmental, urban, and building levels. Research has shown that a system of indicators can be useful for developing qualitative and quantitative descriptors of urban environments. The first step in this study was to formulate a methodology to measure the quality of urban life based on investigative checklists and objective and subjective indicators, aggregated to develop an index to evaluate a city’s level of smart urban quality. The second step was to apply this methodology to evaluate the city of Cagliari (Italy at the neighbourhood scale, which is considered by literature the most suitable as a self-sufficient spatial unit for showing redevelopment results. In addition to sharing its research findings, this study aims to verify whether the methodology can be applied to similar urban contexts. The main outcomes of this research pertain to opportunities to numerically measure both objective and subjective aspects that affect urban quality. In this way, the most critical areas to be requalified have been highlighted in order to prepare policies congruent with the local context.

  5. Environmental quality assessment of cold water stream spring in urban perimeter of Codo City, Brazil

    Directory of Open Access Journals (Sweden)

    Luciana dos Santos Oliveira

    2016-12-01

    Full Text Available Lack of planning, accelerated and uncontrolled growth of Brazilian cities, has triggered a series of impacts in the aquatic ecosystems, including the degradation of springs. This study evaluated the macroscopic shape of the nascent state of cold water creek conservation in the urban area of Codo City, Maranhao State, by applying the Headwaters Environmental Impact Index (IIAN during the visit in the field. The spring is located in New Jerusalem neighborhood, with a poor degree of protection, with main macroscopic impact in degraded vegetation, easy access and the approach of urban facilities.

  6. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis

    Science.gov (United States)

    Aldea, Alexandru; Aldea, Mihaela

    2016-08-01

    . In areas of rapid growth the worse problems came from the inadequate amount of potable water, the continuous deterioration of water quality and the slow progress in the water resources management and supply. The effects of urban dynamics over the water use and sustainability deserves an increasing study over the recent history in order to provide for an optimal management of the interrelationships between them.

  7. Urban Densification and Recreational Quality of Public Urban Green Spaces—A Viennese Case Study

    Directory of Open Access Journals (Sweden)

    Arne Arnberger

    2012-04-01

    Full Text Available Public urban green spaces play an important role in urban sustainability. These places should provide high-quality recreation experiences for the urban residents. However, they are often overused. The Wienerberg area in the south of Vienna, Austria, was transformed from a waste disposal site into a natural recreation area. During the past years, intensive settlement densification processes have taken place, resulting in a doubling of the local population living within a few minutes walking distance. An on-site survey among green space visitors (N = 231 revealed that the majority of them considered the area to be overcrowded on Sundays/holidays and reported a perceived increase in visitor numbers during the past years. Visitors with more past experience, as well as those who have perceived an increase in visitor numbers during recent years, reported higher crowding perceptions. A significant proportion of them try to avoid these crowds, relying on behavioral coping strategies, such as inter-area displacement. While urban regeneration has provided an attractive recreation area, urban densification around the green space appears to have reduced its recreational quality. Monitoring recreation quality indicators, such as crowding perceptions, seems to be useful for sustainable urban green space management and city planning.

  8. Channels for change: private water and the urban poor

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Matthew; Matthews, Petter; Ryan-Collins, Lily [Engineers Against Poverty (United Kingdom)

    2010-05-15

    For the rapidly urbanising developing world, safe and affordable water is key to health and livelihoods, as well as meeting the Millennium Development Goals. But providing it demands innovative models. Where the context allows and the approach is appropriate, private sector involvement can generate win-win outcomes. Poor people can gain access to high-quality, affordable services, and companies can gain access to new and profitable business opportunities. Two examples of innovative 'private' water suppliers are the Manila Water Company's Water for the Poor Communities (TPSB) programme, and the Water & Sanitation for the Urban Poor (WSUP) partnership. Both have a multisector approach to service expansion and provision, including partnerships with local authorities; strong community involvement in selecting, designing and operating options; appropriate service levels to reduce costs; and a flexible range of services. Many elements of these models are also replicable.

  9. Air quality and urban form in U.S. urban areas: evidence from regulatory monitors.

    Science.gov (United States)

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2011-08-15

    The layout of an urban area can impact air pollution via changes in emissions and their spatial distribution. Here, we explore relationships between air quality and urban form based on cross-sectional observations for 111 U.S. urban areas. We employ stepwise linear regression to quantify how long-term population-weighted outdoor concentrations of ozone, fine particulate matter (PM(2.5)), and other criteria pollutants measured by the U.S. Environmental Protection Agency depend on urban form, climate, transportation, city size, income, and region. Aspects of urban form evaluated here include city shape, road density, jobs-housing imbalance, population density, and population centrality. We find that population density is associated with higher population-weighted PM(2.5) concentrations (p urban form variables are associated with 4%-12% changes in population-weighted concentrations-amounts comparable, for example, to changes in climatic factors. Our empirical findings are consistent with prior modeling research and suggest that urban form could potentially play a modest but important role in achieving (or not achieving) long-term air quality goals.

  10. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    Science.gov (United States)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  11. Hydrodynamic modelling of the influence of stormwater and combined sewer overflows on receiving water quality: Benzo(a)pyrene and copper risks to recreational water.

    Science.gov (United States)

    Björklund, Karin; Bondelind, Mia; Karlsson, Anna; Karlsson, Dick; Sokolova, Ekaterina

    2018-02-01

    The risk from chemical substances in surface waters is often increased during wet weather, due to surface runoff, combined sewer overflows (CSOs) and erosion of contaminated land. There are strong incentives to improve the quality of surface waters affected by human activities, not only from ecotoxicity and ecosystem health perspectives, but also for drinking water and recreational purposes. The aim of this study is to investigate the influence of urban stormwater discharges and CSOs on receiving water in the context of chemical health risks and recreational water quality. Transport of copper (Cu) and benzo[a]pyrene (BaP) in the Göta River (Sweden) was simulated using a hydrodynamic model. Within the 16 km modelled section, 35 CSO and 16 urban stormwater point discharges, as well as the effluent from a major wastewater treatment plant, were included. Pollutant concentrations in the river were simulated for two rain events and investigated at 13 suggested bathing sites. The simulations indicate that water quality guideline values for Cu are exceeded at several sites, and that stormwater discharges generally give rise to higher Cu and BaP concentrations than CSOs. Due to the location of point discharges and the river current inhibiting lateral mixing, the north shore of the river is better suited for bathing. Peak concentrations have a short duration; increased concentrations of the pollutants may however be present for several days after a rain event. Monitoring of river water quality indicates that simulated Cu and BaP concentrations are in the same order of magnitude as measured concentrations. It is concluded that hydrodynamic modelling is a useful tool for identifying suitable bathing sites in urban surface waters and areas of concern where mitigation measures should be implemented to improve water quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Water-quality characteristics of urban storm runoff at selected sites in East Baton Rouge Parish, Louisiana, February 2006 through November 2009

    Science.gov (United States)

    Frederick, C. Paul

    2011-01-01

    Water samples were collected at three watersheds in East Baton Rouge Parish, Louisiana, during February 2006 through November 2009 for continued evaluation of urban storm runoff. The watersheds represented land uses characterized predominantly as established commercial, industrial, and residential. The following water-quality data are reported: physical and chemical-related properties, fecal coliform, nutrients, trace elements, and organic compounds. Results of water-quality analyses enabled calculation of event-mean concentrations and estimated annual contaminant loads and yields of storm runoff from nonpoint sources for 12 water-quality properties and constituents. Lead met or exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level of 15 micrograms per liter for drinking water standards in 4 of 14 samples. Low level concentrations of mercury were detected in all 14 samples, and half were two to four times above the reporting limit of 0.02 micrograms per liter. The average dissolved phosphorus concentrations from each land use were two to four times the U.S. Environmental Protection Agency criterion of 0.05 milligrams per liter. Diazinon was detected in one sample at a concentration of 0.2 micrograms per liter. In the residential watershed, the largest at 216 acres, contaminant loads for 5 of the 12 water-quality properties and constituents were highest, with 4 of these being nutrients. The industrial watershed, 97 acres, had the highest contaminant loads for 6 of the 12 water-quality properties and constituents with 3 of these being metals, which is indicative of the type of land use. Zinc had the highest metal load (155 pounds per year) in the industrial watershed, compared to 36 pounds per year in the residential watershed, and 32 pounds per year in the established commercial watershed. The industrial watershed had the highest yields for 8 of the 12 water-quality properties and constituents, whereas the established commercial watershed had

  13. Relationship between land use and water quality in Pesanggrahan River

    Science.gov (United States)

    Effendi, Hefni; Muslimah, Sri; Ayu Permatasari, Prita

    2018-05-01

    Pesanggrahan River watershed has several activities such as residential and commercial area in its catchment area. The purpose of this study was to analyse water quality related to spatial land use in Pesanggrahan River using GIS Analysis. River water quality in some locations, did not meet water quality standard of class III. From pollution load estimation it was revealed that segment 2 (Bogor City) has the highest BOD, COD, and TSS of 15,043 kg/day, 25,619 kg/day, and 18,104 kg/day respectively. On the other hand, the most developed area in Pesanggrahan Watershed is located in segment 7 (24.5%). Hence, it can be concluded that although an area has a fairly small developed area, high urban activity can cause high BOD, COD, and TSS.

  14. BACIAS HIDROGRÁFICAS URBANAS: QUALIDADE DA ÁGUA E CONFLITOS AMBIENTAIS NA CIDADE DE ILHÉUS – BA. / URBAN WHATERSHEDS: WATER QUALITY AND ENVIRONMENTAL CONFLICTS IN THE CITY OF ILHÉUS – BA.

    Directory of Open Access Journals (Sweden)

    Pedro Enrico Salamim Fonseca Spanghero

    2017-08-01

    Full Text Available Watersheds are considered ideal systemic units for analysis, planning, and environmental management in rural and urban spaces. Qualitative studies of water represent a valuable tool for the construction of environmental indicators. This article aims to analyze the relationship of the use and land cover with water quality in seven sub-basins of Ilheus / BA, with different levels of population density. Dissolved oxygen parameters were used, pH, electrical conductivity, water temperature, salinity, total dissolved solids in the period from 01.20.2015 to 05.12.2015. The parameters were chosen due to its easy of application in the field, low cost, and the importance of this information on the quality of water bodies. The sub-basins show a very fragmented vegetation cover, located mostly in hilly regions, and much of the observed water courses don’t have riparian vegetation along river banks. Only the sub-basin 2 shows a relevant area with vegetation cover. The results of water quality fall into the sub-basins in class: II (use for human consumption after conventional treatment; III (used for human consumption after conventional or advanced treatment; and IV (only use for navigation and the landscape harmony. It was found disparities between the basins of high and low urban settlement due to changes in the results of analyzes of water parameters. Thus, it is clear that a change of physical or chemical factors, together with anthropic action, affects the quality of water for human consumption, among other activities.

  15. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts.

    Science.gov (United States)

    Spromberg, Julann A; Baldwin, David H; Damm, Steven E; McIntyre, Jenifer K; Huff, Michael; Sloan, Catherine A; Anulacion, Bernadita F; Davis, Jay W; Scholz, Nathaniel L

    2016-04-01

    Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning habitats throughout western North America. The migration coincides with increasing seasonal rainfall, which in turn increases storm water run-off, particularly in urban watersheds with extensive impervious land cover. Previous field assessments in urban stream networks have shown that adult coho are dying prematurely at high rates (>50%). Despite significant management concerns for the long-term conservation of threatened wild coho populations, a causal role for toxic run-off in the mortality syndrome has not been demonstrated.We exposed otherwise healthy coho spawners to: (i) artificial storm water containing mixtures of metals and petroleum hydrocarbons, at or above concentrations previously measured in urban run-off; (ii) undiluted storm water collected from a high traffic volume urban arterial road (i.e. highway run-off); and (iii) highway run-off that was first pre-treated via bioinfiltration through experimental soil columns to remove pollutants.We find that mixtures of metals and petroleum hydrocarbons - conventional toxic constituents in urban storm water - are not sufficient to cause the spawner mortality syndrome. By contrast, untreated highway run-off collected during nine distinct storm events was universally lethal to adult coho relative to unexposed controls. Lastly, the mortality syndrome was prevented when highway run-off was pretreated by soil infiltration, a conventional green storm water infrastructure technology.Our results are the first direct evidence that: (i) toxic run-off is killing adult coho in urban watersheds, and (ii) inexpensive mitigation measures can improve water quality and promote salmon survival. Synthesis and applications . Coho salmon, an iconic species with exceptional economic and cultural significance, are an ecological sentinel for the harmful effects of untreated urban run-off. Wild coho populations cannot withstand the high rates of

  16. Final Opportunity to Rehabilitate an Urban River as a Water Source for Mexico City

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A.; Solano-Ortiz, Rosa; Silva, Miguel A.; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973–2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008–2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City. PMID:25054805

  17. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Directory of Open Access Journals (Sweden)

    Marisa Mazari-Hiriart

    Full Text Available The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010, along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012 in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  18. Final opportunity to rehabilitate an urban river as a water source for Mexico City.

    Science.gov (United States)

    Mazari-Hiriart, Marisa; Pérez-Ortiz, Gustavo; Orta-Ledesma, María Teresa; Armas-Vargas, Felipe; Tapia, Marco A; Solano-Ortiz, Rosa; Silva, Miguel A; Yañez-Noguez, Isaura; López-Vidal, Yolanda; Díaz-Ávalos, Carlos

    2014-01-01

    The aim of this study was to evaluate the amount and quality of water in the Magdalena-Eslava river system and to propose alternatives for sustainable water use. The system is the last urban river in the vicinity of Mexico City that supplies surface water to the urban area. Historical flow data were analyzed (1973-2010), along with the physicochemical and bacteriological attributes, documenting the evolution of these variables over the course of five years (2008-2012) in both dry and rainy seasons. The analyses show that the flow regime has been significantly altered. The physicochemical variables show significant differences between the natural area, where the river originates, and the urban area, where the river receives untreated wastewater. Nutrient and conductivity concentrations in the river were equivalent to domestic wastewater. Fecal pollution indicators and various pathogens were present in elevated densities, demonstrating a threat to the population living near the river. Estimates of the value of the water lost as a result of mixing clean and contaminated water are presented. This urban river should be rehabilitated as a sustainability practice, and if possible, these efforts should be replicated in other areas. Because of the public health issues and in view of the population exposure where the river flows through the city, the river should be improved aesthetically and should be treated to allow its ecosystem services to recover. This river represents an iconic case for Mexico City because it connects the natural and urban areas in a socio-ecological system that can potentially provide clean water for human consumption. Contaminated water could be treated and reused for irrigation in one of the green areas of the city. Wastewater treatment plants and the operation of the existing purification plants are urgent priorities that could lead to better, more sustainable water use practices in Mexico City.

  19. Towards Adaptive Urban Water Management: Up-Scaling Local Projects

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Quitzau, Maj-Britt; Hoffmann, Birgitte

    2013-01-01

    Increasingly, the need for adaptive urban water management approaches is advertised, but the transition towards such approaches in the urban water sector seems to be slow. The purpose of this paper is to provide an in-depth study of how an innovative approach has been adopted in practice by looking...... of rainwater. This insight into the processes of learning aggregation of water practices points towards the important role that the dedicated work performed by local facilitators and intermediaries play in relation to a transition towards more adaptive urban water management....

  20. Sachet water quality and brand reputation in two low-income urban communities in greater Accra, Ghana.

    Science.gov (United States)

    Stoler, Justin; Tutu, Raymond A; Ahmed, Hawa; Frimpong, Lady Asantewa; Bello, Mohammed

    2014-02-01

    Sachet water has become an important primary source of drinking water in western Africa, but little is known about bacteriologic quality and improvements to quality control given the recent, rapid evolution of this industry. This report examines basic bacteriologic indicators for 60 sachet water samples from two very low-income communities in Accra, Ghana, and explores the relationship between local perceptions of brand quality and bacteriologic quality after controlling for characteristics of the vending environment. No fecal contamination was detected in any sample, and 82% of total heterotrophic bacteria counts were below the recommended limit for packaged water. Sachets from brands with a positive reputation for quality were 90% less likely to present any level of total heterotrophic bacteria after controlling for confounding factors. These results contrast with much of the recent sachet water quality literature and may indicate substantial progress in sachet water regulation and quality control.

  1. Restorative Qualities of and Preference for Natural and Urban Soundscapes.

    Science.gov (United States)

    Krzywicka, Paulina; Byrka, Katarzyna

    2017-01-01

    Psychological restoration in urban agglomerations has become a growing challenge. Although scientific proof of the significance of nature is irrefutable, an increase in built-up areas has led to a decrease in urban greenery. Thus, a growing need for restorativeness in urban surroundings has emerged. To investigate whether positively evaluated sonic environments, represented by natural and urban sounds, have comparable restorative qualities we conducted two studies. The aim of the first (Study 1) was to explore the restorative qualities of positively assessed natural and urban sounds. Participants ( N = 88) were asked to listen and to rate 22 recordings (each 1 min long) either from natural or urban environments. In the second (Study 2) we investigated whether positively evaluated sonic environments (natural and urban), demand for restoration (feeling relaxed or fatigued) and company (being alone or with a friend) affect the restorative qualities of natural and urban soundscapes. After reading assigned scenarios (feeling relaxed or fatigued; being alone or with a friend), participants ( N = 120) were asked to imagine a walk in presented sonic environments and to complete forms (one for each sonic environment) concerning the restorative qualities of given soundscapes (natural and urban). Top five recordings of natural and urban sonic environments were selected from Study 1 and combined into a 154-s soundtrack, to provide a background for the imagined walks in both settings. Our findings confirmed that natural sounds are perceived more favorably than urban recordings. Even when only the most positively assessed soundscapes were compared, nature was still perceived as being more restorative than urban areas. Company of a friend was found to be more beneficial in the urban surroundings, particularly when there was no need for restoration.

  2. Restorative Qualities of and Preference for Natural and Urban Soundscapes

    Directory of Open Access Journals (Sweden)

    Paulina Krzywicka

    2017-10-01

    Full Text Available Psychological restoration in urban agglomerations has become a growing challenge. Although scientific proof of the significance of nature is irrefutable, an increase in built-up areas has led to a decrease in urban greenery. Thus, a growing need for restorativeness in urban surroundings has emerged. To investigate whether positively evaluated sonic environments, represented by natural and urban sounds, have comparable restorative qualities we conducted two studies. The aim of the first (Study 1 was to explore the restorative qualities of positively assessed natural and urban sounds. Participants (N = 88 were asked to listen and to rate 22 recordings (each 1 min long either from natural or urban environments. In the second (Study 2 we investigated whether positively evaluated sonic environments (natural and urban, demand for restoration (feeling relaxed or fatigued and company (being alone or with a friend affect the restorative qualities of natural and urban soundscapes. After reading assigned scenarios (feeling relaxed or fatigued; being alone or with a friend, participants (N = 120 were asked to imagine a walk in presented sonic environments and to complete forms (one for each sonic environment concerning the restorative qualities of given soundscapes (natural and urban. Top five recordings of natural and urban sonic environments were selected from Study 1 and combined into a 154-s soundtrack, to provide a background for the imagined walks in both settings. Our findings confirmed that natural sounds are perceived more favorably than urban recordings. Even when only the most positively assessed soundscapes were compared, nature was still perceived as being more restorative than urban areas. Company of a friend was found to be more beneficial in the urban surroundings, particularly when there was no need for restoration.

  3. Water quality in gravel pits in the Bratislava area

    International Nuclear Information System (INIS)

    Flakova, R.; Rohacikova, A.; Zenisova, Z.

    1999-01-01

    The gravel pits around Bratislava have an esthetic, urban and recreational function. Open water table areas are in a direct contact with the air and acquire some characteristics of the surface water. The quality of open water table is much more susceptible to pollution than that of groundwater. Wet and dry deposition, water inflow from the surrounding surface, unmanageable sewerage effluents, solid and liquid wastes, but also the water birds contribute to the pollution. The Department of Hydrogeology has monitored the water quality in six gravel pits (Cunovo, Drazdiak, Strkovec, Pasienky, Zlate Piesky, Vajnory) since 1976 with an an interruption between 1988 - 1993. Two sampling per year have been made since 1994 and after 1998 the analyses have been supplemented by Na, K, Fe, Mn, by oxygen regime parameters, by trace elements (As, Ag, Cd, Co, Cu, Cr, Hg, Ni, Pb, V, Zn) and by organic pollutants. As regards the oxygen regime, the water quality pits is very good. The anthropogenic influence is expressed mainly by the increased contents of sulfates and chlorides. Most problematic trace elements are the mercury and vanadium (Drazdiak, Zlate Piesky and Vajnory). (authors)

  4. Suitability assessment of the urban water management transition in the Indonesian context - A case study of Surabaya

    Science.gov (United States)

    Sholihah, Mar'atus; Anityasari, Maria; Maftuhah, Diesta Iva

    2017-06-01

    The rapidly growing urban population, the increasing impact of climate change, and the constantly decreasing availability of the good quality water become the major triggers that force urban water professionals to continuously focus on sustainable urban water management (SUWM). The city as a focal point of population growth in the world has become a critical object for its resiliency, not only in terms of the environmental deterioration but also of the water supplies security. As a response to the current condition, the framework of urban water management transition has been introduced as a sort of transformation for a city to achieve SUWM. Water Sensitive City (WSC) is the ultimate goal of this framework which integrates water access and supply security, public health protection, flood prevention, environmental protection and livability, and economic sustainability. Recently, the urban water management transition and WSC concept are going to be implemented in some cities in Indonesia, including Surabaya. However, in addition to provide a wide range of benefits, the implementation of WSC also brings challenges. In terms of geographical and social aspect, public policy, and the citizen behavior, the cities in Indonesia are undoubtedly different with those in Australian where the concept was developed. Hence, assessing the suitability of urban water management transition in the Indonesian context can be perceived as the most important phase in this whole plan. A case study of Surabaya would be identified as a baseline to measure whether the proposed sequence of urban water management transition is suitable for Indonesian local context. The research aimed to assess the suitability of the framework to be implemented in Indonesia and to propose the modified framework which is more suitable for local context in Indonesia.

  5. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    Science.gov (United States)

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  6. Long-term assessment at field scale of Floating Treatment Wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond.

    Science.gov (United States)

    Olguín, Eugenia J; Sánchez-Galván, Gloria; Melo, Francisco J; Hernández, Víctor J; González-Portela, Ricardo E

    2017-04-15

    Pollution of urban water bodies requires stringent control measures and the development of low-cost and highly efficient alternative technologies. In contrast to Constructed Wetlands, Floating Treatment Wetlands (FTWs) have the advantage of not requiring large surface of land since they operate in situ. However, there is limited information about their long-term evaluation while operating at field scale. The aim of this work was to assess the performance of FTWs using a combination of Pontederia sagittata and Cyperus papyrus for the improvement of the water quality and provision of ecosystem services of a eutrophic urban pond. The FTWs were built with low-cost material easy to acquire and to ensemble. Two FTWs (17.5m 2 and 33m 2 ) located in Pond 1 within a complex of 4 urban artificial ponds were evaluated for two years. They promoted an increase in the dissolved oxygen (D.O.) within a range of 15 to 67%, a removal of fecal coliforms in the range of 9 to 86% and a nitrate removal in the range of 9 to 76%. The plant productivity reached a maximum of 363g dm m -2 d -1 in the FTW1 and 536g dm m -2 d -1 in the FTW2 during the period March-June 2016. The TKN and the TP content in the plant were in the range of 18.3 to 28.1 and of 0.05 to 0.196gkg -1 dry matter, respectively. In conclusion, the tested FTWs have proved to be a very beneficial low-cost technology for the improvement of water quality and provision of ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Public-private partnerships in China's urban water sector

    NARCIS (Netherlands)

    Zhong, L.; Mol, A.P.J.; Fu, T.

    2008-01-01

    During the past decades, the traditional state monopoly in urban water management has been debated heavily, resulting in different forms and degrees of private sector involvement across the globe. Since the 1990s, China has also started experiments with new modes of urban water service management

  8. An ANN application for water quality forecasting.

    Science.gov (United States)

    Palani, Sundarambal; Liong, Shie-Yui; Tkalich, Pavel

    2008-09-01

    Rapid urban and coastal developments often witness deterioration of regional seawater quality. As part of the management process, it is important to assess the baseline characteristics of the marine environment so that sustainable development can be pursued. In this study, artificial neural networks (ANNs) were used to predict and forecast quantitative characteristics of water bodies. The true power and advantage of this method lie in its ability to (1) represent both linear and non-linear relationships and (2) learn these relationships directly from the data being modeled. The study focuses on Singapore coastal waters. The ANN model is built for quick assessment and forecasting of selected water quality variables at any location in the domain of interest. Respective variables measured at other locations serve as the input parameters. The variables of interest are salinity, temperature, dissolved oxygen, and chlorophyll-alpha. A time lag up to 2Delta(t) appeared to suffice to yield good simulation results. To validate the performance of the trained ANN, it was applied to an unseen data set from a station in the region. The results show the ANN's great potential to simulate water quality variables. Simulation accuracy, measured in the Nash-Sutcliffe coefficient of efficiency (R(2)), ranged from 0.8 to 0.9 for the training and overfitting test data. Thus, a trained ANN model may potentially provide simulated values for desired locations at which measured data are unavailable yet required for water quality models.

  9. Waterbird habitat in California's Central Valley basins under climate, urbanization, and water management scenarios

    Science.gov (United States)

    Matchett, Elliott L.; Fleskes, Joseph

    2018-01-01

    California's Central Valley provides critical, but threatened habitat and food resources for migrating and wintering waterfowl, shorebirds, and other waterbirds. The Central Valley is comprised of nine basins that were defined by the Central Valley Joint Venture (CVJV) to assist in conservation planning. Basins vary in composition and extent of habitats, which primarily include croplands and wetlands that rely on water supplies shared with other competing human and environmental uses. Changes in climate, urban development, and water supply management are uncertain and could reduce future availability of water supplies supporting waterbird habitats and limit effectiveness of wetland restoration planned by the CVJV to support wintering waterbirds. We modeled 17 plausible scenarios including combinations of three climate projections, three urbanization rates, and five water supply management options to promote agricultural and urban water uses, with and without wetland restoration. Our research examines the reduction in quantity and quality of habitats during the fall migration-wintering period by basin under each scenario, and the efficacy of planned wetland restoration to compensate reductions in flooded areas of wetland habitats. Scenario combinations of projected climate, urbanization, and water supply management options reduced availability of flooded cropland and wetland habitats during fall-winter and degraded the quality of seasonal wetlands (i.e., summer-irrigation for improved forage production), though the extent and frequency of impacts varied by basin. Planned wetland restoration may substantially compensate for scenario-related effects on wetland habitats in each basin. However, results indicate that Colusa, Butte, Sutter, San Joaquin, and Tulare Basins may require additional conservation to support summer-irrigation of seasonal wetlands and winter-flooding of cropland habitats. Still further conservation may be required to provide sufficient areas of

  10. Dual-Level Material and Psychological Assessment of Urban Water Security in a Water-Stressed Coastal City

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2015-04-01

    Full Text Available The acceleration of urbanization and industrialization has been gradually aggravating water security issues, such as water shortages, water pollution, and flooding or drought disasters and so on. Water security issues have become a great challenge to urban sustainable development. In this context, we proposed a dual-level material and psychological assessment method to assess urban water security. Psychological security coefficients were introduced in this method to combine material security and residents’ security feelings. A typical water-stressed coastal city in China (Dalian was chosen as a case study. The water security status of Dalian from 2010 to 2012 was analysed dynamically. The results indicated that the Dalian water security statuses from 2010 to 2012 were basically secure, but solutions to improve water security status and solve water resource problems are still required. This dual-level material and psychological assessment for urban water security has improved conventional material assessment through the introduction of psychological security coefficients, which can benefit decision-making for urban water planning, management and protection.

  11. Planning urban settlements for quality of life

    DEFF Research Database (Denmark)

    Boje Groth, N.; Hansen, K.E.; Björnberg, U.

    Notatet er et indlæg på den Europæiske Økonomiske Kommissions (ECE) konference om by- og regionforskning, tema II: "Research on the Quality of Life in Urban Settlements, Warszawa, maj 1976. I notatet opstilles en begrebsramme for livskvalitetsbegrebet, og man diskuterer hvorledes livskvalitetsana......Notatet er et indlæg på den Europæiske Økonomiske Kommissions (ECE) konference om by- og regionforskning, tema II: "Research on the Quality of Life in Urban Settlements, Warszawa, maj 1976. I notatet opstilles en begrebsramme for livskvalitetsbegrebet, og man diskuterer hvorledes...

  12. What does resilience mean for urban water services?

    Directory of Open Access Journals (Sweden)

    Åse Johannessen

    2017-03-01

    Full Text Available Disasters and climate change impacts, as well as increased water demand, pose serious risks to the provision of sustainable urban water services, e.g., drinking water, sanitation, and safe drainage, especially in cities. These challenges call for a transition toward improved water management, including considerations of "resilience." However, because the resilience concept has multidisciplinary origins it is open to multiple interpretations, which poses a challenge to understanding and operationalizing the concept. We explore how resilience thinking can be translated into urban water practice to develop the conceptual understanding of transitions toward sustainability. The study is based on a literature review, interviews with water experts, as well as four case studies in South Africa, India, Sweden, and the Philippines. We identify seven key principles or attributes of urban water resilience and the related transition process. We find that resilience building needs to discern between and manage three levels (i.e., socioeconomic, external hazard considerations, and larger social-ecological systems to be sustainable. In addition, we find that human agency is a strong driver of transition processes, with a certain level of risk awareness and risk perception providing one threshold and a certain capacity for action to implement measures and reorganize in response to risks being another. The difficulty of achieving "knowledge to action" derives from the multiple challenges of crossing these two types of identified thresholds. To address long-term trends or stressors, we find an important role for social learning to ensure that the carrying capacity of urban water services is not exceeded or unwanted consequences are created (e.g., long-term trends like salinization and water depletion. We conclude that the resilience term and related concepts add value to understanding and addressing the dynamic dimension of urban water transitions if the key

  13. Urban water - a new frontier in isotope hydrology.

    Science.gov (United States)

    Ehleringer, James R; Barnette, Janet E; Jameel, Yusuf; Tipple, Brett J; Bowen, Gabriel J

    2016-01-01

    Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.

  14. Indices of water quality and metal pollution of Nile River, Egypt

    Directory of Open Access Journals (Sweden)

    Amaal M. Abdel-Satar

    2017-03-01

    Full Text Available Nile River is the valued natural and exclusive source of fresh water in Egypt, where the drinking water supply is limited to the river. The water quality of 24 sites between Aswan and Cairo along the Nile was investigated. To evaluate the suitability of water for aquatic life and drinking purposes, the indices of water quality (WQI, heavy metal pollution (HPI and contamination (Cd were computed. The water quality variations were mainly related to inorganic nutrients and heavy metals, where, the sites affected by intensive load of urban, agricultural and industrial wastewater showed serious deterioration of water quality compared with other sites. The anthropogenic impact sites showed high HPI and Cd values and associated with high risks, where, most of the studied metals often exceeded the drinking water and aquatic life limits. The aquatic WQI indicated that the Nile water quality deteriorated and extended from poor to marginal, while drinking WQI varied from marginal to good. Accordingly, the river becoming unfit for aquatic life and the situation is getting worse by decreases in the water budget from the Nile in Egypt by building of the Grand Ethiopian Renaissance Dam, where the dilution strength of the Nile system will reduce.

  15. The urban harvest approach as framework and planning tool for improved water and resource cycles

    NARCIS (Netherlands)

    Leusbrock, I.; Nanninga, T.A.; Lieberg, K.; Agudelo, C.; Keesman, K.J.; Zeeman, G.; Rijnaarts, H.

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource

  16. Coping with drought: the experience of water sensitive urban design ...

    African Journals Online (AJOL)

    2014-11-14

    Nov 14, 2014 ... from 4 main WSUD activities, implemented by the George Local Municipality. Water ... George Municipality, integrated urban water management, South Africa, ... The unsustainability of urban water resource management was.

  17. Water quality assessment of the Shatt al-Arab River, Southern Iraq

    Directory of Open Access Journals (Sweden)

    Mohammad Salim Moyel

    2015-06-01

    Full Text Available Objective: To assess suitability of the water quality of Shatt al-Arab River for protection of aquatic life, potable water supply and irrigation uses. Methods: The Shatt al-Arab River was monitored on a monthly basis from July 2009 to June 2010. A water quality index (WQI was calculated to assess the suitability of water for protection of aquatic life, potable water supply and irrigation uses during the dry season from July to December 2009 and the wet season from January until June 2010. Results: The results of the WQI showed that the lowest water quality values were scored during the dry season for all three uses of the river. Marginal water quality values were recorded for protection of aquatic life and fair (upstream to poor (downstream water quality values were recorded for irrigation uses. Moreover, the river water was not suitable for potable water supply without elaborate treatment. Conclusions: Deterioration of the Shatt al-Arab water quality has been attributed to reduced freshwater discharges from Tigris and Euphrates Rivers, low annual precipitations and an advancing salt wedge from the Arabian Gulf. However, a combination of those factors such as low riverine discharge and advancing salt wedge with a continuous discharge of agriculture, oil industry and urban point effluent has polluted the waters and fostered the decline of the Shatt al-Arab River water quality during the study period. The study indicated that application of WQIs was a useful tool to monitor and assess the overall water quality of the Shatt al-Arab River.

  18. Corporatization of the water sector: Implications for transitioning to sustainable urban water management

    DEFF Research Database (Denmark)

    Fratini, Chiara; Elle, Morten; Brown, Norman R.

    2012-01-01

    In the context of climate change, the Danish water sector is experiencing two major pressures. On one hand, a number of agents are pushing towards more sustainable urban water management (SUWM) approaches with the aim of improving surface water quality and mitigating flood risk. On the other hand....... A more direct collaboration of the national regulator of competitive performances with government institutions and other non-governmental actors might be an effective answer to such challenges....... the influencing factors for transitioning to SUWM and highlighted the potential governance attributes for enhancing and/or constraining such change. This paper explores the corporatization of the water sector and its implications for transitioning to SUWM. On the base of a preliminary literature review we...... identify the rationales for and drawbacks of corporatization and compare them with the critical factors to build institutional capacity for SUWM. Preliminary results suggest that corporatization is expected to create a range of challenges that might hinder the transition towards more SUWM approaches...

  19. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    Science.gov (United States)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  20. Water-quality data for two surface coal mines reclaimed with alkaline waste or urban sewage sludge, Clarion County, Pennsylvania, May 1983 through November 1989

    Science.gov (United States)

    Dugas, D.L.; Cravotta, C.A.; Saad, D.A.

    1993-01-01

    Water-quality and other hydrologic data for two surface coal mines in Clarion County, Pa., were collected during 1983-89 as part of studies conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Environmental Resources. Water samples were collected from streams, seeps, monitor wells, and lysimeters on a monthly basis to evaluate changes in water quality resulting from the addition of alkaline waste or urban sewage sludge to the reclaimed mine-spoil surface. The mines are about 3.5 miles apart and were mined for bituminous coal of the upper and lower Clarion seams of the Allegheny Group of Pennsylvanian age. The coal had high sulfur (greater than 2 weight percent) concentrations. Acidic mine drainage is present at both mines. At one mine, about 8 years after mining was completed, large quantities (greater than 400 tons per acre) of alkaline waste consisting of limestone and lime-kiln flue dust were applied on two 2.5-acre plots within the 65-acre mine area. Water-quality data for the alkaline-addition plots and surrounding area were collected for 1 year before and 3 years after application of the alkaline additives (May 1983-July 1987). Data collected for the alkaline-addition study include ground-water level, surface-water discharge rate, temperature, specific conductance, pH, and concentrations of alkalinity, acidity, sulfate, iron (total and ferrous), manganese, aluminum, calcium, and magnesium. At the other mine, about 3.5 years after mining was completed, urban sewage sludge was applied over 60 acres within the 150-acre mine area. Waterquality data for the sludge-addition study were collected for 3.5 years after the application of the sludge (June 1986-December 1989). Data collected for the sludge-addition study include the above constituents plus dissolved oxygen, redox potential (Eh), and concentrations of dissolved solids, phosphorus, nitrogen species, sulfide, chloride, silica, sodium, potassium, cyanide, arsenic, barium

  1. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Rachel Peletz

    2016-03-01

    Full Text Available Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies, served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05. Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  2. Risk assessment of aquifer storage transfer and recovery with urban stormwater for producing water of a potable quality.

    Science.gov (United States)

    Page, Declan; Dillon, Peter; Vanderzalm, Joanne; Toze, Simon; Sidhu, Jatinder; Barry, Karen; Levett, Kerry; Kremer, Sarah; Regel, Rudi

    2010-01-01

    The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.

  3. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio

    2012-01-01

    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  4. Water quality and health in a Sahelian semi-arid urban context: an integrated geographical approach in Nouakchott, Mauritania

    Directory of Open Access Journals (Sweden)

    Doulo Traoré

    2013-11-01

    Full Text Available Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources and bacteriological aspects (e.g. water contamination with coliform bacteria are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a

  5. Microbiological water quality monitoring in a resource-limited urban area: a study in Cameroon, Africa

    Directory of Open Access Journals (Sweden)

    Andrew W. Nelson

    2012-10-01

    Full Text Available In resource-limited developing nations, such as Cameroon, the expense of modern water-quality monitoring techniques is prohibitive to frequent water testing, as is done in the developed world. Inexpensive, shelf-stable 3M™ Petrifilm™ Escherichia coli/Coliform Count Plates potentially can provide significant opportunity for routine water-quality monitoring in the absence of infrastructure for state-of-the-art testing. We used shelf-stable E. coli/coliform culture plates to assess the water quality at twenty sampling sites in Kumbo, Cameroon. Culture results from treated and untreated sources were compared to modern bacterial DNA pyrosequencing methods using established bioinformatics and statistical tools. Petrifilms were reproducible between replicates and sampling dates. Additionally, cultivation on Petrifilms suggests that treatment by the Kumbo Water Authority (KWA greatly improves water quality as compared with untreated river and rainwater. The majority of sequences detected were representative of common water and soil microbes, with a minority of sequences (<40% identified as belonging to genera common in fecal matter and/or causes of human disease. Water sources had variable DNA sequence counts that correlated significantly with the culture count data and may therefore be a proxy for bacterial load. Although the KWA does not meet Western standards for water quality (less than one coliform per 100 mL, KWA piped water is safer than locally available alternative water sources such as river and rainwater. The culture-based technology described is easily transferrable to resource-limited areas and provides local water authorities with valuable microbiological safety information with potential to protect public health in developing nations.

  6. Estimating risks for water-quality exceedances of total-copper from highway and urban runoff under predevelopment and current conditions with the Stochastic Empirical Loading and Dilution Model (SELDM)

    Science.gov (United States)

    Granato, Gregory E.; Jones, Susan C.; Dunn, Christopher N.; Van Weele, Brian

    2017-01-01

    The stochastic empirical loading and dilution model (SELDM) was used to demonstrate methods for estimating risks for water-quality exceedances of event-mean concentrations (EMCs) of total-copper. Monte Carlo methods were used to simulate stormflow, total-hardness, suspended-sediment, and total-copper EMCs as stochastic variables. These simulations were done for the Charles River Basin upstream of Interstate 495 in Bellingham, Massachusetts. The hydrology and water quality of this site were simulated with SELDM by using data from nearby, hydrologically similar sites. Three simulations were done to assess the potential effects of the highway on receiving-water quality with and without highway-runoff treatment by a structural best-management practice (BMP). In the low-development scenario, total copper in the receiving stream was simulated by using a sediment transport curve, sediment chemistry, and sediment-water partition coefficients. In this scenario, neither the highway runoff nor the BMP effluent caused concentration exceedances in the receiving stream that exceed the once in three-year threshold (about 0.54 percent). In the second scenario, without the highway, runoff from the large urban areas in the basin caused exceedances in the receiving stream in 2.24 percent of runoff events. In the third scenario, which included the effects of the urban runoff, neither the highway runoff nor the BMP effluent increased the percentage of exceedances in the receiving stream. Comparison of the simulated geometric mean EMCs with data collected at a downstream monitoring site indicates that these simulated values are within the 95-percent confidence interval of the geometric mean of the measured EMCs.

  7. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  8. Retrospective and Prospective Evaluations of Environmental Quality under Urban Renewal as Determinants of Residents' Subjective Quality of Life

    Science.gov (United States)

    Cheung, Chau-kiu; Leung, Kwan-kwok

    2008-01-01

    Claims about the impacts of environmental quality associated with urban renewal on the resident's subjective quality of life are more speculative than empirically grounded. To clarify the impacts of environmental quality under urban renewal, this study surveyed 876 residents living in housing surrounding seven urban renewal sites in Hong Kong. It…

  9. The quality of water for human consumption in the Tolima department, Colombia

    Directory of Open Access Journals (Sweden)

    Karol J. Briñez A

    2012-10-01

    Full Text Available Objective: to describe the quality of drinking water in urban areas of the Tolima department and its relationship to the reported incidence of hepatitis A, acute diarrheal disease and social indicators. Methodology: descriptive observational study using cross-sectional ecological databases (sivicap and (sivigila 2010. It was mean, median, standard deviation, proportion of reported incidence of municipalities of Tolima (n = 47, we used one-way anova and correlation analysis. Results:63.83% of the municipalities of Tolima had potable water. In the category of sanitary non-viable municipalities were classified: Ataco, Cajamarca, Planadas, Rovira, Valle de San Juan, and Villarrica. 27.7% of the municipalities showed coliform results. No association was found between the incidence of the diseases and water quality, statistically significant relationship was found between the coverage of water supply, sewerage, education and water quality. Discussion: it is necessary to improve water quality, expanding service coverage, epidemiological reporting and promotion of good hygienic practices.

  10. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    Science.gov (United States)

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  11. Water-Quality Data

    Science.gov (United States)

    ... Water Quality? [1.7MB PDF] Past featured science... Water Quality Data Today's Water Conditions Get continuous real- ... list of USGS water-quality data resources . USGS Water Science Areas Water Resources Groundwater Surface Water Water ...

  12. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    Science.gov (United States)

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  13. Controls on Stormwater Runoff Quality and Quantity in Semi-arid, Urban Catchments

    Science.gov (United States)

    Gallo, E. L.; Brooks, P. D.; Lohse, K. A.

    2009-12-01

    Utilization of recharged urban runoff to complement municipal water supply has gained importance in arid regions where populations and their urban footprint continue to grow, and where water resources are scarce. However, our understanding of how runoff quantity and quality respond to urbanization in arid landscapes is largely incomplete and poses a challenge for water resources management. Here we address the question: What controls the hydrologic and hydrochemical responses of arid urban catchments? We collected water samples and stream stage data from 5 urban catchments of varied land uses (low, medium and high density residential, mixed and commercial land use) in southern Arizona during the summer rainfall seasons of 2007 and 2008. The most homogeneous catchments, as indicated by the index of landscape heterogeneity, were the least and most impervious, while the most heterogeneous sites had mid-range imperviousness. Hydrochemical responses were mixed, did not correlate with imperviousness or vegetation abundance, and were not strongly controlled by land use. Clustering analysis highlight hydrologic and sourcing controls on hydrochemistry, specifically conservative solute transport, land use specific and geologic solute sourcing and atmospheric deposition. Overall, water yields were surprisingly small (< 15%) and increased with imperviousness. Our data show that discharge responses were more sensitive to rainfall magnitude in homogeneous sites. We suggest that imperviousness and rainfall magnitude control water yields; whereas landscape heterogeneity may control a catchment’s sensitivity to generate runoff. The coupling of landscape and hydrology in controlling hydrochemistry is well illustrated by chloride (Cl), a non-reactive hydrologic tracer that was positively correlated with a large number of solutes such as ammonium, dissolved organic carbon, cadmium and zinc. We observed the highest concentrations and coefficients of variation of Cl at least and most

  14. Urban hydrogeology in Indonesia: A highlight from Jakarta

    Science.gov (United States)

    Lubis, R. F.

    2018-02-01

    In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.

  15. Air pollution and urban air quality management in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia); Okuda, Tomoaki; Tanaka, Shigeru [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama (Japan)

    2008-06-15

    The trade-led industry and economic development after the Asian financial crisis a decade ago has been accelerated in Indonesia to improve the quality of life of its population. This rapid development of Indonesia was in fact heavily fueled by fossil fuels, especially oil, followed by natural gas and coal. The exploitation of fossil fuel in fueling the development resulted in significant environmental quality degradation. Air pollution is perhaps Indonesia's most severe environmental problem. Industry and transportation were the typical main sources of urban air pollutants. Moreover, Indonesia also failed to reach its original 2005 target for a complete phase-out of leaded gasoline. As a result, the level of Pb together with other pollutants such as CO, NO{sub x}, SO{sub 2}, and total suspended particulates has exceeded or at least approached the designated ambient air quality standards. The urban air pollution will not be lesser in extent, but surely will be more severe in the future. Unfortunately, the capability of the Indonesian authorities to manage the urban air quality is still very limited and the portion of the budget allocated to the improvement of urban air quality is still remarkably low, typically 1% of total. This is why the efforts to enhance the capability to manage the urban air quality could not be handled by the environmental authorities in Indonesia's cities themselves, but outside stimulation in the form of man power, consultant and equipment assistance along with financial support has been very important. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  16. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  17. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  18. Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru

    Science.gov (United States)

    Rosa, Ghislaine; Huaylinos, Maria L.; Gil, Ana; Lanata, Claudio; Clasen, Thomas

    2014-01-01

    Background Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards. Methods and Findings We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases. PMID:25522371

  19. Valuing the Potential Benefits of Water Quality Improvements in Watersheds Affected by Non-Point Source Pollution

    Directory of Open Access Journals (Sweden)

    Sergio Alvarez

    2016-03-01

    Full Text Available Nonpoint source (NPS pollution has been identified by the US Environmental Protection Agency (EPA as “the nation’s largest water quality problem”. Urban development, septic systems, and agricultural operations have been identified as the major sources of diffuse pollution in surface and ground water bodies. In recent decades, urban and agricultural Best Management Practices (BMP have been developed in several states to address agricultural water quality and water use impacts, including the reduction of nutrient loads to help meet water quality standards. Compliance with BMPs is associated with some costs to local governments, homeowners, and agricultural operations, but the improvements in water quality associated with BMP adoption are expected to yield significant benefits to society in the form of improved recreational opportunities, navigation, flood control, and ecosystem health. The development of sound policies and decision making processes require balancing the costs of BMP adoption to the agricultural operations with the social benefits to be derived from the improved water quality. In this paper we develop a benefits transfer model to provide estimates of the economic benefits of properly implemented and effective Best Management Practices (BMP throughout the state of Florida. These benefit estimates can be used in a cost-benefit framework to determine the optimal level of BMP adoption throughout the state of Florida and provide a framework for other regions to estimate the potential benefits of BMP-mediated water quality improvements.

  20. [Ecological hygienic assessment of soils quality in urban areas].

    Science.gov (United States)

    Vodyanova, M A; Kriatov, I A; Donerian, L G; Evseeva, I S; Ushakov, D I; Sbitnev, A V

    Assessment of the soil quality is ofprime importance essential for the characterization of the ecological and hygienic condition of the territory, as the soil is the first link of the food chain, the source of secondary air and water pollution, as well as an integral index of ecological well-being of the environment. Herewith the qualitative analysis of soil complicated by the specifics of the soil genesis in the urban environment, in which an important role is played by manmade land bulk and alluvial soils; the inclusion of construction of material debris and household garbage in upper horizons; the growing up of the profile due to the perpetual introduction of different materials and intensive aeolian deposition. It is advisable to consider the currently neglected question of the study of soil vapor containing volatile chemicals. These pollutants penetrate into the building through cracks in the foundation and openings for utilities. Soil evaporation may accumulate in residential areas or in the soil under the building. Because of this, it is necessary to pay attention to the remediation of areas allocated for the built-up area, possessing a large-scale underground parking. Soil contamination is the result of significant anthropogenic impacts on the environment components. In general, about 89.1 million people (62.6% of the population of the country) live in terms of complex chemical load, determined by contamination offood, drinking water, air and soil. The list of microbiological and sanitary-chemical indices of the assessment of soils of urban areas may vary in dependence on the data obtained in pilot studies due to changes and additions to the assigned tasks. Timely forecast for the possibility of the usage of released lands of urban territories for the construction and the creation of new objects for different purposes should become the prevention of chronic non-infectious diseases in the population residing in urban areas.

  1. Water quality

    Science.gov (United States)

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  2. Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age.

    Science.gov (United States)

    Martin, Julie C; Moran, Lisa J; Teede, Helena J; Ranasinha, Sanjeeva; Lombard, Catherine B; Harrison, Cheryce L

    2017-06-08

    Health disparities, including weight gain and obesity exist between urban and rural dwelling women. The primary aim was to compare diet quality in urban and rural women of reproductive age, and secondary analyses of the difference in macronutrient and micronutrient intake in urban and rural women, and the predictors of diet quality. Diet quality was assessed in urban ( n = 149) and rural ( n = 394) women by a modified version of the Dietary Guideline Index (DGI) energy, macronutrient and micronutrient intake from a food frequency questionnaire (FFQ) and predictors of diet quality. Diet quality did not significantly differ between urban and rural women (mean ± standard deviation (SD), 84.8 ± 15.9 vs. 83.9 ± 16.5, p = 0.264). Rural women reported a significantly higher intake of protein, fat, saturated fat, monounsaturated fat, cholesterol and iron and a higher score in the meat and meat alternatives component of the diet quality tool in comparison to urban women. In all women, a higher diet quality was associated with higher annual household income (>$Australian dollar (AUD) 80,000 vs. urban and rural women; however, a higher macronutrient consumption pattern was potentially related to a higher lean meat intake in rural women. Women who are unemployed and on a lower income are an important target group for future dietary interventions aiming to improve diet quality.

  3. Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh

    Science.gov (United States)

    Roy, Kushal; Karim, Md. Rezaul; Akter, Farjana; Islam, Md. Safiqul; Ahmed, Kousik; Rahman, Masudur; Datta, Dilip Kumar; Khan, M. Shah Alam

    2018-05-01

    Despite its complexity and importance in managing water resources in populous deltas, especially in tidal areas, literatures on tidal rivers and their land use linkage in connection to water quality and pollution are rare. Such information is of prior need for Integrated Water Resource Management in water scarce and climate change vulnerable regions, such as the southwestern coast of Bangladesh. Using water quality indices and multivariate analysis, we present here the land use signatures of a dying tidal river due to anthropogenic perturbation. Correlation matrix, hierarchical cluster analysis, factor analysis, and bio-geo-chemical fingerprints were used to quantify the hydro-chemical and anthropogenic processes and identify factors influencing the ionic concentrations. The results show remarkable spatial and temporal variations ( p quality parameters. The lowest solute concentrations are observed at the mid reach of the stream where the agricultural and urban wastewater mix. Agricultural sites show higher concentration of DO, Na+ and K+ reflecting the effects of tidal spill-over and shrimp wastewater effluents nearby. Higher level of Salinity, EC, Cl-, HCO3 -, NO3 -, PO4 3- and TSS characterize the urban sites indicating a signature of land use dominated by direct discharge of household organic waste into the waters. The spatial variation in overall water quality suggests a periodic enhancement of quality especially for irrigation and non-drinking purposes during monsoon and post-monsoon, indicating significant influence of amount of rainfall in the basin. We recommend that, given the recent trend of increasing precipitation and ground water table decrease, such dying tidal river basins may serve as excellent surface water reservoir to supplement quality water supply to the region.

  4. Impacts by point and diffuse micropollutant sources on the stream water quality at catchment scale

    Science.gov (United States)

    Petersen, M. F.; Eriksson, E.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    The water quality of surface waters is threatened by multiple anthropogenic pollutants and the large variety of pollutants challenges the monitoring and assessment of the water quality. The aim of this study was to characterize and quantify both point and diffuse sources of micropollutants impacting the water quality of a stream at catchment scale. Grindsted stream in western Jutland, Denmark was used as a study site. The stream passes both urban and agricultural areas and is impacted by severe groundwater contamination in Grindsted city. Along a 12 km reach of Grindsted stream, the potential pollution sources were identified including a pharmaceutical factory site with a contaminated old drainage ditch, two waste deposits, a wastewater treatment plant, overflow structures, fish farms, industrial discharges and diffuse agricultural and urban sources. Six water samples were collected along the stream and analyzed for general water quality parameters, inorganic constituents, pesticides, sulfonamides, chlorinated solvents, BTEXs, and paracetamol and ibuprofen. The latter two groups were not detected. The general water quality showed typical conditions for a stream in western Jutland. Minor impacts by releases of organic matter and nutrients were found after the fish farms and the waste water treatment plant. Nickel was found at concentrations 5.8 - 8.8 μg/l. Nine pesticides and metabolites of both agricultural and urban use were detected along the stream; among these were the two most frequently detected and some rarely detected pesticides in Danish water courses. The concentrations were generally consistent with other findings in Danish streams and in the range 0.01 - 0.09 μg/l; except for metribuzin-diketo that showed high concentrations up to 0.74 μg/l. The groundwater contamination at the pharmaceutical factory site, the drainage ditch and the waste deposits is similar in composition containing among others sulfonamides and chlorinated solvents (including vinyl

  5. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    Energy Technology Data Exchange (ETDEWEB)

    Bain, R.E.S. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Wright, J.A. [Geography and Environment, University of Southampton, Southampton (United Kingdom); Christenson, E. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Bartram, J.K., E-mail: jbartram@unc.edu [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States)

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  6. Rural:urban inequalities in post 2015 targets and indicators for drinking-water.

    Science.gov (United States)

    Bain, R E S; Wright, J A; Christenson, E; Bartram, J K

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth - over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    International Nuclear Information System (INIS)

    Bain, R.E.S.; Wright, J.A.; Christenson, E.; Bartram, J.K.

    2014-01-01

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  8. Real-time water quality monitoring and providing water quality ...

    Science.gov (United States)

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  9. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Science.gov (United States)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model

  10. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons.

    Science.gov (United States)

    Xiao, Rui; Wang, Guofeng; Zhang, Qianwen; Zhang, Zhonghao

    2016-05-05

    Water quality is highly dependent on the landscape characteristics. In this study, we investigated the relationships between water quality and landscape pattern (composition and configuration) in Huzhou City, China. The water quality variables, including pH, dissolved oxygen (DO), chemical oxygen demand (CODMn), Biochemical Oxygen Demand (BOD), NH3-N, petroleum, dissolved total phosphorus (DTP), and total nitrogen (TN) in low water, normal water and flood periods were identified by investigating 34 sampling sites in Huzhou City during the period from 2001 to 2007. Landscape composition and landscape configuration metrics were calculated for different scales. It was found that scales and seasons both play important role when analyzing the relationships between landscape characteristics of different land use types. The results implied that some water quality parameters such as CODMn, petroleum are more polluted in flood period than the other two seasons at different scales, while DTP and TN are more polluted in low water period. Influences of different landscape metrics on water quality should operate at different spatial scales. The results shown in this paper will effectively provide scientific basis for the policy making in sustainable development of water environment.

  11. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground-water

  12. Multi-dimensional water quality assessment of an urban drinking water source elucidated by high resolution underwater towed vehicle mapping.

    Science.gov (United States)

    Lock, Alan; Spiers, Graeme; Hostetler, Blair; Ray, James; Wallschläger, Dirk

    2016-04-15

    Spatial surveys of Ramsey Lake, Sudbury, Ontario water quality were conducted using an innovative underwater towed vehicle (UTV) equipped with a multi-parameter probe providing real-time water quality data. The UTV revealed underwater vent sites through high resolution monitoring of different spatial chemical characteristics using common sensors (turbidity, chloride, dissolved oxygen, and oxidation/reduction sensors) that would not be feasible with traditional water sampling methods. Multi-parameter probe vent site identification is supported by elevated alkalinity and silica concentrations at these sites. The identified groundwater vent sites appear to be controlled by bedrock fractures that transport water from different sources with different contaminants of concern. Elevated contaminants, such as, arsenic and nickel and/or nutrient concentrations are evident at the vent sites, illustrating the potential of these sources to degrade water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  14. Water quality relationships and evaluation using a new water quality index

    International Nuclear Information System (INIS)

    Said, A.; Stevens, D.; Sehlke, G.

    2002-01-01

    Water quality is dependent on a variety of measures, including dissolved oxygen, microbial contamination, turbidity, nutrients, temperature, pH, and other constituents. Determining relationships between water quality parameters can improve water quality assessment, and watershed management. In addition, these relationships can be very valuable in case of evaluating water quality in watersheds that have few water quality data. (author)

  15. Recent Advances in Point-of-Access Water Quality Monitoring

    Science.gov (United States)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  16. Drinking water quality assessment in Southern Sindh (Pakistan).

    Science.gov (United States)

    Memon, Mehrunisa; Soomro, Mohammed Saleh; Akhtar, Mohammad Saleem; Memon, Kazi Suleman

    2011-06-01

    The southern Sindh province of Pakistan adjoins the Arabian Sea coast where drinking water quality is deteriorating due to dumping of industrial and urban waste and use of agrochemicals and yet has limited fresh water resources. The study assessed the drinking water quality of canal, shallow pumps, dug wells, and water supply schemes from the administrative districts of Thatta, Badin, and Thar by measuring physical, chemical, and biological (total coliform) quality parameters. All four water bodies (dug wells, shallow pumps canal water, and water supply schemes) exceeded WHO MPL for turbidity (24%, 28%, 96%, 69%), coliform (96%, 77%, 92%, 81%), and electrical conductivity (100%, 99%, 44%, 63%), respectively. However, the turbidity was lower in underground water, i.e., 24% and 28% in dug wells and shallow pumps as compared to open water, i.e., 96% and 69% in canal and water supply schemes, respectively. In dug wells and shallow pumps, limits for TDS, alkalinity, hardness, and sodium exceeded, respectively, by 63% and 33%; 59% and 70%, 40% and 27%, and 78% and 26%. Sodium was major problem in dug wells and shallow pumps of district Thar and considerable percent in shallow pumps of Badin. Iron was major problem in all water bodies of district Badin ranging from 50% to 69% and to some extent in open waters of Thatta. Other parameters as pH, copper, manganese, zinc, and phosphorus were within standard permissible limits of World Health Organization. Some common diseases found in the study area were gastroenteritis, diarrhea and vomiting, kidney, and skin problems.

  17. The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    OpenAIRE

    Zia, Huma; Harris, Nick; Merrett, Geoff V.; Rivers, Mark; Coles, Neil

    2013-01-01

    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is cu...

  18. Water-quality assessment of the New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island : environmental settings and implications for water quality and aquatic biota

    Science.gov (United States)

    Flanagan, Sarah M.; Nielsen, Martha G.; Robinson, Keith W.; Coles, James F.

    1999-01-01

    The New England Coastal Basins in Maine, Massachusetts, New Hampshire, and Rhode Island constitute one of 59 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. England Coastal Basins study unit encompasses the fresh surface waters and ground waters in a 23,000 square-mile area that drains to the Atlantic Ocean. Major basins include those of the Kennebec, Androscoggin, Saco, Merrimack, Charles, Blackstone, Taunton, and Pawcatuck Rivers. Defining the environmental setting of the study unit is the first step in designing and conducting a multi-disciplinary regional water-quality assessment. The report describes the natural and human factors that affect water quality in the basins and includes descriptions of the physiography, climate, geology, soils, surface- and ground-water hydrology, land use, and the aquatic ecosystem. Although surface-water quality has greatly improved over the past 30 years as a result of improved wastewater treatment at municipal and industrial wastewater facilities, a number of water-quality problems remain. Industrial and municipal wastewater discharges, combined sewer overflows, hydrologic modifications from dams and water diversions, and runoff from urban land use are the major causes of water-quality degradation in 1998. The most frequently detected contaminants in ground water in the study area are volatile organic compounds, petroleum-related products, nitrates, and chloride and sodium. Sources of these contaminants include leaking storage tanks, accidental spills, landfills, road salting, and septic systems and lagoons. Elevated concentrations of mercury are found in fish tissue from streams and lakes throughout the study area.

  19. The future of urban waste water reuse. El futuro de la reutilizacion de las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Farias Iglesias, M. (PRIDESA. Madrid (Spain))

    1992-11-01

    An explanation is given for the interest in the re-use of urban waste water, together with the possible uses for it. Water quality parameters such as the quantity of material in suspension, fertilizers, heavy metals, boron, bacteria and viruses, salinity, toxicity and pathogenous agents are given for water to be re-used, whether it be for drinking purposes or industrial use. Consideration is also given to the possibility of injecting this water into aquifers. (Author)

  20. Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal.

    Science.gov (United States)

    Burkart, Katrin; Meier, Fred; Schneider, Alexandra; Breitner, Susanne; Canário, Paulo; Alcoforado, Maria João; Scherer, Dieter; Endlicher, Wilfried

    2016-07-01

    Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status. We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008. We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders. The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%). Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by

  1. Outlier Detection in Urban Air Quality Sensor Networks

    NARCIS (Netherlands)

    van Zoest, V.M.; Stein, A.; Hoek, Gerard

    2018-01-01

    Low-cost urban air quality sensor networks are increasingly used to study the spatio-temporal variability in air pollutant concentrations. Recently installed low-cost urban sensors, however, are more prone to result in erroneous data than conventional monitors, e.g., leading to outliers. Commonly

  2. Exploring Diet Quality between Urban and Rural Dwelling Women of Reproductive Age

    Directory of Open Access Journals (Sweden)

    Julie C. Martin

    2017-06-01

    Full Text Available Health disparities, including weight gain and obesity exist between urban and rural dwelling women. The primary aim was to compare diet quality in urban and rural women of reproductive age, and secondary analyses of the difference in macronutrient and micronutrient intake in urban and rural women, and the predictors of diet quality. Diet quality was assessed in urban (n = 149 and rural (n = 394 women by a modified version of the Dietary Guideline Index (DGI energy, macronutrient and micronutrient intake from a food frequency questionnaire (FFQ and predictors of diet quality. Diet quality did not significantly differ between urban and rural women (mean ± standard deviation (SD, 84.8 ± 15.9 vs. 83.9 ± 16.5, p = 0.264. Rural women reported a significantly higher intake of protein, fat, saturated fat, monounsaturated fat, cholesterol and iron and a higher score in the meat and meat alternatives component of the diet quality tool in comparison to urban women. In all women, a higher diet quality was associated with higher annual household income (>$Australian dollar (AUD 80,000 vs. <$AUD80,000 p = 0.013 and working status (working fulltime/part-time vs. unemployed p = 0.043. Total diet quality did not differ in urban and rural women; however, a higher macronutrient consumption pattern was potentially related to a higher lean meat intake in rural women. Women who are unemployed and on a lower income are an important target group for future dietary interventions aiming to improve diet quality.

  3. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  4. National water summary 1986; Hydrologic events and ground-water quality

    Science.gov (United States)

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  5. Governing urban water flows in China

    NARCIS (Netherlands)

    Zhong, L.

    2007-01-01

    China has been witnessing an unprecedented period of continuous high economic growth during the past three decades. But this has been paralleled by severe environmental challenges, of which water problems are of key importance. This thesis addresses the urban water challenges of contemporary China,

  6. QUALITY OF PUBLIC TRANSPORTATION SERVICES IN URBAN AREA OF ORADEA

    Directory of Open Access Journals (Sweden)

    Silaghi Simona

    2010-12-01

    Full Text Available Intensification of public transport in urban areas due to increased mobility at regional and national levels, discrepancies among urban areas with same population and lack of statistical data related to performance and quality of public transport services are the main determinants of this paper. A separation line must be drawn between quality of services and performance indicators of public transport system. Service quality is a multi subjective outcome of an array of intangible variables. Service quality can be approached from four directions: consumer, vehicle performance (including the human operator, specialized company in passenger transport, and the Government (local Councils. Availability, comfort and convenience are the two main indicators that must be evaluated by citizens as being with high grades for a good quality of urban transport services. The instrument used to gather data is the preference survey.

  7. Integrity Model Application: A Quality Support System for Decision-makers on Water Quality Assessment and Improvement

    Science.gov (United States)

    Mirauda, D.; Ostoich, M.; Di Maria, F.; Benacchio, S.; Saccardo, I.

    2018-03-01

    In this paper, a mathematical model has been applied to a river in North-East Italy to describe vulnerability scenarios due to environmental pollution phenomena. Such model, based on the influence diagrams theory, allowed identifying the extremely critical factors, such as wastewater discharges, drainage of diffuse pollution from agriculture and climate changes, which might affect the water quality of the river. The obtained results underlined how the water quality conditions have improved thanks to the continuous controls on the territory, following the application of Water Framework Directive 2000/60/EC. Nevertheless, some fluvial stretches did not reach the “good ecological status” by 2015, because of the increasing population in urban areas recorded in the last years and the high presence of tourists during the summer months, not balanced by a treatment plants upgrade.

  8. Assessment of water quality of rivers that serve as water sources for drinking and domestic functions in rural and pre-urban communities in Edo North, Nigeria.

    Science.gov (United States)

    Beshiru, Abeni; Okareh, Oladapo T; Chigor, Vincent N; Igbinosa, Etinosa O

    2018-06-09

    Surface waters are important to humans because they are a significant water supply source. They are, however, under serious environmental stress and are being threatened as a consequence of developmental activities. The present study describes the physicochemical properties and water quality indices of five different rivers used for drinking and other domestic activities in rural and pre-urban communities in Edo North, Nigeria. The physicochemical variable ranges include pH [wet season (6.47 ± 0.30-6.89 ± 0.11), dry season (6.61 ± 0.14-7.84 ± 0.24)], electrical conductivity (EC) [wet season (3.33 ± 0.57-12.33 ± 2.51 μS/cm), dry season (5.33 ± 0.57-21.33 ± 2.08 μS/cm)], water temperature [wet season (24.23 ± 0.98-25.40 ± 1.15 °C), dry season (26.20 ± 0.55-27.10 ± 0.75 °C)], TDS [wet season (417.00 ± 15.87-433.33 ± 18.50 mg/L), dry season (319.33 ± 16.50-372.66 ± 22.30 mg/L)], turbidity [wet season (1.01 ± 0.11-2.08 ± 0.99 NTU), dry season (3.11 ± 0.01-5.41 ± 0.24 NTU)], and DO [wet season (2.65 ± 0.37-3.99 ± 0.01 mg/L), dry season (2.12 ± 0.11-2.44 ± 0.01 mg/L)]. For the wet and dry seasons, the water quality indices were 120.225 and 585.015 for River Osolo, 119.849 and 445.751 for River Foreign, 200.474 and 587.833 for Ijoh River, 105.261 and 512.498 for Ole River, and 150.114 and 489.992 for Ole Extension River, respectively. The pH was negatively correlated with DO (r = -0.648), and EC was negatively correlated with DO (r = -0.635). Most of the evaluated parameters were within recommended water safety guidelines. However, the water quality index shows that the water quality was very poor and/or unsuitable for drinking and other domestic uses, especially during the dry season. It is suggested that river water be treated prior to its use for drinking and other domestic purposes.

  9. Urban food-energy-water nexus: a case study of Beijing

    Science.gov (United States)

    Wu, Z.; Shao, L.

    2017-12-01

    The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.

  10. Relevance and Benefits of Urban Water Reuse in Tourist Areas

    Directory of Open Access Journals (Sweden)

    Gaston Tong Sang

    2012-01-01

    Full Text Available Urban water reuse is one of the most rapidly growing water reuse applications worldwide and one of the major elements of the sustainable management of urban water cycle. Because of the high probability of direct contact between consumers and recycled water, many technical and regulatory challenges have to be overcome in order to minimize health risks at affordable cost. This paper illustrates the keys to success of one of the first urban water reuse projects in the island Bora Bora, French Polynesia. Special emphasis is given on the reliability of operation of the membrane tertiary treatment, economic viability in terms of pricing of recycled water and operating costs, as well as on the benefits of water reuse for the sustainable development of tourist areas.

  11. Effects of land use patterns on stream water quality: a case study of a small-scale watershed in the Three Gorges Reservoir Area, China.

    Science.gov (United States)

    Huang, Zhilin; Han, Liyang; Zeng, Lixiong; Xiao, Wenfa; Tian, Yaowu

    2016-02-01

    In this study, we have considered the relationship between the spatial configuration of land use and water quality in the Three Gorges Reservoir Area. Using land use types, landscape metrics, and long-term water quality data, as well as statistical and spatial analysis, we determined that most water quality parameters were negatively correlated with non-wood forest and urban areas but were strongly positively correlated with the proportion of forest area. Landscape indices such as patch density, contagion, and the Shannon diversity index were able to predict some water quality indicators, but the mean shape index was not significantly related to the proportions of farmland and water in the study area. Regression relationships were stronger in spring and fall than in summer, and relationships with nitrogen were stronger than those of the other water quality parameters (R(2) > 0.80) in all three seasons. Redundancy analysis showed that declining stream water quality was closely associated with configurations of urban, agricultural, and forest areas and with landscape fragmentation (PD) caused by urbanization and agricultural activities. Thus, a rational land use plan of adjusting the land use type, controlling landscape fragmentation, and increasing the proportion of forest area would help to achieve a healthier river ecosystem in the Three Gorges Reservoir Area (TGRA).

  12. Does Personalized Water and Hand Quality Information Affect Attitudes, Behavior, and Health in Dar es Salaam, Tanzania?

    Science.gov (United States)

    Davis, J.; Pickering, A.; Horak, H.; Boehm, A.

    2008-12-01

    Tanzania (TZ) has one of the highest rates of child mortality due to enteric disease in the world. NGOs and local agencies have introduced numerous technologies (e.g., chlorine tablets, borewells) to increase the quantity and quality of water in Dar es Salaam, the capital of Tanzania, in hopes of reducing morbidity and mortality of waterborne disease. The objective of the present study is to determine if providing personalized information about water quality and hand surface quality, as determined by concentrations of enterococci and E. coli, results in improved health and water quality in households. A cohort study was completed in June-September 2008 in 3 communities ranging from urban to per-urban in Dar es Salaam, Tanzania to achieve our objective. The study consisted of 4 cohorts that were visited 4 times over the 3 month study. One cohort received no information about water and hand quality until the end of the summer, while the other groups received either just information on hand surface quality, just information on water quality, and information on both hand surface and water quality after the first (baseline) household visit. We report concentrations of enterococci and E. coli in water sources (surface waters and bore wells), water stored in households, and environmental waters were children and adults swim and bathe. In addition, we report concentrations of enterococci and E. coli on hands of caregivers and children in households. Preliminary results of surveys on health and perceptions of water quality and illness from the households are provided. Ongoing work will integrate the microbiological and sociological data sets to determine if personalized information interventions resulted in changes in health, water quality in the household, or perceptions of water quality, quantity and relation to human health. Future work will analyze DNA samples from hands and water for human-specific Bacteroides bacteria which are only present in human feces. Our study

  13. Using QMRAcatch - a stochastic hydrological water quality and infection risk model - to identify sustainable management options for long term drinking water resource planning

    Science.gov (United States)

    Derx, J.; Demeter, K.; Schijven, J. F.; Sommer, R.; Zoufal-Hruza, C. M.; Kromp, H.; Farnleitner, A.; Blaschke, A. P.

    2017-12-01

    River water resources in urban environments play a critical role in sustaining human health and ecosystem services, as they are used for drinking water production, bathing and irrigation. In this study the hydrological water quality model QMRAcatch was used combined with measured concentrations of human enterovirus and human-associated genetic fecal markers. The study area is located at a river/floodplain area along the Danube which is used for drinking water production by river bank filtration and further disinfection. QMRAcatch was previously developed to support long term planning of water resources in accordance with a public infection protection target (Schijven et al., 2015). Derx et al. 2016 previously used QMRAcatch for evaluating the microbiological quality and required virus-reduction targets at the study area for the current and robust future "crisis" scenarios, i.e. for the complete failure of wastewater treatment plants and infection outbreaks. In contrast, the aim of this study was to elaborate future scenarios based on projected climate and population changes in collaboration with urban water managers. The identified scenarios until 2050 include increased wastewater discharge rates due to the projected urban population growth and more frequent storm and overflow events of urban sewer systems following forecasted changes in climate and hydrology. Based on the simulation results for the developed scenarios sustainable requirements of the drinking water treatment system for virus reductions were re-evaluated to achieve the health risk target. The model outcomes are used to guide practical and scientifically sound management options for long term water resource planning. This paper was supported by FWF (Vienna Doctoral Program on Water Resource Systems W1219-N22) and the GWRS project (Vienna Water) as part of the "(New) Danube-Lower Lobau Network Project" funded by the Government of Austria and Vienna, and the European Agricultural Fund for Rural

  14. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  15. Water quality index for assessment of water quality of river ravi at ...

    African Journals Online (AJOL)

    Water quality of River Ravi, a tributary of Indus River System was evaluated by Water Quality Index (WQI) technique. A water quality index provides a single number that expresses overall water quality at a certain location and time based on several water quality parameters. The objective of an index is to turn complex water ...

  16. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  17. Ag-to-urban water transfer in California: Win-win solutions

    International Nuclear Information System (INIS)

    Jacobi, L.A.; Carley, R.L.

    1993-01-01

    The current long-term drought in California has generated interest in water transfers. Water transfers from farms to the cities are widely viewed as the next major source of supply to urban California. Ag-to-Urban permanent water transfers may have negative consequences to the agricultural sector and to the environment. This paper presents agricultural water use statistics, discusses sources of water for transfer, and suggests sources of water for win-win transfers

  18. Frontiers of Land and Water Governance in Urban Regions

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2015-01-01

    A society that intensifies and expands the use of land and water in urban areas needs to search for solutions to manage the frontiers between these two essential elements for urban living. Sustainable governance of land and water is one of the major challenges of our times. Managing retention areas

  19. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Science.gov (United States)

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  20. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    Science.gov (United States)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  1. Analytical optimization of demand management strategies across all urban water use sectors

    Science.gov (United States)

    Friedman, Kenneth; Heaney, James P.; Morales, Miguel; Palenchar, John

    2014-07-01

    An effective urban water demand management program can greatly influence both peak and average demand and therefore long-term water supply and infrastructure planning. Although a theoretical framework for evaluating residential indoor demand management has been well established, little has been done to evaluate other water use sectors such as residential irrigation in a compatible manner for integrating these results into an overall solution. This paper presents a systematic procedure to evaluate the optimal blend of single family residential irrigation demand management strategies to achieve a specified goal based on performance functions derived from parcel level tax assessor's data linked to customer level monthly water billing data. This framework is then generalized to apply to any urban water sector, as exponential functions can be fit to all resulting cumulative water savings functions. Two alternative formulations are presented: maximize net benefits, or minimize total costs subject to satisfying a target water savings. Explicit analytical solutions are presented for both formulations based on appropriate exponential best fits of performance functions. A direct result of this solution is the dual variable which represents the marginal cost of water saved at a specified target water savings goal. A case study of 16,303 single family irrigators in Gainesville Regional Utilities utilizing high quality tax assessor and monthly billing data along with parcel level GIS data provide an illustrative example of these techniques. Spatial clustering of targeted homes can be easily performed in GIS to identify priority demand management areas.

  2. Primer on Water Quality

    Science.gov (United States)

    ... water quality. What do we mean by "water quality"? Water quality can be thought of as a measure ... is suitable for a particular use. How is water quality measured? Some aspects of water quality can be ...

  3. Empirical Estimation of Total Nitrogen and Total Phosphorus Concentration of Urban Water Bodies in China Using High Resolution IKONOS Multispectral Imagery

    Directory of Open Access Journals (Sweden)

    Jiaming Liu

    2015-11-01

    Full Text Available Measuring total nitrogen (TN and total phosphorus (TP is important in managing heavy polluted urban waters in China. This study uses high spatial resolution IKONOS imagery with four multispectral bands, which roughly correspond to Landsat/TM bands 1–4, to determine TN and TP in small urban rivers and lakes in China. By using Lake Cihu and the lower reaches of Wen-Rui Tang (WRT River as examples, this paper develops both multiple linear regressions (MLR and artificial neural network (ANN models to estimate TN and TP concentrations from high spatial resolution remote sensing imagery and in situ water samples collected concurrently with overpassing satellite. The measured and estimated values of both MLR and ANN models are in good agreement (R2 > 0.85 and RMSE < 2.50. The empirical equations selected by MLR are more straightforward, whereas the estimated accuracy using ANN model is better (R2 > 0.86 and RMSE < 0.89. Results validate the potential of using high resolution IKONOS multispectral imagery to study the chemical states of small-sized urban water bodies. The spatial distribution maps of TN and TP concentrations generated by the ANN model can inform the decision makers of variations in water quality in Lake Cihu and lower reaches of WRT River. The approaches and equations developed in this study could be applied to other urban water bodies for water quality monitoring.

  4. Littered cigarette butts as a source of nicotine in urban waters

    Science.gov (United States)

    Roder Green, Amy L.; Putschew, Anke; Nehls, Thomas

    2014-11-01

    The effect of nicotine from littered cigarette butts on the quality of urban water resources has yet to be investigated. This two-part study addresses the spatial variation, seasonal dynamics and average residence time of littered cigarette butts in public space, as well as the release of nicotine from cigarette butts to run-off in urban areas during its residence time. Thereby, we tested two typical situations: release to standing water in a puddle and release during alternating rainfall and drying. The study took place in Berlin, Germany, a city which completely relies on its own water resources to meet its drinking water demand. Nine typical sites located in a central district, each divided into 20 plots were studied during five sampling periods between May 2012 and February 2013. The nicotine release from standardized cigarette butts prepared with a smoking machine was examined in batch and rainfall experiments. Littered cigarette butts are unevenly distributed among both sites and plots. The average butt concentration was 2.7 m-2 (SD = 0.6 m-2, N = 862); the maximum plot concentration was 48.8 butts m-2. This heterogeneity is caused by preferential littering (gastronomy, entrances, bus stops), redistribution processes such as litter removal (gastronomy, shop owners), and the increased accumulation in plots protected from mechanized street sweeping (tree pits, bicycle stands). No significant seasonal variation of cigarette butt accumulation was observed. On average, cigarette butt accumulation is characterized by a 6 days cadence due to the rhythm and effectiveness of street sweeping (mean weekly butt accumulation rate = 0.18 m-2 d-1; SD = 0.15 m-1). Once the butt is exposed to standing water, elution of nicotine occurs rapidly. Standardized butts released 7.3 mg g-1 nicotine in a batch experiment (equivalent to 2.5 mg L-1), 50% of which occurred within the first 27 min. In the rainfall experiment, the cumulative nicotine release from fifteen consecutive

  5. Development of urban water consumption models for the City of Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    Population growth and rapid urbanization coupled with uncertain climate change are causing new challenges for meeting urban water needs. In arid and semi-arid regions, increasing drought periods and decreasing precipitation have led to water supply shortages and cities are struggling with trade-offs between the water needs of growing urban populations and the well-being of urban ecosystems. The goal of the current research is to build models that can represent urban water use patterns in semi-arid cities by identifying the determinants that control both total and outdoor residential water use over the Los Angeles urban domain. The initial database contains monthly water use records aggregated to the zip code level collected from the Los Angeles Department of Water and Power (LADWP) from 2000 to 2010. Residential water use was normalized per capita and was correlated with socio-demographic, economic, climatic and vegetation characteristics across the City for the 2000-2010 period. Results show that ethnicity, per capita income, and the average number of persons per household are linearly related to total water use per capita. Inter-annual differences in precipitation and implementation of conservation measures affect water use levels across the City. The high variability in water use patterns across the City also appears strongly influenced by income and education levels. The temporal analysis of vegetation indices in the studied neighborhoods shows little correlation between precipitation patterns and vegetation greenness. Urban vegetation appears well-watered, presenting the same greenness activity over the study period despite an overall decrease in water use across the City. We hypothesize that over-watering is occurring and that outdoor water use represents a significant part of the residential water budget in various regions of the City. A multiple regression model has been developed that integrates these fundamental controlling factors to simulate residential

  6. Lake water quality: Chapter 4 in A synthesis of aquatic science for management of Lakes Mead and Mohave

    Science.gov (United States)

    Tietjen, Todd; Holdren, G. Chris; Rosen, Michael R.; Veley, Ronald J.; Moran, Michael J.; Vanderford, Brett; Wong, Wai Hing; Drury, Douglas D.

    2012-01-01

    Given the importance of the availability and quality of water in Lake Mead, it has become one of the most intensely sampled and studied bodies of water in the United States. As a result, data are available from sampling stations across the lake (fig. 4-1 and see U.S. Geological Survey Automated Water-Quality Platforms) to provide information on past and current (2012) water-quality conditions and on invasive species that influence—and are affected by—water quality. Water quality in Lakes Mead and Mohave generally exceeds standards set by the State of Nevada to protect water supplies for public uses: drinking water, aquatic ecosystem health, recreation, or agricultural irrigation. In comparison to other reservoirs studied by the U.S. Environmental Protection Agency (USEPA) for a national lake assessment (U.S. Environmental Protection Agency, 2010), Lake Mead is well within the highest or ‘good’ category for recreation and aquatic health (see U.S. Environmental Protection Agency National Lakes Assessment and Lake Mead for more details). While a small part of the lake, particularly Las Vegas Bay, is locally influenced by runoff from urbanized tributaries such as Las Vegas Wash, contaminant loading in the lake as a whole is low compared to other reservoirs in the nation, which are influenced by runoff from more heavily urbanized watersheds (Rosen and Van Metre, 2010).

  7. Environmental Setting and Implications on Water Quality, Upper Colorado River Basin, Colorado and Utah

    Science.gov (United States)

    Apodaca, Lori E.; Driver, Nancy E.; Stephens, Verlin C.; Spahr, Norman E.

    1995-01-01

    The Upper Colorado River Basin in Colorado and Utah is 1 of 60 study units selected for water-quality assessment as part of the U.S. Geological Survey's National Water-Quality Assessment program, which began full implementation in 1991. Understanding the environmental setting of the Upper Colorado River Basin study unit is important in evaluating water-quality issues in the basin. Natural and human factors that affect water quality in the basin are presented, including an overview of the physiography, climatic conditions, general geology and soils, ecoregions, population, land use, water management and use, hydrologic characteristics, and to the extent possible aquatic biology. These factors have substantial implications on water-quality conditions in the basin. For example, high concentrations of dissolved solids and selenium are present in the natural background water conditions of surface and ground water in parts ofthe basin. In addition, mining, urban, and agricultural land and water uses result in the presence of certain constituents in the surface and ground water of the basin that can detrimentally affect water quality. The environmental setting of the study unit provides a framework of the basin characteristics, which is important in the design of integrated studies of surface water, ground water, and biology.

  8. MODELING THE IMPACTS OF LAND USE CHANGE ON HYDROLOGY AND WATER QUALITY OF A PACIFIC NORTHWEST WATERSHED

    Science.gov (United States)

    In many parts of the world, aquatic ecosystems are threatened by hydrological and water quality alterations due to extraction and conversion of natural resources for agriculture, urban development, forestry, mining, transportation, and water resources development. To evaluate the...

  9. Historical water-quality data from the Harlem River, New York

    Science.gov (United States)

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  10. A simple metric to predict stream water quality from storm runoff in an urban watershed.

    Science.gov (United States)

    Easton, Zachary M; Sullivan, Patrick J; Walter, M Todd; Fuka, Daniel R; Petrovic, A Martin; Steenhuis, Tammo S

    2010-01-01

    The contribution of runoff from various land uses to stream channels in a watershed is often speculated and used to underpin many model predictions. However, these contributions, often based on little or no measurements in the watershed, fail to appropriately consider the influence of the hydrologic location of a particular landscape unit in relation to the stream network. A simple model was developed to predict storm runoff and the phosphorus (P) status of a perennial stream in an urban watershed in New York State using the covariance structure of runoff from different landscape units in the watershed to predict runoff in time. One hundred and twenty-seven storm events were divided into parameterization (n = 85) and forecasting (n = 42) data sets. Runoff, dissolved P (DP), and total P (TP) were measured at nine sites distributed among three land uses (high maintenance, unmaintained, wooded), three positions in the watershed (near the outlet, midwatershed, upper watershed), and in the stream at the watershed outlet. The autocorrelation among runoff and P concentrations from the watershed landscape units (n = 9) and the covariance between measurements from the landscape units and measurements from the stream were calculated and used to predict the stream response. Models, validated using leave-one-out cross-validation and a forecasting method, were able to correctly capture temporal trends in streamflow and stream P chemistry (Nash-Sutcliffe efficiencies, 0.49-0.88). The analysis suggests that the covariance structure was consistent for all models, indicating that the physical processes governing runoff and P loss from these landscape units were stationary in time and that landscapes located in hydraulically active areas have a direct hydraulic link to the stream. This methodology provides insight into the impact of various urban landscape units on stream water quantity and quality.

  11. Water quality issues in southern Nigeria

    International Nuclear Information System (INIS)

    Ajayi, O.

    2000-07-01

    There is a keen awareness of the effects of water quality on human health and behaviour in developing countries arising from well documented cases which can be found in the literature. Also in Nigeria there are various concerns about incidents of toxic waste disposal, groundwater pollution through oil spillages, waste disposal practices by agricultural, domestic and industrial activities which affect the domestic water supplies and the environment. The aims of this paper are to highlight the role of water quality in human health; provide a framework for water related health assessment, present results of case studies and recommend appropriate strategies to safeguard human health from contaminated water sources. Major health problems, other than those due to micro-biological contamination of water sources, such as cholera and typhoid, have not been reported or linked to water supplies in Nigeria. Yet there are symptoms of and growing incidences of various diseases, such as psychopathic and neurological disorders which have been linked to contaminated water supplies in developed countries. The major, minor and trace concentrations of elements in water supplies in Nigeria are usually determined in the ppm range whereas most trace elements are hazardous to human health in the ppb or μg/l levels. The reason for this state of affairs is that the instrumentation required for determination of elemental concentrations at the ppb level is not readily available to researchers. Most reports on water quality do not provide any links to the major health problems which have been demonstrated elsewhere as responsible for major pathologic and neurologic disorders, including outright fatalities. Recent studies in Europe and Japan link several diseases, including kidney failure, mood disturbance and other neurologic disorders, heart, liver and kidney damage including death from eating poisonous fish caught in polluted waters, to contamination of water supplies by heavy metals in

  12. [Ecological environmental quality assessment of Hangzhou urban area based on RS and GIS].

    Science.gov (United States)

    Xu, Pengwei; Zhao, Duo

    2006-06-01

    In allusion to the shortage of traditional ecological environmental quality assessment, this paper studied the spatial distribution of assessing factors at a mid-small scale, and the conversion of integer character to girding assessing cells. The main assessing factors including natural environmental condition, environmental quality, natural landscape and urbanization pressure, which were classified into four types with about eleven assessing factors, were selected from RS images and GIS-spatial analyzing environmental quality vector graph. Based on GIS, a comprehensive assessment model for the ecological environmental quality in Hangzhou urban area was established. In comparison with observed urban heat island effects, the assessment results were in good agreement with the ecological environmental quality in the urban area of Hangzhou.

  13. Urban rivers as hotspots of regional nitrogen pollution

    International Nuclear Information System (INIS)

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-01-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3–5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. - Highlights: • Nitrogen concentrations in urban rivers are much higher than that in regional rivers. • Domestic wastewater is the main source of urban river pollution in Hangzhou. • Pollutant collecting and water diversion can sharply reduce the urban river pollution. - Urban river pollution is not being measured by the current monitoring networks that are designed to measure regional patterns causing an underestimation

  14. Characterization of CDOM from urban waters in Northern-Northeastern China using excitation-emission matrix fluorescence and parallel factor analysis.

    Science.gov (United States)

    Zhao, Ying; Song, Kaishan; Li, Sijia; Ma, Jianhang; Wen, Zhidan

    2016-08-01

    Chromophoric dissolved organic matter (CDOM) plays an important role in aquatic systems, but high concentrations of organic materials are considered pollutants. The fluorescent component characteristics of CDOM in urban waters sampled from Northern and Northeastern China were examined by excitation-emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC) to investigate the source and compositional changes of CDOM on both space and pollution levels. One humic-like (C1), one tryptophan-like component (C2), and one tyrosine-like component (C3) were identified by PARAFAC. Mean fluorescence intensities of the three CDOM components varied spatially and by pollution level in cities of Northern and Northeastern China during July-August, 2013 and 2014. Principal components analysis (PCA) was conducted to identify the relative distribution of all water samples. Cluster analysis (CA) was also used to categorize the samples into groups of similar pollution levels within a study area. Strong positive linear relationships were revealed between the CDOM absorption coefficients a(254) (R (2) = 0.89, p CDOM components can be applied to monitor water quality in real time compared to that of traditional approaches. These results demonstrate that EEM-PARAFAC is useful to evaluate the dynamics of CDOM fluorescent components in urban waters from Northern and Northeastern China and this method has potential applications for monitoring urban water quality in different regions with various hydrological conditions and pollution levels.

  15. The urban forest and ecosystem services: impact on urban water, heat, and pollution cycles at the tree, street, and city scale

    Science.gov (United States)

    S. J. Livesley; E. G. McPherson; C. Calfapietra

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However,...

  16. Water quality and water rights in Colorado

    International Nuclear Information System (INIS)

    MacDonnell, L.J.

    1989-07-01

    The report begins with a review of early Colorado water quality law. The present state statutory system of water quality protection is summarized. Special attention is given to those provisions of Colorado's water quality law aimed at protecting water rights. The report then addresses several specific issues which involve the relationship between water quality and water use. Finally, recommendations are made for improving Colorado's approach to integrating quality and quantity concerns

  17. A novel integrated assessment methodology of urban water reuse.

    Science.gov (United States)

    Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S

    2011-01-01

    Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.

  18. Leaching of additives from construction materials to urban storm water runoff.

    Science.gov (United States)

    Burkhardt, M; Zuleeg, S; Vonbank, R; Schmid, P; Hean, S; Lamani, X; Bester, K; Boller, M

    2011-01-01

    Urban water management requires further clarification about pollutants in storm water. Little is known about the release of organic additives used in construction materials and the impact of these compounds to storm water runoff. We investigated sources and pathways of additives used in construction materials, i.e., biocides in facades' render as well as root protection products in bitumen membranes for rooftops. Under wet-weather conditions, the concentrations of diuron, terbutryn, carbendazim, irgarol 1051 (all from facades) and mecoprop in storm water and receiving water exceeded the predicted no-effect concentrations values and the Swiss water quality standard of 0.1 microg/L. Under laboratory conditions maximum concentrations of additives were in the range of a few milligrams and a few hundred micrograms per litre in runoff of facades and bitumen membranes. Runoff from aged materials shows approximately one to two orders of magnitude lower concentrations. Concentrations decreased also during individual runoff events. In storm water and receiving water the occurrence of additives did not follow the typical first flush model. This can be explained by the release lasting over the time of rainfall and the complexity of the drainage network. Beside the amounts used, the impact of construction materials containing hazardous additives on water quality is related clearly to the age of the buildings and the separated sewer network. The development of improved products regarding release of hazardous additives is the most efficient way of reducing the pollutant load from construction materials in storm water runoff.

  19. Air pollution and decreased semen quality: A comparative study of Chongqing urban and rural areas

    International Nuclear Information System (INIS)

    Zhou, Niya; Cui, Zhihong; Yang, Sanming; Han, Xue; Chen, Gangcai; Zhou, Ziyuan; Zhai, Chongzhi; Ma, Mingfu; Li, Lianbing; Cai, Min; Li, Yafei; Ao, Lin; Shu, Weiqun; Liu, Jinyi; Cao, Jia

    2014-01-01

    To investigate the association and effects of air pollution level on male semen quality in urban and rural areas, this study examines the outdoor concentrations of particulate matter (PM 10 ), sulfur dioxide (SO 2 ), nitrous dioxide (NO 2 ) and semen quality outcomes for 1346 volunteers in both urban and rural areas in Chongqing, China. We found the urban area has a higher pollution level than the rural area, contrasted with better semen quality in the rural residents, especially for sperm morphology and computer assistant semen analysis (CASA) motility parameters. A multivariate linear regression analysis demonstrates that concentrations of PM 10 , SO 2 , and NO 2 significantly and negatively are associated with normal sperm morphology percentage (P  10 , SO 2 , and NO 2 in urban ambient air may account for worse semen quality in urban males. - Highlights: • We investigate the distributions of PM 10 , SO 2 and NO 2 in urban and rural areas in Chongqing, China. • We explore the associations of air pollution and male semen quality. • The concentrations of PM 10 , SO 2 , and NO 2 are significantly higher in urban areas. • Median values of some semen quality parameters in rural male were higher than urban male. • PM 10 , SO 2 , and NO 2 were negatively associated with semen quality parameters. - Air pollution is higher in the urban area while there is better semen quality in rural males. Polluted air may thus account for worse semen quality in urban males

  20. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  1. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  2. Environmental issues of the Ljubljana urban region

    Directory of Open Access Journals (Sweden)

    Metka Špes

    2004-12-01

    Full Text Available The main environmental problems of Ljubljana urban region which are obstacle of sustain-able development are presented in the paper, especially the main sources of air pollution and water manegment. Actual quality of life in urban environment is seen also in noise pollu-tion, quality and accessibility of green areas and in traffic. On the end the article discusses the attitudes of Ljubljana residents to environmental problems and quality of life in urban region.

  3. Urbanization, Water Pollution, and Public Policy.

    Science.gov (United States)

    Carey, George W.; And Others

    Reviewed in this report is a study concerned with water pollution as it relates to urbanization within the Regional Plan Association's set of 21 contiguous New York, New Jersey and Connecticut counties centered upon the numerous bay and estuarial reaches of the Port of New York and New Jersey. With a time frame covering a decade of water quality…

  4. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2017-03-01

    Full Text Available This paper presents an ecosystem biomimicry methodology for urban design called ecosystem service analysis. Ecosystem services analysis can provide quantifiable goals for urban ecological regeneration that are determined by site specific ecology and climate of an urban area. This is important given the large negative environmental impact that most cities currently have on ecosystems. If cities can provide some of their own ecosystem services, pressure may be decreased on the surrounding ecosystems. This is crucial because healthier ecosystems enable humans to better adapt to the impacts that climate change is currently having on urban built environments and will continue to have in the future. A case study analyzing two ecosystem services (provision of energy and provision of water for an existing urban environment (Wellington, New Zealand is presented to demonstrate how the ecosystem services analysis concept can be applied to an existing urban context. The provision of energy in Wellington was found to be an example of an ecosystem service where humans could surpass the performance of pre-development ecosystem conditions. When analyzing the provision of water it was found that although total rainfall in the urban area is almost 200% higher than the water used in the city, if rainwater harvested from existing rooftops were to meet just the demands of domestic users, water use would need to be reduced by 20%. The paper concludes that although achieving ecological performance goals derived from ecosystem services analysis in urban areas is likely to be difficult, determining site and climate specific goals enable urban design professionals to know what a specific city should be aiming for if it is to move towards better sustainability outcomes.

  5. Dealing with Variations over Space and Time in Urban Vegetation-Air Quality Assessment

    Science.gov (United States)

    Tan, P. Y.

    2017-12-01

    Studies on role of urban vegetation ameliorate poor air quality frequently encountered in urban areas should aim to answer a pertinent question: what is the net impact of urban vegetation in improving public health directly or indirectly through removal of air pollutants? Answers to this question need to consider that role of urban vegetation in air quality improvement is not just dependent on physical and physiological processes mediated by plants, it is also highly dependent on atmospheric processes. The roles of these two components thus need to be separated. This uncertainty is further complicated by heterogeneity of air quality over spatial scales and fluctuations in air quality over time. Singapore is used to illustrate these complexities. Between seasons, the main external source of atmospheric pollutants is aerosols from biomass burning in plantations in surrounding SE Asian countries, and air quality is highly dependent on wind directions dictated by monsoon systems. When air quality does deteriorate from transboundary pollution, there are also spatial differences within the city, as air pollutant levels differ in different regions. Rainfall from monsoons and other rain-bearing weather systems over Singapore also dictate the relative amounts of wet and dry deposition and the persistence of particulate matter deposited on vegetation surfaces. For locally generated air pollutants, diurnal fluctuations of anthropogenic activities, such as vehicular emissions between peak and non-peak hours, should also lead to fluctuations over the day. Not only does air quality vary from region to region, air quality within a vertical transect in the urban canopy layer also differs due to urban morphology and urban elements. A pedestrian along a treed street may experience poorer air quality than one living on highrise building, despite proximity to vegetation. There are thus interactions between climate, weather and urban context, which lead to spatial heterogeneity over

  6. Urban Waters and the Patapsco Watershed/Baltimore Region (Maryland)

    Science.gov (United States)

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  7. Comparative analysis of decision tree algorithms on quality of water contaminated with soil

    Directory of Open Access Journals (Sweden)

    Mara Andrea Dota

    2015-02-01

    Full Text Available Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes

  8. Water quality, selected chemical characteristics, and toxicity of base flow and urban stormwater in the Pearson Creek and Wilsons Creek Basins, Greene County, Missouri, August 1999 to August 2000

    Science.gov (United States)

    Richards, Joseph M.; Johnson, Byron Thomas

    2002-01-01

    The chemistry and toxicity of base flow and urban stormwater were characterized to determine if urban stormwater was degrading the water quality of the Pearson Creek and Wilsons Creek Basins in and near the city of Springfield, Greene County, Missouri. Potentially toxic components of stormwater (nutrients, trace metals, and organic compounds) were identified to help resource managers identify and minimize the sources of toxicants. Nutrient loading to the James River from these two basins (especially the Wilsons Creek Basin) is of some concern because of the potential to degrade downstream water quality. Toxicity related to dissolved trace metal constituents in stormwater does not appear to be a great concern in these two basins. Increased heterotrophic activity, the result of large densities of fecal indicator bacteria introduced into the streams after storm events, could lead to associated dissolved oxygen stress of native biota. Analysis of stormwater samples detected a greater number of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) than were present in base-flow samples. The number and concentrations of pesticides detected in both the base-flow and stormwater samples were similar.Genotoxicity tests were performed to determine the bioavilability of chemical contaminants and determine the potential harmful effects on aquatic biota of Pearson Creek and Wilsons Creek. Genotoxicity was determined from dialysates from both long-term (approximately 30 days) and storm-event (3 to 5 days) semipermeable membrane device (SPMD) samples that were collected in each basin. Toxicity tests of SPMD samples indicated evidence of genotoxins in all SPMD samples. Hepatic activity assessment of one long-term SPMD sample indicated evidence of contaminant uptake in fish. Chemical analyses of the SPMD samples found that relatively few pesticides and pesticide metabolites had been sequestered in the lipid material of the SPMD; however, numerous PAHs and

  9. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  10. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria.

    Science.gov (United States)

    Christenson, Elizabeth; Bain, Robert; Wright, Jim; Aondoakaa, Stephen; Hossain, Rifat; Bartram, Jamie

    2014-08-15

    Reducing inequalities is a priority from a human rights perspective and in water and public health initiatives. There are periodic calls for differential national and global standards for rural and urban areas, often justified by the suggestion that, for a given water source type, safety is worse in urban areas. For instance, initially proposed post-2015 water targets included classifying urban but not rural protected dug wells as unimproved. The objectives of this study were to: (i) examine the influence of urban extent definition on water safety in Nigeria, (ii) compare the frequency of thermotolerant coliform (TTC) contamination and prevalence of sanitary risks between rural and urban water sources of a given type and (iii) investigate differences in exposure to contaminated drinking-water in rural and urban areas. We use spatially referenced data from a Nigerian national randomized sample survey of five improved water source types to assess the extent of any disparities in urban-rural safety. We combined the survey data on TTC and sanitary risk with map layers depicting urban versus rural areas according to eight urban definitions. When examining water safety separately for each improved source type, we found no significant urban-rural differences in TTC contamination and sanitary risk for groundwater sources (boreholes and protected dug wells) and inconclusive findings for piped water and stored water. However, when improved and unimproved source types were combined, TTC contamination was 1.6 to 2.3 times more likely in rural compared to urban water sources depending on the urban definition. Our results suggest that different targets for urban and rural water safety are not justified and that rural dwellers are more exposed to unsafe water than urban dwellers. Additionally, urban-rural analyses should assess multiple definitions or indicators of urban to assess robustness of findings and to characterize a gradient that disaggregates the urban-rural dichotomy

  11. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    Directory of Open Access Journals (Sweden)

    Chuanglin Fang

    2015-11-01

    Full Text Available Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI values at the city level, and employed Ordinary Least Squares (OLS, Spatial Lag Model (SAR, and Geographically Weighted Regression (GWR to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

  12. Testing biological effects of hand-washing grey water for reuse in irrigation on an urban farm: a case study.

    Science.gov (United States)

    Khan, Mohammad Zain; Sim, Yei Lin; Lin, Yang Jian; Lai, Ka Man

    2013-01-01

    The feasibility of reusing hand-washing grey water contaminated with antibacterial hand-washing liquid for irrigation purposes in an urban farm is explored in this case study. Experiments are carried out to investigate if the quality of this grey water allows for its reuse in agriculture as per the guidelines established by the World Health Organization (WHO). However, there is no guideline to test the biological effect of grey water prior to agricultural use. It is plausible that the antibacterial property of the grey water can harm the soil microbial system and plants when applied to land, even if all other water quality parameters satisfy the WHO limit. We use algae (Chlorella vulgaris) and indigenous soil bacteria as initial plant and soil bacteria indicators, respectively, to test the potential inhibition of the water on plants and soil bacteria. Results show that the chemical oxygen demand (COD) of the grey water is 10% higher than the WHO permissible level, while all other water quality parameters are within the limits after four days of our experimental period. An inhibitory effect is observed in all of the biological tests. However, the inhibitory effect on algae and soil bacteria is not observed after the four-day period. The case study demonstrates a new approach for testing the biological effect of grey water, which can be used in conjunction with the WHO guideline, and provides data for this urban farm to set up a future water treatment system for grey-water reuse in irrigation.

  13. Air quality effects of urban trees and parks

    Science.gov (United States)

    David Nowak; Gordon Heisler

    2010-01-01

    Parks are significant parts of the urban landscape and comprise about 6% of city and town areas in the conterminous United States. These urban parks are estimated to contain about 370 million trees with a structural value of approximately $300 billion. The number of park trees varies by region of the country, but they can produce significant air quality effects in and...

  14. Estimating the effects of land-use and catchment characteristics on lake water quality: Irish lakes 2004-2009

    OpenAIRE

    Curtis, John; Morgenroth, Edgar

    2013-01-01

    This paper attributes the variation in water quality across Irish lakes to a range of contributory factors such as human population, septic tanks, urban waste water treatment, phosphorous excreted by livestock, as well as catchment soil and geology. Both linear and non-linear quadratic models were estimated in the analysis, which attempts to account for point and non-point sources of pollution affecting water quality in 216 lake catchments. The models show a clear link between activities with...

  15. Dynamics of the Urban Water-Energy Nexuses of Mumbai and London

    Science.gov (United States)

    De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.

    2016-12-01

    Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.

  16. Distributed models coupling soakaways, urban drainage and groundwater

    DEFF Research Database (Denmark)

    Roldin, Maria Kerstin

    in receiving waters, urban flooding etc. WSUD structures are generally small, decentralized systems intended to manage stormwater near the source. Many of these alternative techniques are based on infiltration which can affect both the urban sewer system and urban groundwater levels if widely implemented......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality......, and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...

  17. Water quality evaluation of Al-Gharraf river by two water quality indices

    Science.gov (United States)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  18. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    Science.gov (United States)

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  19. Eten's Coastal Wetland, its geomorphology, water quality and biodiversity

    Science.gov (United States)

    Rojas Carbajal, T. V.; Bartl, K.; Loayza Muro, R.; Abad, J. D.

    2017-12-01

    The Eten's wetland is located in the lower part of the Chancay-Lambayeque River basin at the Peruvian coast. This wetland contains salt and fresh marshes, swamps, lagoons and an estuary which is the result of Reque River's morphodynamics. It provides a great source of totora (Schoenoplectus californicus), a native plant that is used for knitting hats which are an ancient cultural expression in Lambayeque. UNESCO recognized this wetland as one of the ecosystems with the greatest biodiversity along the South Pacific Coast, providing a unique habitat for migratory birds, such as the Peruvian Tern (Sternula lorata). This bird has been classified as endangered in 2005, by the International Union for Conservation of Nature (IUCN). When the area of a wetland is reduced, the resting point function is affected leading to loss in biodiversity due to the habitat conditions are not the same. In 2005, Lambayeque's government established an area of 1377 Ha in order to preserve wetland's ecosystem and Eten's archeological value but wet areas were reduced to 200 Ha. This reduction was promoted by agriculture, urbanization and an inadequate urban waste disposal. The scope of the study is to assess the environmental impacts that affect Eten's wetland. Preliminary results of an assessment with remote sensing indicate that: 1) the Reque River's geomorphic activity was reduced by urbanization, thus, the connection between surface water bodies has been lost, leading the drying out of ponds, 2) the conversion of wet areas to agricultural land, and 3) the natural interaction between the Reque River and the Pacific Ocean was modified due to water control upstream, resulting in a dryer wetland during the last years. Furthermore, the aquatic biodiversity of the wetland was assessed through a biomonitoring method in order to study the impact of water contamination. Four benthic macroinvertebrate Families (Hydrophilidae, Baetidae, Planorbidae and Palaemonidae) were found. The quality of the

  20. The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2017-12-01

    Full Text Available Depletion of water resources has threatened water security in the Beijing-Tianjin-Hebei urban agglomeration, China. However, the relative importance of precipitation and urbanization to water storage change has not been sufficiently studied. In this study, both terrestrial water storage (TWS and groundwater storage (GWS change in Jing-Jin-Ji from 1979 to the 2010s were investigated, based on the global land data assimilation system (GLDAS and the EartH2Observe (E2O outputs, and we used a night light index as an index of urbanization. The results showed that TWS anomaly varied in three stages: significant increase from 1981 to 1996, rapid decrease from 1996 to 2002 and increase from 2002 to the 2010s. Simultaneously, GWS has decreased with about 41.5 cm (500% of GWS in 1979. Both urbanization and precipitation change influenced urban water resource variability. Urbanization was a relatively important factor to the depletion of TWS (explains 83% and GWS (explains 94% since the 1980s and the precipitation deficit explains 72% and 64% of TWS and GWS variabilities. It indicates that urbanization coupled with precipitation deficit has been a more important factor that impacted depletion of both TWS and GWS than climate change only, in the Jing-Jin-Ji region. Moreover, we suggested that the cumulative effect should be considered when discussing the relationship between influence factors and water storage change.

  1. Influence of rainfall and catchment characteristics on urban stormwater quality.

    Science.gov (United States)

    Liu, An; Egodawatta, Prasanna; Guan, Yuntao; Goonetilleke, Ashantha

    2013-02-01

    The accuracy and reliability of urban stormwater quality modelling outcomes are important for stormwater management decision making. The commonly adopted approach where only a limited number of factors are used to predict urban stormwater quality may not adequately represent the complexity of the quality response to a rainfall event or site-to-site differences to support efficient treatment design. This paper discusses an investigation into the influence of rainfall and catchment characteristics on urban stormwater quality in order to investigate the potential areas for errors in current stormwater quality modelling practices. It was found that the influence of rainfall characteristics on pollutant wash-off is step-wise based on specific thresholds. This means that a modelling approach where the wash-off process is predicted as a continuous function of rainfall intensity and duration is not appropriate. Additionally, other than conventional catchment characteristics, namely, land use and impervious surface fraction, other catchment characteristics such as impervious area layout, urban form and site specific characteristics have an important influence on both, pollutant build-up and wash-off processes. Finally, the use of solids as a surrogate to estimate other pollutant species was found to be inappropriate. Individually considering build-up and wash-off processes for each pollutant species should be the preferred option. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Relationships between environmental governance and water quality in a growing metropolitan area of the Pacific Northwest, USA

    Science.gov (United States)

    Chang, H.; Thiers, P.; Netusil, N. R.; Yeakley, J. A.; Rollwagen-Bollens, G.; Bollens, S. M.; Singh, S.

    2014-04-01

    We investigate relationships between environmental governance and water quality in two adjacent growing metropolitan areas in the western US. While the Portland, Oregon and Vancouver, Washington metro areas share many common biophysical characteristics, they have different land development histories and water governance structures, providing a unique opportunity for examining how differences in governance might affect environmental quality. We conceptualize possible linkages in which water quality influences governance directly, using monitoring efforts as a metric, and indirectly by using the change in the sale price of single-family residential properties. Governance may then influence water quality directly through riparian restoration resulting from monitoring results and indirectly through land use policy. We investigate evidence to substantiate these linkages. Our results showed that changes in monitoring regimes and land development patterns differed in response to differences in growth management policy and environmental governance systems. Our results also showed similarities in environmental quality responses to varying governance systems. For example, we found that sales prices responded positively to improved water quality (e.g., increases in DO and reductions in bacteria counts) in both cities. Furthermore, riparian restoration efforts improved over time for both cities, indicating the positive effect of governance on this land-based resource that may result in improved water quality. However, as of yet, there were no substantial differences across study areas in water temperature over time, despite an expansion of these urban areas of more than 20 % over 24 years. The mechanisms by which water quality was maintained was similar in the sense that both cities benefited from riparian restoration, but different in the sense that Portland benefited indirectly from land use policy. A combination of long-term legacy effects of land development, and a

  3. Assessment of Urban Infrastructure Quality and User Satisfaction in ...

    African Journals Online (AJOL)

    This study assessed urban infrastructure quality and the level of user satisfaction with urban infrastructure in low income residential neighbourhoods in Minna, Nigeria. Five (5) neighbourhoods were selected for the study, and a total of 250 housing units were sampled. Questionnaire was administered on households that fell ...

  4. High resolution stream water quality assessment in the Vancouver, British Columbia region: a citizen science study.

    Science.gov (United States)

    Shupe, Scott M

    2017-12-15

    Changing land cover and climate regimes modify water quantity and quality in natural stream systems. In regions undergoing rapid change, it is difficult to effectively monitor and quantify these impacts at local to regional scales. In Vancouver, British Columbia, one of the most rapidly urbanizing areas in Canada, 750 measurements were taken from a total of 81 unique sampling sites representing 49 streams located in urban, forest, and agricultural-dominant watersheds at a frequency of up to 12 times per year between 2013 and 2016. Dissolved nitrate (NO 3 -N) and phosphate (PO 4 -P) concentrations, turbidity, water temperature, pH and conductivity were measured by citizen scientists in addition to observations of hydrology, vegetation, land use, and visible stream impacts. Land cover was mapped at a 15-m resolution using Landsat 8 OLI imagery and used to determine dominant land cover for each watershed in which a sample was recorded. Regional, seasonal, and catchment-type trends in measurements were determined using statistical analyses. The relationships of nutrients to land cover varied seasonally and on a catchment-type basis. Nitrate showed seasonal highs in winter and lows in summer, though phosphate had less seasonal variation. Overall, nitrate concentrations were positively associated to agriculture and deciduous forest and negatively associated with coniferous forest. In contrast, phosphate concentrations were positively associated with agricultural, deciduous forest, and disturbed land cover and negatively associated with urban land cover. Both urban and agricultural land cover were significantly associated with an increase in water conductivity. Increased forest land cover was associated with better water quality, including lower turbidity, conductivity, and water temperature. This study showed the importance of high resolution sampling in understanding seasonal and spatial dynamics of stream water quality, made possible with the large number of

  5. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  6. Investigation on water quality of zabol chahnimeh reservoirs from drinking water and agricultural viewpoint with focus on schuler & vilcoks diagrams

    International Nuclear Information System (INIS)

    Homayoonnezhad, I.; Amirian, P.; Piri, I.

    2016-01-01

    Because of the water deficiency, people's requirements and high costs of refining especially in urban zones, water resources management is very essential. Zabol Chahnimeh reservoirs are three natural and big cavities in the south of Sistan Plain Located in South-Eastern Iran and It Includes 50 Millions square meter extent. Stored Water In These Cavities Are Used To Sistan Earth And For Providing Drink Water of Zabol And Zahedan Cities. Because of the drink and agricultural usage and for investigation of water quality of chah-nimeh reservoirs, this research has been done in one year. Methods: In this research density of Na"+ ,Mg"2"+, Ca"2"+ ,Cl"-, SO_4"2"- and EC, TDS,TH parameters have been analyzed in 9 stations, then results have been rebounded on schuler & vilcoks diagrams. Results: Results showed the quality of water in reservoirs viewpoint of drinking sited in acceptable stage and viewpoint of agricultural sited in C_3S_1 (average quality) stage. Discussion & conclusion: finally, if the texture of soil be light, we can use water of these reservoirs for agricultural activities.

  7. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    Science.gov (United States)

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  8. Air quality and its integration within urban planning: Mexicali, Baja California, Mexico

    Directory of Open Access Journals (Sweden)

    Elva Alicia Corona–Zambrano

    2009-07-01

    Full Text Available As a result of world wide urbanization and industrialization, urban air pollution shows a growing trend directly proportional to increasing demands on energy for domestic and industrial activities. From this point of view, cities along with their urban, functional and morphological structure are not being planned with pollution prevention or minimum environmental impacts in mind. This work has two purposes: first, it sets an assessment of air quality in Mexicali by analyzing O3, CO, SO2, NO2 and PM10 emissions in relation to urban structure. And second, the assessment of already implemented urban strategies aimed to minimize environmental impacts. This work also presents a scheme that incorporates air quality issues into town planning and urban management.

  9. Effect of the spatiotemporal variability of rainfall inputs in water quality integrated catchment modelling for dissolved oxygen concentrations

    Science.gov (United States)

    Moreno Ródenas, Antonio Manuel; Cecinati, Francesca; ten Veldhuis, Marie-Claire; Langeveld, Jeroen; Clemens, Francois

    2016-04-01

    Maintaining water quality standards in highly urbanised hydrological catchments is a worldwide challenge. Water management authorities struggle to cope with changing climate and an increase in pollution pressures. Water quality modelling has been used as a decision support tool for investment and regulatory developments. This approach led to the development of integrated catchment models (ICM), which account for the link between the urban/rural hydrology and the in-river pollutant dynamics. In the modelled system, rainfall triggers the drainage systems of urban areas scattered along a river. When flow exceeds the sewer infrastructure capacity, untreated wastewater enters the natural system by combined sewer overflows. This results in a degradation of the river water quality, depending on the magnitude of the emission and river conditions. Thus, being capable of representing these dynamics in the modelling process is key for a correct assessment of the water quality. In many urbanised hydrological systems the distances between draining sewer infrastructures go beyond the de-correlation length of rainfall processes, especially, for convective summer storms. Hence, spatial and temporal scales of selected rainfall inputs are expected to affect water quality dynamics. The objective of this work is to evaluate how the use of rainfall data from different sources and with different space-time characteristics affects modelled output concentrations of dissolved oxygen in a simplified ICM. The study area is located at the Dommel, a relatively small and sensitive river flowing through the city of Eindhoven (The Netherlands). This river stretch receives the discharge of the 750,000 p.e. WWTP of Eindhoven and from over 200 combined sewer overflows scattered along its length. A pseudo-distributed water quality model has been developed in WEST (mikedhi.com); this is a lumped-physically based model that accounts for urban drainage processes, WWTP and river dynamics for several

  10. 'Chasing for Water': Everyday Practices of Water Access in Peri-Urban Ashaiman, Ghana

    Directory of Open Access Journals (Sweden)

    Megan Peloso

    2014-02-01

    Full Text Available Despite recent reports suggesting that access to improved sources of drinking water is rising in Ghana, water access remains a daily concern for many of those living in the capital region. Throughout the Greater Accra Metropolitan Area (GAMA, the urban poor manage uncertainty and establish themselves in the city by leveraging a patchwork system of basic services that draws importantly from informal systems and supplies. This paper takes a case study approach, using evidence gathered from two-months of fieldwork in a peri-urban informal settlement on the fringe of Accra, to explore everyday practices involved in procuring water for daily needs that routinely lead residents outside of the official water supply system. Findings from this case study demonstrate that respondents make use of informal water services to supplement or 'patch up' gaps left by the sporadic water flow of the official service provider, currently Ghana Water Company Ltd. (GWCL. Basic water access is thus constructed through an assemblage of coping strategies and infrastructures. This analysis contributes to understandings of heterogeneity in water access by attending to the everyday practices by which informality is operationalised to meet the needs of the urban poor, in ways that may have previously been overshadowed. This research suggests, for example, that although water priced outside of the official service provider is generally higher per unit, greater security may be obtained from smaller repetitive transactions as well as having the flexibility to pursue multiple sources of water on a day-to-day basis.

  11. An urban observatory for quantifying phosphorus and suspended solid loads in combined natural and stormwater conveyances.

    Science.gov (United States)

    Melcher, Anthony A; Horsburgh, Jeffery S

    2017-06-01

    Water quality in urban streams and stormwater systems is highly dynamic, both spatially and temporally, and can change drastically during storm events. Infrequent grab samples commonly collected for estimating pollutant loadings are insufficient to characterize water quality in many urban water systems. In situ water quality measurements are being used as surrogates for continuous pollutant load estimates; however, relatively few studies have tested the validity of surrogate indicators in urban stormwater conveyances. In this paper, we describe an observatory aimed at demonstrating the infrastructure required for surrogate monitoring in urban water systems and for capturing the dynamic behavior of stormwater-driven pollutant loads. We describe the instrumentation of multiple, autonomous water quality and quantity monitoring sites within an urban observatory. We also describe smart and adaptive sampling procedures implemented to improve data collection for developing surrogate relationships and for capturing the temporal and spatial variability of pollutant loading events in urban watersheds. Results show that the observatory is able to capture short-duration storm events within multiple catchments and, through inter-site communication, sampling efforts can be synchronized across multiple monitoring sites.

  12. The Effect of Landuse and Other External Factors on Water Quality Within two Creeks in Northern Kentucky

    Science.gov (United States)

    Boateng, S.

    2006-05-01

    The purpose of this study was to monitor the water quality in two creeks in Northern Kentucky. These are the Banklick Creek in Kenton County and the Woolper Creek in Boone County, Kentucky. The objective was to evaluate the effect of landuse and other external factors on surface water quality. Landuse within the Banklick watershed is industrial, forest and residential (urban) whereas that of Woolper Creek is agricultural and residential (rural). Two testing sites were selected along the Banklick Creek; one site was upstream the confluence with an overflow stream from an adjacent lake; the second site was downstream the confluence. Most of the drainage into the lake is over a near-by industrial park and the urban residential areas of the cities of Elsmere and Erlanger, Kentucky. Four sampling locations were selected within the Woolper Creek watershed to evaluate the effect of channelization and subsequent sedimentation on the health of the creek. Water quality parameters tested for include dissolved oxygen, phosphates, chlorophyll, total suspended sediments (TSS), pH, oxidation reduction potential (ORP), nitrates, and electrical conductivity. Sampling and testing were conducted weekly and also immediately after storm events that occurred before the regular sampling dates. Sampling and testing proceeded over a period of 29 weeks. Biological impact was determined, only in Woolper Creek watershed, by sampling benthic macroinvertebrates once every four weeks. The results showed significant differences in the water quality between the two sites within the Banklick Creek. The water quality may be affected by the stream overflow from the dammed lake. Also, channelization in the Woolper Creek seemed to have adverse effects on the water quality. A retention pond, constructed to prevent sediments from flowing into the Woolper Creek, did not seem to be effective. This is because the water quality downstream of the retention pond was significantly worse than that of the

  13. Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics

    Directory of Open Access Journals (Sweden)

    Ang Kean Hua

    2017-01-01

    Full Text Available Malacca River water quality is affected due to rapid urbanization development. The present study applied LULC changes towards water quality detection in Malacca River. The method uses LULC, PCA, CCA, HCA, NHCA, and ANOVA. PCA confirmed DS, EC, salinity, turbidity, TSS, DO, BOD, COD, As, Hg, Zn, Fe, E. coli, and total coliform. CCA confirmed 14 variables into two variates; first variate involves residential and industrial activities; and second variate involves agriculture, sewage treatment plant, and animal husbandry. HCA and NHCA emphasize that cluster 1 occurs in urban area with Hg, Fe, total coliform, and DO pollution; cluster 3 occurs in suburban area with salinity, EC, and DS; and cluster 2 occurs in rural area with salinity and EC. ANOVA between LULC and water quality data indicates that built-up area significantly polluted the water quality through E. coli, total coliform, EC, BOD, COD, TSS, Hg, Zn, and Fe, while agriculture activities cause EC, TSS, salinity, E. coli, total coliform, arsenic, and iron pollution; and open space causes contamination of turbidity, salinity, EC, and TSS. Research finding provided useful information in identifying pollution sources and understanding LULC with river water quality as references to policy maker for proper management of Land Use area.

  14. Integrated Quality Management System in Public Urban Traffic

    Directory of Open Access Journals (Sweden)

    Husein Pašagić

    2005-09-01

    Full Text Available Public urban traffic (PUT requirements are based on thespecific characteristics that dictate the requirements themselves.The problems faced by all the big cities regarding public urbantransport are very similar, and they range from unacceptabilityof the very organisational structure of the system facing the populationgrowth, limitations and congestions of the traffic routesloaded by an increasing number of automobiles, to the chroniclack of economic funds for the investments that would createthe necessary conditions for positive shifts. In PUT there aremany random parameters whose statistical laws are not easy todetermine and it is often the topic of research of various profilesof scientists. There is always the satisfaction, that is, the lack ofsatisfaction by the final user of the public urban transport andall the other involved groups. The result is that the potential usersof public urban transport give up and try to find other solutionsfor their transport needs, turning in principle to individualtraffic. Consequently, the number of passenger cars on the trafficroutes increases along with all the resulting negative effects.The complex systems of public urban transport facing the increasingrequirements to improve efficiency have to be subjectedto certain changes in order to achieve physical sustainability oftraffic at all, and to satisfy the environmental requirements thatoccur as counterbalance to the pollution of the urban area.With the aim of achieving optimal conditions for the qualityof service, and by introducing acceptable traffic solutionscombined with the integrated quality management systembased on the standards ISO 9001 and ISO 14000 high-qualityshifts are made possible. The integration of these standards resultsin the rational combining of the quality management systeminto a single efficient system, reflected in achieving high-quality traffic and transport service, improved informationflow, unique documentation, positive

  15. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  16. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Science.gov (United States)

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  17. Urban Waters National Training Workshop 2016

    Science.gov (United States)

    This page will house information on the 2016 Urban Waters National Training Workshop in Arlington VA from July 26 until 28. The page has directions, conference goals, speaker biographies, dates, the agenda, and the link to register.

  18. People’s Preferences of Urban Design Qualities for Walking on a Commercial Street

    Science.gov (United States)

    Ernawati, J.; Surjono; Sudarmo, B. S.

    2018-03-01

    This research aims to explore people’s preferences of urban design qualities for walking on a commercial street, with Kawi Street located in a commercial neighborhood in the town of Malang Indonesia as the case study. Based on a literature review, this study used eight urban design qualities, i.e., enclosure, legibility, human scale, transparency, complexity, coherence, linkage, and imageability. This study applied a survey research method using a self-administered paper-pencil questionnaire applying two measurement techniques: Likert scale was used to explore people’s evaluations of urban design qualities of the street, while multiple-rating scales were used to measure people’s preference for walking on the street. One hundred and ten people randomly selected as respondents. Regression analysis was employed to explore the influence of urban design qualities on people preference for walking. Results indicated four urban design qualities that affect people’s choice for walking on a commercial street, i.e., transparency, coherence, linkage, and imageability. Implications of the findings will be discussed in the paper.

  19. Surface and ground water quality in a restored urban stream affected by road salts

    Science.gov (United States)

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  20. Water and Urban Development. Zapopan Jal. MÉXICO

    Science.gov (United States)

    Flores, R. M., Sr.; Rosas-Elguera, J.; Pena, L. E.; Lucia, G. I.

    2016-12-01

    Recently there is a need to make a land management project for the metropolitan area of Guadalajara (GDL), the objective is the momentum of an "orderly growth" however there are a number of problems associated with urban growth, one of which is the provision of Water. There is not an adequate exploration of our resources, nor an adequate record of the minimum parameters that can be measured in the case of groundwater, such as the level of infiltration and extraction volume. The extraction is carried out in the northwest of the GDL (currently the area is more urban development), is approximately greater than 658 l / s (SIAPA 2016), beyond the capacity of natural recharge since precipitation of an average of 850 mm. Besides which currently anthropically waterproof. There is a record of more than 40 existing in this sector of the GDL wells, wells and springs are not accounted for, the production areas varies from 14.45 to 180.55 m depth In the study area (approximately 80km2), there are urban uses, industries, airports, agricultural areas in transition to residential areas and a protected natural area. cracks have already appeared in different years and places, some authors propose that are associated with geological structures and others say it is by massive extraction of water. Mitigation measures or water injection wells to recharge aquifers is poor, not considered as a priority for the territorial urban planning element. Which leads to a significant lowering of the aquifers that is up to 67.2 m in a span of two years in some cases. Some urban developments with golf course, contribute significantly to the purification of waste water and recharge of aquifers for irrigation they do, what should force by the state or municipality to issue a series of fiscal stimulus.

  1. Serotyping, PCR, phage-typing and antibiotic sensitivity testing of Salmonella serovars isolated from urban drinking water supply systems of Nepal

    DEFF Research Database (Denmark)

    Bhatta, D.R.; Bangtrakulnonth, A.; Tishyadhigama, P.

    2007-01-01

    Aims: To study the occurrence and diversity of Salmonella serovars in urban water supply systems of Nepal. Methods and Results: Occurrence of Salmonella was detected in 42 out of 300 water samples by enrichment culture technique in selenite F broth followed by plating on Salmonella Shigella agar...... isolates of Salm. Enteritidis indicated the presence of one of the ESBL genes, blaSHV, whereas the genes blaTEM and blaCTX were absent. Conclusions: The microbiological quality of the urban water supply is poor and indicates possibility of fatal outbreaks of enteric fever and related infections in Nepal....... Significance and Impact of the Study: The present study will be useful in water borne disease control and prevention strategy formulation in Nepal and in the global context....

  2. Societal Drivers of European Water Governance: A Comparison of Urban River Restoration Practices in France and Germany

    Directory of Open Access Journals (Sweden)

    Aude Zingraff-Hamed

    2017-03-01

    Full Text Available The European water governance took a decisive turn with the formulation of the Water Framework Directive (WFD, which demands the restoration of all water bodies that did not achieve sufficient ecological status. Urban rivers are particularly impaired by human activities and their restorations are motivated by multiple ecological and societal drivers, such as requirements of laws and legislation, and citizen needs for a better quality of life. In this study we investigated the relative influence of socio-political and socio-cultural drivers on urban river restorations by comparing projects of different policy contexts and cultural norms to cross-fertilize knowledge. A database of 75 projects in French and German major cities was compiled to apply (a a comparative statistical analysis of main project features, i.e., motivation, goals, measures, morphological status, and project date; and (b a qualitative textual analysis on project descriptions and titles. The results showed that despite a powerful European directive, urban river restoration projects still keep national specificities. The WFD drives with more intensity German, rather than French, urban river restoration. This study showed the limits of macro-level governance and the influence of microlevel governance driven by societal aspects such as nature perception and relationships between humans and rivers.

  3. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of drinking water quality indices (case study: Bushehr province, Iran

    Directory of Open Access Journals (Sweden)

    Nematollah Jafarzadeh

    2017-05-01

    Full Text Available Background: Internal corrosion and the formation of scale in water distribution pipes are the most important problems for an urban water distribution system. Physical, chemical, or biological factors can lead to these two processes. Internal corrosion and scale formation can impact health, economy, and aesthetics. This study assessed the physicochemical quality parameters and evaluated the potential for corrosion and scale formation in drinking water at the distribution systems of 5 selected cities in Bushehr province (Kangan, Dashtestan, Dashti, Bushehr, and Ganaveh from 2009-2012. Methods: This study was carried out based on laboratory data collected from monthly samplings of tap water in the Water and Wastewater Company of Bushehr province during the years 2009-2012. Internal corrosion and scale formation rates were calculated using the Ryznar, Langelier, Aggressive, and Puckorius indices. Results: The results of the Ryznar, Puckorius, Aggressive and Langelier indices indicated that the drinking water in the 5 selected cities of Bushehr province was corrosive. Moreover, the majority of parameters used to determine water quality exceeded Iran’s national standards. Conclusion: It is concluded that there is problem of water corrosion and scaling in drinking water of distribution systems in selected cities.

  5. Appreciating Site-Specific Qualities in Urban Harbours

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2015-01-01

    of observa-tions from Marseille in southern France. After modernization and dislocation of its harbor territories in the early 20th century already, this city is currently taking important steps from industrial urbanism into cultural planning. This transformation allows for new and unprogrammed experiences......When “site-specificity” becomes a central value in city and harbor transformation, it soon proves necessary to address the ways in which scholars and professionals actually determine site-specific qualities in urban fabrics and social life. This paper delves into the above questions by means...

  6. Can terraced pond wetland systems improve urban watershed water quality?

    Science.gov (United States)

    Li, S.; Ho, M.; Flanagan, N. E.; Richardson, C. J.

    2017-12-01

    Properly built constructed wetlands are a more economic and efficient way of wastewater treatment compared with traditional methods, although their mechanisms are far from completely understood. As part of the Stream and Wetland Assessment Management Park (SWAMP), which is aimed to improve the water quality of downstream and thereby enhance watershed ecosystem services, a terraced three-pond wetland system was created near Duke University in 2014. This project is expected to promote the retention and settling of pollutants and sediment before runoffs enter downstream flow. The goal of this study is to examine: (1) whether a terraced pond wetland system improves water quality, during both baseline (low flow) and storm events (high flow), which increases pollutant inputs; and (2) how this system functions to remove pollutants, namely what components of this system (plant, soil or water) increase or decrease the level of pollutants. By analyzing a dataset consisting of more than four-year monthly samplings from Pond 1 (first pond in the system) and Pond 3 (last pond in the system), we found that the pond system has reduced total suspended solids (TSS) but only when elevated inputs occur. Dissolved oxygen (DO) is closely related to temperature and macrophytes growth; whereas acidity (pH), total nitrogen (TN), and total phosphorus (TP) did not show retention in the early stages of the system development. This system reaches its optimum for reducing TSS at the second pond, but the third pond has important effects on DO, pH, TN and TP. A monitoring in 2017 shows this pond system significantly reduces TSS while increasing dissolved oxygen and neutralizing pH after a storm event; although greater variations incurred within the system as time progresses after storm, overall retention function remained valid. Retention of the pollutants is primarily accomplished by the settling process, which occurs in stilled waterbody of the ponds and by the filtration of macrophytes. We

  7. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models.

    Science.gov (United States)

    Shooshtarian, Mohammad Reza; Dehghani, Mansooreh; Margherita, Ferrante; Gea, Oliveri Conti; Mortezazadeh, Shima

    2018-04-01

    This study aggregated Land Change Modeller (LCM) as a useful model in GIS with an extended Groundwater Quality Index (GWQI) developed by fuzzy Multi-Criteria Group Decision-Making models to investigate the effect of land use change and conversion on groundwater quality being supplied for drinking. The model's performance was examined through an applied study in Shiraz, Iran, in a five year period (2011 to 2015). Four land use maps including urban, industrial, garden, and bare were employed in LCM model and the impact of change in area and their conversion to each other on GWQI changes was analysed. The correlation analysis indicated that increase in the urban land use area and conversion of bare to the residential/industrial land uses, had a relation with water quality decrease. Integration of LCM and GWQI can accurately and logically provide a numerical analysis of the possible impact of land use change and conversion, as one of the influencing factors, on the groundwater quality. Hence, the methodology could be used in urban development planning and management in macro level. Copyright © 2018. Published by Elsevier Ltd.

  8. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  9. The impacts of road traffic management on urban air quality

    Energy Technology Data Exchange (ETDEWEB)

    Oduyemi, K.O.K. [School of Construction and Environment, University of Abertay Dundee, Dundee (United Kingdom); Davidson, B. [Department of Environmental Health and Consumer Protection, Dundee City Council, Tayside House, Crichton Street, Dundee (United Kingdom)

    1998-07-11

    The effects of road traffic emissions on urban air quality are investigated, using long-term nitrogen dioxide (NO{sub 2}) data. The effectiveness of the several traffic management measures that have been made in Dundee city centre, UK, within the last 5 years in relation to urban air quality is discussed. The information assessed during this study indicates that the annual mean NO{sub 2} levels at all the study sites are, at present, below the current EC and WHO (long-term) air quality standards for NO{sub 2} concentration in the ambient air. Traffic restrictions appear to be effective in protecting urban air quality. The annual mean NO{sub 2} concentration at two of the study sites is currently close to 40 {mu}g/m{sup 3}, a value published in the Air Quality Regulations 1997 for the air quality objective to be achieved by the year 2005. Proactive traffic management mitigation measures are proposed for these sites and a methodology for the consideration of traffic management alternatives, based upon traffic flow modal split, is described. Some measures proposed are based upon a survey of vehicle occupancy rates, carried out at the busiest of the four study sites. The methodology and assessment procedures presented should be invaluable to assessors of traffic management and local air quality management in a small city, both at the planning and at the auditing stage

  10. An Assessment of Peri-Urban Groundwater Quality from Shallow Dug Wells, Mzuzu, Malawi

    Science.gov (United States)

    Holm, R.; Felsot, A.

    2012-12-01

    Throughout Malawi, governmental, non-governmental, religious and civic organizations are targeting the human need for water. Diarrheal diseases, often associated with unsafe drinking water, are a leading cause of mortality in children under five in Malawi with over 6,000 deaths per year (World Health Organization, 2010). From January to March 2012, a field study was undertaken in Malawi to study water quality and develop a public health risk communication strategy. The region studied, Area 1B, represents a comparatively new peri-urban area on the edge of Mzuzu city. Area 1B is serviced by a piped municipal water supply, but many shallow dug wells are also used for household water. Groundwater samples were collected from 30 shallow dug well sites and analyzed for nitrate, total coliform, Escherichia coli, total hardness, total alkalinity and pH. In addition to water quality analyses, a structured household questionnaire was administered to address water use, sanitation, health, consumption patterns, and socioeconomics. Results showed that more than half of the groundwater samples would be considered of unacceptable quality based on World Health Organization (WHO) standards for E. coli contamination. Low levels of nitrate were found in groundwater, but only one well exceeded WHO standards. The structured questionnaire revealed that some residents were still consuming groundwater despite the access to safer municipal water. In general, the widespread E. coli contamination was not statistically correlated with well depth, latrine proximity, or surface features. Similarly, nitrate concentrations were not significantly correlated with proximity to latrines. On the other hand, nitrate was correlated with well depth, which is expected given the high potential for leaching of anionic highly water soluble compounds. E. coli was significantly correlated with nitrate concentration. Projects targeting the need for clean water need to recognize that households with access to a

  11. Can Mobile-Enabled Payment Methods Reduce Petty Corruption in Urban Water Provision?

    Directory of Open Access Journals (Sweden)

    Aaron Krolikowski

    2014-02-01

    Full Text Available Corruption in the urban water sector constrains economic growth and human development in low-income countries. This paper empirically evaluates the ability of novel mobile-enabled payment methods to reduce information asymmetries and mitigate petty corruption in the urban water sector’s billing and payment processes. Overcoming these barriers may promote improved governance and water service delivery. The case of Dar es Salaam is used to explore the role of mobile-enabled payment instruments through the use of a stratified random sample of 1097 water utility customers and 42 interviews with representatives from the water sector, the telecommunications industry, civil society, and banking institutions. Results show that mobile-enabled payment methods can reduce information asymmetries and the incidence of petty corruption to promote improved financial management by making payment data more transparent and limiting the availability of economic rents in the billing and payment process. Implications for African urban water services include wider availability and more effective use of human and financial resources. These can be used to enhance water service delivery and citizen participation in the production of urban water supplies. The use of mobile-enabled payment methods in the urban water sector represents an application of mobile communication technologies in a low-income country with proven potential for scalability that simultaneously supports the achievement of development objectives.

  12. Water-quality observations of the San Antonio segment of the Edwards aquifer, Texas, with an emphasis on processes influencing nutrient and pesticide geochemistry and factors affecting aquifer vulnerability, 2010–16

    Science.gov (United States)

    Opsahl, Stephen P.; Musgrove, MaryLynn; Mahler, Barbara J.; Lambert, Rebecca B.

    2018-06-07

    As questions regarding the influence of increasing urbanization on water quality in the Edwards aquifer are raised, a better understanding of the sources, fate, and transport of compounds of concern in the aquifer—in particular, nutrients and pesticides—is needed to improve water management decision-making capabilities. The U.S. Geological Survey, in cooperation with the San Antonio Water System, performed a study from 2010 to 2016 to better understand how water quality changes under a range of hydrologic conditions and in contrasting land-cover settings (rural and urban) in the Edwards aquifer. The study design included continuous hydrologic monitoring, continuous water-quality monitoring, and discrete sample collection for a detailed characterization of water quality at a network of sites throughout the aquifer system. The sites were selected to encompass a “source-to-sink” (that is, from aquifer recharge to aquifer discharge) approach. Network sites were selected to characterize rainfall, recharging surface water, and groundwater; groundwater sites included wells in the unconfined part of the aquifer (unconfined wells) and in the confined part of the aquifer (confined wells) and a major discharging spring. Storm-related samples—including rainfall samples, stormwater-runoff (surface-water) samples, and groundwater samples—were collected to characterize the aquifer response to recharge.Elevated nitrate concentrations relative to national background values and the widespread detection of pesticides indicate that the Edwards aquifer is vulnerable to contamination and that vulnerability is affected by factors such as land cover, aquifer hydrogeology, and changes in hydrologic conditions. Greater vulnerability of groundwater in urban areas relative to rural areas was evident from results for urban groundwater sites, which generally had higher nitrate concentrations, elevated δ15N-nitrate values, a greater diversity of pesticides, and higher pesticide

  13. Holistic Analysis of the Urban Water Systems in Greater Cincinnati Region

    Science.gov (United States)

    Urban water and wastewater systems with two utilities in Greater Cincinnati region were evaluated as a case study to elucidates a bigger picture of a typical centralized urban water system. Two different integrated assessment metrics were used to analyze the same system. LCA an...

  14. Bacteriological assessment of urban water sources in Khamis Mushait Governorate, southwestern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Sh AlOtaibi Eed L

    2009-03-01

    it is satisfactory for human drinking purposes. Contamination of desalinated water that is the main urban water source may occur during transportation from the desalination plant or in the house reservoir of the consumer. Improving and expanding the existing water treatment and sanitation systems is more likely to provide safe and sustainable sources of water over the long term. Strict hygienic measures should be applied to improve water quality and to avoid deleterious effects on public health, by using periodical monitoring programmes to detect sewage pollution running over local hydrological networks and valleys.

  15. Spatial and Temporal Variations of Water Quality and Trophic Status in Xili Reservoir: a Subtropics Drinking Water Reservoir of Southeast China

    Science.gov (United States)

    Yunlong, Song; Zhang, Jinsong; Zhu, Jia; Li, Wang; Chang, Aimin; Yi, Tao

    2017-12-01

    Controlling of water quality pollution and eutrophication of reservoirs has become a very important research topic in urban drinking water field. Xili reservoir is an important water source of drinking water in Shenzhen. And its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Xili reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. Xili reservoir was seriously polluted by nitrogen. Judged by TN most of the samples were no better than grade VI. Other water quality factor including WT, SD, pH, DO, COD, TOC, TP, Fe, silicate, turbidity, chlorophyll-a were pretty good. One-way ANOVA showed that significant difference was found in water quality factors on month (p Latter rainy period > High temperature and rain free period > Temperature jump period > Winter drought period. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession.TLI (Σ) were about 35~52, suggesting Xili reservoir was in mycotrophic trophic states. As a result of runoff pollution, water quality at sampling sites 1 and 10 was poor. In the rainy season, near sampling sites 1 and 10, water appeared to be Light-eutrophic. The phytoplankton biomass of Xili reservoir was low. Water temperature was the main driving factor of phytoplankton succession.The 14 water quality factors were divided into five groups by factor analysis. The total interpretation rate was about 70.82%. F1 represents the climatic change represented by water temperature and organic pollution. F2 represents the concentration of nitrogen. F3 represents the phytoplankton biomass. F4 represents the sensory indexes of water body, such as turbidity, transparency.

  16. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  17. Assessing the performance of urban water utilities in Mozambique ...

    African Journals Online (AJOL)

    Benchmarking analysis has become a strategic tool through which water regulators around the world measure the performance of water utilities. Since 2008, the Water Regulatory Council of Mozambique has been implementing a benchmarking framework to analyse the performance of urban water utilities. This paper ...

  18. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  19. Stormwater harvesting: Improving water security in South Africa's urban areas

    Directory of Open Access Journals (Sweden)

    Lloyd Fisher-Jeffes

    2017-01-01

    Full Text Available The drought experienced in South Africa in 2016 one of the worst in decades has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.

  20. Land use and water quality degradation in the Peixe-Boi River watershed

    Directory of Open Access Journals (Sweden)

    Bruno Wendell de Freitas Pereira

    2016-04-01

    Full Text Available This study mapped the land use and land cover of the catchment area of the Peixe-Boi River watershed, in northeast Pará, in order to identify conflicts of land use in the permanent preservation areas, and to relate them to water quality. We used LISS-3 sensor imagery from the Resourcesat satellite with a spatial resolution of 23.5 m for supervised classification of land use and land cover based on 22 training samples. Water quality was determined based on 28 sampling points in drainage network. The relationship between human disturbance and water quality was analyzed based on observations of land use changes using satellite imagery and in situ collection of water samples. The results show that 46% of the permanent preservation areas have conflicted uses, especially with respect to urban squatters, exposed soil and, most notably, pasture, with over 84 % of the area in conflict. Critical levels of dissolved oxygen reaching 2.14 mg L-1 and pH of 5.12 were observed in some sampling points. These values are below the fresh water standards set by Resolution 357/05 of CONAMA. The poorest water quality may be related to irregular use and occupation of areas within the permanent preservation areas. There is therefore an urgent need to develop a plan for the sustainable use and occupation of catchment area land in the Peixe-Boi River watershed in order to restore the environment and improve water quality.

  1. Urban air quality in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Mar (ed.) [Spanish Research Council - CSIC, Barcelona (Spain). Inst. for Environmental Assessment and Water Research

    2013-07-01

    This book provides an overview of air quality in urban environments in Europe, focusing on air pollutant emission sources and formation mechanisms, measurement and modeling strategies, and future perspectives. The emission sources described are biomass burning, vehicular traffic, industry and agriculture, but also African dust and long-range transport of pollutants across the European regions. The impact of these emission sources and processes on atmospheric particulate matter, ozone, nitrogen oxides and volatile and semi-volatile organic compounds is discussed and critical areas for particulate matter and nitrogen dioxide in Europe are identified. Finally, this volume presents future perspectives, mainly regarding upcoming air quality monitoring strategies, metrics of interest, such as submicron and nanoparticles, and indoor and outdoor exposure scenarios.

  2. Determination of Water Quality Degradation Due to Industrial and Household Wastewater in the Galing River in Kuantan, Malaysia Using Ion Chromatograph and Water Quality Data

    Directory of Open Access Journals (Sweden)

    Daisuke Kozaki

    2017-04-01

    Full Text Available Water quality of the Galing River in Kuantan, Malaysia was examined to understand the anthropogenic environmental load in each administrative section, using water quality monitoring data and land use pattern. The National Physical Plan 2005 identified Kuantan as one of the country’s future growth centers, which has resulted in rapid development and environmental degradation in the past decade. Multiple water quality indexes used by the Department of Environment, Malaysia and concentrations of several ionic species were examined to assess the river’s water quality. The following inferences were drawn in this study: (1 Cl− and Na+ concentrations indicated that the basin area near the eastern urbanized area was subject to lesser human influence and lower environmental burden; (2 the Western side of the Galing River was subject to higher anthropogenic influence and indicated lower class levels of ammoniacal nitrogen, chemical oxygen demand, and dissolved oxygen, compared to the eastern side; (3 Class V or near class V pH values were obtained upstream at the western side of the Galing River in the industrial area; (4 Two types of environmental burden were identified in the western side of the Galing River, namely, inflow of industrial wastewater upstream on the western side and the effect of household wastewater or untreated raw sewage wastewater.

  3. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  4. Forecasting urban water demand: A meta-regression analysis.

    Science.gov (United States)

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  5. Quality of surface water and ground water in the proposed artificial-recharge project area, Rillito Creek basin, Tucson, Arizona, 1994

    Science.gov (United States)

    Tadayon, Saeid

    1995-01-01

    Controlled artificial recharge of surface runoff is being considered as a water-management technique to address the problem of ground-water overdraft. The planned use of recharge facilities in urban areas has caused concern about the quality of urban runoff to be recharged and the potential for ground-water contamination. The proposed recharge facility in Rillito Creek will utilize runoff entering a 1-mile reach of the Rillito Creek between Craycroft Road and Swan Road for infiltration and recharge purposes within the channel and excavated overbank areas. Physical and chemical data were collected from two surface-water and two ground-water sites in the study area in 1994. Analyses of surface-water samples were done to determine the occurrence and concentration of potential contaminants and to determine changes in quality since samples were collected during 1987-93. Analyses of ground-water samples were done to determine the variability of ground-water quality at the monitoring wells throughout the year and to determine changes in quality since samples were collected in 1989 and 1993. Surface-water samples were collected from Tanque Verde Creek at Sabino Canyon Road (streamflow-gaging station Tanque Verde Creek at Tucson, 09484500) and from Alamo Wash at Fort Lowell Road in September and May 1994, respectively. Ground-water samples were collected from monitoring wells (D- 13-14)26cbb2 and (D-13-14)26dcb2 in January, May, July, and October 1994. In surface water, calcium was the dominant cation, and bicarbonate was the dominant anion. In ground water, calcium and sodium were the dominant cations and bicarbonate was the dominant anion. Surface water in the area is soft, and ground water is moderately hard to hard. In surface water and ground water, nitrogen was found predominantly as nitrate. Concentrations of manganese in ground-water samples ranged from 60 to 230 micrograms per liter and exceeded the U.S. Environmental Protection Agency secondary maximum contaminant

  6. Understanding peri-urban water management in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-07-14

    Jul 14, 2014 ... The city has chosen to pipe in water from more than a hundred kilometres away, ... the effects of climate change and urbanization on water availability in such basins in India. ... Villages in Nepal prepare for weather extremes.

  7. 2010 World Expo and Urban Life Quality in Shanghai in Terms of Sustainable Development

    Institute of Scientific and Technical Information of China (English)

    Zhu Dajian; Peter P.Rogers

    2006-01-01

    Based on sustainable development theory and the UN's Human Development Index, this thesis puts forward what the quality of urban life implies,makes a study of the world Expo's potential influences on the urban life of Shanghai and advances the strategy and measures to strengthen the life-quality-facing urban management

  8. Assessing the significance of climate and community factors on urban water demand

    OpenAIRE

    Md Mahmudul Haque; Prasanna Egodawatta; Ataur Rahman; Ashantha Goonetilleke

    2015-01-01

    Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The resul...

  9. Urban Runoff: Getting to the Nonpoint

    OpenAIRE

    Pendall, Rolf

    1994-01-01

    Mandates for water-quality improvement have forced regulators and planners to confront the problem of urban runoff, still an important source of water pollution. This ar­ticle discusses those mandates and how to meet them, and provides examples of ongoing nonpoint water pollution control programs in the San Francisco Bay Area. These examples suggest that cleanup of urban runoff may require more comprehensive regional planning to encourage a de­velopment pattern conducive to pollution control.

  10. Urban Waters and the Middle Rio Grande/Albuquerque (New Mexico)

    Science.gov (United States)

    Middle Rio Grande/Albuquerque (New Mexico) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  11. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  12. Impact-based integrated real-time control for improvement of the Dommel River water quality

    NARCIS (Netherlands)

    Langeveld, J.; Benedetti, L.; Klein, de J.J.M.; Nopens, I.; Amerlinck, Y.; Nieuwenhuijzen, van A.F.; Flameling, T.; Zanten, van O.; Weijers, S.

    2013-01-01

    The KALLISTO project aims at finding cost-efficient sets of measures to meet the Water Framework Directive (WFD) derived goals for the river Dommel. Within the project, both acute and long term impacts of the urban wastewater system on the chemical and ecological quality of the river are studied

  13. Determination of Water Quality Status at Sampean Watershed Bondowoso Residence Using Storet Method

    Science.gov (United States)

    Sugiyarto; Hariono, B.; Destarianto, P.; Nuruddin, M.

    2018-01-01

    Sampean watershed has an important social and economic function for the people surroundings. Sampean watershed wich cover Bondowoso and Situbondo residence is an urban watershed that has strategic value for national context needs special traetment. Construction activity at upper and lower course of Sampean watershed is highly intensive and growth of inhabitant also increase. The change of land utilization and increase of settlement area at upper, midlle, and lower course caused polutant infiltration to Sampean river watershed so it has impact on water quality. The source of pollution at Sampean river comes from domestic waste, industrial waste, agricultural waste and animal husbandry waste. The purpose of this research is to determine load of pollution and analize the pollution load carrying capacity at Sampean watershed. The data used in this research are rainfall, river flow rate and water quality at 6 certain points within 3 years during 2014 until 2016. The method to determine overall pollution rate is STORET (Storage and Retrieval of Water Quality Data System) method. The analysis results for the first, second, third and forth grade are -24 (moderate quality), -12 (moderate quality), -2 (good quality), and 0 (good quality) respectively.

  14. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    Science.gov (United States)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  15. Water scarcity and urban forest management: introduction

    Science.gov (United States)

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  16. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  17. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle...

  18. Urban environment quality assessment. Management and knowledge instruments

    International Nuclear Information System (INIS)

    Lovisolo, G.A.; Marino, C.

    1998-01-01

    This report summarizes various studies for characterization and quantization of air quality in urban environment. In this work are also reported information on electromagnetic fields effects, acoustic pollution and sanitary effects [it

  19. Polar pesticide contamination of an urban and peri-urban tropical watershed affected by agricultural activities (Yaoundé, Center Region, Cameroon).

    Science.gov (United States)

    Branchet, Perrine; Cadot, Emmanuelle; Fenet, Hélène; Sebag, David; Ngatcha, Benjamin Ngounou; Borrell-Estupina, Valérie; Ngoupayou, Jules Remy Ndam; Kengne, Ives; Braun, Jean-Jacques; Gonzalez, Catherine

    2018-04-18

    Urban agriculture is crucial to local populations, but the risk of it contaminating water has rarely been documented. The aim of this study was to assess pesticide contamination of surface waters from the Méfou watershed (Yaoundé, Cameroon) by 32 selected herbicides, fungicides, and insecticides (mainly polar) according to their local application, using both grab sampling and polar organic compounds integrative samplers (POCIS). Three sampling campaigns were conducted in the March/April and October/November 2015 and June/July 2016 rainy seasons in urban and peri-urban areas. The majority of the targeted compounds were detected. The quantification frequencies of eight pesticides were more than 20% with both POCIS and grab sampling, and that of diuron and atrazine reached 100%. Spatial differences in contamination were evidenced with higher contamination in urban than peri-urban rivers. In particular, diuron was identified as an urban contaminant of concern because its concentrations frequently exceeded the European water quality guideline of 0.200 μg/L in freshwater and may thus represent an ecological risk due to a risk quotient > 1 for algae observed in 94% of grab samples. This study raises concerns about the impacts of urban agriculture on the quality of water resources and to a larger extent on the health of the inhabitants of cities in developing countries. Graphical abstract ᅟ.

  20. Drinking Water Quality Guidelines across Canadian Provinces and Territories: Jurisdictional Variation in the Context of Decentralized Water Governance

    Directory of Open Access Journals (Sweden)

    Gemma Dunn

    2014-04-01

    Full Text Available This article presents the first comprehensive review and analysis of the uptake of the Canadian Drinking Water Quality Guidelines (CDWQG across Canada’s 13 provinces and territories. This review is significant given that Canada’s approach to drinking water governance is: (i highly decentralized and (ii discretionary. Canada is (along with Australia only one of two Organization for Economic Cooperation and Development (OECD member states that does not comply with the World Health Organization’s (WHO recommendation that all countries have national, legally binding drinking water quality standards. Our review identifies key differences in the regulatory approaches to drinking water quality across Canada’s 13 jurisdictions. Only 16 of the 94 CDWQG are consistently applied across all 13 jurisdictions; five jurisdictions use voluntary guidelines, whereas eight use mandatory standards. The analysis explores three questions of central importance for water managers and public health officials: (i should standards be uniform or variable; (ii should compliance be voluntary or legally binding; and (iii should regulation and oversight be harmonized or delegated? We conclude with recommendations for further research, with particular reference to the relevance of our findings given the high degree of variability in drinking water management and oversight capacity between urban and rural areas in Canada.

  1. Drinking Water Quality Guidelines across Canadian provinces and territories: jurisdictional variation in the context of decentralized water governance.

    Science.gov (United States)

    Dunn, Gemma; Bakker, Karen; Harris, Leila

    2014-04-25

    This article presents the first comprehensive review and analysis of the uptake of the Canadian Drinking Water Quality Guidelines (CDWQG) across Canada's 13 provinces and territories. This review is significant given that Canada's approach to drinking water governance is: (i) highly decentralized and (ii) discretionary. Canada is (along with Australia) only one of two Organization for Economic Cooperation and Development (OECD) member states that does not comply with the World Health Organization's (WHO) recommendation that all countries have national, legally binding drinking water quality standards. Our review identifies key differences in the regulatory approaches to drinking water quality across Canada's 13 jurisdictions. Only 16 of the 94 CDWQG are consistently applied across all 13 jurisdictions; five jurisdictions use voluntary guidelines, whereas eight use mandatory standards. The analysis explores three questions of central importance for water managers and public health officials: (i) should standards be uniform or variable; (ii) should compliance be voluntary or legally binding; and (iii) should regulation and oversight be harmonized or delegated? We conclude with recommendations for further research, with particular reference to the relevance of our findings given the high degree of variability in drinking water management and oversight capacity between urban and rural areas in Canada.

  2. Drinking Water Quality Guidelines across Canadian Provinces and Territories: Jurisdictional Variation in the Context of Decentralized Water Governance

    Science.gov (United States)

    Dunn, Gemma; Bakker, Karen; Harris, Leila

    2014-01-01

    This article presents the first comprehensive review and analysis of the uptake of the Canadian Drinking Water Quality Guidelines (CDWQG) across Canada’s 13 provinces and territories. This review is significant given that Canada’s approach to drinking water governance is: (i) highly decentralized and (ii) discretionary. Canada is (along with Australia) only one of two Organization for Economic Cooperation and Development (OECD) member states that does not comply with the World Health Organization’s (WHO) recommendation that all countries have national, legally binding drinking water quality standards. Our review identifies key differences in the regulatory approaches to drinking water quality across Canada’s 13 jurisdictions. Only 16 of the 94 CDWQG are consistently applied across all 13 jurisdictions; five jurisdictions use voluntary guidelines, whereas eight use mandatory standards. The analysis explores three questions of central importance for water managers and public health officials: (i) should standards be uniform or variable; (ii) should compliance be voluntary or legally binding; and (iii) should regulation and oversight be harmonized or delegated? We conclude with recommendations for further research, with particular reference to the relevance of our findings given the high degree of variability in drinking water management and oversight capacity between urban and rural areas in Canada. PMID:24776725

  3. Sensitivity of a complex urban air quality model to input data

    International Nuclear Information System (INIS)

    Seigneur, C.; Tesche, T.W.; Roth, P.M.; Reid, L.E.

    1981-01-01

    In recent years, urban-scale photochemical simulation models have been developed that are of practical value for predicting air quality and analyzing the impacts of alternative emission control strategies. Although the performance of some urban-scale models appears to be acceptable, the demanding data requirements of such models have prompted concern about the costs of data acquistion, which might be high enough to preclude use of photochemical models for many urban areas. To explore this issue, sensitivity studies with the Systems Applications, Inc. (SAI) Airshed Model, a grid-based time-dependent photochemical dispersion model, have been carried out for the Los Angeles basin. Reductions in the amount and quality of meteorological, air quality and emission data, as well as modifications of the model gridded structure, have been analyzed. This paper presents and interprets the results of 22 sensitivity studies. A sensitivity-uncertainty index is defined to rank input data needs for an urban photochemical model. The index takes into account the sensitivity of model predictions to the amount of input data, the costs of data acquistion, and the uncertainties in the air quality model input variables. The results of these sensitivity studies are considered in light of the limitations of specific attributes of the Los Angeles basin and of the modeling conditions (e.g., choice of wind model, length of simulation time). The extent to which the results may be applied to other urban areas also is discussed

  4. Interspecific hybrid of xeric Shepherdia rotundifolia and riparian Shepherdia argentea: description, and traits suitable for low-water urban landscapes

    Science.gov (United States)

    Shepherdia rotundifolia Parry (roundleaf buffaloberry), a shrub endemic to the U.S. Colorado Plateau high desert, has aesthetic and drought tolerance qualities desirable for low-water urban landscapes. However, slow growth and too often fatal sensitivity to wet or disturbed soil stymies nursery pro...

  5. Streamflow, water quality, and contaminant loads in the lower Charles River Watershed, Massachusetts, 1999-2000

    Science.gov (United States)

    Breault, Robert F.; Sorenson, Jason R.; Weiskel, Peter K.

    2002-01-01

    Streamflow data and dry-weather and stormwater water-quality samples were collected from the main stem of the Charles River upstream of the lower Charles River (or the Basin) and from four partially culverted urban streams that drain tributary subbasins in the lower Charles River Watershed. Samples were collected between June 1999 and September 2000 and analyzed for a number of potential contaminants including nitrate (plus nitrite), ammonia, total Kjeldahl nitrogen, phosphorus, cadmium, chromium, copper, lead, and zinc; and water-quality properties including specific conductance, turbidity, biochemical oxygen demand, fecal coliform bacteria, Entero-coccus bacteria, total dissolved solids, and total suspended sediment. These data were used to identify the major pathways and to determine the magnitudes of contaminants loads that contribute to the poor water quality of the lower Charles River. Water-quality and streamflow data, for one small urban stream and two storm drains that drain subbasins with uniform (greater than 73 percent) land use (including single-family residential, multifamily residential, and commercial), also were collected. These data were used to elucidate relations among streamflow, water quality, and subbasin characteristics. Streamflow in the lower Charles River Watershed can be characterized as being unsettled and flashy. These characteristics result from the impervious character of the land and the complex infrastructure of pipes, pumps, diversionary canals, and detention ponds throughout the watershed. The water quality of the lower Charles River can be considered good?meeting water-quality standards and guidelines?during dry weather. After rainstorms, however, the water quality of the river becomes impaired, as in other urban areas. The poor quality of stormwater and its large quantity, delivered over short periods (hours and days), together with illicit sanitary cross connections, and combined sewer overflows, results in large contaminant

  6. Urban hydrology

    Science.gov (United States)

    The Third International Conference on Urban Storm Drainage will be held in Goteborg, Sweden, June 4-8, 1984. Contact A. Sjoborg, Chalmers Univ. of Technology, Goteborg, Sweden, for more information. The Fourth Conference will be in late August 1987 in Lausanne, Switzerland, and the Fifth Conference is planned for Tokyo in 1990. The proceedings of the First International Conference, held in Southampton, England, in April 1978, are available from Wiley-Interscience under the title “Urban Storm Drainage.”The proceedings of the Second International Conference, held in Urbana, Illinois, in June 1981, are available from Water Resources Publications, Littleton, Colo., under the title, “Urban Stormwater Hydraulics and Hydrology” and “Urban Stormwater Quality, Management, and Planning.”

  7. Toward city-scale water quality control: building a theory for smart stormwater systems

    Science.gov (United States)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  8. Sustainability in urban water resources management - some notes from the field

    Science.gov (United States)

    Shuster, W.; Garmestani, A.; Green, O. O.

    2014-12-01

    Urban development has radically transformed landscapes, and along with it, how our cities and suburbs cycle energy and water. One unfortunate outcome of urbanization is the production of massive volumes of uncontrolled runoff volume. Our civic infrastructure is sometimes marginally capable of handling even dry-weather fluxes without wastewater system overflows, much less the challenges of wet-weather events. The predominance of runoff volume in urban water balance has had serious ramifications for regulatory activity, municipal financial matters, and public health. In the interest of protecting human health and the environment, my group's research has primarily addressed the integration of social equity, economic stabilization, and environmental management to underpin the development of sustainable urban water cycles. In this talk, I will present on: 1) the Shepherd Creek Stormwater Management project wherein an economic incentive was used to recruit citizen stormwater managers and distribute parcel-level, green infrastructure-based stormwater control measures; and 2) our urban soil pedologic-hydrologic assessment protocol that we use as a way of understanding the capacity for urban soils to provide ecosystem services, and in cities representing each of the major soil orders.

  9. Urban water consumption and its influencing factors in China

    NARCIS (Netherlands)

    Fan, Liangxin; Gai, Lingtong; Tong, Yan; Li, Ruihua

    2017-01-01

    Factors that affect water consumption should be identified to develop effective public policies. However, factors influencing domestic water consumption in cities in China, particularly on a national scale, are unclear. In this study, urban water consumption and its influencing factors in 286

  10. Water Quality Criteria

    Science.gov (United States)

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  11. Urbanization, climate change put water security at risk | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-22

    Jun 22, 2016 ... Increasingly, residents of peri-urban areas are facing water ... regions have distinct environmental, social, and institutional characteristics. ... Protecting food, energy, and livelihoods in Punjab through water-efficient agriculture.

  12. The association between self-reported diet quality and health-related quality of life in rural and urban Australian adolescents.

    Science.gov (United States)

    Bolton, Kristy A; Jacka, Felice; Allender, Steven; Kremer, Peter; Gibbs, Lisa; Waters, Elizabeth; de Silva, Andrea

    2016-10-01

    This study examines the relationship between diet quality and health-related quality of life (HRQoL) in rural and urban Australian adolescents, and gender differences. Cross-sectional. Secondary schools. 722 rural and 422 urban students from 19 secondary schools. Self-report dietary-related behaviours, demographic information, HRQoL (AQoL-6D) were collected. Healthy and unhealthy diet quality scores were calculated; multiple linear regression investigated associations between diet quality and HRQoL. Compared to urban students, rural students had higher HRQoL, higher healthy diet score, lower unhealthy diet score, consumed less soft drink and less frequently, less takeaway and a higher proportion consumed breakfast (P health problems. Such interventions should consider gender and locality. © 2016 National Rural Health Alliance Inc.

  13. Obtaining traffic information by urban air quality inspection

    International Nuclear Information System (INIS)

    Federico, G; Simone, A.; Simone, A.; Traverso, M.; Nicolosi, S.

    2006-01-01

    Transportation and its environmental impacts are a major component of urban environmental management. At the same time, transportation and mobility are an important part of urban economics and quality of life. To analyze urban transportation and its environmental impacts, a comprehensive, interdisciplinary approach is needed. Unfortunately, theoretical works about traffic flow and pollutant dynamic have independently evolved, rarely meeting contact points. Our works aims to provide a contribution in linking traffic flow and pollutant dynamic by proponing a new traffic model, able to calculate the number of running vehicles, once the ground level of an arbitrary pollutant concentration is know. The validation and simulation of this model is made possible by the training of an adaptive.(Author)

  14. Integrated Rural-Urban Water Management for Climate Based ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    There are serious short- and long-term consequences on human health, physical assets, economic ... To work, adaptive climate-proof integrated urban water management must extend throughout the whole catchment, an approach known as integrated water resource management. ... Careers · Contact Us · Site map.

  15. Impacts of urbanization on stream water quantity and quality in the United States

    Science.gov (United States)

    Ge Sun; Peter Caldwell

    2015-01-01

    Since the 1950s, the world’s urban population has grown more than 400% to 3.9 billion today. About 60% of the total population is expected to live in urban areas by the year 2025. For the United States (U.S.), 80% of the population lives in urban areas. The Earth has entered into the Anthropocene, a new geological epoch dominated by urbanization and people.

  16. Snowmelt Runoff: A New Focus of Urban Nonpoint Source Pollution

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-01-01

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing cosntitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control. PMID:23202881

  17. Snowmelt runoff: a new focus of urban nonpoint source pollution.

    Science.gov (United States)

    Zhu, Hui; Xu, Yingying; Yan, Baixing; Guan, Jiunian

    2012-11-30

    Irregular precipitation associated with global climate change had been causing various problems in urban regions. Besides the runoff due to rainfall in summer, the snowmelt runoff in early spring could also play an important role in deteriorating the water quality of the receiving waters. Due to global climate change, the snowfall has increased gradually in individual regions, and snowstorms occur more frequently, which leads to an enhancement of snowmelt runoff flow during the melting seasons. What is more, rivers just awaking from freezing constitute a frail ecosystem, with poor self-purification capacity, however, the urban snowmelt runoff could carry diverse pollutants accumulated during the winter, such as coal and/or gas combustion products, snowmelting agents, automotive exhaust and so on, which seriously threaten the receiving water quality. Nevertheless, most of the research focused on the rainfall runoff in rainy seasons, and the study on snowmelt runoff is still a neglected field in many countries and regions. In conclusion, due to the considerable water quantity and the worrisome water quality, snowmelt runoff in urban regions with large impervious surface areas should be listed among the important targets in urban nonpoint source pollution management and control.

  18. Valuing flexibilities in the design of urban water management systems.

    Science.gov (United States)

    Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali

    2013-12-15

    Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Temporal and spatial patterns of micropollutants in urban receiving waters

    Energy Technology Data Exchange (ETDEWEB)

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  20. Current research trend on urban sewerage system in China

    Science.gov (United States)

    Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian

    2017-03-01

    The research emphasis has always been on sewerage treatment technology in China, though urban drainage system has gained little attention. In the context of urban drainage system and the problem associated with rain, the focus is still mainly toward the simple “emissions”. While the relationship between conservation and utilization of rainwater resources and urban ecology are popular, the relationship between rainwater discharge and non-point source pollution are often neglected. The reasonable choice of sewerage system is dependent on the collection and discharge of urban sewerage, the applicability and economic benefits, along with the ability to meet the water quality requirements and environmental protection. This paper analyzes and summarizes the development of urban drainage system in china, and introduces different drainage forms. The choice of drainage system should be based on the overall planning of the city, environmental protection requirements, the local natural conditions and water conditions, urban sewerage and water quality, the original drainage facilities, and local climatic conditions. It must be comprehensive to meet the environmental protection requirements, through technical and economic comparison.